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Abstract 

 

The development of high-end and compact computers has resulted in a considerable rise in 

the power dissipation requirements of their microprocessors. At present, the waste heat 

release by the Central Processing Unit (CPU) of a desktop and server computer is 80 to 130 

W and a notebook computer is 25 to 50 W. New systems have already been built with thermal 

outputs as high as 200 W for desktops and around 70 W for laptops. At the same time, the 

heating areas of the chipsets have become as small as 1 to 4 cm
2
. This problem is further 

complicated by both the limited available space and the restriction to maintain the chip 

surface temperature below 100 ºC. It is expected that conventional two phase technologies 

like heat pipes and vapour chambers as well as current designs of single phase cooling 

systems will not be able to meet these future thermal needs of computer systems. With the 

intention of finding a solution to this problem, different thermal designs based on both two-

phase and single-phase heat transfer were developed and characterized for the thermal control 

of high density microprocessors. In the domain of two phase technology, two investigative 

prototypes of capillary driven passively operating loop heat pipes with characteristic thickness 

as small as 5 or 10 mm and capable of dissipating heat fluxes as high as 70 W/cm
2
 were 

designed and tested. These devices responded very well to the thermal needs of laptop 

microprocessors. The thermal characteristics of single phase cooling systems were enhanced 

with the purpose of handling concentrated heat fluxes as high as 400 W/cm
2
. This was made 

possible by developing heat sinks with innovative microstructures that include microchannels 

or sintered microporous media.  As an outcome of the present research work, it is concluded 

that two phase cooling units provide a highly reliable thermal solution for the cooling of 

laptop microprocessors with high heat fluxes and limited available space for accommodating 

thermal devices. However the thermal performance of the passive devices is limited at very 

high magnitudes of heat flux. Therefore cooling technology needs to be further explored for 

the effective management of future high powered electronic systems. Liquid cooling systems 

can handle extremely high heat fluxes very effectively but they are structurally complex and 

unreliable due to the requirement for an active component (like a pump) in the system that 

also requires power for its operation.   
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Chapter 1 

Introduction 

1.1 Background 

Thermal control is a generic need of electronic equipment. In general, heat is rejected by 

every electrical system due to the excitation of electrons, when current flows. If the quantity 

of waste heat given out by the system is small and the area for heat rejection is large enough, 

direct natural convection is sufficient to dissipate all of the generated heat to the surroundings 

without need for any other cooling system. For example, some electronic devices that we use 

in our daily life including digital players, televisions, camcorders, mobile phones and other 

handheld devices do not require any forced cooling for their thermal management. For other 

electronic devices like computers that consist of microprocessors with a large number of 

integrated circuits in small spaces, heat dissipation by natural convection is far from sufficient. 

For such devices, depending on the extent of the output waste heat and the active heat 

dissipation area, an appropriate thermal control device is needed.  

 

The main function of the cooling unit is to transfer heat from the source to the surroundings. 

Two important components of some heat transfer devices can be a heat spreading block and a 

heat rejection block (Sauciuc et al, 2005). In the heat spreading block, the heat from the 

miniature footprint of the heat source is spread to a larger area from where it can be dissipated 

to the surroundings with the help of the heat rejection block. Depending upon the processor 

heat load, different options for a heat spreader range from a simple metal heat sink to a 

complicated two phase vapour chamber. Heat transfer in two phase systems is accomplished 

on the basis of an evaporation-condensation cycle that is maintained at the expense of 

capillary pumping of the liquid from the sink to the hot source. It should be noted that in the 

cooling of microprocessors inside compact electronic devices like laptops, the waste heat has 

to be rejected at a location remote from where it is produced. This is necessary to prevent 

heating of the enclosed electronics around the microprocessor. For this purpose, the thermal 

device has to perform an additional function  
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of transfering heat from the source to a remotely located heat sink. In this situation, reliable 

two-phase heat transfer devices like heat pipes that can transport heat from the chipset to the 

distantly located heat sink with minimal temperature difference (Faghri, 1995) are used. The 

heat rejection block of the thermal control device involves heat removal by forced convection 

of ambient air using a fan. 

 

1.2 Thermal Control of Computer Microprocessors  

Heat pipes and vapor chambers have emerged as the most appropriate technology and cost 

effective thermal solution due to their excellent heat transfer capabilities, high efficiency and 

structural simplicity. Basically, the heat pipe and vapor chamber are two-phase heat transfer 

devices. They involve an evacuated and sealed container with a small quantity of working 

fluid. One end of the container is provided with waste heat from the chipset, causing the 

contained liquid to vaporize. The vapor flows to the cold end of the container where it 

condenses. Since the latent heat of evaporation is much larger than the sensible heat capacity 

of a fluid considerable quantities of heat can be transported using these devices with a very 

small end to end temperature difference.  A heat pipe behaves as a device of very high thermal 

conductance with the equivalent thermal conductivity of several hundred times than that of a 

solid copper device of the same outer dimensions.   

 

Different types of thermal solution that are being currently used for the cooling of the laptop 

and desktop computer microprocessors are discussed in the next section. It should be noted 

that the literature on thermal control systems for computers represents the thermal products of 

Fujikura Ltd. Japan and has been taken from publications (Mochizuki et al, 2005) made by the 

company.   

 

1.2.1 Laptop Thermal Control  

Depending on the internal configuration, available space, number and power dissipation 

capacity of the microprocessor chipsets inside the laptop, thermal designs (Mochizuki et al, 

2005) as shown in Figure 1.1 are commonly used. It is evident that to maximize the 

performance and push air cooling to the limit, the design needs multiple heat pipes or a vapor 

chamber with high density finning and multiple fans. 
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Some of the above thermal control systems are discussed below with the help of examples 

(Mochizuki et al, 2005):  

 

1.2.1.1 Hybrid System 

The hybrid system consisted of heat pipes, diecast plate, fins and fans as shown in Figure 1.2.  

In this case, heat pipes were used to spread heat on the aluminum die cast plate.  Aluminum 

fins were attached to the ends of the heat pipes by a soldering process. In order to dissipate 

heat from the fins, two radial fans were used to blow air directly through fins. In the example 

shown in Figure 1.2, three heat pipes were used for heat spreading purposes. The total thermal 

Cooling Solutions with vapor chamber 

Low Cooling 

Capacity 

High Cooling 

Capacity 

Heat pipe 

Die cast plate 

Heat pipe 

Heat Source 

Heat Exchanger 
Heat pipe 

Heat Source 

Heat Exchanger 

Heat Source 

Heat pipe 

Fan 

Multiple heat pipes / larger size heat pipes / 

higher fin areas / air cooling 

Sample with Multiple heat pipes 

to spread heat in all direction 

Vapour camber 

Vapour camber 

Figure 1.1 Trends in Thermal Solutions for Laptop PCs 
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resistance from the CPU case surface to the surroundings (commonly denoted by Rca) for this 

system was about 1.8 
o
C/W. The hybrid system was capable of dissipating heat load of up to 

26W while maintaining the CPU surface temperature below 100 
o
C. 

 

 

 

HEAT PIPE (3)

FAN(2)DIECAST PLATE

FIN(2)

280

40

 

 

 

 

 

 

1.2.1.2 Remote Heat Exchanger 

Basically, the remote heat exchanger consisted of heat pipe, fin and fan as shown in Figure 1.3.  

Here, the heat was removed from the CPU and transferred to the remote location by using heat 

pipes. In the example given in Figure 1.3, the fan size was approximately 45mm x 45mm and 

10mm thick with an estimated air flow rate of 0.15 m
3
/min.  The Rca for this design was 

approximately 1.1 
o
C/W with a cooling capacity of approximately 40W. 

 

 

 

 

Figure 1.2 Hybrid thermal control system for laptop microprocessors. 
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1.2.1.3 Vapour Chambers  

The principle of operation of a vapor chamber is similar to a heat pipe which is a two-phase 

heat transfer device.  A heat pipe is made from round pipe and after sealing the ends can be 

bent and flattened to the required shape.  The vapor chamber container can be made by 

stamping, cold forging, or machining processes so that the shape is fixed and it can not be 

bent or flattened.  Figure 1.4 shows photos of various vapor chamber shapes and sizes.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 Remote Heat Exchanger for cooling laptop microprocessors. 

Heat pipes 

Heat exchanger 

Radial Fan 

Heat source with 

fixing arrangement 

Figure 1.4 Different designs of vapour chamber used for laptop cooling  
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An example of a vapor chamber solution is shown in Figure 1.5.   The Rca of this system is 

approximately 0.6 
o
C/W.   It has been mentioned in the reference (Mochizuki et al, 2005) that 

the cooling solution with vapour chamber can dissipate approximately 60W. 

 

FIN HEAT EXCHANGER

FAN

VAPOR CHAMBER

130 mm
140 mm

 

 

 

1.2.2 Desktop Thermal Control  

Depending on the power dissipating potential of the microprocessor, different thermal 

solutions have also been developed for desktop computers. Figure 1.6 shows the types of the 

thermal solution that are currently used in desktop PCs. The desktop thermal designs are 

broadly categorized into five different types in order of the increasing air cooling potential. For 

the designs depicted in Figure 1.6, the dimensions of the cooling module are approximately 90 

mm x 90 mm x 65 mm height.  The acoustic level at the maximum specification in general is 

45 dB at 1m from the source.  Below is a description of the designs. 

Type 1: Normal extrusion heat sink with fin count of approximately 7 fins per inch, 1.2 mm fin 

thickness, pitch 3.5 mm and 30 mm fin height.  The Rca range for these heat sinks is 0.4-0.5 

o
C/W. 

Type 2: High aspect extrusion heat sink.  In this design extrusion had been pushed to the 

limiting capability.  Fin count approximately 10 fins per inch, 1 mm fin thickness, pitch 2.3 

mm and 30 mm fin height.  The aluminum base had a copper block soldered onto it in order to 

minimize the heat spreading resistance.  The Rca range for high aspect extrusion heat sinks is 

0.3-0.4 
o
C/W. 

Figure 1.5 Thermal control system with vapour chamber for laptop cooling  
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Type 3: In this type, the design changes from parallel fin extrusion to radial type extrusion.   

The heat sink core has an integrated copper core to improve heat conduction from base to fins.  

In general radial fins capture the air from the fan better than parallel plate fins, thus providing 

higher fin-air heat transfer coefficient and more efficient cooling.  The Rca is approximately 

0.3 – 0.35 
o
C/W. 

Type 4: In this type, high density stack fins are soldered to a metal base.  The fin thickness can 

be as low as 0.2 mm, and the fin gap less than 1mm.  The Rca is approximately 0.25 – 0.3 

o
C/W. 

Type 5: In order to further reduce Rca (less than 0.25 
o
C/W) for the same specification 

constraints, a heat sink base made from heat pipes or a vapor chamber have been considered to 

maximize the heat transfer from source to fins and thus to maximise cooling efficiency. 
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High aspect 

extrusion 
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with Cu 

embedded 
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Heat pipes / 
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Figure 1.6 Different Types of Thermal Solution for Desktop Computer Cooling 
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With the development of silicon technology, the number of circuits on microprocessors 

multiplies every year. This has resulted in very large scale integrated (VLSI) circuits with 

high heat flux capabilities. To cope with these increased heat fluxes, a parallel development 

must follow in the design of the thermal control devices. To this effect, liquid cooling based 

single phase heat transfer systems have been introduced to cool microprocessors with highly 

concentrated heat fluxes. Nonetheless, looking at the current power dissipating tends of 

microprocessors, it is anticipated that the current state of technology in two phase as well as 

single phase systems will not be able to meet the thermal needs of future electronic systems. 

In order to develop reliable thermal solutions for new generation computers, innovative 

designs of heat pipes with spatial separation of the liquid-vapour phases and localization of 

the wick structure, as discussed in the following chapter, have been developed. Also, an 

enhanced form of liquid cooling system with microstructural heat sink made from 

microchannels or sintered porous structures is being investigated worldwide by different 

researchers for thermal management of high order fluxes.  

 

Figure 1.7 presents the current and future expectation of thermal solutions for laptop and 

desktop PCs units on the basis of the required thermal resistance or thermal performance, Rca 

(case temperature of CPU to ambient air temperature) against the cost of the solution.  For the 

laptop PC, the current thermal solution of a heat pipe remote heat exchanger is able to deliver 

Rca performance of approximately 1.5 
o
C/W.  Further performance improvement is possible 

with the help of the vapor chamber solution.  For the next generation high powered laptops, a 

loop heat pipe solution must be considered. The estimated cost for a laptop PC solution 

including fan is in the range of 5-15 $US depending on the performance requirement.  For the 

desktop PC, the majority still use traditional solutions such as high aspect aluminum extrusion 

parallel or radial fin heat sinks, with aluminum or copper plate fins soldered to aluminum or 

copper metal bases.  However, as the performance requirement tightens, the trend is towards 

using heat pipes and vapor chambers to maximize the performance and to extend the air 

cooling capability to the limit. For a very high powered desktop microprocessor, a liquid 

cooling solution using microchannel/porous structure, thermoelectric coolers and vapour 

compression refrigeration must be considered.  
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The main objective of this research work is to investigate and develop different thermal 

designs, based on two-phase and single phase cooling that can be used in the thermal control 

of microprocessors for laptops and desktop computers. Detailed objectives and concept 

introduction have been given in the respective sections. The technologies used and the 

methodologies developed in this research work are the original work of the author and the 

research supervisors. The two phase thermal designs using miniature loop heat pipes are 

developed from fundamental knowledge of heat pipes and thermodynamics principles and 

represents original contributions of the author to thermal science. For the single-phase thermal 

designs, some experience and existing knowledge developed and used by Fujikura Ltd. Japan 

was deployed. It should be noted that the research technology developed in this project did 

not use any product that was developed from the public domain. The research project was 

financially as well as technically supported by the Thermal Technology Division of Fujikura 

Ltd. Japan.   

 

R
eq

u
ir

ed
 T

h
er

m
a

l 
R

es
is

ta
n

ce
: 

R
ca

,o
C

 /
W

 

 

Cost  $ 

Heat Pipe /Heat Sink  

1. 5 

Liquid cooling using 

microchannel or porous 

structure/ThermoElectric 

Cooler/Vapour Compression 

Refrigerator 

1. 0 

0. 5 

0 

Heat Pipe/Remote Heat 

Exchanger 

5$ 10$ 15$ 20$ 

Desktop PC 

Q=80 to 130W 

 

Laptop PC 

Q=25 to 50W 

 
Loop Heat Pipes & 

Capillary Pumped Loops 

Plated Fins Heat Sink 

Radial Fins Heat Sink 

Vapour Chamber 

/Heat Sink 

Vapour Chamber 

/Heat Sink 
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1.3 Thesis Outline 

Chapter 1: Introduction - This chapter gives a brief introduction to the thermal needs of 

electronic devices, particularly computers. Detailed description of the thermal control 

technologies for the laptop and desktop computers has been provided. Also, an outline of the 

thesis is given here.  

Chapter: 2 Introduction and Literature Review – This chapter is divided into two sections. 

In the first section, a critical review of two-phase cooling using loop heat pipes is presented. 

The section discusses briefly the background and physical concepts of loop heat pipes and the 

objectives of the present research work on loop heat pipes for laptop cooling. The differences 

between the two types of loop system: Capillary Pumped Loop (CPL) and Loop Heat Pipe 

(LHP) are brought forward. A detailed survey is provided of the available literature on loop 

heat pipes, in particular the miniature Loop Heat Pipe (mLHP) which is the main focus of the 

current research. Based on the literature survey, in this research program two prototypes of 

miniature loop heat pipes were developed for the thermal control of laptop microprocessors. 

In the second section, single phase liquid cooing using microchannel and microporous heat 

sink are discussed. The section gives the scope and objectives of the research work on single 

phase liquid cooling for thermal control of desktop computers. A detailed literature survey has 

been done on the cooling capabilities of microchannel heat sinks and sintered porous heat 

sinks. Different designs of these heat sinks which have been developed and tested by 

researchers worldwide are briefly summarised. Based on the present literature survey, the 

potential of liquid cooling systems with a microchannel heat sink or a sintered porous heat 

sink for the thermal control of the desktop microprocessors with very high heat dissipation 

tendency was explored. 

Chapter 3: Theoretical Modelling of a Loop Heat Pipe – This chapter discusses the theory 

of LHPs and a mathematical model is proposed for prediction of the loop operating 

temperature from a given set of input parameters. The main operating characteristics that are 

used to determine the loop thermal performance are also defined. 

Chapter 4: mLHP with a Disk Shaped Evaporator: Experimental Apparatus and 

Method – The chapter presents the constructional details and procedure for testing the mLHP 

with a flat disk shaped evaporator of 30 mm diameter and 10 mm thickness. As two phase 
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systems are very vulnerable to Non Condensable Gas (NCG) formation, cleaning and 

charging procedures are specifically explained in this chapter.  

Chapter 5: mLHP with a Disk Shaped Evaporator: Results and Discussion - Thermal 

characteristics of a mLHP with regard to the startup behaviour and steady state operation of 

the loop system are explained. In addition to this, the effect of the fluid inventory, positive 

inclination (evaporator above condenser), heating mode (uniform heating, non-uniform 

heating), wick characteristics and non condensable gases on the thermal performance of the 

loop have been studied. Different approaches to detection and flushing of NCG from the 

mLHP have been proposed and successfully tested.  

Chapter 6: mLHP with a Rectangular Evaporator – In this chapter, the design and results 

of testing on a mLHP with a flat rectangular evaporator of only 5 mm thickness are explained. 

Thermal performance of the mLHP was studied with respect to the start up process and steady 

state operation. In the final section, comparison of the rectangular evaporator mLHP is made 

to the previously discussed disk shaped evaporator mLHP. 

Chapter 7: Liquid Cooling using a Microchannel Heat Sink – The chapter discusses the 

single phase liquid cooled microchannel heat sink for cooling microprocessors with extremely 

high heat fluxes. Complete description of the prototype and experimental setup is given. 

Different correlations based on various entry length conditions are discussed for the 

predictions of heat transfer inside the microchannels. Finally, results of the experiments are 

discussed and comparison is made with predictions made on the basis of the heat transfer 

correlations. 

Chapter 8: Liquid Cooling using a Sintered Porous Heat Sink – In this chapter, 

experimental investigation is described of a liquid cooled sintered porous heat sink for 

handling heat fluxes given out by high powered desktop microprocessors. A description of the 

prototype, experimental setup and testing method is given. The thermal performance of the 

sintered porous heat sink was assessed at different water flow rates and thermal load inputs. 

Finally, comparison is made between the microchannel heat sink and the sintered porous heat 

sink.  

Chapter 9: Comparative Study: Two-Phase Vs Liquid Cooling – In this chapter, a 

comparative study has been carried out for two-phase and single phase cooling systems. Two 

prototypes; one with a heat pipe module and the second with microchannel based liquid 
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cooling were developed to carry out the investigation. Detailed description of both cooling 

units is provided. The thermal performance of each cooling unit was assessed and compared 

on the basis of a single heat source as well as multiple heat sources.    

Chapter 10: Conclusions – Conclusions drawn from the complete research work are 

presented in this chapter. 

 

1.4 List of Publications 

The outcomes of the research work have been presented internationally in the form of the 

following publications: 

o Singh, R, Akbarzadeh, A, Dixon, C, Mochizuki, M, ‘Novel Design of a Miniature Loop 

Heat Pipe Evaporator for Electronic Cooling’, ASME Journal of Heat Transfer (Under 

Review) 

o Singh, R, Akbarzadeh, A, Dixon, C, Mochizuki, M, Riehl, RR, ‘Miniature Loop Heat Pipe 

with Flat Evaporator for Cooling Computer CPUs’, IEEE Transactions on Components 

and Packaging Technologies (Accepted for Publication). 

o Singh, R, Akbarzadeh, A, Dixon, C, Mochizuki, M, ‘Thermal Characteristics of the 

Miniature Loop Heat Pipe with Water as the Working Fluid’, Proceedings of 8
th

 

International Heat Pipe Symposium, September 24-27, 2006, Kumamoto, Japan. 

o Singh, R, Akbarzadeh, A, Mochizuki, M, Nguyen, T, Kiyooka, F, Wuttijumnong, V, 

‘Thermal Performance of Miniature LHP Operating Under Different Heating Modes’, 

ASME, Proceedings of ITherm2006, May 30 – June 2, San Diego, California, USA. 

o Singh, R, Akbarzadeh, A, Mochizuki, M, Nguyen, T, Wuttijumnong, V, ‘Experimental 

Investigation of the Miniature Loop Heat Pipe with Flat Evaporator’, Proceedings of 

IPACK 2005, July 17-22, San Francisco, California, USA. 

o Singh, R, Akbarzadeh, A, Mochizuki, M, Nguyen, T, Wuttijumnong, V, Kao, B, 

Takaneka, E, Saito, Y, Sataphan, T, ‘Flat Miniature Heat Pipe with Composite Wick 

Structure For Cooling Mobile Handheld Devices’, Proceedings of IPACK 2005, July 17-

22, San Francisco, California, USA. 

o Singh, R, Akbarzadeh, A, Mochizuki, M, ‘Capillary Pumped Loops: An Overview’, 

Proceedings of the 1
st
 International. Seminar on Heat Pipes and Heat Recovery Systems, 

December 8-9, 2004, Kuala Lumpur, Malaysia. 
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Pumped Loop (CPL)’, Proceedings of 1st International Forum on Heat Transfer, 
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Chapter 2 

Introduction and Literature Review 

 

The chapter has been divided into two sections: two phase cooling systems using loop heat 

pipes that were developed for laptop cooling applications and single phase cooling systems 

using liquid cooling that were developed for desktop cooling applications. In the first section, 

a detailed literature survey on Loop Heat Pipes (LHPs) is presented. A brief history and the 

physical concept of the loop scheme are explained. Different architectures based on the loop 

principle namely Capillary Pumped Loops (CPLs) and Loop heat Pipes (LHPs) are compared. 

In the main body of the section, the development of the loop heat pipe and different design 

embodiments are discussed in detail. Thorough investigation of the definition, design and 

development of miniature loop heat pipes has been done which is the main focus of the 

current research. In conclusion, the scope and objectives of this research work on two phase 

systems are summarized. 

 

In the second section, a detailed literature review is presented on single phase liquid cooling 

systems using microchannel and microporous structures. With increase in processing speed 

and miniaturisation of electronic packages, the need for reliable thermal design for cooling 

high-end electronic equipment like desktops and servers is increasing.  Performance of liquid 

cooling systems can be readily enhanced using different forms of microstructures like 

microchannels and sintered microporous media. Initially, the need for the present research 

work is discussed. After this, the scope and objectives of this work on single phase liquid 

cooling are presented. In the main body of the section, a detailed literature survey has been 

carried out for the cooling capabilities of microchannel heat sinks and sintered porous heat 

sinks. Different designs of these heat sinks, which have been developed and tested by 

researchers worldwide, are also briefly summarised.  
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2.1 Two phase cooling systems using Loop Heat Pipes: Introduction 

Loop Heat Pipes (LHPs) are two-phase heat transfer devices that depend on the capillary 

forces developed in a fine pore wick to circulate the working fluid in the closed loop. LHPs 

possess all the advantages of conventional heat pipes and additionally, provide reliable 

operation over long distance at any orientation in the gravity field. These devices can be 

considered as one of the most promising thermal control technologies for ground based, as 

well as space, applications. Different designs of LHPs ranging from powerful large size LHPs 

to miniature LHPs have been developed and successfully employed in a wide range of 

applications.  

 

2.2 Background 

Heat pipes are excellent heat transfer devices but their applications are mainly confined to 

transfering relatively small heat loads over relatively short distances with the evaporator and 

condenser at similar horizontal levels. These limitations on the part of the heat pipe are 

mainly related to the major pressure losses associated with liquid flow through the porous 

wick structure, present along the entire length of the heat pipe, and viscous interaction 

between the vapour and liquid phases, also called entrainment losses (Faghri, 1995).  
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For applications involving transfer of large heat loads over long distances, the thermal 

performance of heat pipes is badly affected by increase in these losses. For the same reason 

conventional heat pipes are very sensitive to the change in orientation in gravitational field. 

For the unfavourable slopes in evaporator-above-condenser configurations, the gravitational 

pressure losses add to the total pressure losses and further affect the efficiency of the heat 

transfer process. Figure 2.1 shows the schematics and different mode of operation of the 

conventional capillary driven heat pipe.  

 

 

 

 

 

 

 

 

 

 

 

As a result of these limitations, different solutions involving structural modification of the 

conventional heat pipe have been proposed. Some of these modified versions of heat pipes 

incorporated an arterial tube with very low hydraulic resistance to the return of the liquid to 

the heat supply zone e.g. arterial heat pipes (Roukis et al, 1975) (Figure 2.2) while others 

provided spatial separation of the vapour and liquid phases of a working fluid at the 

transportation section e.g. separated lines heat pipes (Shlosinger, 1970) (Figure 2.3).  
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Although these heat pipes were able to increase heat transport length and transferred 

significant heat flows they remained very sensitive to orientation in the gravity field. To 

extend functional possibilities of two-phase systems for applications involving otherwise 

inoperable slopes in the gravity field, the advantages provided by the spatial separation of the 

transportation line and usage of a non-capillary artery were combined in the loop scheme 

(Maydanik & Fershtater, 1997) as shown in Figure 2.4. As a result, the loop scheme makes it 

possible to develop heat pipes with higher heat transfer characteristics while maintaining 

normal operation at any orientation in the mass force field. The loop principle forms the basis 

of the physical concept of the Two-Phase Loops (TPLs). 

 

 

 

 

 

 

 

 

 

 

 

2.3 Two-Phase Loops 

Two-phase loops such as Loop Heat Pipes (LHPs) and Capillary Pumped Loops (CPLs) are 

highly efficient heat transfer devices developed on the basis of a capillary driven loop scheme. 

LHPs and CPLs utilize capillary pressure developed by the fine pore wick to circulate the 

working fluid, and latent heat of vaporization and condensation of the working fluid to 

acquire and transport heat loads. Historically, LHPs and CPLs were developed independently 

of each other for different spheres of application. CPLs were created in the USA by Stenger 

(1966) in the late sixties for application in space technology, mainly as a complex and 

powerful thermal control system (TCS). Independent of this, LHPs appeared in the early 

seventies in the USSR as an attempt to create a heat pipe capable of operating at any 

orientation in the gravity field.  
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Baseline schematics of a LHP and a CPL are provided in Figures 2.5 and 2.6. A typical loop 

system consists of a capillary evaporator or (heat acquisition section), condenser (heat 

dissipation section), liquid and vapour lines (heat transportation section), and a two-phase 

reservoir (fluid accumulator).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The primary difference between a LHP and a CPL is the different location of the reservoir, 

and this provides them with their unique operating characteristics. CPLs are provided with a 

remotely located reservoir connected to the liquid line whilst a LHP reservoir, also called a 

Figure 2.6 Capillary Pumped Loop (CPL) 
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compensation chamber, is thermally and hydraulically combined with the evaporator in one 

body. The co-location of the reservoir with the evaporator provides the LHP with additional 

functional features over a CPL including robust startup of the device without need of active 

control such as a starter pump or a pre-heater on the reservoir. The LHP also has low 

sensitivity of the device to non-condensable gases (NCGs). Another important difference 

between the LHP and CPL is that the LHP is more reliable and hence a preferable system for 

space as well as ground based application when a single evaporator and single condenser are 

required (Maydanik, 1999). The CPL, on the other hand, is more reliable in a microgravity 

condition when a complex system with multiple evaporators/condensers, also called a 

ramified system, is required. However investigations towards the development of ramified 

LHPs have been made and great advances on this technology have been achieved, resulting in 

a promising option for future applications (Ku and Birur, 2001) where the CPL is more 

indicated.  

 

The CPL is structurally more complex than the LHP but via active temperature control of the 

reservoir can provides an effective control over the whole system operating temperature even 

with changing input heat to the evaporator. However, the issues relating to startup in CPLs are 

still a concern and an important consideration during their operation. 

 

2.4 Loop Heat Pipe: Physical Concept 

A basic LHP schematic is shown in Figure 2.7. The typical LHP consist of a capillary 

evaporator, vapour line, condenser, liquid line and compensation chamber (fluid reservoir). 

Generally, the evaporator consists of a metallic cylindrical tube with vapour removal grooves 

on the internal surface of the tube and a force fitted capillary structure. In principle, the 

capillary structure of a LHP is localized in the heat supply zone. Here, the capillary wick is 

provided over the evaporator active zone. On one hand, this approach helps to minimize the 

length of the liquid flow path through the porous structure while on the other hand, it enables 

the use of fine pore wicks with high capillary pressure to enable the operation of the device at 

adverse tilt angles. The internal surface of the capillary wick is the absorbing one while the 

external surface serves as the evaporating surface. The evaporation zone is formed by the 

distributed system of vapour removal channels at the wick-wall interface.  
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Contrary to conventional heat pipes in which heat is acquired through the liquid layer, 

effective heat exchange is organized in the evaporator of a loop heat pipe by the principle of 

an inverted meniscus (Chernysheva et al, 1999) and segmented wick contact with the wall as 

shown in Figure 2.8. In this case, the evaporating surfaces of menisci are close to the heated 

wall via the contact between the wick and wall therefore a low value of thermal resistance is 

achievable in the evaporation zone.  
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In LHPs, separated liquid-vapour lines made from wickless smooth tubes are used for the 

transportation section thereby eliminating the thermal and viscous interaction between the 

counter flow of liquid and vapour.  The absence of wicks inside the transport lines make then 

easy to bend and thus provide mechanical flexibility and adaptability to the system. A special 

requirement for realization of the LHP concept is provision for reliable liquid supply to the 

wick structure before startup as well as during normal working. The reason is that liquid 

return to the evaporator must occur along a non-capillary liquid line. In case of any boiling in 

the liquid line the capillary action will be locked which in turn may ultimately result in 

evaporator deprime or increase in the operating temperature. This can be avoided by taking 

special measures to subcool the liquid in the condenser before feeding it to the evaporator. To 

achieve this, the LHP condenser is designed in such a way that part of it serves to condense 

vapour (active condenser) while the rest provides subcooling to the condensate (inactive 

condenser). 

 

Another important outcome of the loop principle is the inclusion of the hydroaccumulator 

(fluid reservoir) with the evaporator. Unlike heat pipes, where liquid is mostly bound inside 

the wick structure, in LHPs a considerable amount of liquid inside the loop is in an unbound 

state. This liquid is used to fill the condenser, liquid line and wick core. As the heat load or 

heat sink conditions changes, the liquid vapour meniscus inside the active condenser zone 

moves. The LHP hydroaccumulator is co-located with the evaporator as an integral part of it 

and accepts extra liquid pushed out from the condenser and serves as a liquid source for the 

condenser when the latter needs to decrease the condensation surface. In the same way during 

startup, the hydroaccumulator plays an important role and compensates for extra liquid 

released from the evaporator grooves, vapour line and part of the condenser surface. The 

hydroaccumulator also guarantees wetted capillary structure at all the times. When the LHP 

operates at its maximum designed heat load, the hydroaccumulator should be able to hold the 

displaced liquid from the evaporator vapour grooves, vapour line and condenser. Therefore, 

this is one of the most important design parameters for LHPs (Ku, 1999) 

 

It should be noted that satisfaction of the physical concept requirements is the necessary 

condition to provide normal operation of a LHP. 
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2.5 Problem Description 

A solution was needed for the thermal control of laptop microprocessors with heat dissipating 

capacities of up to 70 W and heat transport distances (i.e. distance between the heat source 

and heat sink) of up to 150 mm (Figure 2.9a). The maximum dimensions of the heat 

dissipation device (or condenser) and heat acquisition device (or evaporator) were fixed by 

the available cooling space and design constraints.  

 

The basis for condenser cooling was forced convection using a centrifugal fan with specific 

flow characteristics. Due to the compactness of portable computers, the thickness of the 

cooling device is the critical dimension and should not exceed 10 mm (Figure 2.9b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2.6 Research Scope 

Cooling systems for electronic and computer equipment require compact and efficient heat 

transfer devices. The scope of the present research work is to investigate a miniature loop heat 

pipe with a flat disk shaped evaporator for the thermal management of the high heat flux 

Figure 2.9 Available cooling space inside the laptop computer 
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chipsets in portable and personal computers. Miniature loop heat pipes with flat evaporators 

can be made very compact and thin and can easily be integrated into the electronic equipment 

to be cooled. Until now, most mLHP prototypes have been focused on the thermal control of 

space related equipment with power saturated chipsets. Under such circumstances, low 

temperature working fluids like ammonia and durable materials like stainless steel for the 

loop container are the best options. For terrestrial applications such as computer equipment, 

certain safety measures must be observed that restrict the use of high pressure, toxic or 

inflammable working fluids like ammonia, acetone or different grades of alcohol. Water can 

be considered as one of the preferred choice for such applications. Copper and water are 

compatible and affordable and are also widely used in conventional heat pipes. Copper-water 

mLHPs can serve as potential replacements for conventional heat pipes with least alteration to 

the manufacturing materials. 

The main advantages of the mLHPs that have attracted their interest for computer cooling can 

be listed as follow: 

 A mLHP has very reliable temperature control for a range of heat loads. This capability is 

determined by the size of the compensation chamber, evaporator structure and container 

material.  

 These devices are able to maintain good performance at high heat fluxes and with long 

distance heat transfer because of separate and smooth walled liquid and vapour lines and 

therefore having low pressure losses. 

 As the wick structure is present only in the evaporator, the vapour and liquid lines can be 

bent to fit the mLHP architecture into the available space.  

 mLHPs have the ability to collect and dissipate heat from multiple heat sources to 

multiple heat sinks. 

These advantages can support the proposition that LHPs can replace the current state of 

technology of conventional heat pipes in electronics cooling.  

 

2.7 Research Objectives 

The main objectives of the research work are as follow: 

o To design & develop a mLHP prototype with a flat shaped evaporator of thickness in the 

range of 5 to10 mm. 
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o To improve understanding of the physical concepts and operating principle of the loop 

scheme. 

o To determine the thermal performance of the mLHP: 

 Using a wick structure made of copper and nickel with different physical 

properties ( pore size, porosity and permeability) 

 Using heating areas of different sizes such as 10 x10 mm
2
, 25 x 25 mm

2
 

o To study the start up phenomena and steady state operation in detail 

o To study the effect of change in working fluid inventory, elevation/tilt etc on the overall 

performance of the mLHP. 

o To conduct detailed study and devise methods to detect Non Condensable Gases (NCG) in 

the mLHP system, methods to purge NCG from the loop and means to avoid the 

production of NCG in the proposed systems. 

 

2.8 Literature Review on Loop Heat Pipes (LHPs) 

2.8.1 LHP Background 

Originally known as Antigravitational Heat Pipe (AGHP), the Loop Heat Pipe (LHP) is a 

versatile and robust heat transfer device that has considerably extended the functional 

possibilities and sphere of application of two-phase systems based on the capillary pumping 

mechanism. The first LHP was created and tested by the Russian Scientists Gerasimov and 

Maydanik from the Ural Polytechnical Institute in 1972 (Maydanik, 2005). It was able to 

transfer a 1 kW heat load over a distance of 1.2 m, using water as the working fluid and 

successfully established the viability of the loop principle. The prime objective in developing 

this model was to design a passive operating anti-gravitational heat transfer system for 

aerospace applications. Later in 1986, the Institute of Thermal Physics (ITP) in Russia 

initiated further development of LHPs for space applications. These devices got international 

attention when they were demonstrated at the 8
th

 International Heat Pipe Conference (IHPC) 

in Minsk, Russia in 1990. At present, LHPs with different architectures and performance 

capabilities are widely used in space applications. Various aspects of the loop heat pipe have 

been studied and investigated by organizations and researchers worldwide. Research has been 

done widely to further expand the application regime of the LHPs by proposing new designs 

and enhancing the thermal performance of the LHP components.  
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2.8.2 LHP Evaporator  

The evaporator is the most critical and main structural element of the loop heat pipe. Within 

the framework of the evaporator, there is considerable scope to increase the limiting density 

of heat load and to intensify the heat exchange process. This can be achieved by optimizing 

the structure topology and geometric parameters of vapour escape channels as well as the 

structural and thermal characteristics of the wick. Here, the main aim is to reduce the thermal 

resistance of the heat exchange process in the evaporation zone.  

 

2.8.2.1 Vapour Removal Channel 

It is important to have a system of vapour removal channels that will provide a stable, well-

developed evaporation surface in the vicinity of the heating wall. In a typical design of a LHP 

evaporator, the vapour removal channels are present either on the internal wall of the 

evaporator metallic case or on the external surface of the capillary structure. This approach 

helps in very efficient removal of the vapour from the evaporation zone. Another approach is 

the two step system (North et al, 1997) of vapour removal with azimuthal grooves (in the 

form of fine spiral thread) made on the wall of the evaporator body (first step) and 

longitudinal channels situated on the external surface of the wick (second step). This system 

has been developed to enhance the vapour removal process in order to handle very high heat 

fluxes.  

 

2.8.2.2 Capillary Structure 

Further enhancement of the capillary evaporator can be made by optimizing the wick 

characteristics. The main function of the capillary structure is to pump the working fluid 

around the loop. The LHP concept with its short liquid path through the wick enables the use 

of capillary structure with very fine pore size that provide high capillary pressure, a 

considerable part of which can be used to promote operation against gravity. Apart from the 

capillary pump, the wick structure acts as a thermal as well as a hydraulic block between the 

evaporator and compensation chamber. Vapour block is provided by the presence of the liquid 

in the fine pores of the capillary structure. Unlike in conventional heat pipes, the wick 

structure used in the LHP should not have excessive thermal conductivity to avoid back 

conduction to the liquid present in the evaporator core and compensation chamber. It should 
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be noted that there is a need for compromise here between this problem and the desire for 

good wick conductivity at the evaporating zone. Also, the wick material should be wettable 

by the working fluid and cheap to fabricate. 

 

The capillary structure can be made from plastic or metal. Plastic wicks are generally made 

from polyethylene, polypropylene or Teflon material. These plastic wicks, made from 

thermoplastic polymeric powder by a sintering process, present very low thermal conductivity 

and can be customized to obtain pore size and porosity over a wide range. Boo & Chung 

(2004) demonstrated successful operation of an LHP with a polypropylene wick of 0.5 μm to 

25 μm average pore size. Kobayashi et al. (2003) fabricated and tested a LHP using R134a as 

working fluid and Teflon as a wick material that transported 135 W in a horizontal 

orientation. In their study of a loop heat pipe, Riehl & Dutra (2005) made use of a 

polyethylene wick with average pore size of 7 μm and acetone as working fluid.  

 

Plastic wicks provide very low thermal conductivity that is essential for the desirable 

operation of a LHP but there exists a limit on the maximum value of the porosity of these 

wicks. In most cases, the porosity (which is defined as the ratio of the porous volume to the 

total volume of the wick structure) of these wicks is generally less than 50% which imposes a 

limit on the maximum heat transfer capacity of the LHPs. A comprehensive study done by the 

author (Singh, 2004) on the determination of the physical properties of polyethylene wicks 

shows that such wicks generally exhibit porosity value of less than 38% for a pore size in the 

range 8 μm – 20 μm. Also, the permeability (which is defined as the flow rate of the fluid 

through the wick of known dimensions under a given constant pressure head) of plastic wicks 

is quite low, of the order 10
-14

 m
2
. Plastic wicks are also limited by the maximum allowed 

operation temperature. For example, a maximum permissible temperature for polyethylene is 

120 °C and for Teflon is 250 °C. 

 

Compared with the abovementioned wick structures, sintered metal wicks can be easily 

obtained with an effective pore radius as small as 2 μm and a porosity of 55 – 75 %. Nickel 

can be considered to be one of the most acceptable wick materials for loop heat pipes. 

Reimbrecht et al (1999) in their work on sintered nickel wicks presented the procedure for the 
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production and characterization of the wick. In order to characterize porous wicks, they 

studied the influence of sintering time, temperature and powder size on the porosity, 

mechanical strength and roundness of the wick. As part of their work, pore sizes in the range 

of 2 to 24 μm and porosity up to 50% were investigated. Li and Xuan (2003) conducted a 

similar study and developed a slip casting technique and hydrogen deoxidized sintering 

method to prepare nickel wicks for loop heat transfer systems. Following the developed 

procedure, it was possible to obtain sintered wicks with porosity greater than 68%, mean pore 

size about 4 μm and permeability in the range of 10
-12

 to 10
-13

 m
2
. The samples also showed 

high mechanical strength and low distortion.  

 

Nickel wicks are invariably used in most LHPs (Maydanik, 2004) due to their low thermal 

conductivity and ability to be formed in fine pore sizes with high porosity as discussed above. 

Titanium is another frequently used wick material with desirable properties as a capillary 

structure. Stainless steel, due to its low thermal conductivity and good chemical compatibility 

with working fluids like ammonia and acetone, is also used as a wick material. Copper wicks 

have also been used successfully as capillary pumps in LHPs. However at high heat fluxes the 

high conductivity of copper can cause back conduction problems in transmitting heat through 

the wick to the liquid in the compensation chamber. The wick structures as discussed above 

show quite efficient performance and are mostly used as monoporous wicks i.e. their pore size 

distribution is similar to the Poisson distribution and characterized by average pore size. To 

improve the performance of the evaporator at very high heat flux, a porous medium with two 

characteristic capillary pore radii known as biporous capillary structure has been proposed 

(Wang & Catton 2004). Maydanik et al (1997) utilized the concept of bidisperse wicks and 

organized an efficient three step vapour removal channel system. 

 

2.8.3 Compensation Chamber 

As discussed previously, the compensation chamber is very important structural element of 

the LHP which is linked to the evaporator and helps to compensate for the change in the 

liquid charge during start-up and for varying heat loads. The generic location of the 

compensation chamber provides LHPs with their robust start up behavior and temperature 

control capability (so called auto regulation or self regulation) under fluctuating power input. 
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As the compensation chamber is connected to the capillary evaporator, special consideration 

should be given to its design to promote desirable device operation. Different variants of 

typical arrangement of the compensation chamber as an integral part of the evaporator have 

been designed and tested. These include prototypes with the compensation chamber detached 

from the capillary evaporator body (Mulholland et al, 1999) and dual compensation chambers 

on either side of the capillary evaporator with their diameters greater than or equal to that of 

the evaporator (Gerhart & Gluck, 1999). As a result of comparison between the configuration 

with the compensation chamber being an integral part and that detached from the capillary 

evaporator, it has been shown that compensation chamber geometry can affect the LHP 

thermal performance and operating temperature (Riehl, 2004). The geometry of the 

compensation chamber is decided by number of factors that include available space, 

permissible evaporator temperature, available heat fluxes and internal volume of the LHP.  

 

LHPs can self-regulate the operating temperature of the evaporator within certain regimes 

without use of any active control device. The range of heat loads in which this property of 

LHPs manifests itself depends upon the dimensions of the compensation chamber and 

condenser, and on the intensity of cooling of the latter. Larger condensers have a wider range 

of self-control. However, this self-regulation range is largely limited by the LHP operating 

temperature and condenser temperature.  LHPs also allow active control of the evaporator 

temperature with the help of the controllable thermal action of the compensation chamber. 

Such a thermal action may be positive (heating) or negative (cooling), and its value does not 

usually exceed 5-10% of the heat load transferred by the LHP.  

 

2.8.4 Condenser 

Condensation in a loop heat pipe takes place on the smooth internal surface and is of film 

character. Depending upon the heat removal conditions, condensers of different design and 

shape can be incorporated in LHPs. Figure 2.10 shows the main types of condenser used 

currently for LHPs. The condenser with external fins as shown in Figure 2.10a is the simplest 

design and may be used for LHPs with low heat capacities. This type of condenser is best 

suited for compact electronics and is generally used with forced convection. Figure 2.10b 

shows another variant of condenser based on a concentric tube type of heat exchanger which 
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uses forced convection of a liquid or gas flowing through the annular space to effect heat 

transfer.  

 

The collector type condenser as in Figure 2.10c consists of well developed internal as well as 

external surfaces and is commonly used for powerful LHPs with high heat capacities. It is 

best suited for the mode of cooling using forced convection. A coil on plate type condenser 

(Figure 2.10d) is best suited for applications where large surface area is available for heat 

rejection or the primary mode of heat exchange is radiation, for example in space cooling 

applications. It consists of tubular coil that is soldered or fastened to a flat plate of relatively 

large size with or without fins. This is the most versatile version of the LHP condenser where 

cooling can be done in number of ways including natural and/or forced convection and with 

radiation heat exchange or heat rejection to a thermal mass or cold plate.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Fin-and-Tube Type Condenser 

(d) Coil and Plate Type Condenser (c) Collector Type Condenser 

(b) Concentric Tube Type Condenser 

Figure 2.10 Different variants of LHP condenser 
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The LHP principle makes it possible to create heat transfer devices with different numbers of 

evaporators and condensers (Ku and Birur, 2001) (so called ramified system) situated in 

different ways with respect to each other. These ramified LHPs can be considered for thermal 

management of large contact surfaces, scattered heat sources or in cases where there are 

several heat sinks removed from one another. Also, in contrast to the traditional structure of a 

LHP that acts as a thermal diode and allows only for heat flow in the direction from 

evaporator to condenser, there is possibility of developing special reversible loop heat pipes 

(Sudakov et al, 2002) that can allow heat flow in either direction.  

 

LHPs have also been investigated at a miniature scale as a potential substitute for less 

efficient conventional heat pipes in cooling power saturated electronic equipment. Research 

and development of miniature LHPs have been discussed in detail later in this chapter keeping 

in view the present research which is mainly focused on exploring the potential of miniature 

loop heat pipes for electronic cooling. 

 

2.8.5 Working Fluid 

The first consideration in the selection of the working fluid is the operating vapour 

temperature range. Water is mostly used for high temperature application unlike ammonia and 

acetone, which are favorable for low temperature applications. Ammonia (Maydanik & 

Pastukhov, 1999, Dickey & Peterson, 1994) and Acetone (Bazzo & Riehl, 2003) have been 

investigated by a number of researchers and meet most of the heat transport requirements. 

They are desirable fluids in the temperature range of 270-350 K.  Ammonia is very costly to 

obtain in a highly pure state and requires careful handling to retain high purity. Also, due to 

its toxic nature and high pressure it is not the most indicated working fluid in terrestrial 

applications, instead it is extensively used in space applications. Acetone, although inferior in 

performance to ammonia, is also a preferred working fluid in LHPs and can be obtained in 

high-grade assay at relatively low cost. Also, acetone can operate in the same temperature 

range as ammonia, with a great advantage related to its freezing temperature, which is –

93.15 °C while ammonia freezes at –78 °C (Dunn and Reay, 1994). This is an important 

parameter to be considered because in space applications, the LHP must be designed to 

provide reliable start-up at frozen states.  
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Water is superior for operation (Dunn and Reay, 1994) in the temperature range of 350-500 K 

where the alternative organic fluids tend to have low merit numbers. Merit number M is a 

means of ranking heat pipe working fluid. Fluids with higher merit number are more desirable. 

The Merit Number is defined as the ratio of the product of liquid density ρl, liquid surface 

tension σl, and latent heat hlv to the liquid viscosity μl.  

i.e. 
l

ll L
M




                     (2.1)

    

High surface tension, high latent heat and availability in abundance are some of the incentives 

for using water. But due to low vapour density and low vapour pressure of water at typical 

operating temperatures, high vapour velocities are encountered which tend to increase the 

vapour pressure losses in the vapour line and evaporator grooves.  

 

Other heat transfer fluid like toluene (Baumann & Rawal, 2001), Ethanol, Methanol (Boo & 

Chung, 2004), Propylene (Gherlone, 1995), Nitrogen (Baumann et al, 1998) are also 

acceptable working fluids for loop heat pipes depending on the application, temperature, heat 

flux and heat transport distance involved during operation.  

 

2.8.6 Material Compatibility 

The wick and container material used in the loop system should be compatible with the 

working fluid at low as well as high temperatures. Copper is compatible with most of the 

working fluids except ammonia. Due to its high thermal conductivity, copper can only be 

used as wick material in LHP if subcooling of the working fluid is provided to counteract the 

effect of back conduction. Water shows excellent results with copper but presents 

compatibility issues with most of the other container and wick materials commonly used in 

capillary pumped loops (CPL) and loop heat pipes (LHP). Nickel (Riehl and Dutra, 2005), 

Titanium (Pastukhov et al, 1999) and stainless steel (Khrustalev and Semenov, 2003) are 

widely used as wick materials with ammonia and acetone. Stainless steel produces Non 

Condensable Gases (NCG) with water at elevated temperatures.  Titanium has also been 

successfully used as a wick material with water (Baumann and Rawal, 2001). Aluminum, due 

to its low mass and good thermal conductivity, is used as the containment material with 
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ammonia and acetone for various aerospace applications. A new class of plastic wick 

structures made from Ultra High Molecular Weight (UHMW) polyethylene (Chen and Lin, 

2001) and Polypropylene (Boo and Chung, 2004) have also been tested and used successfully 

in LHP/CPL with different working fluids.  

 

In summary, for LHPs with water as the working fluid, copper is invariably used as 

containment and wick material. For low temperature working fluids like ammonia and 

acetone, generally stainless steel and/or aluminum are used as containment materials with 

nickel, titanium, stainless steel or combinations of these as wick material. Plastic wicks have 

been used with most of these working fluids without any compatibility issues. 

 

2.8.7 Development of miniature Loop Heat Pipes (mLHPs) 

For a particular application, the design of a LHP is dictated by a variety of factors including 

total thermal load, heat transfer distance, operating temperature, orientation in the local 

gravity field, space available for the cooling system, heat sink conditions etc. As discussed 

previously, different configurations of LHP have been designed and tested for thermal 

management of various ground based and space applications. Most of the configurations 

described have focused on thermal management of aerospace applications. In order to use 

loop heat pipes for cooling compact electronic and computer equipment including portable 

computers, their feasibility in the direction of miniaturization must be evaluated. This is 

discussed later, and most of the examples of mLHP prototypes being investigated use 

ammonia as working fluid and stainless steel, nickel or titanium as wick. To promote the 

application of these devices for the computer cooling, use must be made of safer working 

fluids like water and high thermal conductive materials like copper, which are fully 

compatible and easily machinable for mass production.    

 

LHPs may be regarded as miniature (Maydanik, 2004) if the outer diameter of the cylindrical 

evaporator does not exceed 8 mm and the internal diameter of the vapour and the liquid lines 

is below 3 mm. In this case the length of the evaporator active zone to which a heat load may 

be applied is usually in the range from 10-50 mm, and the total length of the heat 

transportation zone is normally no more than 500 mm. In the case of flat evaporators, the 
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geometric equivalent of the diameter is the thickness. As a rule, the overall thickness of the 

flat evaporator also includes the compensation chamber. Therefore the only criterion used 

here for characterizing a LHP as miniature is the diameters of the vapour and the liquid lines, 

as the thickness of the evaporator may vary over a wide range.    

 

When developing miniature loop heat pipes (mLHPs) two main problems arise. The first is 

connected with the reduction of the evaporator diameter. There is necessarily a corresponding 

reduction of the thickness of the wick separating the absorbing and evaporating surfaces. This 

reduction results in increase in parasitic heat flow from the evaporator heat zone to the 

compensation chamber via the wick structure.  To initiate startup and thereby the fluid 

circulation process in the LHP, certain temperature and pressure drops must be created across 

the wick which may be very difficult to create in the case of a thin wick. As a result, increase 

in back conduction causes increase of the operating temperature and increase in the minimum 

value of the start-up heat load. The use of a wick with low thermal conductivity does not fully 

solve the problem, as the flows over the evaporator body may increase because of reduction 

of the efficiency of the heat exchange process in the evaporation zone. Heat flows from the 

evaporator active surface to the wick via the vapour channel walls and further spreads along 

the evaporating surface of the wick by conduction through the wick skeleton. A wick structure 

with low thermal conductivity will reduce the percentage of the applied heat being utilized in 

the evaporation zone for the vaporization of the fluid. This will increase heat flows from the 

active zone to the compensation chamber along the evaporator wall. As a result of these heat 

flows to the compensation chamber an overall rise in the evaporator surface temperatures will 

occur. This aggravates the problem of decreasing the thermal resistance of the miniature LHP. 

The active zone area of the miniature evaporator corresponds to that of the heat load source 

and therefore is quite limited. The active surface of the condenser which corresponds to the 

conditions of the heat removal may be much larger. Therefore one of the means of decreasing 

the thermal resistance is at the expense of intensification of the heat exchange process in the 

evaporation zone by using a sufficiently heat conducting capillary structure like copper 

(Maydanik, 2004).  

 

 



Chapter 2: Introduction and Literature Review         34 

          

2.8.7.1 mLHPs with Cylindrical Evaporators 

Investigative prototypes of mLHPs with 6-8 mm diameter evaporators have been developed 

and tested by number of researchers and organizations around the world. Most often the 

working fluid used in them has been ammonia. Wicks were made of sintered metal powders, 

and the bodies of stainless steel and aluminum. The first such mLHP, with an effective length 

of approximately 570 mm and equipped with a cylindrical evaporator 6 mm in diameter with 

lines for vapour and liquid 1.6 mm in diameter, was developed at the Institute of 

Thermophysics (ITP) in Russia (Pastukhov et al, 1999). The device was tested at three 

different orientations in 1 g conditions with slope of -90°, 0° and +90° and showed a 

maximum capacity of 22, 17 and 13 W respectively. In the vertical orientation, the minimum 

value of evaporator thermal resistance of 0.25 ºC/W was achieved at a heat load of 8.5 W. 

Ammonia mLHPs with an effective length of about 300 mm developed at Swales Aerospace 

(Garzon et al, 2002) demonstrated, in a horizontal orientation, effective operation in the heat 

range from 5 to 20 W. The minimum evaporator thermal resistance was 0.13 ºC/W.  

 

Pastukhov et al (2003) developed different prototypes of miniature loop heat pipes with a 

nominal capacity of 25-30 W and a heat transfer distance up to 250 mm intended for cooling 

electronic components and CPUs of mobile PCs. These prototypes had stainless steel 

evaporators of 5 and 6 mm diameter were equipped with titanium or stainless steel wicks and 

the working fluids used were ammonia or acetone. The cylindrical evaporator was equipped 

with an aluminum saddle that helped thermal connection to the heat source. The liquid and 

vapour lines were made from stainless steel tubing of 1.3 mm inner diameter. For cooling 

purposes, a condenser with external fins or a plate type arrangement was used. The condenser 

was cooled by using force convection driven by a centrifugal fan. Under air cooling the total 

thermal resistance (interface to ambient) of such a system lay in the range of 1.7 – 4.0 ºC/W 

with the thermal resistance of the mLHP in the range of 0.3 to 1.2 ºC/W.  

 

In their work on mLHPs, Maydanik et al (2005) developed and tested different prototypes of 

mLHP with cylindrical evaporators 5 and 6 mm in diameter and capable of transferring heat 

loads of 100-200 W for distances up to 300 mm. These mLHPs evaporators were equipped 

with flat copper surfaces of 20x20 mm for mounting a heat load simulator. Ammonia (with a 
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stainless steel evaporator) and water (with a copper evaporator) were used as the working 

fluids to illustrate the performance of these devices. The condensers had fins measuring 15 x 

25 mm with thicknesses varying from 0.3 to 0.4 mm. Cooling was provided by air flow with a 

temperature of 22 ± 2 ºC circulated by a fan. These devices were able to operate in the 

temperature range of 50-100 ºC at any orientation in 1-g conditions. Tests showed a nominal 

heat load (i.e. heat load at which evaporator achieved a surface temperature of 80±5 ºC) of 70 

W for an ammonia mLHP and a larger value of 130 W for a water mLHP. The corresponding 

minimum values of internal thermal resistance of the devices were 0.12 ºC/W and 0.10 ºC/W. 

and the total thermal resistance “evaporator-air” were respectively 0.68 ºC/W and 0.58 ºC/W. 

The work clearly illustrates the potential of the copper-water mLHP for electronic cooling 

applications. It was also shown that with more intensive cooling of the condenser using water, 

the maximum capacity of the devices can be further increased. 

 

An ammonia charged mini-LHP was designed, built and tested at Dynatherm Corporation Inc. 

(DCI) (Bienert et al, 1999) for low power management and temperature control for electronic 

components especially for spacecraft applications. It was constructed primarily of aluminum 

and weighed less than 160 grams. The cylindrical evaporator of the mLHP was designed to 

manage heat loads in the range 5 to 10 W. To maintain the temperature within a narrow range, 

active thermal control that consumed 1.5 to 3.5 W of power was fitted on the compensation 

chamber with the feedback thermal sensor installed on the liquid line at the compensation 

chamber inlet. The mini LHP was able to maintain a constant evaporator temperature of 42 ºC 

with an accuracy of ± 0.25 ºC for variation in the condenser cooling temperature from 35 ºC 

to -40 ºC and drop in evaporator power from 10 to 5 W.  

 

2.8.7.2 mLHPs with Flat Evaporators 

In most cases, cylindrical evaporators need to have a special thermal interface (saddle) which 

is a cylinder-plane reducer located at the surface of the evaporator active zone and provides a 

thermal contact with the heat load source. Despite the fact that such saddles are usually made 

of heat conducting materials such as copper or aluminum, they create an additional thermal 

resistance and increase the LHP total mass. To overcome such drawbacks, a flat evaporator 

can be considered as the preferred design. The critical design parameters of flat evaporators 
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are the thickness and the diameter of a disk or length and width of a rectangular shaped body. 

The possibilities for reducing the body thickness here are quite limited. This is because the 

evaporator is combined in one body with the compensation chamber, whose volume must 

correspond to the dimensions of the vapour line and the condenser. Beside this, the wick 

structure in a flat evaporator cannot be made very thin because of problems associated with 

back conduction to the compensation chamber. Various prototypes of mLHP with flat 

evaporators with ammonia-stainless steel configuration have been developed for space as well 

as ground based applications.  

 

The first mLHP with a flat disk shaped evaporator 30 mm in diameter with a rectangular 

flange forming a thermocontact surface 30x30 mm was developed in Matra Marconi Space 

(Dunbar et al, 1997). The device was made of stainless steel and porous 

polytetrafluoroethylene (PTFE) was used as wick. Here also, ammonia was used as the 

working fluid due to its compatibility with stainless steel and permissibility in space 

applications. Although, the device showed high thermal resistance and moderate capacity, it 

demonstrated the possibility of creating mLHPs with flat evaporators.    

 

Boo & Chung (2005) demonstrated the successful operation of a mLHP with a flat evaporator, 

40mm x50 mm area and 30 mm thickness, using various polypropylene wicks with different 

pore sizes in the range 0.5 μm to 25 μm. The active heating zone was 35 x35 mm and there 

were nine axial grooves provided for vapour removal from the evaporation zone. The inner 

diameters of liquid and vapour transport lines were 2.0 mm and 4.0 mm respectively and the 

lengths of the two lines were each 0.5 m. The container and tubing of the system were made 

of stainless steel and several working fluids including methanol, ethanol, acetone and 

ammonia were used to test the thermal performance of the device. The mLHP with ammonia 

exhibited the lowest thermal resistance of 0.65 ºC/W while ethanol mLHP showed the lowest 

heat load capability as compared with acetone and methanol. The thermal resistances of the 

acetone and methanol mLHPs were comparable to that of the ammonia mLHP for heat loads 

above 50 W. For the mLHP using ammonia, the maximum heat load of 87 W was achieved 

with the condenser temperature of 0 ºC at a horizontal position. 
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A prototype of an ammonia mLHP was developed with a flat rectangular evaporator 

(Pastukhov et al, 2003) 5.5 mm in thickness and with a heat transfer length of 75 mm. The 

body and wick were made of stainless steel and the internal diameters of the liquid and vapour 

lines were 1.2 mm. The radiator (12 mm x 50 mm x 20 mm) was made in the form of 

corrugated copper foil 0.3 mm thick with a gap of 0.5 mm between fins. Maximum heat load 

with air blowing was 30 W with the total thermal resistance “evaporator-air” of 2 ºC/W. With 

water cooling, the thermal resistance was approximately equal to 1 ºC/W up to a heat load of 

40 W.    

 

Delil et al (2002) report the development of a mini LHP having a flat disk shaped evaporator 

44 mm diameter and 22 mm thickness. Different types of wick structure including metal felt, 

nickel and titanium wicks were tested inside the flat evaporator with ethanol as the working 

fluid. It was concluded that increasing anti-gravity height results in an increase of the 

temperature drop between evaporator and condenser and thus thermal resistance increases. 

The device was able to transfer a maximum thermal load 120 W with thermal resistance in the 

range of 0.62 – 1.32 °C/W at different orientations in a gravity field.  

 

Different variants of mLHPs with flat evaporators of stainless steel from 500 to 1000 mm in 

length were developed and tested at the Institute of Thermal Physics (ITP) in Russia 

(Chernysheva et al, 2002). All the devices used ammonia as the working fluid and had disk-

shaped evaporators with an active zone diameter of 30 mm and thickness in the range from 10 

to 13 mm. One of the mLHP, with a flat evaporator 13 mm thick which made use of a 

monoporous nickel wick with pore radius 1.2 μm, had a capacity of 120-160 W depending on 

the orientation. A minimum value of the thermal resistance of the evaporators of 0.25 ºC/W 

was achieved with this device. Another mLHP with an evaporator 10 mm thick demonstrated 

maximum capacity of 140 W.  The evaporator thermal resistance in this device was reduced 

to 0.14 - 0.15 ºC/W at the expense of a decrease in the wall thickness and the use of a 

stratified nickel-titanium wick with a biporous layer. 

 

It is clear from the above review that ammonia has been mostly used as the working fluid in 

the current LHPs prototypes due to its good figure of merit, its feasibility in the low 
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temperatures of space application where water would freeze and compatible 

containment/wick material can be readily obtained. In order to exploit the potential of mLHPs 

for ground based electronic cooling including personal and mobile computers, working fluids 

like water that can operate at close to atmospheric pressure and temperature, and do not show 

any toxic or flammable properties must be evaluated. The flat evaporator geometry has more 

potential to reduce the evaporator thermal resistance, and enhance heat exchange in the 

evaporator zone compared with a cylindrical evaporator. In addition, flat evaporators can be 

easily integrated into the compact space inside the object to be cooled.  

 

2.9 Conclusions from the Current Body of Knowledge 

Loop Heat Pipes (LHPs) are very reliable and versatile two phase heat transfer devices that 

are based on the capillary driven loop principle. LHPs possess all the main advantages of 

conventional heat pipes and are additionally capable of transferring large heat loads for 

distances up to several meters in any orientation in the gravity field. In contrast to the 

capillary pumped loops (CPLs), LHPs are more robust and do not require any active thermal 

control to initiate startup.  

 

Significant progress has been made in the development of capillary evaporators with wicks of 

fine pore size and high porosity that provide strong capillary action to bring the liquid up to 

the evaporation zone by utilizing the principle of an inverted meniscus. Different variants of 

the compensation chamber and condenser have also been employed depending on the 

intended application and design restrictions. Nickel and titanium are mostly used as the 

capillary structure inside the evaporator. The container and transportation lines are generally 

made from stainless steel and aluminum. By far and until now, ammonia is the most widely 

used working fluid in loop heat pipes due to its excellent heat transfer characteristics and 

permissibility for low temperature range (30-80 ºC). LHPs have been widely accepted and 

implemented as thermoregulation devices in spacecraft and satellites. Different variants of the 

LHP from large and powerful LHPs to miniature LHPs have been designed and tested. 

 

With the growing interest in LHPs in electronic cooling, performance evaluation of these 

devices at the miniature scale is needed. LHPs for cooling Notebook PCs need to be 
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extremely compact and easy to integrate in the objects to be cooled. Miniature LHPs with 

cylindrical evaporators 6-8 mm in diameter and flat evaporators from 5.4 to 15 mm in 

thickness have been developed and successfully tested. The diameters of the vapour and 

liquid line lie below 3 mm and their effective length lies in range of 50-1000 mm. mLHP 

devices designed with the above combinations are capable of transferring maximum heat 

flows of 50-200 W at any orientation in 1-g conditions and possess evaporator thermal 

resistance in the range 0.14-0.25 ºC/W with the total thermal resistance in the range 1-4 ºC/W. 

Combinations like copper and water are best suited for ground based electronic cooling. 

Although this combination is not yet fully exploited in mLHPs, some of the investigative 

prototypes have shown their superior performance and heat transfer potential.  

 

2.10 Single phase liquid cooling systems: Introduction 

With the rapid evolution of new generation computers having more extensive capabilities and 

compact size, major design challenges in the thermal control of their microprocessors have 

been raised. At present, the waste heat released by the laptop CPUs is 25 to 50 W (Mochizuki 

et al, 2005). Different thermal designs are available that can dissipate heat loads up to 50 W 

given out by laptop chipset while coping with the space constraint. For still higher heat loads 

up to 70 W, as discussed in the previous section, two-phase passively operating loop heap 

pipes are able to manage the waste heat given out by laptop microprocessors quite efficiently. 

Different variants of the miniature loop heat pipe (mLHP) with flat evaporators of very small 

thickness were designed that were capable of adapting to the available space inside a portable 

PC. The designed mLHPs were able to transfer a maximum heat load of 70 W up to a distance 

of 150 mm from the heat source with an active thermal footprint of 1 cm
2
 (10x10 mm

2
) and 

proved to provide efficient thermal control strategies for high performance and compact heat 

sources. For desktop and server computers the quantity of the waste heat given by the CPU 

microprocessor is 80 to 130 W (Mochizuki et al, 2005). Various technologies ranging

from simple air cooling to two phase passive cooling have been proposed and effectively 

employed for the thermal control of desktop CPUs (Sauciuc et al, 2005) with such thermal 

requirements. Heat pipes and vapour chambers have emerged as the most appropriate 

technology and cost effective thermal solution due to their excellent heat transfer capabilities, 

high efficiency and structural simplicity. However with further increase in the processing 
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speed of the computer CPU and decrease in its heat dissipation area there is a corresponding 

upswing in its heat flux and surface power density. In the near future, it is expected that the 

heat dissipation requirement of the desktop/server chips will go much higher than its present 

value due to the added processing and graphic capabilities of workstations. Nonetheless the 

cooling potential of the current thermal control devices has already reached a critical limit and 

does not enable the heat load management of such high-end power equipments. This has 

instigated the need to focus on research and development of efficient thermal designs for 

cooling high powered computer microprocessors.  

 

Two phase passive cooling systems including heat pipes and vapour chambers are certainly 

the most reliable and efficient cooling solution for future electronics. However the technology 

is not mature enough to cope with the drastic rise in the power dissipation trends of computer 

processors. In addition, the potential two phase systems like loop heat pipes and capillary 

pumped loops that are optimum for the thermal cooling of future electronic systems are not 

very cost effective and require complicated manufacturing techniques to fabricate them. 

Although research work has already been initiated for the development of loop systems with 

low cost fabrication practices (Huang, 2004) and high performance operation for commercial 

applications, the technology development will require time before the device is successfully 

implement inside high-end computers.  Single phase liquid cooling can provide an approach 

for removing heat fluxes well beyond the current air cooling limits, usually in the order of 

hundreds of W/cm
2
. With liquid cooling, high heat sink performance can be achieved by 

making heat sinks with innovative microstructures such as microchannels /microfins and even 

porous structures. The later sections review the literature on single phase liquid cooling using 

innovative microstructures.   

 

2.11 Problem Description 

During the course of the ongoing research work on cooling of electronic equipment, one 

challenge of cooling a computer microprocessor with heat dissipation capacity of as high as 

200 W from a thermal footprint area as small as 0.49 cm
2
 was brought forward by the chip 

developer. For that reason the present research is focused on the development of a thermal 

design for cooling a microprocessor with extremely high heat flux, of the order of 408 W/cm
2
. 
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In this case, the microprocessor is part of, and intended to handle the data processing needs of, 

the desktop computer and servers with dedicated cabinets. Therefore close restrictions on the 

maximum thickness of the cold plate (cooling section or active zone) and the condenser, as 

observed in the cooling of the laptop computers, were not encountered here. In other words, 

enough space was available to accommodate the overall thermal design. For the thermal 

control of heat fluxes of such a high magnitude, liquid cooling can be considered as the viable 

option. On this basis, the current research work aims at exploring the potential of liquid 

cooling systems with microstructural heat sinks for cooling the extreme high heat fluxes given 

out by desktop microprocessors.  

 

2.12 Scope of the Research Work 

Single phase liquid cooling is providing new and efficient design architectures for cooling 

high-end electronic devices. The scope of the present work is to investigate single phase 

forced convection liquid cooling using microchannels and sintered porous structure for the 

thermal management of high heat flux chipsets in electronic equipment. With the proposed 

micro structural design, liquid cooling will be able to cope up with the ever increasing thermal 

fluxes of the integrated packages that have resulted from increase in the number of circuits 

and miniaturization of the chipsets. Microchannel heat sinks are widely regarded as being 

among the most effective heat removal techniques for space-constrained electronic devices. 

The current work also examines the potential of the microchannel heat sink for thermal 

control of multiple heat sources by forced convection liquid cooling. In conclusion, this 

research work will lay further pathways to development of the thermal technology for future 

chipsets with extremely high heat loads.  

 

2.13 Objectives of the Research Work 

The main objectives of the research work are as follow: 

o To design and develop a microchannel heat sink (MHS) for cooling a concentrated 

heat source in a desktop computer using forced convection single phase liquid cooling. 

o To study the operational principles and thermodynamics of microchannel heat sinks. 

o To test the thermal performance of the designed heat sink: 

 Using heating areas of different sizes (e.g. 7x7 mm
2
, 11x13 mm

2
) 
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 Using different heat loads 

 Using different liquid flow rates 

o To design and develop a sintered porous heat sink (MHS) for cooling a concentrated 

heat source in a desktop computer using forced convection single phase liquid cooling. 

o To study the operational principles and thermodynamics of sintered porous heat sinks. 

o To determine the thermal performance of the designed system:  

 Using different heat loads  

 Using different liquid flow rates 

o To compare the thermal efficiency of the microchannel heat sink with that of the 

sintered porous heat sink working on the basis of forced convection of liquid (single 

phase). 

o To design and develop a microchannel heat sink as a single phase heat transfer system 

and a heat pipe cooling unit as a two-phase heat transfer system for the thermal control 

of multiple heat sources (MHS), for applications in portable computers with limited 

space 

o To determine the thermal performance of the designed systems under different heat 

loads  

o To compare the thermal efficiency of the single phase liquid cooling system using a 

microchannel (as mention above) to that of a two phase cooling system using heat 

pipes, for the thermal control of multiple heat sources in laptops.   

 

2.14 Literature Survey on single phase liquid cooling systems 

2.14.1 Single Phase Liquid Cooling using a Microchannel Heat Sink (MHS) 

As an appropriate classification all devices with characteristic dimensions between 1 μm and 

1 mm are classified as micro-devices. In the past, many researchers have devoted efforts to 

the development of liquid cooled heat sinks containing microchannels with hydraulic 

diameters less than 1 mm. Microchannel heat sinks have emerged as one of the effective 

cooling techniques for high heat flux removal in electronic devices. Figure 8.1 shows a 

schematic of a microchannel heat sink used for electronic cooling applications.  
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The cold plate design includes numerous micro channels and fins arranged in parallel on a 

metallic substrate with a cover plate for flow management. These microchannels provide 

extended surface area for heat transfer to the coolant. Due to the extremely small 

hydrodynamic diameter and high surface area to volume ratio of the microchannels the 

cooling performance is very good. The coolant enters from the inlet plenum and flows 

through the micro channels to carry away the heat produced by the electronic components. 

After absorbing the heat, the hot fluid exits the heat sink through the outlet plenum.   

Tuckerman and Pease (1981) first introduced the concept of microchannels and built a water 

cooled integral heat sink with microscopic flow channels machined on a silicon wafer. The 

designed MHS was able to dissipate heat flux as high as 790 W/cm
2
 with the chip temperature 

maintained below 110 ºC and successfully demonstrated that extremely high power chips can 

be effectively cooled using microchannel heat transfer. Their results also indicated that the 

heat transfer coefficient of laminar flow through microchannels might be higher than that of 

turbulent flow through normally sized channels. Following the work of Tuckerman and Pease, 
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Figure 2.11 Schematic of a Microchannel Heat Sink 
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numerous studies (Morini, 2004) have been performed in the area of microchannels for heat 

transfer applications.  

 

Peng et al (1994) experimentally investigated the flow and heat transfer characteristics of 

water flowing through rectangular stainless steel microchannels with hydraulic diameters of 

133 – 367 μm at channel aspect ratios of 0.33 – 1. In the study the onset of transition was 

observed to occur at Reynolds numbers from 200 to 700. Experiments were conducted by 

Wang and Peng (1994) to study the single phase forced convection of water and methanol 

flowing through rectangular microchannels machined on a stainless steel plate. Six kinds of 

microchannel structures with different widths between 0.2 to 0.8 mm and identical heights of 

0.7 mm were utilized in the investigation. It was observed that a fully developed heat transfer 

regime is initiated at approximately Re = 1000 – 1500 and the transition to turbulent mode is 

influenced by liquid temperature, velocity and microchannel size. Transition and laminar heat 

transfer in microchannels prove to be very complicated when compared to the conventionally 

sized situation.  

 

Zhang et al (2005) reported study of a single phase liquid cooled microchannel heat sink for 

cooling high heat flux electronic packages. The microchannel heat sink was made of 

aluminium with each channel 0.21 mm wide and 2 mm high, and deionised water was used as 

the coolant. Two chip array packages with different chip footprints, 12 mm x 12 mm and 10 

mm x 10 mm, were used for high heat flux characterizations. The measured junction to inlet 

fluid thermal resistances ranged from 0.44 to 0.32 C/W for the 12 mm chip under the test flow 

rate range while for the 10 mm chip higher thermal resistance ranging from 0.59 to 0.44 C/W 

was obtained due to higher heat spreading resistance. . 

Qu et al (2000) investigated the heat transfer characteristics of water flowing through 

trapezoidal silicon microchannels with a hydraulic diameters ranging from 62 to 169 μm. On 

comparing the experimental results with the numerical predictions they found that the 

measured Nusselt numbers were lower than the predicted values. They concluded that the 

lower Nusselt numbers can be due to the effect of surface roughness of the microchannel 

walls. Rahman (2000) conducted experimental measurements for pressure drop and 

convective heat transfer in a microchannel heat sink with water as coolant. Fabrication of the 
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devices was carried out using standard silicon-100 wafers with channel width of 1 mm and the 

spacing between the channels was 2 mm. The results showed that the measured values of the 

average Nusselt number were usually larger than those predicted by the conventional 

correlations. In order to explain the larger values of the Nusselt numbers the author 

highlighted the influence of the surface roughness on the velocity boundary layer.  

 

Wu and Cheng (2003) investigated experimentally 13 different trapezoidal silicon 

microchannels (Dh = 25.1 – 29.1 μm). They found that the laminar Nusselt number and 

apparent friction coefficient increased with increase of surface roughness and surface 

hydrophilic property. The Nusselt number increased almost linearly with the Reynolds 

number. Kandlikar et al (2001) found that the relative roughness affected the Nusselt number 

such that heat transfer increased with higher relative roughness. Lee et al (2005) conducted a 

systemic investigation of single phase heat transfer in rectangular microchannels with 

hydraulic diameters ranging from of 318 to 903 μm at flow Reynolds number of 300 – 3500.  

The heat sink was machined on a copper substrate and deionized water was used as the 

working fluid. In the study, numerical predictions were obtained based on a classical, 

continuum approach and were found to be in close agreement with the experimental data.  

 

2.14.2 Conclusions from the Current Body of Knowledge 

From the experimental data quoted in the open literature on convective flow through 

microchannels it is evident that extensive design and thermal characteristics study of 

microchannel heat sinks has been done to effectively handle extremely high heat fluxes from 

electronic chips. However in accordance with published studies on microchannel heat sinks, it 

is evident that experimental results do not consistently agree with the conventional theory for 

microchannels (Morini, 2004). Some authors found that predictions from conventional theory 

agreed with experimental results, whereas other authors, for the relevant range of hydraulic 

diameters, found the opposite result. Various reasons have been proposed to explain these 

differences by invoking rarefaction, compressibility, viscous dissipation effects, surface 

conditions (roughness), property variation with temperature, electro-osmotic effects (electric 

double layer) etc. Some authors proposed new correlations in order to predict the friction 

factor and Nusselt number for microchannels. The new correlations are in general based on 
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few experimental points and no theoretical analysis. For these reasons, the reliability of the 

correlations proposed for microchannels is uncertain.  

 

2.14.3 Single Phase Liquid Cooling using a Sintered Porous Heat Sink (SPHS) 

Porous media have been extensively utilized in various heat transfer applications including 

electronic cooling, thermal energy absorption, geothermal systems and many others. Porous 

structures can be considered as an effective heat transfer augmentation technique that help to 

intensify fluid flow mixing and increase the surface area in contact with the coolant from 

which to dissipate heat.  The porous structures can be made in the form of non sintered 

packed powder beds, sintered powder structure or foams.   For the purpose of electronics 

cooling, convective heat transfer in porous media has been widely investigated both 

experimentally and theoretically by researchers worldwide. Figure 8.2 shows a schematic of a 

typical sintered porous heat sink used for electronic cooling applications. 
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The cold plate design includes a porous sintered medium fixed between a metallic substrate 

and a cover plate for flow management. These sintered porous structures provide very high 

contact surface area to volume ratio and networks of microchannels which provides an 

efficient way of managing very high heat fluxes. The coolant enters from the inlet plenum 

manifold and flows through the porous structure to carry away the heat produced by the 

electronic components. After absorbing the heat, the hot fluid exits the heat sink through the 

outlet plenum.     

 

Jiang et al (2004) experimentally investigated forced convection heat transfer in water and air 

in sintered porous plate channels made of bronze particles sintered to a thin copper plate 

which was placed in the stainless steel channel. Heat load as high as 0.9 MW/m
2 

was 

transferred at a pressure drop of 1.29 MPa/m with single phase water flow. The effects of 

fluid velocity, particle diameter of bronze material (d = 0.6, 1.2 and 1.7 mm), type of porous 

medium (sintered or non-sintered) and type of fluid (air or water) on the heat enhancement 

were examined. The results showed that convective heat transfer in the sintered porous plate 

channel was more intense than in the non-sintered porous plate channel, due to the reduced 

thermal contact resistance and the reduced porosity at the wall in the sintered channels. For 

the conditions in the study, the sintered porous medium enhanced the local heat transfer 

coefficient 15 times for water and up to 30 times for air compared to the empty channel 

design. They also reported that the effective thermal conductivity of the sintered channels was 

much higher than that of the non sintered media due to the improved thermal contact from the 

sintering process.  

 

In his study on a porous channel with sintered copper beads, Tzeng et al (2005) conducted 

experiments to study the effect of the bead particle size on the efficiency of heat exchange 

between the fluid and the solid phases for the heat sink. Three different test sections of 

sintered porous medium were made using copper beads of 0.71, 0.84 and 1.15 mm particle 

size respectively and high pressure air was used as the cooling medium. It was reported that in 

the case of a smaller particle size, the overall wall temperature distribution is lower than with 

the bigger particles for the same input heat flux due to the larger contact area involved with 

the smaller particle beads.  
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In their study of metal foam heat sinks, Hsieh et al (2004) performed an experimental 

investigation of the effects of porosity, pore density and air velocity on the heat transfer 

characteristics of aluminum foam heat sink under forced convective cooling conditions using 

air as the coolant. Results showed that the Nusselt number increased with increase in the pore 

density and porosity of the aluminum foam, due to the fact that the heat transfer area of the 

foam increases as pore density and porosity increase. It was also noted that the temperature 

difference between the solid and the gas phases decreased with the increase of the Reynolds 

number of the air flow and increase in the porosity and pore density of the aluminum foam.  

 

Heat transfer and pressure drop in a rectangular channel with sintered porous stainless steel 

inserts of different porosity were investigated experimentally by Hetsroni et al (2005) for the 

purpose of cooling mini-devices. Heat flux up to 6 MW/m
2 

was removed by using a porous 

sample with 32% porosity and 20 μm average pore size. Under the experimental conditions, 

the difference between the wall and the inlet water temperatures did not exceed 55 K and the 

pressure drop was 4.5 bar. The authors also compared the efficiency of a sintered porous heat 

sink to an aluminum compressed foam heat sink and showed that the former provided very 

high heat transfer performance however it was accomplished by a drastic increase in pumping 

power.   

 

Jeigarnik et al (1991) examined convective heat transfer in water on flat plates and in 

channels filled with porous materials such as sintered spherical particles, nets, porous metal 

and felts. They found that the porous media increased the heat transfer coefficient 5-10 times 

although the hydraulic resistance increased even more. Lage et al (1996) numerically studied 

a low permeability microporous heat sink for cooling phased-array radar systems. Their 

results suggested that an increased overall heat transfer coefficient could be obtained using 

such a heat sink which would reduce the operational temperature of the electronics for the 

same waste heat generation rate.  

 

Tzeng et al (2006) measured local and average heat transfer characteristics of asymmetrically 

heated sintered porous channels with metallic baffles. The fluid medium was air. Solid baffles 

were inserted periodically into the sintered metallic material in four modes – without baffles, 
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with periodic baffles on the top portion, with periodic baffles on the bottom portion and with 

staggered periodic baffles on both sides. As an outcome of this study it was concluded that 

copper baffles helped to enhance the thermal conductivity through the solid matrix and 

promoted the heat transfer coefficient between the fluid and solid media. However, baffles 

also have some adverse effects that include reduction in the volume of the porous media (i.e. 

reducing the effective dissipation area) and preventing proper coolant flow into the regions 

around the neighboring baffles. In the study, the effect of bead diameter was also studied and 

it was seen that the heat transfer by forced convection in all modes increased as the bead 

diameter decreased.  

 

2.14.4 Conclusions from the Current Body of Knowledge 

From the above discussion, it is concluded that extremely high heat fluxes can be efficiently 

transferred by using porous metal heat sinks. Of the available forms of porous media, the 

sintered porous type is the most efficient. For sintered metallic porous media, the porosity at 

the wall and the thermal contact resistance are less than with non-sintered porous media, 

therefore the heat transport from the wall to the interior of the porous medium is more intense 

for sintered metallic porous media which enhances the overall heat transfer coefficient at the 

wall. Even compared to highly porous foam with large contact area, the sintered porous 

metallic medium is more effective, because of the high overall thermal conductivity. 

Regarding the coolant, as pointed out by the Jiang et al (2004) and Hsieh et al (2004), the heat 

transfer capabilities of water are superior to those of air for the removal of high and 

concentrated heat fluxes.  However, the flow mechanism of the water through the porous 

medium involves high hydraulic losses that require high pressure pumps with drastic increase 

in the pumping power. Therefore sintered porous heat sinks are considered effective for 

cooling electronic devices with very high heat release in order to rationalize the pumping 

power and the overall cost of the cooling system.  

 

The next chapter discusses in detail the theory and modelling of loop heat pipes.
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Chapter 3 

Theoretical Modelling of Loop Heat Pipe 

 

This chapter discusses the theory of loop heat pipes (LHPs) in detail. The basic operating 

principle of the LHP is explained with the help of a pressure-temperature diagram. For the 

LHP there are some conditions that must be fulfilled for the proper serviceability of the device, 

these necessary conditions have been elaborated. In order to validate the proposed design of a 

miniature LHP, a mathematical model to predict the operating temperature of the loop has 

been proposed. Beside this, the main operating characteristics that are helpful in determining 

the loop efficiency and thus understanding the thermodynamics of the LHP are formulated.   

 

3.1 Principle and Operation 

The basic principle of operation of loop heat pipes is similar to that of conventional heat pipes 

i.e. a closed evaporation-condensation cycle maintained with the help of capillary pumping of 

the working fluid. However, due to the unique design features of the LHP these physical 

processes are organised in quite a different way. Unlike in conventional heat pipes, the wick 

structure in a LHP performs a variety of functions. To determine these functions and explain 

the working of the LHP, the schematic presented in Figure 3.1 can be used.  

 

In the absence of any heat load, the free surface of the working fluid is at a certain level A-A 

located in the liquid line and the evaporator. In this case the wick is saturated with liquid, and 

the vapour line and the condenser completely filled. Heat applied to the evaporator results in 

liquid evaporation from the wick both in the evaporation zone and in the compensation 

chamber. Since the wick possess a definite thermal resistance, the temperature and pressure of 

the vapour in the evaporation zone become higher than in the compensation chamber. In this 

case, the wick performs a function of a thermal lock by resisting heat flow to the 

compensation chamber. At the same time the vapour cannot penetrate through to 

compensation chamber through the saturated wick owing to the capillary force generated by 

the liquid present inside it. Here, the function of the wick as a hydraulic lock manifests itself.
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 The arising saturation pressure difference across the cooler absorbing and warmer 

evaporating faces of the wick causes displacement of the working fluid from the vapour line 

and condenser and filling of the compensation chamber. The resulting fluid displacement 

causes three interfaces to form in the LHP simultaneously: in the evaporation zone, in the 

condenser and in the compensation chamber. Depending on the applied heat load, the vapour-

liquid interface in the condenser and compensation chamber may move. In most cases, liquid-

vapour may be already present inside the compensation chamber prior to the start-up process.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For analyzing LHP operation it is convenient to use the P-T diagram of the working cycle 

with respect to the saturation line of the working fluid, as shown in Figure 3.2 in idealized 

form. The point 1 on the saturation line identifies the vapour state with parameters P1, T1 
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above the evaporating menisci in the wick and the section 1-2 corresponds to the vapour 

motion in the vapour removal channel into the vapour line. Since the vapour motion here 

proceeds along the hot wall of the evaporator, a decrease in its pressure is accompanied by a 

slight superheat. The vapour motion in the vapour line presented along section 2-3 can be 

ideally considered as close to isothermal. The vapour is condensed along section 3-4 followed 

by subcooling of the liquid condensate in the latter part of the condenser from 4-5. Pressure 

losses in the LHP condenser are usually negligible. Further the motion of the working fluid in 

the liquid line along section 5-6 is accompanied by pressure losses mainly due to the 

hydrostatic resistance of the liquid column while the LHP is operating at adverse tilts. Here, 

the process is shown as ideally isothermal, though in many cases there may be considerable 

heating or cooling owing to heat exchange with the surrounding medium. Liquid with 

parameters P6, T6 enters the compensation chamber and is heated to temperature T7 due to 

heat flowing back from the evaporator to the compensation chamber (i.e. back conduction of 

heat through the wick). The section 7-8 corresponds to liquid filtration through the wick into 

the evaporation zone. As the liquid proceeds through the wick, the pressure loss due to flow 

resistance takes place. This causes a drop in the pressure inside the wick. Since the local 

pressure is lower than the corresponding saturation pressure for the local temperature, the 

liquid presents a condition of superheating. It should be noted that the liquid may prove to be 

superheated inside the wick but boiling does not take place due to the short residence time in 

such a state. In other words, the liquid is in a metastable condition and the simple perturbation 

of reaching the boundary (meniscus) is enough to evaporate the substance which changes 

instantly into the state of superheated vapour. The point 8 determines the state of the working 

fluid in the vicinity of the evaporating menisci and the pressure drop ∆P1-8 corresponds to the 

value of the total pressure losses in all sections of the working fluid circulation (Maydanik, 

2005).  

 

3.2 Conditions of LHP Serviceability 

3.2.1 Maximum Capillary Pressure Limit 

The main condition that needs to be satisfied for the proper operation of the LHP is the same 

as for any other heat pipe and relates to the balance of the capillary pressure generated by the 
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porous structure on the working fluid and the total pressure drop in the loop. This can be 

stated mathematically as follows: 

tgrlvcap PPPPP  max)(                   (3.1) 

where, (∆Pcap)max is the maximum capillary pressure, ∆Pt is the total pressure drop in the loop 

which includes: ∆Pv - pressure loss due to vapour flow, ∆Pl - pressure loss incurred due to the 

liquid flow and ∆Pgr - hydrostatic pressure loss due to the unfavorable slopes of the device in 

the gravity field. 

 

The maximum capillary pressure, which depends upon the surface tension coefficient (σl) of 

the liquid working fluid and mean effective pore radius (rme) of the porous structure, is given 

by the Young-Laplace equation as: 

me

l
cap

r
P

2
)( max                      (3.2) 

 

3.2.2 Wick Limitation 

The second condition of serviceability, characteristic only of LHPs, is related to the minimum 

pressure drop requirement between the evaporating and absorbing surfaces of the wick. This 

pressure drop is to be equal to ∆P1-7 (Figure 3.2), which is the sum of pressure losses in all the 

sections of circulation of the working fluid except the wick. This criterion for a minimum 

pressure drop, which may be regarded as a thermodynamic one, is required for displacing the 

liquid from the vapour line and evaporator grooves, and filling the liquid line and 

compensation chamber.  The condition can be stated with reference to Figure 3.2 as follow: 

7171   PT
dT

dP

sT

                     (3.3) 

where, ∆T1-7 and ∆P1-7 are the temperature and pressure differences of saturated vapour above 

the liquid-vapour interface between the evaporation zone and compensation chamber 

respectively.  

dT

dP
 is the derivative determined by the slope of the saturation line at the point with 

temperature Ts (vapour saturation temperature). The slope of the saturation pressure-
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temperature line at a given temperature, Ts can be calculated by the well known Clausius-

Clapeyron equation as follow: 

)( lvs

lv

vvT

h

dT

dP

sT 
                     (3.4) 

where, hlv is the latent heat of evaporation and vv and, vl are the specific volumes of vapour 

and liquid at temperature, Ts.  

 

This second condition of serviceability means that to ensure proper working of the LHP, a 

difference of vapour temperatures and pressures between the liquid-vapour interfaces in the 

evaporation zone and compensation chamber must be created to initiate start-up and maintain 

steady state operation of the LHP. 

 

3.2.3 Liquid Line Boiling Limit 

The working fluid should be sufficiently subcooled in the condenser after condensation in 

order to avoid boiling in the liquid line as a result of pressure losses and heating from external 

heat inflows and from heat conducted from the evaporator to the liquid line. The amount of 

required subcooling, ∆T4-6 is related to the liquid pressure drop, ∆P5-6   inside the liquid line 

due to frictional pressure loss, ∆Pl,ll and gravitational resistance, ∆Pgr and is determined by the 

following inequality. 

grlll PPPT
dT

dP

sT

  ,6564                   (3.5) 

This condition may be regarded as the third condition of LHP serviceability. 

 

3.3 LHP Mathematical Model 

A mathematical model of a LHP was developed, on the basis of the conservation laws of mass 

and energy in order to predict the steady state behaviour at given set of operating conditions. 

Using the model the steady state evaporator temperature, which is the main operating 

parameter of the loop heat pipe, is calculated as a function of the input power at the given 

conditions. The specified loop conditions include the sink/ambient temperature and the 

associated mode of cooling at the condenser. The proposed model was simplified by making 

the following assumptions: 
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1. The LHP achieves a steady state for a given loop condition. 

2. Single phase flow correlations are used to calculate the pressure drop in the condenser 

3. Heat exchange due to natural convection between the vapour line, liquid line and 

compensation chamber with the surroundings is assumed to be negligibly small. 

4. For a given heat load, the surface temperature of the condenser is considered to be 

constant and equal to the loop saturation temperature.  

5. Heat exchange between the wick wall and the liquid flowing through it is neglected. 

However, there is allowance for heat going from absorbing face of the wick into the liquid 

passing through the compensation chamber.  

6. Saturated liquid enters the wick absorbing face and saturated vapour leaves the 

evaporation zone. 

 

For a given heat load and sink temperature, the loop saturation temperature can be calculated 

from energy balances for each LHP component. To solve the resulting equations, fluid 

properties, system pressure drop, mass flow rate, heat transfer coefficients etc are required as 

functions of saturation temperature which are determined as follows.  

 

3.3.1 Fluid Properties    

The relevant fluid properties of the working fluid are functions of the loop operating 

temperature. In order to denote the dependence of the fluid properties on the temperature, 

each of these properties is curve fitted into a fifth order polynomial with respect to loop 

saturation temperature in the range of 0 to 125 ºC. At a particular temperature, T, each fluid 

property, Y, is calculated as follow: 

5432 fTeTdTcTbTaY                    (3.6) 

The coefficients (a…f) of the polynomials for water as the working fluid are given in Table 

A1 in the Appendix A. For each curve fitting, the error of the predictions from these 

coefficients compared to the values from the steam tables was not more than 5 %.  
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3.3.2 Energy Balance 

The schematic of the proposed miniature LHP model shown in Figure 3.3 depicts the 

constructional details of the device. The design of the miniature LHP consists of a flat disk 

shaped evaporator and fin-and-tube condenser connected by separate vapour and liquid 

transport lines. The thickness of the flat evaporator is determined by the vapour removal 

passage, wick structure and the compensation chamber. For steady state at given loop 

conditions, the energy balance is carried out for the loop by dividing it into three control 

volume as shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

The energy balance is performed on each of the control volumes as follow: 
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From Figure 3.4 equating net energy input to net energy output 
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Figure 3.4 Energy Balance inside Control Volume 1 
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llcavlvv hmQQhm 



  2                    (3.7) 

rearranging gives: 

2



  cavlllvv QQhmhm                    (3.8) 

The mass flow rate of vapour, 

vm  is equal to the mass flow rate of the liquid, 

lm  which can 

be written as mass flow rate of the working fluid, 

wfm  i.e. 

  wflv mmm                     (3.9) 

therefore, 

2)( 



  cavllvwf QQhhm                  (3.10) 

 

Control Volume 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 3.5 equating net energy input to net energy output 













  allccellcaccll QQhmQQhm 1                (3.11)  

solving Equation (3.11) 











  allccecacc QQQQ 1                  (3.12) 
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Control Volume 3 

In a LHP, the compensation chamber dictates the saturation temperature of the loop. The 

compensation chamber temperature is affected by three heat transfer paths. These paths 

include heat exchange between the evaporator and the compensation chamber, 

cceQ , known 

as heat leak or back conduction, heat exchange between the compensation chamber and the 

returning subcooled liquid from the condenser (with enthalpy gain 

scH ), and heat exchange 

between the compensation chamber and the surroundings, 

accQ . Under steady state 

conditions, the compensation chamber temperature and consequently the loop operating 

temperature results from these processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 3.6 equating net energy input to net energy output 





  allccevv QhmQhm                  (3.13) 

rearranging Equation (13) 





  cceallvv QQhmhm                  (3.14) 

using, 
  wflv mmm  





  ccealvwf QQhhm )(                  (3.15) 

Figure 3.6 Energy Balance inside Control Volume 3 
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Now, )( lvwf hhm  is the enthalpy gain by the fluid during the phase change process from 

liquid to vapour which can be denoted as 

evapH  

So, that )( lvwfevap hhmH                    (3.16) 

It should be noted that due to the small size of the LHP, the heat exchange due to natural 

convection between the vapour line, liquid line and compensation chamber is small enough to 

be neglected without admitting any considerable error (assumption 2). In light of the above 

statement and using equation (3.16), the energy Equations (3.10), (3.12) & (3.15) can be 

written in the modified form as follow: 

2  cevap QH                    (3.17) 





  ccec QQ 1                    (3.18) 





  cceaevap QQH                   (3.19) 

Equation (3.17) states that the latent heat of evaporation utilized during the evaporation 

process, 

evapH  is equal to the heat removal by the condensation process in the two phase 

portion of the condenser, 2

cQ . Equation (3.18) states that heat rejected in the single phase (i.e. 

subcooling) portion of the condenser is just enough to compensate for the heat conducted to 

the compensation chamber as a result of conduction through the saturated metal wick.  

 

Heat rejected in the single phase portion of the condenser can be given as: 

)(1

scspllc TTcmQ                           (3.20) 

where, Tsc is the temperature of the subcooled liquid at the outlet of the condenser and Ts is 

the saturation temperature of the liquid inside the condenser,  

 

In the light of Equation (3.18) it can be inferred that the enthalpy gain of the subcooled 

liquid, 

scH  with reference to the saturation state leaving the condenser and entering the 

compensation chamber is the same as the heat rejected by the single phase portion of the  

condenser, 1
cQ . 

i.e. 1  csc QH                      (3.21) 

This implies that back conduction from the evaporation zone to the compensation chamber via 
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the wick is counteracted by subcooling of the liquid achieved in the single phase portion of 

the condenser provided that the heat rejected by the compensation chamber to the 

surroundings and the heat gained by the liquid line from the surroundings are negligible. 

Equation (3.19) states that heat utilized in the evaporation zone for evaporation 

purposes, 

evapH  is the difference between the heat applied at the evaporator, 

aQ , and the heat 

exchange from the evaporation zone to the compensation chamber, 

cceQ . 

 

The mathematical model is based on equation (3.18) in which each term is substituted in 

terms of loop saturation temperature - Ts, as discussed in the subsequent sections. The 

resulting equation is then iteratively solved for Ts. 

 

3.3.3 Heat leakage across the wick, 

cceQ  

Part of the heat applied to the evaporator flows to the compensation chamber by conduction 

through the wetted wick structure and is given by: 

w

w

we

cce T
t

Ak
Q                    (3.22) 

where, ke is the effective thermal conductivity of the wetted wick, Aw and tw are the absorbing 

surface area and thickness respectively of the disk shaped wick structure and ∆Tw is the 

temperature difference across the wick.  

 

It should be noted in accordance with the assumption 5 that heat transfer from the wick into 

the liquid passing through it is neglected.  

 

The temperature difference, ∆Tw, is between the liquid-vapour interfaces in the evaporator and 

compensation chamber and is caused by the pressure difference across the wick structure. In 

order to calculate, ∆Tw, the serviceability condition 2, related to minimum pressure drop as 

discussed in the previous section, can be employed. This condition can be stated as: 

wltw PPT
dT

dP

sT
,                  (3.23) 

rearranging the equation  



Chapter 3: Theoretical Modelling of Loop Heat pipe        61 

 

sT
dT

dP

PP
T

wlt

w

,
                    (3.24) 

or, )( ,wltw PP
dP

dT
T

sT















                 (3.25) 

The slope of the liquid-vapour saturation line at the saturation temperature Ts,  

sT
dT

dP
can be calculated by using the Clausius-Clapeyron relation as in Equation (3.4):  

)( lvs

lv

vvT

h

dT

dP

sT 
 , where hlv is the latent heat of evaporation and vv and, vl are the specific 

volumes of vapour and liquid at temperature, Ts.  

The slope 

sT
dT

dP
can also be accurately predicted by differentiating the fifth order polynomial 

relationship between saturation pressure, Ps and saturation temperature, Ts as given by 

Equation (6) and shown below: 

5432

ssssss fTeTdTcTbTaP    

differentiating Ps w.r.t. Ts 

432

ssss

s

s fTeTdTcTb
dT

dP
                 (3.26) 

the values of the constants (b…f) are given in the Table A1 in the Appendices. 

 

The second term on the right side of the Equation (3.25) (∆Pt - ∆Pl,w) is calculated as 

discussed in the section below: 

 

3.3.4 Pressure Analysis 

The total pressure drop in the loop, ∆Pt, is the sum of the pressure losses due to vapour flow, 

∆Pv, liquid flow ∆Pl, and hydrostatic pressure loss due to the tilt of the device in the 

gravitational field, ∆Pgr. 

grlvt PPPP                    (3.27) 
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The pressure drop due to friction losses in liquid and vapour flow through the loop (for 

laminar or turbulent flows, circular or non-circular pipes, smooth or rough surfaces) is given 

by Darcy-Weisbach equation as: 

2

2
u

D

L
fP


                   (3.28) 

Where, f, a dimensionless quantity and function of Reynolds number, is the Darcy friction 

factor. For perfectly smooth pipes/channels, the friction factor, f  is given by: 

Re

64
f  , 2300Re   (laminar flow)                (3.29) 

25.0Re

316.0
f , 2300Re   (Turbulent flow)               (3.30) 

Reynolds number is given by,  



 huD
Re                     (3.31) 

Where, velocity of flow, u is calculated from continuity equation,  

A

m
u





                     (3.32)  

and mass flow rate is given by 
h

Q
m

lv

a



                  (3.33) 

It should be noted that calculation of the mass flow rate, m
  of the working fluid from the 

applied heat load 

aQ  provides a conservative approach in the determination of the total 

pressure loss inside the loop. Even for the adverse back conduction of the applied heat load to 

the compensation chamber (i.e. for cases of 

cceQ to be 10 to 50% of the 

aQ ), the above 

approach introduces an error of not more than 4%, in the prediction of the loop saturation 

temperature, Ts.  

 

3.3.4.1 Vapour pressure drop, ∆Pv 

Vapour pressure drop includes flow resistance due to vapour flow in the vapour transport line 

∆Pv,vl, the evaporator grooves ∆Pv,e and the condenser line, ∆Pv,c. By using the similar 

approach to that in section 3.3.4 the following correlation is obtained for laminar flow in the 

vapour line: 
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
































 a

lvv

v

vl

vl

vlv Q
hD

L
P





 4,

32
                (3.34) 

The vapour pressure loss in the vapour line is the major resistance that the fluid must 

overcome in order to circulate continuously under the capillary head.   

 

In order to calculate the pressure drop (∆Pv,e ) due to vapour flow through the grooves of the 

evaporator, the Reynolds number for flow is based on the hydraulic diameter defined as: 

eg

eg

egh

p

A
D

4
)(  ,                   (3.35) 

where Aeg is the cross sectional area of the groove/channel and peg is its wetted perimeter.  

Therefore, for laminar flow in the vapour removal channels, the vapour frictional pressure 

loss can be obtained as follow: 



























 a

lvv

v

egegh

eg

ev Q
hAD

L
P




2,

)(
32                 (3.36) 

 

For the condenser line 


































 a

lvv

v

cl

cl

cv Q
hD

L
P





 4,

32
                  (3.37) 

It should be noted that pressure loss in the condenser line is calculated by assuming vapour 

flow inside the condenser.  

 

3.3.4.2 Liquid Pressure Drop, ∆Pl  

Pressure drop due to laminar flow of liquid in the liquid transport line, ∆Pl,ll  can be calculated 

using the following relations: 

 

For the liquid transport line 


































 a

lvl

l

ll

ll

lll Q
hD

L
P





 4,

32
                (3.38) 

Note that the liquid pressure drop inside the evaporator core and the compensation chamber is 

small and can be neglected.   
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The pressure drop due to liquid flow through the wick thickness, ∆Pl,,w can be determined by 

Darcy’s law of fluid flow through porous media which denotes the influence of applied 

pressure on the flow rate of fluid for the given physical properties of the porous structure. 

This is given by (Faghri, 1995) as:  

































 a

wslvl

l

w

w

wl Q
khA

t
P

1
,




                (3.39) 

where, kws is the permeability of the evaporator wick and describes its ability to transport 

liquid under an applied pressure gradient. As evident from Equation (3.39) pressure losses are 

magnified for smaller values of permeability.  

 

3.3.4.3 Hydrostatic losses, ∆Pg 

The hydrostatic losses, for cases where liquid is pumped uphill, are determined as:  

 sin)( glP vlgr                    (3.40) 

as vl    

 singlP lgr                    (3.41) 

where, ρl and ρv are the liquid and vapour densities respectively, g is gravitational acceleration, 

l is the effective length of the device and φ is the slope from the horizontal plane.  

In the horizontal configuration,  = 0 and therefore the hydrostatic resistance is non existent.  

 

The total pressure loss can therefore be calculated by substituting values from equations 

(3.34), (3.36), (3.37), (3.38), (3.39) and (3.41) into the equation below: 

grwlcvlllevvlvt PPPPPPP  ,,,,,               (3.42) 

 

3.3.5 Effective Thermal Conductivity of Wetted Wick, ke 

The effective thermal conductivity of the wick is a very important parameter to be considered 

during the selection of the wick material and design of the capillary evaporator. It is a useful 

parameter to correctly calculate the wick thickness which is the most critical factor relating to 

evaporator design. There are different correlations that can be used to calculate the effective 

thermal conductivity of the wick.  
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Dunn and Reay (1995) proposed the following correlation to calculate the effective thermal 

conductivity, ke of the isotropic wick structure. 

















)]/(1[)/(2

)]/(1[2)/(2

wlwl

wlwl

we
kkkk

kkkk
kk




               (3.43) 

where, ε is the porosity of the wick and kw and kl are the thermal conductivities of the wick 

material and the working fluid respectively.  

 

Effective thermal conductivity of the wick can also be obtained by volume averaging the 

thermal conductivities of the wick material and the working fluid as follows: 

lwe kkk   )1(                   (3.44) 

 

Alexander (1972) gives a relationship for calculating the effective conductivity of the 

homogeneous wick structure as: 

 )1( 













w

l

le
k

k
kk                   (3.45) 

where, α is a constant equal to 0.59. 

 

3.3.6 Return Liquid Subcooling, 

scH  

The amount of the subcooling required for the liquid returning from the condenser depends 

upon the quantity of heat leakage from the evaporator to the compensation chamber. In order 

to avoid boiling in the non capillary liquid line, which can lock the capillary action and 

decrease the supply of liquid to the evaporator, the condenser in the LHP is arranged in such a 

way that part of the condenser serves to condense vapour while the reminder works as a liquid 

subcooler. In most cases, the maximum heat capacity of the LHP is limited by the condition 

of cooling and size of the condenser which in turn are set by the available space and design 

constraints.  

 

Proper analysis of the condenser includes calculation of the two phase length of the condenser 

i.e. active length of the condenser and extent of subcooling achieved in the single phase length 

of the condenser and the temperature at the outlet of the condenser.  
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3.3.7 Fin-and-Tube Condenser Analysis 

The schematic of the fin-and-tube condenser (also called a compact heat exchanger) in Figure 

3.7, is used as the basis for the thermal analysis of the heat exchanger. The mode of condenser 

cooling is forced convection using a centrifugal fan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the energy balance, the heat rejected in the two phase region of the condenser, 2

cQ  

from Equations (17) and (19) is given as: 





  cceac QQQ 2                   (3.46) 
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Figure 3.7 Schematics of the LHP condenser 
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In order to calculate the heat transfer rate of the condenser per unit length, the air flow 

through the rectangular fin array is considered. It is assumed that flow through the fin stack is 

fully developed and that the surface temperature of the base and the fins on the condenser is 

uniform. The latter assumption is correct within an accuracy of ±5% as verified by the 

experimental results. Thermocouples installed on the condenser surface displayed the surface 

temperature within ±5% of each other and justified this assumption.  

 

3.3.7.1 Heat Transfer Rate per Unit Length of the Condenser, 

lcQ /    

In order to determine the heat transfer capacity of the entire fin stack, as shown in Figure 3.7b, 

the following approach is used:  

Total heat transfer rate per unit length of the entire fin stack (i.e condenser), 

lcQ /  is calculated 

as: 

cl

aflmota

lc
L

TAh
Q

 
,

/


                  (3.47) 

where,  

ha is the heat transfer coefficient of air 

At  is the total surface area of the fins including the unfinned surface or flow area of the entire 

stack.  

Tlm,f-a is the log mean temperature difference between the fin surface and ambient air 

ηo is the overall surface efficiency or temperature effectiveness of the surface of the fins 

Lcl is the total finned length of the condenser 

 



lcQ /  can also be expressed as: 

cl

iaoapaa

lc
L

TTcm
Q

)( ,,

/






                  (3.48) 

where, 



am  is the total mass flow rate of the air 

cpa is the specific heat of air 

Ta,i is the inlet temperature of the air to the condenser 

Ta,o is the outlet temperature of the air from the condenser 
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Each term in Equations (3.47) and (3.48) is calculated as discussed in the following sections: 

 

3.3.7.2 Mass Flow Rate of Fan Air, 

am  

aaa Vm                      (3.49) 

where the volume flow rate of fan air is:  

fdaa AuV                       (3.50) 

 

3.3.7.3 Heat Transfer Coefficient of Air, ha 

To evaluate the flow regime, Reynolds number for the flow can be calculated as: 

 

a

fchaa

D

Du




Re                   (3.51) 

where,  
fc

fc

fch
p

A
D

4
  and is the hydraulic diameter of the channels between the fins. 

For fully developed laminar flow and given Aspect Ratio (
a

b

H

W

f

f
 ) of the fins, the 

Nusselt number, NuD can be seen from Table A.2 in Appendices.  

a

ha

D
k

Dh
Nu                       (3.52) 

rearranging for ha,  

h

aD

a
D

kNu
h                     (3.53) 

 

3.3.7.4 Overall Surface Efficiency of the Condenser, ηo 

The overall surface efficiency of the heat exchanger can be determined by the following 

equation: 

)1(1 f

t

ft

o
A

A
                    (3.54) 

where,   

Aft is the total surface area of the fins in the entire fin stack. 
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The fin efficiency, ηf is calculated by using the following equation: 

2

2
tanh

f

f

f H
m

H
m

                   (3.55) 

where, 
ca

ca

Ak

Ph
m                    (3.56) 

 

3.3.7.5 Log Mean Temperature Difference (LMTD), Tlm,f-a 

LMTD from the fin surface to the ambient air is given by the following formula: 
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aflm
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T                 (3.57) 

Here, the temperature of the fin, Tf is assumed to be equal to the temperature of the fin base - 

Tb which is assumed to be equal to the saturation temperature of the fluid passing through the 

condenser - Ts so that: 

sbf TTT                     (3.58) 

In this analysis, it is worth noting that the only thermal resistance regarded as significant in 

the condenser is that due to the convective heat transfer between the fins and the air.  

 

In Equation (3.57) for Tlm, f-a, the outlet temperature of the hot air, Ta,o from the condenser can 

be determined as below: 

















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ota
iassoa

mc

Ah
TTTT


exp)( ,,                 (3.59) 

 

3.3.7.6 Two Phase Length (Active Portion) of the Condenser, 
2L  

Based on the preceding discussion, the length of the condenser in which actual condensation 

of the vapour takes place can be calculated as: 

 


outx

inx lc

c
Q

dx
QL

/

22 
                  (3.60) 
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If the result of the integration of Equation 3.60 with respect to the quality from xin =1 to 

xout=0 is less than the total length of the condenser, then the liquid-vapour interface is situated 

inside the condenser. In the case, where the active length comes out to be more than the 

condenser length then the liquid-vapour interface lies in the liquid line in which case vapour 

will flow to the compensation chamber imposing limitation on the maximum heat transfer rate 

of the mLHP. At this condition, the condenser will operate in a so-called fully-opened 

condition. In practise, this condition is usually avoided as the condenser is designed to operate 

at the maximum heat load applied to the capillary evaporator.  

 

3.3.7.7 Liquid Temperature at the Condenser Outlet, Tsc 

Since the two phase length of the condenser is known, it is possible to calculate the liquid 

temperature at the condenser exit by using the energy balance equation in the liquid portion of 

the condenser i.e. 
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               (3.61) 

 where, 1
am is the mass flow of the air through the subcooling portion (i.e. liquid phase) of 

condenser and is given by: 
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1



                     (3.62) 

1L is the subcooling length of the condenser. 

 

Since the heat loss from the liquid line is neglected, the amount of liquid subcooling required 

for the returning liquid is determined in terms of Ts by putting values of  cpl, 


lm and Tc,o as 

calculated from Equation (3.6), (3.33) and (3.61) in the equation below: 

)( ,

1

ocspllcsc TTcmQH                     (3.63) 

 

3.3.7.8 mLHP Operating Temperature, Ts 

Rewriting equation (18) to calculate Ts 

0 

 sccce HQ                   (3.64) 
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Substituting Equations (3.22) and (3.63) into Equation (3.64) gives an equation of the form: 

0),,(),,( 21  

aasaas QTTfQTTf                 (3.65) 

where, f1 and f2 are known functions. For the given Ta and Qa, the mLHP operating/saturation 

temperature -Ts can be determined by solving equation (3.65) iteratively for Ts using 

Microsoft Excel software. 

The criterion for convergence is set as follow: 

 3

21 10),,(),,(  aasaas QTTfQTTf                 (3.66) 

 

3.4 mLHP Maximum Heat Transfer Capacity  

The maximum capacity of a mLHP is limited by three main conditions that include  

1. The maximum permissible operating temperature of the source,  

2. Mode of cooling of the condenser (or maximum heat dissipation capacity of the 

condenser)  

3. Capillary limit of the wick structure. 

 

In the case of electronics cooling, the upper value of the operating temperature of the cooling 

device (in this case a mLHP) is generally less than or equal to 100 ºC. Based on the 

mathematical model discussed above, for a given constant value of ambient temperature Ta, 

the operating temperature Ts is iteratively solved for the given input value of applied heat 

load, 

aQ . For Ts≤100 ºC, the maximum value of the 

aQ  i.e. 

maxQ can be obtained as limited by 

condition (1). Similarly, the value of the heat load at which the location of the liquid vapour 

interface is situated at the exit of the condenser gives the maximum value of the heat load 

according to condition (2). 

 

The first condition of serviceability can be used to calculate the maximum value of heat load, 



maxQ  as limited by condition (3). The condition can be mathematically stated by rewriting 

Equation (1) as follow: 

tcap PP  max)(                    (3.67) 

Substituting for ∆Pt from Equation (42): 
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grwlcvlllevvlvtcap PPPPPPPP  ,,,,,max)(             (3.68) 

=> grwlcvlllevvlvcap PPPPPPP  ,,,,,max)(              (3.69) 

 

By substituting from equations (3.2), (3.34), (3.36) to (3.39) and (3.41) in Equation (3.69) 

gives the following relationship: 
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      (3.70)         

 

In the Equation 3.70, values for the geometrical parameters of each component of the mLHP 

and the relevant fluid properties at the given saturation temperature Ts, are input to obtain the 

maximum value of 

aQ = 

maxQ as limited by condition (3). It should be mentioned here that for 

a mLHP in most cases the value of 

maxQ is limited by conditions (1) and (2) rather than by 

condition (3) which is always very high due to the use of fine pore wicks in mLHP 

evaporators.  

 

3.5 Thermal resistance, R 

Apart from the evaporator operating temperature and maximum heat capacity, the efficiency 

of the mLHP is measured on the basis of the thermal resistance-R. Figure 3.8 shows the 

thermal circuit diagram for the mLHP showing the whole sequence of resistances from heat 

source to heat sink.  

  

 

 

 

 

 

 

Figure 3.8 Thermal circuit diagram for the mLHP showing thermal resistances of different components 
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The main components of the total thermal resistance, Rt which are classified on the basis of 

temperature measurements at the characteristic points are the evaporator thermal resistance - 

Re and mLHP/heat pipe thermal resistance (i.e. thermal resistance between evaporator surface 

to condenser surface) Rhp. The following equations (3.71 – 3.73) are used to calculate these 

thermal resistances. 
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In the above equations, Tj is the temperature at the junction of the heater and the evaporator 

active surface. This temperature dictates the maximum permissible temperature of the source 

and should be generally below 100 ºC.  

Rhp, as in the case of conventional heat pipes, can also be determined on the basis of the 

following equation: 
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AhAh
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                    (3.74) 

 

Calculation for the heat transfer coefficient in the evaporator and condenser can be made by 

using the given relations: 
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It should be noted that the saturation temperature of the loop, Ts is assumed to be equal to the 

temperature of the fluid at the evaporator outlet Te,o in carrying out the above calculations. 
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 Thermal resistance for the heater-evaporator junction, Rj , the transportation section, Rts ,  the 

heat exchanger, Rhx and condenser to ambient, Rc,a can also be calculated  on similar lines, 

with the help of Figure 3.8, in order to assess the performance of each component and 

improve the overall efficiency of the  heat transfer process.   

 

This section concludes the current chapter on the theory of loop heat pipes. The mathematical 

model described in this chapter can be used to validate the design of the mLHP and verify 

whether the proposed design is consistent with the maximum heat load capacity required for 

the intended application with the given working fluid. Performance indices like thermal 

resistance, operating temperature and heat transfer coefficient can be used to evaluate the 

efficiency of the proposed mLHP at the given loop conditions. In addition to this, the model 

can assists in understanding and refining the outcomes of the experimental studies.  

 

3.6 Summary 

In this chapter, a thermal analytical model of loop heat pipes is discussed. For the proper 

operation of a LHP, three main conditions of serviceability that includes maximum capillary 

pressure limit, wick limitation and liquid line boiling limit must be obeyed. A mathematical 

model based on energy balances inside the loop system is derived for the prediction of the 

mLHP steady state operating temperature. The predictions made by the theoretical model can 

be used in the refinement of the experimental studies. For the measurement of the thermal 

performance of a mLHP, thermal resistance between different loop components, loop steady 

state operating temperature and evaporator heat transfer coefficient were used.  

  

The following chapter explains the experimental apparatus and testing procedure used for the 

thermal testing of a miniature LHP with a flat disk shaped evaporator. 
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Chapter 4 

mLHP with Disk Shaped Evaporator: Experimental 

Apparatus and Method 

 

The construction details of the miniature loop heat pipe are described in this section. As two 

phase heat transfer devices are very sensitive to any kind of impurity present inside the system, 

the cleaning and charging procedures are specifically explained. In the final part, the method 

used for testing the mLHP is stated. It should be noted that before the actual designing of the 

miniature mLHP was undertaken, a medium scale capillary pumped loop (CPL) prototype 

(Appendix B) was built and tested as a case study to gain experience on the design and 

integration of the system components and to better comprehend the working of two phase 

loop systems. In addition to this, the medium scale CPL was made to study the unique 

characteristics of the capillary pumped loop system.  

 

4.1 mLHP Prototype Description 

A miniature LHP (mLHP) with a flat disk shaped evaporator was designed to transfer 70 W of 

heat load over distances of up to 150 mm at a specified mode of condenser cooling. The 

prototype of the mLHP is shown in Figure 4.1 and consists of a flat evaporator and a fin-and-

tube condenser which are connected by separate vapour and liquid lines. The main challenge 

here was to design the evaporator with limited thickness (≤ 10 mm) while preserving the 

functionalities of the wick and thermal performance of the two phase heat transfer process. 

The mLHP body and the transport lines were made of copper. 

 

The design of the mLHP was performed on the basis of a pressure analysis in order to obey 

the first condition of serviceability. According to this condition, for a LHP with the given 

cooling capacity of the condenser and operating at the maximum heat load, the sum of the 

pressure losses in each loop component should be less than the maximum capillary pressure 

generated by the wick structure. Apart from this condition, other factors that are critical from 

the point of a design of mLHP are the condenser capability, maximum 
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heat load, available cooling space, heat transfer fluid used inside the loop and wick 

characteristics. The design and dimensions of the mLHP were decided to some extent by the 

available space inside the laptop enclosure as explained in the section 2.5 of the problem 

description. Some aspects of the mLHP design were also inspired from the work by Maydanik 

(2005). Each component of the mLHP is explained in detail in the following sections. 

 

 

 

 

 

 

4.1.1 Evaporator Structure 

In the case of the evaporator, the maximum thickness and diameter of disk were fixed by the 

available space. The thickness of the mLHP evaporator consisted of the system of vapour 

removal channels and wick structure that formed the evaporator bottom portion and 

compensation chamber that formed the evaporator top portion. The internal details of the 

evaporator particularly the vapour flow channels were decided on the basis of the pressure 

loss analysis in the loop. This structural arrangement of the evaporator can be well understood 

from the exploded view of the capillary evaporator shown in Figure 4.2.  

 

Charging Line 

Condenser 

Evaporator 

Liquid line 

Vapour Line 

Figure 4.1 Prototype of Miniature Loop Heat Pipe (mLHP) showing the 

different components 
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The evaporator structure interacts with the rest of the loop via the vapour line, 150 mm in 

length and 2 mm internal diameter (ID), which was connected to the bottom half of the 

evaporator and inline with the vapour removal passages, and the liquid line, 290 mm length 

and 2 mm ID, attached to the compensation chamber (or evaporator top portion) (Figure 4.3). 

The lengths of the liquid/vapour lines denote the nominal heat transport distance of the loop 

with the given configuration and operating under maximum heat load.  

 

Charging and evacuation of the mLHP was made possible by the charging line, 100 mm 

length and 2 mm ID, linked to the compensation chamber.  

 

Figure 4.2 Exploded view of the capillary evaporator showing the different parts 
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Evaporator active zone 
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An Ethylene Propylene Diene Monomer (EPDM) gasket was used between the flanges 

(Figure 4.3b) for making the system leak proof. To avoid any internal leaks between the 

evaporation zone and the compensation chamber, a small groove was machined on the inside 

of the flange on the evaporator bottom portion and was packed with the EPDM ring. A small 

projection was also made on the inside of the evaporator top half in order to apply pressure on 

the wick structure and keep it against the micro channel for better thermal contact. To ensure 

proper thermal contact between the wick and the channel fins, the mating surfaces should be 

perfectly flat. Surface contact tests were conducted to align the surfaces for proper contact. 

These tests used a thin strip of transparent material that changed colour under pressure on the 

contact area. 

 

4.1.1.1 Evaporator Bottom Portion 

The bottom Portion of the flat evaporator behaves as a heat acquisition system and consists of 

the evaporator active zone, vapour removal channels and wick structure. The heat load that 

Figure 4.3 mLHP Evaporator  

(b) Internal View (Section A-A) 

(a) External view  

Evaporator active zone 

A 

To vapour line 

To liquid line 

Compensation 

chamber (CC) 

Evaporator 
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Sealing flanges 

To charging line 

Evaporator active zone 

Vapour removal channels 

Compensation chamber 

Projection for pressing wick 

on vapour removal channel  

Groove provided with 

rubber sealing gasket 

to avoid external leaks 

Groove provided with rubber 

sealing to avoid any leak 

from evaporation zone to CC 

Wick 
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provides the necessary motivation force to cause the capillary circulation of the working fluid 

is applied at the bottom part of the evaporator. 

 

4.1.1.2 Evaporator Heat Acquisition Region  

The evaporator heat acquisition region comprises the active zone and the vapour removal 

channels. The evaporator active zone is the region in which the heat load is actually applied to 

the evaporator. In this case, the active zone is flat in shape with a characteristic diameter of 30 

mm. The flat diametric face of the evaporator provides direct contact with the heat source 

without the need of any interface saddle material that is required in the case of cylindrical 

evaporators. On the inside face of the active heating surface, an efficient system of vapour 

removal channels is formed by machining 15 micro grooves with rectangular cross-section of 

1 mm depth and 0.9 mm width (Figure 4.4).  

 

 

 

 

 

 

In the design of the vapour channels it should be noted that the distance travelled by the 

vapour along the heated evaporator wall should be kept to a minimum and dead ends should 

not be present to avoid unnecessary accumulation of vapour in the channels. These design 

imperfections can result in an increase of the degree of superheating of vapour and eventually 

in increase of the evaporator wall temperature. In the light of the above discussion, a system 

Vapour removal 

channels 

Vapour distribution 

channel 

Evaporator active zone 

B-B 

(b) Sectional Detail (B-B) 
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0.7 mm 0.9 mm 

1 mm 

Figure 4.4 Details of Vapour removal channels  

(c) Side view 

(a) Top view 
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of parallel channels with their ends connected to a common vapour distribution passage as 

shown in Figure 4.4 serves as an optimum design for the current design of mLHP. The 

evaporation zone is formed at the wick-wall interface made by the ramified system of vapour 

removal passages. The system of fins and channels formed by vapour removal passages 

performs three main functions: firstly, they provide a path for the conductive heat transfer 

from the evaporator active zone to the wick and thus help to perform evaporation from the 

liquid-vapour interface present inside the wick micro pores. Secondly, they help to achieve 

very high values of convective heat transfer coefficient inside the evaporation zone. Thirdly, 

they help in the collection and removal of vapour from the evaporation zone to the vapour line. 

 

4.1.1.3 Wick Structure 

Due to the miniature size of the LHP the pressure losses associated with flow resistance are 

relatively high. For that reason, it is imperative to use a wick structure with fine pore size that 

can provide sufficient capillary pressure to keep the working fluid in continuous circulation 

during loop operation. Apart from providing capillary pumping, the wick structure also 

functions as a hydraulic and thermal lock to inhibit reverse heat flow and prevent any reverse 

vapour flow from the evaporation zone to the compensation chamber. The vapour lock is 

provided by the presence of the liquid in the fine pores of the capillary structure while the 

thermal lock is provided by the thermal resistance of the wetted capillary structure. In the 

design of miniature LHPs, the thickness of the whole evaporator can be decreased but this is 

at the expense of the wick thickness. The main obstacle in this case is the so called parasitic 

heat flows (i.e. back heat flow) from the evaporation zone to the compensation chamber. 

These heat flows to the compensation chamber (CC) can gave rise to high temperatures at the 

evaporator due to the heating of the incoming liquid in the compensation chamber. To 

overcome these limitations wick structures made from low thermal conductivity material like 

nickel have been used. Here again, a wick with low thermal conductivity while solving the 

problem of back heat flow introduces the problem of reduced heat transfer in the desired 

evaporation zone. In this case, the heat flows over the evaporator body may increase owing to 

a decrease in the efficiency of heat exchange process in the evaporation zone. Hence for 

effective heat transfer in the evaporation zone, it can be concluded that wicks with high 

thermal conductivity material like copper are advantageous. Clearly this is a situation of 
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compromise between back conduction through the wick and effective heat transfer in the 

evaporation zone. Within the framework of the proposed design, different grades of sintered 

nickel and sintered copper wicks with a thickness of 3 mm were used to test the thermal 

performance of the mLHP under different heat loads. It should be noted that within the 

abovementioned constraints, the wick thickness was decided on the basis of the maximum 

permissible thickness of the evaporator and the thickness of the vapour removal channel, 

compensation chamber and evaporator wall. Ethylene-Propylene Diene Monomer (EPDM) 

packing was used around the wick sides to prevent any internal leaks of vapour from the 

evaporation zone to the compensation chamber/reservoir and to minimize heat conduction 

from the evaporator side walls to the wick structure. 

 

4.1.1.4 Compensation Chamber (Evaporator Top Portion) 

The thickness of the whole evaporator structure also incorporates the compensation chamber 

which is thermally and hydraulically connected to the evaporation zone through the wick 

structure. The compensation chamber forms the evaporator top portion. The function of the 

compensation chamber is to accommodate the excess liquid inventory displaced from the 

evaporator grooves, vapour line and condenser during start-up and to provide the wick 

structure with direct access to the liquid. Apart from this, the compensation chamber helps in 

the auto regulation of the LHP temperature for the range of heat loads which depends on the 

dimensions of the compensation chamber and condenser, and on the cooling capacity of the 

latter. The inherent location of the reservoir in the LHP (in contrast to CPL) is responsible for 

the reliable startup and robust behaviour of LHPs. In the design of the compensation chamber, 

the total volume of the loop and the extent of auto regulation behaviour desired from the 

given loop configuration is taken into account. An optimum volume for the compensation 

chamber should be equal to the entire volume of the evaporator grooves, vapour line and 

condenser, when the LHP is operating at its maximum heat load. Excess liquid is beneficial 

for the LHP operation but can result in a pressure surge or temperature oscillations. In the 

present case, the volume of the compensation chamber was made equal to the total volume of 

the loop such that it is able to accommodate most of the displaced fluid inventory and should 

be at least 50% full of liquid working fluid in the cold state i.e. the state when the loop is not 

operating or before start-up.  
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4.1.1.5 Fin and Tube Condenser 

A fin-and-tube condenser was used to reject the latent heat of condensation of vapour to the 

surroundings (i.e. the heat sink). Part of the condenser helps to condense the vapour while the 

rest provides subcooling which is necessary to avoid boiling of the liquid in the liquid line or 

compensation chamber.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The condenser length of 50 mm and height of 10 mm was limited by the dimensions of the 

fan duct and maximum available thickness in the Z-direction. The condenser of the mLHP 
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Figure 4.5 Details of Fin-and-Tube Condenser 
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was provided with external fins (Figure 4.5) measuring 20x10 mm with a thickness of 0.2 mm. 

Copper fins were joined to the copper line (ID: 2mm, OD: 3 mm) using thermally conductive 

epoxy resin. It should be noted that for the condenser, the standard design of fin-and-tube type 

heat exchanger used in laptop computers was used. 

 

4.2 Cleaning Procedure 

Proper care was given to the cleaning of the mLHP before it was charged with the working 

fluid. The following cleaning method was used in the listed sequence: 

 Heating in a furnace at a temperature of around 150 ºC for 30 minutes to remove any 

organic as well as inorganic impurities from the process of manufacturing 

 Cleaning using Acetic Acid / Vinegar ( CH3COOH) 

 Washing / Rinsing using boiling water followed by cleaning using compressed air ( this 

process was repeated 3-4 time to remove any residual cleaning agent) 

 Each hardware component (nut/bolt/gasket) was cleaned by using boiling water  

 The wick structure was re-sintered if it showed poor wetting with the working fluid or 

provided any evidence of contamination based on visual inspection  

 

4.3 Charging Procedure 

The charging line was connected to a three way valve as shown in Figure 4.6. This was used 

to connect the mLHP to the vacuum pump (via port A and C) or the charging station (via port 

A and B) for the evacuation or charging of the mLHP respectively. Water was used as 

working fluid. In order to avoid any Non Condensable Gas (NCG) formation inside the mLHP, 

the water should be deionised, distilled and degassed before it is charged into the mLHP. The 

charging station was provided with a graduated cylinder filled with the appropriate quantity of 

liquid water. Charging of the mLHP was done by using liquid water under vacuum condition. 

This is because liquids under pressure always contain some percentage of dissolved gases. In 

addition to this, the water was cooled to near freezing point before charging to avoid any 

vapour bubble formation due to vacuum conditions inside the evaporator wick and 

compensation chamber. Vapour bubbles inside the compensation chamber can result in local 

dry spots on the absorbing surface of the wick which can increase the evaporator surface 

temperature during operation.  
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The charging procedure was as follow: 

o Initially, all valves and ports are closed  

o Next, valves X and Y are closed, port A is connected to port C and the vacuum pump is 

operated to evacuate air from the system. After the required vacuum is achieved, ports A 

and C are disconnected and the system is kept under vacuum of around 0.001 mm of Hg 

for 24 hours to check for any leaks that might degrade its performance.  

o If the system passes the vacuum test, then charging is done otherwise in case of evidence 

of any leak, the leak points are identified using a leak detection test and repaired.  

o Degassing of the pure water is done by connecting the charging cylinder to the vacuum 

pump. For this, valve X and Y are opened and the vacuum pump is operated until no air 

bubbles are seen coming out of the liquid. Ports A, B and C are still in a closed state. 

o For charging, firstly valve Y is opened and then port A is connected to port B to charge 

the mLHP with the calculated volume of the liquid inventory  

o After charging, valve Y is closed and ports A, B and C are disconnected from each other.  
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Figure 4.6 Charging procedure for mLHP 
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The liquid quantity charged into the mLHP is decided on the basis of the compensation 

chamber volume, porous volume of the wick and volume of the liquid line. The loop was 

charged with 70 to 80% of its internal volume with water as the working fluid.  Also, tests 

were conducted with different volumes of water charge to study the effect of liquid inventory 

on the heat transfer capability of the device.  

 

4.4 Testing Method 

The thermal characteristics of the designed miniature LHP were studied by using a heater of 

3.75 cm
2
 (25x15 mm

2
) area. The heat load simulator (Figure 4.7b) was in the form of a copper 

block with two embedded cylindrical cartridge heaters. The heater block was attached 

symmetrically to the center of the circular heat absorbing face. Thermal performance of the 

mLHP was studied and compared under uniform heating mode and non uniform heating mode 

of the evaporator using heaters of 6.25 cm
2
 and 1 cm

2
 respectively. Tests were also conducted 

using capillary structures of different material namely nickel and copper sintered wicks. 

Thermal characteristics of the mLHP with regard to start up behaviour and steady state 

operation were studied over the range of applied power. Optimum working fluid charge for 

reliable startup of the mLHP was determined experimentally. Also the effect on the thermal 

performance of the mLHP with change in orientation was explored.  Tests were carried out to 

determine the effect of non-condensable gases (NCG) on the efficiency of the mLHP. 

Methods to detect NCG inside the loop system and possible remedies to avoid NCG 

formation in the two phase systems were developed. Condenser cooling was accomplished by 

forced convection provided by an air cooling fan using ambient air with a temperature of 

24±2°C.  The maximum flow rate of the fan was 0.1 m
3
/s using a 5 V, 0.1 A power supply. A 

digital wattmeter with precision of ±0.1 W was used to measure and control the input heat 

load to the heat simulator. The power input to the heat simulator was increased in steps of 5 

W during the test. The temperature was measured at different points on the mLHP using 

Twelve T-Type thermocouples with maximum error of ± 0.5 °C. Figure 4.7 (a, c & d) shows 

the experimental set up for testing the mLHP along with the location of the thermocouples. 

Data from these thermocouples was acquired every 10 s by a Keyence data acquisition system.  
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Figure 4.7 Schematic of the experimental prototype and test layout for the 

mLHP 
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The thermal performance of the mLHP was characterised on the basis of the evaporator 

temperature, maximum heat capacity, evaporator thermal resistance, mLHP/heat pipe thermal 

resistance and total thermal resistance of the device. In the determination of heat transfer 

coefficient – h, (from temperatures and heat load measurements) uncertainty was estimated to 

be ±15 %. It should be noted that for thermal resistance – R, the error of estimation will be 

larger at low heat loads due to the high value of fluid and wall temperature differences. 

Therefore, the uncertainty analysis of the resistance was carried out at the low heat loads used 

in the experiment and uncertainty lies within ±8 %. For measuring the temperature at the 

junction of the mLHP evaporator and the heat load simulator, a special groove (Figure 4.7a) 

was made at the center of the heating face of the simulator block in which the thermocouple 

point was fixed using thermal epoxy resin. While the mLHP evaporator active face is attached 

to the thermal footprint of the heater, it is important for the thermocouple Tj to have contact 

with the evaporator active zone so that the true interface temperature on the evaporator side of 

the junction is determined. This is important for the accurate estimation of the thermal 

resistances which are based on the evaporator interface (i.e. junction) temperature. The 

temperature of the evaporator wall, condenser wall and compensation chamber were 

calculated by averaging the temperatures of the thermocouples fixed on their outer zones.  

 

Testing of the mLHP prototype was done in the horizontal configuration with the evaporator 

and condenser at the same level. Start up of the mLHP was assumed to occur with the rise in 

temperature of the vapour line and consequent clearing of liquid from the vapour line. For a 

successful start up at a given heat load the temperature difference between the outlet of the 

evaporator and inlet of the condenser should be less than or equal to 1 ºC. For a given heat 

load, steady state was characterized by constant evaporator temperature. The heat load limit 

applied to the mLHP was decided by the permissible temperature limit at the heat source 

which should be within 100±5ºC.  

 

4.5 Summary 

A detailed description of each component of a mLHP with a flat disk shaped evaporator is 

given. In order to avoid the formation of any Non Condensable Gases (NCGs) inside the 

mLHP system, it should be charged with deionised, degassed and distilled water. Also, the 
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system should be leak tight and a proper cleaning procedure on the loop components should 

be done before assembling the parts. The test procedure to conduct thermal testing of the 

mLHP is explained in detail in the latter part of the chapter.  

 

The next chapter discusses the results of tests conducted on the mLHP with a disk shaped 

evaporator. 
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Chapter 5 

mLHP with Disk Shaped Evaporator: Results and 

Discussion 

 

In this chapter, outcomes of experimentation on the mLHP are discussed in detail. Thermal 

characteristics of the mLHP with regard to the startup phenomena and steady state operation 

of the loop system are explained. Factors that can lead to the start up failure of the mLHP are 

explained with the help of examples. The optimum quantity of the fluid charge for reliable 

start up and steady state behaviour of the device over a range of applied heat loads was 

experimentally determined. Also, the effect of the fluid distribution and pre start -up situation 

inside the mLHP evaporator on the startup characteristics of the device are presented. In order 

to validate the proposed theoretical model for the designed mLHP, predictions made from the 

model are compared to the experimentally obtained results. As LHPs are very reliable devices 

for heat transfer against gravity, the thermal behaviour of the miniature LHP is also studied 

for the adverse tilt in the gravitational field.  

 

As the current trend of technology is towards dense and high powered microprocessors, so the 

thermal performance of the mLHP was evaluated with both uniform and non-uniform heating 

modes. In the non-uniform heating mode only 14% of the evaporator active zone was heated. 

Recognising the importance of the capillary structure which is the most critical component of 

the two phase passive system, the effect of the material and physical properties of the wick on 

the operational characteristics of the loop system was assessed. Performance of the mLHP 

with monoporous as well as biporous wick configurations was also tested. Detailed 

investigation has also been carried out on the mLHP to study the effect of Non Condensable 

Gases (NCGs) on the thermal characteristics of the system. Different approaches to detect and 

flush out the NCG from the mLHP have been proposed and successfully tested. 
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5.1 Thermal Characteristics of the mLHP 

The operational characteristics of the designed mLHP were tested using a heater of 3.75 cm
2
 

(25x15 mm
2
) active area. In this case, the heater was able to provide the heat load to 

approximately 50% of the active area of the evaporator. The device was tested for transferring 

heat load up to distance of 150 mm while maintaining the evaporator surface temperature 

below 100 ºC. In this study, a nickel monoporous wick with average pore size less than 15 μm 

and 60% porous volume was used as the capillary pump. The loop was charged with water up 

to 70 to 80% of its internal volume. Testing was done with the evaporator and condenser at 

the same horizontal level.  

 

5.1.1 Start-Up Phenomena  

Figure 6.1 depicts the startup of the mLHP at 15 W input power. As heat load is applied to the 

evaporator active zone, steady rise in the evaporator wall temperature is noted. Heat is 

conducted from the evaporator surface to the capillary structure through the vapour removal 

channel fins. In the cold state, most of the working fluid is present in the evaporator and 

compensation chamber due to their large volume compared with the condenser and transport 

lines. Therefore, heat is also distributed to the capillary structure and evaporator grooves 

through convection inside the liquid working fluid present in the grooves. Another important 

factor relates to the high thermal conductivity of the copper housing. Since this property for 

copper is considerably high (around 380 W/m K) when compared to other materials, heat is 

better conducted and evenly distributed throughout the evaporation portion. Now, depending 

on the fluid distribution inside the evaporator grooves, if the free surface of the liquid or the 

liquid-vapour interface already exists inside the grooves or along the evaporating face of the 

wick, evaporation of the liquid will occur instantly on the application of heat. Alternatively, if 

the grooves are predominately occupied by the liquid, then the liquid must be superheated to a 

certain degree for initiating boiling in the bulk of the liquid. As the liquid working fluid 

present in the evaporator grooves achieves the required degree of superheat from the 

evaporator surface, nucleate boiling occurs in the grooves. The resulting vapour pushes the 

liquid from the evaporator grooves and causes a very sharp rise in temperature of evaporator 

outlet as shown by the blue line in the graph. This is followed by discharge of the vapour from 
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the evaporator to the condenser through the vapour line, as indicated by the sharp rise in 

temperature at the condenser inlet as shown by orange line in the graph. 

In accordance with the theoretical conditions for a serviceability of the LHP as discussed in 

section 3.2.2, it should be noted that to start the fluid circulation inside the loop, the required 

pressure and temperature difference must be developed across the liquid vapour interfaces in 

the compensation chamber and the evaporation zone. This pressure and thus temperature 

difference is required for displacing liquid from the vapour line and filling the liquid line and 

compensation chamber. In the mLHP evaporator, due to the heat flow through the wetted 

metal wick and high conductive evaporator wall, part of the heat applied to the evaporator 

active zone leaks to the compensation chamber.  This is evident from the parallel rise in the 

compensation chamber and evaporator wall temperatures as observed in Figure 6.1.  
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These heat leaks contribute to increase of the compensation chamber temperature. Due to the 

void fraction inside the compensation chamber in the cold state, the liquid-vapour interface 

may be already present inside the chamber even before the heat load is applied to the 

Evaporator Wall 
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Evaporator Outlet 

Condenser Inlet 
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Chamber 

Compensation Chamber Inlet Compensation chamber  

Evaporator Outlet 

Condenser Outlet 

Ambient Air 

Condenser Inlet 
Condenser Wall 

Figure 5.1 Start-up of the mLHP at 15W input power 
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evaporator active zone and startup is initiated. Now, due to the closeness of the evaporator 

wall to the heat source and the thermal resistance of the capillary structure, the associated 

pressure and temperature of the vapour in the evaporation zone are higher than in the 

compensation chamber. Here, the function of the wick as a thermal lock manifests itself. Also, 

the subcooled liquid returning from the condenser to the compensation chamber contributes to 

lowering the temperature of the chamber. From the graph in Figure 5.1, it is evident that such 

a temperature difference does exist continuously between the evaporator wall and 

compensation chamber and helps to instigate fluid circulation and thus reliable start-up of the 

mLHP. The initiation of fluid circulation inside the loop is well marked by the stabilization of 

the temperature at the inlet of the compensation chamber which otherwise shows a steady 

increase due to back flow of heat from the evaporator active zone. In this case, incoming 

liquid to the compensation chamber takes heat from the compensation chamber wall and exit 

of the liquid line and thus stabilizes their temperatures. This is why the liquid condensate 

should be provided with appropriate sub-cooling inside the condenser in order to avoid 

boiling inside the compensation chamber or in the liquid line.   The subcooling helps to keep 

the temperature of the liquid below the saturation conditions even when including heat from 

the compensation chamber wall. The excess liquid cleared from the evaporator grooves and 

vapour line by the vapour is accommodated in the compensation chamber. The evaporating 

meniscus formed at the wick-wall interface inside the evaporation zone is responsible for 

developing the capillary pressure to circulate the working fluid continuously around the loop. 

Successful start up is registered only if the evaporator is able to achieve a prolonged steady 

state. It has been observed that in some cases even after the initiation of fluid circulation, 

start-up failure can occur. This is dictated by multiple factors that are discussed in detail later 

in the section on mLHP failure mode analysis.  

 

5.1.2 Steady State Operation 

Figure 5.2 gives the heat load dependence of the evaporator surface temperature. The plot 

clearly shows that the loop heat pipe is able to automatically regulate its mode of operation 

with changing heat load.  
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For input power less than 30 W, a variable conductance mode is observed. In this case one 

can observe that different heat loads may correspond to the same value of temperature. At low 

heat loads, the mass flow rate of the working fluid is small therefore the compensation 

chamber and the condenser are partially filled with the liquid. The temperature of the 

compensation chamber which dictates the saturation condition inside the evaporator is 

established by the outcome of two main factors. The first one is the amount of parasitic heat 

flow from the evaporator to the compensation chamber via the capillary structure and the 

evaporator wall and the second is the liquid redistribution between the condenser and the 

compensation chamber which take place under changes of head load. With the increase in 

heat load, the effect of these competitive processes i.e. heat inflow and liquid displaced to the 

compensation chamber also increase. As a result of this, the compensation chamber and thus 

evaporator wall temperature is stabilized to some extent enabling the LHP to auto-regulate the 

source temperature. The variable conductance mode of the LHP continues to the stage when 

the compensation chamber is completely filled with liquid and the entire condensation surface 

is utilized for heat removal. It should be noted that in such a mode of operation the thermal 

resistance of the mLHP decreases with the increasing heat load which is very useful for high 

powered electronic cooling applications where the permissible thermal resistance is very low. 

The variable mode of conductance is the unique characteristic of the mLHP that makes it 

potential replacement alternative to traditional heat pipes. For heat loads more than 30 W, as 

Figure 5.2 Heat load dependence of the evaporator surface temperature  

Constant Conductance Mode 

Variable Conductance 

Mode 
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presented by Figure 5.2, a constant conductance mode is realized in which the condensation 

surface is fixed. In this mode, a LHP behaves like conventional heat pipe and shows 

monotonic temperature trend with changing heat load.  

 

The maximum heat capacity of a mLHP in electronics cooling is mainly decided by the 

maximum permissible temperature at the heat source which is normally regarded as 100 ºC. In 

case of the designed mLHP, it was able to transfer 70 W maximum heat load while 

maintaining the temperature of the evaporator below the 100 ºC limit. The nominal capacity 

of the mLHP is the heat load at which the evaporator temperature reaches 80 ±1°C and in this 

case was 45 W. It is evident from the large values for the maximum and nominal capacities 

that the designed mLHP can handle conditions of non uniform heating without any 

performance issues. This is attributed to efficient heat exchange in the evaporation zone of the 

mLHP evaporator. As opposed to the conventional heat pipe in which heat is acquired at the 

evaporator through the liquid layer inside the wick structure, effective heat exchange is 

organised in the evaporator of a mLHP by the principle of inverted menisci. In this case, the 

evaporating surface of the meniscus is present close to the heated wall making it possible to 

reduce the thermal resistance of the evaporator zone and thus increase the convective heat 

transfer coefficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Heat transfer coefficient versus applied heat load 
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For the current mLHP prototype, the effective heat transfer coefficient in the evaporator 

reaches a maximum value of 22,600 W/ m
2
 ºC. The plot in Figure 5.3 clearly indicates that 

high values of the heat transfer coefficient in the evaporator were achieved over the entire 

range of the applied heat loads. It should be noted that the maximum value of the heat transfer 

coefficient specified above is limited by the operating temperature limit. For the entire range 

of heat load, there was no indication of heat transfer crisis phenomena inside the evaporator, 

for example a sudden rise in the evaporator temperature, hot spots on the evaporator active 

zone, evidence of back flow of vapour from the evaporation zone to the compensation 

chamber etc. 

 

In Figure 5.4 the steady decrease in the heat pipe thermal resistance, Rhp (evaporator surface 

to condenser surface) can be observed as input power increases.  
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This is due to the advantages of using water for which the Merit number increases at higher 

loads. Also, with increase in heat load the quantity of the liquid charge inside the 

compensation chamber increases and consequently reduces the thermal resistance of the 

device. The minimum value of the heat pipe thermal resistance is 0.31 ºC/W at a load of 70 W 

and an evaporator temperature of 99.6 °C. For the total thermal resistance - Rt, the heat load 

dependence is presented in Figure 5.5 and the minimum value of 1.2 ºC/W was observed at 70 

Figure 5.4 Heat pipe thermal resistance versus applied heat load 
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W. The evaporator is the most critical component of the LHP and determines the overall 

performance of the device. Figure 5.6 presents the plot for evaporator thermal resistance 

versus heat load. The efficiency of the heat transfer process in the evaporation zone of the 

LHP is measured on the basis of the evaporator thermal resistance, Re which is the resistance 

presented to the heat flow from the evaporator active zone to the evaporation zone.  
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Figure 5.5 Total thermal resistance versus applied heat load 

Figure 5.6 Evaporator thermal resistance versus applied heat load 
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Due to very low spreading and low conductive resistance offered by the evaporator active 

zone, which was made from copper, very low values of Re were obtained in the mLHP 

evaporator, with the minimum value of 0.21 ºC/W at 70 W. It is seen from the graph that the 

evaporator thermal resistance decreases with increasing heat load. This is due to the fact that 

at low heat loads there is more vapour in the evaporator and compensation chamber and thus 

heat leakage is increased due to the back conduction by the walls and wick resulting in high 

thermal resistance between the evaporator and compensation chamber (variable conductance). 

When the LHP is operating at higher heat load levels, there is more liquid in the evaporator 

wick and compensation chamber and thus the heat leak is reduced, resulting in low thermal 

resistance (constant conductance).  

 

The thermal resistance from the condenser to surroundings contributes to 0.8 ±0.2 ºC/W and 

proved to be the main component of the total thermal resistance-Rt. From the above results it 

can be inferred that the miniature LHP has proved to be a very versatile and promising device 

for thermal control of electronic devices including personal computers and notebooks.  

 

5.2 mLHP Failure Mode Analysis 

LHPs are very reliable two phase heat transfer devices that are known for their robust 

operation and superior thermal characteristics. Proper care must be taken in cleaning the loop 

internal volume and leak proof sealing the device to avoid device failure. In some cases, the 

failure of the device was observed during the startup process. The main cause of start up 

failure are broadly classified into two main categories which are failure due to the leakage and 

insufficient charge volume.  

 

5.2.1 Startup Failure due to leakage 

Start up failure due to leakage can arise due to improper external sealing or internal sealing. 

External sealing is done to make the device leak proof against any air entry from the 

atmosphere into the system, as in this case the system is operating under vacuum conditions. 

In the case of internal sealing, the wick structure must be properly secured inside the 

evaporator such that vapour may not bypass the capillary matrix from the evaporation zone to 
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the compensation chamber. Figures 5.7 and 5.8 presents the startup failure of the mLHP due 

to external and internal leaks respectively.  
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Figure 5.7 Start-up failure due to leakage in external sealing 

Figure 5.8 Start-up failure due to internal leakage 
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Here, the failure is evident from the comparison of the evaporator outlet temperature and 

compensation chamber temperature. In Figure 5.7, the compensation chamber temperature is 

higher than the evaporator outlet temperature which clearly indicates dry-out of the capillary 

structure and passage of vapour from the evaporator to the compensation chamber via the 

wick. Also, the temperatures at the compensation chamber inlet and evaporator outlet confirm 

the back flow of vapour. During the test, it was observed that the temperature at the condenser 

inlet and outlet did not increase much due to the absence of vapour flow from the evaporator 

to the condenser. It is expected that air leaked inside the system, accumulated inside the 

compensation chamber and blocked the liquid supply to the absorbing face of the wick. This 

ultimately resulted in dry out of the wick under back heat conducted from the evaporator 

active zone. Similarly, in Figure 5.8, it is seen that due to the bypass of the vapour around the 

wick, from the evaporator to the compensation chamber, the temperature at the compensation 

chamber approaches the evaporator outlet and evaporator surface temperatures. The 

continuous rise in the compensation chamber inlet temperature indicates that there is no fluid 

circulation along the loop circuit. The presence of both external and internal leaks were 

confirmed after the post operation inspection of the mLHP.  

 

5.2.2 Start-up Failure due to Insufficient Fluid Inventory 

Startup failure due to the insufficient charge inside the compensation chamber is illustrated in 

Figures 5.9 and 5.10. The tests were conducted with fluid inventories of 30% and 40% of the 

total mLHP internal volume respectively. The failure in these cases occured due to improper 

wetting of the wick structure inside the mLHP evaporator. It is evident that, in both cases, the 

vapour line was de-primed successfully. The parallel and continuous rise in the evaporator 

and compensation chamber temperatures clearly indicates intensive flow of heat from 

evaporator to compensation chamber. In both the graphs, there is drop in the temperature of 

the condenser inlet and evaporator outlet with a corresponding peak in the compensation inlet 

temperature which indicates dry out of the wick and bypass of vapour into the compensation 

chamber. 
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For the mLHP with 40% charge (Figure 5.10) the conditions for the start up of the device are 

more favorable than for the mLHP with 30% charge (Figure 5.9). This is due to the higher 

fluid inventory inside the loop in the former case. Apart from the startup failure, the device 

does not show any indications of failure during transient or steady state operation. 

 

Figure 5.9 Start-up failure of the mLHP under 30% fluid charge 

Figure 5.10 Start-up failure of the mLHP under 40% fluid charge 
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5.3 Startup Trends of the mLHP 

Depending on the fluid distribution and pre-startup situation inside the evaporator and in the 

compensation chamber of the mLHP, different startup trends are seen. In the mLHP, the 

startup trend of the type shown in Figure 5.11 was commonly observed. In this type of startup, 

it is expected that there is a ready vapour liquid interface present in the evaporation zone (i.e. 

wick and wall interface) (Maydanik et al, 1995). As heat is supplied to the evaporator there is 

an intensive generation of vapour inside the evaporation zone. With the increase in the 

volume of the vapour phase inside the evaporator, the liquid present in the vapour line is 

displaced into the compensation chamber.  This process is linked with the development of 

some minimum pressure difference and thus temperature gradient across the evaporating and 

absorbing face of the capillary structure in accordance with the condition 2 in section 3.2.2. 

The mLHP temperature will increase until this condition of serviceability is fulfilled as shown 

in section 1 of the graph in Figure 5.11. The moment of time at which this condition is met 

corresponds to the temperature stabilization in section 2. This trend indicates very reliable 

startup of the mLHP at low as well as at high input powers and occurs when the loop is 

charged with the optimum inventory of the working fluid that guarantees liquid charge inside 

the compensation chamber while in the cold state.  
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Figure 5.11 Start-up trend shown by the mLHP when the liquid-vapour interface is 

already present in the evaporator before heat load is applied  
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The mLHP can also show other startup trends for different fluid charge distribution and pre-

startup situation inside the loop before the device is operated. A start up situation similar to 

Figure 5.12 can result when the vapour removal channels in the evaporator are completely 

flooded with liquid.  
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Such a trend can occur if the device is slightly tilted so as to fill the evaporator completely or 

when the condenser temperature is higher than that of the evaporator before the heat load is 

applied to the evaporator. In certain cases, this startup situation can also arise when the device 

is operated for the first time after charging. As the charging is done at the compensation 

chamber, the possibility of the evaporator becoming flooded by liquid is higher. At the time of 

startup, in the vapour removal channels one can observe an abrupt boiling of liquid that has 

been superheated with respect to the loop saturation temperature. The process is accompanied 

by abrupt clearing of the vapour line and gradual temperature decrease in section 2 (Figure 

5.12).  

 

1 2 Startup 

Figure 5.12 Start-up trend shown by the mLHP when in the pre start state the 

vapour removal channels are completely flooded with liquid  
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A startup situation as presented in Figure 5.13 can result when the liquid quantity present in 

the compensation chamber is low and a liquid-vapour interface is present in the vapour 

removal channel. This situation can arise if the mLHP evaporator has low fluid inventory or if 

the major fluid quantity is distributed elsewhere in the loop. Owing to small charge inside the 

compensation chamber, void fraction (vapour space) inside the chamber is high. Now as the 

liquid-vapour interface is almost always present inside the compensation chamber before 

startup, low liquid charge inside the chamber as well as in the wick results in intensive heat 

flow into the chamber and increases its temperature. Because of the closeness of the 

evaporation zone to the heating wall, the quantity of vapour generated in the evaporator is 

more than in the compensation chamber, which increases the pressure inside the evaporator 

above that in the compensation chamber. As the pressure in the evaporator rises above that of 

the compensation chamber, the vapour inside the evaporation zone pushes the liquid from the 

vapour line into the compensation chamber thereby initiating startup of the device. Decrease 

in the evaporator temperature as shown in section 2 results from the decrease in the 

compensation chamber temperature due to fluid flow.  

 

1 2 Startup 

Figure 5.13 Start-up trend shown by the mLHP when in the pre start state 

insufficient fluid inventory is present in the compensation chamber 
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5.4 Comparison of Theoretical and Experimental models. 

The theoretical model proposed in Chapter 3 was tested against the current mLHP design 

using a uniform heating source. To predict the thermal characteristics of the mLHP, the 

specified loop conditions include the ambient/sink temperature which was kept constant at 

24±2 ºC and the mode of cooling at the condenser which was forced convection using an air 

cooling fan with flow area of 5 cm
2
 and volumetric flow rate of 0.1 m

3
/min. Tests were 

conducted in the power range of 5 to 70 W and using two types of capillary structures which 

were made from copper and nickel respectively. All the tests were carried out with the mLHP 

leveled horizontally such that the evaporator and the condenser lay on the same horizontal 

plane.  

 

Results are presented by taking the evaporator surface temperature versus the applied heat 

load for the mLHP. Figure 5.14 presents a comparison between the experimental results and 

the predictions for the mLHP with the sintered nickel capillary structure.  
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It is evident from the graph that theoretical model was able to predict very closely the typical 

mLHP thermal behaviour including both the variable and constant conductance modes. The 

calculated values are within 0.3 to 3.8 % of the experimental measurements.  It is seen that for 

Figure 5.14 Comparison of theoretically predicted and experimentally determined 

results for the mLHP design with sintered nickel capillary structure 
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heat loads above 20 W the agreement between the experimental and predicted values is very 

close. For low power input (5 to 15 W) the operating temperature predictions are less 

satisfactory (i.e.within 2.2 to 3.8 % of the experiment values). This can be attributed to the 

fact that the effect of the heat exchange with the surroundings is more pronounced at low 

powers. In the present theoretical model, this effect has been neglected to simplify the model 

and because of the smaller surface area of the compensation chamber exposed to natural 

convection. At high powers, the energy balance in the compensation chamber is dominated by 

the liquid return from the condenser rather than by heat exchange with the surroundings. As 

the heat exchange with the surroundings becomes a smaller fraction of the applied heat, the 

predictions are better at high powers. Figure 5.15 shows the result of comparison for the 

sintered copper wick. It is seen that for the mLHP with a copper wick the thermal 

performance predictions showed larger variations than for the nickel wick but the results are 

still satisfactory within the limitations imposed by the assumptions that were made in the 

formulation of the theoretical model.  
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The discrepancies in the predicted values can arise from the limitation of the theoretical 

model to take into account critical heat transfer phenomena like the effect of local wick dry-

outs and vapour bubble formation on the absorbing face of the wick, which can affect the 

Figure 5.15 Comparison of predicted and experimental results for the mLHP design 

with sintered copper capillary structure 
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thermal performance of the mLHP immensely. The probability of these critical heat transfer 

limiting phenomena occuring in the case of the copper wick is higher than for the nickel wick 

due to the very high thermal conductivity of copper material. In Figure 5.15, Exp (A) and Exp 

(B) are two trial runs carried out on the mLHP experimental prototype.  

 

 The maximum heat transfer capacity of the loop heat pipe is limited by the maximum 

capillary pressure that the wick structure can generate on the working fluid. However, in 

practice the maximum heat that an LHP can transfer is generally decided by the maximum 

permissible operating temperature of the source (generally ≤ 100 ºC) which is reached much 

before the capillary limit is achieved. Table 5.1 lists the maximum heat transfer capacity of 

the mLHP calculated on the basis of the above two approaches as discussed in section 3.4. 

The difference in the experimental and predicted values calculated on the basis of maximum 

temperature limit is attributed to the multitudes of unaccountable factors that affect the device 

performance and are generally difficult to take into account.  

 

 

Table 5.1 Maximum heat transfer capacity of the mLHP calculated on the basis of theoretical 

and experimental approaches.  

 Theoretical Prediction -  

Based on Maximum 

Operating Temperature 

limit (Tmax≤100 C) 

Theoretical Prediction  -

Based on maximum 

capillary limit of the wick 

structure (rem = 10 μm)   

Experimentally 

determined values 

(Tmax≤100 C) 

 

Qmax for Copper Wick 

(W) 

 

79 

 

 

244  

 

70 

 

Qmax for Nickel Wick 

(W) 

 

94 

 

 

244  

 

75 
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 5.5 Effect of the Fluid Inventory on mLHP Thermal Performance 

The operational characteristics of the mLHP are influenced by the quantity of the working 

fluid inventory inside the loop. In particular, the charged inventory should be sufficient to 

provide proper wetting of the capillary structure before the heat load is applied. Otherwise it 

may be difficult to achieve filling of the wick after a heat load is applied under rapid heating 

of a dry evaporator. In order to satisfy the wetting requirement, proper consideration must be 

given to the compensation chamber volume and the fluid charge inventory. For the 

compensation chamber volume, it should be large enough to accommodate the liquid charge 

displaced from the evaporator vapour channels, vapour line and part of the condenser. In the 

present prototype, the compensation chamber was sized such that its internal volume was 

approximately equal to the internal volume of the loop. In the LHP, a considerable part of the 

liquid is present in the unbound state throughout the loop. As the testing was done in the 

horizontal orientation, it is expected that the fluid was distributed through the entire loop 

volume. Under such circumstances, it is always desirable to guarantee some minimum 

quantity of the working fluid inside the compensation chamber to keep the wick saturated 

with the liquid.  In this case, for keeping the wick primed with the liquid, the loop was 

charged such that in the cold state at least 30-40% of the compensation chamber was occupied 

by the working fluid. It has been mentioned in the literature (Maydanik and Fershtater, 1997) 

that LHPs can operate with a relatively wide range of charge and compensation chamber 

volumes.  

Figure 5.16 shows the outcomes of tests conducted on the designed mLHP with fluid 

inventory equal to 50% and 80% of total volume. The mLHP was able to operate 

satisfactorily in both cases over the range of input heat loads. However, it should be noted that 

the thermal performance of the mLHP is better with 80% charge than with 50% charge 

volume. This is directly related to the fluid distribution inside the loop and the compensation 

chamber during operation. For the 50% charged inventory, it is expected that approximately 

30% of the compensation chamber was occupied with fluid whilst for 80% charge, 

approximately 50% of the compensation chamber was filled with working fluid. The presence 

of significant amount of fluid in the compensation chamber helps to absorb part of the back 

heat conducted from the evaporator and thus decrease the compensation chamber temperature. 

For the LHP, variables like the room temperature, condenser temperature, evaporator wall 
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thickness, type of working fluid, geometric characteristics of the transport lines etc affect the 

steady state evaporator temperature. The design parameters were constant and the room and 

condenser temperatures were kept the same for all the testing carried on the device. Therefore 

it can be inferred that the evaporator temperature for any given test is largely dictated by the 

compensation chamber temperature. Hence, low evaporator temperature was achieved with 

the 80% charge because there was more liquid in the loop which gave better wetting 

conditions in the wick as well as a low degree of heating of the compensation chamber. 

Nonetheless, the mLHP was not able to start up or operate reliably with charges less than 50% 

or more than 80%.  
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For lower charge (< 50%) dry out of the wick occurs due to the insufficient fluid quantity 

present inside the compensation chamber to keep the wick structure completely wet. On the 

other hand for large fluid charge (> 80%) the active condensation area of the condenser may 

decrease, the liquid may occupy the vapour line and part of the vapour removal channels 

during operation depending upon the quantity of charge. If liquid is present inside the vapour 

removal passage and evaporation zone due to excess charging, it may also block the capillary 

pumping action of the wick. These factors ultimately produce instability towards acquiring 

steady state and thus result in the startup or operational failure of the device. The startup 

failure of the mLHP due to the insufficient fluid inventory is presented in section 5.2.2 in 

relation to mLHP failure mode analysis.  

Figure 5.16 Effect of the fluid charge on the evaporator wall temperature for the given 

range of applied heat loads 
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5.6 Effect of Tilt on the mLHP Thermal Performance 

The primary aim of the current design of mLHP was to effectively transfer waste heat from 

the microprocessors of laptop computers. As the laptops must operate horizontally, so all the 

tests on the device were conducted with the evaporator and condenser at the same level i.e. 

without taking into consideration the effect of the mLHP tilt in the gravity field on its 

operational performance. However, under certain circumstances the device may be subjected 

to adverse tilts in the gravity field.  

 

 

 

 

 

 

 

 

In order to satisfy this requirement, the following test was carried out to study the thermal 

performance of the mLHP at different tilts in the gravity field. A mLHP was installed on a test 

table as shown in Figure 5.17 that could be adjusted to a fixed inclination (evaporator above 

condenser) to horizontal. During testing, the inclination was changed in steps of 10º starting 

from 0º (horizontal) to 90º (vertical) while the device was made to operate at a constant heat 

load of 25 W. 

 

Figure 5.18 shows the performance of the mLHP at different orientations as a plot of 

evaporator surface temperature against tilt angle. The curve shows an increase in evaporator 

temperature with increase in the inclination. For horizontal orientation, the evaporator 

temperature was steady at 62ºC while for the vertical orientation (90º) the evaporator was able 

to achieve stable state at 111ºC. The rise in evaporator temperature can be explained by taking 

into consideration the natural flow tendencies of the vapour and liquid phases. As the tilt 

angle increases, more pressure is required to push the vapour out of the evaporator. This is 

because from the buoyancy effect the vapour tends to flow up against gravity. Because of the 

prolonged stay of the vapour in the evaporation zone, the vapour acquires extra heat from the 

0º 

90º 

Fixed table 

Movable table Slider clamp for 

adjusting the table 

tilt 

mLHP fixed 

to the table 

Inclinometer 

Figure 5.17 Test setup to measure the thermal performance of the mLHP at different tilt angles  
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evaporator heated wall and becomes superheated, resulting in increase of the evaporator wall 

temperature. Contrary to the vapour phase, the liquid phase has a natural tendency to flow 

down by gravity but in this case, it must be pumped from the condenser to the compensation 

chamber against gravity. The intended function is provided by the surface tension forces 

developed in the fine pored sintered wick. However, the flow rate of the liquid to the 

compensation chamber decreases because of the difficulties encountered by the vapour flow 

and accumulation of the liquid in the bottom portion of the loop including the condenser. 

0

20

40

60

80

100

120

-10 10 30 50 70 90

Tilt angle with horizontal (in degrees)

E
v

a
p

o
ra

to
r 

W
a

ll
 T

e
m

p
e

ra
tu

re
, 
ºC

 

 

The present design of mLHP with a disk shaped evaporator is intended for operation in the 

horizontal configuration and the relative positions of each component in the loop are fixed. In 

this case, change in the orientation of the loop affects the fluid distribution inside the loop 

mainly inside the compensation chamber. As shown in Figure 5.19, this design is very 

efficient in keeping the wick structure primed with the liquid at all times while in the 

horizontal orientation. However, with tilt, this design results in the exposure of the absorbing 

face of the wick inside the compensation chamber to the vapour phase, the extent of this 

exposure increasing with the tilt angle. This decreases wetting of the capillary structure and 

Horizontal Orientation (0º) 
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n
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9
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º) 

Figure 5.18 Effect of the tilt angle on the thermal performance of the mLHP 
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provides a favorable path for back heat flow from the evaporator zone to the compensation 

chamber.  Consequently there is a higher temperature of the evaporator at vertical orientation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the mLHP was able to achieve steady state within a short time period at different 

elevations and did not show any indications of evaporator failure. Also, the device was able to 

repeat the same steady conditions at a given tilt angle. The experiment helps to confirm the 

successful operation of the mLHP device at adverse orientation in the gravity field. 

 

It should be noted for the case of the positive angle influence i.e. the condenser above 

evaporator configuration, the mLHP will operate more or less like a thermosyphon between 

the evaporation zone and the condenser. As liquid will be present in the evaporator at all the 

times, the capillary action of the wick will be completely destroyed. It was observed that the 

present design of mLHP operated with a high evaporator temperature at such a mode of 

operation (bottom heat mode). Proper operation at positive slopes is possible with the proper 

design and location of the evaporator and condenser with respect to each other.   

 

 

 

 

Exposure of the wick absorbing face to the 

vapour phase with increase in the tilt angle 

Wick absorbing face is fully covered by the 

liquid phase in the horizontal orientation 

Figure 5.19 Change in the fluid distribution inside the compensation chamber 

with the increase in the tilt angle 
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5.7 Thermal Performance of the mLHP under Different Heating Modes 

From the literature survey it was seen that the performance of most LHP prototypes is 

evaluated at uniform heating modes of the evaporator. In this mode heating is provided over 

the whole of the evaporator active zone i.e. the surface where the capillary structure makes 

contact with the evaporator wall and there are vapour removal channels. In practice, situations 

can arise in which only part of the active zone may be heated due to local heating or hot spots 

on the heat source. For this purpose, the thermal characteristics of the LHP should be studied 

for a non-uniform heating mode in which only part of the active zone is heated. This second 

mode of heating is very important from the point of view of microprocessors that can involve 

local hot spots and irregular surface heating patterns depending on the data processing load of 

the microprocessor.  For these reasons , the present study was conducted to test and compare 

the thermal performance of the mLHP for thermal control of the microprocessors with both 

uniformly and non-uniformly heated active zone. 

 

The mLHP was tested under conditions of uniform heating using a heater of 6.25 cm
2
 (25x25 

mm
2
) area and non uniform heating using a heater of 1 cm

2
 (10x10 mm

2
) area. Testing was 

done using a sintered nickel wick and the optimum charge of 70% to 80% of the loop internal 

volume in both cases. For non-uniform heating, only part of evaporator active zone was 

supplied with heat. Here, non uniform heating was provided to approximately 14% of the 

evaporator active zone. During testing, the heat source was attached symmetrically to the 

center of the circular heat absorbing face. 

 

Heat load applied to the active zone of the evaporator results in the formation of vapour inside 

the evaporator grooves followed by clearing of liquid from the grooves and vapour line. The 

displaced liquid is accommodated inside the compensation chamber and a stable evaporating 

meniscus is formed at the wall wick interface inside the evaporation zone. Such liquid-vapour 

interfaces also exist inside the compensation chamber and the condenser. Figures 5.20 and 

5.21 show the startup characteristics of the mLHP for uniform heating (using 25x25 cm
2
 

source) and partial or non-uniform heating (using 10x10 cm
2
 source) respectively with 20 W 

input power. 

 



Chapter 5: mLHP with Disk Shaped Evap: Results and Discussion        113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The designed mLHP registered successful startup with both modes of heating.  The startup 

process was very reliable over the range of applied power and the mLHP evaporator did not 

show any indication of wick dry-outs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Startup of the mLHP with uniform heating of the evaporator 

active face at input power of 20 W 
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Figure 5.21 Startup of the mLHP with non-uniformly heating of the evaporator 

active face at input power of 20 W 

0

10

20

30

40

50

60

70

80

90

100

14:54:14 14:57:07 15:00:00 15:02:53 15:05:46 15:08:38 15:11:31

Time, hh:mm:ss

T
e

m
p

e
ra

tu
re

, 
ºC

Evaporator wall  
Evaporator 

Outlet 

Compensation Chamber Inlet 
Condenser Inlet 

Condenser Outlet 

Ambient Air 



Chapter 5: mLHP with Disk Shaped Evap: Results and Discussion        114 

Figure 5.22 shows the variation of the evaporator wall temperature as a function of the 

applied heat load for both heating modes. The reduction of the active heating area of the 

evaporator brings an additional conductive resistance that opposes spreading of heat to the 

entire heating face. It is evident from the graph in Figure 5.22 that the mLHP was able to 

handle the conditions of local heating even when only 14% of the evaporator active area was 

heated. For the range of applied heat load, the evaporator wall temperature with local heating 

(using 10x10 mm
2
 heater) was between 5 to 15 °C higher than that of the uniform heating 

case (using 25x25 mm
2
 heater). 
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This is made possible by the enhanced design of the capillary evaporator that decreases the 

conductive as well as convective resistance offered to the heat acquisition process. The mLHP 

evaporator was made from copper, which with its high thermal conductivity decreased the 

spreading resistance and promoted the efficient transfer of heat from a hot spot without any 

local overheating of the evaporator surface. For the mLHP prototype, a heat transfer 

coefficient of the order of 10,000 to 20,000 W/m
2
 K was achieved with both uniform as well 

as non-uniform heating modes over the range of applied power. The plot for evaporator 

thermal resistance versus applied heat load for the two heating modes is shown in Figure 5.23. 

Figure 5.22 Thermal performance (evaporator wall temperature versus applied 

heat load) of mLHP for uniform as well as non uniform heating modes 
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For uniform heating, Re lies in the range of 0.18 to 0.24 ºC/W whereas for the local heating 

case Re values from 0.24 to 0.38 ºC/W were obtained. It is clear from the above outcomes that 

the mLHP evaporator was able to manage the thermal loads of the local heating source 

effectively.  
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Figures 5.24 and 5.25 show the trends for the heat pipe thermal resistance, Rhp and total 

thermal resistance, Rt with change in applied heat load. With uniform heating, minimum 

values of 0.30 ºC/W for Rhp and 1.11 ºC/W for Rt were achieved at 60 W. The corresponding 

values for the local heating mode are 0.48 ºC/W for Rhp and 1.20 ºC/W for Rt. It is clear that 

at high heat loads the total thermal resistance of the mLHP with both the heating modes is 

nearly same. This is because of the increased liquid flow rates and better wick wetting 

characteristics supported by the presence of sufficient liquid inside the compensation chamber.  

Figure 5.23 Evaporator thermal resistance versus applied heat load for uniform and 

non uniform heating modes 
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The results clearly identify the good thermal characteristics of the mLHP and its ability to 

acquire and transfer waste heat from compact microprocessors and chipsets with local hot 

spots. 

Figure 5.25 Total thermal resistance versus applied heat load for uniform and non 

uniform heating modes 

Figure 5.24 Heat pipe thermal resistance versus applied heat load for uniform and non 

uniform heating modes 
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5.8 Thermal performance of the mLHP with different Wick Configurations 

The wick is an integral part of the loop heat pipe and provides the necessary capillary forces 

to the working fluid for its continuous circulation in the loop. The choice of wick material and 

its physical properties like pore size, porosity and permeability has considerable effect on the 

operational characteristics of the loop system. As a connecting link between the evaporator 

and compensation chamber, the wick is also expected to perform as a thermal and hydraulic 

barrier to minimize back flow of heat and vapour from the evaporation zone to the 

compensation chamber. The function as a hydraulic or vapour lock is made possible by the 

introduction of the fine pore capillary structure in the LHP evaporator. In this case, the 

presence of liquid in these fine pores helps to avoid any vapour migration from the 

evaporation zone to the compensation chamber via the capillary structure. The problem of 

back conduction of heat is very critical and to a large extent dictates the thermal behaviour of 

the LHP. Different methods have already been proposed and tested on large LHPs to 

counteract or minimize heat flows to the compensation chamber.  They include subcooling of 

the incoming liquid to the compensation chamber, making use of low thermal conductivity 

material for the wick and increasing thickness of the wick. In mLHPs, this problem of back 

conduction is compounded by the limited permissible thickness of the wick which is only few 

millimeters. Additionally, for electronic cooling where use is made of air cooling fans it is not 

possible to cool the liquid below the ambient temperature which restricts the degree of 

subcooling given to the condensate. Considering the possible options, appropriate choice of 

the thermal conductivity and the physical properties of the wick structure can help in the 

design of a suitable wick configuration for a mLHP. In relation to this consideration, different 

types and grades of wick structures were developed and tested in the designed mLHP as 

discussed below.  

 

5.8.1 Effect of the wick material 

Sintered metal wicks made from nickel and copper were used to study the effect of the 

thermal conductivity on the mLHP performance. For the two wick types the physical 

characteristics were approximately the same with the pore radius less than 15 μm and 45-60% 

porous volume.  The thermal conductivities of the copper material and nickel material used to 

fabricate these samples were 398 W/m.K and 90.5 W/m.K respectively. Based on the 
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experimental correlation for the homogeneous wick structure obtained by Alexander (1972), 

the effective thermal conductivities of the water-saturated copper and nickel wicks were 

estimated to be 59.6 W/m.K and 21 W/m.K respectively. The thickness of the wick structure 

was restricted to 3 mm with an absorbing face area of 615 mm
2
. Figure 5.26 shows the heat 

load dependence of the evaporator surface temperature for the two types of wick material. 

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Heat Load, W

E
v

a
p

o
ra

to
r 

W
a

ll
 T

e
m

p
e

ra
tu

re
, 
ºC

Nickel Wick

Copper Wick

 

 

 

It can be seen from the graph in Figure 5.26 that for a heat load of less than 20 W, the 

evaporator temperature for the mLHP with Cu-wick is lower than the Ni-wick mLHP. This is 

the result of the efficient heat exchange process in the evaporator of the Cu-wick mLHP as 

shown by Figure 5.27. With a copper wick a heat transfer coefficient as high as 26,200 W/m
2
 

K was achieved over the range of input heat load. These higher values of the heat transfer 

coefficient were obtained because of the high thermal conductivity of copper which helped to 

transfer heat efficiently to the menisci surfaces in the capillary structure by conduction 

through the wick skeleton. An abrupt decrease in the heat transfer coefficient with the copper 

wick was experienced at approximately 35 W, possibly due to the formation of dissociated 

pores near the heating wall as the heat load increases. Here, the desiccated or dried out pores 

introduced additional thermal resistance in the evaporation zone as is clearly shown in Figure 

Figure 5.26 Heat load dependence of the evaporator wall temperature with nickel and copper 

wicks  
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5.27 for heat loads greater than 35 W. In the case of the Ni-wick mLHP, the maximum heat 

transfer coefficient value achieved was 21,000 W/m
2
 K.  
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For the Cu-wick mLHP as shown in Figure 5.28, low values of evaporator thermal resistance - 

Re lying between 0.20 to 0.24 ºC/W were achieved and remained lower than for the Ni-wick 

mLHP over the entire range of applied heat load.  Due to the high thermal conductivity of 

copper, the thermal resistance of the copper wick was lower than for the nickel wick. It can be 

inferred from the graph in Figure 5.28 that superior heat exchange can be achieved in the 

evaporation zone using a copper wick. Re for the Ni-wick mLHP was found to be between 

0.23 to 0.40 ºC/W. Referring back to Figure 5.26, it is observed that for input power more 

than 20 W, the evaporator surface temperature for the mLHP with Cu-wick was slightly 

higher than that of the Ni-wick mLHP. This can be ascribed to relatively large heat leakage 

from the evaporator active zone to the compensation chamber at high heat loads owing to the 

high effective thermal conductivity of the copper wick.  

At high heat loads (above 50 W) it is noted that the same incremental rise in the input load 

produced higher increase in evaporator temperature for both wick structures. Such behaviour 

of the mLHP indicates either the possibility of occurrence of a heat transfer crisis in the 

 Figure 5.27 Heat load dependence of the evaporator wall temperature for mLHP with 

nickel and copper wicks  
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evaporator or a limit on the heat dissipation capacity of the condenser which does not allow 

rejection of a higher heat load under the given condition of air cooling.  
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As an outcome of this experiment, it can be concluded that capillary structures made from a 

highly conductive material like copper can be effectively used in a miniature LHP for thermal 

control of electronic equipments without any major performance degradation. This is made 

possible by the use of a fine pore wick with a highly porous matrix that is occupied by 

working fluid with relatively low thermal conductivity. It has been seen that with the 

inclusion of the working fluid into the porous volume, the overall thermal conductivity of the 

capillary structure is much reduced. For example, thermal conductivity of the copper material 

is 398 W/m.K where as for the copper wick with porosity of 45-50% and saturated with water, 

the overall thermal conductivity is only 59.6 W/m.K.  

 

5.8.2 Effect of the Physical Properties  

Apart from the material characteristics like thermal conductivity, physical properties of the 

wick structure like porosity, permeability and pore configuration also play an important role 

in determining its operational characteristics.  In order to see the effects of the physical 

Figure 5.28 Evaporator thermal resistance versus applied heat load for mLHP with 

nickel and copper wicks  
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properties on the operation of a mLHP, two samples of the mono-porous copper wick (i.e. 

wick structures which are characterized by a single average pore size) with different physical 

properties were fabricated and tested. The first sample was sintered from copper powder with 

#100-200 mesh size while in the second sample, powder with mesh size greater than #200 

was used. The geometrical properties of these samples were measured using different methods 

discussed in Appendix C on the measurement of the physical properties of the wick structure 

and the results are presented in Table 5.2. 

 

Table 5.2 Physical properties of the monoporous copper wick 

Property Sample A Sample B 

Maximum pore radius (μm) 30 – 40 12 – 15 

Porosity (%) 42 46 

Permeability (m
2
) 1.15 x 10

-11
 3.74 x 10

-12
 

 

The results of the experiment are presented in the Figure 5.29 as a heat load dependence of 

the evaporator surface temperature for the two samples. It is evident from the graph that the 

performance of the mLHP with sample B is much better than that with sample A. The 

physical properties of sample B are optimum from the loop heat pipe design point of view in 

order to provide proper hydraulic and heat locking from the evaporation zone to the 

compensation chamber. The maximum capillary pressure provided by the wick structure is 

decided on the basis of the effective radius of the largest through-pore which is much higher 

in the case of sample A. At higher heat loads a pore can become dry and vapour can transfer 

thorough it from the evaporating surface of the wick to the absorbing one. For sample A, the 

value of the maximum pore radius (≤ 15) was low enough to guarantee vapour locking in the 

given range of heat load as verified by the loop pressure analysis.  

 

The porosity and permeability of the wick affect the parasitic heat leaks from the evaporator 

zone to the compensation chamber and thus take part in providing thermal lock. As the 

effective thermal conductivity of the wick structure is dependent upon the porosity of the 

capillary structure, sample B had a better heat lock character than sample A.  
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In the case of a LHP, heat transfer is organized in the evaporation zone on the basis of 

inverted menisci. Here, the heat and the working fluid flow towards each other. In the wick 

structure, heat is introduced from the evaporating face while the working fluid enters from the 

absorbing face. If the flow rate of the working fluid through the wick structure is enhanced by 

increasing permeability of the capillary structure, the extent of the heat flow from the 

evaporator to the compensation chamber will automatically decrease which is the case with 

the sample B.  

 

5.8.3 Effect of the Wick Structure 

The wicks used are mostly mono-porous wicks i.e. their pore size distribution is similar to the 

Poisson distribution and they are characterized by average pore size. In contrast, a biporous 

wick is a porous medium which has two characteristic capillary pore radii i.e. large ones and 

small ones. The size of the largest pores in such a material is an order of magnitude greater 

then in a monoporous one. Thus a biporous wick includes bi-dispersed media which are made 

from large porous particles which have small pores in/on them as depicted in Figure 5.30.  

 

Figure 5.29 Heat load dependence of the evaporator wall temperature for monoporous 

copper wicks with different physical properties 
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In another experiment, two samples of a sintered copper wick were made. The first sample 

was a monoporous wick with 46% porosity and made from copper powder of mesh size less 

than #200. In the second sample, a bi-porous copper wick with 65% porosity and made from 

powder with granular size in the range of 100-300 mm was used. Due to the possibility of 

vapour breaking through the large pores of the biporous media into the compensation chamber, 

an additional locking layer of a monoporous material (the same as that used in the first 

sample) was applied. The biporous portion of the wick formed the evaporating face while the 

monoporous portion acted as an absorbing face (Figure 5.31). The total thickness of both the 

samples was kept the same at 3 mm.  

 

Figure 5.32 presents the outcomes of experimentation with the monoporous and combined 

wick structure. It is seen from the graph that the combined wick structure presented superior 

performance to that of the monoporous wick, particularly, for the range of the heat loads 

between 15 to 40 W. This can be explained by looking into the details of the heat transfer 

processes with the two types of wick configuration. In the wick with a monoporous pore size 

distribution, the vapour phase in the capillary structure volume along the heating wall is 

absent at the low to moderate heat loads, because the liquid superheat is not sufficient for 

boiling of the working fluid in the pores. 

Small solid particles 

Big porous particles 

Big pore 

Small pore 

Figure 5.30 Structure of biporous wick 
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Figure 5.32 Heat load dependence of the evaporator wall temperature for mLHP with 

monoporous and combined wicks  

Biporous layer 

Monoporous layer 

 (a) Side View of the combined copper wick  

 (b) Monoporous layer as an absorbing 

face of the combined wick  

(c) Biporous layer as an evaporating 

face of the combined wick 

 Figure 5.31 Combined Copper wick showing monoporous and biporous layers 
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A different situation arises with a biporous capillary structure where, due to the presence of 

two characteristic pore sizes, the value of superheat at which one can observe liquid boiling in 

large pores is smaller than in monoporous wicks.  Therefore in the bi-dispersed wick portion 

heat transfer is enhanced in the nucleate boiling regime by the increasing surface area from 

which thin film evaporation can take place. The wick also allows the liquid and vapour phases 

to have separate flow paths, the liquid through the small pores and the vapour through the 

large pores. Unlike the monoporous wick, this helps to avoid any vapour blanket formation at 

the heating wall due to desiccation of the pores at high heat fluxes which can introduce 

additional thermal resistance.  

 

5.9 Effect of Non Condensable Gases on mLHP Thermal Performance 

For a mLHP to perform effectively over its life, it is very important to evaluate the potential 

for non condensable gas (NCG) generation inside the system and its effect on the thermal 

performance. Numerous experimental investigations conducted on conventional heat pipes 

have shown that two-phase systems are always vulnerable to some NCG formation over time. 

Since the materials used in the construction of LHPs are similar to those used for conventional 

heat pipes like copper-water, aluminum-ammonia, stainless steel-ammonia, loop systems are 

also susceptible to NCG production.  

 

NCG can be generated in the LHP for various reasons. The most common causes of the NCG 

formation are those arising due to cleaning issues, and chemical compatibility issues between 

the working fluid and the loop and wick materials. The working fluid should be chemically 

compatible with the loop containment and the wick materials. Cleanliness of the working 

fluid, envelope and wick should be given due consideration while preparing a mLHP for 

testing. Scientific grade materials and working fluid are used in the loop but impurities from 

the fabrication and cleaning process can give rise to NCG during loop operation. Although 

very rare, another potential gas generation mechanism is the breakdown of the heat pipe 

working fluid. This can occur due to the dissimilar electrolytic potentials of the container and 

wick material or as a result of induced ionizing radiation from a source.   

 

As part of this investigation, different methods were devised to detect the formation of NCG 

inside a mLHP. Sensitivity of the mLHP to NCG was tested by comparing its thermal 
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performance with and without NCG generation. Also, the effect of NCG on the start up and 

the steady state operation of the loop are presented. For flushing NCG out of the system, 

appropriate design modification was done to the mLHP. In addition, some of the methods to 

prevent the formation of the NCG inside the system are also discussed. The effects of NCG on 

the performance of an mLHP will depend on the location of the gas accumulation. It is likely 

that the NCG, once formed, may collect at a stagnation zone in the loop which includes the 

compensation chamber and the condenser. It can be absorbed and circulate with the working 

fluid around the loop. Furthermore, it can also be absorbed by the mLHP envelope or the wick. 

In reality, it is expected that all of the above factors contribute to the storage of the generated 

gas. Any gas that is released in the evaporator is swept to the mLHP condenser by the vapour. 

In the condenser the vapour will condense but the gas will not. Gas bubbles may be 

encapsulated by the condensate liquid and moved towards the evaporator where they are 

collected in the compensation chamber. In other cases, depending on the condenser design, if 

these gas bubbles are not encapsulated by the condensate and stay at a stagnation point inside 

the condenser, it is still likely that the gas will be transported back to the evaporator. The 

temperature in the gas blocked region of the condenser will be lower than the local saturation 

temperature. Since the total pressure in the condenser is nearly equal to the saturation pressure 

in the evaporator, the pressure difference between the evaporator and condenser made up by 

the partial pressure of the gas in the condenser drives the NCG back into the solution. As the 

liquid returns to the evaporator, the rise in the enthalpy of the liquid tends to liberate the 

dissolved gas. If the gas is liberated before passing through the wick it will be retained in the 

compensation chamber otherwise if the gas is released in the evaporator it will be swept away 

by the vapour back to the condenser and the process repeated (Nikitkin et al, 1998) 

 

In the current design of mLHP, the condenser was made from a smooth walled copper tube 

with total length of only 50 mm. Due to the absence of any stagnation points inside the 

condenser, the probability of the gas being retained in the condenser is much reduced. The 

NCG study on the loop was done by choosing a copper wick along with the copper envelope 

and water as the working fluid. It should be noted that copper-water is the best known 

combination in two-phase systems with very strong chemical compatibility. Conservatively, it 

can be assumed that the gas/metal reaction does not occur and eventually all the gas ends up 
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in the compensation chamber. In the experiment, potential for NCG formation was created by 

skipping the water degassing procedure as explained in the section 4.3. It should be noted that 

the other cleaning and charging procedures were followed as elaborated in the previous 

chapter.  

 

5.9.1 NCG Detection 

To detect the generation of any NCG inside the mLHP, an absolute pressure transducer was 

installed in the compensation chamber. It is expected that formation of the NCG would result 

in the increase in absolute pressure inside the mLHP for the same constant ambient 

temperature maintained in the room during the course of the test period. As the compensation 

chamber is the most likely location for the accumulation of NCG generated throughout the 

mLHP, five T-Type thermocouples were fixed to the outer surface of the compensation 

chamber to sense NCG from the surface temperature profile. Testing was done in the 

horizontal configuration to avoid any buoyancy effects. 

 

5.9.2 Effect of the NCG on the Steady State Performance of a mLHP 

The mLHP was tested on a daily basis over a period of time for the same range of heat loads 

while the ambient temperature was kept constant. Figure 5.33 presents the results of the 

experiment as heat load dependence on the evaporator surface temperature. The graph clearly 

indicates trend of rise in operating temperature of the mLHP. This is predominately due to the 

production of NCG in the loop as was confirmed from the absolute vacuum readings given by 

the pressure transducer as in Figure 5.34. The readings from the absolute pressure transducer 

were recorded every time before operating the mLHP for the same constant surrounding 

conditions and showed a continuous increase due to the formation of gas with time. It is 

interesting to note from the transducer readings shown in Figure 5.34 that the generation of 

NCG was greater for the first few days after which it slowed down or practically ceased. 

Figure 5.33 also supports this argument where it is clear from the operating temperature trend 

of the mLHP which showed an initial increase for 2-3 days and then stayed constant with time. 

In Figure 5.33, the temperature trend for the “Days 1, 2 and 3” shows a clear contrast where 

as for the “Days 3 and 6” is quite close. It can be inferred from these outcomes that the 

majority of NCG formation occured in the initial test runs of the mLHP.  
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Figure 5.33 Evaporator temperature trend with respect to the applied heat load for the 

number of trial runs made on the mLHP over a period of time  

Figure 5.34 Change in the absolute pressure inside the loop due to generation of NCG 

over a period of time. 
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The operating temperature of the loop is very much controlled by the temperature of the 

compensation chamber. From Figure 5.33, it is also clear that the gas accumulates in the 

compensation chamber which is evident due to the increase in the operating temperature of 

the mLHP with time. 

 

The compensation chamber temperature is mainly influenced by three heat exchange 

processes: i.e. heat exchange between: the compensation chamber and evaporator, the 

compensation chamber and incoming liquid from the condenser, and the compensation 

chamber and the environment. As gas is accumulated inside the compensation chamber, its 

partial pressure increases the overall pressure inside the chamber which in turn results in 

increase of vapour pressure. With the increase in the vapour pressure, heat flow from the 

evaporator to the compensation chamber and thus its temperature also increase. Since the 

saturation conditions on the two sides of the wick i.e. evaporating and absorbing faces are 

related to each other, the increase in the compensation chamber temperature results in a 

corresponding rise in the operating temperature of the mLHP.  

 

Note that the effect of NCG is more pronounced at low heat loads. This is due to the fact that 

at high heat loads heat exchange between the compensation chamber and the incoming liquid 

from the condenser dominates the energy balance in the compensation chamber owing to the 

increase in the flow rate of the incoming liquid. In this case the additional heat input raises the 

liquid enthalpy rather than increasing the compensation chamber temperature. Beside this, the 

increase in pressure inside the loop at high heat loads can also drive the gas, present in the 

compensation chamber, back into the working fluid which can account for the less profound 

effect of the NCG at high power. Also, at low heat loads, the quantity of the liquid inside the 

compensation chamber is less and therefore the NCG or the vapour bubbles present inside the 

chamber can cover some portion of the absorbing face of the wick which can decrease the 

filtered quantity of the liquid through the wick and therefore increase the operating 

temperature of the mLHP. As the power increases, the NCG gas is pushed away to one end of 

the compensation chamber under the impact of the incoming flow and consequently makes 

the wick absorbing face more accessible to the incoming liquid. This reasoning was 

confirmed from the post-operation inspection of the mLHP (Figure 5.35) which clearly shows 
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the oxidized portion on the inside wall of the compensation chamber as well as on the 

absorbing face of the wick due to the gas absorbed at these locations. The oxidized portion of 

the compensation chamber wall is present on one side due to the impact of the incoming flow 

from the opposite end. The temperature profile on the compensation chamber wall taken with 

the help of five thermocouples and presented in Figure 5.36 also confirms the accumulation of 

a major quantity of NCG into the compensation chamber. It is seen from the plot that the 

temperature trend shown by the No.5 thermocouple is higher than those shown by No. 1 to 4 

thermocouples. This is due to the presence of the NCG on the portion of the wall on which 

probes 1 to 4 were installed which lowers their temperature by a certain amount (in this case 

approximately by 1ºC) than probe No. 5 where there is no NCG. 

 

                  

 

 

 

Oxidised portion of the 

compensation chamber wall due 

to NCG accumulation inside it 

Compensation chamber inlet 

Oxidation of the absorbing face of the 

wick due to NCG accumulation inside 

compensation chamber 

Figure 5.35 Oxidation of the container and wick material due to the reaction and 

absorption of the NCG gas accumulated inside the compensation chamber 
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5.9.3 Effect of the NCG on the Start-up Process  

There was some notable increase in the startup time when the performance of the mLHP was 

evaluated at the end of the test period. In the Figure 5.37, the start up process for the mLHP 

after charging and at the end of the test period (i.e. 7 days) is depicted. Here, the startup is 

assumed to occur with the initiation of fluid circulation as is indicated by the increase in the 

temperature of the vapour line and decrease in the temperature at the compensation chamber 

inlet.  It should be noted that the increase in startup time was only noticeable towards the end 

of the test period i.e. when the mLHP has presumably its maximum inventory of the gas as 

validated by the pressure transducer readings. This increase in startup time and operating 

temperature of the mLHP, as is evident from the Figure 5.37, is related to the presence of the 

NCG inside the compensation chamber which produced the rise in the overall pressure inside 

the loop because of the partial pressure exerted by the gas. As some minimum pressure and 

thus temperature difference are required across the wick faces to start the fluid circulation, gas 

present in the compensation chamber increases this difference due to its own partial pressure 

and hence the time to achieve this difference.  

 

CC Inlet 

CC-2 
CC-4 

CC-5 

CC-3 

CC-1 

Figure 5.36 Temperature profile on the surface of the compensation chamber taken with 

the help of five T-Type thermocouples 
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5.9.4 Purging of NCG from a mLHP 

As the generation of some NCG inside the two-phase systems is unavoidable, design 

arrangement for the flushing out of the NCG from the system should be made. From the 

above experiment, it can be deduced that the major inventory of NCG is formed during initial 

testing of the mLHP. Two methods can be used for purging the NCG from the mLHP. In the 

first method, mLHP is charged with extra working fluid inventory and it is heated in a furnace 

at 150 ºC for 2-3 hours. During this period most of the NCG is generated as a result of left 

over traces of the cleaning agent and reaction between the loop material and working fluid. 

The resultant gas is flushed out of the charging line by tilting the mLHP such that most of the 

gas accumulates in the compensation chamber near the charging line due to buoyancy. While 

performing the purging operation, care must be taken that only the extra charge escapes the 

system. For this, mLHP is weighed constantly to keep the required charge inside the loop. 

This method also helps to clean the wick structure due to the high pressure under which the 

liquid-vapour mixture escapes from the loop.  

 

In the experiments described, it was not possible to apply this method as EPDM rubber 

packing was used to seal the system which has a permissible temperature limit of 100±5ºC. 

Figure 5.37 Startup trend shown by the mLHP with and without NCG 
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Beside this, time permitted for the generation of the NCG was very short which can lead to 

consequences of additional gas generation during the working life of the system. In order to 

cope with these problems, another method for purging NCG from the designed mLHP was 

used. Figure 5.38 depicts the design arrangement that comprises of a purging line that is 

installed in the center of the circular face of the compensation chamber. The purging line was 

connected to a vacuum pump through two purge valves and one three way valve. For flushing 

out a certain fixed quantity of fluid (gas + vapour + liquid) from the compensation chamber, 

first vacuum is established in the line between the two purge valves. To do so valve A is kept 

closed, while valve B is open and port X is connected to port Y for the three way valve. Next, 

valves B and C are closed and valve A is slowly opened. NCG will be flushed out from the 

loop into the purge line. Valve A is closed and valve B is opened to allow the escape of gas by 

suction from the pump. At the end of the procedure, valve B is also closed. To avoid over 

flushing of fluid during purging the mLHP is charged with 1-2 cc extra inventory of working 

fluid. Figure 5.39 shows the experimental set up for purging NCG from the mLHP system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.38 Design arrangement for purging the NCG from the mLHP system 
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In Figure 5.40, results of the purging operation performed on the mLHP at the end of the 

NCG test cycle are presented. The mLHP was tested for NCG generation trend over a period 

of time as discussed above. At the end of the test duration, the purging process was performed 

on the system. It is evident from the test results that the designed purging procedure was able 

to restore the operational characteristics of the mLHP to normal. The results also confirm that 

the degradation in performance of the mLHP over the test period was due to NCG formation.  
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Figure 5.39 Experimental Set-up for purging the NCG from the mLHP system 

Figure 5.40 Operational Characteristics of the mLHP before and after purging procedure 
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5.9.5 Methods to Decrease NCG Generation inside a mLHP 

An attempt was made to decrease NCG generation inside the mLHP by improving the 

cleaning process and the fluid charging procedure. In the previous NCG testing, the working 

fluid was charged into the mLHP without performing any additional purification procedure on 

it. It is expected that at atmospheric pressure, non condensable gases from the surrounding air 

are dissolved in the working fluid. As the working fluid is charged into the mLHP, these 

dissolved gases are released because of the vacuum conditions inside the loop. In order to 

avoid the intrusion of these gases into the mLHP a degassing procedure on the working fluid 

before charging is necessary. For degassing liquid water, the charging cylinder is connected to 

the vacuum pump as explained in section 4.3 on the charging procedure. As the vacuum 

conditions are maintained above the liquid surface, the dissolved gases are released from the 

liquid thereby degassing the working fluid. It is very desirable that the amount of working 

fluid present in the charging cylinder is slightly higher than necessary (approximately 10% 

more) to account for evaporation inside the cylinder. Figure 5.41 shows results from 

experimenting on the mLHP with and without using degassed working fluid. It is clear from 

the outcomes of the testing that the degassing procedure prior to the charging of the working 

fluid into the mLHP decreases the extent of NCG generation in the system.  
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Figure 5.41 Operational Characteristics of the mLHP before and after degassing procedure 
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It should be noted that the majority of the gas generated inside the two phase system arises 

from the reaction between the working fluid and the container and wick materials. Therefore, 

a proper cleaning procedure as explained in section 4.3 should be performed on a mLHP 

before assembling it for testing. In all of the test results for the mLHP presented, thorough 

cleaning and charging procedures were strictly followed. It was only in the NCG analysis 

study that the exhaustive cleaning procedure was not carried out in order to generate the 

performance trend of the mLHP under the effect of NCGs. It has been established from the 

experimental studies that unlike conventional heat pipes, mLHPs are not very sensitive to 

NCG formation inside the system. This is attributed to the inbuilt geometry of the 

compensation chamber which can contain most of the NCG produced during the operation 

cycle and thus enable the evaporator to function reliably although with some performance 

degradation.  

 

Summary 

The results of the tests can be summarised as follows: 

o The miniature prototype of the LHP with flat disk shaped evaporator has proved to be a 

very versatile and promising device for thermal control of microprocessors with a high 

power density and a relatively small thermal footprint. With the current model, heat flux 

as high as 70 W/cm
2
 was successfully removed from a thermal test system and transferred 

to a remote heat exchanger over a distance of 150 mm. This has helped to validate the 

feasibility of the LHP concept at miniature scale as a reliable thermal control technology 

for the next generation high end microprocessors.     

o The theoretical model that was designed on the basis of energy balances inside the loop 

predicted the loop operating temperature very well and within the uncertainties imposed 

by the modelling assumptions.  

o The start up of the mLHP was very reliable over the wide range of heat load applied to the 

evaporator active zone.  

o It was established experimentally that a mLHP can operate satisfactorily within a wide 

range of working fluid charge quantities.  
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o The designed mLHP can be used as an effective thermal control technology for transfering 

heat at different orientations in the gravity field with some loss of performance compared 

to horizontal operation.  

o mLHPs with the current design of evaporator can be used effectively for cooling 

microprocessors which involve local hot spots and irregular surface heating patterns 

depending on their data processing load.  

o A capillary structure made from high conductivity material like copper can be used in a 

miniature LHP for thermal control of electronic equipments without any major 

performance degradation.  

o The operational characteristics of a mLHP are largely dependent on the effective thermal 

conductivity of the wick when saturated with the working fluid and on the physical 

properties of the wick structure; the most important being pore size, porosity and 

permeability.  

o The heat transfer characteristics of biporous wick structures (i.e. with two characterised 

pore radii) are better than monoporous wicks (i.e. those characterised by a single average 

pore radius).  

o mLHPs are not very sensitive to the non-condensable gases which are generated inside the 

system because of impurities present inside the working fluid and the loop material.  

 

In the next chapter, design and results of testing of an innovative model of a mLHP with a flat 

rectangular evaporator as thin as 5 mm is discussed. 



         138 

Chapter 6 

mLHP with Flat Rectangular Evaporator 

 

In this chapter, the design and results from testing a miniature LHP with a flat rectangular 

evaporator are explained in detail. The mLHP with rectangular evaporator having thickness as 

small as 5 mm was designed. To achieve such a small thickness of evaporator, a new design 

concept is proposed that relocates the position of the compensation chamber from the 

thickness of the evaporator structure to its sides. The test setup and method to evaluate the 

performance of the designed mLHP are stated briefly. Thermal performance of the mLHP was 

studied with respect to the start up process and under steady state operation. Outcomes of the 

experiments are explained in detail. In the final section, a comparison of the rectangular 

evaporator mLHP is made with the previously discussed disk shaped evaporator mLHP.  

 

6.1 Introduction  

In the design of the heat transfer system for thermal control of compact electronic equipments 

like laptops a major restriction is imposed on the thickness of the evaporator. Particularly, in 

thermal management devices like loop heat pipes where the thickness of the evaporator as a 

rule includes the compensation chamber, the decrease in the evaporator thickness beyond 

certain minimum limit impairs the performance of the device. This limit is predominately 

dictated by the minimum thickness of the capillary structure that guarantees its intended 

functionalities as a thermal and hydraulic lock. In the previous study, a disk shaped 

evaporator with total thickness of 10 mm was designed that comprised 50% evaporator 

thickness and 50% compensation chamber thickness.  In that case, an optimum design 

approach for the loop evaporator (i.e. vapour removal channel, wall thickness, compensation 

chamber volume etc) permitted wick thickness of not more than 3 mm. The device was able to 

perform efficiently and transfer a maximum of 70 W at a distance of 150 mm while 

maintaining the source temperature within the allowable limit of 100 ±5 ºC. 

 

 It is understood that in the previous design of the disk shaped evaporator mLHP, further 

decrease in evaporator thickness is only feasible with some possible loss of thermal 
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performance. This is because the heat locking feature of a wick with the smaller thickness is 

reduced and may result in increase of heat flow through the wick to the compensation 

chamber. As the heat exchange processes in the compensation chamber dictate the saturation 

conditions inside the loop, the aforesaid consequence results in the increase of the operating 

temperature. By decreasing the evaporator thickness at the expense of the vapour removal 

channel thickness, the flow resistance and thus the overall pressure losses inside the loop 

increase. If the overall pressure losses inside the loop exceed the maximum capillary head 

generated by the wick structure, the mLHP will fail to operate. Such a decrease is also not 

possible with the thinning of the evaporator wall as this may lead to deformation of the 

evaporator heating face under the attachment pressure between the evaporator and source face 

which is required for efficient heat acquisition from the heat source. Any attempt to reduce 

the compensation chamber thickness will reduce the fluid accumulating capability of the 

chamber which may result in poor priming of the wick prior to start-up. In addition, the 

potential for bubble formation inside a compensation chamber of limited thickness may 

produce flow blockage and consequently flow instabilities inside the loop. It is seen that 

numerous performance issues are linked to down scaling of the evaporator thickness some of 

which are discussed above. However, for the proper promotion of the loop system in cooling 

compact and high end electronic equipment, miniaturization with respect to the evaporator 

thickness is necessary.  

 

The present study was conducted with the objective of designing and testing a miniature LHP 

with evaporator thickness as low as 5 mm. It should be noted that such a design of mLHP 

with low thickness can be successfully implemented inside the limited available space of the 

laptop PC and thus has more prospects for notebook thermal control compared with the disk 

shaped mLHP model with a total thickness of 10 mm. The rectangular flat evaporator mLHP 

with 5 mm thickness was designed to transfer the heat load over a distance of up to 150 mm.  

 

6.2 Description of the mLHP Prototype 

The schematic of the miniature LHP, as in Figure 6.1, shows a flat rectangular evaporator and 

a fin-and-tube condenser which are connected by separate vapour and liquid lines. The mLHP 
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body and the transport lines were made of copper. Each component of the mLHP is explained 

in detail in the following sections. 

 

 
 

 

 

 

The mLHP evaporator is rectangular in shape and consists of a vapour removal channel, wick 

structure and integrated compensation chamber. The overall dimensions of the evaporator 

including the sealing flanges were 50x60 mm. The design structure of the evaporator can be 

well understood from its exploded view as shown in Figure 6.2 which shows the top cover 

plate of the evaporator, the wick structure, evaporator body and the heat acquisition or active 

region. The evaporator body basically comprise the evaporator region where the microchannel 

or heat acquisition portion is placed, and the distributed compensation chamber region. The 

heat acquisition portion is the evaporator active zone that is made up of the system of vapour 

removal channels (i.e. microchannels) and the capillary structure. It is to be noted that due to 

the integration of the evaporator and compensation chamber in one body, the term evaporator 

is used for the reference to the complete body.  

Evaporator 
Charging/evacuation 

Line 

Condenser 

Liquid line 

Vapour Line 

Figure 6.1 Schematic of Flat Rectangular Evaporator mLHP showing the 

components 
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In order to achieve thickness of 5 mm for the capillary evaporator, the compensation chamber 

was relocated from the thickness of the evaporator to its sides. As presented in the cross 

sectional view of the capillary evaporator in Figure 6.3, the evaporator section and the 

compensation chamber are coplanar with each other. The compensation chamber lies in the 

same plane as the wick structure with access to three sides of the wick as fluid absorbing faces. 

Figure 6.4 illustrates the evaporator plan view. The vapour removal channels are located 

towards the middle of the evaporator body structure and cover an active area of 22 x 22 mm. 

It should be noted that the vapour channels are in the same plane as the evaporator wall. The 

heat acquisition portion or the evaporator active area is represented by these systems of 

vapour removal passages. 

 

Figure 6.2 Exploded view of the capillary evaporator showing the parts 

Evaporator top 

cover plate 

Wick 

Evaporator body 

Heat Acquisition 

Portion 
System of Vapour removal 

channels (microchannels) 

Evaporator active zone 
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Figure 6.3 mLHP Evaporator  
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Figure 6.4 Plan view of the evaporator body 
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The vapour line, 150 mm in length and 2 mm internal diameter, is connected to the active 

zone of the evaporator and was aligned with the system of vapour removal channels.  Beside 

this, the liquid line with the total length of 290 mm length and 2 mm ID is linked to the 

compensation chamber. Charging and evacuation of the loop were done with the use of a 100 

mm tube also connected to the compensation chamber.  

 

The present architecture of the mLHP evaporator needs special consideration to prevent 

internal leaks of vapour from the evaporation zone to the compensation chamber. For this 

reason, a small groove was machined around the evaporator zone as shown in Figures 6.3 & 

6.4, and EPDM sheet was provided inside it that helped to seal the gap between the wick and 

the evaporator inner wall. An EPDM packing is also provided between the sealing flanges for 

making the system leak-proof against any external leaks.  

 

The evaporator active zone is flat in shape with an area of 22x22 mm. In contrast to the disk 

shaped mLHP design, the evaporation zone is square shaped and provided with 20 micro 

vapour removal passages with rectangular cross-section of 0.7 mm depth and 0.5 mm width 

(Figure 6.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Sectional View (B-B) 
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0.7 mm 

Vapour removal channels 

Vapour distribution 

channel 

Evaporator active zone 

B-B 

Figure 6.5 Details of vapour removal channels  

(b) Side view 

(a) Top view 
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The wick structure covers all the vapour channels and extends a little further beyond it to 

provide proper internal sealing with the help of the EPDM packing. A small pad of EPDM 

rubber was also used on the top face of the wick in order to press the wick against the channel 

fins for better thermal contact and to provide insulation between the evaporator top plate and 

the wick structure.  

  

The volume of the compensation chamber was approximately equal to the total volume of the 

loop so that it should be able to accommodate most of the fluid inventory that is displaced 

from the evaporator grooves, vapour line and part of condenser during startup of the mLHP.  

 

For the rejection of the latent heat transferred from the evaporator to the surroundings, a fin-

and-tube condenser as shown in Figure 6.6 was provided at the exit of the vapour line. The 

condenser was 50 mm in length and 10 mm high in Z-direction. It was provided with external 

fins (Figure. 6.6 b & c) measuring 20x10 mm with a thickness of 0.2 mm. Copper fins were 

joined to the copper line (ID: 2mm, OD: 3 mm) using thermally conductive epoxy resin. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Condenser length: 50 mm 

(c) Sectional View (C-C) showing 

Condenser Details 
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(a) Side view 
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(b) Sectional View (D-D) showing Fin 
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OD: 3 mm 

OD: 3 mm 

C-C 

D 

Figure 6.6 Details of Fin-and-Tube Condenser 



Chapter 6: mLHP with Flat Rectangular Evap        145 

 

6.3 Experimental Setup and Testing Method 

The thermal characteristics of the mLHP with a rectangular evaporator were evaluated in the 

horizontal orientation by using a heat load simulator of 10x10 mm. The heater was in the form 

of a copper block with machined holes into which two cartridge heater were inserted. The 

condenser cooling was done by forced convection of ambient air with a temperature of 

24±2°C that was provided by an air cooling fan with volumetric flow rate of 0.1 m
3
/min. The 

capillary structure was made by sintering nickel powder in order to perform the function of a 

passive pump to circulate the working fluid around the loop. The loop was charged with the 

optimum liquid inventory that guaranteed at least 50% working fluid in the compensation 

chamber for proper wetting of the wick structure at all the times. Thermal performance of the 

mLHP was studied in the range of heat load that assured a source temperature below 

100±5 °C. Input power was tuned using a digital power meter. Figure 6.7 shows the 

experimental set up including locations of temperature measurement points. T-type 

thermocouples with an accuracy of ±0.5 °C were used to test the performance of the loop.  
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Figure 6.7 Experimental set up for testing the flat rectangular evaporator mLHP 
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The efficiency of the mLHP was measured on the basis of the evaporator temperature, 

maximum heat capacity, evaporator thermal resistance and total thermal resistance of the 

device. 

 

6.4 Results and Discussion 

Heat was applied to the active zone of the evaporator under a condition of non uniform 

heating using a heater with 10x10 mm
2
 heating face area. In this case, heating was applied to 

approximately 20% of the evaporator active zone. The device was tested to transfer heat up to 

a distance of 150 mm under the given mode of condenser cooling while operating in a 

horizontal configuration. For these tests, a sintered nickel wick was used as the capillary 

structure inside the evaporator and the loop was charged with 70-80% of its internal volume 

with water as working fluid.  

 

6.4.1 Thermal Characteristics of the Flat Rectangular Evaporator mLHP 

Figure 6.8 presents the start-up phenomena of the mLHP under 20 W input power. It is seen 

from the temperature trends that start-up of the mLHP is very reliable at these heat loads.  
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Figure 6.8 Startup of the rectangular evaporator mLHP at 20 W input power 
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As the heat load is applied to the evaporator active zone, the evaporator temperature start 

rising rapidly which results in the formation of vapour in the evaporation zone as a result of 

the evaporation/boiling process and depending upon the pre start fluid distribution inside the 

evaporator. This is followed by the clearing of the liquid from the vapour line and filling it to 

the fluid accumulator or compensation chamber which is indicated by the drop in the 

temperature at the compensation chamber inlet as fluid circulation commences. As the heater- 

evaporator interface temperature achieved steady state, successful start-up of the device was 

registered. 

 

Figure 6.9 depicts the heat load dependence of the evaporator temperature for 10 to 50 W 

input power. It is clear from the graph that the mLHP showed a monotonic linear trend with 

the applied heat load. The loop was able to transfer a maximum heat load of 50 W while 

maintaining the heat source temperature and interface temperature within 100±5 ºC.  
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In the given test range the mLHP was able to achieve steady state without any failure 

indication which could have manifest itself as evaporator temperature overshot or back flow 

of vapour from the evaporator to the compensating chamber due to wick dry out.  Figure 6.10 

presents the variation of the evaporator thermal resistance, Re with respect to the applied heat 

load. Re lies between 0.28 to 0.38 ºC/W for 10 to 50 W input heat load.    

Figure 6.9 Heat load dependence of the rectangular evaporator mLHP 

evaporator temperature 
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Figure 6.11 shows the variation in total thermal resistance - Rt of the mLHP (calculated on the 

basis of the interface and ambient temperatures) with the applied heat load. Rt lies in the range 

of 1.51 to 3.62 ºC/W for input power between 10 to 50 W. For Rt the minimum value of 1.51 

ºC/W was achieved at a maximum heat load of 50 W corresponding to an interface 

temperature of 98.5 ºC.  
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Figure 6.10 Evaporator thermal resistance versus applied heat load for the 

rectangular evaporator mLHP 

Figure 6.11 Total thermal resistance versus applied heat load for the 

rectangular evaporator mLHP 
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6.5 Comparison of the Thermal Performance of the Disk Shaped and 

Rectangular Shaped Evaporators   

Tests were conducted on the two types of mLHP design i.e. disk shaped evaporator and 

rectangular evaporator under the same experimental conditions to compare their thermal 

performances. Figure 6.12 and 6.13 compares the operational performance of the mLHP with 

disk shaped evaporator and rectangular evaporator on the basis of the evaporator and 

heater/interface temperature respectively.  
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Figure 6.12 Comparison of the interface temperature for the disk shaped evaporator 

mLHP and rectangular evaporator mLHP at the same range of input heat loads.  

Figure 6.13 Comparison of the evaporator temperature for the disk shaped evaporator 

mLHP and rectangular evaporator mLHP at the same range of input heat loads.  
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It is evident from the comparison plots that the thermal performance of the disk shaped 

evaporator is somewhat better than that of the rectangular evaporator. In the current design of 

the flat rectangular evaporator, reduced thickness of 5 mm has been obtained at the expense of 

some performance sacrifice. Factors that can contribute to this can be the change in the 

orientation of the wick with respect to the compensation chamber and reduction in the area of 

the fluid absorbing face of the wick. In the disk shaped evaporator which obeys the customary 

design of a LHP, the direction of the fluid and heat flow in the capillary structure are towards 

each other. The opposite faces of the disk shaped wick behave as evaporating and absorbing 

faces. Figure 6.14 and 6.15 presents the internal cross section of the two evaporator designs 

that shows the liquid and heat flow directions inside them.  
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Figure 6.14 Cross section of the disk shaped evaporator showing internal structures 

and directions of the liquid and heat flows relative to each other 
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Figure 6.15 Cross section of the rectangular shaped evaporator showing internal 
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In the disk shaped evaporator the compensation chamber is contained in the thickness of the 

evaporator structure and linked to the evaporator through the capillary structure. Conversely, 

in the flat rectangular evaporator the compensation chamber is distributed on the sides of the 

capillary structure and lies in its plane. On one hand, this results in a decrease of the liquid 

absorbing area of the capillary structure while on the other hand this alters the liquid and heat 

flow directions which become perpendicular to each other. As the heat exchange between the 

fluid and the solid surface is dependent on the direction of fluid and heat flow relative to each 

other, back heat flow to the compensation chamber in the rectangular case increases to some 

extent. Apart from this, as a result of the modified structure of the evaporator the liquid 

filtration path inside the capillary structure also increases which produces additional pressure 

losses. From Figure 6.15 it can be seen that there is no liquid wetting the top part of the wick 

which also contributes to increasing the evaporator temperature. In the same way, as liquid 

returns to the compensation chamber from one side only, wetting and thus cooling efficiency 

of the compensation chamber/wick is impaired. Perhaps more efficient liquid return to the 

compensation chamber and the presence of a gap between the wick top part and the cover 

plate would reduce the evaporator temperature. 

 

Another factor that leads to increase in the extent of the back heat conduction from the 

evaporator active zone to the compensation chamber, in the case of the rectangular evaporator, 

is the coplanar location of the evaporation zone with respect to the compensation chamber. As 

explained above, in the case of disk evaporator the compensation chamber constitutes the 

thickness of the evaporator structure. Here, the heat flow from the evaporation zone to the 

compensation chamber takes place through the liquid saturated wick structure and evaporator 

walls. Also due to the inherent structure of the disk shaped evaporator the majority of the 

liquid present in the compensation chamber makes contact with the wick absorbing face rather 

than the container walls. Since the thermal conductivity of the liquid saturated wick structure 

is much lower than the bulk material conductivity, the extent of the back heat flow is lower. In 

contract to this, for the rectangular design heat flow from the active zone to the compensation 

chamber take place through the high thermally conductive evaporator wall made of copper. 

Also, the bulk liquid in the compensation chamber makes contact with the high temperature 

coplanar evaporator wall. Therefore in this case, the rate of heat flow to the chamber increases. 
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As the compensation chamber temperature dictates the loop saturation conditions, the 

operating temperature in the rectangular evaporator is higher than in the disk shaped 

evaporator mLHP.  

 

However it is worth mentioning that with the rectangular evaporator design, thickness as low 

as 5 mm which is half of the thickness of the disk shaped evaporator was achieved and the 

evaporator showed satisfactory performance characteristics in the test range of applied heat 

load.    

 

In both evaporators, the designs of the heat acquisition region i.e. system of vapour removal 

channel and the evaporation zone are similar. For that reason the evaporator thermal 

resistance, Re for both the design, as shown in Figure 6.16, lies in the same range.    
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Figure 6.17 presents a comparison between the total thermal resistance, Rt of the two type of 

evaporator for the same range of heat load. It is seen from the plot that the mLHP with a 

rectangular evaporator was able to achieve the cooling of the high density heat sources within 

the thermal constraints imposed by the design requirements.   

Figure 6.16 Evaporator thermal resistance for the disk shaped evaporator mLHP 

and rectangular evaporator mLHP at the same range of input heat loads.  
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As an outcome of the experimentation described it is concluded that the proposed design of a 

mLHP with a rectangular shaped evaporator was able to operate successfully and authenticate 

the design concept for the modelling of a compact miniature LHP with reduced thickness. 

However there remain certain performance issues related to the loop operation that need to be 

addressed through further research work. Proposals like use of low conductive material for the 

evaporator body to reduce back heat flow to the compensation chamber and changes in the 

wick design and shape for proper wetting and efficient liquid filtration though it can be further 

explored.  

 

6.6 Summary 

The chapter can be summarized as follow: 

o It is possible to down scale the thickness of the miniature LHP by using a novel concept of 

relocating the compensation chamber from the thickness of the evaporator to its sides.  

o The mLHP evaporator with the compensation chamber distributed on its sides was able to 

attain a minimum thickness of as low as 5 mm while preserving the functionalities of the 

capillary structure and efficiency of the heat transfer process inside the evaporation zone. 

Figure 6.17 Total thermal resistance for the mLHP with disk shaped evaporator and 

rectangular evaporator at the same range of input heat loads.  
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A mLHP with such a low thickness is easy to install inside a laptop PC with the limited 

available space compared to the disk shaped mLHP model of 10 mm thickness.  

o The prototype was able to transfer extremely high heat flux of 50 W/cm
2
 up to a distance 

of 150 mm while maintaining the source temperature within the permissible limit of 100 

±5ºC. 

o In the case of a flat rectangular evaporator mLHP, the total thermal resistance and the 

interface temperature of the device were higher than for the disk shaped evaporator mLHP.  

 

The next chapter discusses experimental investigation of a liquid cooling system with a 

microchannel heat sink. 
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Chapter 7 

Liquid Cooling using a Microchannel Heat Sink 

 

In this chapter, the study of a single phase liquid cooled microchannel heat sink for the 

cooling of electronics microprocessors with extreme heat flux as high as 405 W/cm
2
 is 

reported. To begin with, a complete description related to the design and development of the 

experimental prototype is given in detail. After this, the experimental setup and test facility to 

investigate the thermal performance of the heat sink is explained. In addition, the standard 

equations for analysis of experimental results and available heat transfer correlations to 

predict the heat transfer inside the channels are also reported. A microchannel heat sink was 

tested under different conditions of input power and flow rate. Finally, results from the 

experiments are discussed in detail and compared with the predictions made on the basis of 

the theoretical relationships.  

 

7.1 Introduction 

With the worldwide technology revolution in the development of silicon chips, the well 

known prediction by Gordon Moore in 1965 (also popularly known as Moore's Law) which 

states that the number of transistors on a chip doubles about every two years has become a 

reality. On one hand this has boosted the processing capabilities of microprocessors but at the 

same time this technology advance has offered new challenges in the design of thermal 

architecture for cooling the chipsets efficiently. The increase in the number of integrated 

circuits on a chipset produces an extreme rise in the heat dissipation requirements for the 

same or reduced size of chip. Also, as a necessary thermal requirement, for the reliable 

operation of a microprocessor, its temperature must be maintained below 100º C.  

 

Until now, different designs of single phase as well as two-phase cooling systems, as 

discussed in the literature review, have been proposed and successfully employed for thermal 

control applications. However looking at the rapid rise in the thermal payload of chipsets 

these available cooling alternatives will produce diminishing returns. Two phase passive 

systems including heat pipes and vapour chambers are expected to be the ultimate cooling 
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solution for the future micro processors. But this will need further in-depth understanding and 

development of the two phase systems to bring the technology to the level required by 

advances in the silicon technology.  Alternatively, forced convection based single phase 

cooling systems are also a reliable option to satisfy the thermal needs of the upcoming 

electronic appliances. At present, liquid cooling can be considered as the most viable solution 

for thermal control of heat sources with extremely high and concentrated heat fluxes. In the 

literature survey it is seen that performance of these single phase liquid cooling systems can 

be greatly improved by using microchannel (or microfins) on the fluid side of the cold plate 

(or cooling section). In the present investigation, one such microchannel heat sink is designed 

with an appropriate material and working fluid combination in order to transfer high intensity 

thermal loads from computer microprocessors.  

 

7.2 Description of Microchannel Heat Sink (MHS) Prototype 

The layout of the microchannel heat sink is as shown in Figure 7.1 and includes the bottom 

plate on which microfins are fabricated and the top cover arrangement for flow management.  

                          
           

 

 

 

 

 

Microchannels were fabricated on a copper block of 54 mm (L) x 26 mm (W) x 5 mm (H) by 

a wire cutting technique. There was a total of 49 channels in the finned area of 30 mm (L) x 

20 mm (W), each channel being 0.2 mm wide and 3.5 mm high. Figure 7.2 shows in detail the 

geometry of the microchannel plate. The large aspect ratio of 17.5 for the channels was 
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purposely made to enlarge the surface area for heat transfer augmentation. The active heating 

zone that relates to the micro channelled area was 23.8 x 23.8 mm
2 

as depicted in Figure 7.1b 

and 7.2. In order to avoid deformation of the heating face under attachment pressure from the 

heat load simulator, the active zone was approximately 0.5 mm thicker than the rest of the 

plate. Inlet and the outlet plenums were machined in the top cover portion of the heat sink. 

These plenums help in achieving efficient fluid distribution through the microchannels. The 

top cover and the bottom finned plate were brazed to each other to provide proper sealing. 

During the assembly of the two halves of the heat sink, proper care had to be taken to ensure 

that there was no gap between the tops of the micro fins and the top plate. Essentially, the 

contact between the micro fins and the inner machined cavity of the top cover should be 

perfect. In the case of improper contact, the existing gap will provide the least resistance path 

to the flow of the fluid which will reduce the quantity of the liquid flowing through the 

microchannels and thus will severely hamper the performance of the heat sink. One method to 

guarantee proper contact is to keep positive clearance between the micro fins and the cover 

plate while brazing the two halves together.    
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The coolant enters the heat sink from the side and collects in the inlet plenum where it is 

equally distributed through the microchannels. While flowing through the microchannels, the 

liquid acquires heat from the large exposed surface of the channel walls (microfins) and rises 

in temperature. The hot liquid collects in the outlet plenums and exits through the outlet on 

the top of the cover plate. The flow pattern of the liquid and the internal details of the 

microchannel heat sink can be well understood from the side and the isometric cross sectional 

view as shown in Figure 7.3 (a) and (b).  

         
 

 

 

 

 

 

 

 

7.3 Experimental Setup and Test Procedure 

Figure 7.4 shows the experimental setup that was used to test the thermal performance of the 

microchannel heat sink. It consists of microchannel test section, finned heat exchanger and a 

liquid pump.  The heat load simulator (i.e. heater), in the form of a copper block embedded 

with two cartridge heaters, was tightly secured to the active zone of the test section with the 

help of a screw-flange arrangement. To provide better thermal contact between the heater and 

the heat sink active zone, thermal grease was used as the thermal interface material between 

the bottom of the heat sink and the top surface of the heater/chip. The liquid was pumped 

directly into the heat sink with the help of an electric pump to transfer the heat applied to the 

active zone of the test section by forced convection to the coolant flowing through the 

microchannels. As the present prototype of the microchannel heat sink was designed to handle 

large heat loads, a collector type finned heat exchanger with well developed external and 

internal surfaces was used for sensible cooling of the liquid leaving the microchannel heat 
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sink. The finned heat exchanger incorporated a bottom header that helped to distribute the hot 

liquid equally among six tubes passing through the heat exchanger. On the other end of the 

heat exchanger, the top header collected the cold fluid and passed it to the pump for 

recirculation. The finned heat exchanger was made from copper. The flow of fluid through the 

microchannel heat sink, bottom header, tubes connecting the headers and top header is clearly 

shown with the help of the cross sectional view of the cooling unit in Figure 7.5.  

 

 
 

 

 

 

 

 

 

The finned heat exchanger was cooled by means of forced air flow by placing it inside wind 

tunnel as shown in Figure 7.6. Throughout the test period, the room temperature was 

maintained constant at 22±2 ºC. The wind tunnel helped to maintain uniform and well 

distributed air passage through the heat exchanger section and thereby provide stable 

conditions to perform the experiment.  Sufficient air flow rate was maintained through the 

heat exchanger to dissipate all the heat input at the microchannel heat sink. 
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The thermal performance of the cooling unit was tested at different liquid flow rates using 

either open or closed loop systems. In the open loop system as shown in Figure 7.7, the test 

unit was connected to the constant temperature water supply from a reservoir and the liquid 

flow rate through the microchannel section was controlled by using a control valve at the heat 

Figure 7.5 Cross sectional view of the microchannel heat sink and distributed 

finned heat exchanger showing the fluid flow pattern inside the cooling unit. 
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sink inlet. With this arrangement very high flow rates were achievable which was useful for 

testing the maximum heat capacity of the heat sink. 

 

The temperature of the coolant at the inlet was maintained constant at 14±2 ºC. The mass flow 

rate of coolant through the microchannels was primarily determined by measurement of water 

mass collected over a fixed time interval. Precise measurements for mass were done using a 

mass balance of sensitivity 0.01 grams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the closed loop system, a centrifugal pump made by the SEPA Company with a maximum 

flow rate of 0.43 l/min under 60 cm water head and operating under max 12 V & 0.2 A was 

used to circulate liquid through the loop. The location of the electric pump with respect to the 

test section and the finned heat exchanger arrangement are presented with the help of a top 

view of the test facility in Figure 7.8. Charging of the closed loop system was done after 

evacuating the air from the system using a vacuum pump. Pure deionised water was used as 

the coolant inside the cooling unit. As the mode of the heat transfer in this case is forced 

convection using single phase (i.e. liquid cooling), the cooling unit was fully charged with the 

working fluid.   

Liquid from 

the Supply 

Liquid out 

Control 

Valve 

Charging line 

Top Header 

Liquid Inlet Line 

Liquid Outlet 

Line 

Finned Heat 

Exchanger 

Electric 

Pump 
Liquid Flow 

Liquid Flow 

Figure 7.8 Experimental setup for closed 

loop system. 

Figure 7.7 Experimental setup for open 

loop system. 



Chapter 7: Liquid Cooling using a Microchannel Heat Sink         162 

The thermal characteristics of the microchannel heat sink were studied using nineteen T-type 

thermocouples which were installed at different locations of the cooling unit as depicted in 

Figures 7.9 and 7.10. The accuracy of the temperature readings was within ±0.5 ºC. Data from 

the thermocouples was monitored and recorded every 5 seconds by using a Keyence data 

acquisition system and a computer system.  

 
 

 

 

The temperature at the interface between the heater and the heat sink was recorded with the 

help of a thermocouple (Figure 7.6) that was fixed inside the groove machined in the centre of 

the top active heater surface. Four thermocouples (Figure 7.9) were mounted on the outer wall 

of the microchannel heat sink to measure the mean temperature of the cooling section. In 

addition, seven thermocouples (Figure 7.10) were installed at different locations on the finned 

heat exchanger section to measure its mean wall temperature by an averaging technique. The 

outlet temperature of the hot liquid leaving the microchannel, which assists in the calculation 

of the cold plate (i.e. cooling section) thermal resistance, was estimated by a thermocouple 

installed at the external surface of the outer plenum. The inlet fluid temperature was obtained 

using a thermocouple positioned immediately upstream of the microchannels. Also, the rise in 

temperature of the cooling air was determined with the help of the two thermocouples at the 

entrance and exit of the finned heat exchanger respectively as shown in Figures 7.6 and 7.10. 

A digital wattmeter with an accuracy of ±0.1 W was used to measure the input power and for 
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the thermocouples on the microchannel heat sink 
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adjusting the input voltage and current in order to control the applied heat flux.  Tests were 

performed in the power range of 5 to 200 W. The input power and the mass flow rate of 

coolant were used as the primary controlling parameters for the experiment.  

 

 
 

 

The following procedure was followed for the conduct of each test. Initially, the fluid 

circulation through the microchannel was initiated by opening the control valve (for an open 

loop test) or turning on the electric pump (for a closed loop test). The desired flow rate could 

be set by adjusting the control valve or changing the input power to the pump. After the flow 

rate was stabilised, the heater power supply was switched on and maintained at the required 

level to achieve a steady state. For steady state, the temperature at the cooling section had to 

be maintained stable within ±0.1ºC limit. After steady state was achieved, readings from all 

the thermocouples were stored using the data recording system.  

 

7.4 Heat Transfer Analysis  

For the  particular input heat load and mass flow rate (i.e. Reynolds number) of the coolant, 

thermal characteristics of the heat sink were calculated on the basis of the steady state 

operating temperature of the cooling section (microchannel heat sink), its maximum heat 

transfer capability and the mean heat transfer coefficient.  
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In the analysis, the thermodynamic properties of the fluid are calculated based on the mean 

fluid temperature, Tmf (average of the fluid inlet and outlet temperatures). All the heat is 

assumed to be dissipated uniformly through the top of the chip (i.e. heat source) to the 

microchannel heat sink base. Heat losses from the chip through the substrate to the ambient, 

and through the cover plate to the surrounding air are neglected.  

Tmf  is calculated as follow:  








 


2

,, ilol

mf

TT
T                     (7.1) 

where T,l,o and T,l,i are the outlet and the inlet fluid temperatures of the liquid.  

 

The applied heat load, 

aQ was determined from the measured input voltage, Ve and current, I 

as follows: 

IVQ ea 
                      (7.2) 

 

The mean heat transfer coefficient, hm is determined from: 

)( mfwlch

a
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




                    (7.3) 

where, Ach is the area available for convection per channel and is equal to (Lch (Wch+2Hch)), 

Lch is the length of the channel, Wch is the width of the microchannel and Hch is the height of 

the microchannel. N is the number of microchannels and Twl is the internal wall temperature of 

the microchannels.  

 

As direct measurements of the microchannel wall temperature was not available, it was 

determined by extrapolation from the mean temperature of the heat sink base, Thsb as follow: 

Cuhsb

hsba

hsbwl
kA

tQ
TT



                                (7.4) 

In Equation 7.4, Thsb, Ahsb and thsb are the temperature, area and thickness of the heat sink base, 

kcu is the thermal conductivity of copper.  

 

Thermal performance of the heat sink is also determined on the basis of the thermal resistance 

between different sections as follows: 
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The efficiency of the heat transfer process from the source to the coolant is very important 

and calculated on the basis of the cold plate thermal resistance, Rcp expressed as: 






a

mfj

cp
Q

TT
R

)(
                     (7.5) 

where, Tj is the junction temperature at the interface between the heat sink base and heat 

source. 

 

The total thermal resistance, Rt of the device is calculated from the junction or the interface 

temperature, Tj through to the ambient temperature, Ta as follows: 






a

aj

t
Q

TT
R

)(
                    (7.6) 

 

 The uncertainty in the measurement of the temperature by thermocouples was ±0.5ºC. For the 

input heat load, using the Watt meter, uncertainty of ±0.1 W was introduced. The 

experimental results revealed that uncertainties in the thermal resistance and convective heat 

transfer coefficient were ±9.8% and ±18.7% respectively. 

 

7.4.1 Heat Transfer Correlations 

The experimental results for the channel heat transfer can be compared with theoretical 

predictions made on the basis of heat transfer correlations as discussed below. It may be noted 

that although these correlation equations were originally developed for circular tubes, they 

have been used for non-circular tubes with substitution of the hydraulic diameter, Dh.  

 

Correlations for the prediction of heat transfer were generally reported in terms of Nusselt 

number, Nu which is defined as: 

l

hm

k

Dh
Nu                       (7.7) 

in which, Dh is the characteristic hydraulic diameter of the microchannel and given by:  
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2
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
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and kl is the thermal conductivity of the liquid at the mean temperature, Tmf. 
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The heat transfer coefficient can be obtained from the above equation as: 

h

l

m
D

Nuk
h                       (7.9) 

 

The following conventional correlations are used by a number of researchers for the 

prediction of channel heat transfer. 

 

Kays and Crawford (1980) proposed a correlation in order to predict the Nusselt number for 

fully developed laminar (Re<2200) liquid flow through a rectangular microchannel: 
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in this, 
ch

ch

W

H
  is the aspect ratio of the channel. 

 

In the case of liquid flow through a channel both velocity and temperature depend on the axial 

distance. Two different types of entry length solution can be obtained. The simplest one is 

based on a fully developed velocity profile and a developing thermal boundary layer.  Such a 

situation would exist if the location at which heat transfer begins was preceded by an 

unheated starting length. Even in the absence of an unheated starting length, the velocity 

boundary layer development would occur far more rapidly than thermal boundary layer 

development and the solution based on the above approximation can be used.  In contrast, the 

combined (thermal and velocity) entry length solution corresponds to the case for which the 

temperature and velocity profiles develop simultaneously.  

For the combined or simultaneously developing entry lengths, a suitable correlation, due to 

Sieder and Tate (Incropera and DeWitt, 2001), for flow inside a circular tube is of the form: 
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The correlation is valid for the following conditions: 
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where the Reynolds number, Re is defined as 
l

hluD




Re               (9.13)  

and Prandtl number is 
l

lpl

k

c 
Pr                 (9.14) 

 ρl,  μl and cpl are the liquid density, viscosity and specific heat capacity at the mean 

temperature respectively, μwl is the liquid viscosity at the wall temperature, u is the flow 

velocity and  Twl is the surface or wall temperature of the cooling section. 

 

Stephan and PreuBer (Lee et al, 2005) proposed correlations for simultaneously developing 

boundary layers at constant wall temperature and constant wall heat flux conditions for liquid 

flow inside circular tubes: 

3.0
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Valid for surface temperature, Twl = constant, 0.7 < Pr <7 or RePr(D/L) < 33 for Pr > 7.  
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Valid for surface heat flux, qwl = constant, 0.7 < Pr <7 or RePr(D/L) < 33 for Pr > 7.  

 

For a thermally developing laminar boundary layer and a fully developed velocity profile 

inside a circular tube, the following correlations are reported by Hausen (Incropera & DeWitt, 

2001) and Shah & London (1978) for constant surface temperature and constant wall heat flux 

conditions respectively: 
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Valid for surface temperature, Twl = constant, Re < 2200 
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Valid for surface heat flux, qwl = constant, Re < 2200 

 

Different heat transfer correlations for the transitional and fully developed turbulent flow 

through circular tubes have also been proposed in the literature by Hausen, Dittus-Boelter, 

Petukhov and Gnielinski (Incropera & DeWitt, 2001, Lee et al, 2005).  

 

The Dittus-Boelter Correlation for the calculation of heat transfer characteristics for fully 

developed turbulent flow of liquid inside a circular tube is given as: 

3/15/4 PrRe023.0Nu                  (7.19) 

 

In addition, new and modified correlations have been proposed by Choi et al (1991), Yu et al 

(1995), Peng et al (1994), Adams et al (1998) and others researchers (Lee et al, 2005) to 

establish better agreement with, and close predictions of, the experimentally obtained results. 

Several of the above correlations have been used for the prediction of the heat transfer rate 

inside the microchannel.  

 

7.5 Result and Discussion 

7.5.1 Thermal Characteristics of the MHS using 11x13 mm
2
 Heat Source 

Figure 7.11 shows the heat load dependence of the heat sink interface temperature. In this test, 

a heat load simulator with an active area of 1.43 cm
2
 (i.e. 11 mm x 13 mm) was used to 

provide heating to approximately 25% of the active portion i.e. the region of the heat sink 

where the microchannels are present. This results in extremely high heat flux of 140 W/cm
2
 at 

a maximum power dissipation capacity of 200 W from the heat source. The interface 

temperature showed a linear rise with the increase in input heat load. For input power in the 

range of 25 to 200 W, the interface temperature lay between 26.6 to 63.9 ºC.  
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It is seen from Figure 7.12 that the power inputs considered here do not have an observable 

effect on the thermal resistances of the cooling section and the overall device.  
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Figure 7.12 Cold plate thermal resistance and total thermal resistance of the microchannel 

heat sink with respect to the applied heat load using 11mmx13mm heat source 

Figure 7.11 Heat load dependence of the Interface temperature of the 

microchannel heat sink with the 11mm x 13mm heat source 
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7.5.2 Thermal Performance of MHS with Different Heater Sizes 

For even higher heat flux characterization of the designed liquid cooled microchannel heat 

sink, a heat source with a active footprint as low as 0.49 cm
2
 was used to test its performance. 

Such a concentrated heat source supplies a local heat density to approximately 8.7% of the 

active face of the cooling section.  Here it contributes to the ultra high heat flux of 408 W/cm
2
 

which can imitate a local hot spot on the high-end chipsets.  

 

In Figure 7.13 the heat load dependence of the temperature at the interface of the heat sink 

and the 7 x 7 mm
2
 source (0.49 cm

2
 heater) is plotted and compared to that of the 11 x 13 

mm
2
 source (1.43 cm

2
 heater) for the same cooling conditions at the condenser.  
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Due to the smaller size of the 0.49 cm
2
 heater, the steady state interface temperature achieved 

in this case was higher than for the 1.43 cm
2
 heater. For example at 100 W input load, the 

interface temperature with the 0.49 cm
2
 heater was approximately 37% of that of the 1.43 cm

2
 

heater. This is predominately due to the addition of the metallic resistance offered to the 

distribution of the heat from the heater footprint to the active section of the cooling plate and 

the microchannels. Due to the concentration of the heat load in a smaller area, the 

microchannels are not heated uniformly which decreases the sensible heat gain by the coolant 

Figure 7.13 Heat load dependence of the Interface temperature of the microchannel 

heat sink with different heater sizes (7 x7 mm
2
, 11 x13 mm

2
) 
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from the fins. As a result, the wall or interface temperature of the cooling section increases as 

experienced in the present case. For input power from 25 to 200 W, the junction/interface 

temperature for the 0.49 cm
2 

source ranged from 33.6 to 110.4 ºC. 

 

Figures 7.14 and 7.15 present the results for the cold plate thermal resistance and total thermal 

resistance with changing heat load. The thermal resistance of the cold plate with the high flux 

chipset (i.e. 0.49 cm
2
 heater) is 0.33 ºC/W compared to 0.09 ºC/W for the 1.43 cm

2
 heater 

while the total thermal resistance is 0.44 ºC/W compared to 0.18 ºC/W for 1.43 cm
2
 heater 

source.  
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It is also noted from the plotted results that the thermal resistances remains fairly constant 

(within ±0.1 ºC/W) over the entire test range of input heat loads. For the 0.49 cm
2
 source, the 

value of the heat transfer coefficient for the forced flow of liquid through the microchannels 

lies between 3500 to 4100 W/m
2
K while for the 1.43 cm

2
 source, it varies in the range of 

3800 to 5100 W/m
2
K. The cause of the slightly low value of the heat transfer coefficient with 

high heat flux source can be possibly due to the unequal temperature gradient observed on the 

microchannel walls which were heated more in the centre than at the sides. As the micro fins 

were not heated equally along the entire length of the channel, therefore the heat gain by the 

Figure 7.14 Variation of the cold plate thermal resistance of the microchannel heat sink 

with the applied heat load with different heater sizes (7 x7 mm
2
, 11 x13 mm

2
) 
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fluid decreased which decreased the overall heat transfer coefficient. Contrary to this, due to 

the larger active area of the second source (1.43 cm
2
 heater), heat spreading on the micro fins 

and channel walls was better. Hence improvements in the heat transfer coefficient occured.  
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7.5.3 Thermal Performance of MHS with Different Flow Rates 

In the present investigation, the thermal characteristics of the microchannel heat sink were 

studied by varying the flow rate of the coolant from 0.1 to 0.9 l/min (or 1.7 to 15 cc/sec). As 

the electric pump used in the previous testing was capable of providing a maximum rate of 

0.43 l/min, the current tests were conducted using an open loop system as discussed above. 

The coolant temperature at the inlet to the heat sink was maintained constant at 14±2 ºC. 

Testing was done with the high heat flux chipset of 7 x 7 mm
2
 thermal footprint. 

 

The measured chip interface temperature and cold plate thermal resistance at different flow 

rates are shown in Figures 7.16 and 7.17 as functions of the applied heat load. As expected, 

when the flow rate increased the chip temperature and the thermal resistance decreased. With 

increasing flow rates, the interface temperature decreased rapidly at first and then at a slower 

rate. It is further seen that, at a given heat load, for high flow rates (above 0.58 l/min) the 

interface temperature was almost constant and showed little decrease with increase of the flow 

Figure 7.15 Variation of the total thermal resistance of the microchannel heat sink 

with the applied heat load for different heater sizes (7 x7 mm
2
, 11 x13 mm

2
) 
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rate. It should be noted that flow rates beyond 0.9 l/min were not possible with the current 

setup due to the limited fluid supply pressure available at the inlet to the heat sink.  
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The same trend is noted for the cold plate thermal resistance. The initial increase in the flow 

rate corresponded to a notable decrease in the thermal resistance which then became nearly 

Figure 7.16 Heat load dependence of the interface temperature for the 

microchannel heat sink for different flow rates 

Figure 7.17 Cold plate thermal resistance of the microchannel heat sink with 

respect to the applied heat load for different flow rates 
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constant for any further increase in the flow rate beyond 0.58 l/min at a given input power. 

For example at 100 W, the thermal resistance decreased from 0.44 to 0.32 ºC/W as the flow 

rate increased from 0.10 to 0.58 l/min, whereas for the same power, the thermal resistance 

decreased from 0.323 to 0.315 ºC/W for increase of flow rate from 0.58 to 0.90 l/min. This 

can be explained by considering the total thermal resistance through which heat has to pass 

starting from the heater top to the liquid. The total thermal resistance in this case is composed 

of a conductive resistance to spread heat in the metallic wall of the heat sink and the 

convective resistance to heat transfer from the channel inner wall to the coolant. Here, the 

conductive resistance is fixed by the physical properties and dimensions of the heat sink wall. 

With the initial increase in the flow rate, a considerable decrease in thermal resistance due to 

the enhancement of convective heat transfer from the channel wall to the liquid takes place. 

However, a point is reached when maximum possible decrease in the convective resistance is 

attained at a particular coolant flow rate. Beyond this, no further decrease is expected in the 

resistance which is now mainly of conductive nature.    The effect of increase in the flow rate 

on the enhancement of the overall heat transfer coefficient is clear from the plot in Figure 7.18. 

For an input power of 100 W to the cooling section, as the coolant flow rate is increased from 

a low value of 0.1 l/min to high value of 0.9 l/min, the heat transfer coefficient increases from 

1198 to 5246 W/m
2
K. 
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Figure 7.18 Heat transfer coefficient of the microchannel heat sink with 

respect to the applied heat load for different flow rates 
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7.6 Comparison of Experimental and Predicted Results 

The experimental results are compared to the predictions obtained on the basis of the 

correlations formulated in Equations (7.10) – (7.19). Figure 7.19 presents the results of the 

comparison on the basis of the heat transfer coefficient versus applied heat load. The inlet 

conditions for the range of the flow rates pertain to the laminar regime. It is seen that the 

predictions made by the laminar flow correlations, that are based on different entry length 

conditions, always considerably over predict the heat transfer rate inside the microchannels. 

However, results predicted from the Dittus-Boelter correlation for the fully developed 

turbulent flow inside the channel gave good agreement with the experimental results.  

 

 

 

 

Basically, the heat transfer coefficient is highly associated with the flow conditions inside the 

channels. On account of the extremely small channels in the heat sink, the heating creates a 

sudden and large change in the liquid temperature. As a consequence, the thermophysical 

properties of the flowing liquid change dramatically. It has been reported by Wang & Peng 

(1994) that the Reynolds number for the experiments using the microchanneled structure was 

Figure 7.19 Variation of the heat transfer coefficient with applied heat load: Comparison of the 

experimental and the predicted results by using different entry length conditions and flow regimes 
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usually approximately 500-1000 at the inlet and approximately 1800-2500 or larger at the 

outlet for the range of water flow velocities and other experimental conditions. This means 

that for water flow, the Reynolds number could be possibly doubled over the length of the 

microchannel due to change in viscosity with increasing temperature. For the fluids flowing 

through the microchannels, Wu & Little (1983) found transition to turbulence at a much lower 

Reynolds number than for conventional sized channels.  

 

Results from the heat transfer experiments are compared to predicted values for a range of 

flow rates by taking dimensionless parameters (i.e. Reynolds number versus Nusselt number) 

as in Figure 7.20. In this situation also, the predicted results obtained by the laminar flow 

correlations over predict the heat transfer coefficient. With the fully developed turbulence 

correlation, agreement between the experiment and predictions is quite close. It is noted that 

at low Reynolds number, the experimental results match the predictions. As the Reynolds 

number increases the experimental results depart from the predictions.   

 

 

 

 

 

 

Figure 7.20 Variation of the Nusselt number with Reynolds number: Comparison of the 

experimental and the predicted results by using different entry length conditions and flow regimes 
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Various other reasons for these deviations (Morini, 2004) of the microchannel behaviour 

compared with convectional channels have been proposed by involving rarefaction, 

compressibility, viscous dissipation effects, surface conditions (roughness), property variation 

with temperature (as discussed above), electro-osmotic effect (electric Double Layer) etc. 

Reasons for this disparity (Lee et al, 2005) may also include uncertainties in channel 

geometry and temperature measurement in the experiments as well as a mismatch in the 

conditions for which the convectional correlations were proposed (circular tubes, different 

entrance and boundary conditions etc). It is critical therefore, that appropriate correlations 

which faithfully represent the geometry as well as the thermal and inlet boundary conditions 

in the experiments are selected for comparison. Different modified and dedicated correlations 

have been developed for the microchannels by researchers worldwide to give better 

agreement with the experimental obtained values (Lee et al, 2005). 

 

It should be noted that the comparison study undertaken above does not take into account all 

the available correlations (for laminar and turbulent flow regime) from the literature for the 

prediction of heat transfer in the channels. As an outcome of the above study, it can be 

recommended that complete evaluation of validity of the conventional correlations (for large 

channels) for the prediction of the microchannel heat transfer could be done as an eminent 

contribution to heat transfer science.  

 

7.7 Summary 

A liquid cooled microchannel heat sink has been developed and characterized for thermal 

control of high heat flux electronic packages with water as coolant. The microchannel heat 

sink, made of copper and with a high aspect ratio of 17.5, has been tested under different 

power inputs (25 to 200 W) and flow rates (0.1 to 0.9 l/min). Two heat load simulators of 

different sizes, 7mm x 7mm and 11mm x 13 mm were evaluated as thermal test vehicles. 

With the 11x13 mm
2
 chip, junction to mean fluid thermal resistances, Rcp were measured to 

be 0.08 to 0.11 ºC/W and the overall thermal resistance, Rt for the assembly with the heat sink 

was 0.16 to 0.20 ºC/W. while for the 7x7 mm
2
chip the corresponding values for the Rcp and Rt 

were 0.32 to 0.34 ºC/W and 0.42 to 0.44 ºC/W. The higher value of the 7x7 mm
2
 chip thermal 

resistance compared to that for the 11x13 mm
2
 chip is mainly attributed to the additional 



Chapter 7: Liquid Cooling using a Microchannel Heat Sink         178 

spreading resistance at the heat sink base due to the miniature size of the former. Predictions 

of the heat transfer inside the micro channel were carried out on the basis of various 

correlations for the laminar and turbulent flow. The predicted results are compared to the 

experimental results and reasonably close agreement has been achieved by employing the 

turbulent flow correlation.  

 

The next chapter discusses the potential of the liquid cooling based system with a sintered 

porous heat sink. 
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Chapter 8 

Liquid Cooling using a Sintered Porous Heat Sink 

 

The study of a sintered porous heat sink for the thermal control of the electronic 

microprocessors with extensive processing capabilities and miniature design has been carried 

out. Initially, a description of the heat sink prototype with body and wick structure made of 

copper has been given in detail. Then the experimental setup and the procedure followed to 

conduct the testing of the sample have been elaborated. The thermal performance of the 

sintered porous heat sink was assessed at different coolant flow rates (0.05 to 0.25 l/min) and 

thermal load inputs (10 to 150 W). The criterion that the maximum permissible temperature of 

the heat source should be within the 100±5 ºC range was used to determine the maximum heat 

load capability of the heat sink. Also, a comparison is made between the microchannel heat 

sink and sintered porous heat sink.  

  

8.1 Introduction 

Porous structures are effective and capable candidates for the thermal management of 

electronic devices. Wick structures made from plastic and metal powders are widely used as 

capillary pumping sources in two phase heat transfer systems. In single phase cooling 

applications, porous heat sinks made from metal foams, packed beds, and sintered metal 

powders provide an efficient heat transfer augmentation technique. Here, the capability of the 

porous media to increase the surface area in contact with the coolant and to intensify the fluid 

flow mixing helps to enhance the convective heat transfer between the fluid and the porous 

matrix. In the following section, an experimental investigation of a heat sink made from 

sintered copper powder has been carried out with the appropriate material as copper and 

working fluid as water in order to transfer high intensity thermal loads from computer 

microprocessors. The outcomes of the present experiment are aimed at finding a reliable 

thermal design for the thermal control of a desktop microprocessor with an extremely high 

heat flux (e.g 400 W/cm
2
). 
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8.2 Description of the Sintered Porous Heat Sink Prototype 

The layout of the sintered porous heat sink is shown in Figure 8.1 and consists of the bottom 

portion or the cold plate on which the porous structure is attached and the top cover 

arrangement for flow management.  

 

 

 
 

 

 

 

The bottom portion or lower housing block consists of a circular copper block of 50 mm 

diameter and 4 mm thickness. On the top face of the lower block, a rectangular section of 

22mm (L) x 20mm (W) x 2 mm (D) was milled in which the porous structure of 14mm (L) x 

20mm (W) x 2mm (H) was inserted such that it occupied the entire cross section of the 

channel as shown in Figure 8.2. On the diametrically opposite ends of the circular block, 

holes of 3.2 mm diameter were drilled that open into the inlet and outlet plenums located on 

either side of the porous insert in the form of ports. Inlet and outlet tubes were fixed into the 

drilled holes to provide coolant flow to the sintered porous heat sink. The inlet and outlet 

plenums also help in even distribution and proper streaming of the liquid through the porous 

matrix. Figure 8.3 shows a picture of the cold plate with the porous medium inserted inside 

the machined rectangular channel.  

 

Bottom portion 

(Cold Plate) 

Securing Flange 

Inlet Tube 

Outlet Tube 

Coolant Out 

Coolant In 

Top Glass Cover 

Sintered Porous 

Copper Wick 

Figure 8.1 Layout of Sintered Porous Heat Sink 
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Figure 8.4 illustrates the main components of the sintered porous heat sink including an 

exploded view of the cooling section assembly. In order to direct the liquid flow through the 

porous matrix, it is enclosed from the top with a circular glass sheet which is kept in place 

with the help of a flange and nuts arrangement.  

Bottom portion 

(Cold Plate) 

Inlet Port  

Inlet Plenum 

O-ring Groove  

Outlet Port 

Outlet Plenum 

Sintered Porous 

Copper Wick To outlet tubing 

To inlet tubing 

Figure 8.2 Internal structure of the Sintered Porous Heat Sink  

Sintered Porous 

Copper Wick 

Lower Copper Housing 

(Cold Plate) 

Inlet Port 

Inlet Plenum 

O Ring Groove 

Outer Plenum 

Outlet Port 

Figure 8.3 Picture of the cooling section showing the Porous 

Insert inside the machined rectangular channel 
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The top of the wick should be perfectly flat and levelled with the glass cover to avoid any 

leakage of the coolant along the contact surface between the sintered porous plate and the 

glass cover. In the present model, a thin layer of Ethylene Propylene Diene Monomer 

(EPDM) rubber gasket (not shown in the Figure) was also placed on top of the porous plate 

for sealing the liquid flow. To prevent any external leakage of the liquid from the interface 

between the lower copper housing (bottom portion) and the top glass cover, a silicone O-ring 

seal was provided between them. 

 

Sintered copper material was used as the porous medium in the model of the heat sink. The 

porous medium was manufactured by using copper granules of # 100-200 mesh size. The 

copper powders used in the porous sample had rounded irregular shaped particles that were 

sintered at a temperature slightly less than the melting point of copper in order to fuse and 

interlock the particles to form a porous matrix. The structure of the sintered porous material is 

presented in Figure 8.5. Physical properties like permeability, porosity, and maximum pore 

size of the porous medium were determined by the experimental techniques discussed in the 

Appendix C. Table 8.1 lists these flow properties of the sintered copper wick.  

Outlet Tube 

Bottom Portion 

(Cold Plate) 

Sintered Porous 

Copper Wick 

Inlet Tube 

O-ring  

Glass Top Cover 

Aluminium Securing 

Flange 

Fixing Nuts 

O-ring Groove  

Figure 8.4 Exploded View of the Sintered Porous Heat Sink 

Assembly 
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Table 8.1 Physical properties of copper wick (# 100-200 mesh size) 

Physical Property Value  

Pore radius < 30 μm 

Porosity 40% 

Permeability 1.44 x10
-11

 m
2
 

 

The active area of the cooling section corresponds to the region on the cold plate which is 

occupied by the porous material and equals the area span by the liquid flow through the wick 

Figure 8.5 Sample of the sintered porous material at different magnifications showing rounded 

irregular copper granular particles fused together as the result of the sintering process 
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i.e. 14mm (L) x 20mm (W). The coolant enters into the heat sink via the inlet tube, passes 

through the porous structure where it absorbs the heat conducted from the heat source 

attached at the bottom of the cold plate. After absorbing heat from the porous medium by 

convection, the coolant exits the heat sink through the outlet tube. 

 

 
 

 

 

 

 

8.3 Experimental Setup and Test Procedure 

The experimental system used to investigate forced convection heat transfer of liquid in 

porous media is shown schematically in Figure 8.7. The thermal performance of the heat sink 

was tested under a condition of non-uniform heating of the cooling section active zone using a 

7mm x 7mm (0.49 cm
2
) heat source. In this case, heating was done on approximately 17.5% 

of the heat sink active zone. The heat load simulator was fabricated from a copper block with 

two embedded cartridge heater rods. It was symmetrically attached to the active zone at the 

bottom of the lower housing. Thermal insulation of the heat source was provided by a bakelite 

plate provided at the heater base. For proper thermal contact between the heater and the heat 

sink active zone, the required attachment pressure was provided by the base plate with the 

help of screw bolt arrangement. A layer of heat conducting grease was also applied on the 

active face of the heater to reduce the thermal resistance.   

 

 

 

Liquid In 

Active cold 

plate area   

Liquid Out 
Figure 8.6 Cross Sectional view of the sintered porous heat sink showing 

the liquid flow pattern inside the cooling section 

Inlet Tube 

Outlet Tube 
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The parameters measured in the experiment included the temperatures, pressure at the inlet to 

the heat sink, mass flow rate of the coolant and the input power to the heater. Eight T-type 

thermocouples with an accuracy of ±0.5ºC were used to measure the temperature at different 

locations in the test facility as shown in Figure 8.8. To measure the interface temperature Tj at 

the heater-cold plate junction, a thermocouple was fixed in the groove that was machined in 

the center of the heater face. The external surface temperature of the active zone was 

determined by taking the weighted mean of readings of the three thermocouples attached to 

the lower housing. Two thermocouples were installed at the inlet and the outlet of the heat 

sink to measure the coolant liquid temperature at those points. To monitor and record the 

temperature at different points of the porous heat sink during testing, the thermocouples were 

connected to an Agilent HP34970A data acquisition system.  The mass flow rate of the liquid 

was measured by weighing the liquid flowing out of the heat sink in a given time interval 

using an electronic balance. To set and measure the input power to the heater, a digital power 

meter with an accuracy of ±0.1 W was used. The electrical power input to the heat was 

calculated from the input voltage and current. Water was used as the coolant in the 

experimental tests.  

 

To conduct each test on the heat sink, the flow rate, input power and the inlet liquid 

temperature were fixed. All the measurements for temperature were made at steady state 

Digital Pressure 

Gauge 

Pressure Gauge 

readout 

Flow Control 
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Water In 
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Flange 

Tj 
Heater 

 (7x7 mm
2
) 

Water Outlet  

Electronic 

Balance 
Flow Rate 

Measurement  

System 

Water 

Beaker 

Figure 8.7 Experimental Setup of the Sintered Porous Heat Sink 

Sintered Porous 

Heat Sink 
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conditions. Each experiment was run for several minutes until the fluid and thermal regimes 

inside the porous structure became stable. Steady state was assumed to occur when the 

fluctuations in the heat sink junction and wall temperatures were within ±1 ºC. The 

experiments were carried out in the range of average volume flow rate of 0.05 to 0.25 l/min in 

the channel with the porous insert and heat load in the range of 10 to 150 W. The inlet 

temperature of the liquid was maintained at 20±2 ºC.  

 

    
 

 

 

 

 

 

 

 

 

 

 

8.4 Data Reduction  

The measured temperatures at different points were used to calculate the thermal performance 

of the sintered porous heat sink on the basis of the interface/junction temperature, overall heat 

Figure 8.8 Test Facility for the Sintered Porous Heat Sink showing 

the location of the thermocouple points 
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transfer coefficient and cold plate (interface temperature to fluid mean temperature) thermal 

resistance.  

The overall heat transfer coefficient from external wall to liquid is defined as:  

 

)( mfwlpb

a
o

TTA

Q
h






                  (8.1) 

where, 

aQ  is the heat load applied to the surface of the heater adjacent to the porous sample. 

The heat losses from the heater surface and bottom surface of the heat sink to the ambient are 

considered negligible due to the small size of the relevant areas. Apb is the area of the porous 

block attached to the channel inside the lower housing of the heat sink. Twl is the external 

weighted mean wall temperature of the heat sink measured by the thermocouples on the 

external surface of the heat sink and Tmf is the average liquid temperature calculated as the 

mean of the inlet and the outlet temperatures of the liquid in the test section.    

 

The thermal resistance of the test section Rcp was calculated on the basis of the junction or 

interface temperature, Tj and the liquid mean temperature Tmf as follow: 
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mfj
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Q
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R
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                  (8.2) 

 

The flow rate of the water was controlled by adjusting the flow control valve and was 

measured by the weighing method. The temperatures at the inlet, outlet and wall of the heat 

sink were measured by K-type thermocouples with an uncertainty of ±0.1 ºC. For the 

measurement of the input power, the uncertainty of the power meter reading was ±0.1 W. The 

error in determining the overall heat transfer coefficient ho, according to Equation (8.1) is 

formed from an estimation of the measurement error of the following values: Q - input heat 

load, Tf,i and Tf,o – average of the input and the outlet temperatures of the liquid coolant, Twl – 

Tmf – difference between the average value of the wall and liquid temperatures. The 

uncertainty of ho was estimated to be within ±17.7%. For the thermal resistance the 

uncertainty was estimated to be ±7.9%.  



Chapter 8: Liquid Cooling using a Sintered Porous Heat Sink         188 

8.5 Results and Discussion 

8.5.1 Pressure Drop 

Figure 8.9 shows the pressure drop through the sintered porous matrix as a function of the 

volume flow rate of the coolant. The pressure drop in the porous medium significantly 

increased with increasing flow rate. It is clear from the graph that even for smaller flow rates, 

large pressure drops are encountered. This is due to the micro porous structure of the wick 

which has a pore radius of order less than 30 μm. As the characteristic hydraulic diameter of 

flow channels (i.e. micro pores) is very small there occurs an increase in the flow resistance. 

In addition, the contact area between the coolant and the porous matrix is very high which 

produce high flow resistance losses.   
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8.5.1 Heat Transfer  

Dependence of the interface temperature on the flow rate of the coolant for 100 W input heat 

load is presented in Figure 8.10. The temperature at the heater-heat sink junction shows a 

decrease with increase in fluid flow rate. For example, as the flow rate increases from 0.2 to 

0.25 l/min, the interface temperature reduces by 17.9 ºC.  Figure 8.11 shows the relationship 

between the interface temperature and the applied heat load for different flow rates from 0.05 

to 0.25 l/min.  It is noted that the trend between the interface temperature and heat load at a 

given flow rate presents a monotonic variation. The heat sink was able to transfer a maximum 

heat load of 140 W at 0.25 l/min while maintaining the interface temperature below 100 ºC. In 

Figure 8.9 Pressure drop versus flow rate for the Sintered Porous Heat Sink 
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this study, the sink was not tested for flow rates beyond 0.25 l/min due to the limitation on the 

maximum available water supply pressure at the inlet of the cooling section.  
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Similar trends were observed for the heat transfer coefficient ho of the sintered porous heat 

sink as depicted in Figure 8.12.  For the given flow rates and over the range of applied heat 

loads (10 to 150 W), constant values were achieved for ho. It should be noted that the 

magnitude of ho has a strong dependence on the area involved in heat transfer. In the present 

Figure 8.10 Interface temperature versus flow rate for applied heat load of 100 W 

Figure 8.11 Relationship between the interface temperature and the applied heat 

load for different flow rates  
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case, the area used to calculate ho is the external active zone of the heat sink i.e. the area 

where sintered structure is present. 
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Figure 8.13 shows the cold plate thermal resistance “calculated on the basis of the interface 

temperature and the mean liquid temperature” of the sintered porous heat sink. For the applied 

heat load (10 to 150 W) and the given flow rate, near constant values of Rcp were obtained. 

For example, at flow rate of 0.25 ml/min, Rcp was approximately 0.48 ºC/W whereas for 0.20 

l/min, Rcp values of 0.71 ºC/W were obtained.  
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Figure 8.12 Heat transfer coefficient versus applied heat load for different flow rates 

Figure 8.13 Cold plate thermal resistance versus applied heat load for different flow rates  
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To study the variation of the cold plate thermal resistance with respect to the flow rate of the 

coolant, Figure 8.14 is used. It is noted that for the given change in the coolant flow rate, the 

reduction in the cold pate thermal resistance is much higher at high flow rates than compared 

to the lower flow rates. As an example, a change in flow rate from 0.17 to 0.23 l/min produces 

a decrease of 0.06 ºC/W in Rcp whereas for the change of 0.23 to 0.25 l/min in flow rate the 

corresponding decrease in the Rcp is 0.13 ºC/W, which is nearly double the previous case.  

This can be to the dominant viscous pressure losses inside the porous heat sink at low flow 

rate. As the flow rate increases, the viscous losses are counterbalanced and the flow is 

properly channeled through the bulk of the porous matrix.   
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8.6 Comparison of Thermal Performance of Microchannel and Sintered 

Porous Heat Sinks 

The thermal performance of the two types of the heat sink i.e. the Microchannel Heat Sink 

(MHS) and the Sintered Porous Sink Heat (SPHS) is compared at different flow rates with the 

help of Figure 8.15. It is noted from the figure that the cold plate thermal resistance of the 

microchannel heat sink is lower than that of the sintered porous heat sink for the same 

condition of heating using the 7mm x 7mm (i.e. 0.49 cm
2
) heat source. For the same 

volumetric flow rate of the coolant (0.2 l/min) and same cross sectional area of liquid flow, 

the Rcp for the porous heat sink is nearly two times that of the microchannel heat sink. Even 

Figure 8.14 Cold plate thermal resistance versus flow rate for applied heat load of 100 W  



Chapter 8: Liquid Cooling using a Sintered Porous Heat Sink         192 

for higher flow rates through the porous sink (around 0.25 l/min), its Rcp values are still higher 

than the microchannel sink with a flow rate as low as 0.10 l/min. This difference in the 

thermal performance of the two heat sinks can be explained by taking into consideration the 

structural design and the thermal conductivity of the two heat sinks. 
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Even though the porous matrix used in the sintered heat sink is made from high conductivity 

copper, the effective thermal conductivity of the matrix is lower than the heat conductivity of 

the bulk material making up the porous structure.  Due to high porosity (around 40% in the 

present case) of the wick structure, the total contact area between the two adjacent layers in 

the same horizontal plane of the sintered structure is small which increases the resistance of 

the porous matrix.  It was experimentally determined (as explained in Appendix C) that the 

effective thermal conductivity of the copper wick saturated with water is as low as 32 W/m.K 

compared to the high value of 380 W/m.K for the thermal conductivity of copper from which 

the wick structure is made. In the case of the microchannels, the heat is transferred to the 

liquid from the heated channel walls. As the channel walls or microfins are machined directly 

on the cold plate and form an integral part of the heat sink, their resistance is lower than that 

of the porous structure. Another thing to note is that the attachment of the porous heat sink to 

the machined channel is achieved by a heating or sintering process. Here, the surface 

attachment between the two largely dictates the heat transfer performance of the heat sink. In 

Figure 8.15 Comparison of the cold plate thermal resistance for Microchannel and 

Sintered Porous Heat Sinks 
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the case of poor attachment, the heat sink can suffer from vapour bubble formation on the 

heated active zone. Also, at higher heat fluxes the probability of vapour bubble formation 

inside the porous structure arises more from the higher flow resistance and torturous path 

followed by the liquid through the wick matrix. The internal pore volume of the porous 

structure can also contain dead and closed spaces inside the matrix which can instigate vapour 

bubble formation which can eventually increase resistance and hence increase the cold plate 

(i.e. cooling section) temperatures.  

 

The thermal performances of each of the heat sinks are also compared on the basis of the 

overall heat transfer coefficient, ho that is calculated on the basis of the applied heat load Q , 

heater footprint area Ah and difference in the heater junction temperature, Tj and fluid mean 

temperature, Tf at the inlet and outlet as follow: 

)( mfjh

a
o

TTA

Q
h






                  (8.3) 

 

Figure 8.16 shows comparison of the relationships between the overall heat transfer 

coefficient and applied heat load for different flow rates.  
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 Figure 8.16 Comparison of the overall heat transfer coefficient (based on the heater active 

face area) for Microchannel and Sintered Porous Heat Sinks 
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It is evident from the graph that the overall heat transfer coefficient of the microchannel heat 

sink is quite high (nearly 1.8 times) compared to that of the sintered porous heat sink. Clearly, 

the performance characteristics of the microchannel heat sink is superior to that of the sintered 

porous heat sink over the entire range of the applied heat load. 

 

Figure 8.17 shows a comparison of the two types of heat sinks on the basis of pressure drop 

across the heat sink versus flow rate. It is obvious from the graph that for a given flow rate, the 

pressure drop across the microchannel heat sink is very low as compared to that of the 

microporous heat sink. This is due to the very small radius of the pores (< 30 µm) and the 

tortuous path followed by the liquid in the porous structure which increases the hydraulic 

pressure losses.  
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It should be noted that the comparison is made on the basis of single configurations of the 

microchannels and porous material and therefore provides a limited comparison of the two 

types of heat sinks. In order to draw more general conclusions an exhaustive study could be 

done of the microchannel heat sink with different aspect ratios (fin height/fin width) and 

porous structures with different flow properties (porosity, permeability and pore size). Such a 

study is recommended to comprehend the overall potential of two types of heat sink.  

Figure 8.17 Comparison of the pressure drop across the heat sink versus flow  

 rate for Microchannel and Sintered Porous Heat Sink 
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8.7 Summary 

A heat sink based on a porous copper wick for cooling high powered microprocessors was 

investigated experimentally. Heat fluxes of up to 2.8 MW/m
2
 were removed by using forced 

liquid cooling via a porous sample with a porosity of 40% and pore radius less than 30 μm 

while maintaining the interface temperature within the permissible limit of 100±5 ºC. An 

estimate of the thermal performance of the sintered porous heat sink showed a cold plate 

thermal resistance, Rcp of 0.48 ºC/W at flow rate of 0.25 ml/min and input power of 150 W. It 

has been noted that effective heat transfer in the sintered porous heat sink is accomplished by 

a drastic increase in the pumping power. This means that the principle of using the sintered 

porous heat sinks can be justified in micro electronics of high power if there are no limitations 

on pumping power. Also, a comparison of the sintered porous heat sink was done with the 

microchannel heat sink which showed the superior performance of the latter over the former.  

 

In the next chapter, comparative study has been carried out between two-phase systems based 

on a heat pipe module and single phase cooling systems based on the microchannel based 

liquid cooling.  
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Chapter 9 

Comparative Study: Two-Phase Vs Liquid Cooling 

 

In the present chapter, a comparative study has been carried out for two-phase and single-

phase cooling systems. Two prototypes; one with a heat pipe module and the second with 

microchannel based liquid cooling were developed to carry out the investigation. Description 

of both cooling units is given in detail. The thermal performance of each cooling unit was 

assessed and compared on the basis of a single heat source as well as multiple heat sources.    

 

9.1 Introduction 

It has been predicted by chip manufacturers that the heat dissipation requirements of chipsets 

will continue to increase in future due to the increase in their processing speed and addition of 

new capabilities to the electronic systems. In the previous chapters, comprehensive 

investigation of various thermal designs for the cooling of electronic devices particularly 

computer systems has been done. The main aim of the study was to devise potential cooling 

devices that can serve the cooling requirements of the new generation high powered 

microprocessors as well as providing reliable thermal management for future systems. 

Different prototypes that were developed were based on two-phase or single phase heat 

transfer. It is established from the experimental outcomes that two-phase systems based on 

capillary pumping of the heat transfer fluid acts as very reliable thermal control devices. 

These devices were able to handle heat fluxes up to 50 W/cm
2
 given out by the laptop 

microprocessors and can be favorably accommodated in the limited available space. 

Nonetheless, the heat transfer capability of these systems is limited by their reliance on 

inactive fluid circulation and associated low mass flow rates. For handling extremely high 

heat fluxes, liquid cooling systems that are based on forced convection heat transfer can be 

considered as a viable option. With these pumped systems extremely high heat fluxes can be 

removed and transferred. In the study, single phase liquid cooling systems were able to handle 

extremely high heat flux up to 4 MW/m
2
. As the current research work is focused on the 

thermal capabilities of the two-phase and single-phase cooling methods, it can be consider as 

a fruitful contribution to the body of knowledge to compare the thermal 
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performance of these two types of technology. 

 

All of the investigated thermal designs were intended to handle heat load dissipated by a 

single heat source. As processing and graphic capabilities in computers are being enhanced, 

more processing units with high heat dissipating capacity are being added to the main board. 

As an example, in new laptop computers with enhanced graphic and high data processing 

potential, the graphics and the memory tasks are separated from the Central Processing Unit 

(CPU) and assigned to dedicated chipsets which are known as Graphical Processing Unit 

(GPU) and Memory Processing Unit (MPU) respectively. This has given rise to the problem 

of cooling multiple heat sources. In the light of the above discussion, a brief study has been 

conducted to compare the thermal performance of two-phase and single phase heat transfer in 

cooling of single and multiple heat sources. It should be noted that the thermal modules used 

in this comparative test i.e. heat pipe module and microchannel heat sink module are standard 

thermal products developed by Fujikura Ltd. Japan. The main objective of this study is to 

compare and point out advantages and disadvantages of these two methods of cooling.  

 

9.2 Experimental Setup and Test Procedure 

In order to carry out the intended objective, two investigative prototypes of thermal module 

were built. The first prototype was based on the two phase cooling and consisted of a heat 

pipe module as a passive operating heat transfer device. In the second sample, thermal control 

was accomplished by means of liquid cooling using a microchannel structure.  

 

9.2.1 Heat Pipe Cooling Unit (Two-Phase Heat Transfer System) 

The unit as shows in Figure 9.1 consists of a flattened heat pipe with fibre composite wick, fin 

heat exchangers and centrifugal fans. The heat pipe which is initially made in cylindrical form 

is flattened by pressing it so as to accommodate it in the available thickness and to provide 

better contact with the heat source active footprint. In the unit, the heat pipe is attached to the 

copper die-cast plate by soldering. Two finned condensers are installed on each end of the 

heat pipe. For better surface contact, thermally conductive epoxy is used between the fins and 

heat pipe surface. The cooling of the condensers is accomplished by means of forced air 

convection using two centrifugal fans each with a flow rate of 0.1 m
3
/min (at 5 V, 0.1 A). 
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Figure 9.3 Cross Section of the Heat Pipe 

showing internal configuration 

Spiral Vapour Flow Channel 

Heat Pipe Wall 

Fibres 

Axial Groove 

 

 

 

 
 

 

 

The heat pipe as shown in the Figure 9.2 was made of copper with composite fibre wick 

structure. The heat pipe prototype had rectangular cross section (2 mm x 8 mm) and total 

length of 300 mm. In this case, the shape of the heat pipe was restricted by the location of the 

three heat sources and heat sink. The so called composite fibre wick (FB-G) consisted of very 

fine axial grooves on the internal wall of the heat pipe and a bundle of copper fibres (Figure 

9.3). 

 

 

 

 

 

 

 

 

 

 

 

  

 

For the best performance of the heat pipe, the wick structure should have high capillary limit 

and permeability. Capillary forces are required for continuous circulation of the working fluid 

inside the heat pipe whereas high permeability is needed for better heat transfer capabilities. 

In contrast to the traditional heat pipes with only a groove wick or fibre wick, a composite 

fibre wick (FB-G) helped to provide an optimum combination of capillary head using the 

fibre wick and permeability using the axial grooves. The fibre bundle which was uniformly 

distributed around the internal circumference of the heat pipe was kept in good thermal 

Figure 9.2 Heat Pipe Module 
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contact with the wall using a spiral retainer as shown in Figure 9.3. Internal voids between 

fibres acted as micro pores and provided capillary pumping of the working fluid from the cold 

end of the heat pipe to the hot end. The main dimensions of the miniature heat pipe are listed 

in Table 9.1. 

Table 9.1 Geometrical Dimensions of the Heat Pipe Prototype 

Parameter Dimension (mm) 

Heat Pipe Thickness 2 

Heat Pipe  Width 8 

Heat Pipe Extended Length 300 

Wall thickness 0.24 

Groove Thickness 0.075 

Fibre diameter 0.05 

 

It is worth mentioning that non-condensable gases degrade the performance of the heat pipe 

significantly. Proper cleaning and degassing of the heat pipe was done before charging. Heat 

transfer capacity of the miniature heat pipe depends more critically on the volume of the 

working fluid (Faghri, 1995) than with a conventional heat pipe. After vacuuming, 20-25 % of 

the internal volume of the heat pipe was charged with pure deionised water. 

 

For the proper working of a heat pipe, the net capillary pressure generated by the porous 

structure, in this case axial grooves and fibre wick, should be greater than the total pressure 

losses taking place inside the system, this includes vapour pressure losses inside the 

evaporator and adiabatic region (∆Pv) and liquid pressure losses inside the condenser and 

wick structure (∆Pl). The design criterion can be summarized by relation below: 

lvcap PPP  max)(                   (9.1) 

 

In this case, there are three heat sources that need to be cooled by the heat pipe module. 

Copper plates with dimensions equal to the active footprints of the respective heaters were 

soldered at the evaporator sections of the heat pipe (Figure 9.4) which helped to provide 

reliable thermal interface with the heat sources. A thermally conducting grease was also used 

between the evaporator-heater junction for better heat transfer. An attachment pressure was 
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applied on each of the heat sources to avoid any air gaps in the interface (Figure 9.5) and to 

provide metal to metal contact between heater and evaporator plate. The three heat load 

simulators had active thermal footprints of 25x25 mm
2 

(MPU), 25x25 mm
2 
(GPU) and 10x10 

mm
2 

(CPU). The maximum heat dissipation capacity of the three heat load simulators were 40 

W for CPU, 25 W for GPU and 25 W for the MPU unit. Each of the heat sources was made 

from a copper block embedded with two cartridge heaters.  
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9.2.2 Liquid Cooling Unit (Single Phase Heat Transfer System) 

In the single phase cooling unit, a rectangular channel was machined all along the periphery 

of the copper base plate (Figure 9.6). The inlet and outlet to the liquid channel were connected 

to a centrifugal pump by copper tubes. The centrifugal pump made by SEPA Company with 

maximum flow rate of 0.43 l/min under 60 cm water head and operating under max 12 V & 

0.2 A was used to circulate liquid through the loop. Two finned heat exchangers were 

installed on the outer surface of the channel and soldered to the base plate. For cooling the 

heat exchanger, two centrifugal fans, each with air flow rate of 0.1 m
3
/min (at 5 V, 0.1 A), 

were used. Figure 9.6 shows a schematic of the liquid cooling unit. The outlet of the pump 

line was connected with the main module and charging/evacuating line with the help of a 

three way connector. 

 

 

 
 

 

 

 

 

At each of the heat source sites, a microchannel heat sink was installed and fixed in place by 

brazing. The maximum heat dissipation capacities of the three heat load simulators were 40 W 

for CPU, 25 W for GPU and 25 W for the MPU unit. The corresponding sizes of the heat 

sources were as discussed before (i.e. 10x10 mm
2
 for CPU chip and 25x25 mm

2
 for each 

GPU/MPU chips). Due to the high heat flux (maximum value of 40 W/cm
2
) output by CPU, 

microchannel with high density was used in the CPU cooling section, as compared to the 

GPU/MPU sections. For the GPU and MPU, the microchannels used were of the same 

description. Figure 9.7 and 9.8 shows a schematic of two types of microchannels. Table 9.2 

gives the specifications of the microchannels used in each cooling section. The heat load 

simulators that were in the form of a copper block with two embedded cartridge heater were 

fixed to the microchannel external base (active zone of the heat sink) by using attachment 
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plates on the top of the cooling unit and bottom of the heater block. Figures 9.9 and 9.10 

presents the bottom perspective view and side view of the cooling unit showing the location 

of the heaters and related components.  

 

 

 

 

 

 
 

 

 

 

 

 
  

 

 

Table 9.2 Specifications of the Microchannels 

Parameter CPU Microchannel GPU/MPU Microchannel 

Channel Geometry Rectangular Rectangular 

Channel height 1.3 mm 1.3 mm 

Channel Width 0.1 mm 2 mm 

Inter-channel Distance 0.1 mm 0.5 mm 

Channel Length 7 mm 11 

No of Channels 39 8 
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Figure 9.8 Microchannel for 

MPU/GPU size heater 
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Figure 9.11 shows the liquid flow pattern inside the loop and the location of each of the three 

microchannels. 
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The procedure that was used for testing both the heat pipe and liquid cooling unit is as 

follows; First, both the units were tested with a single heat source and then the tests for the 

thermal control of three heat sources were conducted. Due to the high heat flux given out by 

the CPU chip, it was chosen for the single heat source testing.  In the multiple heat source 

testing, different combinations of heat load in the range of 0/0/0 W to 40/20/20 W 

(CPU/GPU/MPU) were delivered to the three chipsets. During testing, the heat load was 

increased in increments of 5 W. In both units, the centrifugal fans were run from a 5 V, 0.1 A 

power supply. For liquid cooling, the pump was run at 12 V, 0.2 A throughout the test period. 

Testing was done at the steady ambient temperature of 24±2ºC for both units. To run each test, 

first the fans (and pump) were turned on and then power was applied to the heater.  
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Figure 9.11 Perspective view of the liquid cooling unit showing the fluid flow pattern 
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9.3 Results and Discussion 

Heat Pipe Cooling Unit: As the power to a heater is turned on, the temperature of the 

evaporator rises and results in vaporization of the working fluid. This is followed by rise in 

temperature of the heat transport section (i.e. adiabatic section) and then the condenser section 

which registers the start up of the heat pipe. The vapour formed in the evaporator section is 

condensed in the condenser section and the condensate returns to the evaporator section by 

capillary pumping provided by the composite fibre wick of the heat pipe. Steady state is 

reached after a certain time period depending upon the applied heat load. 

 

Liquid Cooling Unit: Once the fluid circulation inside the loop is stabilized, the power to the 

heater is turned on. The heat from the heater will be conducted to the active zone of the 

cooling section and then to the walls of the microchannels. This heat will be convected to the 

liquid coolant flowing through the microchannels thereby heating the fluid which is then 

cooled by the fin heat exchanger.  

 

9.3.1 Single Heat Source Cooling 

Figure 9.12 plots and compares results of testing on the two cooling units with the single heat 

source (i.e. CPU) turned on. In the range of applied power (from 0 to 40 W), the interface 

temperature for the heat pipe unit lay within 34 to 140 ºC while for the liquid cooling unit, 

lower values of the interface temperature were obtained, within 31 to 81.5 ºC. It is observed 

from Figure 9.12 that for a heat load below 20 W, the interface temperature at the heat pipe 

lay closer to that achieved by the liquid cooling unit and showed a linear trend with respect to 

the applied power. As the heat load increases beyond 20 W, the heat pipe interface 

temperature registered a more rapid increase. This clearly indicates the heat transfer crisis 

phenomenon in the form of initiation of dry out inside the heat pipe evaporator. It can be 

explained as follow: With the increase in heat load, the quantity of the vapour and the 

associated flow rate inside the heat pipe increases. This increase the overall pressure losses 

that are comprised of vapour pressure loss inside the empty channel of the heat pipe and 

liquid pressure loss inside the capillary wick. As the pressure losses inside the system reach 

the maximum capillary pressure that the wick can generate, the condensate liquid is no longer 

able to reach the evaporator and this results in the dry out inside the evaporator. The interface 
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temperature of the microchannel heat sink remain linear with the increase in applied power 

even for input heat load higher than 40 W.  
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The total thermal resistance, Rt of the each unit was calculated on the basis of the 

interface/junction temperature, Tj and the ambient temperature, Ta as follows: 

 






a

aj

t
Q

TT
R

)(
                  (9.2) 

 

As shown in Figure 9.13, the total thermal resistance of the heat pipe clearly confirms the 

occurrence of the dry out inside the heat pipe evaporator for heat loads greater than 20 W. The 

overall thermal resistance with liquid cooling remains constant at approximately 1.35 ºC/W.  

 

It is noted from the above study that within the heat transfer capability of the designed two 

phase system which is determined by the system configuration (working fluid, container 

material, wick characteristics, transport line dimensions etc ) and specifications (input heat 

load, heat transfer length, etc), the thermal performance is similar to that of the single phase 

Figure 9.12 Heat load dependence of the interface temperature for the heat pipe and liquid 

cooling unit 
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heat transfer system. In addition, the two phase systems are more reliable and independent of 

any active control element (e.g. the pump in the single phase systems). However, single phase 

systems are able to manage heat loads of higher intensity due to the active pumping 

component in the system that can provide high flow rates of coolant fluid. In the capillary 

pumped system, the physical or flow properties of the wick, including pore size, permeability 

and porosity dictate the performance of the device at high heat loads. Further development of 

these devices will need wick pumps with enhanced flow properties i.e. very fine pore size 

with high porosity and permeability values.  
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9.3.2 Multiple Heat Source Cooling 

Testing of the cooling units for multiple heat source cooling was done by fixing the constant 

heat load at the GPU and MPU chips and varying the heat input to the CPU chipset. Figure 

9.14 shows the results for the heat pipe cooling unit as a dependence of the CPU interface 

temperature on its input heat load for specified power inputs to GPU and MPU units.  It is 

very interesting to note from the graph that as the heat inputs to the GPU and MPU chips are 

increased, the thermal performance of the heat pipe module increases. It is expected that such 

behaviour of the heat pipe can occur as a result of the increased vapour flow rate and 

Figure 9.13 Total thermal resistance versus applied heat load for the heat pipe 

and liquid cooling unit 
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turbulence effect created by the vapour flow coming from the secondary low powered chips 

(GPU and MPU). The net effect of the vapour flow over the heated section of the CPU 

evaporator is to enhance its heat transfer coefficient and induce convective heat transfer from 

evaporator section to the incoming vapour. It is noted from the graph that such an 

enhancement is more evident at high heat loads when the vapour flow inside the heat pipe is 

expected to increase. In the single heat source condition, the major liquid inventory lies away 

from the CPU evaporator section and can be bound inside the wick or in the remote condenser. 

As the three heat sources are operated, the central segment of the heat pipe is heated entirely 

which provide more or less uniform distribution of the fluid inside the pipe. This can result in 

better liquid supply to the CPU evaporator from the nearby condenser. The performance of 

the heat pipe can be greatly increased through the capillary structure and by optimizing the 

fluid charge for the given application. Wick structures with high permeability, high porosity 

and small pore sizes are preferred. 
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Figure 9.15 shows the results of multiple heat sources cooling using the liquid cooling unit. 

As expected, the unit performs very efficiently over the entire range of input power. Figure 

9.16 presents the results of comparison between the two-phase and single phase systems for 

Figure 9.14 CPU Interface temperature versus CPU applied heat load for different 

power inputs to the GPU and MPU units (Heat pipe cooling unit) 
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cooling multiple heat sources. It is clear from the graph that efficiency of the liquid cooling 

was higher than with the two-phase cooling only at high heat loads. For CPU input power less 

than 20 W, the difference in their performance was similar.  
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Figure 9.16 CPU Interface temperature versus CPU applied heat load for different power inputs 

to the GPU and MPU units : Comparison between Heat pipe cooling unit and liquid cooling unit 

Figure 9.15 CPU Interface temperature versus CPU applied heat load for different 

power inputs to the GPU and MPU units (Liquid cooling unit) 
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9.4 Summary 

A comparative study has been carried out between the two-phase and single-phase heat 

transfer system for thermal control of single as well as multiple (in this case three) heat 

sources. The two phase cooling system was in the form of a flattened copper heat pipe with 

water as the working fluid while for the single phase cooling system, a microchannel based 

heat sink based on the forced convection of water was developed. As an outcome of the 

experimental investigation, it was found that for low to moderate heat fluxes, the thermal 

performance of the two-phase cooling unit was the same as that of the single phase system. 

For high heat fluxes, the performance of the two-phase systems degrades due to the limitation 

impose by the maximum capillary pressure generated by the wick and associated low liquid 

flow rates. Both two phase and single phase cooling systems have potential for the thermal 

management of multiple heat sources of high thermal outputs.  

 

In the next chapter, conclusions of the complete research work are listed. 
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Chapter 10 

Conclusions and Recommendations 

 

In the present research work, exhaustive investigation of cooling systems for the thermal 

management of microprocessors for laptops and desktop computers has been carried out. For 

this purpose, different thermal designs based on two-phase and single-phase heat transfer 

technology were designed and tested. Conclusions drawn from the current study are presented 

in the following section for each of the designs and the related technology. For convenience, 

the conclusions are divided into two sections, as is the main body of the thesis. The first 

section discusses the results of two-phase cooling using capillary driven loop systems while in 

the second section  outcomes of single-phase cooling using forced liquid convection are 

outlined.  

 

10.1 Concluding Remarks 

o Two-phase cooling systems using miniature loop heat pipes can be effectively used in the 

thermal management of laptop microprocessors with high heat flux chipsets (up to 50 

W/cm
2
) and limited available space for accommodating the heat removal device. 

o Liquid cooling using forced convection through microstructures (i.e. microchannels, 

microporous wicks) is a viable approach for the thermal control of high-powered (e.g. 3.6 

MW/m
2
) next generation computer microprocessors 

o Two phase cooling systems that are capillary driven (i.e. passive operation) are more 

reliable than pump driven single phase cooling systems because of the absence of any 

power operated active component. Also, two-phase systems can transfer high heat loads 

with relatively low mass flow rates compared to single phase systems by making use of 

the latent heat of the evaporation of liquid working fluid. However, single phase systems 

are able to provide a better solution to thermal control of high powered miniature chipsets 

with ultra high heat fluxes. This is due to high mass flow rates that can be achieved by 

using active pumping devices and enhanced microstructural designs of the heat sink. 

Nonetheless, liquid cooling systems when compared to two phase systems are structurally 

more complex and vulnerable to failure during the normal life cycle due to potentially
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unreliable active components (i.e. pump). In the long run, two phase systems are the ultimate 

thermal solutions for future electronics due to their reliable nature and high thermal control 

potential. There is a need for further research and development in wick pumps and thermal 

design of these devices in order to enhance their heat transfer capabilities and help them to 

meet the thermal requirements of the new generation high end electronic systems.   

 

10.2 Conclusions from the study of two-phase cooling systems 

In order to examine the heat transfer capabilities of two-phase systems for thermal control of 

microprocessors, two investigative prototypes of miniature loop heat pipe with flat evaporator 

were developed. One of the prototypes had a flat disk shaped evaporator with 30 mm diameter 

and 10 mm characteristic thickness while the second prototype had a flat rectangular shaped 

evaporator with 37x47 mm
2
 planar area and 5 mm thickness.  Before proceeding on 

experimentation on the miniature loop system, a medium scale prototype of the capillary 

pumped loop was built to assess the operation of the capillary driven loop system and to 

explore the unique and different capabilities of CPLs in contrast to LHPs. The complete study 

is summarized in discrete sections as follow: 

 

10.2.1 Miniature Loop Heat Pipe with a flat disk shaped evaporator 

o The miniature prototype of a LHP with a flat disk shaped evaporator has proved to be a 

very versatile and promising device for thermal control of microprocessors with high 

power density and a relatively small thermal footprint. With the current model, heat flux 

as high as 70 W/cm
2
 was successfully removed from a thermal test vehicle (TTV) and 

transferred to a remote heat exchanger over a distance of 150 mm. This has helped to 

validate the feasibility of the LHP concept at miniature scale as a reliable thermal control 

technology for the next generation of high end microprocessors.     

o The theoretical model that was designed on the basis of energy balance between different 

loop components predicted the loop operating temperature very well and within the 

uncertainties imposed by the underlying assumptions.  

o In the present design, the flat disk shape evaporator acts as an optimum design. The flat 

evaporator provides an easy interface with the heat source without the need for an 
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additional thermal interface attachment, which creates additional thermal resistance in the 

case of cylindrical evaporators. 

o The start up of the mLHP was reliable over the wide range of heat loads applied to the 

evaporator active zone. In the mLHP, the inherent location of the compensation chamber 

with respect to the capillary structure provides proper wetting of the latter at all times and 

thus a successful start up of the device under different conditions. It was revealed that the 

start up trend of the mLHP depends on the total fluid charge and pre start-up fluid 

distribution inside the evaporator grooves, wick structure and compensation chamber. For 

a reliable start-up at low heat loads, it was inferred that a pre start-up situation with the 

ready vapour-liquid interface inside the evaporation zone is required.  

o It was established experimentally that a mLHP can operate satisfactorily within a wide 

range of working fluid charge. Here, the foremost condition is to accomplish the proper 

wetting of the porous structure. However, it was noted that the thermal performance of the 

mLHP was better when the loop was operated with the highest fluid charge volume within 

the given range. Contrary to this, the mLHP presented some pressure and temperature 

oscillations for high fluid charge ratio. For that reason, it is recommended to operate a 

mLHP at an optimum charge that is decided by the sum of wick porous volume, liquid 

line and compensation chamber volume such that in the cold state, 50% of the interval 

volume of compensation chamber is occupied by the liquid working fluid. 

o The designed mLHP can be used as an effective thermal control device to transfer heat at 

different orientations in the gravity field. Even for adverse tilts in the gravity field (i.e. 

evaporator above condenser configuration), the loop was able to operate suitably and 

sustained continuous fluid circulation, in this case against the natural flow tendencies of 

the vapour and liquid phases. However, there was a notable increase in the thermal 

resistance of the loop with increase in slope. This was due to the accumulation of the fluid 

in the bottom portion of the loop including the condenser which reduced the liquid charge 

inside the compensation chamber and thus produced massive heat flow to the chamber.  

o mLHPs with the current design of evaporator can be effectively used for the cooling of 

microprocessors that involve local hot spots and irregular surface heating patterns 

depending on their data processing load. In the trial runs conducted with different heat 

density, it was shown that a mLHP was able to handle the conditions of local heating even 
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when only 14% of the evaporator active area was being heated. The results clearly identify 

the superior thermal characteristics of the mLHP and its ability to acquire and transfer 

waste heat from compact microprocessors and chipsets with local hot spots. 

o A capillary structure made from a highly conductive material like copper can be used in 

the miniature LHP for thermal control of electronic equipment without any major 

performance degradation. In the mLHP, wick structure with low thermal conductivity is 

preferred so that the heat conducted back to the compensation chamber can be minimized. 

However it has been found that a highly conductive wick structure like the one made from 

copper performs very efficiently to improve the heat exchange process in the evaporation 

zone. Furthermore due to the complete saturation of the wick structure with the low 

conductive working fluid, the effective thermal conductivity of the wick decreases 

appreciably and does not present much concerns regarding back conduction.  

o The operational characteristics of the mLHP are largely dependent on the effective 

thermal conductivity of the wick saturated with the working fluid and physical properties 

of the wick structure, the most important being the pore size, porosity and permeability. 

The porosity and permeability of the wick affect the parasitic heat leaks from the 

evaporator zone to the compensation chamber and thus take part in providing a thermal 

lock. For the pore size, it should be small enough to generate enough capillary pressure to 

continue fluid circulation and at the same time guarantee vapour locking in the range of 

applied heat load. 

o The heat transfer characteristics of biporous wick structures (i.e. wicks with two 

characterised pore radii) are better than monoporous wicks (i.e. wicks characterised by 

single average pore radius). In the biporous wick, the presence of the two characteristic 

pore sizes (i.e. large pores and small pores) increases evaporative heat transfer from the 

two phase thermal layer (i.e. wick wall interface) and at the same time provides separate 

flow paths for the liquid (through small pores) and vapour (through large pores). 

o mLHPs are not very sensitive to the Non Condensable Gases (NCGs) that are generated 

inside the system due to impurities present inside the working fluid and the loop material. 

It was found that major inventory of non condensable gas was generated during the first 

few initial runs of the device and accumulated inside the compensation chamber due to the 

low fluid velocity profile inside the chamber. The net effect of the generated NCG is to 
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produce an overall rise in the loop operating temperature which is more pronounced at 

low heat loads. Also, the NCGs produce an increase in the start up time of the loop. It was 

experimentally established that the majority of NCG is produced because of 

contamination and dissolved gases present inside the working fluid. Notable 

improvements were achieved by enhancing the fluid charging procedure. 

 

10.2.2 Miniature Loop Heat Pipe with a flat rectangular shaped evaporator 

o It is possible to downscale the thickness of the miniature LHP by using a novel concept of 

relocating the compensation chamber from the thickness of the evaporator to its sides.  

o The mLHP evaporator with the compensation chamber distributed on its sides was able to 

attain a minimum thickness of as low as 5 mm while preserving the functionalities of the 

capillary structure and efficiency of the heat transfer process inside the evaporation zone.  

o The proposed design of the mLHP with the rectangular evaporator was able to operate 

successfully and authenticate the design concept for the modeling of a compact miniature 

LHP with reduced thickness. Such a mLHP design with low thickness of 5 mm has more 

prospects and is easy to install inside a laptop with limited height when compared to the 

disk shaped mLHP model with 10 mm thickness. The prototype was able to transfer 

extremely high heat flux of 50 W/cm
2
 up to a distance of 150 mm while maintaining the 

source temperature within the permissible limit of 100 ±5ºC. 

o In the case of the flat rectangular mLHP, the total thermal resistance and the interface 

temperature of the device were higher than for the disk shaped mLHP. This is explained 

by the increased quantity of heat leakage to the compensation chamber of the rectangular 

mLHP. The heat flow in this case has two different paths i.e. through the wick structure 

and through the coplanar compensation chamber wall that is in line with the evaporator 

active zone. In addition, liquid and heat flow though the wick are not directed towards 

each other and the area of the liquid absorbing face of the wick is reduced. The net effect 

of these factors causes a larger fraction of heat flow to the compensation chamber and 

produces high thermal resistance.   
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10.2.3 Capillary pumped loop with a cylindrical evaporator (as discussed in the 

Appendix B) 

o A model of a medium scale capillary pumped loop with a cylindrical evaporator was 

developed during this case study and proved to be a very efficient two-phase heat transfer 

device. The unique thermal characteristics of capillary driven two-phase loops were 

revealed during the tests. The apparatus was able to remove high heat loads (210 W) from 

a thermal payload and transport them successfully over long distances (one meter) with 

minimal temperature drops (as small as 0.29 – 0.46 °C) between heat source and heat sink. 

o With CPL very precise control (within ±3 ºC) of the heat source temperature was 

achievable by setting the temperature and thus the saturation conditions inside the 

remotely located reservoir with the help of an active thermal controlling device attached to 

it. It was found that the temperature control capability of the CPL depend on the reservoir 

temperature and heat load applied to the evaporator.  

o For reliable startup of the CPL, the capillary evaporator must be pressure primed by pre-

heating the reservoir. Attempts to start the loop from a cold state and without enough time 

for proper conditioning of the capillary pump resulted in start up failures or high thermal 

resistances. By maintaining constant temperature of the reservoir for 6-7 hours it was 

possible to ensure complete wetting of the wick structure.  

o Although the CPL provided effective control over the operating temperature with 

changing input heat load, it was found from the experiments that start-up of the device is 

very unreliable and relies heavily on proper pre-conditioning of the capillary structure. 

Beside this, the presence of the thermal element on the reservoir and need for the pre-start 

up preparations does not justify them as a thermal control devices for the future computer 

electronics. These limitations are addressed better by LHPs which are highly reliable and 

do not require any active element in the loop.  

 

10.3 Conclusions from the study on single phase cooling systems 

With the rapid rise in heat dissipation capacity of microprocessors, new innovative thermal 

solutions are needed to address the problem of efficient thermal management of electronic 

devices. Two investigative prototypes of single-phase cooling system were developed to study 

the potential and heat transfer characteristics of forced convection of liquid through 
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microstructural heat sinks. In the first prototype, the active cooling section of the heat sink 

consisted of microchannels with high aspect ratio of 17.5 while for the second sample, a 

sintered porous structure with a pore radius less than 30 μm and 40% porosity was used as the 

heat acquisition component in the heat sink. The outcomes of the study can be summarized as 

follow: 

 

10.3.1 Liquid cooling using a microchannel heat sink 

o The thermal performance of the liquid cooling system was intensified by using 

microchannels on the fluid side of the cooling section. In this case, extreme heat fluxes of 

more than 3.6 MW/m
2
 were removed successfully from the microprocessor source while 

keeping the chip temperature within 100±5ºC.  

o It was found that thermal resistance of the chipset with smaller thermal footprint is higher 

than the one with relatively large heat conducting surface. This is predominately due to 

the addition of the metallic resistance offered to the distribution of the heat from the 

smaller heater footprint to the active section of the cooling plate and the micro fins. 

o The flow rate of the coolant has a notable effect on the thermal resistance of the heat sink. 

It was confirmed that the increase in the flow rate produces a corresponding decrease in 

the interface temperature of the heat source and heat sink.  

o The predicted results obtained by laminar flow correlations over predict the heat transfer 

coefficient. With the fully developed turbulence correlation, the agreement between the 

experiment and predictions is quite close.  

 

10.3.2 Liquid Cooling using a Sintered Porous Heat Sink  

o The heat sink with a sintered porous microstructure provides an effective heat transfer 

augmentation technique. With the designed prototype, heat flux up to 2.8 MW/m
2
 was 

removed by using a porous sample with porosity 40% and pore radius < 30 μm while 

maintaining the interface temperature within the permissible limit of 100±5 ºC. 

o With the porous heat sink, large pressure losses are experienced even for the smaller flow 

rates of the working fluid.  

o Increasing the flow rate is a very important option to enhance the heat transfer capability 

of the sintered porous heat sink. 
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o For the sintered porous heat sink convective heat transfer between the fluid and the porous 

matrix was of superior character due to the large heat transfer area and proper fluid flow 

mixing inside it. However, it has been noted that the efficient heat transfer process is 

accompanied by a drastic increase in the pumping power. It can be inferred that the 

principal use of the sintered porous heat sink can be for micro-electronics of high power 

with no limitation on pumping power. 

o The thermal performance of the microchannel heat sink is better than that of the sintered 

porous heat sink. Factors that might have contributed to the better performance of the 

microchannel heat sink are better structural design and higher thermal conductivity of the 

cooling section along the thickness.  

 

10.4 Conclusions on measurement of properties of porous structures (as 

discussed in the Appendix C) 

o The specific permeability calculated from the experimental tests that were conducted at 

high flow rates of the working fluid showed close agreement with the permeability values 

provided by the manufacturer. This is due to the fact that viscous forces in the micro pores 

are overcome at high pressure and flow is properly channelled through the micro pores 

which otherwise retard the flow at low pressure. 

o In the measurement of the pore size of the wick, the method that makes use of steady 

height achieved by the fluid under a capillary head gave reliable measurement of the mean 

pore size of the wick.  The bubble point testing method gave the largest pore radius in the 

test sample.  

o For the porosity of the wick, the density method showed better results than the soaking 

method due to the problems of incomplete wetting of the wick by the fluid or presence of 

close spaces and dead ends in the porous media. 

 

10.5 Recommendations for Future Work 

Refinement of the mLHP theoretical model: The current theoretical model makes use of a 

number of assumptions and approximations for the prediction of the mLHP thermal 

performance. It is suggested that the model should be further refined by taking into account 

these factors: heat exchange between the porous matrix wall and the fluid filtering through the 
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porous structure, heat losses to the surrounding, two phase flow inside the condenser and 

more detailed thermal analysis of the condenser.  

 

Further design and development of miniature LHP: In the case of the flat rectangular 

mLHP, there are still certain performance issues related to the high thermal resistance and 

longer startup time that need to be addressed. Proposals like the use of low conductive 

materials for the evaporator body to reduce back heat flow to the compensation chamber, and 

changes in the wick design and shape for proper wetting and efficient liquid filtration though 

it should be explored through further research work.  

 

Computational Fluid Dynamic (CFD) Analysis: It is strongly recommended that CFD 

analysis of the different thermal designs discussed in the thesis should be done. Such an 

analysis will be very helpful in the modeling and understanding the fluid and heat interactions 

inside the porous structures that were used in the thermal design of the mLHP capillary 

evaporator and the sintered porous heat sink.  

 

Evaluation of Heat Transfer Correlations for Microchannels: The analysis of the 

microchannel heat sink does not take into account all of the available heat transfer 

correlations (for laminar and turbulent flow regimes) for the prediction of the heat transfer 

coefficient inside the channels. It is therefore recommended that complete evaluation should 

be made of the conventional correlations (for large channels) to assess their validity for the 

prediction of the microchannel heat transfer. 

 

Further Development of Single Phase Cooling Systems: As potential candidates for the 

cooling of the next generation computer microprocessors, single phase cooling systems 

should be further investigated. It is recommended that an exhaustive study should be done on 

the microchannel heat sinks with different aspect ratios (fin height/fin width) and sintered 

porous heat sinks with different properties of the wick structure including porosity, 

permeability, pore size and effective thermal conductivity, which are important from the 

thermal performance point of view. Such a study is recommended to rationalize the overall 

potential of these types of heat sinks.  
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Appendix A 

mLHP Modelling Data 

 

Table A.1: Coefficients for the fifth order polynomials for different thermodynamic 

properties with respect to saturation temperature, for water as working fluid 
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Pressure, P 

 

1.7957E+02 

 

 

1.1894E+04 

 

 

-.6815E+02 

 

 

8.9801E-01 

 

 

-2.1493E-03 

 

 

1.9476E-06 

 

 

Latent Heat, hlv 

 

7.4603E+02 

 

4.4916E+04 

 

-.3599E+02 

 

1.0736E+00 

 

1.07368E-03 

 

1.0393E-06 

 

Liquid Density, ρl 

 

1.0419E-01 

 

6.9020E+00 

 

2.2600E-03 

 

-1.1721E-04 

 

3.0898E-07 

 

-2.5330E-10 

 

Vapour Density, ρv  

 

5.9052E-04 

 

3.9113E-02 
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Liquid Viscosity, μl  

 

1.8713E+01 
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-.3595E+01 

 

5.6007E-02 
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Surface Tension, σl 
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Liquid Thermal 
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Table A.2: Nusselt numbers and friction factors for fully developed laminar flow in tubes of 

different cross section. (Incropera and DeWitt, Page-496, Table 8.1) 
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Appendix B 

Case Study: Design and Evaluation of a Capillary 

Pumped Loop (CPL) with Cylindrical Evaporator 

 

In order to better understand and learn how to design capillary driven two-phase loops, a 

medium scale capillary pumped loop (CPL) was designed and built. This task was performed 

to better comprehend the constraints involved when designing such systems as well as gaining 

the experience of testing and integrating all parts. The study also explored the unique 

characteristics of capillary pumped loops. 

 

A capillary pumped loop is a two phase heat transfer device for thermal control of electronics, 

satellites and other space applications. In this chapter, the design and setup of a capillary 

driven loop for thermal management of up to 210 W at the source and heat transfer over 

distance of 1 m are discussed. Setting up the experimental test bed and procedure to operate it 

are elaborated in detail. Results of tests on the designed CPL for heat load in the range of 30-

210 W are also been presented.  

 

B.1 Introduction 

Capillary Pumped Loop (CPL) is another type of two-phase loop heat transfer system that is 

based on the same basic principle of closed evaporation-condensation cycle maintained at the 

expense of capillary forces. The concept of a capillary pumped loop first appeared thirty years 

ago during the initial development phases of traditional heat pipes.  A CPL is a two-phase 

thermal management system which was first proposed by Stenger in 1966 at the NASA Lewis 

Research Center. It has the potential to transfer large heat loads over long distances with small 

temperature differential and no external power requirements except for the power control of 

the reservoir. Development of CPLs has been primarily focused on thermal control for space 

applications (Maydanik, 1999) including cooling of electronics (Chen and Lin, 2001) and 

satellite thermal control (Riehl et al, 2002). A CPL is composed of the following major 

components: Evaporator (heat acquisition device), Condenser (heat dissipating device),
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Reservoir 

Condenser 

Liquid Line Vapour Line 

Figure B.1 Schematic of CPL 

Capillary Evaporator 

 Reservoir (temperature control device), Liquid and Vapour Transport Lines. A schematic of a 

CPL is shown in Figure B.1. It uses capillary forces, generated in a porous structure present in 

the evaporator section, to pump working fluid from the heat acquisition system to the heat 

dissipating devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Like LHPs, in a CPL, the wick structure is present only in the evaporator. This allows the 

remainder of the tubing in the system to be smooth walled and reduces the frictional pressure 

drop in the system. Also, vapour and liquid flow passages are completely separated from each 

other. Due to these design enhancements the thermal transport capacity of the CPL is an order 

of magnitude greater than that of conventional heat pipes. 

 

As discussed before, the primary difference between a CPL and LHP is the location of the 

reservoir that physically differentiates these two types of loop, and provides them with their 

unique operating characteristics. CPLs are provided with a remotely located reservoir 

connected to the liquid line while a LHP reservoir, also called a compensation chamber, is 

thermally and hydraulically combined with the evaporator in one body. Due to the remote 

location of the reservoir or fluid accumulator in the CPL the tendency of wick depriming 

during startup is more than in the LHP. For that reason, a CPL need an active control like a 

starter pump or pre-heater on the reservoir to flood the evaporator, particularly the evaporator 
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wick with liquid prior to startup and to set the operating temperature of the loop during steady 

state. A CPL is structurally more complex than a LHP but as a benefit of the distant location 

of the reservoir it provides effective control over the operating temperature with changing 

input power. A CPL allows active control of the evaporator temperature with the help of the 

controllable thermal action of the reservoir. Such thermal action may be positive or negative, 

and its value does not usually exceed 5-10% of the heat load transferred by the CPL. 

Therefore with CPLs, very precise temperature can be achieved for the heat source that can be 

set remotely by tuning (i.e. actively controlling) the temperature and thus the saturation 

conditions inside the reservoir with the help of a heater attached to it.  

 

Theoretical and experimental studies of CPL models have been conducted by different 

investigators including Dickey and Peterson (1994), Lin at al. (1994) and Miao et al. (2002) 

using ammonia as the working fluid. Sims (1998) studied in detail the start-up behaviour of 

the loop in reflux mode. Tomlinson (1997) presented his results on steady state operation and 

performance of a CPL. A description of the operating characteristics of a small scale capillary 

pumped loop was given by Bazzo and Riehl (2003). The current study is conducted to design 

and analyse a medium scale CPL as a heat transfer device using acetone as the working fluid. 

In this investigation the temperature control capability of the capillary pumped loop is 

explored in detail. Thermal characteristics of the CPL with respect to the start-up phenomena 

and steady state behaviour have been studied. As the start-up process in the loop systems is 

very critical, methods for the reliable start-up for capillary pump loops in particular are 

discussed.   

 

B.2 Objective of Study 

The main objective of this experimental investigation is to gain an understanding of the 

capillary driven two phase loop system at medium scale before proceeding to the miniature 

model investigation and to study the unique operational characteristics of the capillary 

pumped loop including the temperature control capability using an active thermal device on 

the reservoir, and start-up process through pressure priming of the capillary evaporator.   
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B.3 Description of Capillary Pumped Loop (CPL) Prototype 

The medium scale CPL was designed to achieve thermal management of up to 210 W which 

was the estimated heat load which was required to be removed from the heat source (in this 

case the dashboard of a car) and transferred to a remotely located heat sink at a distance of 1 

m. The dashboard of the car was receiving radiant heat transfer from the engine. It should be 

noted that the present model was one of the preliminary models that was designed to get 

familiar with the CPL working which was also expected to provide guidelines in the design of 

more profound cooling system for the car dashboard. The design and dimensions of the CPL 

model were based on pressure loss criteria such that the total pressure loss inside the  system 

is less that or equal to the capillary pressure generated by the wick structure. Also, the 

prototype design was inspired by the work of Bazzo and Riehl (2003). Figure B.2 shows the 

layout of the capillary pumped loop showing various components of the model. A resistive 

tape heater was used as heat source for the capillary evaporator while an air cooled condenser 

was used as the heat dissipating device.  The CPL test bed was placed in a horizontal position 

to avoid any effect of gravity. Design characteristics of various CPL components are as 

follows: 

 

 

Capillary Evaporator 

Vapour line 

Liquid Line 

Reservoir 

Condenser 

To Safety Valve 

To Pressure Gauge 

To Charging Station 

Support 

To Vacuum Pump 

Figure B.2 Layout of the Capillary Pumped Loop Experimental Model 



Appendix B: Case Study: CPL with Cylinderical Evaporator        234 

 

Figure B.3 Design and detail of the axially grooved evaporator tube 

B.3.1 Evaporator Structure 

The capillary evaporator consisted of an axially grooved, extruded aluminium (A6063-T5) 

tube which was force fitted on the inside with a porous Ultra High Molecular Weight 

(UHMW) polyethylene wick. In this case, aluminium was chosen as evaporator material due 

to its light weight which was a requirement of the design. It should be noted that dimensions 

of the evaporator structure including the inner/outer diameter and active length were dictated 

by the wick geometry which was chosen from the standard products of Pneumotronic Ltd, 

Brazil. In the case of the internally grooved aluminium tube the total length was 500 mm with 

31.5 mm OD and 28.5 mm ID. It consists of 24 axial grooves, the width of the groove top and 

base was 1.5 and 2 mm respectively and the depth of the groove was 2 mm (Figure B.3).  

Figure B.4 presents an exploded view of the capillary evaporator showing the internal details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The porous tube which was tightly fitted inside the grooved aluminium tube was 440 mm in 

length, 25 mm OD and 12 mm ID. The wick structure was 50% porous with effective pore 

radius of 20 μm and permeability of approximately 10
-12

 m
2
. To prevent any internal leakage 

of vapour from the vapour removal channels to the inside of the evaporator core the ends of 

the cylindrical wick tube was sealed with the help of two tightly fitted Teflon plugs on each 

end. A bayonet tube which is the extension of the liquid line was inserted through a hole 

drilled in one of the plugs to allow liquid flow inside the evaporator core.  

31.7 mm 24.7 mm 28.7 mm 

500 mm 

2 

1.5  

2 

(c) Groove Specification 

(b) Axially Grooved Evaporator Tube 

(a) Cross Section 

mailto:pneumotronic@icn.com.br
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Figure B.4 Exploded view of the Capillary Evaporator 

 
 

 

 

The details of the CPL evaporator are also shown with the help of a side view and cross 

sectional view in Figure B.5. The bayonet tube extends to the middle of the wick and helps to 

ensure that its entire length is properly primed with the liquid at all times.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The liquid and heat flow inside the capillary evaporator are depicted in Figure B.6. The liquid 

enters the evaporator core through the bayonet tube. Here the evaporator core behaves as an 

embedded reservoir to accumulate and supply liquid to the capillary structure. The liquid is 

filtered through the wick and forms evaporating menisci at the liquid-vapour interface in the 

evaporation zone. Like LHPs, heat flow through the wall of the cylindrical evaporator and 

Figure B.5 Schematic of CPL Evaporator 

UHMW 
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Axially Grooved Tube 

Teflon Plug Bayonet 

tube 
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From Liquid 

Line 

To Vapour 

Line 
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Section A-A 

Grooved Evaporator Tube 

Teflon Plug 

UHMW Polyethylene Wick 

Teflon Plug 

From Liquid Line 
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liquid flow through the wick structure are projected towards each other. This helps to form an 

efficient evaporation zone by the principle of inverted menisci. The vapour formed as a result 

of the evaporation process flows along the heated wall and exits to the vapour line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.3.2 Condenser 

The condenser consists of stainless steel (316L) tube, 4.3 m in length, 6.4 mm OD and 4.5 

mm ID, bent in the form of coil and fixed on a copper plate. Depending upon the applied heat 

load, cooling of the condenser can be performed by natural or forced air convection using a 

fan. The condenser was designed such that it was able to dissipate all the heat input at the 

evaporator which has been transported to the condenser and further subcool the liquid going 

to the liquid line. Liquid subcooling was required to avoid bubble generation inside the 

evaporator core due to conduction of heat through the evaporator end fittings and back 

conduction through the porous wick.  

 

B.3.3 Liquid and Vapour Transport Lines 

Liquid and vapour transport lines were made of stainless steel (314L) tube, each 1 m long, 6.4 

mm OD and 4.5 mm ID. Subcooled liquid flows through the liquid line while saturated or 

slightly superheated vapour flows through the vapour line. The length of liquid/vapour line 

denotes the heat transport distance of the CPL with the given configuration and operating 

under maximum heat load.  

 

Vapour Flow 

Wick 

Saturated Vapour 

Heat Source 

 Liquid Flow 

Figure B.6 Heat and Fluid flow inside the capillary evaporator 
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B.3.4 Reservoir 

The primary functions of the reservoir were pressure priming of the evaporator wick during 

start-up, to precisely control temperature at the source and to act as an accumulator for liquid 

inventory. The two phase reservoir was made of a stainless steel (304L) cylinder of 0.75 L 

capacity. The volume of the reservoir was sized large enough to contain the overall liquid 

inventory in the CPL loop. To ensure that only liquid and no vapour bubbles would flow from 

the reservoir to the evaporator core, the reservoir was inclined at 45° to the horizontal. The 

reservoir was connected to the main loop with the help of stainless steel (314L) tube 0.5 m in 

length.  

 

B.4 Loop Pressure Analysis 

The pressure analysis of the CPL was done on the same basis as that of the LHP, discussed in 

Chapter 3. According to the first condition of serviceability of the loop system, the total 

pressure drop in the fluid loop must not exceed the maximum capillary pressure generated by 

the porous structure on the working fluid which is given by Young-Laplace equation (Dunn & 

Reay, 1994) as: 

me

l
cap

r
P

2
)( max                     (B.1) 

The total pressure drop in the loop, ∆Pt, is the sum of the pressure losses due to vapour flow, 

∆Pv, liquid flow ∆Pl, and hydrostatic pressure loss due to the orientation of the device in the 

gravity field, ∆Pgr. 

grlvt PPPP                      (4.2) 

The above equation can be further broken down to include the pressure losses in the different 

sections of the loop. Making use of the terminology used in Chapter 3, the Equation (4.2) can 

be summarized as:  

grwlcvlllevvlvt PPPPPPP  ,,,,,                (B.3) 

By substituting the values of the parameters into Equation (B.3) as discussed in Chapter 3, the 

maximum heat load that can be transferred by the CPL can be calculated. In the case of the 

designed CPL the values for maximum power along with different pressure losses as 

calculated on the basis of the above approach are shown in Table B.1.  
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Table B.1 Major parameters for the CPL  

Parameter Value Units 

Maximum Heat Load, 

maxQ  250 W 

Evaporator Temperature, Te 55 °C 

Maximum Capillary Pressure, (∆Pcap)max 1925 Pa 

Evaporative Pressure Loss, ∆Pe 124 Pa 

Vapour Line Pressure Loss, (∆Pv,vl+ ∆Pv,c) 1632 Pa 

Liquid Pressure Loss, ∆Pl,ll 90 Pa 

 

B.5. Experimental Setup 

Figure B.7 shows the placement of the thermocouples (TC) and other instrumentation on the 

CPL test bed. Temperatures at twenty different points of the CPL were measured with T-type 

thermocouples with an error of ±0.5°C.  
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Data from these thermocouples was acquired every 10 s by an HP34970A data acquisition 

system. The system was connected to a computer in order to visually monitor temperatures 

throughout the CPL.  A compound pressure gauge with a range of -100 – 10,000 kPa was 

used to ensure proper vacuum before charging and to monitor the pressure inside the loop 

during operation. To provide safer working conditions and avoid over pressurization of the 

system, a R3A series pressure relief valve was installed on the vapour line. In order to deliver 

the required heat load to the capillary evaporator, an electrical resistive heater (1.5 m x 2.5 

cm) of rated wattage 225 W was wrapped around the evaporator cylinder. To minimise heat 

losses to the environment the capillary evaporator was insulated using fibre glass insulation. 

An AC Step-down transformer was used to vary the wattage of the heater. The power input to 

the evaporator heater was measured using an AC multimeter which was connected to the 

output of the transformer. Thermocouples were placed at four different locations along the 

length of the evaporator to determine its mean temperature. Heat removal at the condenser 

was provided by a cooling fan. In order to maintain constant saturation conditions inside the 

reservoir, it was placed in a constant temperature water bath. The water bath was fitted with 

an immersion heater which was controlled by a temperature controller with an accuracy of ±1 

ºC.  The CPL test bed is shown in Figure B.8.  
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Figure B.8 CPL Test Bed 
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High grade Acetone, a saturated aliphatic ketone, with a minimum assay level of 99.95% was 

used as working fluid due to its chemical compatibility with aluminium and stainless steel at 

low as well as with high temperatures. Acetone is also very cheap to obtain in a high purity 

state and the working pressures are not very high. Proper consideration was given to the 

purity level and chemical compatibility of the acetone with the material and seals used in the 

system. Acetone is fully compatible with aluminium, stainless steel and UHMW polyethylene 

material used in the system. Also, the heat transfer characteristics are optimum from heat pipe 

working fluid point of view and it is easily available at low cost.  

 

B.6 Experimental Procedure 

Presence of moisture in the working fluid can corrode the aluminium evaporator and act as 

potential for non-condensable gas (NCG) generation with time.  NCGs, if present, will 

potentially accumulate inside the evaporator core and hinder the liquid supply to the wick 

which will consequently result in dry out of the evaporator wick. To avoid this, the system 

was thoroughly cleaned using compressed air and acetone before installing the wick inside it. 

Being polar in nature, acetone is soluble in water and helped to get rid of the leftover water 

from hydrostatic testing. The procedure was repeated 2-3 times to clean the system of any 

grease or impurities from the process of manufacturing. Next, the system was kept under 

vacuum of approximately 0.001 mm of Hg for 24 hours to check for any leaks that might 

degrade its operation. After the system passed the vacuum test, it was charged with liquid 

inventory equal to 50-60 % of its total internal volume (Chen and Lin, 2001) which was 

calculated to be 550 ml. Before the start-up of the CPL, the reservoir was heated to the 

operating temperature of the loop. As vapours are formed inside the reservoir, this will 

pressurise the system and fill the entire loop with the liquid. Any vapour bubble, if present, 

inside the evaporator core will condense due to subcooling of fluid at elevated pressure. The 

system was maintained under so called pressure priming for around 6-7 hours to ensure that 

only liquid and no vapour bubbles were present inside the core. After this, the evaporator 

heater was turned on and the required heat load was set by use of the transformer.  
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B.7 Results and Discussion 

Figure B.9 shows the start-up behaviour of the CPL at 50 W of power input to the evaporator. 

The reservoir temperature was set at 40 °C. As the temperature inside the evaporator rises 

above the two-phase reservoir, phase change occurs inside it. The resulting vapour pushes the 

liquid and clears the grooves of the evaporator. This helps in the formation of the meniscus on 

the evaporating face of the wick which is responsible for developing the capillary pressure to 

circulate the working fluid around the loop. The excess liquid cleared from the evaporator 

grooves and vapour line by vapour is displaced to the reservoir. The loop presented very 

smooth start-up and achieved a stable state without any signs of wick de-prime. However, it 

was observed that the system produced reliable start-up only if the pressure priming of the 

capillary structure was done for 6-7 hours. Otherwise, if start up was attempted without prior 

preheating of the reservoir, the device showed elevated temperature trends at the evaporator 

and ultimately resulted in wick dry out that was evident from the back flow of vapour from 

evaporation zone to the wick core and out of the evaporator to the liquid line. The rise in 

temperature of the liquid line at the evaporator inlet indicated the occurrence of back flow. 
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Figure B.9 Start up of CPL at 50 W heat load 
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The system showed some temperature fluctuations after start-up before the evaporator 

attained a stable temperature of around 52°C. The temperature or pressure oscillations were 

generally observed at very low heat load. These fluctuations can be due to the possibility that 

for low applied heat load to the evaporator, the power level was too close to the minimum 

calculated power for the proper CPL operation, which may have resulted in some fluctuation 

due to intermittent vapour flow. The minimum power is required to set up the pressure and 

thus temperature difference across the wick structure for continuous circulation of the fluid in 

the closed loop circuit. To some extent this minimum power is dictated by the fraction of the 

total applied heat load that is conducted back to the evaporator core via the wick structure.  

 

Figure B.10 shows the start-up results for the CPL for the input heat load of 100 W. In this 

case the reservoir temperature was set at 50 °C and a steady state evaporator temperature of 

55°C was achieved. 
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In the current design of the CPL, the length of the evaporator section is as high as 0.5 meter. 

This can possibly result in superheating of the vapour as it moves along the heated wall of the 

evaporator in the vapour removal passages. It should be noted that difference in the 

evaporator and reservoir temperature helps to evaluate the degree of superheating of the 

Figure B.10 Start-up of CPL at 100 W heat load 
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vapours coming out of the evaporator.  From the two start-up trends it is seen that in the 

former case the degree of superheat of vapours is high compared with the latter case. It is 

expected that for start-up of the CPL under low heat load the liquid flow rate to the evaporator 

core will be lower than for the high heat load case. As a result, consequences of back heat 

conduction and vapour bubble formation inside the evaporator core for the low heat load are 

greater. Production of any vapour bubbles inside the evaporator core can decrease the quantity 

of liquid filtered through the capillary structure which ultimately increases the evaporator wall 

temperature and produces a high degree of superheat. Presence of any NCG inside the core 

can produce similar results. For that reason, the CPL is more sensitivity to the non 

condensable gases (NCG) than LHP.  

Tests were conducted on the CPL at low heat loads ranging from 30 to 100 watts and high 

heat loads from 100 to 210 W. These tests were conducted on the CPL with the condenser 

maintained at room temperature by air cooling using forced convection.  Figure B.11 shows 

the test results of the CPL under low heat loads as the power input to the evaporator was 

increased from 30 to 100 W. In this test the reservoir temperature was fixed at 40 °C. The 

CPL presented very good response to changing heat loads and reached steady state within a 

short time period. It is observed from these results that the CPL was able to maintain the 

temperature at the evaporator within 52 to 57 °C for change in heat load from 30 to 100 W. In 

these low power tests again the degree of superheat was as high as 12 °C due to any of the 

causes stated above.  

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

Heat Load, W

E
v

a
p

o
ra

to
r 

T
e

m
p

e
ra

tu
re

, 
ºC

 

Figure B.11 Evaporator temperature versus applied heat load for low heat inputs 
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Figure B.12 shows the results of a test, conducted on the CPL for input heat load from 100 to 

210 W, as a relationship between evaporator temperature and applied heat load. The reservoir 

temperature was set at 50 °C. It is evident from the outcomes that the CPL exhibited very 

efficient control over the operating temperature of the evaporator for the entire range of input 

power. The evaporator temperature was maintained within 55 to 58 °C for applied heat load in 

the range of 100 to 210 W.   
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It is noted from the above results that the system presents poor thermal resistance when the 

reservoir temperature is low (i.e. near to ambient). If the reservoir temperature is finely 

adjusted, the thermal performance of the CPL increases as well as the degree of superheating 

of the vapour decrease. This particular behaviour of the CPL can be better explained by taking 

into account the relative liquid inventory present in reservoir and evaporator for a particular 

heat load and set point at the reservoir. At steady state, it is expected that for lower reservoir 

temperature the local saturation pressure inside the reservoir is low which results in the 

accumulation of the major liquid inventory inside the reservoir. Due to the low fluid charge 

inside the evaporator core, improper wetting of the porous structure can result which produces 

high evaporator temperature. In the same manner, as the reservoir temperature is adjusted at a 

high level, the saturation temperature and thus pressure inside the reservoir increases and 

Figure B.12 Evaporator temperature versus applied heat load for high heat inputs 
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pushes the liquid into the evaporator core. Due to the large inventory of fluid inside the 

evaporator core, the wick is properly saturated with liquid and thus heat leaks from the 

evaporation zone to the evaporator/wick core decrease. The overall effect of this phenomenon 

is to produce a decrease in the degree of the superheating of vapour coming out of the 

evaporator as well as the evaporator operating temperature.  

 

In Figure B.13, the evaporator thermal resistance, Re of the CPL is shown with respect to the 

applied heat load. Values of Re around 0.02 to 0.07 ºC/W were achieved for applied heat loads 

in the range of 30 to 210 W.  
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Figure B.14 shows the relationship between the total thermal resistance, Rt, calculated on the 

basis of “evaporator-heater interface temperature and ambient temperature”, and the applied 

heat load. For the Rt a minimum value of 0.19 ºC/W was achieved at the maximum heat load 

of 210 W with the corresponding evaporator temperature of 58.33 ºC.  

Figure B.13 Variation of the evaporator thermal resistance with the applied heat load 
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The study on the CPL reveals the heat transfer potential of loop systems. With the above 

design of the CPL, heat load up to 210 W was transferred from the evaporator to condenser at 

a distance of up to 1 m with differential temperature of as small as 0.29 – 0.46 °C. The current 

investigation helps in the classification of capillary pumped loops as efficient thermal 

management systems that can be use for the precise control of the source temperature within 

limits which are decided by the system design and heat transfer requirements. This study also 

helps to differentiate CPL from the LHP technology. 

 

B.8 Summary 

The following conclusions are made form the above study: 

o A medium scale capillary pumped loop with an aluminium evaporator, Ø 31.70 and 500 

mm in length, was designed and successfully transferred a maximum heat load of 210 W 

over a distance of 1 meter, using acetone as the working fluid.  

o The loop was able to control the temperature of the evaporator within 55±3 ºC for 30 to 

210 W input heat load  

Figure B.14 Variation of the total thermal resistance with the applied heat load 
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o A total thermal resistance - Rt minimum value of 0.19 ºC/W was achieved at the 

maximum heat load of 210 W with the corresponding evaporator temperature of 58.33 ºC.  

o The CPL proved to be a very efficient thermal control device and provided effective 

control over the operating temperature with changing input power 
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Appendix C 

Experimental Determination of Properties of a 

Porous Structure 

 

In this appendix, test procedures to measure permeability, pore radius, porosity and effective 

thermal conductivity of a porous structure are discussed in detail. Plastic wicks made from 

Ultra High Molecular Weight (UHMW) polyethylene and metal wicks made from different 

grades of copper powder were used in the study. Wicks can be processed to desired porosity 

and pore size using powder processing (or sintering) technique.  Porous structures are very 

suitable material for heat pipe applications to promote working fluid circulation around the 

loop. Permeability of the porous structure has been determined at both low and high flow 

rates. Methods to measure the largest pore size and the mean effective pore size of the porous 

structures are discussed. To measure the porosity, two different methods known as the density 

method and soaking method were used.  Effective thermal conductivity of the porous 

structure saturated with the working fluid was also evaluated experimentally.  In the last 

section, the conclusions drawn from the study are given. 

 

C.1 Introduction  

Porous structures are excellent for use in widespread applications for wicking, diffusing, 

venting and muffling. Wicks can be made from plastic or metals by powder processing 

techniques that involve sintering of powder material at a temperature close to its melting point. 

Two-phase heat transfer systems invariably employ the capillary pressure generated by a wick 

to passively transfer waste heat from heat source to heat sink. Wicks are key parts of a loop 

system including a loop heat pipe and a capillary pumped loop. Physical properties of the 

wick like porosity, permeability and the pore size are very important for heat transfer 

applications. High capillary pressure is expected to increase the heat transfer capability and to 

pump the working fluid against gravity. The capillary force generated by a porous structure 

depends on the pore size which can be varied over a wide range by using 
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powders of different sizes during the sintering process. High values of porosity and 

permeability are expected to decrease the flow resistance and back heat conduction through 

the wick. However the permeability of the wick decreases with decreasing pore size. So the 

optimisation of the wick with respect to pore size and permeability by using powders of 

different size, shape, density and compactibility is necessary for the design of high efficiency 

loop heat transfer systems.  

 

Apart from the necessary capillary pressure, the selection of the wick must provide hydraulic 

and thermal resistance against the flow of vapour and heat from the evaporation zone to the 

compensation chamber. Uniform porosity in all the three axes and the tortuous path of the fine 

pores provides an efficient network of porous matrix for fluid flow through the wick and thus 

helps to provide these functionalities to the wick. A wick should possess low effective thermal 

conductivity to qualify it as a thermal lock between the evaporator and compensation chamber. 

Also, it must be chemically compatibility with the working fluid to avoid any consequences of 

NCG production.  

 

The evaporator wick is the most critical component of the loop heat pipe system. It provides 

the pumping pressure to circulate the working fluid around the loop and thus avoid the need 

for a pump for the loop’s operation. In order to carry out a complete pressure and thermal 

analysis of the loop, physical properties of the wick should be known. However, due to the 

microscopic nature of these properties their precise measurement requires very costly and 

dedicated instrumentation.  

 

Different methods for the assessment of the wick properties for a heat-pipe solar receiver have 

been discussed by Adkins and Moss (1990). In his work on porous media Scheidegger (1974) 

has summarized information on hydrodynamics and properties of the porous structures. 

Faghri (1995) in his work on heat pipes discussed methods for measuring the flow properties 

of a wick. An overview and detailed analysis of the classical theory of capillarity by Zhmud et 

al (2000) and capillary rise in porous media by Lago and Araujo (2001) are very useful for 

understanding the fluid dynamics inside porous structures.  
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C. 2 Description of Experimental Samples 

To undertake this study, sintered wick samples made from polymeric/plastic and made from 

copper powder were used in the experimentation. Polyethylene wicks which were in the shape 

of annular cylindrical tubes were procured from an outside supplier. The copper wick samples 

in the form of solid cylinders were fabricated in the laboratory by a sintering process. Three 

different samples of copper wick were manufactured by using copper powder of different 

grain sizes as follow: 

 

o # 100-200 mesh size copper powder 

o # -200 mesh size copper powder 

o # -350 mesh size copper powder 

 

Note that these numbers specifies the range of the granule sizes that are contained in the given 

powder sample. For example, # 100-200 mesh size powder means that granules with size in 

the range of # 100-200 mesh number are contained in the given powder sample. The # -200 

mesh size means that powders with granule sizes less than 200 mesh number are contained in 

this sample. Mesh size is the unit to measure the granule size of the powder. The # 100 mesh 

number means 100 granules of the designated powder can be contained in the given area of 

one inch square (6.45 cm
2
).  

 

Sintered metal wicks such as those made from copper and nickel can be obtained in relatively 

small pore sizes and high porosity compared with plastic wicks. Copper due to its high 

thermal conductivity helps to achieve very high values of heat transfer coefficient in the 

evaporation zone. It has a very strong chemical compatibility and wettability with water, 

which is the most widely used heat transfer fluid inside two-phase systems.  

 

Porous plastic wicks used in the study were made from the high molecular grade of the 

polyethylene known as Ultra High Molecular Weight (UHMW) Polyethylene. The UHMW 

Polyethylene is a long chain linear polymer of ethylene with an extremely high molecular 

weight in the range of 3.1 million atomic mass units (amu) or above. The UHMW 

Polyethylene is a Food and Drug Administration (FDA) compliant material that is used in a 
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wide range of filtration and separation applications. The high molecular weight gives a unique 

combination of properties including high impact strength, low co-efficient of friction and 

abrasion resistance, which outwears carbon steel, thus making it more suitable for the 

applications where lower molecular weight grades fails. UHMW Polyethylene is naturally 

hydrophobic (water repellent) but it can be made hydrophilic (water absorbent) and 

favourable to work with different chemicals by special treatment procedures. These might 

include application of different surfactants (surface modifying end groups) that are covalently 

bonded to the base polymer during synthesis. In another process known as plasma treatment 

(Nickerson 1998), the substrate is exposed to ionized gas to impart different properties to it. 

This method has an advantage that no additives are adhered to the surface so it leaves 

virtually no residual chemicals that can later dislodge from the surface.  

 

C.3 Experimental Scope  

The experimental methods devised in this study are very simple to set up and gave very 

accurate and consistent results for the flow properties of the porous media. Results of such 

experiments can assist in the investigation of heat transfer characteristics and flow through 

porous media. This helps in better understanding of the physical behaviour inside loop 

evaporators.  The methods described are simple and do not require the construction of any 

complicated experimental equipment. Also, due to the simple nature of these experiments the 

interactive parameters and instrumentation errors are minimised, and the results are consistent 

when repeated.  

 

C.4 Objectives of the Study 

In the present study, laboratory methods to determine the effective thermal conductivity of a 

wick saturated with liquid, and physical properties of the wick including permeability, pore 

size and porosity are presented. 

 

C.5 Physical Properties 

The physical properties that are of importance to the proper functioning of capillary wicks in 

heat pipes are now considered with respect to the basic concept and the measurement methods.  
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C.5.1 Permeability 

C.5.1.1 Concept 

Permeability is a property of porous materials which describes their ability to transport liquid 

under an applied pressure gradient. The mathematical description of liquid flow in porous 

media is based on the Darcy’s law, which states that the volumetric flow rate, 

lV  of liquid 

through a specimen of porous material is proportional to the hydrostatic pressure difference 

∆Pw across the wick specimen, inversely proportional to the thickness/length tw of the 

specimen, and proportional to the cross sectional area Aw.  

 

The Darcy permeability, K is indicative of the permeability of a certain medium to a 

particular fluid. It depends on the properties of both the medium and the fluid. In order to 

separate the influence of the porous medium from that of the liquid a term known as specific 

permeability, lws Kk   is stated, where l  is the viscosity of the fluid.  

ww

wll
ws

PA

tV
k





                   (C.1) 

 

C.5.1.2 Measurement 

To measure the permeability of a wick structure, two different systems, which differ in the 

method to maintain constant head across the wick sample, were developed. The wick samples 

were in the shape of solid and annular cylindrical tubes. In annular cylindrical samples, the 

central hole was plugged with impermeable material as shown in Figure C.1. The wick 

sample was force-fitted securely inside the flexible pipe to ensure that liquid only flowed 

through the wick and did not bypass it. The fluid used for the permeability measurement was 

water.  

 

In the first method, as shown schematically in Figure C.1, a constant water head is maintained 

across the wick specimen using a constant pressure reservoir. This reservoir is connected to 

the water supply and an overflow duct to maintain constant water level in it. The reservoir can 

be raised or lowered to vary pressure across the wick sample. At steady conditions, the mass 

flow rate of fluid was measured with the help of a stop watch and a graduated cylinder placed 

on a sensitive balance. The pressure difference across the sample was found by measuring the 
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height of the free water surface in the constant pressure reservoir above the top of the sample.  

This information is used with Darcy law to calculate the specific permeability at different 

pressures.  

 

The method explained above is straightforward but with this arrangement pressure that can be 

generated across the sample is limited by the height through which the constant pressure 

reservoir can be raised. As the wick samples used in the experiment had mean pore radius of 

the order of micrometers, high pressure tests were considered necessary to validate the results 

fully.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to measure the permeability at high pressure, the system shown in Figure C.2 was 

developed. In this system a pressure regulating arrangement was established to produce high 

pressures across the wick sample. Pressure indicated by the pressure gauge was set to 

different values by adjusting the pressure regulating valve. The excess water was drained to 

the sink with the help of this valve and the desired pressure was maintained across the wick.  

 

Figure C.1 Apparatus to measure permeability using a constant pressure reservoir 

Mass Flow rate 

Measurement 

Overflow 

duct 

Porous structure 

Constant pressure 

reservoir 

Length, tw 

Annular flow 

area, Aw 

Water in 

Balance 

Impermeable 

plug 

Annular 

tube 



Appendix C: Expt Determination of Properties of a Porous Structure          254 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

As the pressure across the wick sample is increased the volume flow rate increases. As shown 

in Figure C.3, the mass flow rate through a porous plastic wick sample showed a nearly linear 

trend with applied pressure.  
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The permeability of the wick sample remained constant at low pressures. For high pressures a 

slight increase in permeability was observed.  This can be attributed to the fact that at high 

Figure C.3 Variation of specific permeability and mass flow rate with applied pressure 

across the porous structure 

Figure C.2 Apparatus to measure permeability using pressure tuning arrangement 
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pressure, viscous forces in the micro pores are overcome and flow is channelled through the 

micro pores which otherwise retard the flow at low pressure. In some tests permeability 

decreases with time which can be due to the deposition of impurities and particles from water 

over the top upstream face of the porous media. Particle deposition resulted from the 

microscopic nature of the pores, in spite of the fact that filtered water was used in some tests 

while in others filters were fitted if mains water was used from the tap.  The specific 

permeability calculated from the experimental tests showed close agreement with the 

permeability value for the UHMW polyethylene wick of 2 x 10
-13

 m
2
 which was provided by 

the manufacturer. Table C.1 shows the results of the permeability measurements on the 

different grades of sintered copper wick. The testing was done under constant pressure of 40 

KPa that was maintained across the wick sample using the pressure regulating arrangement 

discussed above.  

 

Table C.1 Permeability measurement for different types of copper wick 

Copper Wick Sample (Mesh Number) Specific Permeability (m
2
) x 10

 -11
 

100-200 1.08 – 1.79 

-200 0.36 - 0.72 

-350 0.15 - 0.44 

 

C.5.2 Pore Radius  

C.5.2.1 Concept 

Extremely small voids in a solid are called molecular interstices and very large ones are called 

caverns (Scheidegger, 1974). Pores are void spaces intermediate in size between caverns and 

molecular interstices which are distributed more or less frequently throughout the porous 

material. In a permeable material the pore spaces are interconnected. Due to the inherent 

process of manufacturing by powder processing technology, pores of different size exists 

inside the porous medium. The range of the pore radii within a given sample is largely 

dependent upon the powder size, powder density and the sintering temperature during 

processing. The effective pore radius is used to determine the pumping capability of a wick. A 

measuring technique was used for determining the mean or effective pore radius of the given 

specimen. In addition to the effective pore radius, the largest pore radius in the given 
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specimen is very important to validate the operation of the loop heat pipe under given heat 

load. Unlike for conventional heat pipes, the capillary structure in the loop system must 

provide hydraulic/vapour locking from the evaporator to the compensation chamber. If the 

total pressure losses inside the loop exceed the capillary pressure on the working fluid 

generated by the largest pore, dry-out of this pore will result. Eventually this will provide the 

least resistance vapour flow passage from the evaporator to the compensation chamber 

thereby hampering the loop operation. It can therefore be argued that information of the 

largest pore size is very necessary in the design and thus successful operation of loop heat 

pipes. Following the current line of discussion, methods were devised to measure the value of 

the largest pore size in the given sample of the porous structure.   

 

C.5.2.2 Measurement  

C.5.2.2.1 Measurement of Largest Pore Radius 

The largest pore radius of the wick sample was measured using a U-tube bubble point testing 

system as illustrated in Figure C.4. A PVC tube is bent in the form of a U shape with one leg 

longer than the other. The centre hole of the wick sample is plugged, in case of the annular 

cylindrical samples, and the wick is fitted on the shorter leg of the U-tube. A pool of liquid is 

maintained over the wick and an air pocket is formed below it by pouring water from the 

other leg. The air pressure under the wick is increased in small increments by putting more 

liquid into the extended stem of the U-tube.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.4 U-Tube bubble point testing system 
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The hydrostatic pressure due to the height of the water column in the longer leg of U-tube 

results in increase of pressure in the air pocket. When this air pressure due to height of the 

water column equals the surface tension forces of water then bubbles will appear on the 

surface of the wick as shown in the Figure C.5. The liquid-air interface exists at the top of the 

wick, from which the bubbles emerge. When the first bubble appears, the procedure is to stop 

adding water to the tube and note the hydrostatic height. More water is then added to the point 

that the bubble starts departing the porous surface. This helps to validate that the bubble do 

not pre-exist there and was formed due to the applied pressure. If Hwc is the height of the 

water column in the extended stem of U-tube and dp is the pool depth over the first bubble, 

then the largest pore radius, rmax of the wick sample is given by equating surface tension force 

with the hydrostatic force due to the height Hwc of the water column as follows: 

 

Assuming a hydrophilic wick where the contact angle is very small 

gdHrr lpwcl  )(2
2

maxmax                  (C.2) 

gdH
r

lpwc

l





)(

2
max


                  (C.3) 

Where, l and l  are the liquid surface tension and liquid density respectively. In order to 

obtain valid results water was used as the working fluid which provided good wetting quality 

with the hydrophilic UHMW polyethylene wicks and copper wicks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C.5 Mechanism of bubble formation 
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Results obtained from the U-tube bubble point testing system for nine samples of hydrophilic 

UHMW wick with pore radii believed by the manufacturer to be in the range of 4 to 10 μm 

and with water as the working fluid, are shown in Table C.2. In the Table ∆Hw = (Hwc-dp) is 

the head difference across the wick meniscus when a bubble first emerges and rmax is the 

associated deduced maximum effective pore radius of the wick sample. 

 

It was noted that the samples from the same tube/batch showed different pore sizes owing to 

the process of manufacturing by powder technology which resulted in range of pore radii. 

 

Table C.2 Largest Pore radius for UHMW Polyethylene wicks measured with U-tube bubble 

point testing system.  

∆Hw (m – H2O) rmax (μm) 

1.75 8.53 

1.72 8.69 

1.65 9.06 

1.389 10.83 

1.36 11.04 

1.02 14.65 

0.981 15.44 

0.95 16.05 

0.834 18.27 

 

It should be noted that the above method gives the largest pore size in the test sample, which 

in most cases is more than the mean value of 7.8 μm as provided by the manufacturer. In 

order to determine average largest pore size, different samples from the given specimen were 

used to perform bubble point testing.  

 

The above approach had a limitation imposed by the maximum hydrostatic height that can be 

achieved by the liquid column in the longer leg.   In case of a fine pore wick, height up to 

several meters may be required to initiate the bubble on the top surface of the wick which was 

impractical. To solve this problem, another approach to exert air pressure under the wick was 
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developed. In this technique, the liquid column was replaced with the piston and cylinder 

arrangement shown in Figure C.6. The air pressure under the wick sample was increase in 

small increments by putting force on the piston. A digital pressure gauge was used to measure 

the air pressure at the bottom of the wick. Equation (C.2) can be modified for the given 

method as follow: 

 

)(2
2

maxmax gdPrr lpal                   (C.4) 
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where, Pa is the air pressure under the wick as measured from the pressure gauge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the experiments on the copper wick samples by using the above approach are 

given in Table C.3 

Wick sample 

Water depth 

d p 

Piston-Cylinder 

arrangement 

Digital Pressure 

Gauge 

Pressure Gauge 

readout 

Air Pressure 

P a 

Uniform pressure 

applied in small 

increments 

Figure C.6 Modified form of bubble point testing system to measure the 

largest pore size in the fine pored wicks 
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Table C.3 Largest pore radius measurement for different grades of copper wick with the help 

of U-tube bubble point testing system.  

Sample (no) Water Height above 

wick-dp (cm) 

Air pressure under the 

wick- Pa ( Pa) 

rmax - Pore radius 

(μm) 

100-200 (1) 0.8 5000 29.62 

100-200 (2) 1 4000 37.36 

100-200 (3) 1 5000 29.73 

100-200 (4) 1 4000 37.36 

-200 (1) 0.8 10000 14.69 

-200 (2) 0.5 12000 12.20 

-200 (3) 0.5 10000 14.65 

-200 (4) 0.5 10000 14.65 

-350 (1) 1 14000 10.48 

-350 (2) 1 11000 13.37 

-350 (3) 0.5 16000 9.14 

-350 (4) 0.5 17000 8.60 

 

C.5.2.2.2 Measurement of Effective Pore Radius 

In another method steady state height gained by the fluid in the wick was used to determine 

the mean pore radius of the wick sample directly. The wick sample was in the shape of a 

hollow tube of UHMW polyethylene with OD 25 mm, ID 13 mm and length 440 mm. In 

order to note the height gained by fluid in the wick it was marked with temporary colour that 

dissolves when it comes into contact with the working fluid which was ethanol in this case. 

This method is based on the principle that working fluid with high surface tension like water 

will achieve relatively higher steady state height compared to the low surface tension fluids 

like ethanol. As wick samples of limited length were available for the experimentation 

therefore ethanol was used as the test fluid. Due to the high affinity of the alcohol towards 

hydrophobic plastics, wick structure made from the natural grade of UHMW which is water 

repellant was used in the experiment.   
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Figure C.7 Method to determine mean pore size of the wick sample 
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The sample was covered with a transparent sheath to avoid evaporation of the fluid from the 

porous surface and then placed perpendicular to a dish containing ethanol as shown in Figure 

C.7. The fluid attains steady height when the gravitational head balances the maximum 

capillary head. 
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where σet, ρet, are the surface tension and density of the ethanol respectively, Hec is the steady 

height attained by ethanol column and rme is the effective pore radius of the wick sample. 

 

For the wick sample with manufacturer specified mean pore radius of 20 μm, the method gave 

a reading of 20.79 μm which, assuming the manufacturer was correct gives confidence in the 

integrity of the experimental method. 
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C.5.3 Porosity 

12.5.3.1 Concept 

Porosity is defined as the ratio of the void volume to the total (bulk) volume of the wick 

sample. It is the fraction of the cross section available for fluid flow. Normally, it is expressed 

either as a fraction or a percentage of the total volume.  

 

Porosity (ε) of a porous material is given by: 

sp

ps

w
V

V
                    (C.7)  

where Vps and Vsp is the volume of porous space (i.e. pores) and specimen respectively 

 

Porosity of a wick sample can be adjusted and customized to meet requirements by using 

powder of different sizes and changing sintering temperature during the manufacturing 

process. Sintered wick structures have uniform porosity in all three axes which is vital for 

constant liquid flow. In its naturally hydrophobic state, porous UHMW polyethylene is an 

excellent medium to work with laboratory solvents like alcohols, ketones, aromatics and 

strong organic acids and bases. For aqueous solutions the material can be converted to a 

hydrophilic form by various methods such as surfactant coating and plasma treatments as 

discussed before. Copper is strongly hydrophilic and shows very good wetting characteristics 

with water.  

 

C.5.3.2 Measurement 

Basically two methods were employed to measure the porosity of the hydrophilic as well as 

hydrophobic UHMW-Polyethylene wick samples and different grades of copper wick. Proper 

care was taken to dry the sample before measurements in order to get rid of any absorbed 

moisture from the atmosphere. Precise measurements for mass were done using a mass 

balance of sensitivity 0.01 grams. In the first method the bulk density (ρw) of the wick or 

porous medium is determined by measuring the outside dimensions (i.e. outer radius, inner 

radius and length) and weighing the sample on the balance. As the density (ρwm) of the 

material of wick (i.e. UHMW-polyethylene or copper material) making up the wick sample is 

known in the non-porous state, porosity (εw) of the specimen can be calculated as follows. 
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This method, known as the density method, gave very accurate and consistent results when 

compared with the porosity values given by the manufacturer, as shown in the Figure C.8.  

 

In the second method known as the soaking method, the sample of porous medium being 

tested was placed in a dish containing enough liquid to soak the sample completely. While 

placing the sample in the pool of liquid it is important to ensure that no air bubbles keep 

sticking to the wick which might inhibit the process of absorption of liquid into the pores. 

Keep the wick dipped until a free standing layer of liquid is observed on the top of the sample. 

By measuring the mass of the dry porous medium and the soaked porous medium, the volume 

of the liquid that was soaked up can be determined. This volume Vps is same as the volume of 

the pore spaces. If Vsp be the measured volume of the specimen then porosity (εw) can be 

determine by taking their ratio. The soaking method was performed on hydrophilic UHMW-

PE wick samples using water and ethanol as the test fluids and on hydrophobic UHMW-PE 

wicks using ethanol as the test fluid. Results of experiments are shown graphically in Figure 

C.8.  

 

Figure C.8 Comparison of porosity of the UHMW Polyethylene wick as determine by 

different methods 
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In the soaking method, porosity values determined by using a hydrophilic wick with water 

and a hydrophobic wick with ethanol as the working fluid predicted values somewhat less 

than the actual values given by the manufacturer. The difference arises presumably due to 

manufacturing defects like close spaces, dead ends or improper wetting of the wick substrate 

by working fluid. 

 

Outcomes of testing with copper wicks by using water as the working fluid are presented in 

Table C.4. 

 

Table C.4 Porosity measurement for different grades of copper wick 

Sample Porosity by Density 

Method (%) 

Porosity by Soaking 

method (%) 

Porosity value by 

Manufacturer Value 

(%) 

100-200 40.03 – 41.12 34.89- 37.36 42.35 

-200 45.06 – 46.03 40.94- 44.12 46.67 

-350 48.82 – 50.15 45.95-49.94 50.29 

 

It is clear from the results that the density method which is simple and straightforward gave 

better results than the soaking method. 

 

C.5.4 Effective Thermal Conductivity 

C.5.4.1 Concept 

Thermal conductivity, k of the material relates to its ability to conduct heat. It is defined as a 

quantity of heat, Q , transmitted through a thickness, t, in a direction normal to a surface of 

area, A, due to a temperature gradient, ∆T, under steady state conditions. The definition can be 

mathematically expressed as follow: 

 

AT

tQ
k
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                 (C.10) 
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 Since the porous structures are widely used as wicking structures in two-phase heat transfer 

devices, the effective thermal conductivity of the porous wick saturated with liquid is of great 

interest for the design and performance evaluation of these devices. Effective conductivity of 

the wick is a very important parameter to be considered during the choice of the wick material 

and design of the capillary evaporator. Different correlations have been developed by 

researchers worldwide for this purpose. Because of the large difference in thermal 

conductivity of the wick material and the saturating liquid and sharp dependence of effective 

thermal conductivity on the porosity of the wick, the predictions made by these correlations 

are not always satisfactory. Consequently, an experimental approach to estimate the effective 

thermal conductivity of the saturated wick is needed. 

 

C.5.4.2 Measurement 

An experiment was conducted to determine the effective thermal conductivity of a copper 

wick saturated with water. A copper container was prepared in the shape of rectangle and then 

fitted with a tube for vacuuming and charging purpose as shown in Figure C.9. The container 

was thoroughly cleaned by using acetic acid to get rid of any impurities. After this, it was 

filled with the copper powder of #100-200 mesh number and sintered. During the sintering 

process proper care should be taken to provide proper attachment between the heat transfer 

surfaces of the container and the wick.  

 

 

 

 

 

 

 

 

 

 

 

To ensure a high degree of saturation of the wick with the working fluid, first the air was 

evacuated from the wick using a vacuum pump and then it was charged with the degassed and 

distilled water. After charging, the copper line was permanently sealed. A condenser in the 

Fin Condenser 
Vacuum/Charging 

line 

 Heater 

Copper wick 

saturated with 

water 

Copper container 

Figure C.9 Test sample showing the location of the heater and the 

finned heat exchanger 
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form of a fin heat exchanger was fixed to one side of the sample using thermal epoxy. It 

should be noted that soldering or welding should be avoided to prevent any changes in wick 

properties including its oxidation. Forced air flow was ducted through the condenser by using 

a centrifugal fan. A heat load simulator made from a copper block, embedded with two 

cartridge heaters was attached to the opposite side of the condenser. The heat source and the 

sample were completely shielded using fiber wool glass insulation to prevent any heat losses 

to the environment. A digital power meter was used to input precise heat loads to the source. 

Temperatures at different locations were monitored and measured using T-type 

thermocouples with an error of ±0.5 ºC. Figure C.10 shows the experimental setup along with 

the location of the temperature measurement points.  
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Figure C.10 Experimental setup for measuring the effective thermal conductivity of the 

copper wick saturated with water  

Figure C.11 Effective thermal conductivity versus applied heat load for the copper wick 

saturated with water 
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During testing the heat load was applied in the range of 0.1 – 10 W by varying the input 

power in steps of 0.5 W while maintaining constant conditions at the condenser. Figure C.11 

presents the result of the experiment as a plot of effective thermal conductivity of the wick 

against applied heat load. It is clear that the effective thermal conductivity of a water saturated 

copper wick showed a constant value of 32 (± 2) W/m.K in the range of applied heat load and 

demonstrated the reliability of the experimental method.  

 

Prediction for the effective thermal conductivity of the wick, ke was made on the basis of the 

correlation proposed by Alexander (1972) as: 
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Where, α is the constant equal to 0.59. 

kl and kw is the thermal conductivity of the saturating liquid and the wick material and ε is the 

porosity of the wick structure.  

 

It was seen that the values predicted from the correlation showed a satisfactory agreement 

with the experimental measurements only if the porosity values used in the relation are higher 

than the experimentally predicted porosity value by 10-15%. For example, the predicted 

values for the ke shows close agreement with the experimental values and lies between 27.71 

–36.20 W/m.K for the porosity in the range of 55 – 60%. However for the wick sample, the 

experimentally determined porosity value is 40-45%. This discrepancy in the predicted and 

experimental results can arise due to the errors introduced by number of unaccountable factors 

that include improper contact point between the wick and container wall, natural convection 

of the fluid inside the wick, vapour bubble formation inside the sample, incomplete saturation 

of the wick with the liquid etc. To classify the effect of these factors detailed study on the 

determination of the ke that look precisely at these factors should be carried out. 

 

C.6 Summary 

Test procedures to determine the physical properties including permeability, pore radius and 

porosity, and material property i.e. effective thermal conductivity of the porous structures are 

considered in detail in this chapter. The study was done using hydrophilic and hydrophobic 
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grades of ultra high molecular weight polyethylene (UHMW) wicks and copper wicks made 

from powder of different granular sizes. Permeability of the wick was tested at low as well as 

high pressure using different test arrangements. It was seen that the permeability readings at 

high pressure were larger due to the increase in flow rate through the micro pores as the 

viscous forces are overcome at such pressures. Pore radius of the wick sample was measured 

using two different methods. The bubble point testing method gave the largest pore radius in 

the test sample, and the method that gave mean pore radius made use of the steady height 

achieved by the fluid under capillary head. The second method gave results that were in close 

agreement with the manufacturer’s specified values. Porosity of hydrophilic as well as 

hydrophobic UHMW polyethylene wicks and copper wicks was determined by a density 

method and a soaking method using appropriate working fluids. The density method showed 

better results than the soaking method due to the problems of incomplete wetting of the wick 

by the fluid or presence of close spaces and dead ends in the porous media. Also, a simple 

method to determine effective thermal conductivity of the copper wick saturated with the 

water was conducted. The experiment gave a constant value of the effective thermal 

conductivity over the test range of applied power. However, further work needs to be done for 

the precise determination of the effective thermal conductivity of the liquid saturated porous 

structure.  

 

Results of the various experiments explained in this study showed close agreement with the 

manufacturer’s values of the physical properties of the wicks. These methods are applicable to 

hydrophobic as well as hydrophilic wicks when used with working fluids that exhibit good 

wetting characteristics with the test sample. Also, these methods are simple to set up.    

 

  

   


