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Ultralow mode-volume photonic crystal nanobeam
cavities for high-efficiency coupling to individual
carbon nanotube emitters
R. Miura1, S. Imamura1, R. Ohta2, A. Ishii1, X. Liu1, T. Shimada1, S. Iwamoto2, Y. Arakawa2 & Y.K. Kato1

The unique emission properties of single-walled carbon nanotubes are attractive for achieving

increased functionality in integrated photonics. In addition to being room-temperature

telecom-band emitters that can be directly grown on silicon, they are ideal for coupling to

nanoscale photonic structures. Here we report on high-efficiency coupling of individual

air-suspended carbon nanotubes to silicon photonic crystal nanobeam cavities. Photo-

luminescence images of dielectric- and air-mode cavities reflect their distinctly different

mode profiles and show that fields in the air are important for coupling. We find that the

air-mode cavities couple more efficiently, and estimated spontaneous emission coupling

factors reach a value as high as 0.85. Our results demonstrate advantages of ultralow

mode-volumes in air-mode cavities for coupling to low-dimensional nanoscale emitters.
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S
ingle-walled carbon nanotubes (CNTs) are known to
exhibit unique optical phenomena such as multiple
electron-hole pair generation1 and dimensionality effects

on excitons2, while their emission properties allow access to spin3

and quantum4 degrees of freedom. To utilise such exceptional
characteristics in monolithic optical circuits, efficient coupling to
photonic structures is essential. In this regard, planar cavities5–8

are not ideal as the coupling would be distributed over a
continuum of modes.

Nanocavities with small mode-volumes would provide better
coupling, and in particular, photonic crystal nanobeam cavities
offer flexible control over the cavity fields. In a nanobeam cavity,
a periodic array of air holes is etched into a waveguide to form a
photonic bandgap, which acts as a Bragg reflector. The bands
below the gap are called dielectric bands because the field
amplitudes are maximised within the dielectric material, while the
bands above the gap are known as air bands since they have large
fields in the air holes. The dielectric band modes can be confined
by locally reducing the lattice constant a, as the energy of the
modes will become higher and the photons will be surrounded by
the photonic band gap9,10. Similarly, air-band modes can be
confined by introducing a larger lattice constant region11,12.

Here we demonstrate spontaneous emission coupling efficiency
exceeding 85% for a single CNT coupled to a silicon photonic
crystal nanobeam cavity with an ultralow mode-volume. We take
advantage of the excellent optical properties of as-grown air-
suspended CNTs13–16, and integrate them with specially designed
cavities with large fields in the air, distinctly different from the
standard dielectric-mode cavities10,17–20. Our approach is also
applicable to other low-dimensional materials, opening up a
pathway for efficient use of nanoscale emitters in integrated
photonics for both classical and quantum applications.

Results
Coupling individual nanotubes to nanobeam cavities. In
Fig. 1a,b, electron microscope images of typical devices are
shown. We have performed finite-difference time-domain
(FDTD) calculations for these cavity structures to map out the
profiles of the fundamental modes. Since nanotubes will be laying
at the top surface of the nanobeam, we plot the mode profiles at
that height in Fig. 1c,d. As expected, the dielectric-mode cavity
has high field amplitudes within the Si material, with evanescent
fields extending out the edges. For the air-mode cavity, the fields
are mostly distributed within the air holes, with some evanescent
fields as in the case of the dielectric-mode cavity. The intense

fields in the air holes should be an advantage compared with
cavities that confine most of the optical fields in the high-index
medium21–23, because nanotube photoluminescence (PL) is
quenched when they are in contact with the substrate14,24. We
note that both the cavity modes are transverse electric modes, and
therefore the polarisation matches with the emission of nanotubes
that are perpendicular to the nanobeams.

To couple individual CNTs to nanobeam cavities, we have
fabricated devices shown as a schematic in Fig. 2a. Catalyst
particles are placed across a trench from the cavity, and we
perform chemical vapour deposition to grow CNTs onto the
cavities22. An electron micrograph of a device after nanotube
growth is shown in Fig. 2b.

In Fig. 2c, we present a PL spectrum from one such devices
taken with an excitation power P¼ 1 mW and an excitation
wavelength lex¼ 797 nm. On top of the broad direct emission
from the nanotube, there is a very sharp peak, which is the cavity
mode, indicating that the nanotube emission is optically coupled
to the cavity. To further characterise the device, PL excitation
spectroscopy is performed (Fig. 2d). We observe a single peak in
the PL excitation map, demonstrating that this is an isolated
single nanotube. Using tabulated data25, the chirality is
determined to be (9,8). The intensity of the sharp cavity mode
is maximised at the same wavelength as the E22 resonance of this
tube, showing that the absorption originates from the nanotube
and that the cavity mode is excited by the nanotube emission.

Comparison of dielectric- and air-mode cavities. On those
devices coupled with single CNTs, we have performed confocal
PL imaging to locate the nanotube positions. Figure 3a,b show
images from typical dielectric- and air-mode devices, respectively.
By determining the positions of the highest PL intensity from
images of 430 devices, the spatial displacements of the nano-
tubes with respect to the centre of the cavities have been mapped
out (Fig. 3c,d). It is possible to identify qualitative differences
in the spatial distribution of nanotubes between the two types
of cavities. For the dielectric-mode cavities, the emission spot of
nanotubes is mostly located at the edges of the nanobeam or

xz

y
z = 130 nm

Ey (a.u.)
0 1–1

Figure 1 | Photonic crystal nanobeam cavities. (a,b) Scanning electron

micrographs of dielectric- and air-mode cavities, respectively. (c,d) Profiles

of normalised y-component of electric fields Ey at z¼ 130 nm. The origin of

the coordinate system is the centre of the cavity. For c, a dielectric-mode

cavity with a¼ 390 nm, cavity-centre period of 0.84a, and 200 nm by

530 nm holes is used for the calculation. For d, an air-mode cavity with

a¼430 nm, cavity-centre period of 1.16a, and 220 nm by 510 nm holes is

used. All panels share the 2-mm scale bar as in a.
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Figure 2 | An individual carbon nanotube coupled to a nanobeam cavity.

(a) A schematic of a device. (b) Scanning electron microscope image of a

device with a suspended nanotube. Scale bar is 2 mm. (c) Typical PL

spectrum of an air-mode device coupled to a nanotube. The dots are data

and the lines are Lorentzian fits. (d) PL excitation map of the device shown

in c taken with P¼ 10mW and the laser polarisation perpendicular to the

nanobeam.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6580

2 NATURE COMMUNICATIONS | 5:5580 | DOI: 10.1038/ncomms6580 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


within the trench, while for the air-mode devices, the emission is
on top of the nanobeam itself.

These differences highlight the distinctness of the two types of
cavities, and show that coupling occurs predominantly through
fields in the air. For dielectric-mode cavities, fields within air
holes in the nanobeams are weak, and evanescent fields leaking
out from the edges are responsible for coupling (Fig. 1c). In
comparison, fields in the air holes dominate for air-mode cavities
(Fig. 1d) and nanotubes are coupled when they are placed on top
of the air holes.

Next, we further compare the dielectric- and air-mode cavities
by analysing the PL spectra. By performing a bi-Lorentzian fit to
data (Fig. 2c), we obtain the peak area and the line width for both
the nanotube and the cavity emission. We let Icav and ICNT be the
PL peak area of the cavity and direct CNT emission, respectively,
and use b*¼ Icav/(ICNTþ Icav) as a measure of the coupling
efficiency. We find that the average value of b* for the air-mode
devices is more than twice the value for the dielectric-mode
cavities (Table 1), consistent with the expectation from the
mode profiles. We also obtain the quality factor (Q) of the mode
from the line width of the cavity peak, but it is likely that the
observed values are limited by fabrication errors as the FDTD
calculations predict Q4105.

High-efficiency coupling. On a few air-mode cavities, we have
observed very high values of b*. In Fig. 4a, we plot the PL
spectrum of a device with the highest observed b*¼ 0.92. It is
completely dominated by the cavity mode, and the direct nano-
tube emission is barely observable (Fig. 4b and Supplementary
Fig. 1). Since such a spectrum is expected for devices that are
lasing, we have performed excitation power dependence mea-
surements in search for any signs of laser oscillation.

In Fig. 4c, excitation power dependence of the PL emission
intensities for the cavity and the direct CNT peaks are plotted.
The cavity emission increases linearly for powers up to B20 mW

and becomes slightly sublinear for higher powers, with no
indication of a superlinear increase that should occur at a
threshold. In addition, under lasing conditions, the direct CNT
emission should saturate, because excited state population
becomes constant as all the pump power is converted to cavity
photon population26. We do not observe such saturation but the
CNT peak increases linearly throughout all the powers.
Furthermore, the line width of the cavity mode plotted in
Fig. 4d does not show the narrowing expected during lasing.
From all of these observations, it is unlikely that laser oscillation
is taking place.

Under the assumption that stimulated emission is negligible,
we can attribute all of the PL to spontaneous emission. Letting
gcav and gCNT be the spontaneous emission rate into the cavity
mode and all the other modes, respectively, the spontaneous
emission coupling factor b is given by

b ¼ gcav

gCNTþ gcav
¼ Icav

Zcav=ZCNTð ÞICNTþ Icav
; ð1Þ

where Zcav and ZCNT are collection efficiencies for the cavity mode
and direct nanotube emission, respectively (Supplementary
Note 1). A conservative estimate of b is made by taking the
largest possible value of the ratio Zcav/ZCNT. We let Zcav¼ 1,
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Figure 3 | Spatial distribution of nanotubes that show coupling. (a,b) PL

images of representative dielectric- and air-mode cavities, respectively,

taken with lex¼ 800 nm. IPL is obtained by integrating PL over a 0.53 nm

wide spectral window centred at the cavity resonance. Excitation powers of

P¼ 10mW and 20mW are used for (a,b), respectively. The centre of the

cavities are taken as the origin of the coordinate system. (c,d) Spatial

distribution of PL peak intensity locations for dielectric- and air-mode

cavities, respectively. The peak locations are determined by fitting to a

two-dimensional Gaussian function, and they are plotted as a function of

the displacement from the centre of the cavity.

Table 1 | b* and Q of dielectric- and air-mode cavities.

Cavity type Number of devices b* Q

Dielectric 16 0.18±0.16 3,500±1,400
Air 17 0.37±0.30 2,000±700

Devices are measured with P¼ 10 mW and lex tuned to the E22 resonance. The error values are
standard deviations.
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Figure 4 | Efficient coupling of a nanotube to an air-mode cavity.

(a) Photoluminescence (PL) spectrum of an efficiently coupled device taken

with P¼ 120mW and lex¼ 799 nm. The dots are data and the line is a fit.

(b) An enlarged view of the low-intensity region of the data shown in a.

The dots are data, thin solid line is the fit to the cavity mode, thin broken

line is the fit to the CNT emission, and the thick line is the bi-Lorentzian fit.

(c) Excitation power dependence of Icav (filled circles) and ICNT (open

circles). The line is a linear function. (d) P dependence of the cavity mode

full-width at half-maximum (FWHM). (e) The centre wavelength of the

cavity mode (filled circles) and the nanotube peak (open circles) as a

function of P. The solid lines are linear fits. In c–e, lex¼ 799 nm is used, and

the error bars are smaller than the symbols for the cavity mode.
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supposing that all of the light emitted from the cavity mode into
the upper hemisphere is collected by the objective. For the direct
nanotube emission, we use the dipole radiation pattern as if the
nanotube is emitting into free space, although we expect higher
collection efficiencies because of reduced emission rate for in-
plane directions caused by the photonic bandgap. This results in
ZCNT¼ 0.49 with the numerical aperture of 0.8 for the objective
lens. Using these values and the fitting parameters for the data
shown in Fig. 4a,b, we obtain b¼ 0.85.

Discussion
It is remarkable that the value of b is already comparable with
those for the well-established quantum-dot microcavity sys-
tems17,18,27–29, particularly because the Purcell effect is limited by
the broad line width of nanotube emitters30. Nevertheless, such a
high value of b is reasonable because of ultralow mode-volume of
the air-mode cavities. From the FDTD calculation shown in
Fig. 1d, mode volume V¼ 2.37� 10� 2(l/n)3 is obtained, where
l¼ 1.38 mm is the cavity resonance wavelength, and n¼ 1 is the
index of refraction for air. The maximum spontaneous emission
enhancement factor is given by F¼ (3l3Qe)/(4p2n3V)¼ 316,
where we use Q of the emitter Qe¼ 99 instead of the cavity Q,
as the nanotube emission line width is much wider than the cavity
line width30. Even at the top surface of the nanobeam where the
nanotubes are placed, an enhancement factor over 100 is obtained
within the centre air-hole, easily explaining the observed high b.

Finally, we would like to comment on the behaviour at higher
powers. In Fig. 4e, power dependence of the centre wavelengths
for the cavity mode and the nanotube peak are plotted. The cavity
redshifts linearly with power due to heating17, while the nanotube
peak blueshifts as observed previously14. As a result, the cavity
mode and the nanotube emission become detuned, and therefore
the coupling becomes weaker. At the highest power, the detuning
is 8.8 nm, and this is likely the cause of the sublinear increase of
cavity mode emission at high powers (Fig. 4c).

Although we did not find any signs of laser oscillations so far,
with such an efficient coupling, it is expected that optimisation of
cavity design and fabrication would ultimately lead to lasing of
individual carbon nanotubes. The air-mode cavities with ultralow
mode-volumes should also allow higher coupling efficiencies
for other low-dimensional materials with weak dielectric
screening31,32.

Methods
Photonic crystal nanobeam fabrication. We fabricate the photonic crystal
nanobeam cavities from silicon-on-insulator substrates with 260 nm of top Si layer
and 2 mm of buried oxide. Electron beam lithography and dry etching processes are
used to form the nanobeam structure with a width of 670 nm, and the buried oxide
layer is removed by wet etching. The cavities are designed to have reduced or
increased lattice constant in a parabolic manner9,10,18 over 12 periods for
dielectric-mode and air-mode cavities, respectively. The lattice constants and the
hole sizes have been chosen to match the nanotube emission wavelengths.

PL microscopy. The emission properties of devices are characterised using a
home-built confocal microspectroscopy system14,21. The objective lens has a
numerical aperture of 0.8 and a working distance of 3.4 mm, and a pinhole
corresponding to B3 mm diameter at the image plane is used for confocal
collection. The samples are excited with a wavelength-tunable continuous-wave
Ti:sapphire laser, and PL is detected by an InGaAs photodiode array attached to a
spectrometer. The laser polarisation angle is adjusted to maximise the PL signal
unless otherwise noted, and all measurements are done in air at room temperature.
The samples are mounted on an automated three-dimensional stage, allowing for
thousands of devices to be interrogated overnight to identify devices coupled to
single nanotube emitters.
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