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ABSTRACT 

Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic 

approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a 

prospective, randomized, crossover and controlled trial. Sixty-one male volunteers with high cardiovascular 

risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272ml/day, 

polyphenol-control), alcoholized red wine (RWA) (272ml/day) and gin (GIN) (100ml/day, alcohol-control). 

After each period, 24h-urine samples were collected and analyzed by 
1
H-NMR. According to the results of 

an one-way-ANOVA, significant markers were grouped in four categories: alcohol-related markers 

(ethanol); gin-related markers; wine-related markers; and gut microbiota markers (hippurate and 4-

hydroxphenylacetic acid). Wine metabolites were classified into two groups; first, metabolites of food 

metabolome: tartrate (RWA and RWD), ethanol and mannitol (RWA); and second, biomarkers which relates 

to endogenous modifications after wine consumption, comprising branched-chain amino acid (BCAA) 

metabolite (3-methyl-oxovalerate). Additionally, a possible interaction between alcohol and gut-related 

biomarkers has been identified. To our knowledge, this is the first time that this approach has been applied in 

a nutritional intervention with red wine. The results show the capacity of this approach to obtain a 

comprehensive metabolome picture including food metabolome and endogenous biomarkers of moderate 

wine intake. 

Abbreviations: BCAA, brached-chain amino acids; BAS, Basal; RWD, dealcoholized red wine; RWA, red 

wine alcoholized; δ, chemical shift; s, singlet; d,doublet; t, triplet; q, quadruplet; m,  multiplet;  Keywords: 

Biomarkers /Metabolomics/ Nuclear Magnetic Resonance / urinary profile / wine intake Total Number of 

words: 5.083 
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1 Introduction 

Cardiovascular disease (CVD) is one of the main causes of mortality in western countries. Diet and lifestyle 

are recognized as the major modifiable risk factors in CVD [1]. The low incidence of coronary heart disease 

(CHD) in Mediterranean countries has been partly ascribed to the dietary habits of their inhabitants [2, 3]. As 

one of the mains components of Mediterranean diet, wine and its constituents, especially polyphenols, may 

provide additional health-promoting benefits [4] [5, 6]. Results of several clinical and epidemiological 

studies have showed the protective effect of a moderate wine consumption against CVD [7], particularly 

with regards to oxidative stress [8, 9], inflammation and vascular function [10-12], the main causes behind 

the development of CVD [13]. However, there are discrepancies on the effects of the different types of 

alcoholic drinks (wine, beer and liquors) on the cardiovascular system and whether the possible protective 

mechanisms of alcoholic beverages are due to their alcoholic component (ethanol), their non-alcoholic 

constituents, mainly polyphenols, or both [14, 15]. Therefore, new biomarkers of wine and alcohol 

consumption are needed in order to increase the knowledge on the effects of these beverages on the 

cardiovascular system and to clarify their protective mechanisms of CVD.  

Foodomics is considered a new discipline that studies food and nutrition fields through advanced omics- 

technology application: genomic, transcriptomic, proteomic, and /or metabolomic [16] using sensitive 

methods (NMR, GC-MS, LC-MS, CE) to detect and quantify changes in dietary patterns [17]. 
1
H-NMR-

based metabolomics is a very robust technique for metabolomic applications enabling the simultaneous 

detection of a wide range of structurally different metabolites [18], and it can facilitate the discovery of new 

candidates for biomarkers of disease risk [19-21]. Similarly, NMR-based metabolomics can provide 

information, in combination with dietary intake, about the development of different diseases, as published by 

Vinaixa et al., who assessed the effect of dietary cholesterol on the progressive development of fatty liver 

disease [22]. As far as red wine polyphenol intake is concerned, van Dorsten et al. used a dry mix of red 

wine and red grape juice extracts to assess the metabolic fate of red wine polyphenols in humans by GS-MS 

and NMR-metabolomics [23]. Despite this use of extracts from red wine, as far we know, no reports on 

metabolomic studies using wine (as a beverage) in a nutritional intervention with either animals or humans 

are available.  

As a result, the aim of the present study is to apply, for the first time to our knowledge, a 
1
H-NMR-based 

metabolomic strategy in order to investigate the effect of wine intake on the human metabolome in a urinary 

profile, identifying the most relevant markers of consumption and the endogenous effect of this beverage on 

human volunteers. 

2 Material and Methods  

2.1 Subjects and Study design 

A total of 61 high-risk subjects aged ≥55 years without documented coronary heart disease (CHD: ischemic 

heart disease – angina/recent or past myocardial infarction/previous or cerebral vascular accident, peripheral 

vascular disease) were recruited for the study. The subjects included had diabetes mellitus or more than 3 of 

the following CHD risk factors: tobacco smoking, hypertension, hypercholesterolemia, plasma LDL 

cholesterol ≥160 mg/dl, plasma HDL cholesterol <40 mg/dl, obesity [BMI (in kg/m2) ≥30], and/or a family 

history of premature CHD (first-line male relatives < 55 years or females < 65 years). Participants had to 

voluntarily give signed informed consent. Subjects with a previous history of cardiovascular disease, any 

severe chronic disease, alcoholism or other toxic abuse were excluded. The study was a prospective, 

randomized, crossover and controlled trial. As a result of random computer-generated selection, participants 

were asked to take either, 272ml/day of red wine (hereafter, RWA) (about 30g ethanol/day), 272ml/day of 

dealcoholized red wine (hereafter, RWD, polyphenols control) or 100ml/day of gin (hereafter, GIN, alcohol 

control), every day for four weeks (28 days). 24-hour urine samples were collected on the last day of each 

period as well as the basal time. In order to evaluate the metabolic profiles, urine samples were analyzed by 
1
H-NMR after each intake. All participants received all three interventions. Subjects had forbidden other 

alcoholic beverages 15-d before the first intervention and during the study, also asked not to change their 

dietary pattern during the study. A 7-d food record questionnaire was validated in our population [24] 
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monitoring nutrient intake at the beginning of the study and after each intervention, also a medical record 

and Minnesota Leisure Time Physical Activity Questionnaire validated in Spain [25] were performed. The 

wine used for the interventions (RWA and RWD) was elaborated with Merlot grape variety. The daily dose 

of alcohol was the same in both the RWA and GIN periods and the polyphenol composition of the wine is 

detailed in Table 1[26]. The total phenolic content of the 3 beverages was determined by the Folin-Ciocalteu 

method [27], the phenolic profile of RWA and RWD and resveratrol and piceid contents were measured by 

using HPLC-diode-array detection [28],[29]. 

2.2 Sample Preparation 

The urine samples were thawed, vortexed and centrifuged at 13200 rpm for 5 min. The supernatant (600 µl) 

from each urine sample was mixed with an internal standard solution [120 µL, consisting of 0.1% TSP (3-

(trimethylsilyl)-proprionate-2,2,3,3-d4, chemical shift reference), 2 mM of sodium azide (NaN3, 

bacteriostatic agent), and 1.5M KH2PO4, in 99% deuterium water (D2O)]. The optimized pH of the buffer 

was set at 7.0, with a KOD solution, to minimize variations in the chemical shifts of the NMR resonances. 

This mixture was transferred to a 5 mm NMR tube.  

2.3 
1
H-NMR Data Acquisition and Processing 

The 
1
H-NMR spectra were acquired on a Varian-Inova-500 MHz NMR Spectrometer with presaturation of 

the water resonance using a NOESYPRESAT pulse sequence. During the acquisition, the internal 

temperature was kept constant at 298 K. An exponential window function was applied to the free induction 

decay (FID) with a line-broadening factor of 0.3 Hz prior to the Fourier transformation. For each sample, 

FIDs were collected into 32 K data points (128 scans) with a spectral width of 14 ppm, an acquisition time of 

2 s, relaxation delay of 5 s, and a mixing time of 100 ms. NMR spectra were phased, baseline corrected and 

calibrated (TSP, 0.0ppm) using TopSpin software (version 3.0, Bruker). After baseline correction, two 

different approaches were subsequently used to summarize spectral data. On the one hand, original spectral 

data was bucketed in equal-size domains of 0.005 ppm [30-32] using ACD/NMR Processor 12.0 software 

(Advanced Chemistry Development, Inc.). On the other hand, intensities of each 1H-NMR region 

conveniently identified in the urine 1D-NMR spectra were integrated for each sample entering the study  

(profiling integration) using the AMIX 3.8 software package (Bruker, GmBH). In both cases, the spectral 

region between 4.68 and 5.08 ppm was excluded from the data set to avoid spectral interference from 

residual water.   

2.4 Statistical analysis 

Datasets derived from the two above-mentioned integrations were submitted to MetaboAnalyst, a web-based 

platform for comprehensive analysis of metabolomic data [33]. The two different matrices were row-wise 

normalized (rows were samples) by the sum of the intensities of the spectra [34] and column-wise 

normalized (columns were metabolites) using Pareto scaling [21] prior to being analyzed by ANOVA test. 

Fisher’s LSD test for multiple comparisons was applied as a post-hoc test; a p<0.05 was considered to 

indicate statistical significance. In addition, we performed a correlation test (Pearson’s correlation) [33] for 

verification when two or more signals came from the same metabolite. Correlation values close to 1 indicate 

a strong correlation, while values lower than 0.5 indicate a weak correlation, and values very close to 0 

indicate no correlation. 

2.5 Metabolite Identification  

Metabolite identification was performed according to Chenomx NMR Suite 7.0 profiler (Chenomx Inc. 

Edmonton, Canada) by comparing NMR spectral data to those available in databases such as the Human 

Metabolome Database (HMDB; www.hmdb.ca), the Biological Magnetic Resonance Data Bank (BMRB, 

www.bmrb.wisc.edu), and the Madison Metabolomics Consortium Database (MMCD, 

mmcd.nmrfam.wisc.edu), along with the existing NMR-based metabolomics literature [35-37].  

 

http://www.hmdb.ca/
http://www.bmrb.wisc.edu/
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Table 1. Phenolic composition of beverages used in the study: RWA, RWD, and GIN (non significant 

differences were found for any of the phenolic compounds between RWA and RWD (student's t test for 

independent samples). Mean ± SD. 

 

 RWA RWD GIN 

Alcohol (%) 14.2 0.42 38 

Total phenols (mEqGA/L) 2933.35 ± 377.31 2694.92 ± 86.79 ND 

Gallic acid (mg/L) 68.48 ± 6.40 73.17 ± 7.01 ND 

Protocatechuic acid (mg/L) 5.22 ± 0.62 5.85 ± 0.51 ND 

Tyrosol (mg/L) 43.59 ± 4.73 47.81 ± 3.90 ND 

Catechin (mg/L) 123.51 ± 11.30 126.45 ± 13.35 ND 

Epicatechin (mg/L) 67.86 ± 7.74 70.57 ± 8.22 ND 

trans-Caftaric 18.62 ± 1.45 19.21 ± 1.62 ND 

trans-Caffeic (mg/L) 11.50 ± 0.79 12.18 ± 0.92 ND 

trans- Coutaric (mg/L) 5.21 ± 0.45 5.62 ± 0.52 ND 

2-S-glutationylcaftaric (mg/L) 10.30 ± 1.00 10.76 ± 1.26 ND 

Quercetin-3-glucuronide (mg/L) 11.88 ± 1.38 11.25 ± 1.42 ND 

Quercetin (mg/L) 26.66 ± 0.78 23.82 ± 2.37 ND 

Isorhamnetin (mg/L) 3.34 ± 0.27 2.96 ± 0.14 ND 

Delphinidin-3-glucoside (mg/L) 15.25 ± 0.89 14.71 ± 1.62 ND 

Petunidin-3-glucoside (mg/L) 12.29 ± 1.06 12.04 ± 1.15 ND 

Peonidin-3-glucoside (mg/L) 6.78 ±0.62 6.68 ± 0.57 ND 

Malvidin-3-glucoside (mg/L) 48.83 ±4.45 49.86 ±4.27 ND 

Malvidin-(6-acetyl)-3-glucoside (mg/L) 10.97 ± 0.96 10.41 ± 1.20 ND 

Malvidin-(6-coumaroyl)-3-glucoside 

(mg/L) 

4.15 ± 0.27 3.54 ± 0.33 ND 

trans-Resveratrol (mg/L) 2.92 ± 0.36 2.73 ± 0.23 ND 

cis-Resveratrol 2.79 ± 0.15 2.75 ± 0.15 ND 

trans-Piceid (mg/L) 9.41 ± 1.12 10.53 ± 0.96 ND 

cis-Piceid (mg/L) 7.71 ± 0.34 7.08 ± 0.87 ND 
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3 Results and discussions 

The total phenolic content of the 3 beverages used in this study, the phenolic profile of RWA and RWD and 

resveratrol and piceid content are presented in table 1. 
1
H- NMR resonance assignments with chemical shifts 

and multiplicity of the signals elucidated in 
1
H- NMR spectra of urine of the participants are shown in Table 

2.  Results performed by multivariate techniques were no consistent and difficult to interpret so we choose 

ANOVA test to analyze selected NMR signals to determine statistical differences between interventions of 

the individuals [38, 39]. ANOVA test is effective determining whether a given set of NMR signals contains 

interesting information. The significant bins returned by the ANOVA test (p<0.05) for both techniques are 

shown in Table 3. Results showed that significant bins from the two above-mentioned integrations were in 

consonance. The box plots with the Fisher’s LSD test for multiple comparisons are shown in Fig. 1. 

Additionally, in order to present an overview of the whole representative spectrum, the significant 

metabolites of each spectrum in basal and the three dietary interventions are shown (Fig. 2).Identified 

markers were grouped in four categories, namely: alcohol-related markers; gin-related markers; wine-related 

markers; gut microbiota markers.  

 

Table 2. 
1
H-NMR resonance assignments with chemical shifts for signals identified in samples of human 

urine.  

Code Metabolite δ (H
1 
shift) ppm Multiplicity 

1 Acetate 1.93  s 

2 Acetoacetate 2.27 s 

3 Acetone 2.24 s 

4 cis-Aconitate 3.11; 5.75 s; s 

5 Acetylcarnitine 2.15 s 

6 Alanine 1.49  d 

7 Betaine 3.27 s 

8 Carnitine  3.23 s 

9 Citrate 2,68 + 2,55 d + d 

10 Creatine 3,94, 3,04 s; s 

11 Creatinine 3,06; 4.06 s; s 

12 Dimethylamine (DMA) 2.72 s 

13 Ethanol 1.19; 3.69 t; q 

14 Formate 8.46 s 

15 Fucose 5.20 d 

16 Glycine 3.57 s 

17 Glycylproline  3.94 s  

18 Glucose 3.50; 4.66; 5.25;  m; d; d  

19 Hippurate 3.98; 7.57; 7.64; 7.84; d; tt; t; dd 

20 Histidine 7.08 s  

21 2-Hydroxyisobutyrate 1.36  s 

22 3-Hydroxyisovalerate  1.26 s  

23 3-hydroxymandelate 6.82 s 

24 4-Hydroxyphenylacetate  6.87  d  

25 Indole-3-acetate 7.51 d 

26 Lactate  1.33 d 
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Table 2. continued 

 

 

Code Metabolite δ (H1 shift) ppm 
Multiplicity 

27 Leucine 0,96 t 

28 Lysine 1.73 m 

29 Malonate  3.12 s 

30 Mannitol 3.69; 3.77; 3.80, 3.87 dd; m; d; dd 

31 n-Methylhistidine 7.09  s  

32 1-Methylnicotinamide 4.47 s 

33 Methylsuccinate  1.07 d 

34 3-Methyl-2-oxovalerate  1.10 d 

35 N-N Dimethylglycine (DMG) 2.93 s 

36 Tartrate  4.35 s 

37 N-Phenylacetylglycine (PAG) 7.35; 7.43; m; m 

38 Succinate 2.41 s  

39 Taurine 3.43; 3.26 t; t 

40 Trigonelline 4.43; 8.08; 8.85; 9.13; s; m; m; s 

41 Trimethylamine (TMA) 2.89 s 

42 Trimethylamine-N-oxide (TMAO) 3.27 s 

43 Threonine 1.33 d 

44 Tyrosine 6.90 d 

45 Urea 5.75-5.90 m 

46 Valine  0,98; 1,05 d; d 

    

s, singlet; d, doublet; dd: double doublet; t, triplet; tt: double triplet; q: quadruplet; m, multiplet. 

 

Alcohol-related markers: A significant presence of ethanol (δ 1.19 (t), and δ 3.69 (q)) was detected in the 

urine of participants after RWA and GIN consumption, which suggests that this presence may correspond to 

the ethanol from the beverage (both gin and red wine). In fact, ethanol has been found in wine by NMR [40]. 

With regard to human samples, ethanol has been identified in the urine of healthy Caucasian volunteers who, 

after two days of abstinence from alcoholic beverages, consumed sake and rice wine [41]. The presence of 

ethanol in urine was recently used as an indicator of non-compliance of dietary protocol in a metabolomic 

experiment in which alcohol intake was forbidden [42]. In our case, we view the presence of ethanol in the 

interventions that has the alcoholic component in the dietary protocol (RWA and GIN), concluding that the 

identified ethanol could be considered as a biomarker of the overall compliance of dietary interventions.  

Gin-related markers: Two correlating signals (δ2.13(s) and 5.69 (s), fig. 3A) were excreted in statistically 

higher concentrations after GIN intake. These two signals are also present in some volunteers in basal time 

and after a RWA or RWD period, without a clear pattern in terms of volunteers and interventions followed. 

This behaviour indicates either possible gin compound or an endogenous compound because not all gin 

volunteers presented these peaks in their urinary metabolome. Querying to the NMR database failed to 

confirm the assignation of these signals. However, the δ2.13 peak could suggest the presence of 

acetylcholine or acetylcarnitine, but this hypothesis could not be confirmed by comparing the sample with a 

urine sample spiked with commercial standards, so it has been rejected. Therefore, we have not been able to 

identify these two correlated signals and they have been termed as “unknown 1”.
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Table 3: Metabolites detected after the three treatments. P-values of each metabolite (p<0.05; ANOVA). 

 

- :No changes 

Compound 
1
H-NMR  

Chemical shift 

 (ppm) 

 

 

After RWA 

intake 

After RWD 

intake 

After GIN 

intake 

P-value  Metabolites information 

0.005 ppm 

integration 

Profiling 

integration 

 0.005 ppm 

integration 

Profiling 

integration  

  

Tartrate  4.35 4.35  ↑ ↑ - 4.81 x10
-9

 1.0147x10
-7

 Wine compound 

Mannitol 3.77  

3.87 

3.69-3.87 ↑ - - 3.68 x10
-2

 

4.69 x10
-2

 

3.43 x10
-2

 Wine alcoholized compound 

Ethanol  1.19 

3.69 

1.19  ↑ - ↑ 1.43 x10
-4

 

8.60 x10
-4

 

3.0324x10
-4

 Alcohol from beverage 

3-methyl-2-oxovalerate 1.10 1 ↑ ↑ - 1.63 x10
-5

 3.48 x10
-2

 Valine, leucine and isoleucine degradation 

4-hydroxyphenylacetate  6.87 6.87  ↑ ↑ - 1.89 x10
-2

 4.31x10
-2

 
 

Phenylalanine and Tyrosine metabolism 

Gut microbiota  

Hippurate  7.84 

3.98 

7.64 

7.57 

7.84  

3.98 

7.64  

7.57  

- ↑ - 6.56 x10
-4

 

2.59 x10
-2

 

2.58 x10
-3

 

1.04 x10
-2

 

1.26 x10
-2

 

1.49 x10
-2

 

3.05 x10
-2

 

3.29 x10
-2

 

Phenylalanine metabolism  

Gut microbiota 
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Figure 1. Box plots of the intensities of significant metabolites. ***P<0.00001; **P<0.005; *P<0.05. 

Different letters indicate significant differences between interventions. BAS (basal time); RWA (red wine), 

RWD (dealcoholized red wine) and GIN (Gin). 

 

Wine-related markers: This group comprises those markers related to the intake of red wine (RWA and/or 

RWD). With regards to these two classes of wine (RWA and RWD) intake, a chemical shift at 4.35 ppm (s), 

corresponding to tartrate, was detected. The box plot in figure 1 shows the significant differences between 

the wine, basal and gin periods, with no differences between wines. Tartaric acid is the major acid in grapes 

and so it is also present in wine [40, 43]. Lord et al. tested the frequent ingestion of grape juice (28mL) in a 

human population producing urinary tartrate concentrations >300g/mg creatinine [44]. Dietary sources 

strongly influence the concentration of urinary tartrate, and its production by intestinal yeast or bacteria is 

insignificant because the majority of tartaric acid is destroyed by microbial action [45, 46], indicating that 

the urinary tartrate in our samples was provided by the wine composition. In addition, Yamashita et al. 

demonstrated that tartaric acid has the beneficial effect of enhancing the bioavailability of wine polyphenols 

[47].  

In this context, an endogenous product of the degradation of branched-chain amino acids (BCAA) termed 3-

methyl-2-oxovalerate (δ1.10, d) was identified in urines after the intake of RWA and RWD (Fig. 1, Table 2). 

This identification was confirmed by spiking urine samples with the commercial standard. According to the 

results obtained, Connor et al. found an increase in urinary levels of the branched-chain amino acid valine 

and its metabolite 3-methyl-2-oxovalerate in diabetic mice [48]. Moreover, it was discovered that 

cardiovascular subjects such as diabetic [48, 49] and obese subjects [50, 51] have elevated plasma levels of 

BCAAs [52], because of the reduction in BCAA catabolism. The first step in the catabolism of BCAAs is a 

reversible step and is carried out in the brain and several non-hepatic tissues by branched-chain 

aminotransferase (BCAT) to convert BCAAs into branched-chain alpha ketoacids (BCKAs) such as 3-
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methyl-2-oxovalerate. Our results show an increase in 3-methyl-2-oxovalerate in urine as a result of the first 

step of BCAA catabolism, suggesting a possible up-regulation of this pathway carried out by BCAT enzyme 

after RWA and RWD intake. 

 

 

Figure 2. Representative 500MHz 
1
H-NMR region of spectra in basal time (BAS), RWD (dealcoholized red 

wine); RWA (red wine), GIN (gin). The figure exhibits the significant metabolites in ANOVA test. Zoomed 

regions are performed. Spectral area zoomed between 3.55 and 4.50 ppm (1); 0.80-1.30 ppm interval area 

(2). 

 

 

In the aliphatic region comprising 0.85 to 1.24 ppm, where 3-methyl-2-oxovalerate is also present, there 

were statistical differences between wine intake (RWA and RWD) and basal or gin treatment. An increase in 

several signals in this region (see nomenclature in figure 3B: unknown 2: δ0.85 (s) unknown 3: δ0.92 (s), 

unknown 4: δ1.15 (d); unknown 5: δ1.24 (d+d)) was detected after wine consumption, with a good 
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correlation between them and with 3-methyl-2-oxovalerate (Fig. 3B). The identification of these unassigned 

signals (overall the 0.80-1.00ppm region) was hampered by their low signal intensities, a broad band signal 

area, and the absence of other resonance patterns. 

 

 

Figure 3. Correlation plot from integration bucketing corresponding to signals of unknown 1 (A); Aliphatic 

region metabolites, 0.84-0.86: unknown 2; 1.09-1.11: methyl-2-oxovalerate; 0.90-0.92: unknown 3; 1.13-

1.15: unknown 4; 1.23-1.24: unknown 5 (B); and Hippurate (C). Correlation coefficient >0.5, for all the 

figures. The compounds are represented as horizontal bars. Light pink color indicates positive correlations.  

 

 

With regard to RWA intake, mannitol (δ3.78, dd) showed a significant increase in the sugar region. Mannitol 

is a polyol produced by heterofermentative lactic acid bacteria from the reduction of fructose [53] and is 

present in wine. Liu et al. tested mannitol concentration in different wines and fruit juices, finding higher 

values in Cabernet Sauvignon, a red wine from the same family as Merlot (the wine used in this study) [54], 

than in sweet white, medium-dry white or Pinot noir wine. The presence of this polyol in urine samples after 

RWA intake could be explained by the fact that it is largely eliminated from the body before any metabolism 

can take place [55], and the absence after RWD intake suggests a possible elimination of this compound 

during the process of dealcoholization. 
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Gut microbiota markers: In samples from the RWD intake period, the intensity signals of hippurate (δ3.98 

(d), δ7.57 (tt), δ 7.64 (t), δ7.84 (dd), Fig. 3C) increased in comparison with GIN and basal time. An 

interesting significant difference was observed between RWA and RWD (Fig.1 and table 3). Hippurate is a 

metabolite belonging to the phenylalanine and tyrosine degradation pathways and it has also been related to 

polyphenol microbiota catabolism. There have been several studies in rats and humans showing an increase 

in hippurate excretion after wine polyphenol consumption [56, 57]. Another gut microbiota metabolite, 4-

hydroxyphenylacetate (δ6.87), showed an effect of wine intake, with no significant differences between 

RWD and RWA; however, it did show significantly higher levels after RWD intake compared to the GIN 

and basal period. This metabolite has been identified in urine and faeces [32, 56] after consumption of 

polyphenolic compounds in wine [57, 58], it could explain no differences in these results between wines 

(RWD and RWA) in the current results. In addition, this metabolite is also related to tyrosine metabolism. 

An interesting result was that no significant differences between the alcohol-containing diets (RWA and 

GIN) were detected (Fig. 1, Table 3).  

The two markers related to gut microbiota showed a similar behavior (Fig. 1); however, slight differences 

were observed. The similarities were found in relation to the influence of alcohol intake where for both 

metabolites RWA and GIN showed no significant difference. This fact suggests a possible impact of ethanol 

on the metabolic pathways related to the production of both compounds, probably modifying the relationship 

between microbiota and human metabolism. A recent study conducted by Gao et al. [59] compared urine 

from Wistar and Spraguel-Dawley rats after ethanol administration. The authors demonstrated a different 

excretion pattern in some metabolites affected by alcohol intake. Concretely, hippurate showed less excretion 

after ethanol administration, and in another hand, excretion of 4-hydroxyphenylacetate increased with 

alcohol administration. With regard to differences in the present results, while hippurate content was 

significantly different when comparing RWA and RWD, the amount of 4-hydroxyphenylacetic acid did not 

differ significantly between wine diets (RWA and RWD). This behavior could be explained because 4-

hydroxyphenylacetate is a compound increased with wine consumption, counteracting with the effect of 

alcohol administration. As a result, no differences between wines (RWD and RWA) (Fig. 1, Table 2) and 

between alcohol containing beverages (RWA and GIN) were observed. Hippurate could arise from different 

sources, such as diet (mainly polyphenols), oxidative stress, and intestinal microbiota [20]. In contrast, in the 

case of 4-hydroxyphenylacetic acid, this behaviour (no differences between wine diets) suggests that an 

important part of this compound should be associated with wine intake from the intervention. 

4 Concluding remarks 

The results of the current work show the capability of an NMR-based metabolomic approach to detect 

significant changes in metabolites after moderate wine consumption. Wine-related biomarkers may be 

classified into two groups. The first group comprises those metabolites coming from the metabolism of food 

components (food metabolome), where mannitol is related to an RWA diet, and tartrate is a biomarker of 

wine intake (RWA and RWD). These results support the notion that this compound (tartrate) could be 

considered to be a possible marker of wine intake. The second group comprises those markers related to 

endogenous modifications after wine consumption: BCAA metabolites and other signals in the same spectral 

area. In spite of this, more about BCAAs and wine intake needs to be known in order to understand the 

connection between the catabolic pathway of BCAA and moderate wine intake. 

Despite these biomarkers, ethanol was a robust biomarker of alcohol consumption as it was related to GIN 

and RWA diets. In fact, combining tartrate and ethanol we observed a global compliance of dietary 

intervention, important factor in metabolomics studies that other authors also has been investigated [60]. 

Finally, the gut microbiota metabolites, 4-hydroxyphenylacetate and hippurate, showed a particular effect in 

combination with alcohol, providing new insights into the assimilation of polyphenol metabolites.  

One of the main limitations of our study is that there we no washout periods between interventions. Washout 

periods between interventions would have extended the study 6 week more, which would have made it 

difficult to ensure compliance and any increase in study length may increase participant dropout rate [61]. 

Previous studies carried out at the Hospital Clinic of Barcelona confirmed that changes in cellular and 
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endothelial adhesion molecules due to the intervention were already observed after 15 days of treatment [62, 

63], and no carryover effect was observed, the absence of a washout period would probably not have 

changed the results. Therefore the results observed at the end of the 4-week period could be attributed to the 

intervention and should only be compared with those observed at the end of the other interventions.  

 

In conclusion, to our knowledge, this is the first time that this approach has been applied in a nutritional 

intervention with red wine. The results showed that H-NMR-based metabolomics is a powerful strategy for 

obtaining biomarkers in nutritional intervention studies. In fact, the results obtained generate new 

perspectives on understanding the relationship between moderate wine intake and human health. 
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