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An optimisation approach for fuel treatment planning to break

the connectivity of high-risk regions

Ramya Rachmawati, Melih Ozlen, Karin J. Reinke, John W. Hearne

Abstract

Uncontrolled wild�res can lead to loss of life and property and destruction of natural resources. At the same

time, �re plays a vital role in restoring ecological balance in many ecosystems. Fuel management, or treatment

planning by way of planned burning, is an important tool used in many countries where �re is a major ecosystem

process. In this paper, we propose an approach to reduce the spatial connectivity of fuel hazards while still

considering the ecological �re requirements of the ecosystem. A mixed integer programming (MIP) model is

formulated in such a way that it breaks the connectivity of high-risk regions as a means to reduce fuel hazards in

the landscape. This multi-period model tracks the age of each vegetation type and determines the optimal time

and locations to conduct fuel treatments. The minimum and maximum Tolerable Fire Intervals (TFI), which

de�ne the ages at which certain vegetation type can be treated for ecological reasons, are taken into account by

the model. Examples from previous work that explicitly disconnect contiguous areas of high fuel load have often

been limited to using single vegetation types implemented within rectangular grids. We signi�cantly extend

such work by including modelling multiple vegetation types implemented within a polygon-based network to

achieve a more realistic representation of the landscape. An analysis of the proposed approach was conducted

for a fuel treatment area comprising 711 treatment units in the Barwon-Otway district of Victoria, Australia.

The solution of the proposed model can be obtained for 20-year fuel treatment planning within a reasonable

computation time of eight hours.

Keywords: MIP, Optimisation, Fuel treatment, Wild�res, Fuel management

1 Introduction

Uncontrolled wild�res can result in the loss of life and economic assets and the destruction of natural

resources (King et al., 2008). Southern Australia, Mediterranean Europe and areas of the United States

are among the top regions in the world that are a�ected by frequent wild�res (Bradstock et al., 2012).
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Coupled with the proximity of major cities to natural ecosystems prone to wild�re, the management

of fuel hazard becomes an important land management policy and planning issue for the protection

of human life and assets (Collins et al., 2010). However, fuel management for asset protection should

not be done in isolation of the ecological requirements of the ecosystem. Maintaining the ecological

integrity of the landscape must also be considered (Penman et al., 2011).

Fuel management is a method to modify the structure and amount of fuel. The methods include

prescribed burning and mechanical clearing (King et al., 2008; Loehle, 2004). Fuel management pro-

grams have been extensively implemented in the USA (Ager et al., 2010; Collins et al., 2010) and

Australia (Boer et al., 2009; McCaw, 2013) in an e�ort to lessen the risk posed by wild�re. The choice

of fuel treatment location plays a substantial role in conducting e�cient fuel treatment scheduling

(Collins et al., 2010). Instead of randomly selecting the locations, signi�cantly better protection in

a landscape could be provided by a fuel treatment schedule that takes into account the relationships

between treatment units (Schmidt et al., 2008). Research indicates that it is important to choose

where to conduct the fuel treatment by considering spatial arrangement (Rytwinski and Crowe, 2010;

Kim et al., 2009; Chung, 2015). The importance of landscape-level fuel treatment has been observed

in a number of studies. In wilderness regions in the United States, a mosaic of varying fuel ages is

formed as a result of free burning �res. A particular arrangement of old and new treatment units has

been recognised to delay large wild�res in the following year (Finney, 2007). Research conducted in

the Sierra Nevada forests of the United States has shown that wild�re size can be modi�ed by spatial

fragmentation of fuel (Van Wagtendonk, 1995). Prescribed burning has been implemented in the eu-

calypt forests in south-western Australia over the past 50 years. The connectivity of `old' untreated

patches has been revealed to be the main aspect that contributes to wild�re extent (Boer et al., 2009).

Previous studies have mathematically modelled fuel treatment schedules and methods to reduce

wild�re fuel hazards. The studies had di�erent objective functions and took into account various

considerations in building up the models. Bettinger (2010) reviewed previous studies that incorporated

wild�res into forest management using operations research models. Kim et al. (2009) utilised a heuristic

optimisation method in landscape-level timber management. Using four scenarios, namely dispersed,

clumped, random and regular on a real landscape, they concluded that despite the spatial arrangement

of harvesting units, their approach is not e�ective to achieve timber management objectives while trying

to mitigate wild�re behaviour in a heterogeneous landscape. Ferreira et al. (2014) proposed a stochastic

dynamic programming (SDP) approach to determine the fuel treatment scheduling that produces the
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maximum expected discounted net revenue while mitigating the risk of �re. The method was then

applied to a maritime pine forest in Leiria National Forest, Portugal. They found that the approach was

e�cient and can successfully help integrating wild�re risk in stand management planning. Konoshima

et al. (2008) also proposed an SDP model that can maximise future timber production by considering

the future �re events and spreads into fuel treatment planning. In a follow-up paper, Konoshima et al.

(2010) extended their previous model by including factors such as weather condition and topography,

and then conducted the model demonstrations with a hypothetical landscape comprising homogeneous

hexagonal units. They found out that the spatial arrangement of management units led to di�ering

management strategies. Garcia-Gonzalo et al. (2014) determined the optimal fuel treatment scheduling

in a single-stand management for reducing expected damage and increasing the revenue to the same

landscape as that of Ferreira et al. (2014). Their research shows that the fuel treatments improve

productivity as well as reduce the potential damage. Rachmawati et al. (2015) proposed a model

that can lessen the risk of �re by reducing the total fuel load but do not consider spatial properties

or the spatial relationship between the treatment units. Wei and Long (2014) proposed a single-

period model to fragment high-risk patches by considering future �re spread speeds and durations.

Hof et al. (2002) formulated MIP models for fuel treatment planning to delay the �re spread from its

deterministic ignition point to one or more protecting locations. Minas et al. (2014) proposed a model

that breaks the connectivity of high fuel units in the landscape to prevent the �res spreading. The

model proposed by Minas et al. (2014) takes into account vegetation dynamics in the landscape, but

this is limited to a simplistic grid representation of a single vegetation type per treatment unit. In

real landscapes, a treatment unit may comprise a number of patches with di�erent vegetation type

and age. Recent studies have utilised simulation-optimisation approach and have been applied in real

landscapes comprising multiple vegetation types (Kim et al., 2009; Ferreira et al., 2014; Garcia-Gonzalo

et al., 2014). Some studies still limited to single vegetation type (Minas et al., 2014), single-period fuel

treatment models (Wei and Long, 2014) and single stand management (Garcia-Gonzalo et al., 2014).

The study by Kim et al. (2009) has taken into account the spatial pattern at a landscape level, but

the vegetation dynamic over time and the contiguity of high fuel load areas are not considered. Due

to the transience of fuel load in the landscape for both treated or untreated areas, it is important to

take into account the vegetation dynamic by modelling multi-period planning strategies.

In this paper, we build upon Minas et al. (2014) model by incorporating multiple vegetation types

found in the landscape and within single treatment units, and take into account the spatial connectivity



2 Problem formulation 4

or fragmentation of `high-risk' treatment units. We use a polygon-based network representation of

the landscape to better capture the spatial complexity of this problem rather than a rectangular grid.

Besides the negative impacts of wild�res, the role of �re in ecology has been widely acknowledged. Fire

is required to maintain a healthy ecosystem and it also has a signi�cant role in habitat regeneration.

Many vegetation species in �re-adapted ecosystems need �re to reproduce. For instance, germination

of seeds and successful establishment of plants in the jarrah forests of Western Australia is very rarely

found without �re intervention (Burrows and Wardell-Johnson, 2003). More recently, Burrows (2008)

argued that fuel management is important to support biodiversity conservation as well as to reduce the

negative impact of wild�res. A recognition of vegetation dynamics over time is crucial in the planning

of fuel treatment (Krivtsov et al., 2009). In this proposed model, the ecological �re requirements

of each vegetation type can be described using the minimum and maximum Tolerable Fire Intervals

(TFI). The minimum TFI is the minimum time required between two consecutive �re events at a

location and is based on the time to reach maturity of the sensitive species in the vegetation class.

The maximum TFI refers to the maximum time needed between two �re events at a location that

considers the �re interval required for �re-adapted species rejuvenation (Cheal, 2010). In this paper,

we use vegetation age to describe these intervals. We assume that treatment of vegetation whose age is

between these two intervals will maintain species diversity and hence support the ecosystem's health.

Therefore, we select not to treat a treatment unit if the age of vegetation growing in that location is

under the minimum TFI. In contrast, treatment units with vegetation over the maximum TFI must

be treated. In this paper, we assume that the high-risk threshold age is between these two intervals.

The objective of the model proposed in this paper is to reduce the spatial connectivity of fuel hazards

while still considering the �re requirements of the ecosystem. The question that then arises is when

and where to conduct fuel treatment to meet this objective, that can be solved for spatially complex

landscapes with long planning horizons?

A Mixed Integer Programming (MIP) model is proposed for multi-period fuel treatment scheduling.

The model tracks the vegetation age in each treatment unit yearly for both treated and untreated areas.

The model is then applied to a real landscape in southern Australia that comprises di�erent shapes

and sizes of treatment units.

2 Problem formulation

In this section, we explain the terms `treatment unit' and `patch' that we use to formulate the
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problem. The candidate locations for fuel treatment are represented by treatment units. A treatment

unit comprises multiple patches. Each vegetation type growing in a treatment unit is represented by

a patch and within each patch all the vegetation is of the same age. The data in each patch includes

area, vegetation type and age. Patches within a single treatment unit may have di�erent vegetation

type and age, de�ning a `multi-vegetation treatment unit'.

Each vegetation type has a `high risk' age threshold. For example, grass and bush are considered to

be high risk when they reach four and seven years old, respectively. Since we know the vegetation type

and age in each patch, we then know whether a patch is a high-risk patch or not at any given time.

In order to disconnect the high-risk treatment units in a landscape, we need a method to determine

whether a treatment unit is a high-risk treatment unit or not. In this paper, we assume that if ignitions

occur, the �res will likely spread through connected high-risk treatment units. From this, we believe

that if we can disconnect high-risk treatment units as much as possible, the possibility of catastrophic

�res can be reduced.

Each treatment unit selected for fuel treatment should not violate the ecological requirements. Each

vegetation type has its speci�c minimum and maximum TFI. We assume that a healthier ecosystem can

be maintained when the fuel treatment is conducted when the vegetation age is between the minimum

and the maximum TFI.

3 Model formulation

The model is formulated to determine when and where to conduct the fuel treatment each year

to break the connectivity of high-risk treatment units and to meet the ecological requirements. We

consider a landscape divided into treatment units where each treatment unit might consist of multiple

patches. The following mixed integer programming model is formulated.

Sets:

C is the set of all treatment units in the landscape

Ψ ⊂ C is the set of treatment units where fuel treatment is not permitted

Λ ⊂ C is the set of treatment units where fuel treatment is permitted (where Λ = C −Ψ)

Pi is the set of patches in treatment unit i

Φi is the set of treatment units connected to treatment unit i
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T is the planning horizon

Indices:

p = patch

i = treatment unit

t = period, t = 0, 1, 2, . . .T

Parameters:

wi,j = relative importance (weight) of connectivity of treatment units i and j

ap = initial vegetation age in patch p

Areap= area of patch p

ρ = treatment level (in percentage), i.e. the maximum proportion of the total area

that fuel treatment is permitted in a landscape selected for treatment

R = the total area of treatment units in the landscape where fuel treatment is permitted

ci= area of treatment unit i

dp = high-risk age threshold for patch p, based upon the vegetation type growing

in that patch

maxTFIp= maximum tolerable �re interval (TFI) of vegetation type growing in patch p

minTFIp = minimum TFI of vegetation type growing in patch p

H = the threshold for the area proportion of the high-risk patches in a treatment unit

to be a high-risk treatment units

Decision variables:

Ap,t = vegetation age in patch p at time t

xi,t =


1 if treatment unit i is treated in time period t

0 otherwise

Riskpatchp,t =


1 if patch p is classi�ed as high-risk patch in time period t

0 otherwise



3 Model formulation 7

Riski,t =


1 if treatment unit i is classi�ed as high-risk treatment unit in time period t

0 otherwise

RiskConni,j,t =


1 if connected treatment units i and j are both high-risk treatment units in time period t

0 otherwise

Oldp,t =


1 if patch p is classi�ed as `old' (over-the-maximum-TFI)

patch in time period t

0 otherwise

Y oungp,t =


1 if patch p is classi�ed as `young' (under-the-minimum-TFI)

patch in time period t

0 otherwise

Minimise the weighted connectivity of high-risk treatment units

z =

T∑
t=1

∑
i∈C

∑
j∈Φi,i<j

wi,jRiskConni,j,t (1)

subject to

∑
i

cixi,t ≤ ρR, t = 1 . . . T, ∀i ∈ Λ (2)

Ap,0 = ap, ∀p (3)

Ap,t = Ap,t−1 + 1, ∀p ∈ Pi, t = 1 . . . T, ∀i ∈ Ψ (4)

Ap,t ≥ Ap,t−1 + 1−M1xi,t, ∀p ∈ Pi, t = 1 . . . T, ∀i ∈ Λ (5)
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Ap,t ≤M2(1− xi,t), ∀p ∈ Pi, t = 1 . . . T, ∀i ∈ Λ (6)

Ap,t ≤ Ap,t−1 + 1, ∀p ∈ Pi, t = 1 . . . T, ∀i ∈ Λ (7)

Ap,t − dp ≤M3Riskpatchp,t − 1, ∀p ∈ Pi, t = 1 . . . T, ∀i ∈ C (8)

∑
p∈Pi

AreapRiskpatchp,t −H
∑
p∈Pi

Areap ≤M4Riski,t, t = 1 . . . T, ∀p ∈ Pi,∀i ∈ C (9)

Riski,t +Riskj,t −RiskConni,j,t ≤ 1, t = 1 . . . T, ∀j ∈ Φi, i < j,∀i ∈ C (10)

Ap,t −maxTFIp ≤M5Oldp,t − 1, ∀p ∈ Pi, t = 0 . . . T − 1,∀i ∈ Λ (11)

Ap,t ≥ maxTFIpOldp,t, ∀p ∈ Pi, t = 0 . . . T − 1,∀i ∈ Λ (12)

Ap,t +M6Y oungp,t ≥ minTFIp, ∀p ∈ Pi, t = 0 . . . T − 1,∀i ∈ Λ (13)

Ap,t −M7(1− Y oungp,t) ≤ minTFIp − 1, ∀p ∈ Pi, t = 0 . . . T − 1,∀i ∈ Λ (14)
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Y oungp,t−1 ≤ 1− xi,t, t = 1 . . . T, ∀i ∈ Λ (15)

∑
p∈Pi

Oldp,t−1− | Vi |
∑
p∈Pi

Y oungp,t−1 ≤| Vi | xi,t, t = 1 . . . T, ∀i ∈ Λ (16)

xi,t, Riskpatchp,t, Riski,t, RiskConni,j,t, Y oungp,t, Oldp,t ∈ {0, 1} (17)

The objective function (1) minimises the weighted connectivity of high-risk treatment units in a

landscape throughout a planning horizon.

Constraint (2) speci�es that the total area selected for fuel treatment annually is not more than

the area allotted (target) each year for fuel treatment (in hectares).

Constraint (3) sets the initial vegetation age in a patch. Constraint (4) to (6) track the vegetation

age of each patch. Constraint (4) relates to the set of treatment units where fuel treatment is not

permitted. Constraint (5) and (6) indicate that when xi,t = 0, the vegetation in that area will continue

growing until the following period, and the age will be incremented by one. Whereas if xi,t = 1, the

vegetation age will reset to zero. Constraint (7) increments vegetation age by exactly one year if the

treatment unit is not treated.

Constraint (8) uses binary variable Riskpatchp,t to classify a patch to be a high-risk patch if the

vegetation age in that patch reaches or exceeds a threshold value, thus each patch has its own age

threshold. Then, within a single treatment unit, we can compare the area of over-the-threshold patch.

Here, we de�ne a treatment unit as a high-risk treatment unit if the proportion of the over the threshold

area is greater than a certain proportion of the total treatable area of the treatment unit. Constraint

(9) represents this requirement. In constraint (10), RiskConni,j,t takes the value one if connected

treatment units i and j are both classi�ed as high-risk treatment units in time period t .

Constraints (11) to (14) classify a patch to be an `old' or a `young' patch based on TFI values. Con-

straint (15) ensures that the treatment units containing young patches cannot be treated. Constraint

(16) states that if there is at least one patch within a treatment unit that is `old' and no young patch,
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then the treatment unit must be treated. Here, |Vi| represents the number of patches in treatment

unit i. This constraint avoids a deadlock that may occur when a treatment unit consists of a young

and an old patch at the same time. In this study, we break the deadlock in favour of young patch.

The M 's coe�cient in equations (5), (6), (8), (9), (11), (13) and (14) represent a su�ciently large

Big-M.

Constraints (17) ensures that the decision variables take binary values.

3.1 Model improvements

The solution time can be improved by reducing the number of variables. As discussed earlier, the

initial age of each vegetation type in each treatment unit is given. We also assume that the age of

vegetation type growing in the treatment units where fuel treatment is not permitted should always

be incremented by one. For this reason, we no longer need constraint (4) to track the vegetation in

the area. The time for the vegetation type to reach the high-risk age threshold can be determined.

And because we assume that we cannot treat the treatment units, once the vegetation type hits the

threshold it will remain high risk. Therefore, within a planning horizon we can determine whether a

treatment unit is high risk or not.

Decision variables Ap,t and Riskpatchp,t for the treatment units where fuel treatment is not per-

mitted can be omitted, and regarded as parameters instead. This results in a faster solution time.

We can rewrite our model as follows. Constraint (4) is excluded, because at any given time the

age of vegetation growing in the treatment units where fuel treatment is not permitted is known.

Constraints (8) and (9) are only de�ned for treatable treatment units. All other constraints remain

the same. However, we introduce these two constraints to the model for the treatment units where

fuel treatments are not permitted:

Riski,t = 0, ∀t when θ ≤ 0,∀i ∈ Ψ (18)

Riski,t = 1, ∀t when θ > 0,∀i ∈ Ψ (19)
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where θ =
∑
p∈Pi

AreapRiskpatchp,t −H
∑
p∈Pi

Areap

In constraint (18), value 0 is assigned to Riski,t if less than a certain proportion of the total

treatable area of the treatment unit is high risk at time t. And in constraint (19) value 1 is assigned

to Riski,t if more than a certain proportion of the total treatable area of the treatment unit is high

risk at time t.

4 Implementation of the new approach

Initially, it may not be possible to treat all treatment units according to the maximum TFI value

because of the annual limit, ρ. This maximum TFI requirement may lead to the infeasibility of the

initial problem. In order to bring the system under control and to avoid the initial infeasibility, we

propose a preliminary stage, namely Phase 1. From the initial data, we can identify treatment units

containing an old patch or would potentially be containing an old patch in the following year and have

no young patches. We are trying to eliminate the treatment units containing old patches to ensure

feasibility. In this phase, we exclude the TFI constraints, which are constraints (11) to (16). We

run the model without enforcing the constraint ensuring treatment of old patches for some years, and

modify the objective function as follows:

maximise

z =

N∑
t=1

∑
i∈Θ

cixi,t −
N∑
t=1

∑
i∈Θ

∑
j∈Φi,i<j

εiRiskConni,j,t (20)

where Θ is the set of treatment units that contains an old patch or potentially contains an old

patch in the following year and no young patch. εi is a relatively small number (εi � ci) representing

the weight of connectivity of treatment unit i. N is the planning horizon.

The objective is to maximise the area treated and to minimise the weighted connectivity of the

treatment units in a landscape for a number of years ahead. The planning horizon (N ) increased

incrementally until the initial problem is feasible.

For the landscape that comprises mostly old treatment units, the solution from this phase becomes

the input for Phase 2. In Phase 2, the model presented in Section 3 is run.
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Fig. 1: A landscape for the model demonstration (29 treatment units)

(a) Map of the landscape (b) The neighbourhood graph of the landscape

Tab. 1: Vegetation type and the associated threshold age, the minimum and the maximum TFI for the
test landscape

vegetation type min TFI (year) max TFI (year) threshold (year)

1 3 10 5

3 4 15 7

6 7 20 10

5 Model demonstration

For the model demonstration, consider a test landscape comprising 29 treatment units that are

a subset of the case study in the Barwon-Otway district of Victoria, Australia. Figure 1a represents

the map of the landscape and Figure 1b illustrates the graph representing the neighbourhood of each

treatment unit. We assume that two treatment units are neighbouring if they have common boundaries.

Table 1 represents data for each vegetation type and the associated threshold age, the minimum and the

maximum TFI for this test landscape. The data regarding the area of the treatment units, vegetation

type and age can be seen in Table 2. Most of the treatment units represented in this table comprise

multiple patches.

We evaluate the test landscape based on the data from Table 2. The rule is that if more than 50

percent of the treatment unit are high-risk patches, then we consider it as a high-risk treatment unit.

Figure (2) and (3) show the network and the related map representing the fuel treatment schedule
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Fig. 2: A network represents the fuel treatment schedule for the test landscape
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Fig. 3: The sequence of maps representing the fuel treatment schedule (in years) for the test landscape
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Tab. 2: 29 treatment units data containing vegetation type, extent and age

Treatment

unit ID

veg

type

area

(ha)

age

(years)

Treatment

unit ID

veg

type

area

(ha)

age

(years)

Treatment

unit ID

veg

type

area

(ha)

age

(years)

1 1 10 6 8 1 19 5 19 1 50 5

1 3 8 7 8 3 12 7 19 3 37 5

1 6 14 11 9 1 46 4 20 1 10 1

2 1 10 5 10 1 78 6 20 3 6 2

2 3 21 8 11 1 30 4 20 6 14 10

3 1 4 1 11 3 50 8 21 1 5 1

3 3 5 1 11 6 30 12 21 3 8 1

3 6 7 1 12 1 40 5 22 3 19 7

4 1 40 5 12 3 34 7 23 6 20 11

4 3 30 6 13 6 84 11 24 6 22 10

4 6 24 10 14 3 80 7 25 1 42 1

5 1 8 1 14 6 76 11 26 3 33 7

5 3 10 1 15 6 103 12 27 3 6 6

5 6 4 1 16 3 14 5 28 1 14 5

6 1 18 1 17 1 50 5 29 1 100 5

6 3 20 1 17 3 32 6 29 3 50 6

7 3 80 8 18 3 14 5 29 6 41 9

7 6 34 11 18 6 10 9

with 15 percent treatment level, starting from the t = 0 which represents the initial condition of the

landscape. We can treat the surrounding treatment units to break the connectivity of high-risk units.

When the patch within a treatment unit has reached the maximum TFI, and no patch is below the

minimum TFI, the treatment units should be treated. This ecological requirement applies even for the

treatment units that do not contribute to the connectivity of high-risk areas.

6 An Australian case study

In this section, we apply the model discussed in Section 3 to an Australian case study. We use

a real landscape with randomised data containing treatable patches, grouped into 1197 treatment

units. Figure 4a illustrates the location of the case study in the Barwon-Otway district of Victoria,

Australia. In this case study, we assume that we can only treat the public treatment units. Figure 4b

represents the 711 candidate locations for fuel treatment. The data includes area, vegetation type and

age. The minimum TFI, maximum TFI and the high-risk age threshold for each Ecological Vegetation

Class (EVC) is summarised in Table 3. The vegetation types that do not pose any threat such as

aquatic vegetation types are excluded in this paper. Threshold values are set to their assumed values

to demonstrate our approach rather than to provide an actual way of determining these values.

A set of connected treatment units is de�ned as a treatment unit directly adjacent to another
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Tab. 3: Ecological Vegetation Class (EVC) and the associated threshold age, the minimum and the
maximum TFI

EVC name

min
TFI

(year)

max

TFI

(year)

threshold

(year)

Creekline Grassy Woodland 20 150 20

Hills Herb-rich Woodland 15 150 17

Creekline Herb-rich Woodland 15 150 17

Grassy Woodland 5 45 17

Valley Slopes Dry Forest 10 100 17

Sedgy Riparian Woodland 20 85 20

Scoria Cone Woodland 4 15 15

Wet Forest 45 300 45

Shrubby Wet Forest 25 150 25

Riparian Forest 10 80 22

Swampy Riparian Woodland 15 125 22

Riparian Scrub or Swampy Riparian Woodland Complex 10 80 16

Wet Sands Thicket 15 90 16

Stream Bank Shrubland 15 90 16

Cool Temperate Rainforest 45 999 45

Wet Heathland 12 45 12

Damp Heath Scrub 10 90 10

Damp Heath Scrub/Heathy Woodland Complex 10 90 10

Sand Heathland 8 45 8

Clay Heathland 10 45 10

Coastal Dune Scrub or Coastal Dune Grassland Mosaic 10 90 17

Coastal Headland Scrub 8 90 17

Coastal Headland Scrub/Coastal Tussock Grassland Mosaic 8 90 17

Coast Gully Thicket 10 90 17

Coastal Alkaline Scrub 10 70 17

Coastal Saltmarsh/Mangrove Shrubland Mosaic 8 90 14

Coastal Tussock Grassland 5 40 6

Heathy Woodland 5 45 35

Shrubby Woodland 10 45 35

Lowland Forest 8 80 20

Heathy Dry Forest 10 45 20

Shrubby Dry Forest 5 45 20

Grassy Dry Forest 5 45 15

Herb rich Foothill Forest 8 90 15

Shrubby Foothill Forest 8 90 15

Herb-rich Foothill Forest/Shrubby Foothill Forest Complex 8 90 15

Damp Sands Herb Rich Woodland 10 90 17

Valley Grassy Forest 10 100 17

Plains Grassy Woodland 4 15 15

Alluvial Terraces Herb-Rich Woodland 4 15 15
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Fig. 4

(a) Location of the case study in the Barwon-Otway
district of Victoria, Australia

(b) Map showing the distribution of the candi-
date treatment units within case study area
in the Barwon-Otway district of Victoria,
Australia

Tab. 4: Computational comparison between the �ve, six and seven percent treatment levels

Length of planning
horizon

Solution time (seconds)

�ve percent six percent seven percent

5 years 22.32 13.12 11.72

10 years 462.44 38.29 17.62

15 years 4904.10 752.11 366.71

20 years 26652.91 9464.17 2384.15
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Fig. 5: Solution of Phase 2: Maps showing the location of fuel treatment and the spatial distribution
of high-risk treatment units over time (in years)



6 An Australian case study 19

Fig. 6: The number of connections of high-risk treatment units over time

Fig. 7: The objective function values over time
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treatment unit, in other words, having a shared boundary. It is acknowledged it is possible for treatment

units that are geographically separated to still be considered `connected' as a result of the spotting

behaviour of particular bark fuel types under given weather conditions. The provision of information

regarding bark fuel types and prevailing weather conditions for the case study area would be a simple

addition to model.

From the initial data, it was identi�ed that 31 percent of the total treatable area in the landscape is

high-risk treatable treatment units containing the patches that are over maximum TFI and no young

patches. Phase 1 is run for seven percent treatment level, and would need seven years to achieve

less than �ve percent high-risk treatment units containing old patches in the landscape. In Phase

2, we run the model presented in Section 3 for �ve, six and seven percent treatment levels. The

solutions representing the high-risk area over time and the location selected for fuel treatments each

year with seven percent treatment level can be seen in Figure 5. In this case study, we use the area of

the two connected high-risk treatment units as a weight to determine the relative importance of the

connectivity. However, this weight can be determined in another way, for example, by the proportion

of the shared boundary between two adjacent treatment units to the perimeter of the treatment units.

It can even be adjusted subjectively by the land manager if required. Figure 6 and 7 show that the

connectivity of high-risk treatment units in the landscape and the objective function values decrease

over time. The average of the number of connections for �ve, six and seven percent treatment levels

are 608, 579 and 569, respectively.

The model was solved using ILOG CPLEX 12.6 with the Python 2.7 programming language using

PuLP modeler. Computational experiments were performed on Tri�d, a V3 Alliance high-performance

computer cluster. The computational experiment used a single node with 16 cores of Intel Xeon E5-

2670 64 GB of RAM. The comparison of computational time between the three di�erent treatment

levels can be seen in Table 4, which is based on 0.01% MIP gap tolerance. For the ten-year planning

horizon, the computational time for the three treatment levels is less than 15 minutes. For the longer

planning horizon, the computational time becomes longer. The optimal solution can be obtained up

to 20-year planning horizon.

7 Conclusion

In this paper, we have presented a mixed integer programming based approach to schedule fuel

treatments. The model determines when, and where, to conduct the fuel treatment to reduce the fuel
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hazards in the landscape whilst still meeting ecological requirements. The ecological requirements con-

sidered in this paper are the minimum and maximum Tolerable Fire Intervals (TFI) for the vegetation

present. The model includes multiple vegetation types and ages in the landscape and tracks the age

of vegetation in each treatment unit. To avoid deadlocks, the rules that are applied in the model are

either: the treatment unit must be treated if there is an old patch in a treatment unit, or the treatment

unit cannot be treated if there is a young patch in a treatment unit. In this study, spatial and temporal

changes that include multiple vegetation types in a realistic polygon-based network representation of

the landscape are considered. The model explicitly minimises the the contiguity of high fuel load areas.

These improve upon some previous studies that had this explicit objective and which were limited to

a single vegetation type in a regular grid.

The model was illustrated in fuel treatment planning using real landscape data from the Barwon-

Otway district in south-west Victoria, Australia. We ran the model for a 20-year planning horizon

with �ve, six and seven treatment levels. The total connectivity of high-risk regions resulting from the

three di�erent treatment levels in the landscape di�ers substantially for the �rst �ve years and di�ers

slightly after �ve years. Based on our experiments, using seven percent treatment level, the high-risk

regions in the landscape can be fragmented more quickly than that of �ve and six percent, as expected.

From the case study, the solution of this complex multi-period model can be obtained in a reasonable

computational time (eight hours).
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