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Abstract

The interest for robust automatic modal parameter extraction techniques has increased

significantly over the last years, together with the rising demand for continuous health

monitoring of critical infrastructure like bridges, buildings and wind turbine blades. In

this study a novel, multi-stage clustering approach for Automated Operational Modal

Analysis (AOMA) is introduced. In contrast to existing approaches, the procedure works

without any user-provided thresholds, is applicable within large system order ranges,

can be used with very small sensor numbers and does not place any limitations on the

damping ratio or the complexity of the system under investigation. The approach works

with any parametric system identification algorithm that uses the system order n as sole

parameter. Here a data-driven Stochastic Subspace Identification (SSI) method is used.

Measurements from a wind tunnel investigation with a composite cantilever equipped

with Fiber Bragg Grating Sensors (FBGSs) and piezoelectric sensors are used to assess

the performance of the algorithm with a highly damped structure and low signal to noise

ratio conditions. The proposed method was able to identify all physical system modes in

the investigated frequency range from over 1000 individual datasets using FBGSs under

challenging signal to noise ratio conditions and under better signal conditions but from

only two sensors.

Keywords: automatization; operational modal analysis; stabilisation diagram;

clustering; structural health monitoring
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1. Introduction

Continuous Structural Health Monitoring (SHM) presupposes the automatic extraction

of damage sensitive features. In the case of vibration-based SHM these features usually

are the modal parameters of the system (natural frequencies, mode shapes and damping

ratios). In recent years significant progress has been made in developing and refining5

modal parameter identification methods that use unmeasured environmental loads as the

primary source of structural excitation. These methods are today known under the name

of Operational Modal Analysis (OMA) [1]. OMA itself requires manual user interaction

but multiple OMA-based automatization algorithms have been proposed and successfully

applied to complex structure like bridges [2, 3] and wind turbines [4]. Despite some10

progress, the proper (and ideally fully automatic) choice of automatization parameters

and thresholds as well as the identification of complex and heavily damped modes is an

area of ongoing research.

The main challenge for Automated Operational Modal Analysis (AOMA) from paramet-

ric system identification algorithms is the separation between physical and mathematical15

modes. This challenge is commonly addressed through parameter identification at a

large number of system orders n. The approach is based on the empirical observation

that physical modes are identified with nearly identical properties at every system or-

der. Their modal properties are stable. Mathematical modes on the other hand are

not identified in a consistent way. Traditionally inconsistency thresholds for each modal20

parameter are provided by the user to separate physical from mathematical modes [5].

Furthermore, additional mode validation criteria like Mean Phase Deviation (MPD),

Mode Phase Collinearity (MPC), etc. are often used to single out the physical system

modes. This data are then summarized in a stability diagram, which allows the user to

manually select the physical modes.25

A variety of methods have been proposed to automatize the OMA process. Overviews

were published in [3] and [6] and will not be repeated here. The approach to AOMA

described in this work can be summarised into the following steps [2, 3]:

Email addresses: neu@fh-aachen.de (Eugen Neu), janser@fh-aachen.de (Frank Janser),
akbar.khatibi@rmit.edu.au (Akbar A. Khatibi), adrian.orifici@rmit.edu.au (Adrian C. Orifici)

2



1. Identify mode candidates from a large number of system orders.

2. Remove as many mathematical modes as possible.30

3. Use hierarchical clustering to divide the remaining modes into homogeneous sets.

4. Remove the small sets, which typically consist of mathematical modes.

The method proposed in [2] requires at least one user-defined parameter, the maximum

within-cluster distance between representations of the same physical mode from different

system orders. Such parameters have to be selected for every new sensor setup and sys-35

tem under investigation and may be sensitive to varying operational and environmental

conditions. Their proper choice requires expert knowledge and, depending on the specific

application, considerable manual effort may be required. Reynders et al. [3] suggested

to automatically derive this parameter from the actual data. However, the proposed al-

gorithm is limited to (nearly) real mode shapes and includes a damping ratio threshold.40

These are acceptable restrictions for some engineering structures, including e.g. bridges

that were investigated in [2] and [3]. However, in aerospace applications damping and

complexity are dominated by the fluid-structure interaction and are often substantially

larger than under no-wind conditions. For such applications these constraints may be

too restrictive.45

A Stochastic Subspace Identification (SSI) method is commonly used to identify the

mode candidates in a large range of system orders. However, the influence of the utilized

system order range has not been investigated in the context of AOMA. Instead, in pre-

vious publications [2, 3] the maximum system order was chosen to be much larger than

the number of expected physical modes in the investigated frequency range. Further,50

the insensitivity of the proposed methodologies to varying system order ranges was not

proven, and no methods were discussed to detect the upper and lower bounds of the

usable system order range.

In this work an innovative multi-stage clustering approach for AOMA is introduced that

can be used with any parametric system identification algorithm. No user-defined thresh-55

olds are required and neither the to-be-identified damping ratios nor the mode shape

complexities are limited in any way. Furthermore, the sensitivity of step one of the pro-
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posed method to changes of the chosen system order range is explored and compared

to existing approaches using a large number of independent datasets and two different

measurement setups. One major novel contribution of this work is the consistent for-60

mulation of a clustering feature vector to separate between physical and mathematical

modes in step two of the investigated method, and the subsequent application of trans-

formation and normalisation techniques to the heavily skewed feature vector. It is at

this point that the demand for small complexity as well as for a damping ratio threshold

can be dropped. For hierarchical clustering we derive a statistically profound threshold65

value from the measured Probability Density Functions (PDFs) to separate the remaining

probably physical modes into homogeneous sets. The performance of the algorithm is

assessed using a large number of wind tunnel measurements with a composite cantilever

that was equipped with a low number of piezoelectric sensors and a high number of

Fiber Bragg Grating Sensors (FBGSs). This presents a challenging data set in terms of70

a highly damped system with variable noise levels, as well as more broadly representing

one possible future utilisation scenario for the two sensing technologies in SHM.

2. Methodology

2.1. Experimental data

To assess the performance of the proposed AOMA methodology experimental data from75

a wind tunnel study are used. The experimental setup is shown in figure 1. The in-

vestigation was conducted in a closed-loop wind tunnel with an open test section. The

investigated specimen was a glass fiber-reinforced polymer plate (500 mm × 90 mm ×

4 mm), which was subjected to different flow conditions. The structural response of the

specimen was measured using three sensor types: FBGSs, a unidirectional piezoelectric80

(PZT) accelerometer and a piezoelectric strain sensor. In addition, the dynamic prop-

erties of the inflowing wind were measured using a hot-wire anemometer. A detailed

description of the experimental setup was published in [7].

The experimental setup was designed to represent two limiting cases of possible sensor

setups. On one hand two piezoelectric sensors, with high dynamic range but only limited85
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Figure 1: Wind tunnel setup.

spatial information. On the other hand ten FBGSs, with more spatial information but

significantly worse dynamic range due to the investigated interrogator, which is based on

Charge-Coupled Device (CCD) technology. The differences in the Signal-to-Noise Ratio

(SNR) of the two cases are apparent from the Power Spectral Densities (PSDs) in figure

2. Furthermore, a preceding investigation showed the first bending mode to be strongly90

damped by aerodynamic forces [7], which is especially demanding for previously existing

fully automated OMA procedures that rely on fixed and arbitrary chosen damping ratio

thresholds [3, 6] . In summary, the first investigated use case are ten FBGSs, a sampling

rate of 400 Hz, no anti-aliasing filter and a comparatively low SNR. The second use case

consists of only two sensors, a unidirectional accelerometer and a piezoelectric strain95

sensor, measured at a sampling rate of 1600 Hz with analog anti-aliasing and a high

SNR.

The modal parameters were automatically extracted from the FBGSs and the PZT sen-

sors individually. In both cases the measurement data were first passed through a fourth-

order Butterworth high-pass filter with 0.5 Hz cutoff frequency to remove the strain offset100

from the mean wind load and the slow temperature drift of the FBGSs. The time-domain

data were then slightly cropped to remove the transient filter response. This resulted
5
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(b) Piezoelectric strain sensor.

Figure 2: PSDs at three velocities and otherwise constant operational conditions.

in datasets of approximately 40 seconds in length with 450 repetitions of the period

corresponding to the first natural frequency in each dataset.

2.2. Definitions105

The relative difference between scalar (real or complex) values Xi and Xj is calculated

using the formulation in equation (1) throughout this text.

dXi,j = |Xi − Xj |
max(|Xi|, |Xj |) (1)

Equation (1) is used to measure the relative natural frequency distance dfu, the relative

damping distance dξ, the relative pole distance dλ and the relative mean phase deviation

dMPD. The Modal Assurance Criterion (MAC), which defines a relative correlation110

between two modes, is defined according to Eq. (2).
6



MACi,j =
∣∣φT

i · φ∗
j

∣∣2(
φT

i · φ∗
i

) (
φT

j · φ∗
j

) (2)

where φi and φj are mode shapes, which can be either real or complex. The Mean Phase

Deviation (MPD) is a measure of mode shape complexity. It describes the mean phase

angle deviation of the individual mode shape components from a straight line in the

complex plane. It is calculated using a total least squares fit of the mode shape in the115

complex plane (Eq. (3)) and a weighted sum of phase angle deviations (Eq. (4)) [3].

USVT = [Re(φi) Im(φi)] (3)

MPDi =

∑Nφ

n=1 wn arccos
∣∣∣∣ Re(φjn)V22−Im(φin)V12√

V 2
12+V 2

22|φin|

∣∣∣∣∑Nφ

n=1 wn

(4)

where V12 and V22 are the individual components of the right singular matrix of the

singular value decomposition USVT . Nφ is the number of mode shape components, wn

are weighting factors that are chosen as |φin| in this work.

3. Automated Operational Modal Analysis120

The approach to AOMA described in this work follows the four-step procedure described

in section 1, where some steps involve multiple procedures:

1. Identify mode candidates from a large number of system orders.

2. Remove as many mathematical modes as possible.

(a) Remove certainly mathematical modes using hard validation criteria.125

(b) Split modes into consistent and non-consistent sets using k-means clustering.

3. Divide the remaining modes into homogeneous sets using hierarchical clustering.

(a) Derive cutoff distance from the probability distribution of the consistent modes.

(b) Cluster the mode candidates based on a complex distance measure.
7



(c) Remove all but one mode from a single system order in one cluster.130

4. Remove the small sets, which typically consist of mathematical modes.

(a) Reject sets that are smaller than a threshold derived from the largest set size.

(b) Use outlier rejection to remove natural frequency and damping outliers.

(c) Select a single mode representative from the remaining modes in each cluster.

The steps are described in the subsequent sections and demonstrated using the experi-135

mental data from the wind tunnel investigation.

3.1. System Identification

The parametric system identification method used in this work is the data-driven Stochas-

tic Subspace Identification - Canonical Variate Analysis. The method is based on the

procedure described in [8]. The fundamentals of the SSI methods have often been de-140

scribed and will not be repeated here. The important concept and the common base for

all parametric models, with the model order as the only parameter, is that the algorithm

expects a single input parameter (the model order n), and responses with n sets of modal

properties (in the OMA case n poles λ1 . . . λn and n unscaled mode shapes φ1 . . .φn).

The number of block rows in the Hankel matrices was chosen to be i = 2 · nmax/N in145

accordance with the suggestion in [8], where nmax is the maximum investigated system

order and N is the number of sensors in the investigated setup. The manual investiga-

tion of multiple randomly chosen datasets from the two investigated sensor setups and

the variation of the parameter in a range surrounding the chosen value confirmed the

response to be nearly invariant to i in the investigated number of block rows range.150

3.2. Hard validation criteria for certainly mathematical modes

Whether a mode represents a physical mode or a mathematical mode can usually not

be deduced from its isolated modal properties. However, there are certain indicators

for mathematical modes. Stable systems do not have negative damping. Poles without

imaginary part do not represent a system capable of oscillation. Physical poles always155

occur in complex conjugate pairs at a single model order n. These three criteria, which
8



test whether a mode is certainly mathematical, are sometimes called Hard Validation

Criteria (HVC) [3] and can be expressed using the following formulas:

Re(λi) ≥0 Im(λi) =0 λi

nλi
=nλj

6= λ∗
j (5)

Poles that meet this criteria are removed immediately. The application of the HVC

(and the a priori removal of the negative frequency range) as a first step reduces the160

computational effort of the algorithm. Beside the improved performance, the application

of the HVC before or after k-means clustering did not have a significant influence on the

final choice of physical modes in our tests.

3.3. K-means based mathematical pole removal

The second step of the presented AOMA algorithm is to separate the modes into two165

sets, probably physical modes and modes that are marked as certainly mathematical. It

is important to note that it is not necessary to remove all mathematical modes at this

stage of the algorithm. This will be done in subsequent clustering stages. The primary

characteristic of physical modes, which distinguishes them from mathematical ones, is

their similarity to their siblings at other system orders. Hence, for each mode λn,i,φn,i170

at the current model order the nearest neighbour λn+1,j ,φn+1,j from the next higher

order is found. If a similar mode is found at the next higher order, chances are high that

the mode at hand is a physical mode. Otherwise the mode is probably mathematical.

The distance measure used by Reynders et al. [3] and in this work is

dpMACi,j = dλi,j + (1 − MACi,j) (6)

where dλ is the pole distance according to Eq. (1) and the modes i and j are from two175

consecutive model orders n and n + 1 respectively.

The next step of the proposed algorithm is to use the information about the nearest-

neighbour to create a Soft Validation Criteria (SVC) vector. Reynders et al. [3] suggested
9



to build such a vector from “as many relevant single-mode validation criteria as possi-

ble”. However, our investigation shows that more care must be taken to properly select,180

transform and normalise the variables for the feature vector. According to our definition

physical modes can be separated from mathematical ones based on their similarity to

modes at other orders. This is exactly what relative difference measures (Eq. (1) and

(2)) describe. Single mode criteria like Modal Transfer Norm (MTN) [3] or MPD (Eq.

(4)) on the other hand are strength and complexity measures of individual modes. Clus-185

tering based on these properties will divide the modes into weak and powerful modes

and into real and more complex modes. However, the system under investigation may

have weakly excited and/or complex modes, which would then be incorrectly flagged as

mathematical.

A second argument against the use of combined feature vectors from variables with190

different informative value is their sometimes very dissimilar probability distribution.

Figure 3a shows the MPD and relative MPD difference (dMPD) distributions from a

large number of orders (n = {2, 4, 6, . . . , 300}). Certainly mathematical modes according

to the HVC in Eq. (5) were removed beforehand. The MPD shape clearly resembles a

multimodal distribution. The mathematical modes seem to be normally distributed in195

the middle of the possible MPD range, whereas the physical modes, which are nearly

real in this case, are squeezed to the left side of the diagram. The dMPD shape, on

the other hand, resembles some type of exponential distribution. When k-means clus-

tering is applied to a feature vector consisting of only these two variables the result is

dominated by the MPD distribution (figure 3b). The datasets are predominantly sep-200

arated into real and complex but not into consistent and inconsistent. The reason for

this behavior is that variables with larger variances always dominate k-means clustering.

Further, when applied to normally distributed data, k-means tends to split the datasets

in approximately equally sized clusters [9]. This is not true for exponentially distributed

data. To allow for the occurrence of weakly excited and complex physical modes and to205

give all variables equal weight we therefore suggest to formulate the feature vector in the

following way:

10



pi =
[
dλi,j dfui,j dξi,j (1 − MACi,j) dMPDi,j

]T

(7)

where dλ, dfu and dξ are the normalised pole distance, natural frequency distance and

damping ratio distance. In this form the feature vector only has one informative value,

namely the proximity to the nearest neighbour, and the shape of all variables approxi-210

mately resembles the same probability distribution.
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(a) Before k-means clustering.
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(b) After k-means clustering.

Figure 3: Result of k-means clustering when variables with strongly deviating distributions are used.

PP stands for probably physical, CM for certainly mathematical.

The nearest-neighbor detection process results in heavily skewed feature distributions. A

comparison of different exponential family distributions showed that the Weibull distri-

bution seems to be the best fit for the variables in Eq. (7) as well as in Eq. (6). Figure 4a

shows the best fits of the Weibull, the exponential and the half-normal distribution to the215

combined distance measure according to Eq. (6). When k-means clustering is applied to

data that is skewed to such an extent the resulting clusters will not be of approximately

equal size. Instead, a very large and a very small cluster will be created. Figure 4b shows

the results of such a clustering. The smaller cluster is barely visible in the diagram and

only begins near the 3σ boundary.220

For the investigated problem this means that the vast majority of modes will still be

flagged as possibly physical after k-means clustering and nearly no mode candidates will

be removed. Whether this behavior is desired depends on the expected ratio of physical
11
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Figure 4: Result of k-means clustering when variables with different distributions are used.

to mathematical modes. The total number of physical modes Np and mathematical

modes Nm can be expressed by the following (approximate) relationships:

Np ∝∼ nmax · L (8)

Nm = 1
2nmax · (nmax + 1) − Np (9)

where nmax is the maximum investigated order and L the number of unique physical

system modes in the investigated frequency range. Hence, the low orders are dominated

by physical poles and the higher orders are dominated by mathematical ones. If the

system order is much larger than 2L, which is the basic requirement for the stabilisation-

based mode separation, the number of mathematical modes will be larger than or in the

same order as the number of physical modes. From this it follows that separation based

on the skewed distribution will not result in the desired detection of a significant number

of mathematical modes. Therefore, we suggest to transform the feature vector (7) into

a shape that more resembles a normal distribution. The power transformation is done

according to Eq. (10) using the approach described by Box and Cox [10].

hT,i(m) =

(pγm

i (m) − 1) · γ−1
m , γm 6= 0

ln (pi(m)) , γm = 0
(10)

The optimal transformation parameter γm for each individual feature variable pi(m) is

found by a profile log-likelihood maximisation. For the dataset that is used as an example
12



throughout this chapter the following γ-vector is found:

γ =
[
0.06 0.05 0.19 0.10 0.23

]
A simpler approach, where all features are transformed into the logarithmic scale (Eq.

(11)) showed satisfactory results as well.

hT,i = ln(pi) (11)

Features with large dispersion will dominate the clustering process [9]. A feature like

dξ which is known to have a significantly larger variance than dfu would have a larger

influence on the clustering process. This is the exact opposite behavior to what is common225

practice in manual analysis or when dξ and dfu thresholds are manually chosen for

AOMA [2]. Therefore in this work a final normalisation to standard scores is applied

to the feature vector, to give every variable equal weight, using the standard deviation

σ (hT,i(m)) and the mean h̄T,i(m) of the individual (transformed) features:

hN,i(m) =
(
hT,i(m) − h̄T,i(m)

)
/σ (hT,i(m)) (12)

Equation (12) shows the final form of the proposed feature vector hN,i. The goal of230

k-means clustering is to minimise the within-cluster sum of squares (Eq. (13)).

{S1, S2} = arg min
S

2∑
k=1

∑
hN,i∈Sk

‖hN,i − µk‖2 (13)

Equation (13) returns two sets, S1 and S2, which contain the probably physical and the

certainly mathematical modes. µ1 and µ2 are the centroids of the sets S1 and S2 and

are initialized with +σ(hN,i) and −σ(hN,i) respectively.

The results of the k-means clustering process based on this feature vector are shown in235

the scatterplot matrix in figure 5. The upper right triangle matrix of the scattermatrix

(figure 5) shows the correlation coefficients between the individual features in equation
13



(12). Features with high correlation will create more “weight” in the clustering process [9].

Hence, the dλ and dfu features have a strong influence on the clustering process, which

in this case is a desired effect, since the frequency distance is an excellent indicator of240

stability.
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Figure 5: Scatterplot matrix of soft validation criteria. The data have been transformed into log-scale

and normalised by the standard deviation. The upper right triangle numbers are correlation coefficients

between the individual feature variables.

There is no distinct boundary region between the two sets marked as Probably Physical

and Certainly Mathematical in figure 5. Instead, both sets merge seamlessly. Hence,

it is likely that some mathematical modes will be marked as probably physical or/and

that valid physical modes will be marked as mathematical, depending on the ratio of245

physical to mathematical modes in the initial joint set. Since the feature vectors were

14



transformed to resemble a normal distribution (Eq. (10)), the resulting sets S1 and S2 will

be of approximately equal size [9]. Therefore the maximum order nmax should be chosen

from a range where the number of mathematical mode representatives Nm exceeds the

number of physical mode representatives Np (see Eq. (8) and (9)). The sensitivity of the250

algorithm to system order changes and the proper choice of system orders is investigated

in section 3.8.

The stabilisation diagram in figure 6 shows that the algorithm successfully marked the

majority of spurious modes as mathematical. Nearly no modes that appear to be stable in

the diagram were not marked as such. The clustering process was tested for large ranges255

of model orders and always proved to be able to remove the majority of mathematical

modes.

3.4. Hierarchical clustering based mode separation

In section 3.3 a clustering algorithm was applied to separate the mode candidates into

probably physical and certainly mathematical modes. The number of clusters (two) was260

therefore known in advance. The goal in this section is to separate the remaining modes

into clusters which represent the individual physical modes of the system. Their number

is not known beforehand in the vast majority of cases. The classic clustering approach for

cases where the number of clusters is not known in advance is agglomerative hierarchical

clustering [9]. All agglomerative hierarchical clustering procedures can be described in265

three steps:

1. Each observation starts in its own cluster.

2. The two nearest clusters are combined into a new cluster.

3. The procedure is repeated until all observations are contained in a single cluster.

The basic idea behind the application of hierarchical clustering to AOMA is to stop the270

clustering process when the distance between the nearest two clusters is larger than a

certain threshold. This threshold can be understood as the distance up to which modes

from different orders are considered to belong to the same physical mode. Often such

thresholds are manually fit to the specific example under analysis [2]. Reynders et al.

15
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(b) Stabilisation diagram from the accelerometer and the PZT strain sensor.

Figure 6: The colors indicate at which point the individual modes have been marked as mathematical.

The clusters which were automatically classified as physical are marked with vertical lines.
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[3] calculated the threshold from the sum of the mean and two standard deviations275

of the probably physical mode distances. In this work the threshold is derived from

the distribution of probably physical modes, since these were found to be not normally

distributed. The inverse cumulative distribution function of the Weibull distribution is

used to find the 95th percentile nearest-distances between probably physical modes

P
(
dpMACP P,i,j ≤ d̃dpMAC

)
= 0.95 (14)

where d̃dpMAC is the 95th percentile threshold and dpMACP P,i,j is the distance between280

two neighbours from different model orders according to Eq. (6). Figure 4a shows exactly

this distribution. Applied to the data shown in figure 4a the threshold value calculated

using Eq. (14) is 0.046.

Figure 7 shows the sensitivity of the cutoff distance (Eq. (14)) to changes in the con-

sidered model order range. For this investigation the cutoff distance was derived from285

different model order intervals (n = {2, 4, 6, . . . , nmax}), where nmax was varied from

50 to 300. The cutoff distance (14) was determined from 64 independent Fiber Bragg

Grating (FBG) and PZT sensor measurements to assess the variance of the process. The

large magnitude difference between the two curves is the result of the different number of

sensors, different number of physical poles in the investigated frequency range, different290

noise levels, etc. A user who wants to determine the threshold value for a new system

or sensor setup would have to manually investigate an interval that is larger than the

one spread between the FBG and PZT curves. The FBG threshold is nearly constant

between a maximum order of 100 and 250 and starts to rise afterwards. The threshold

value drops to smaller values below nmax = 100. This behavior can be deduced from295

the discussion in section 3.3. At very low maximum orders the majority of modes are

physical, whereas at very high maximum orders the majority of modes are mathematical.

The clustering process discussed in section 3.3 only works well within these boundaries.

The PZT curve is constant throughout the investigated order range. The investigated

upper limit for nmax is quite excessive. More typical nmax values are 100 [2] and 160 to300

200 [3]. In this range both curves are basically independent of the maximum order. This

underlines that the proposed method is insensitive to the investigated model order in a
17



wide model order range. How this compares to existing methods is discussed in section

3.8.

In addition to the definition of similarity or distance, the distance between multi-member

clusters also needs to be calculated. Magalhães et al. [2] use the single-linkage method

(Eq. (15)), where the smallest distance between two clusters defines their overall distance.

Reynders et al. [3] on the other hand use average linkage (Eq. (16)), which defines the

distance between two clusters as the average distance between all members of one cluster

with all members of the other cluster.

dr,s = min (dist (xri, xsj)) , i ∈ {1, . . . , nr}, j ∈ {1, . . . , ns} (15)

dr,s = 1
nrns

nr∑
i=1

ns∑
j=1

dist (xri, xsj) (16)

where nr and ns are the total number of individual members xr and xs in the clusters r305

and s respectively. The single-linkage approach is known to create “chains” through the

data, when the observations are not clearly separated [9]. Our investigation showed that,

especially when higher model orders were considered, physical modes in near proximity

to each other were grouped into a single cluster when the linkage procedure could “jump”

over mathematical modes to build a single large cluster. The average linkage procedure is310

computationally more expensive but was much better able to create compact clusters of

individual physical modes. The complete-linkage procedure, where the largest distance

between two clusters defines their overall distance, was discarded because of its sensitivity

to outliers [9].

The process of hierarchical clustering is often visualised using a dendrogram, where the315

node height represents distance at which two clusters are joined. A dendrogram, with the

corresponding cutoff distance according to Eq. (14) is shown in figure 8. To create the

dendrogram the model order range was chosen to be very small (n = {20, 22, 24, . . . , 50})

for visualisation purposes and the derived threshold distance is lower than normal.

The result of the hierarchical clustering process will be either large clusters that will320

almost exclusively consist of modes that represent physical system modes, or small clus-

ters consisting of mathematical modes. If the maximum order nmax is not chosen high

enough some smaller clusters may actually be representations of very weakly excited
18
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Figure 8: Hierarchical clustering dendrogram.

physical modes, which only occur at higher system orders. However, when large maxi-

mum orders are used, the so-called pole splitting phenomenon can occur. In this case a325

single physical system mode will be represented by two physical modes at higher system

orders. Pole splitting is shown in figure 9. Furthermore, in rare cases, a mathematical

mode could by chance have properties that are very similar to a physical system mode.

Under this circumstance physical and mathematical modes of the same system order n

would be joined into a single cluster. To make sure that only one representation of a pole330

is present in each cluster, repeated poles at single system orders are sought out and all

but the one with the highest proximity to the cluster centroid according to Eq. (6) are

removed from the cluster (figure 9).

3.5. The choice of physical clusters

Two types of clusters will be created by the hierarchical clustering process: Large clus-335

ters that represent physical system modes and small clusters consisting of mathematical

modes. Figure 10 shows the number of modes in each cluster after hierarchical clustering

for a FBGS dataset. Here the dividing line between physical and mathematical clusters is

derived from the number of observations in the largest cluster. A 50% threshold is shown

in figure 10, which was used to separate the clusters into physical and mathematical ones.340

Of course, in this case two sets are barely above the threshold value and could have been

marked as mathematical if they would have been only slightly smaller. The distance
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between physical and mathematical clusters can be increased when the minimum model

order nmin is not set to 2 but to a higher value, e. g. 20. This way the size differences

between the physical clusters will get smaller (compare figure 6a and 6b). With these345

conditions considered, further investigation showed that the gap between physical and

mathematical sets spans a region from approximately 75% to 25% of the largest set size

in the majority of the investigated FBG and PZT datasets. Hence, the number of phys-

ical mode sets returned by the algorithm is nearly invariant to the threshold, as long as

the threshold percentage lies between 25% and 75%.350
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Figure 9: Pole splitting and duplicated pole removal.
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ical clusters.

3.6. Outlier rejection

Outlier deletion is controversial, especially when the underlying probability distribution is

unknown or small sets are investigated. To our best knowledge it has never been studied

whether modal properties from different model orders, which are associated with the

same physical system mode, tend to be normally distributed or not. Physical poles often355

follow trends with increasing system order, which sometimes are suddenly disrupted (see

e. g. figure 9). Our examination shows no dominating probability distribution. However,

empirical evidence also shows that sometimes “obvious” outliers are present in a cluster

(e. g. seventh cluster from left in figure 11) and that the identification variance from

large numbers of measurements can be improved when outlier rejection is applied to360

the identifications from the individual measurements. Hence, we apply the modified
20



Thompson Tau technique [11] to remove frequency and damping ratio outliers from the

physical clusters.
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Figure 11: Outlier rejection using modified Thompson Tau technique.

The modified Thompson Tau technique considers only one outlier at a time and is re-

peated until no more outliers are found. The algorithm first looks for the observation365

with the largest absolute value deviation from the mean:

δ = max
(∣∣Xi − X̄

∣∣) (17)

In our case the dummy variable X is either the natural frequency fu or the damping

ratio ξ. In the next step the modified Thompson τ is calculated from the student’s t

PDF.

τ =
tα/2 · (n − 1)

√
n ·

√
n − 2 + t2

α/2

(18)

Here n is the number of observations and tα/2 is the critical student’s t value, which370

is a function of the number of observations n and the significance level α. tα/2 can be

calculated from the inverse of student’s t cumulative distribution function. α is set to 0.01

to limit the removal to strong outliers. The final step of the algorithm is to test whether
21



the absolute value deviation is larger than τ multiplied by the standard deviation of X,

in which case the data point is rejected (Eq. (19)). The algorithm is repeated, starting375

from Eq. (17), until no more outliers are found.

δ > τ · σ (X) (19)

3.7. Choosing the final modal representation

Each physical cluster obtained from the hierarchical clustering step in section 3.4 contains

a large number of modes. Hence, the questions arises how to chose a single representa-

tion of the individual modal properties. Magalhães et al. [2] used the average natural380

frequency, damping ratio and mode shape calculated from all observations in each phys-

ical cluster. Reynders et al. [3] chose the mode with the median damping value as single

epitome of the physical cluster. Finally, Schwochow and Jelicic [12], who proposed a

stabilisation diagram based AOMA methodology, suggested to use the modes from the

lowest possible model order, which still has an observation in each physical cluster. That385

way all chosen modes are from a single system model order and build a “consistent”

representation of the system. All the aforementioned methods have their advantages

and disadvantages, which depend on the planned application of the algorithm. Each of

them can be used with the proposed AOMA methodology. In this work, the approach

described in [2] was used.390

3.8. Model order sensitivity and comparison to existing algorithms

The influence of the utilized system order range was never addressed in [2] or [3]. Instead,

the maximum system order was chosen to be much larger than the number of expected

physical modes in the investigated frequency range. The figures 12a and 12b show a

comparison between the probably physical cluster S1 and the certainly mathematical395

cluster S2 for the feature vector proposed in [3] and the feature vector proposed in this

work (Eq. (12)). For this investigation the ratios were derived from different model order

intervals (n = {2, 4, 6, . . . , nmax}), where nmax was varied from 50 to 300. Furthermore,

the identification was determined from 64 individual datasets measured under constant
22



operational conditions to assess the variance of the process. The results for the newly400

derived feature vector are in good agreement with the discussion in section 3.3. The ratio

of probably physical modes NP P to certainly mathematical modes NCM is approximately

one and nearly invariant to the maximum model order. The ratios derived from the

clustering process with the feature vector proposed in [3] show a different behavior. The

ratio obtained from piezoelectric sensor data (figure 12b) is constant and below 0.5,405

whereas the FBGS ratio increases with nmax and moreover shows a strong variance. The

reason for the large variance is unclear. The smaller ratio in the PZT data (figure 12b)

can be explained with the reduced influence of the MPC, which only returns a measure

of complexity for setups with three or more sensors. The results show that the newly

developed feature vector shows a more consistent behavior for different sensor setups and410

throughout the maximum order range. However, other measures have to be applied to

examine the consistency of the two resulting sets.

The figures 12c and 12d show the 95th percentile d̃dpMAC according to Eq. (14) derived

from the probably physical set S1 using the distance measure introduced in Eq. (6).

In other words, the two figures 12c and 12d show a comparison of nearest-neighbour415

distances in the probably physical set when the new and the feature vector proposed by

[3] are used to separate probably physical from certainly mathematical modes. Two things

are striking: Reynders et al.’s feature vector shows a strong nmax sensitivity, whereas the

feature vector proposed in this work is nearly nmax invariant and the nearest neighbours

have much larger distances in the sets derived with Reynders et al.’s feature vector420

than in the sets derived with the consistent, transformed and normalised one. d̃dpMAC

is used as the stopping criterion for the hierarchical clustering procedure (section 3.4)

and can therefore be directly compared to the manual cutoff distance used in [2] (0.02)

and the automatically derived OMA threshold shown in [3] (0.24). Manual thresholds,

modified to be comparable to Eq. (6), which are used in free or commercial tools to425

create stabilisation diagrams [13, 14] are all below 0.06. The distance derived from the

newly developed feature vector is much closer to the one chosen in the manual analysis,

whereas the distance calculated with the feature vector proposed by Reynders et al. [3]

is in the same range as the one published in [3] but much larger than what would be

used in a manual analysis.430
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Figure 12: Model order range sensitivity comparison between the consistent, transformed and normalised

feature vector (c/t/n) and the feature vector (RE) proposed in [3].

4. Modal Analysis Results

The AOMA methodology described in section 3 was applied to a total of 1152 datasets,

576 measured with FBGSs and 576 measured with piezoelectric sensors, to assess the per-

formance of the proposed algorithm. The investigated datasets are from measurements at

a constant velocity (v3), three Angles Of Attack (AOAs) and with two additional masses,435

resulting in 9 different operation points, each measured 64 times. The detected natural

frequencies are shown in figure 13 and can be compared to Experimental Modal Analysis

(EMA) and Finite Element Analysis (FEA) results shown in table 1. The EMA results

were obtained from a hammer impact test, which was carried out in the wind tunnel but

without any wind excitation. The data were collected and processed according to the440
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method described in [15]. The FEA results were obtained from numerical modal analysis

using the commercial software ANSYS Mechanical. The system was modelled using a

full 3D solid representation of each fiber layer, orthotropic material and fixed clamping

conditions. The material properties were tuned to fit the EMA results.

Table 1: Natural frequency results from EMA and FEA. The deformation type of each mode is given in

the first row, where B stands for bending, T for torsion and F for a for-and-aft in-plane bending mode.

Mode B1 B2 T1 B3 T2 F1 T3 B4 T4 B5

EMA fu [Hz] 11.1 69.0 78.9 193.7 244.4 - 379.9 435.0 628.5 661.6

FEA fu [Hz] 11.1 69.4 79.0 194.2 245.3 261.1 380.1 435.2 627.5 660.8

Figure 13a shows the results of the FBG identification. A number of modes are identified445

consistently from nearly every dataset, whereas others are only identified sporadically.

According to the EMA and FEA analysis four physical modes should be present in

the frequency range from 0 Hz to 200 Hz (table 1). These four modes are successfully

identified from nearly every dataset. However, a significant number of additional modes

are detected as well. The consistently detected mode at 17 Hz was identified as a narrow-450

banded excitation caused by the rotating wind tunnel blades [7]. Since OMA identifies a

joined system, consisting of the excitation and the structural system response, the wind

tunnel excitation is classified as a system mode. Other identified modes can be explained

with the lack of an anti-aliasing filter in the utilized FBG interrogator. Hence, all the

high frequency modes are folded into the low-frequency range and those that are excited455

above the noise floor are detected by the algorithm and identified as physical modes.

The proposed AOMA methodology, in combination with the data-driven SSI method

used, show excellent mode detection capabilities under challenging SNR conditions. For

example, the bending mode B3 is consistently identified from FBG data, even if the mode

is barely excited above the noise floor (see figure 2a).460

Figure 13b shows the result of the identification from the two piezoelectric sensors. The

investigated structure was equipped with only a single accelerometer and a single piezo-

electric strain sensor. In order to obtain relevant consistency indicators from the MAC

and the MPD the modal properties were identified from the joined strain and accelerom-

eter measurements. At the kth natural energy equilibrium state the modal parameters465
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Figure 13: The colors indicate different operational conditions. Data from three different mass setups

and three AOAs are shown. All other operational conditions were kept constant.
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measured with both sensors are entirely the same [16]. Thus, the MAC and MPD in Eq.

(6) and Eq. (7) are applied to a pattern of motion at the kth equilibrium state where one

component of the resulting mode shape represents an acceleration and the other repre-

sents a strain. Eleven vertical lines are visible in the diagram, the ten expected physical

modes according to table 1 and the narrow-banded excitation from the wind tunnel at470

17 Hz. Hence, the algorithm successfully detected every physical mode in the investi-

gated frequency range. It is noticeable that considerably less spurious or noise modes

are visible in figure 13a when compared to figure 13b, especially in the region between

20 Hz and 70 Hz. A comparison to the PSDs in figure 2 reveals that the majority of

these noise modes can be attributed to the missing anti-aliasing filter.475

Figure 13 shows clearly visible stepwise changes for some of the identified natural fre-

quencies that correspond to varying mass configurations and AOA. Further evaluation

of the data in figure 13b shows that many of the natural frequencies and damping ratios

identified under different operational conditions build distinguishable clusters. In this

work an aeroelastic application of the proposed automation algorithm is investigated.480

Under certain operational conditions strong aerodynamic damping (ξ > 0.1) can and in

fact did occur (see figure 11). Still, the automation technique was able to reliably detect

these modes. The general applicability of OMA for in-flight modal parameter extrac-

tion of wings was already demonstrated in a number of studies [17, 18, 19]. These also

confirmed the detectability of velocity and AOA-induced variability. Robust automation485

techniques, like the procedure described in this work, are another important building

block for future applications of AOMA in passive flutter testing or SHM.

5. Conclusions

In this work a multi-stage clustering approach for automated operational modal analysis

is presented, which improves existing approaches in multiple aspects. The algorithm is490

fully automatic. No parameters or thresholds have to be provided by the user. Neither the

damping ratios nor the complexities of the to-be-identified modes are limited in any way.

In contrast to existing methods, the procedure is shown to be insensitive to the chosen

system order ranges. The methodology was applied to a large number of challenging wind
27



tunnel measurements with, in part, poor SNR conditions, highly damped modes and/or495

identification from only two sensors. Nevertheless, the method was able to consistently

identify all physical modes in the investigated frequency range.
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[2] F. Magalhães, Á. Cunha, E. Caetano, Online Automatic Identification of the Modal Parameters of

a Long Span Arch Bridge, Mechanical Systems and Signal Processing 23 (2) (2009) 316–329.

[3] E. Reynders, J. Houbrechts, G. de Roeck, Fully Automated (Operational) Modal Analysis, Me-

chanical Systems and Signal Processing 29 (2012) 228–250.

[4] C. Devriendt, F. Magalhaes, W. Weijtjens, G. de Sitter, A. Cunha, P. Guillaume, Structural Health505

Monitoring of Offshore Wind Turbines using Automated Operational Modal Analysis, Structural

Health Monitoring 13 (6) (2014) 644–659.

[5] A. G. Piersol, T. L. Paez, C. M. Harris, Harris’ Shock and Vibration Handbook, McGraw-Hill, New

York, USA, 6th edn., 2010.

[6] C. Rainieri, G. Fabbrocino, Development and Validation of an Automated Operational Modal Anal-510

ysis Algorithm for Vibration-based Monitoring and Tensile Load Estimation, Mechanical Systems

and Signal Processing 60-61 (2015) 512–534.

[7] E. Neu, F. Janser, A. A. Khatibi, A. C. Orifici, Operational Modal Analysis of a Cantilever in a

Wind Tunnel using Optical Fiber Bragg Grating Sensors, in: Proceedings of the 6th International

Operational Modal Analysis Conference, Gijón, Spain, 2015.515

[8] P. v. Overschee, B. L. R. d. Moor, Subspace Identification for Linear Systems: Theory, Implemen-

tation, Applications, Kluwer Academic, Boston, USA, 1996.

[9] J. F. Hair, W. C. Black, B. J. Babin, R. E. Anderson, Multivariate Data Analysis, Pearson Education

Limited, Harlow, United Kingdom, 7th edn., 2014.

[10] G. E. P. Box, D. R. Cox, An Analysis of Transformations, Journal of the Royal Statistical Society.520

Series B (Methodological) 26 (2) (1964) p 211–252.

[11] J. M. Cimbala, Outliers: Lecture on Instrumentation, Measurements, and Statistics, URL

http://www.mne.psu.edu/cimbala/me345/, accessed: 12 Juli, 2016, 2011.

[12] J. Schwochow, G. Jelicic, Automatic Operational Modal Analysis for Aeroelastic Applications, in:

Proceedings of the 6th International Operational Modal Analysis Conference, Gijón, Spain, 2015.525

[13] A. Brandt, ABRAVIBE–A Toolbox for Teaching and Learning Vibration Analysis, Sound and

Vibration 1 (11) (2013) 12–17.

[14] Structural Vibration Solutions A/S, ARTeMIS Modal Documentation, version 3.0, 2013.

[15] A. Brandt, R. Brincker, Impact Excitation Processing for Improved Frequency Response Quality,

in: Proceedings of the 28th International Modal Analysis Conference, Jacksonville, Florida, USA,530

2010.
28



[16] L. Y. Yam, T. P. Leung, D. B. Li, K. Z. Xue, Theoretical and Experimental Study of Modal Strain

Analysis, Journal of Sound and Vibration 191 (2) (1996) 251–260.

[17] J. Debille, B. Peeters, The Benefits of Operational Modal Analysis of Aircraft and Spacecraft

Structures, in: Proceedings of European Test & Telemetry Conference, Toulouse, France, 2005.535

[18] B. Peeters, T. d. Troyer, P. Guillaume, In-flight Modal Analysis - a Comparison between Sweep

and Turbulence Excitation, in: Proceedings of the 22th International Conference on Noise and

Vibration Engineering, Leuven, Belgium, 2006.

[19] E. Neu, F. Janser, A. A. Khatibi, C. Braun, A. C. Orifici, Operational Modal Analysis of a Wing

Excited by Transonic Flow, Aerospace Science and Technology 49 (2016) 73–79.540

29


	Due Diligence Record Log.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References





