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Sense-and-Avoid 
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ABSTRACT 

The demand for reliable obstacle warning and avoidance capabilities to ensure safe low-level flight operations has led to the development of various 
practical systems suitable for fixed and rotary wing aircraft. State-of-the-art Light Detection and Ranging (LIDAR) technology employing eye-safe laser 
sources, advanced electro-optics and mechanical beam-steering components delivers the highest angular resolution and accuracy performances in a wide 
range of operational conditions. LIDAR Obstacle Warning and Avoidance System (LOWAS) is thus becoming a mature technology with several potential 
applications to manned and unmanned aircraft. This paper addresses specifically its employment in Unmanned Aircraft Systems (UAS) Sense-and-Avoid 
(SAA). Small-to-medium size Unmanned Aerial Vehicles (UAVs) are particularly targeted since they are very frequently operated in proximity of the 
ground and the possibility of a collision is further aggravated by the very limited see-and-avoid capabilities of the remote pilot. After a brief description of 
the system architecture, mathematical models and algorithms for avoidance trajectory generation are provided. Key aspects of the Human Machine 
Interface and Interaction (HMI2) design for the UAS obstacle avoidance system are also addressed. Additionally, a comprehensive simulation case study of 
the avoidance trajectory generation algorithms is presented. It is concluded that LOWAS obstacle detection and trajectory optimisation algorithms can 
ensure a safe avoidance of all classes of obstacles (i.e., wire, extended and point objects) in a wide range of weather and geometric conditions, providing a 
pathway for possible integration of this technology into future UAS SAA architectures. 

Keywords: 

Airborne Lasers; Laser Sensors; Integrated Avionics Systems; Obstacle Warning and Avoidance; Sense-and-Avoid; Unmanned Aerial Vehicle. 
 

1. Introduction 

A number of Unmanned Aerial Vehicle (UAV) mission-and-
safety critical tasks involve low-level flight activities beyond the 
relatively safe aerodrome perimeter. Low level and terrain-
following operations are often challenged by a variety of natural 
and man-made obstacles. The significant number of obstacle 
strike accidents recorded is a major concern both for aircraft 
operators and for people on the ground [1, 2]. Reduced 
atmospheric visibility due to adverse weather conditions is 
frequently a contributing factor in such accidents, but the difficult 
identification of small-size obstacles such as wires has led to 
accidents and incidents even in clear sky conditions. Significant 
development activities are specifically addressing the integration 
of obstacle detection, warning and avoidance systems for granting 
separation maintenance and collision avoidance capabilities [3-9]. 
Table 1 compares a number of sensor technologies for Obstacle 
Warning System (OWS) applications in small-to-medium size 
UAVs. Unfortunately, state-of-the-art radar is not capable of 
detecting small natural and man-made obstacles such as trees, 
power line cables and poles. The outstanding angular resolution 
and accuracy characteristics of Light Detection and Ranging 
(LIDAR), as well as its good detection performance in a wide 
range of incidence angles and weather conditions provide an ideal 
solution for obstacle detection and avoidance [2]. 

One of the key challenges encountered by the aviation community 
for integration of Unmanned Aircraft Systems (UAS) into non-
segregated airspace is the provision of a certifiable Sense-and-
Avoid (SAA) capability. SAA can be defined as the automatic 
detection of possible conflicts by the UAS and the resolution of 
any existing collision threats by accomplishing safe avoidance 
manoeuvres. The maturity of SAA techniques and enabling 
technologies is considered low when viewed in the perspective of 
civil airworthiness regulations for manned aircraft, raising 

concerns to certification authorities and airspace users [8]. With 
the growing adoption of UAS for a number of civil, commercial 
and scientific applications, there is a need to certify UAS 
according to established national and international standards [9]. 
Such SAA systems will provide UAS the capability to 
consistently and reliably perform equally or even to exceed the 
see-and-avoid performance of a human pilot in manned aircraft 
while allowing a seamless integration of unmanned aircraft in the 
Air Traffic Management (ATM) network. Research efforts are 
primarily concentrated on adopting LIDAR sensors for small-to-
medium size UAV platforms as one of the most accurate non-
cooperative SAA sensors. The LIDAR Obstacle Warning and 
Avoidance System (LOWAS) for UAS is a low-weight/volume 
navigation aid system specifically designed to detect potentially 
dangerous ground and aerial obstacles placed in or nearby the 
planned flight trajectory and to provide timely warnings to the 
crew in order to implement effective avoidance manoeuvres. 

This paper presents the LOWAS hardware and software 
architecture for UAV applications, including algorithms for 
automated obstacle avoidance and Human Machine Interface and 
Interaction (HMI2) including synthetic display formats for the 
UAS Ground Control Station (GCS). A key novelty aspect of the 
LOWAS development is in the analytical models implemented for 
real-time processing of navigation and tracking errors affecting 
the state measurements allowing a direct translation into unified 
range and bearing uncertainty descriptors. Since these errors may 
be statistically independent (e.g., non-cooperative SAA) or 
dependent (e.g., cooperative SAA), the uncertainty volume is 
calculated in real-time for each obstacle encounter. Based on this 
uncertainty volume, appropriate geo-fences are dynamically 
generated (whose characteristics are dictated by the obstacle 
classification), to allow computation of the optimal avoidance 
flight trajectories. 
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https://www.researchgate.net/publication/263465241_Airborne_Laser_Systems_Testing_and_Analysis?el=1_x_8&enrichId=rgreq-76eb3e10571a4921151b239ea844389d-XXX&enrichSource=Y292ZXJQYWdlOzMwMzY5MzA3NTtBUzozNzc4MDYxNzg1Mzc0NzJAMTQ2NzA4NzQyMDYyNg==
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Table 1.   Obstacle detection technologies. 

 

2. Operational requirements 

The OWS operational requirements include: 

• Capability to detect all types of hazardous obstacles, including 
topographic features, vegetation, buildings, poles/masts, 
towers, cables and transmission lines; 

• Operability in all-time and all-weather conditions, including 
low-light and darkness; 

• High minimum detection range, adequate for the platform 
velocity and dynamic performances; 

• Wide Field of View (FOV), adequate for the manoeuvring 
envelope limits of the platform; 

• High range and bearing resolution; 

• Accurate and good probability of detection, since no real 
obstacle threat shall remain undetected; 

• Very low false alarm rate, to prevent spurious warnings that 
would increase the remote pilot’s workload and prompt 
unnecessary avoidance manoeuvres, potentially disruptive to 
both safety and effectiveness of the mission; 

• Satisfactory technological readiness levels. 

3. System description 

LOWAS is designed to detect obstacles placed in or nearby the 
aircraft trajectory, classify/prioritise the detected obstacles and 
provide visual and aural warnings and information to the crew. 
The key components of LOWAS are the Sensor Head Unit 
(SHU), the Processing Unit (PU), the Control Panel (CP) and the 
Display Unit (DU). The LIDAR beam scans periodically the area 
around the host platform’s longitudinal axis within a FOV of 40° 
in azimuth and 30° in elevation (Fig. 1). 

 

15°

15°

20°

20°

 

Fig. 1.   LOWAS FOV. 

In order to enhance coverage during turning manoeuvres at high 
yawing rates, the remote pilot may vary the azimuth orientation of 
the LOWAS FOV by 20° left/right with respect to the vertical 
axis. As conceptually depicted in Fig. 2, during every complete 
FOV scan (4 Hz refresh frequency), the LIDAR beam generates a 
number of elliptical scan patterns across the FOV. 

REQUIREMENT MAGNETIC THERMAL MILLIMETRIC 
WAVE RADAR 

LIDAR 

Wire detection 
Only energized 

wires 
Only energized wires 

All wires preferably 
perpendicular to flight 

trajectory 
All wires 

Detection range Short Short As required As required 

Coverage Area Small As required As required As required 
Resolution and accuracy 

(obstacle type, position and 
distance) 

Insufficient 
Good for position and 

type, no ranging 
capabilities 

Medium Very high 

All-weather performance in 
low-level flight 

Good Poor Very good Good* 

False alarm rate High Low Very low Very low 

Base technology status Mature Mature State-of-the-art State-of-the-art 

* Laser energy is significantly attenuated by rain and blocked by clouds and fog. 
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Fig. 2.   LOWAS scan pattern for an advancing UAV platform. 

This scanning pattern is well suited to detect the most dangerous 
obstacles like wires as it produces several and regularly spaced 
vertical lines. The electro-mechanical device that is used to 
produce the described scanning pattern is a swashing mirror. The 
LOWAS laser is the IRE POLUS model ELPM-20K, whose main 
characteristics are listed in Table 2 [2]. The wavelength, power 
and pulse duration were chosen to meet eye-safety requirements 
[10, 11]. The LOWAS architecture for UAV integration is shown 
in Fig. 3. In manned aircraft, LOWAS display unit and warning 
generator are located in the cockpit, while in the case of an UAV, 
the interactions with remote pilot involves Line-of-Sight (LOS) 
and Beyond LOS (BLOS) communication links. Both LOS and 
BLOS data links are necessary for LOWAS communication with 
the GCS and with the Air Traffic Management (ATM) system. 
Telemetry data need to be exchanged between the UAS and the 
GCS for aircraft control and downlinking of both flight 
parameters and obstacle information (enabling vehicle tracking, 
mission control and mission profile updates). 

Table 2.   ELPM-20K laser parameters [2]. 

Parameter Value 

Emission wavelength 1.55µm 

Pulse power at the assembly output 10 kW 

Pulse Duration 2.8 ns 

Pulse Repetition Frequency 40 kHz 

 

Fig. 3.   LOWAS avionics integration architecture for unmanned aircraft. 
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LOWAS employs three key algorithms namely: prediction of the 
future platform trajectory; calculation of the potential collisions 
with the detected obstacles; and generation of a set of optimal 
avoidance trajectories (in case a risk of collision is determined). 

4. Obstacle detection and classification software 
architecture 

The signal pre-processing steps involve an analogue optical-
electrical conversion of the echo signal by an Avalanche 
Photodiode (APD), a signal pre-amplification by an Automatic 
Gain Control (AGC) and a comparison with adjustable threshold 
in order to fine-tune sensitivity on the basis of the expected return 
signal power in relation with the time elapsed from the LIDAR 
pulse emission. The threshold level may also be tuned to take into 
account the background conditions. These features reduce the 
probability of false echo detection due to atmospheric back-
scattering near the laser beam output and optimise the system 
sensitivity in all weather conditions. Subsequently, digital signal 
processing is performed in order to validate positive echo 
detections, to determine the position of the detected obstacles and 
to extract their geometrical characteristics. For this purpose, the 
LOWAS software architecture is organised in two sequential 
stages: Low Level Processing (LLP) and High Level Processing 
(HLP). Fig. 4 represents the signal processing software 
architecture. 

 

Fig. 4.   LOWAS signal processing software architecture. 

The LLP is performed on the individual echoes in order to 
determine range, angular coordinates and characteristics of the 
obstacle portion generating them. The tracking data processing 
provides the tracks of intruders after pre-processing (excluding 
pre-filtered false alarms). The HLP analyses the LLP output to 
identify groups of echoes, in order to reconstruct shape and type 
of the obstacle. LOWAS is capable of detecting and classifying 
ground/aerial static and moving obstacles. Ground static obstacles 
are automatically classified according to the following classes: 

• Wire: all thin obstacles like wires and cables (e.g., 
telecommunication/power lines and cableways); 

• Tree: vertical obstacles of reduced frontal dimensions (e.g., 
trees, poles and pylons); 

• Structure: extended obstacles (e.g., bridges, buildings and 
hills). 

 

 

 

The single echoes are processed as soon as they are acquired. The 
wire LLP algorithm processes only the echoes whose magnitude 
is weaker than pre-defined thresholds. Subsequently, the wire 
HLP algorithm is employed on the subset of acquired echoes in 
the current frame. Clusters are merged into a single obstacle by 
means of iterative image segmentation, specifically implemented 
to identify echoes characterised by a uniform range. A statistical 
algorithm subsequently validates the merged echoes by verifying 
if the obstacle is generated by real aligned echoes or by noise 
data. The processing algorithms for extended obstacles (trees and 
structures) are also divided in two different phases: echo analysis 
and segmentation. The echoes already classified as extended 
objects are processed by a dedicated validation algorithm, since 
many of these are not generated by obstacles (like, for example, 
the ground). The segmentation algorithm is responsible of 
detecting, merging and validating clusters of echoes acquired over 
relatively short time intervals and showing the geometric 
properties of an obstacle. The LOWAS performs automatic 
prioritisation of the detected obstacles based on the risk 
represented according to the relevant range and provides timely 
visual and aural warnings to the flight crew. The dedicated signal 
processing algorithms grant reliable detection performance, 
independent from the platform motion, allowing a reconstruction 
of the obstacle shape without using navigation data (stand-alone 
integration) in low-dynamics platforms flying pre-defined 
trajectories. The LOWAS can also be integrated with the 
navigation and guidance system of the UAV to grant more 
efficient and reliable obstacle detection in high-dynamics and no 
pre-planned flight conditions [12]. 

4.1. History function 

A history function is implemented to retain obstacles information 
even when the previously observed obstacles are outside the 
current FOV of the LOWAS. Such a capability enables the 
storage of obstacle positions and other attributes for a certain 
period of time, which is automatically adjusted based on 
platform-obstacle relative dynamics. Since both obstacle data and 
platform navigation data are affected by errors, a propagation of 
uncertainty is performed to grant a 2-sigma confidence level to 
position data of host platform and tracking information of 
obstacles. 

5. Detection and atmospheric propagation models 

The microwave radar range equation also applies to laser systems 
and the power received by the detector is given by: 

P� = ����	�	�
 ⋅ �
�	�
 ⋅ 	


� ⋅ τ��� ⋅ 	τ���                      (1) 

where P� is the transmitter power, G� is the transmitter antenna 
gain, R is the range [m], D is the aperture diameter [m], τ��� is 
the atmospheric transmittance and τ��� is the system transmission 
factor. With laser systems, the transmitter antenna gain is 
substituted by the aperture gain, expressed by the ratio of the 
steradian solid angle of the transmitter beam width α� to that of 
the solid angle of a sphere as given by: 

G� = �	
�
                                             (2) 

In case of laser beam widths in the order of 1 mrad, the typical 
aperture gain at laser wavelengths (λ) is about 70 dB. In the far 
field, the transmitter beam width can also be expressed in terms of 
aperture illumination constant, K� as: 

α = K� 	 �                                            (3) 

https://www.researchgate.net/publication/264240297_A_Laser_Obstacle_Warning_and_Avoidance_System_for_Manned_and_Unmanned_Aircraft?el=1_x_8&enrichId=rgreq-76eb3e10571a4921151b239ea844389d-XXX&enrichSource=Y292ZXJQYWdlOzMwMzY5MzA3NTtBUzozNzc4MDYxNzg1Mzc0NzJAMTQ2NzA4NzQyMDYyNg==
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Substituting for G� and α in equation (1), we obtain: 

PR = PT	
16R4 ⋅ σ

λ2 ⋅ D4
Ka2 ⋅ τatm ⋅ τsys                     (4) 

At λ = 1.064 µm, a 10 cm aperture has a far-field distance of 
approximately 20 km.  As a result, it is not unusual to operate in 
the near-field of the optical systems and hence the range equation 
is modified to account for near-field operations.  This near-field 
effect modifies the beam width such that: 

α = *+,-. /� +	+,-� /�                                  (5) 

The range equation is dependent on the target area. The effective 
target cross-section is given by: 

σ = �	
1 	ρ	dA                                          (6) 

where Ω is the scattering solid angle of target [sr], ρ is the target 
reflectivity and dA is the target area. Substituting Ω with the value 
associated with the standard scattering diffuse target (Lambertian 
target) having a solid angle of π steradians, we obtain: 

σ = 4	ρ�dA                                         (7) 

The cross-sectional area of a laser beam transmitted by a circular 
aperture from a distance is given by: 

dA = 		�

� Ɵ�                                        (8) 

Depending on the target-laser spot relative dimensions we may 
distinguish three different types of targets: extended, point and 
linear targets. In case of a point target (Fig. 5-a), the target cross-
section is given by: 

σ7� = 4	ρ�dA                                      (9) 

Hence the range equation is expressed as: 

P� = ��	��
 ⋅ 89:��
 ⋅ ;
,-
�
 ⋅ τ��� ⋅ τ���                (10) 

In case of a linear target such as a wire (Fig. 5-b), it can have a 
length larger than the illuminated area but a smaller width (d).  
The target cross-section is given by: 

σ<=>? = 4	ρ<=>?	R	Ɵ	d	                             (11) 

Replacing with the beam width provided in Eq. (3), the range 
equation is expressed as: 

P� = ��	��
 ⋅ 8	:@ABC� ⋅ D
,-� ⋅ τ��� ⋅ τ���                  (12) 

(a) (b) (c)

Point Target

Wire Target

d

θR

Extended Target

 

Fig. 5.   Target cross sections. 

In case of an extended target such as a wire (Fig. 5-c), all incident 
radiation is involved in the reflection process. Thus, for an 
extended Lambertian target we have a target cross-section given 
by: 

σ?E� = π	ρ	R�	Ɵ�	                                  (13) 

Therefore the range equation is expressed as: 

P� = 		��	�� ⋅ 
	:
�� ⋅ τ��� ⋅ 	τ���                        (14) 

The propagation of laser radiation in atmosphere is affected by a 
number of linear and nonlinear effects. Assuming a Gaussian 
profile of the laser beam at the source and an average focused 
irradiance, a comprehensive expression of the peak irradiance, I�, 
accounting for absorption, scattering, diffraction, jitter, 
atmospheric turbulence and thermal blooming effects is given by 
[11, 13]: 

I�Hz, λ) = KHL)	MHL,�)	�H�)
		N�O
HL,�)	P	�Q
HL)	P	�R
HL,�)S																							(15)	

where z is linear coordinate along the beam, λ is wavelength, PHλ) is transmitted laser power, b is blooming factor, τHz, λ) is 
transmittance coefficient, which accounts for absorption and 
scattering associated with all molecular and aerosol species 
present in the path. The 1/e (e is Euler's number) beam radii 
associated with diffraction a8Hz, λ), beam jitter aUHz) and 
turbulence a�Hz, λ) are calculated as [14]: 

a8Hz, λ) = VL�
�	�W																																										(16)	

aU�Hz) = 2〈ΘE�〉	z�																																						(17)	
a�Hz, λ) = �	[\]/_L`/_�a/_ 																																					(18)	

where Q is beam quality factor, ac is beam 1/e radius, 〈ΘE�〉 is the 
variance of the single axis jitter angle that is assumed to be equal 
to 〈Θ��〉 and Ce�  is the refractive index structure constant. An 
empirical model for the blooming factor bHz), which is the ratio 
of the bloomed If to unbloomed Igf peak irradiance, is given by: 

bHz) = hihji = k
k	Pc.cm�n	e
HL)																														(19)	

where N is thermal distortion parameter and is a dimensionless 
quantity that indicates the degree or strength of thermal distortion 
given by: 

NHz) = pq�	�r	�	L

		qW	8W	sW	tu	�WD 	 ∙ w �L
 x �W�HLy)dzz x �W
	sW	M	zz� 	dzzzLzcLc {					(20)	

where the multiplication factor is the distortion parameter for a 
collimated Gaussian beam of 1/e radius ac;	nc is refractive index; vc is the uniform wind velocity in the weak attenuation limit            
(γz ≪ 1); P is the laser output power; n�, α�, dc and c� are, 
respectively, the coefficients of index change with respect to 
temperature, absorption coefficient, density and specific heat at 
constant pressure. The atmospheric transmittance τ depends on 
the integral effects of absorption and scattering phenomena, both 
for molecular and aerosol species, on the entire beam length, 
which are comprehensively described as: 

τHz, λ) = epx �HL,�)	8L�W                             (21) 

where γHz, λ) is the atmospheric extinction. In the practical case, 
the molecular and aerosol composition of the atmosphere along 
the entire LIDAR beam is unknown and cannot be accurately 
guessed, therefore it is necessary to adopt an empirical model for 
the atmospheric extinction. Considering that the LIDAR 

https://www.researchgate.net/publication/41466749_High_power_laser_propagation?el=1_x_8&enrichId=rgreq-76eb3e10571a4921151b239ea844389d-XXX&enrichSource=Y292ZXJQYWdlOzMwMzY5MzA3NTtBUzozNzc4MDYxNzg1Mzc0NzJAMTQ2NzA4NzQyMDYyNg==
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operational wavelength is fixed and assuming that variations in 
the transmittance are caused by changes in the water content of 
the air only, γHz, λ) can be calculated using the model suggested 
by Elder and Strong [15] and modified by Langer [16]. 
Additionally, for propagation in rainy conditions, the equations 
developed by Middleton can be adopted [17]. The Elder-Strong-
Langer-Middleton (ESLM) model relates the atmospheric 
transmission of the ith window to the atmospheric visibility, 
relative humidity and rainfall-rate (i.e., readily measurable 
parameters). This is a valid assumption since other atmospheric 
constituents have reasonably constant effects within the given 
atmospheric window. The number of H2O molecules encountered 
by the laser beam is expressed by the amount of precipitable 
water, which equals to the depth of the layer that would be 
formed if all the water molecules along the propagation path were 
condensed in a container having the same cross-sectional area as 
the beam. Hence, for a beam path length of z metres, the total 
precipitable water amount in millimetres is given by: 

w = 10p�	ρ ⋅ 	z                                 (22) 

where		ρ is the absolute humidity [g/m3]. Two empirical 
expressions, developed by Langer can be used to calculate the 
absorptive transmittance τ�=	for the ith window for any given value 
of the precipitable water content [14]. These transmittances are 
expressed as: 

τ�= = ep9A√<  for		w < w=																												(23)	
τ�= = k= 	+<A</�A  for		w > w=																										(24)	

where A=, k=, β= and w= are constants whose values for each 
atmospheric window are listed in [18]. For the LOWAS 
wavelength (λ = 1550 nm - 4th atmospheric window), Ai = 0.211, k= = 0.802, β=	= 0.111 and w= = 1.1. These empirical equations 
apply to horizontal paths in the atmosphere at sea-level and for 
varying relative humidity.  To obtain the total atmospheric 
transmittance, τ�= is multiplied by τ�= (i.e., the transmittance due 
to scattering only). Based on rigorous mathematical approaches, 
the scattering properties of the atmosphere due to the aerosol 
particles are difficult to quantify and it is difficult to obtain an 
analytic expression for the scattering coefficient that will yield 
accurate values over a wide variety of conditions.  However, an 
empirical relationship that is often used to model the scattering 
coefficient has the form: 

βHλ) = Ckλp� + C�λp�	                         (25) 

where Ck, C�	and δ are constants determined by the aerosol 
concentration and size distribution and λ is the wavelength of the 
radiation. The second term accounts for Rayleigh scattering, 
which may be neglected for all wavelengths longer than about 0.3 
µm. The values δ ≈ 1.3 ± 0.3 produce reasonable results when 
applied to aerosols with a range of particle sizes.  An attempt has 
also been made to relate δ and Ck to the meteorological range. 
The apparent contrast C�, of a source when viewed at	λ = 0.55 µm 
from a distance z is given by: 

C� = ���P������                                      (26) 

where R�� and RK� are the apparent radiances of the source and 
its background as seen from a distance z. For λ = 0.55	μm, the 
distance at which the ratio: 

V = 	 [�[W =
������������W���W��W

= 	0.02                       (27) 

is defined as the meteorological range V (or visual range).  It must 
be observed that this quantity is different from the observer 
visibility (V�K�). Observer visibility is the greatest distance at 
which it is just possible to see and identify a target with the 
unaided eye. The International Visibility Code (IVC) designations 
are too broad for scientific applications. If only an estimated 
observer visibility (V�K�) is available, the meteorological range 
(V) are estimated from [11]: 

V ≈ H1.3 ± 0.3) ⋅ V�K�                          (28)	
Assuming that the source radiance is much greater than the 
background radiance (i.e., R� >> RK) and that the background 
radiance is constant (i.e., RKc = RK� ), the transmittance at λ = 
0.55 µm (where absorption is negligible) is given by: 

	�����W = ep�� = 	0.02                             (29) 

Hence: 

ln +�����W/ = −βV = 	−3.91                        (30)	
and also: 

β = p�.¢k
� =	Ckλp�                             (31) 

The constant Ck is given by: 

Ck = �.¢k
� ⋅ 0.55�                              (32) 

The transmittance at the centre of the ith window is expressed as: 

τ�= = epD.£a¤ ⋅	+ ¥AW.__/
�¦⋅	L                          (33) 

where λ= is expressed in microns. If, because of haze, the 
meteorological range is less than 6 km, the exponent δ is related 
to the meteorological range by the following empirical formula: 

δ = 0.585 ⋅ √VD                                  (34) 

where V is in kilometres.  When V ≥ 6 km, the exponent δ can be 
calculated by: 

δ = 0.0057 ⋅ V + 1.025                        (35) 

For exceptionally good visibility, δ = 1.6 and for average 
visibility δ	 ≈ 1.3.  In summary, an appropriate value for δ allows 
to compute the scattering transmittance at the centre of the ith 
window for any propagation path, if the meteorological range V is 
known. The extinction coefficients were computed from ESLM 
model transmittances using [2]: 

γ = −	 ©q M��                                        (36)	
where SR is the slant range in km. However, it is important to 
observe that, although the ESLM model provides independent 

estimates of both absorptive transmittance (τ�=) and scattering 

transmittance (τ�=), only the scattering contribution to the 

extinction coefficient (γ�=) is independent of range. It should be 
noted that, in fact, the total precipitable water in mm per m of 
beam length is given by Eq. (22) and absolute humidity is 
approximated by: 

ρ = 1322.8	 �ª� exp w�n.��	H�p��.km)� − 5.31 ln + �
��.km/{    (37)	

where RH is the relative humidity (as a fraction), and T is the 
absolute temperature (°K). According to the ESLM model, the 
ESLM absorptive transmittance is given by [11]: 
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τ�= = epc.c�m�√®                                (38)	
Therefore, in this case, the absorptive extinction coefficient (γ�=i) 
is given by: 

γai = 0.0363 ⋅ ρ ⋅ 	 1
√SR                           (39)	

where the SR dependency of γ�= is evident (obviously, for SR = 1 
km the model γ�= becomes a function of AH only). The ESLM 
empirical model implies a range dependency of the extinction 
coefficient, which prevents direct comparisons of the 
experimental γ values found at a certain SR with γ values 
predicted or measured at a different SR. 

5.1. Detection range performance 

Extensive flight test activities performed on LOWAS for manned 
rotorcraft have addressed, in particular, the detection range 
performances in various weather and daylight conditions, as well 
as the Human-Machine Interface and Interaction (HMI2) formats 
and functions and avoidance trajectory generation algorithms. The 
activities highlighted that the LOWAS range performances were 
in accordance with the predictions and the LOWAS 
detection/classification algorithms were validated.  Furthermore, 
it was verified that the LOWAS history function was adequate to 
cover the flight envelope of the selected test platforms.  Table 3 
details the detection range results obtained for wire obstacles of 5 
mm in diameter, in dry weather (visibilities of 800 m, 1500 m and 
2000 m) and incidence angles of 90° and 45°.  These results fulfil 
the minimum LOWAS performance requirements set for 
rotorcraft platforms. The detection ranges obtained by 
experiments also exceed the ESLM model detection ranges and 
this is due to a slight overestimation of the extinction coefficient 
at λ = 1.55 µm as detailed in [2]. 

Table 3.   Detection range of 5 mm diameter cable. 

Visib-
ility 

Incid-
ence 

Angle 

ESLM 
Model 

Detection 
Distance 

Actual 
Detection 
Distance 

Minimum 
Specified 
Detection 
Distance 

800 m 90° 662 m 727 m 500 m 

1500 m 90° 783 m 832 m 560m 

2000 m 90° 921 m 980 m 600 m 

800 m 45° 495 m 529 m 400 m 

1500 m 45° 553 m 623 m 440 m 

2000 m 45° 629 m 657 m 520 m 

6. Human-machine interface and interactions 

Information relative to all detected obstacles is provided on 
dedicated avionics systems including 2D, 3D and altimetry 
display formats. Fig. 6 shows a visible image (a) and the 
corresponding LOWAS 3D display format (b). Fig. 6-c shows an 
enlarged version of the 3D display format. A 2D display format is 
shown in Fig. 6-d as well as a combined format is depicted in Fig. 
6-e, providing a synthetic augmented-reality image of the scene 
captured by visual camera and by LOWAS.  

Comparing Fig. 6 (a) and (b), it is evident that pole and wire 
obstacles placed at a certain distance from the platform and hard 

to be seen by a visual camera (and by the human eye) are 
successfully detected and displayed by LOWAS. An altimetry 
display format is also available and depicted in Fig. 7. In all these 
avionics implementations, the actual platform orientation and 
flight path velocity vector with respect to the LOWAS axis are 
represented (an auto-alignment function can be also implemented 
if the required data are available from other avioncis navigation 
sensors). 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Fig. 6.   Visible camera image (a), LOWAS 3D display                       
(b and c) 2D display (d) and synthetic enhanced-reality image (e). 

 

Fig. 7.   LOWAS altimetry display formats. 

6.1. Cognitive remote pilot-UAV interface 

Cognitive ergonomics studies are performed to develop suitable 
HMI2 for LOWAS. Emphasis is on the development of adaptive 
forms of HMI2 based on the analysis of human cognitive states 
estimated from physiological measurements and external 
conditions. This information is used to trigger HMI2 adaptation 
(including various levels of automation) with the intention of 

increasing safety and efficiency of UAS low-level flight 
operations. In the LOWAS for UAS, a cognitive remote pilot-
aircraft interface is developed to dynamically assist remote pilots 
based on their physiological and cognitive states detected in real-
time. Four intelligent and adaptive functions including real-time 
monitoring of environmental and operational statuses as well as 
pilot physiological parameters, adaptive alerting and dynamic task 
allocation are adopted to ensure an optimal cooperation between 
pilots and advanced aircraft systems [19-22]. 

Depending upon the current flight phase, environmental 
conditions, operational requirements and cognitive states of the 
remote pilot, suitably defined decision logics perform the 
automatic selection of formats and functions adaptively. The real-
time cognitive state of the UAS remote pilot is estimated based on 
the detected physiological parameters (heart rate, respiration rate, 
blink rate, blood pressure, etc.). Several cognitive state 
parameters are considered for the design of adaptive HMI2 
system, typically including mental workload, mental fatigue, 
vigilance, stress, etc. Normalised variables (i.e., defined between 
0 and 1 and non-dimensional) are here adopted to express 
cognitive state parameters. Each of them has specific 
dependencies on physiological parameters of the remote pilot, 
which are expressed as: 

ψU,�′ = f´φ=,�¶                                     (40) 

where ψ is a cognitive state parameter and φ is a physiological 
parameter. As human physiological parameters are frequently 
dependent on age and gender, a reference cognitive state 
parameter (ψU,>?·′) is introduced as: 

ψU,>?·′ = f´φ=,>?·¶                                 (41) 

where the φ=,>?· is the reference of the ith physiological 
parameters. Adopting a weighted sum, the jth real-time pilot 
cognitive state parameter ψUz is estimated as: 

ψUz = ∑ α= ∙ ¹Q,Rzp¹Q,BCºz¹Q,BCºz
q=»k                           (42) 

where α= represent the weights of cognitive indicators and n is the 
number of cognitive indices. In addition to physiologically-
derived values ψUz, corresponding cognitive state estimates ψU′′ are 
determined by processing external conditions characterising the 
mission, retrieved from the Flight Management System (FMS). In 
particular, both operational and environmental complexities are 
considered and this is expressed by: 

ψU′′ = ∑ α< ∙ �@,R�@,R�a	
7<»k +∑ αs ∙ ¼�,R	¼�,R�a	

½s»k              (43) 

where α< represents the scaling factor of the operational 
complexity (γ<), γ<,� is the real-time determined operational 
complexity, γ<,�pk is the operational complexity in the previous 
epoch;	αs represents the scaling factor of environmental 
complexity (ηs), ηs,� is the real-time detected environmental 
complexity and ηs,�pk is the environmental complexity detected in 
the previous epoch. The total cognitive state parameters are 
finally determined as a weighted-sum between the 
physiologically-derived values ψUz and the estimates based on 
external conditions			ψUzz as: 

ψU = δ�	ψUz + δ?	ψU′′                                (44) 

where δ� is the weight associated to physiologically-derived 
values and δ? is the weight associated with estimates based on 
external conditions. The cognitive state parameters are processed 
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by suitably defined decision logics to trigger interface adaptation 
and hence are an essential constituent of the cognitive UAS 
remote pilot interface. 

6.2. Formats and functions 

The formats and functions are adaptively selected based on the 
following criteria: 

• Safety Line: selected when the airspeed is low. 

• Wires and Pole Obstacles (e.g., vertical pylons and bare 
trees): selected when wires and pole obstacles are within the 
OWS detection range. 

• All Ground Obstacles: selected when wire/poles and other 
types of obstacles are within the OWS detection range. 

• Air Obstacles: selected when aerial obstacles are within the 
OWS detection range. 

• OWS 3D (colour-coded LIDAR image): selected when a 
superimposed Forward Looking Infrared (FLIR) image is 
required for low-light and night time operations. 

In addition to the formats and functions listed above, various 
symbols are used to enhance the representation of detected 
obstacles and to assist in the decision making process: 

• Distance from obstacle; 

• Isolated obstacles (buildings, groups of trees, etc.); 

• Integrity flags (cautions and warnings); 

• Flight vector; 

• Evade advice cue; 

• Plan Position Indicator (PPI); 

• Terrain map. 

6.3. LOWAS alerts 

Three general levels of alert are defined for LOWAS (i.e., 
warning, caution and advisory). These alerts are provided to the 
remote pilot through aural and visual outputs as shown in Table 4. 
The warning cues, cautions and advisory alerts are provided in the 
form of tone and digital voice outputs; and/or displayed on the 
system warning panel, Helmet-Mounted Sight/Display (HMS/D) 
and Multi-Function Display (MFD). 

Table 4.   LOWAS Alerts. 

 Tone Direct 
Voice 
O/P 

Warn-
-ing 

Panel 

HM  
S/D 

MFD 

Warning cue - � - � � 

Caution � - � � � 

Advisory - - - - � 

The warning cues are triggered when a detected obstacle is within 
the selected range or 10” from the impact point. Cautions are 
produced when the obstacle is within the FOV or there occurs a 
failure/degradation of the OWS functions.  Advisories are issued 
when obstacles are outside the FOV but within the UAV 
operational envelope (i.e., history function).    

7. SAA unified approach 

In order to develop a certifiable UAS SAA system consisting of 
suitable intruder detection equipment and data fusion algorithms, 
a combination of navigation and tracking sensors/systems is 
necessary. Global Navigation Satellite Systems (GNSS), Inertial 
Measurement Unit (IMU) and Vision Based Navigation (VBN) 
sensors are typically adopted in an UAV’s navigation and 
guidance system architecture. Errors in the obstacle/intruder 
measurements are estimated considering a combination of non-
cooperative sensors, including active/passive Forward-Looking 
Sensors (FLS) and acoustic sensors, as well as cooperative 
systems, including Automatic Dependent Surveillance Broadcast 
(ADS-B) and Traffic Collision Avoidance System (TCAS). A 
SAA reference system architecture is shown in Fig. 8. The 
sequential steps involved in the SAA process for executing a 
failsafe Track, Decide and Avoid (TDA) loop are also depicted in 
Fig. 8. 

 

Fig. 8.   SAA reference system architecture. 

Non-cooperative sensors are employed to detect intruders or other 
obstacles in the UAV Field of Regard (FOR) when cooperative 
systems are unavailable to the intruders. Optical, thermal, 
LOWAS, Millimetre Wave (MMW) radar and acoustic sensors 
are employed as non-cooperative sensors. Currently, the inclusion 
of ADS-B redefines the paradigm of Communication, Navigation 
and Surveillance (CNS) in ATM by providing trajectory 
information in case of cooperative systems in addition to the use 
of Traffic Collision Avoidance System (TCAS)/Airborne 
Collision Avoidance System (ACAS). Boolean decision logics are 
applied for optimal selection and fusion of data obtained from 
state-of-the-art non-cooperative sensors, cooperative systems and 
ATM radar tracks/air traffic controller instructions in digital 
format transmitted by data links. The trajectory information of the 
intruders is determined after performing multi-sensor data fusion. 
Criticality analysis is carried out to prioritise (i.e., to determine if 
the specified collision risk threshold is exceeded by the tracked 
intruders) and to determine the action commands. In order to 
estimate the overall avoidance volume, navigation error of the 
host platform and tracking error of obstacles/intruders are 
evaluated and combined. The variation in the state vector (host 
and intruder) is expressed as: 

δ´X=Ht)¶ = 	 w�À�7{� . σ7Q                              (45) 

where p is the position of the UAV and t is the time of 
measurement. Let R, α and ϵ be the  range, azimuth and elevation 
obtained from LOWAS. Let Rc, αc and ϵc be the nominal range, 
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azimuth and elevation values. Let σ�, σ�	and σÂ be the standard 
deviations of the errors in range, azimuth and elevation 
respectively. The associated error ellipsoids are given by:	 

H�p�W)
��
 + H�p�W)
�Ã
 +	 HÂpÂW)
�Ä
 = 1                       (46) 

In the case of a static non-cooperative obstacle, the errors in 
range, azimuth and elevation are given by: 

δR = Rc + σ� ⋅ sinψ																													(47) 

δα = αc + σ� ⋅ cosφ ⋅ cosψ																						(48) 

δϵ = ϵc 	+ σÂ ⋅ 	 sin φ ⋅ cosψ																							(49) 

where Rc, αc, ϵc are the nominal range, azimuth and elevation 
measurements and {φ, ψ} are parameterisation factors. The 
transformation of {R, α, ϵ} to {x, y, z} is given by: 

x = R ⋅ cos α ⋅ cos ϵ																																	(50) 

y = R ⋅ 	sin α ⋅ cos ϵ																																	H51) 

z = R ⋅ sin ϵ																																								(52) 

An example of the two combined navigation and tracking error 
ellipsoids assuming range only errors and the resulting 
uncertainty volume for uncorrelated and correlated (covariant and 
contravariant) sensor error measurements (3 out of a 27 total 
possibilities) is illustrated in Fig. 9. In the case of dynamic 
obstacles, the uncertainty volume is obtained based on a 
confidence region given by: 

δvc = vc + σsW ⋅ sin ψ                          (53) 

δνc = νc + σÇW ⋅ cosφ ⋅ cosψ																								(54) 

δυc = υc 	+ σÉ ⋅ 	 sin φ ⋅ cosψ																								(55) 

where vc, νc, υc are the nominal velocity measurements. When an 
error in elevation and azimuth is present, a conical inflation is 
obtained at the estimated range. 

 

Fig. 9.    Uncertainty volumes obtained from range only errors. 

The kinematic relationships are: 

vx = v ⋅ cos ν ⋅ cos υ																														(56) 

vy = v ⋅ 	 sin ν ⋅ cos υ																														(57) 

vz = v ⋅ sin υ																																				(58) 

and these equations are governed according to the following laws 
of motion: 

x = xc + vE ⋅ t																																					(59) 

y = yc + v� ⋅ t																																			(60) 

z = zc 	+ vL ⋅ 	t																																		(61) 

The errors in {x, y, z} are given by: 

σx� = Hσx0� + σvx⋅�� + 2	σx0	vx⋅�	)																	(62) 

σ�� = Hσ�c� + σsÊ⋅�� + 2	σ�c	sÊ⋅�	)																	 (63) 

σL� = HσLc� + σs�⋅�� + 2	σLc	s�⋅�	)																		 (64) 

The resultant avoidance volume obtained at an estimated range is 
shown in Fig. 10. A conceptual representation of the overall 
avoidance volume obtained in relation to an identified collision 
threat and the avoidance trajectory generated by the SAA system 
is provided in Fig.11. 

 

Fig. 10.   Uncertainty volume at an estimated range. 
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Fig. 11.   Conceptual representation of the obstacle avoidance scenario. 

In order to assure adequate safety levels, a separation buffer is 
introduced, which inflates the avoidance volume associated with 
each obstacle. In particular, to provide a 2-sigma confidence 
level, the uncertainty associated with the position of an obstacle is 
calculated as twice the standard deviation of the combined 
navigation and tracking error. When the distance between two 
detected obstacles is comparable with the calculated uncertainty 
values, or with the aircraft dimensions, the algorithm combines 
the two obstacles into a single overall avoidance volume.  The 
key advantage is that the safe avoidance is determined by 
evaluating the risk-of-collision and then a safe manoeuvring point 
is identified from where the host UAV can manoeuvre safely (i.e., 
any manoeuvre can be performed within the UAV operational 
flight envelope). The risk of collision is evaluated by setting a 
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threshold on the probability density function of a near mid-air 
collision event over the separation volume. The risk-of-collision 
is zero at the safe manoeuvring point. 

8. Generation of avoidance trajectories 

Once the obstacle has been detected, classified and prioritised as 
described in section 4 and the corresponding avoidance volume is 
computed in real-time as described in section 7, the LOWAS 
triggers the generation of feasible avoidance trajectories based on 
platform dynamics and avoidance volumes. An optimal avoidance 
trajectory is subsequently identified among the feasible set based 
on robust multi-criteria decision logic. The adoption of trajectory 
optimisation algorithms in SAA represents a substantial evolution 
from the conventional safe-steering methodologies adopted in 
current systems [23]. In particular, in the context of conflict 
identification and resolution, trajectory optimisation allows the 
identification of the safest and more efficient Three-Dimensional 
or Four-Dimensional (3D/4D) avoidance trajectory, considering 
dynamics/airspace constraints, obstacle characteristics or intruder 
dynamics, as well as meteorological and traffic conditions. 
Current R&D efforts are addressing practical implementations of 
advanced multi-model and multi-objective 3D/4D trajectory 
optimisation algorithms in novel ground-based and airborne 
Communication, Navigation and Surveillance/Air Traffic 
Management and Avionics (CNS+A) systems [22]. Most 
computationally efficient trajectory optimisation algorithms 
currently adopted in the aerospace domain belong to the family of 
direct methods. These solution methods involve the transcription 
of the infinite-dimensional trajectory optimisation problem 
formulated as optimal-control problem in a finite-dimensional 
Non-Linear Programming (NLP) problem, hence following the 
approach summarised as “discretise then optimise” [22-27]. This 
transcription problem can be either performed by introducing a 
control parameterisation based on arbitrarily chosen analytical 
functions, as in transcription methods, or by adopting a 
generalised piecewise approximation of both control and state 
variables based on a polynomial sequence of arbitrary degree, as 
in collocation methods. In both cases, the transcribed dynamical 
system is integrated along the time interval	[tc; t·]. The search of 
the optimal set of discretisation parameters is formulated as a 
NLP problem, which is solved computationally by exploiting 
efficient numerical NLP algorithms. In direct transcription 
methods, a basis of known linearly independent functions	qÏHt) 
with unknown coefficients	aÏ is adopted as the parameterisation 
in the general form: 

zHt) = ∑ aÏqÏHt)eÏ»k                               (65) 

In direct shooting and multiple direct shooting methods, the 
parameterisation is performed on the controls 	uHt) only, the 
dynamic constraints are integrated with traditional numerical 
methods starting from the initial conditions and the Lagrange 
term in the cost function is approximated by a quadrature 
approximation. In the multiple shooting methods, the analysed 
time interval is partitioned into n= + 1 subintervals. The direct 
shooting method is then implemented at each subinterval. Parallel 
implementations of direct shooting involve the simultaneous 
integration of a family of trajectories based on different control 
parametrisation profiles, taking advantage of increasingly 
common multi-thread/multi-core hardware architectures. The 
optimal solution is determined a posteriori, both in the case of 
single objective and multi objective implementations. 

Safety-critical applications of trajectory optimisation algorithms 
are actively investigated for airborne emergency Decision 

Support Systems (DSS), also known as safety-nets, such as the 
LOWAS. These safety-critical CNS+A applications impose real-
time requirements on the trajectory generation algorithm. 
Additionally, all generated trajectories must necessarily fulfil 
each and every constraint that is set, as the obstacle avoidance and 
manoeuvring envelope are formulated as constraints. These 
requirements restrict the choice of solution methods and multi-
objective optimality decision logics that can be employed. In 
particular, a number of solution methods involve the intentional 
violation of constraints to promote convergence to optimality and 
among them the most conventional algorithms implemented are 
of collocation methods. Robust parallelised direct shooting 
solution methods with a posteriori decision logics are 
implemented for the generation of safe obstacle avoidance 
trajectories in the case of LOWAS for manned and unmanned 
aircraft. Since an optimal control-based formulation is adopted, 
the algorithm is based on the aircraft dynamics and not on a 
geometric trajectory models. The algorithm also accounts for path 
and airspace constraints as well as local meteorological 
conditions. 

8.1. Dynamics constraints 

The approximated dynamics model of the fixed-wing aircraft 
implemented as dynamics constraint in the LOWAS avoidance 
trajectory generation algorithm is based on the following 
assumptions:  

• The aircraft is modelled as a point-mass with 3 linear 
Degrees-of-Freedom (3-DoF); 

• The mass of the aircraft is considered constant along the 
avoidance trajectory; 

• The inertial reference system adopted is fixed on the initial 
aircraft position (i.e. at the instant of detection of the first 
obstacle), with the X-axis tangent to the original trajectory, 
the Y-axis perpendicular to the trajectory and parallel to the 
ground and the Z-axis normal to the ground; 

• The aircraft is subject to a constant gravitational acceleration 
parallel and opposite to the Z axis and for the current 
implementation a value of	g = 9.81	m/s� is considered; 

• The airspeed is expressed as True Air Speed (TAS). The 
assumed initial TAS is v = 25	m/s. The effects of wind are 
considered in the dynamics model, but not simulated. 

The resulting system of differential equations for 3 Degrees-of-
Freedom (3-DoF) flight dynamics is: 

ÒÓ
ÓÓ
Ô
ÓÓ
ÓÕÖ× = 	 �		p� − g sin γ												
γ× = 	 Øs ⋅ HN cos μ − cos γ)
	χ	× = 	 Øs ⋅ e�=q Ú

t�� � 																					Û× = 	Ö cos γ sin χ + ÖÜÝÞ× 	= 	Ö cos γ cos χ + ÖÜßà× 	= Ö sin γ + v<� 												á× = −Fã																													

																														(66)	

where D is the aerodynamic drag [N], v< is the wind velocity in 
its three scalar components [m/s] and Fã = 0 is fuel flow                    
[kg s-1]. The state vector consists of the following variables: 
aircraft mass m [kg]; γ is flight path angle [rad]; χ is track angle 
[rad]; x, y, z coordinates [m]. The control variables are: load factor N [ ]; thrust force T [N], bank angle μ [rad]. The accuracy of 3-
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DoF flight dynamics is shown here to be adequate for low-
dynamics platforms and in combination with smooth control 
logics leads to the generation of relatively smooth avoidance 
trajectories. Additional trajectory generation algorithms based on 
6 Degrees-of-Freedom (6-DoF) dynamics are currently being 
developed, with aerodynamic and inertia coefficients retrieved as 
given in [28]. The same flight dynamics model is used both for 
the host platform and the intruder if the obstacle is a flying object. 

8.2. Path constraints 

The avoidance volumes generated as described in section 7 and 
parameterised with spherical harmonics as described in [23] are 
introduced as path constraint on the 3 spatial coordinates. The 
violation of the avoidance volumes leads the algorithm to 
interrupt the integration and discard the trajectory from the 
feasible set. During the avoidance manoeuvre, the load factor is 
set close to the certified flight envelope limits of the aircraft. The 
values correspond to N = Nä9À = 2.5 for pull-up manoeuvres 
and N = Nähe = −1 for diving manoeuvres. The limits on the 
flight path angle are set to −60° < æ < 75°, whereas the limits 
on the bank angle are set to −60° < ç < 60°. During the entire 
approach to the obstacle, the vehicle control system is assumed to 
provide a linear variation of		μ and N from the respective initial 
condition values, up to the assumed maximum values. The 
maximum roll rate adopted is 	μ× ä9À = 20	°/s. 

8.3. Multi-objective decision logics 

The subsequent step involves the selection of the optimal 
trajectory from the generated set of safe trajectories, which is then 
provided in the form of steering commands to the aircraft 
guidance subsystem. The implemented decision logics are based 
on minimisation of the following cost function: 

J = w� ⋅ t�9éê − w8 ⋅ d�Ht) + xë®ã ⋅ SFC ∙ THt)ì	dt								H67)	
where, given TT as the time-to-threat and TM as the avoidance 
manoeuvre time, t�9éê is the time at which the safe avoidance 
condition is successfully attained, defined as: 

t�9éê = 	T� 	+ 	2	T9																																	(68)	
SFC	 wÏØe ∙ s{ is specific fuel consumption, THt) is thrust profile and 

the coefficients w�	, w·, w8 are the weights attributed to time, fuel 
and distance respectively. The term dm (t) corresponds to the 
minimum distance from the dynamic geo-fence, which is given 
by: 

díHt) = minëîHxHt) − x�éHt))� + HyHt) − y�éHt))� + HzHt) − z�éHt))�ì     (69) 

where x�é, y�é and z�é are the coordinates of the bounding 
surfaces of the dynamic geo-fence. Only the distances along x and 
z are considered for the wire obstacle, and the geo-fence is 
tangent to the obstacle avoidance volume computed according to 
the models provided in Section 7. This cost function is 
specifically designed for time-critical avoidance applications (i.e., 
closing-up obstacles with high relative velocities and/or 
accelerations). For a practical implementation, appropriate higher 
weightings are used for time and distance cost elements. Other 
cost elements with appropriate weightings can also be introduced 
as required. Depending on the relationship between the available 
time-to-collision and the computation time, pseudospectral 
optimisation and differential geometry optimisation methods may 
also be employed in less critical situations and the optimised 
avoidance trajectory data could be exchanged with the ground 
pilot and/or ground-based ATM systems for validation and 

execution. After computing the optimal avoidance trajectory up to 
a safe manoeuvring point, the SAA trajectory planning algorithm 
implements pseudospectral optimisation methods targeting 
minimum time and minimum fuel to re-join the original 
trajectory. 

9. Simulation case study 

Simulation case studies are performed in a realistic scenario to 
assess the LOWAS avoidance trajectory generation algorithms.  
The simulation scenario considers an UAV equipped with 
LOWAS flying towards a number of obstacles of different 
geometric characteristics as illustrated in Fig. 12. The  UAV is 
flying at an altitude z = 100 m Above Ground Level (AGL), at a 
relatively low speed (20 m/s) and approaching a power 
transmission line and a tower building (the power line is 
composed of several wires 10 mm in diameter). The altitude of 
the lowest wire is 90 m AGL and the altitude of the highest wire 
is 110 m AGL; the wires are separated by about 6.5 m vertically 
and 5 m laterally. The power lines lie approximately 65 m in front 
of the UAV. The original horizontal flight trajectory would lead 
to a collision with the power line. After a successful detection of 
all wires, the algorithm calculates the distances to each of them. 
As described in section 7, the algorithm recognises that the 
calculated distances are all comparable with the UAV size and 
therefore combines all wires in a single avoidance volume. As the 
obstacle is classified as ground-based obstacle of “wire” type, a 
dynamic geo-fence is also generated to ensure that even the extent 
of the wire beyond the LOWAS FOV is considered, so that no 
unsafe avoidance trajectory is generated.  In particular, as the 
length of the wire obstacles is assumed to exceed the LOWAS 
FOV, this geo-fence has unlimited width.  The building behind 
the transmission line is 155 m high, 50 m in length, 50 m in 
width, and located at 160 m in front of the UAV initial position. 
An additional avoidance volume is therefore computed for the 
building considered in the presented scenario, and a 
corresponding narrower (but taller) geo-fence is generated. After 
processing the information for all freshly detected obstacles, the 
trajectory avoidance algorithm calculates whether the original 
flight trajectory leads to a collision. When this condition occurs, a 
number of feasible avoidance trajectories are generated by the 
trajectory generation algorithm, among which the optimal flight 
path is selected. Based on the cost function presented in Section 
8.3, an optimal solution is obtained and the corresponding optimal 
avoidance trajectory is selected as depicted in Fig. 13. In this 
case, the only non-zero weight in the cost functional of Eq. (67) is 
the one associated to the integral distance, wd. 

 

Fig. 12.   Case study scenario. 
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Since wire targets are assumed to extend laterally, the trajectory 
characterised by the greater distance (and hence optimal in this 
case) in the one entailing a straight climb manoeuvre. The re-join 
trajectory is computed using pseudospectral optimisation 
techniques described in [29]. The UAV also avoids the extended 
target (building) by generating a smooth optimised trajectory 
from the safe manoeuvring point. These simulations were 

executed on a Windows 7 Professional workstation (64-bit OS) 
supported by an Intel Core i7-4510 CPU with clock speed 2.6 
GHz and 8.0 GB RAM. The execution time for uncertainty 
volume determination and avoidance trajectory optimisation 
algorithms was in the order of 1.4 sec. Such an implementation 
makes it possible to perform real-time separation maintenance 
and collision avoidance tasks.  

 

 
Fig. 13.   Results of the avoidance trajectory generation algorithm. 

 

10. Further developments 

Fig. 14 shows synthetic display formats being developed for low-
level flight applications (i.e., ground obstacles) [30]. In particular, 
Fig. 14-a depicts the Safety Line (SL), which connects the points 
of minimum pitch for safe obstacle avoidance at all azimuths. Fig. 
14-b exemplifies the representation of Wires and Poles (WP) 
shaped obstacles, whereas Fig. 14-c shows obstacles of All 
Obstacles (AO) including the ones with bulk geometry (trees). Fig 

14-d depicts the synthetic vision format integrating information 
from the LOWAS and from FLIR systems (Integrated 
LOWAS/FLS (ILF) format). 

Future research activities will address synthetic formats for aerial 
obstacles display and the integration of LOWAS with FLIR and 
Night Vision Imaging Systems (NVIS), to exploit the available 
synergies in terms of obstacle/threat detection, recognition and 
identification [2, 31]. As part of the SAA system development 
activities, suitable hardware components and data fusion 
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techniques for cooperative and non-cooperative UAS SAA tasks 
will be developed, allowing a safe and unrestricted integration of 
UAS into all classes of airspace [29]. The SAA system can be 
integrated into the avionics compartment of existing UAV                  
(Fig. 15) with a minimum impact on the payload capacity.  

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14.   Synthetic display formats: safety line (a), wires & poles (b), all 
obstacles (c) and integrated LOWAS/FLIR (d). 

 

Fig. 15.   SAA system integration in the avionics compartment of a small-
size UAV. 

It is expected that this SAA system will allow: 

• safely integrating UAS in all classes of airspace; 

• operation of multiple manned and unmanned aircraft in close 
proximity to each other; 

• the remote pilot and/or operator to supervise and supplement 
the execution of various SAA tasks; 

• seamless integration with the ATM system. 

Furthermore, the SAA system verification and validation schemes 
required to attain certification are being identified. Using suitable 
data link and signal processing technologies on the ground, a 
certified SAA capability will be a core element of future network-
centric ATM operations. The distinctive advantage that the 
presented SAA system offers towards certification is the 
capability of defining the safe-to-fly UAS envelope based on the 
available on board sensors or, alternatively, to identify the sensors 
required in order to achieve a certain predefined safe operational 
envelope for the UAS. 

https://www.researchgate.net/publication/304183469_CNSA_Capabilities_for_the_Integration_of_Unmanned_Aircraft_in_Controlled_Airspace?el=1_x_8&enrichId=rgreq-76eb3e10571a4921151b239ea844389d-XXX&enrichSource=Y292ZXJQYWdlOzMwMzY5MzA3NTtBUzozNzc4MDYxNzg1Mzc0NzJAMTQ2NzA4NzQyMDYyNg==


  

15 
 

This is the author pre-publication version. This paper does not include the changes arising from the revision, formatting and publishing process. 
The final paper that should be used for referencing is: 

S. Ramasamy, R. Sabatini, A. Gardi and J. Liu, “LIDAR Obstacle Warning and Avoidance System for Unmanned Aerial Vehicle Sense-and-
Avoid.” Aerospace Science and Technology (Elsevier), vol. 55, pages 344–358, 2016. DOI: 10.1016/j.ast.2016.05.020 

11. Conclusions 

The research activities performed to develop a novel Laser 
Obstacle Warning and Avoidance System (LOWAS) for 
unmanned aircraft were presented. The LOWAS system is 
proposed as one of the core non-cooperative sensors in an 
integrated Sense-and-Avoid (SAA) architecture for small-to-
medium size Unmanned Aerial Vehicle (UAV). The algorithms 
for computing the avoidance volumes associated with obstacles 
and for the generation of optimal avoidance trajectories were 
presented along with a representative simulation case study. 
Tailored display formats developed for the UAV remote pilot 
station were presented including Safety Line (SL), Wires & Poles 
(WP), All Obstacles (AO) and Integrated LOWAS/FLS (ILF) 
formats.  The demonstrated detection, warning and avoidance 
performances, determination of overall uncertainty volumes and 
avoidance trajectory generation algorithms ensure a safe 
avoidance of all potentially conflicting obstacles. The possible 
integration of LOWAS with other UAV tracking and 
navigation/guidance systems is currently being studied and future 
developments will focus on hardware/software development and 
flight test activities on small-size UAV. 
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