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Summary of Thesis

Chronic obstructive pulmonary disease (COPD) is characterised by persistent inflammation
in the airway and the lung which results in airway obstruction. Various inflammatory cells
and mediators have been involved in the pathogenesis of COPD, in particular TNF-a through
NF-«B signalling pathway. Current treatments for COPD are still not satisfactory and there
is a need to develop new therapies targeting inflammatory mechanisms of COPD. Ginseng is
a well-known medicinal herb and has been used in the treatment of COPD. Understanding
the anti-inflammatory mechanism of ginseng and ginseng based formulas will facilitate the
development of novel agents for treating COPD and other inflammatory diseases. The main
objective of this project is to study the actions and mechanisms of ginseng and ginseng
related products on the regulation of TNF-a and NF-kB pathway in inflammatory cell
models related to COPD. The key hypothesis is that ginseng and ginsenosides may target

TNF-0, cAMP and NF-«B signalling pathways to exert their anti-inflammatory actions.

In order to test this hypothesis, the inflammatory cell models were firstly set up using
macrophage-like U937 cells induced by Lipopolysaccharide(LPS) or cigarette smoke
extract(CSE), which then were used to evaluate the effects of ginseng and ginsenosides on
cellular release of cytokines and activation of NF-kB and cAMP pathways. U937 cells
treated with phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA) were incubated with
different concentrations of ginseng, ginseng formula extracts or ginsenosides for 2 hours,
then treated with LPS (1 pg/ml) for different time durations to measure the level of cytokines
in the cell media by ELISA, the expression of proteins by Western blot, the transcriptional
activity by Dual-Glo Luciferase Reporter Assay System, the level of cAMP by EIA and the
activity of PDE4 by scintillation counting. LPS caused a significant increase in the cellular

release of TNF-a, IL-1PB and IL-6 and the expression of the key NF-«kB proteins (p-IKK, p-



IkBa and p-p65), as well as the transcriptional activity of NF-xB. The level of cAMP, PDE4
activity and p-CREB expression were also elevated by LPS. CSE also significantly induced
the release of TNF-a. In LPS inducing cell model, BAY11-7082, the NF-kB pathway
inhibitor, significantly inhibited the expression of IKK, p-IKK, IkBa, p-IxBa, p65 and p-
p65S.transcriptional activity of NF-kB and the release of TNF-a; the cAMP pathway
activator, Foskolin, increased the production of cellular cAMP and the expression of p-
CREB, but inhibited the release of TNF-a and the transcriptional activity of NF-kB, without
affecting the expression of IKK, p-IKK, IkBa, p-IkBa, p65 and p-p65; the PDE4 inhibitor,
Rolipram, also significantly inhibited the release of TNF-a . These results indicate that the
cell model establishment was successful and also suggest a possible interaction between NF-

kB and cAMP pathways on the regulation of TNF-a induced by LPS.

Using the established cell model, effects of ginseng (G115) and several ginseng formulas
(GHMFs) as well as ginsenosides on the release of cytokines were investigated. It was found
that the release of TNF-a was significantly inhibited by G115, GHMF-III, Rb1, Rgl, Rg3,
CK and Rh1, but not Rh2 in LPS-induced cell model and by G115 and GHMF-III in CSE-
induced cell model. GHMF-III, G115, Rb1 and Rgl also inhibited the release of IL-1p and
IL-6 induced by LPS. Among the GHMFs tested, GHMF-III seemed to be the most potent.
In addition, G115, GHMF-III, Rb1, Rgl, Rhl and CK, but not Rh2 significantly inhibited
the expression of IKK, p-IKK, IkBa, p-IkBa, p65 and p-p65 and decreased the
transcriptional activity of NF-kB induced by LPS. G115, GHMF-III and Rgl, but not Rbl,
Rh1, CK and Rh2 significantly increased the cellular level of cAMP and the expression of p-
CREB, but inhibited the activity of PDE4 induced by LPS. These findings indicate that
ginseng and ginseng related products have a significant inhibition of cytokine release and

activation of NF-kB pathway in LPS-induced macrophage-like U937 cells. In addition, they

VI



may also act as PDE4 inhibitor to regulate cCAMP pathway. Such actions of ginseng and

ginseng related products may contribute to its therapeutic efficacy against COPD.

A separate research objective in the present study was to evaluate the clinical efficacy of
TNF-o inhibitors in the treatment of the progression of joint damage (JD) in active
rheumatoid Arthritis (RA). The rational of this research is that there is a wide use TNF-a
inhibitors in the management of JD in active RA, although it is not clear if there are
differences between these inhibitors when used alone or in combination with Methotrexate
(MTX), and which factors may affect their efficacy. A meta-analysis was conducted to
compare the effects of TNF-a inhibitors on the radiological progression (RP) of active RA
when used alone or combined with MTX, and to study the correlation between the degree of
activity of RA and the efficacy of TNF-a inhibitors on the progression of JD. It was found
that TNF-a inhibitors showed a better efficacy than that of MTX, and TNF-a inhibitors in
combination with MTX produced a better efficacy than TNF-a inhibitors used alone. Among
different types of TNF-a inhibitors, infliximab in combination with MTX exhibited a better
efficacy than other types of TNF-a inhibitors. CRP, ESR and DAS28 were factors affecting
the efficacy of TNF-a inhibitors on the progression of JD in active RA. These findings may

help to guide clinical use of TNF-a inhibitors to control the progression of JD in active RA.
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Chapter 1. General Introduction

1.1  Chronic Obstructive Pulmonary Disease

1.1.1 Introduction

Chronic obstructive pulmonary disease (COPD) is the major and growing health problem
leading to increase in morbidity, disability, mortality and medical costs worldwide. A
population-based prevalence study showed that the prevalence of Global Initiative for
Chronic Obstructive Lung Disease (GOLD) stage II or higher COPD had reached 10.1% for
man and 8.5% for women in 2007, It was the fourth death cause in 2008, and is expected to
become the third death cause within the next decade in Europe and the United States®, and
the fifth most common cause of disability in the world by 2020 *. In Australia, COPD affects
almost 13% or one in seven Australians 40 or over, and Australia has one of the highest rates
of COPD deaths in the developed world. This will result in the escalating health care costs

worldwide’.

COPD is a disease characterized by a progressive and non- reversible airway limitation
which is associated with a persistent inflammatory response of the airway and lungs to
bacteria, viruses, noxious particles and gases®®. The pathogenesis of COPD is still not fully
clear, although the persistent inflammatory response is a specific aspect of COPD and
cigarette smoking(CS), as the primary risk factor’, increases the susceptibility of COPD
patients to pathogens'®!!. Currently, there are still no satisfactory therapies that can block the
inflammatory progression of COPD including corticosteroid'?. Since the inflammatory cells
and mediators play an important role in the persistent inflammation in COPD '3, it is also

important to understand the relevant signalling pathways in these cells.



1.1.2 Inflammation-Related Cells in COPD

A variety of inflammatory cells are involved in COPD', including neutrophils, T
lymphocytes, macrophages, air epithelial cells (AEC), air smooth muscle cells (ASEs) and

eosinophils. These cells play different roles in the inflammatory mechanism of COPD.

1.1.2.1 Neutrophil

There is evidence that the number of neutropils was significantly increased in sputum and
bronchoalveolar lavage (BAL) fluid from patients with COPD, the increase is also correlated
with the severity of COPD and the decline in lung function of COPD patients'>'8. The
abnormal increase of neutrophils in COPD patients was likely to relate to CS, as it has been
showed to stimulate the release of granulocyte from the bone marrow which was mediated
by granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony
stimulating factor (G-CSF) released by alveolar macrophages (AM)!°. Additionally, CS also

increased the retention of neutrophils in the lung®.

Chemokines may play a key role in the abnormal distribution of neutrophils in COPD. Many
kinds of chemokines can recruit neutrophils to the inflammatory site, such as interleukin-8
(IL-8), interferon gamma (IFN-y), leukotriene B4(LTB4) and growth-related oncogene-a
(GRO- a; CXCL1)*"">*) and all of these chemokines were increased in the patients with
COPD'%?>27 As neutrophil is a major source of IL-8%, it in turn recruits neutrophil itself
and other inflammatory cells to the site to amplify the inflammatory response. In addition,
neutrophils also produced LTB4%. These chemokines links may be a vital reason for the

abnormal distribution of neutrophils and release of IL-8 in COPD patients.



Neutrophils also secrete proteases, including neutrophil elastase (NE), matrix
metalloproteinase (MMP)-8 and MMP-9°%32 as well as released oxygen radicals such as

33,34

superoxide anion, hydrogen peroxide’>**, which may contribute to lung tissue damage and

the decline of lung function?>-°.

1.1.2.2 T Lymphocyte

Histopathologic studies showed that the total number of T lymphocytes was increased in
lung parenchyma, peripheral and central airways of patients with COPD*"*°, and there is a
correlation among the number of T cells, the amount of alveolar destruction, and the severity
of airflow obstruction®” . It has also been shown that the extent of lymphocytes infiltrates in

airway was correlated with the severity of COPD?’.

T cells are divided into five categories according to their functions, including helper T cells
(CD"4), cytotoxic T cells (CD'8), memory T cells, regulatory T cells and natural killer T
cells. Among these cells, CD'4 and CD'8 have been shown to be involved in the
pathogenesis of COPD and CD"8 are likely to play more important roles than CD*44!"**, The
numbers of CD'8 cells was elevated in the circulation of COPD patients who did not
smoke*'*2. The number of CD"4 cells was also increased in the small airway of smokers
with severe COPD*. It was reported that the increase in CD*8 cells was greater than CD*4
cells in COPD*. T helper cells type 1 (Thl) seemed to contribute to the unbalance between
CD*4 and CD"8, since there was an unbalance between Th1l and Th2 in COPD patients®.
Thl cells secret Interleukin-2 (IL-2) which is an inductor for the differentiation of CD"8

cells**47,

The tissue damage mediated by CD'8 cells in COPD may involve two mechanisms. First,

CD'8 cells may contribute to the modulation on apoptosis. It has been reported that there



was a correlation between the number of CD'8 and apoptosis of alveolar cells in
emphysema*®, which seemed to be related with the perforin andgranzyme-B released by
CD*8*. Secondly, CD'8 cells may modulate the release of MMPs. The study about CD*8
cells - deficient mice exposed in CS demonstrated that CD'8 cells contributed to the lung
destruction through the release of IFN-inducible CXC chemokine ligand (CXCL) 10 (IFN-

induced protein 10, IP-10) which induced the production of MMP-12%.

1.1.2.3 Macrophage

It has been shown that the number of macrophages was elevated (5-10 folds) in the airways,
lung parenchyma, BLA fluid and sputum of smokers and patients with COPD?’, and the
increase was associated with the severity of COPD!”. The increase in the number of
macrophages in inflammatory sites of COPD patients may be related to the increased release
of monocyte-selective chemokines and the reduced apoptosis of macrophages. Monocyte
chemotactic protein-1(MCP-1) can recruit monocytes from the circulation to tissues®®>! ,
which is the premise of monocytes differentiation to macrophages. The level of MCP-1 was

increased in BAL fluid of COPD patients*>*>>3, In addition, the expression of the anti-

apoptotic protein Bcl-XL was increased in macrophages from smokers>.

1.1.2.3.1 Macrophage and the Immune Response

Macrophage plays a key role in the defence against airway pathogens®. Alveolar
macrophage(AM) was considered as the sentinel phagocytic cell of the innate immune
system in the lung®. AMs have a unique localization in the airway and act as the first line of
defence against the airway pathogens, such as inhaled bacteria, viruses, noxious particles and
gases. During this defensive process, macrophages are not only served as scavenger to clear

the pathogens in the airway, but also as pathogen to induce the immunity response.



Macrophages play an antigenic role and induce the cellular immunity response in the
abnormal inflammation of COPD. It has been shown that macrophages present the antigen
characteristic of major histocompatibility complex class II molecules (MHCII) after

T 57,58

digesting a pathogen to activate CD4" . So the antigen presentation of infected

macrophage may be a part of pathogenesis of COPD.

1.1.2.3.2 Macrophage and Inflammatory Mediators

Macrophage can produce a wide array of powerful inflammatory mediators which is directly
involved in the inflammatory response in COPD. The chemokines produced by macrophages
include Growth-Related Oncogene-o (GRO-a; CXCL1), interferon-y inducible protein of 10
kDa (IP-10; CXCL10), MCP-1 and IL-82226-523%-61 These mediators in turn recruit different
inflammatory cells, such as IP-10 for CD"8%, MCP-1 for monocytes, neutrophils and T

lymphocyte®* ¢+ | Gro-a and IL-8 for neutrophils®!-*2,

Macrophages also produce various cytokines. For example, TNF-a was produced by AMs
from patients with COPD induced LPS*’. Other cytokines associated with COPD and
produced by macrophages included Interleukin-1 beta (IL-1f), Interleukin-6 (IL-6),
Interleukin-10 (IL-10), granulocyte-macrophage colony-stimulating factor (G-CSF) and
IFN-y!366-68 Macrophages synthesize these cytokines through activating many intracellular
inflammatory pathways, especially nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-«kB) pathway®*%’. There is strong evidence that NF-«B is the key transcriptional
factor which regulated the synthesis of inflammatory gene in macrophages from patients

with COPD"*"!,

In addition, macrophages can regulate the cellular production of reactive oxygen species

(ROS) in COPD. Many studies have shown that the level of oxidative stress was increased in



COPD?**7273 and the increase is derived from ROS produced by activated macrophages in

airway of patients with COPD”>,

1.1.2.3.3 Macrophage and Emphysema

Emphysema is an important pathological stage of COPD. The elastolysis of the lung is the
primary cause of emphysema’®. Studies have shown that the number of AMs was
significantly increased in BAL fluid of smokers with emphysema comparing with those
healthy smoker without emphysema, and this increase was correlated to the extent of
emphysema’®. AMs also expressed cathepsins (L and S), MMP-2, MMP-9 and MMP-127678,
and all of them involved in the pathogenesis mechanism of emphysems’. Cathepsins L and
S are elastolytic cysteine proteases. MMP-2, MMP-9 and MMP-12 are the predominant
MMP capable of elastolysis in COPD patients®’. It has been demonstrated that a MMP
inhibitor, Marimastat decreased the elastolytic activity derived from MMPs in macrophages

from patients with COPD®’.

1.1.2.4 Airway Epithelia Cell

Airway epithelia cell (AEC) play an important role in the innate defence system of airway.
AEC is the pseudostratified ciliated columnar epithelial cells (from tracheatobronchioles),
and their ciliary movement can protect the airway against the invasion of pathogens®'. The
goblet epithelia cells, as secretary cells, can also produce mucus to trap the foreign
substances entering in the respiratory tract®?. In addition, AEC can release certain mediators
and cationic peptides with antimicrobial effects to fight against the pathogens entering into
the respiratory tract®. ASE also contributes to the adaptive defence, as they transported IgA

to the airway lumen®. Studies have shown that cigarette smoke weakened the innate and



adaptive immune functions of airway epithelic cells, resulting in the increase of

susceptibility of COPD patients to infection!®!!,

Similar to the role of macrophages, AEC has a capacity of recruitment of inflammatory cells,
and regulating lung tissue damage through the release of chemokines and MMPs. For
example, AECs increased the release of IL-8 , Pro-a, GM-CSF, CXCR3, IP-10, interferon-y
inducible T cell chemoattractant (I-TAC; CXCL11)?#>% and CXCR3 in BALF of COPD
patients®®*’. The expression of activated normal T cells expressed and secreted (RANTES;
CCL5) and the level of another chemoattractant for eosinophils (eotaxin) were significantly
increased in ASEs from patients with COPD®*°. The expression of MMP-9 was at a low
level in ASEs from the non-smoking subjects, but it was significantly increased in ASEs

from COPD patients’'.

1.1.2.5 Eosinophil

The role of eosinophil in COPD is still uncertain. A study showed that the number of
eosinophils increased in the induced sputum in COPD patients, but in stable COPD patients,
the number of eosinophils remained unchanged®®®. Other studies reported that the number
of eosinophils was elevated in sputum, BAL fluid, airway and lung in the acuate
exacerbations of chronic bronchitis with obstruction patients'>**?>. The increased number of
eosinophils in the inflammatory site may be related to IL-8 and RANTES>!%%%97 Tt has
been shown that RANTES was strongly expressed in ACEs from patients with chronic
bronchitis exacerbations®. The concentration of IL-8 was significantly increased in sputum
of patients with COPD'®, and further increased during acute exacerbations”®. The level of
another chemoattractant for eosinophils (eotaxin) was also significantly increased in ASEs

from patients with COPD*’. In addition, eosinophils maybe related to therapeutic outcome of



certain drugs as it has been shown that the presence of eosinophils in COPD patients

displayed a good clinical response to corticosteroids treatment’.

1.1.2.6 Airway Smooth Muscle

Studies have shown a significant increase of the number of airway smooth muscle (ASM) in

S8100.101 * especially in patients with severe COPD!?, and

small airways of COPD patients
this increase in the number was correlated with the FEV>8. The proliferation of ASM is the

main feature of fibrosis in COPD patients'®*. ASM released many inflammatory mediators,

including IL-8, MCP-1, GRO-a, IP-10 and GM-CSF in inflammatory conditions'%+1%8,

1.1.2.7 Inflammatory Cells and Fibrosis in COPD

Three types of inflammatory cells have been shown to participate in the regulation of fibrosis
in COPD, including macrophages, AECs and ASMs, involving two main mechanisms. The
first mechanism is through transforming growth factor beta (TGF-B)/mothers against
decapentaplegic homolog 3(SMAD3)/ASMs pathway to modulate the chronic fibrosis in
small airways'®. The second mechanism is through TGF-P/ET-1/collagen tissue growth
factor (CTGF, an important downstream factor of TGF-f)/fibroblasts pathway to promote
the activation of fibroblasts!'. ASM is the main structure cell in chronic fibrosis. The
proliferation of ASM was up-regulated by TGF-B/SMADs!!!. There was a self-regulation of
ASM on the proliferation, as ASM also released the TGF-B!'? | which may explain why
ASM continuously proliferated leading to the airflow limitation in COPD. ASM also
contributed to the regulation on TGF-B/ET-1/CTGF/fibroblasts pathway, as it released and
expressed the CTGF to induce the activation of fibroblasts''®. Similar to ASM, AEC

expressed both TGF-B and CTGF ''%, indicating it may regulate the fibrosis through both



mechanisms. The expression of TGF-3 was increased in AMs and AECs from patients with

COPD’4!%115 thus AMs may mainly regulate chronic fibrosis through the release of TGF-.

1.1.3 The Inflammatory Mediators in COPD

The inflammatory cells release various inflammatory mediators which can be divided into
different types according to their functions in inflammatory responses, including
chemokines, cytokines and proteases. Table 1-1 lists all inflammatory mediators which have
been shown to be increased in COPD patients. Among these, some mediators have been

investigated as drug targets in experimental studies and clinical trials.

1.1.3.1 IL-8

IL-8 is a powerful neutrophil and lymphocyte chemoattractant. It can be secreted by
macrophages, neutrophils, and AECs!!3140, CS was a powerful inducer of the synthesis of
IL-8 in vivo'#!. It has been shown that TNF-o, LPS, IL-1B, bacterial products, certain
viruses, oxidative stress and CSE were stimulators of IL-8 secretion in vitro'*?-'48. Further
studies showed the synthesis of IL-8 was related to the activation of transcription factors,
among which NF-«xB is predominant'#!>°, and the protein and mRNA expression of IL-8

was significantly inhibited by IKKP inhibitors °'.



Table 1-1 Expression of inflammatory mediators in COPD patients

AMs

Mediator Target Source Reference
Protein Induced sputum, BAL fluid, serum 16,116,117
IL-8 mRNA Lung tissue Het7
Protein AMs, AEC, Neutrophils 18
: B 116
Gro-a. Protein Sputum, lung tissue
Protein AECs 26
IP-10 Protein Lung tissue 116,119
. . 21
ENA-78 Protein BAL fluid
mRNA AECs 120
. . 52
MCP-1 Protein Sputun.l, BAL fluid, lung B
mRNA Lung tissue ’
: : 117
CCR2 Protein Lung t%ssue
mRNA Lung tissue 16
. . 17
CCL3 Protein Lung t%ssue
mRNA Lung tissue e
CCL4 Protein BAL fluid 16
. 116
CXCR2 Protein PBLs '
mRNA BAL fluid !
Protein Sputum, serum, leg muscle 16,116,119
TNF-a mRNA Serum, sputum He.19
Protein AMs, AEC 122,123
IL-6 Protein Sputum, BAL fluid, EBC, plasma 124-126
Protein Monocytes 127
IL-9 Protein T lymphocytes 128
GM-CSF Protein BAL fluid 1
IL-10 Protein Sputum, serum 130
IFN-y Protein Bronchial biopsies 128131
115,132
TGF-B Protein A.ECS’ AMS’ ?BLS 13
Airway biopsies ’
VEGF mRNA Pulmonary vascular smooth muscle 135
Cathepsin L Protein BAL fluid 1
MMP-1 Protein Bronchoalveolar lavage 137
- 137,138
MMP-9 Protein BLA fluid ,lung parenchyma

139

ENA-78=Epithelial cell-derived neutrophil-activating peptide-78 ( CXCLY)

PBLs=Peripheral blood lynphocytes

EBC=Exhaled breath condensate

VEGF=Vascular-Endothelial Growth Factor
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IL-8 has two receptors, CXCR1 and CXCR2, located on the surface of neutrophil'®.
CXCRI1 is a specific receptor for IL-8 and blocking its activity leads to blocking
inflammatory signalling from IL-8 to neutrophils. CXCR2 is non-specific receptor of IL-8,
which binds not only to IL-8, but also to ENA-78 and Gro-a'*"!'*?, In addition, collagen
fragment (the product of lung tissue), especially proline-glycine-proline (PGP) derived from
the breakdown of extracellular matrix, also bound to CXCR2!**, In patients with COPD, the
levels of ENA-78 and GRO-o, were significantly increased in BAL fluid ?!. The concentration
of PGP which was broken down by MMP1 and MMP9 from collagen was also increased in
the sputum and serum of COPD patients'*. CXCR2 seems to play a more important role
than CXCRI in neutrophils related inflammatory response in COPD, as CXCR2, but not
CXCRI1, was expressed by bronchial epithelial cells from COPD patients'*. Qiuet et al. also
found that the expression of CXCR2 was significantly increased in airway neutrophil during
acute exacerbations of COPD, and this increase is correlated with the numbers of neutrophil
in the airway'?’. Previous studies on blocking IL-8 activity had limited success in
eliminating the neutrophil related inflammation'*. It indicates that CXCR2 may be a better

drug target than IL-8 itself.

Various IL-8 antagonists have been developed. ABX-IL-8 is an antibody against IL-8. It has
been evaluated in clinical trial phase II for COPD!¥’. Although the dyspnea was improved,
there were no improvements on the lung function, quality of life and the six minute walking
test. So, in 2003, ABX-IL-8 was withdrawn from further studies!'*®. As alternatives, the
antagonists (SB656933) which prevent Gro-a& IL-8 binding to CXCR2 have also been
evaluated in clinical trial for COPD. SB656933, as an oral CXCR2 antagonist was reported
to inhibit the binding of Gro-a and IL-8 to CXCR2 but not CXCR1 in human neutrophils'*®.
CDI11b (Mac-1, alphaMbeta(2)-integrin), as both a complement receptor (CR3) and a cell

adhesion molecule present on the surface of cells, maybe involved in the regulation of
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SB656933 in COPD patients. CD11b can trigger chemotaxis of neutrophils and shape
change of lung tissue'*’. Neutrophils over-expressed CXCR1 and CXCR2 was reported to
respond to IL-8 with the up-regulation of CD11b in smokers with COPD, and SB-656933
was found to inhibit the expression of CD11b in neutrophils and shape-changes of lung

tissue in COPD patients'*. This result was also confirmed in an animal model of COPD!,

Another type of IL-8 antagonist (SB225002 and SB265610) has been reported to interfere
with the chemokine-binding sites''®. SB265610 significantly inhibited the repair and
neutrophil recruitment in a skin-wound healing model in mice!>!. Other novel CXCR2
antagonists are also under development. Studies showed that highly selective N,N’-
diarylurea CXCR2 antagonist, significantly reduced the chemotaxis of neutrophil in vitro,

and decreased the number of neutrophil in rabbit models for ear swelling and neutropenia'®2,

1.1.3.2 TNF-a

In 1968, Dr. Gale A Granger named a cytotoxic factor produced by lymphocytes as
lymphotoxin (LT)"*?. In 1975, Dr. Lloyd J. Old found that the mice injected with LPS after
vaccinated by Bacillus Calmette (BCG) produced the factor which killed some tumor cells or
induced the necrosis of tumor tissue in vivo, and named it as tumor necrosis factor (TNF)!>,

In 1985, Shalaby named TNF produced by macrophages as TNF-a, and lymphotoxin(LT)

produced by lynphotocyes as TNF-B!*. TNF-a plays a key role in the inflammatory
response of COPD. Previous studies showed that the levels of TNF-a were increased in
peripheral blood, sputum and BLA fluid of patients with COPD!®!5®_ The concentration of
TNF-o was also increased in the serum from patients with stable COPD'®, as well as in the

157,158

serum from COPD patients with acute exacerbation The concentration of soluble

TNF-o. receptors was also increased in sputum of patients with COPD'*’. TNF-o. can be

12



produced by various cells, such as epithelial cells, macrophages and monocytes, but mainly
in macrophages®"-'%16! CS and LPS are frequently used as inductors to stimulate the release
of TNF-o in the experimental model of COPD!%!¢*  CS induced TNF-a release maybe
dependent on MMP12, as the release of TNF-a stimulated by CS was abolished in MMP12

knockout mice'?2.

TNF-a is a maintainer of abnormal inflammation of COPD. It regulates a broad spectrum of
inflammatory mediators through activating various inflammation-related pathways. These
pathways include NF-kB, mitogen-activated protein kinase 1/2(ERK1/2), p38 mitogen-
activated protein kinases (P38 MAPK) and phosphatidylinositol 3-kinases (PI3Ks)
pathways!6+1%7 For example, TNF-o can activate these pathways to release IL-8, IL-6 and

MMP-9168_170.

TNF-a is related to emphysema which is the end stage of COPD progression.The previous
study showed that a lesser degree emphysema was generated by TNF-a knockout mice
induced by CS than wild-type animals, and TNF-a was accounted for 70% of smoke-

71 " There is also evidence for a role of TNF-a in

induced emphysema in the mice
emphysema in TNFR—knockout mice, which may involve MMPs!”!. TNF-a. may also be
involved in weight loss during late stage of COPD, as the release of TNF-a was increased in
peripheral blood monocytes from weight-losing COPD patients'?*!%, The effect of TNF-a
on muscle wasting may contribute to the weight loss in COPD patients, as studies showed

the expression of skeletal muscle proteins was inhibited by TNF-a through activating NF-

kB!72,

It is well known that TNF-a promote the inflammatory response, which in turn causes many

the clinical problems such as RA, Ankylosing Spondylitis, Juvenile Idiopathic Arthritis,

13



Psoriasis, Psoriatic Arthritis, Crohn's disease, Behget's syndrome, Hidradenitis Suppurativa,
Acute Ischemic Stroke, asthma and COPD'”3. In TNF-a gene knockout mouse, blocking the
bind between TNF-a and TNF-a receptor attenuated the pulmonary inflammation induced by
cigarette smoking!’*. Therefore, TNF-a is a potential drug target for COPD, and TNF-a

inhibitors have been used in clinical trial or preclinical to adjust inflammatory disorders.

TNF-o antagonists include non-human/chimeric antibodies (infliximab, afelimomab and
CytoTab), humanized antibodies (adalimumab, CDP-571 and CDP-870), human soluble
TNFR/ TNFR fusion protein (Onercept and Etanercept), small molecules (ISIS-104838), and
inhibitors of TNF-o. converting enzyme (TACE)'"®!”>. Three TNF-a inhibitors have
currently been approved by the Food and Drug Administration (FDA) and the European
commission(EC) for disease-specific application, infliximab (Remicade) for RA and Crohn,
etanercept (Enbrel) for RA and AS, adalimumab (Humira) for RA. They are also listed by
the Pharmaceutical Benefits Scheme (PBS) for use in Australia. The application of TNF-a
antagonist (Infliximab) in COPD is currently developing in II clinical trials, and clinical
studies demonstrated that COPD patients treated by infliximab over 6 to 24 weeks did not
show improvement on lung function, body weight, quality of life scores, airway
inflammation, or cytokine levels'’®. Another study on TNF-a inhibitor etanercept in a non-
follow-up small clinical trial on COPD and asthma showed FEV1 and stable FEV1/forced
vital capacity(FVC) were improved by etanercept plus withdrawal of f2-agonists in patients
with severe asthma''”’. However, the uncertain effect of TNF-a inhibitors on COPD is still
the primary factor which limits the application of these inhibitors. In addition, the cost of
these agents was too expensive, which directly limited their widespread use. More
importantly, these agents are associated with some serious side effects, such as lymphoma,
congestive heart failure, opportunistic infections, and tuberculosis'’®!”®. New efforts are

needed to develop novel anti- TNF-a agents who are efficient, safe and cost effective to
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replace the current ones!8%!8!

. Another potential development in this area is the use of
inhalation formulation of TNF-a for treating the local airway inflammation. The local
application of TNF-a inhibitors may not affect systemic pulmonary inflammation, but can be

more directly and effectively inhibiting tissue remodelling and mucus hyper production in

the inflammatory sites'*.

A separate approach is via inhibition of TNF-a biosynthesis. The biosynthesis of TNF-a is
closely related with three biological processes which occur on the different parts of cell,
including activating the inflammation-related pathways in cytoplasm, expressing mRNA
through activating promoter in nucleus and protein synthesis in ribosome. Current studies of
TNF-a synthesis focus on the inhibition on biological processes in cytoplasm and nucleus,
especially the NF-kb pathway. In this aspect, a number of natural compounds such as
ginseng, have been used in the treatment of COPD and have been shown to inhibit the
release of TNF-a through decreasing the activity of NF-kB pathway. G115, a standardized
extract of ginseng, has been used for the treatment of COPD, and was shown with
significantly improvement of the Pulmonary Function Tests (PFTs), Maximum Voluntary
Ventilation (MVV), Maximum Inspiratory Pressure (MIP) and Maximal Oxygen
Consumption (VO2max) in patients with moderately-severe COPD'32. Further study showed
Rbl and Rgl, as a major active components of G115 decreased the expression of activated

NF-«B to inhibit the release of TNF-q!83-184,

1.1.3.3 MMPs

MMPs play an important role in the pathogenesis of emphysema. In the healthy adult lung,
the expression of MMPs is in low quantities'®® . The concentrations and expressions of

MMP-1 and MMP-9 were increased in macrophages from patients with COPD, and MMP1
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has been shown to be involved in the formation of emphysema through degrading type III
collagen'®6. The MMP2 and MMP9 were also expressed in emphysematous lung tissue'®’,
and their activities were inhibited by blocking the expression of ET-1 in CSE-induced
emphysema rat'®®, MMP12 may be decisive factor of CS-induced emphysema, as MMP12

knockout mice did not develop emphysema to exposure in CS'®’.

Many cells and cytokines involved in the elastolysis in COPD through regulating the release
of MMP-9 and the modulations of these cells and cytokines on MMP-9 may be bidirectional.
For example, both neutrophils and macrophages released MMP-9 contributing to alveolar
destruction®>7>!1°0 IL-10 (anti-inflammatory cytokine) inhibited the release of MMP-9 in
monocytes from patients with COPD'!. MMP-9 also contributes to the repair (fibrosis) after
elastolysis through activating fibrosis-inducing factor(TGF-$). MMP-9 promoted the
transformation of TGF-B'%2, which was achieved through activating TGF-binding protein-

1'%, Thus, MMP-9 may act as a bridge between the elastolysis and fibrosis.

MMPs have also been studied as a drug target of COPD. The existing antagonists of MMPs
include TNF-a converting enzyme (TACE) MMP inhibitors, endogenous tissue inhibitors
(TIMPs) and pharmacological inhibitors such as zinc chelatorsand doxycycline!”®. TACE is
a protein which inhibits the pre-TNF-a cleavage into mature TNF-a, and also the release of
MMPs. TACE is likely to have a potentially beneficial effect to inhibit the formation of
mucus. There is evidence that the TACE-dependent mechanism was involved in the
production of important constituents of mucus, mucins 5AC, induced by CS and LPS in

vitro'*,

TIMPs are the endogenous tissue inhibitors of MMPs which comprise four proteases,

including TIMP1, TIMP2, TIMP3 and TIMP4. All MMPs are inhibited by TIMPs once

16



TIMPs are activated, but the gelatinases (MMP-2 and MMP-9) can form a complex with
TIMPs when they are in the latent form. The complex of latent MMP-2 (pro-MMP-2) with
TIMP-2 serves to facilitate the activation of pro-MMP-2 at the cell surface by MT1-MMP
(MMP-14)!95:1%_The role of pro-MMP-9/TIMP-1 complex is still unclear. TIMPs have been
implicated in the pathogenesis of COPD. The concentration of TIMP1 and TIMP 4 were
elevated in serum of COPD patients compared with that of control subjects'”’. TIMP3
knockout mice demonstrated a progressive airspace increase!®®. A polymorphism in the

TIMP2 gene (G853A) was also associated with COPD',

The inhibitors of MMPs have been evaluated in clinical trial for many diseases, such as
cancer, autoimmune disease, and cardiovascular disease’***’!. However, only doxycycline is
currently approved by the FDA for anthrax. MMPs inhibitors have certain side effects on the
musculoskeletal system!”>. Further research may help to develop novel MMPs inhibitors

with fewer side effects for the management of COPD.

1.1.4 Inflammation Related Pathways in COPD

It has been proven that several inflammation pathways contribute to the pathogenesis of

COPD through the release of various inflammatory mediators (Table 1-2 Release of
inflammatory mediators through the pathways related with COPD). These pathways include

PI3K, ERK, P38 MAPK, NF-kB and cAMP, each of them plays different roles in COPD.

Table 1-2 Release of inflammatory mediators through the pathways related with COPD

Pathway Mediator Compartment Inducer Reference
NE Neutrophils LPS 202
IL-8 U937 HNP 203
PI3K GM-CSF/IL-
CCRI1 U937 10 204
MMP9 U937 TNF-o 205
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206

HBECs CSE
ERK1/2 IL-6 human ACEs, BEAS-2B CSE, NHI 207,208
monocytes from COPD patients | Acetylcholine | %
.8 HBECs,BEAS-2B ESHI, CSE 207,209
HBECs DEEP, TRP 210
TSLP Human SMs TNF-a,IL-1 2
P38 IL-6 HBECs, THP-1 DEEP 210
COX-2 HBECs DEEP 210
IL-1 THP-1 TRP 212
TNF-o THP-1 TRP 212
CSE/IL-
IL-8 Human SMs, HBECs 18,ESHI 209211
Eotaxin Human SMs CSE, IL-1B 21
VEGF-a, Human SMs CSE, IL-1B 2
MMP9 A549 TNF-a 213
ICAM-1 Human SMs TNF-o, IL-1p | 2
NE-xB IL-6 Human SMs TNF-q, IL-1p | 2"
GM-CSF Human SMs TNF-o, IL-1§ | 2
RANTES | Human SMs TNF-a, IL-18 | *"
MCP-1 Human SMs TNF-o, IL-1p | 2"
Gro-a. Human SMs TNF-a, IL-1p | 2"
NAP-2 Human SMs TNF-q, IL-1p | 2"
ENA-78 Human SMs TNF-a, IL-1p | 2"

HBEC= bronchial epithelial cell line
NHI:=bronchial epithelial cell line
ESHI:=Exacerbation strains of H. influenzae
DEEP= Tp0751 recombinant protein
TRP=Tp0751 recombinant protein
TSLP:=Thymic stromal lymphopoietin

1.1.4.1 Phosphatidylinositol 3-Kinases Dependent Pathway

PI3Ks are a family of related intracellular signal transducer enzymes. PI3Ks are involved in
the regulation of various cellular functions through PI3k dependent pathway. Akt, as a
downstream factor of PI3K pathway, can be phosphorylated by PI3K, and plays a key role in
multiple intracellular processes such as cell growth, proliferation, differentiation, motility,

survival and intracellular trafficking?'®. In macrophages from patients with COPD, the
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expression of phosphorylated PI3K & and Akt was increased compared with the control
groups of age-matched smokers and non-smokers?!®. In addition, PI3K was involved in the
regulation on the release of inflammatory mediators from macrophage and neutrophils,

which are the key players in COPD inflammation(Table1-2).

It has been known that glucocorticoid insensitivity is the biggest problem in the treatment of
COPD. COPD patients with glucocorticoid insensitivity often have a rapid development of
COPD and eventually lead to the occurrence of airway limitation. There is evidence for a
potential role of PI3K, especially PI3K 6, in the glucocorticoid insensitivity of COPD.
Marwick et al. found that glucocorticoid insensitivity was restored in PI3K & kinase dead
knock-in smoke-exposed mice but not PI3K y knockout mice, and this effect was correlated
with the activity of histone deacetylases 2 (HDAC2)?*'”. Knockdown of HDAC2 showed that
HDAC?2 was a prerequisite molecule for glucocorticoid-insensitivity and the over-expression
of HDAC?2 was able to restore the sensitivity of glucocorticoid?'®. In monocytes from COPD
patients, the reduced sensitivity to dexamethasone was also reversed by inhibition of PI3kd

but not by PI3Ky?'°,

1.1.4.2 ERKI1/2 Dependent Pathway

ERK1/2 is protein kinase intracellular signalling molecule. ERK1 is similar to ERK2 (85%
sequence identity) 2!°. Phosphorylation of ERK1/2 leads to the activation of their kinase
activity. Phosphorylated ERK1/2 activates the downstream factors in its pathway, and finally
involve in a wide variety of intracellular processes such as proliferation, differentiation,

transcription regulation and development®%°,

Activated ERK1/2 was elevated in non-smoking patients with COPD??!. However, CSE

significantly up-regulated the expression of p-ERK1/2 in human ASM cells and
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macrophages®*>?2*, while the effect of CSE on the p-ERK1/2 was also proved in vivo??,
ERK1/2 is likely to be related to muscle atrophy in COPD, as Lemireet et al. found that the
ratios of phosphorylated to total expression of ERK 1/2 were significantly elevated in
quadriceps from patients with COPD compared with healthy controls®**. This effect of
ERK1/2 may relate to its action on IL-6(Tablel-2), as IL-6 induced the skeletal muscle

172

atrophy Previous studies showed the concentration of IL-6 was increased in induced

sputum, bronchoalveolar lavage, and exhaled breath condensate of COPD patients,

124,225,226

particularly during exacerbations . In the plasma of COPD patients, IL-6 was also

increased '2>126227 especially during exacerbations??®,

1.1.4.3 P38 MAPK Dependent Pathway

P38 mitogen-activated protein kinases (P38 MAPK) are a class of mitogen-activated protein
kinase which participate in a signalling cascade controlling cellular responses to cytokines
and stress. There was a strong induction of p38 phosphorylation in patients with COPD?!,
However, the expression of mRNA and protein of total/phosphorylated p38 MAPK was not

up-regulated in biopsies obtained from stable out- patients with COPD?%°,

Small molecule inhibitors of p38 MAPK have been used in the pre-clinical study of COPD.
PH797804, a diarylpyridinone inhibitor of p38 MAPK, was reported to improve in dyspnea
score(DS), aspiratory capacity(AC), and sustained decrease in serum CRP levels and lung
function (FEV 1 ranging from 32% to 80%). It had no significant effects on liver enzymes in
COPD patients. SB681323, as a specific inhibitor of p38 MAPK, down-regulated the level
of TNF-a in whole blood from patient with COPD 2, SB681323 also reduced the number
of neutrophils in sputum and the concentration of fibrinogen in serum but not the level of

CRP, IL-8, IL-1B , or IL-6 in serum of COPD patients without receiving inhaled
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corticosteroid therapy, and this was accompanied by an improvement in FVC but not in FEV
123!, Another p38 inhibitor, GW856553( losmapimod), was shown to have no effect on the
level of CRP, IL-8 and IL-6 in GOLD stage II COPD patients, but it improved hyperinflation
232 However, there seems some different effect of p38 MAPKs inhibitor on the release of
IL-8 in vivo and in vitro, as SB203580 (the inhibitor of p38 MAPK) down-regulated the

release of IL-8 in CSEM-induced primary HBECs and BEAS-2B 7.

1.1.4.4 NF-kB Pathway

NF-kB is a protein complex and activated NF-kB that controls the transcription of DNA.
While in an inactive state, NF-kB is located in the cytosol complexed with the inhibitory
protein IkBa. Through the intermediacy of integral membrane receptors, a variety of
extracellular signals can activate the enzyme IxB kinase (IKK). IKK is part of the upstream
NF-«B signal transduction cascade. The IkBa (inhibitor of kappa B) protein inactivates the
NF-kB transcription factor by masking the nuclear localization signals (NLS) of NF-xB
proteins and keeping them sequestered in an inactive state in the cytoplasm. IKK specifically,
phosphorylates the inhibitory IkBa protein. This phosphorylation results in the dissociation
of IxBa from NF-kB and thereby activates NF-«kB. The activated NF-«B is then translocated
into the nucleus where it binds to specific sequences of DNA called response elements (RE).
The DNA/NF-kB complex then recruits other proteins such as coactivators and RNA
polymerase, which transcribe downstream DNA into mRNA, which, in turn, is translated
into protein that results in a change of cell function. There are five proteins in the
mammalian NF-kB family, including NF-kB1(p50), NF-kB2(p52), RelA( p65), RelB and c-

Rel?**. Among these proteins, p65 is the specific transcriptional factor for TNF-a?**,
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NF-«kB is the key transcriptional factor which controls the transcription of many proteins
involved in the inflammation of COPD?*°. It regulates the release of many inflammatory
mediators (Tablel-2). The expression of activated NF-kB (p65) was up-regulated in the
bronchial biopsies of COPD patients’’. However, there was a down-regulating mechanism in
COPD patients on the activity of NF-xkB pathway, as the release of the inhibitory factor of
NF-kB, IL-10, was also increased in COPD patients 23°. In addition, activated NF-kB is like
to play an important role in muscle wasting in COPD, as it was required for the transition
from inflammatory signalling to muscle atrophy signalling?*’ and in pulmonary emphysema

animal model with lower body weight the activity of NF-kB was exactly increased®®.

The inhibitors of NF-kB show a significant inhibition on the TNF-a synthesis and release. It
has been shown that caffeic acid phenethyl ester(CAPE), inhibitor of IKK, could eliminate
the synthesis of TNF-a which is induced by heat-inactivated S. aureus in primary astrocytes
derived from C57BL/6 WT?¥. Similar results were also demonstrated in vitro***. It was also
found that BAY 11-7082, another inhibitor of IKK, inhibited the synthesis of TNF-a
induced by ET-1?*!. In addition, CAPE also inhibited the release of IL-8 and IL-

6.mediators>>?4,

1.1.4.5 cAMP Pathway

Cyclic adenosine monophosphate (cAMP) is the second messenger that is important in many
biological processes, and has been shown to modulate inflammatory response in vivo and in
vitro. cAMP can be phosphorated by phosphodiesterases (PDEs), and then loses activity. In
humans, cyclic AMP works by activating protein kinase A (PKA, cAMP-dependent protein
kinase). PKA can activate a cAMP response element-binding (CREB). CREB is a cellular

transcription factor, which can regulate the transcription of gene, causing increased
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expression of specific genes. Different to other pathways, cAMP pathway is used to down-
regulate the inflammatory response in COPD. The elevating agents of cAMP (forskolin,
dibutyryl cAMP and PDE7A inhibitor) abrogated the release of TNF-o induced by
LPS/PMA?*245 Foskoliin and dibutyryl cAMP also decreased the number of neutrophils

and increased apoptosis in the pleural cavity in LPS-challenged mice?*°.

The cyclic nucleotide PDEs comprise a group of enzymes that degrade the
phosphodiesterase bond in the second messenger molecules cAMP and ¢cGMP. PDEs are
important regulators of cell signal transduction mediated by cAMP and cGMP. PDEs were
initially isolated from rat brain in the early 1970s using polyacrylamide gel
electrophoresis?’’?*8, They have been shown widely distributed especially in the lung and
many cell types?*?*’, Different PDEs have different substrate requirements. Some are
cAMP-selective (PDE4, 7 and 8), some cGMP-selective (PDES, 6, and 9) and others can
hydrolyse both cAMP and cGMP (PDEI, 2, 3, 10, and 11). PDE4 is the most important drug
target in COPD. PDE4 is composed by 4 gene families (A, B, C, D). All of CD'4, CD'8,
Th1, Th2, Th17,eosinophils, neutrophils, monocyte, macrophages, dendritic cell and AECs
express of PDE4A, 4B and 4D*231-2% In peripheral blood neutrophils, CD4 and CD8'T
cells from patients with mild COPD, the expression of PDE4A, 4B and 4D were unchanged
compared with the healthy subjects?*’. However, the expression of PDE4A4 (the subtype of
PDE4A) was significantly increased in macrophages from BAL fluid of smokers with COPD
compared with control smokers?°. In addition, the distribution of SNP13 allele frequencies
of the PDE4D gene was significantly different between the COPD and smoker in the

Japanese population®®!.

7262

PDE inhibitors have been used as therapeutic agents for various diseases since 197 In

2011, the PDE4 inhibitor, roflumilast, was approved by the FDA for treating the
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exacerbations of patients with severe COPD associated with chronic bronchitis and a history
of exacerbations. There is a Cochrane Systemic Review that evaluated the efficacy and
safety of roflumilast and cilomilast(another PDE4 inhibitor) in the management of stable
COPD patients in 2011. This paper showed that PDE4 inhibitors significantly improved
FEV1 regardless of COPD severity or concomitant COPD treatment; they also improved the
quality of life (St George Respiratory Questionnaire [SGRQ]) and COPD-related symptoms,
but could not improve exercise tolerance?s>. There was also an improvement in FEV1 in
Asian COPD patients treated with roflumilast’**. No serious adverse events were reported in
the patients treated with PDE4 inhibitor compared with controls. However, roflumilast was
associated with weight loss during the trial period®®>. There is another study on the efficacy
of roflumilast used concomitantly with long-acting p(2)-agonists (LABAs) to reduce
exacerbations of COPD patients, which reported that roflumilast reduced the rate of

moderate or severe exacerbations, with LABA or without LABA 2%° .

PDE4 inhibitors have the potential to target three main mechanisms of COPD:

266-268  Rolipram

bronchoconstriction, mucus hypersecretion and inflammatory response
blocked secretions of LTC4 caused by eosinophils treated with formyl-met-leu-phe plus
cytochalasin B (FMLP/B)?*%°. LTC4 can trigger contractions in the smooth muscles lining the
trachea, which is the main reason for bronchoconstriction’’”’. Roflumilast was shown
effectively in weakening EGF induced MUCS5AC expression in human AECs to decrease the
mucus hypersecretion®’!. There is evidence that PDE4 inhibitors regulate inflammatory cell
chemotaxis to down-regulate the inflammatory response through inhibiting the release of
chemokines. PDE4 inhibitor( RP73401) inhibited LTB4 production stimulated by LPS/
FMLP?”2, Roflumilast and its active metabolite (roflumilast N-oxide) concentration-

dependently reduced the LPS-stimulated release of CCL2, CCL3, CCL4, CXCL10 from

human lung macrophages, but without affecting that of CXCL1 or IL-8*7°. However, the
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release of IL-8 was repressed by rolipram in primary human myometrial smooth muscle
(HMSM) cells treated with IL-1B?". Rolipram also inhibited GM-CSF production in HMSM
cells treated with IL-1B*>’3. PDE4 inhibitors (rolipram, RPR-73401, RS-25344-000,
cilomilast, and roflumilast) suppressed the release of IL-2, IL-4, IL-5, and TNF-a in a

concentration-dependent manner in peripheral blood mononuclear cells*”.

1.1.4.6 Interactions among Inflammatory Pathways

NF-«B pathway is a core inflammatory pathway in COPD, which can be regulated by other
pathways. Activated PI3K phosphorylated Akt, resulting in the activation of NF-«B via
IKK?7. There is also evidence that PI3k may activate NF-kB to express the inflammatory
gene through regulating the release of ROS. It has been found that LPS-stimulated NCL-
H292 cells secreted MMP-9 via EGFR/PI3K/Rac1/ROS pathway?*’. ROS directly induced

the activation of NF-kB?”’ and NF-«B is the main transcriptional factor of MMP9%7%,

On the other hand, cAMP pathway also plays an important role in regulating the activity of
NF-«B pathway. It has been shown that a down-regulation of NF-kB pathway at the
transcriptional level is through the activation of CREB, a downstream factor of cAMP-
dependent pathway?”*?%. CREB has been shown to competitively bind with CREB-binding
protein (CBP) which is involved in the transcriptional co-activation of NF-kB. CBP can bind
to both p- NF-kB and p-CREB in nuclear and then form a bridge to the basal transcription
machinery to activate transcription®®’. Thus, cAMP pathway can regulate the transcriptional

activity of NF-kB through competitively bind with CBP.

In addition, ERK1/2 and p38 MAPK dependent pathways also involve in the regulation of

NF-«B pathway, however, the regulatory targets of them are different. Activated ERK1/2
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phosphorylates IKK, but activated p38 pathway directly up-regulate the transcriptional

activity of NF-kB to activate NF-kB pathway?8!-83,

1.1.5 Experimental Models of COPD

Although patients are the most direct study subjects in disease research, the usage of them
are widely limited by many factors, such as experimental methods, the research period, and
medical ethics, etc. So instead researchers select adaptable disease model (animal or cell) to
replace human as research subjects. Researchers have established wide varieties of disease
models and even focus on the same disease, there are also many different models to express
different pathological mechanisms. So the selection and establishment of the adaptable

disease models are the first and important step in medical studies.

The existing disease models are divided into two broad categories: animal models and cell
models of human diseases. These two types of model can satisfy different requirements in

disease research. They are complementary to each other in their respective fields.

1.1.5.1 Animal Model of COPD

The animal model, using animal as the subject of study, simulates the performance and
characteristics of human disease. According to the different reflecting degree of human
disease, animal models are divided into three major types, including homologous,
Isomorphic and predictive animal models. Homologous animal model is the most similar to
human who bear the same diseases, have the same causes, symptoms and treatment options.
However, as the cause of many human diseases is still uncertain, this kind animal model is
very rare. Isomorphic animal model share the same symptoms and treatments with patients

with same diseases, which is the most principle model in medical studies and is the most
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common model. The last type of animal model is predictive animal model. It shares the
treatment characteristics with patient with a disease. This kind of animal model is always

used in drug screening.

The animal model of COPD is mainly divided into two types, according to the application of
different inductors. Some studies use chemical substances, such as LPS and various enzymes
to induce the COPD animal model?3*. All of them can be directly perused in airway to result
in the local inflammation. These kinds of animal models belong to isomorphic animal model,
and were used in the earlier studies of COPD. With the improvement of experimental
technique, more and more researches use CS as inductor to establish the animal model of
COPD. As this kind of model have the same cause, symptoms and treatment options with
COPD patients, it belongs to homologous animal model. This is a specific animal model of
COPD. There is a CS-induced acuate animal model (1~3 days'®*?%), which specifically
displayed the abnormal inflammatory response in COPD?**. This kind of animal model is
widely used in the study about inflammation of COPD. The chronic animal model (six
months or longer), which not only displayed the abnormal inflammation of COPD, but also
showed the specific pathological manifestations of emphysema?3®, was more suitable to the

study about late COPD/emphysema.

There is a very important factor which can affect the result of the animal model induced by
CS. It is the content of effective substances contained in smoke. As we all know, the main
effective components of cigarette smoke are tar and nicotine and they are also used to
control the quality of commercial cigarette. Although the contents of these effective
components are different in the different brands of cigarette, they are fixed in the same brand
cigarette. For example, each Marlboro Red contains 12 mg tar and 0.9 mg nicotine.

Therefore, the selection of cigarette will affect the result of the preparation of CS induced
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animal model. Besides these commercial cigarettes, there is a standard cigarette which is
served as an international standard for research purposes and was approved by
representatives of commercial manufacturers, which is made by the Kentucky Tobacco
Research & Development Centre. There are more quality control on these reference
cigarettes than commercial cigarette and provides a basis for comparing data that have been
collected in different laboratories. The reference cigarette belongs three kinds: 1R3F (The
reconstituted tobacco sheet portion of this blend was manufactured using the Schweitzer
Process, 1974), 2R4F (a low nicotine cigarette, 2001) and 1RSF (an ultra low nicotine

cigarette, 1989). Among these cigarettes, 1R3F is always used in the experimental work.

1.1.5.2 Cell Models of COPD

The cell model of human disease is a popular tool in the study about pathological mechanism
and drug Intervention in vitro. Different with animal model, the cell model, using cell as the
subject of study, simulates the performance and characteristics of human disease. Adaptable
cell and corresponding inducer are the two major factors which affect the establishment of a

cell model.

1.1.5.2.1 Selection of Adaptable Cell for Inflammatory Cell Models of COPD

As we all know, many kinds of inflammatory mediators are not expressed by cell under
normal conditions, and even at inflammatory condition cells only express the specific
inflammatory mediators themselves. Thus, it is very useful to collect the information that the
expression of inflammatory mediator in the inflammation-related cell from COPD patients,
which will be used as background information to help us select the adaptable cell for the

inflammatory cell model of COPD. We collected relevant information from previous studies,
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summarised the expression of various inflammatory mediators in cells collected from COPD

patients (Tablel-3).

According to the existing information from these studies, we found these studies used 5
types of cells as subjects (AM , monocytes ,airway epithelial cells, neutrophils and T cells )
and 9 kinds of inflammatory mediators were involved in( IL-8, Gro-o, TNF-a,IL-9, TGF-p,
MMP-1,MMP-9, ROS and NF-«kb). Among these cells, macrophage and AEC showed more
potent capability on the expression of various inflammatory factors. All of the expressions of

these mediators were increased comparing with control group.

Table 1-3 Expression of inflammatory mediators in the cells collected from the patients with
COPD

Product AMs Monocytes AECs Neutrophils T cells
1L-8 TllS TIIS TllS
Gro-a 126
TNF-o. 1122 113
IL-9 T128
TGF-B 1132
MMP-1 137
MMP-9 139
NF-«B 170

The studies about inflammatory pathological mechanism of COPD in vitro mainly focued on
4 aspects of abnormal inflammation of COPD, including chemotaxis of inflammation related
cells, release of inflammatory mediators, formation of tissue damage and repair (Fibrosis).

The studies about the chemotaxis always use AM, AEC and neutrophils as subjects; the
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studies about the release of inflammatory mediators always use AM, AEC and T cells as
subjects, and among these cells, AM and AEC are more popular in previous studies; the
studies about the formation of tissue damage always choose monocytes/AMs as subjects,
especially using AMs as the representative; the studies about the fibrosis in COPD. We can
use AEC, macrophage and ASC as subject. If researchers want to detect the regulation of

NF-«B on the expression of inflammatory mediators, macrophage is a good choice.(Table3)

1.1.5.2.2 Inducers Involved in Inflammatory Cell Model of COPD

As we all know, CS and infected pathogens are two main risks in the pathogenesis of COPD.
However, it is very difficult to simulate the process of CS and infection from human to cells.
So researchers prepare the substitutes of CS and pathogenic microorganisms, cigarette

smoke extract medium (CSEM) and LPS.

Lipopolysaccharide (LPS), a molecule consisting of a lipid and polysaccharide, elicits

strong inflammatory responses in animals and cells. LPS is found in the outer membrane of
gram-negative bacteria. Its Acyl chain embeds in the outer membrane of bacteria, and its
sugar chains expose to the bacterial surface with the antigenic property. LPS is the most
powerful inductor to prepare the cell model of COPD. It can induce various cells to express

various inflammatory factors (Table4).

Although CS is the primary risk of COPD, it is very difficult to use cell as subjects to
simulate CS process of human. As this method cannot be performed in cell-culture
environment, it does not only increase the risk of cells infection, but also result in the
increasing the ratio of cell death, so cigarette smoke extract (CSE) is applied gradually. The
preparation of CSE simulates the process of cigarette smoking of human. Machine pump is

used to simulate human smoking. Airtight pipes are used to connect the cigarette holder,
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dissolution media and machinery pump. Actually, the dissolution media is cell culture media
which is used to absorb the substance of smoke. Adjust the pump pressure and smoking
frequency (typically 7 times per minute), so that the cigarette burn within the prescribed time
(usually 3 minutes). The difference between commercial and homemade CSE is dissolution
media. The dissolution media of commercial CSE is a filter, then use solution to dissolve the
solute on the filter. The dissolution media of homemade CSE is cell culture medium. The
medium containing CSE is named CSE medium (CSEM), which can be directly applied in
the cell culture. However, as CSEM has poor stability, it is usually prepared just before it is

to be used.

LPS and CSEM are used as potential inductors of inflammatory cell model of COPD.
Besides them, there are other two inducers that are also used in the establishment of cell
model of COPD. TNF-a and IL-B, as pro-inflammatory factors, not only are produced
through the stimulation of LPS and CSEM, but are also used as inducers to stimulate cells to
release the inflammatory mediators. Interestingly, TNF-o, as more powerfully pro-

inflammatory factor, can also induce the release of IL-f (table4).

1.1.5.2.3 Inflammatory Cell Models of COPD

There are 16 kinds of inflammatory cell models commonly used for the studies of COPD. In
these models, 5 types of cells are used as subjects (macrophage, airway epithelia, neutrophil,
monocyte and lung fibroblast), all of them are the structure/functional cells of the lung. ; 4
kinds of inducers are involved (LPS, CSEM, TNF-o and IL-1B) and 12 kinds of
inflammatory mediators ((IL-8, Gro-o, MCP-1, MIP-1. TNF-a, IL-18, IL-6, IL10, GM-CSM,
INF-y, TGF-f and MMP-9) are produced by these models. Including IL-10, all of the

expressions of these inflammatory mediators were increased in ICM of COPD. (Table4)
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1.1.5.2.4 TNF-a Related Inflammatory Cell Model of COPD

TNF-a is a monokine which is mainly produced by monocytes, macrophages and AEC.
LPS, CSEM and IL-1p are the main inductors of these cells to release TNF-a (Tablel-4).
There is a low level of TNF in normal condition. Once cells are stimulated by inducer, the
release of TNF-o will boost at once. Thus, the establishment of TNF-o related to
inflammatory cell model is the premise of the study about drug intervention effect on the
synthesis of TNF-a. There are five inflammatory cell models which can release TNF-a, and
LPS& CSEM induced macrophages are the main source of the production of TNF-a (Table

4).

The human macrophages are derived from differentiated monocytes. The monocyte is a
mononuclear and a non-granular cell. These cells derive from bone marrow hematopoietic
stem cells, and developed in the bone marrow, and finally released into the blood.
Monocytes stay in the blood for 1-3 days, then migrating to different tissues as macrophages.
Comparing with monocytes in blood, the volume of macrophages becomes greater; the
number of intracellular lysosomal granules and mitochondria is increased; the phagocytic
capacity strengthens. Primary macrophages are un-reproductive cells. Under suitable
conditions, they survive for 2-3 weeks. Some cancerous mice provide the primary
reproductive macrophages, such as P338D1 S774A.1, RAW309Cr, but these cells cannot
develop in the cell lines. Currently reproductive macrophage line, such as RAW264.7, was
established from a tumor induced by Abelson murine leukemia virus. However, if we want
to use human macrophages as subjects, we can only obtain them through the differentiation

of human monocytes.
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There are two kinds human monocytes commonly used in related studies, THP-1 and U937.
In 1984, Sundstrom and Nilsson isolated U937 from the histiocytic lymphoma of a 37 years
old male patient. Previous studies showed that U937 was induced by human lymphocyte
culture supernatant, vitamin D3, PMA, to differentiate into human macrophages**’-2%’,
Before differentiation, U937 is a suspension cell. After differentiation, differentiated mature
macrophage-like u937 become adherent cell. The volume and intracellular granules are also

increased. Both LPS and CSEM induced differentiated mature macrophage-like u937 to

secrete TNF-a (Table1-4).
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Table 1-4 Summary of the Inflammatory related cell models of COPD

Inducer Cells IL-8 | Gro-a | MCP-1 | CX3C | CXCL10 | CCL5 | TNF-a | IL-1p | IL-6 | IL-10 | IL-12 | GM-CSF | INFy | TGF-1 | MMP-9
Macrophage | 12 1291 121 1292 129

LPS ARC ™ s
Neutrophils | 126
Monocyte T292 T127 T292 T292 T297
AEC 1207 1298 1299
Fibroblast 1300

CSEM
Macrophage | 13!
Neutrophils | 13

TNF-0. | AEC 126 1303 NI
Fibroblast 1304 1304 1304

IL-1p Monocyte e
AEC 1306

H:0: Neutrophils | 130

IL-17 Macrophage 1308

IFN-y AEC 1309

Cadmium | AEC 1310 1310
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1.2 Panax Ginseng

Ginseng, Panax ginseng C.A. Meyer, as a precious Chinese traditional medicinal herb, has
been known for two thousand years. It was first documented in the Shungiuyundou volum
of Weishu in 6 B.C. Shungiuyundou described ginseng as an herb only grow with the
God’s brilliance. In 200 A.D., another Chinese document, Guangya, defined ginseng as

essence of earth.

1.2.1 The King of Herbs-Ginseng

Ginseng was first documented as herb in Divine Husbandman’s Classic of the Materia
Medica and its medicinal efficacy was also briefly introduced. Thereafter, ginseng was
used in clinic. However, as people understood ginseng very little at that time, ginseng was
just used as common herb. Until 1590, another pharmacy works, Compendium of Materia
Medica, completely changed the clinical application status of ginseng. Subsequently,
ginseng was worshiped as god herb and widely used in clinic. Compendium of Materia
Medica was written by Shizhen Li in the Ming Dynasty. The book organised and
supplemented the herbs knowledge which was gradually accumulated before the Ming
Dynasty, and corrected the errors in them. The book was circulated in many countries after
written and been praised as “Encyclopaedia in 1596” by Darwin. In this book, Ginseng’s
medicinal efficacy was more comprehensively introduced than before. Ginseng was
described as a king of herbs which can cure various diseases, and can cure all the
deficiency syndrome of men and women recorded. This book was also used as later

clinical application guide of ginseng.

1.2.1.1 Ginseng and Deficiency Syndrome
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Deficiency syndrome (DS) is a concept of Traditional Chinese Medicine (TCM). Whatever
in TCM or modern medical science, DS plays a very crucial role. It promotes the process
of diseases occurrence, development. Improving the DS can directly reverse the
occurrence, development and even death of disease. Ginseng is such an herb which can be

used in the treatment of all kinds of DS.

It is well known that there are over thousands of herbs were found, and hundreds of them
were frequently used. These herbs were classified as different categories based on their
different therapeutic properties, e.g. medicines that used to relieve superficies syndrome,
or medicines used to strengthening body resistance. There are dozens of species of Chinese
Herbs belongs to supplementing and boosting medicines, such as ginseng, astragalus,
antler, rehmannia, polygonatum, etc. All these medicines have the effective supplementing
and boosting functions and all can be used in DS. But why only ginseng can be used for
both men and women to strengthen their deficiencies? Use the modern terminology, the
DS in TCM concept cover the following two areas, the first is the Sub-health state before
the onset of disease, and the other is the human body function decline in the process of
disease development. In TCM theory, whatever which state in above, the key of treatment
is tostrengthen and consolidate body resistance, and finally to get to the coordination of
Yin and Yang. This can be analogy to restore the balance of human body ecosystem.
However, the most important action of ginseng is to strengthen and consolidate body

resistance. In TCM, this is the theory base that ginseng can be used to treat all kinds of DS.

There is another meaning that ginseng can treat DS. In all of the herbs, only ginseng was
used as emergency medicine for saving the life which was threatened by severe deficiency
syndrome. Ginseng can be used in saving the life of critically ill patients resulted by

massive blood loss, severe vomit, diarrhea or chronic and serious illness. When only use

36



large numbers of concentrated decoction ginseng, ginseng can result in the strengthening
of vitality and resurrection. In ancient China, Chinese always treasured ginseng and used it
when family member near dying. Previous study showed that ginseng inhibited
cardiomyocyte hypertrophy and heart failure’!!. The pharmacology studies showed that
ginseng can be used to strengthen heart, boost blood pressure, regulates glucose

metabolism and water-electrolyte metabolism?®'2314,

1.2.1.2 Ginseng Can Treat Many Kinds of Disease

As ginseng’s special therapeutical effect on DS, which affects the occurrence and
development of the disease, Ginseng was appraised as the panacea by later Chinese
physicians. Ginseng was also used in the treatment of many kinds of modern diseases. The
studies about modern pharmacology show that ginseng has many pharmacological actions
such as anti-aging problems, anti-fatigue, antineoplastic, anti-inflammatory etc. !331%, As
a result, ginseng has been widely used as a regulator of human multi-system such as
nervous system, immune system, cardiovascular system, endocrine system, metabolic
system and the endocrine system®'?, and also has been used in the treatment of many
diseases conditions, such as cardiovascular diseases ,certain metabolic conditions, wound-

healing, respiratory diseases , chronic inflammatory diseases and cancers!82311:320-322,

In summary, ginseng, as the king of herbs, has very prominent position and strong effect
whatever in ancient China or in modern medical science. It has become the focus and hot
spots of today pharmacological study. The Pharmacological mechanism of ginseng is very
complex. Due to ginseng is the compound that composed by different active ingredients, in

addition, there is a variety of forms on pharmaceutical use of ginseng, the premise on the
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study of ginseng pharmacological mechanism is to research the main active component in

ginseng and its application form.

1.2.2 The Application Forms of Ginseng

There is a variety of application forms of ginseng, and all of these forms can be divided

into three categories: the active compounds of ginseng (gisenosides), the standardized

extracts of ginseng and the orally administered ginseng formulas.

1.2.2.1 Chemistry of Ginsenosides

The main bioactive compounds in ginseng are triterpenoid saponins called ginsenosides,
which can be classified into two groups, namely dammarane and oleanane (Ro) types,

according to the difference of glycoside-based architecture®?’

. Dammarane type includes
two sub-types: protopanaxadiols (PDGs) (eg, Rbl, Rb2, Rc, Rd and Rg3) and
protopanaxatriols (PTGs) (e.g. Rgl, Re and Rf) (Figurel) 2. More than 150 ginsenosides
have been identified so far*?*. The content of ginsenodies varies among different ginseng
species. For example, Panax ginseng C.A. Mey contains Rf which is not present in Panax
quinguefolium L, although the later contains 24- (R)-pseudoginsenoside F11, which has the
same molecular weight as Rf*?* . Other ginsenosides, Rb1, Rb2, Rc, Rd, Rg3, Re and Rgl
are present in both species*?®. The mostly studied ginsenosides include Rb1, Rb2, Rc, Rd,
Rg3, Re, Rf and Rgl3?*. It is important to point out that the actions of individual
ginsenosides in vivo may depend on their bio-transformation or metabolism (e.g.
hydrolysis) as it has been demonstrated that the bioavailability of ginsenosides is generally

poor due to a low absorption through the gastrointestinal tract*2®*?’. The major metabolites

of PDGs are compound K (CK) and Rh2. The major metabolite of PTGs is Rh13?’.
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Dammarane type

Protopanaxadiol Class Protopanaxatiol Class

R! R? R! R?
20(S)-Protopanaxadriol H H 20(S)-Protopanaxatriol H H
Ginsenoside Rb1 gle(2—1)glc  gle(6—1)glc Ginsenoside Re gle(2—1)rha gle

Ginsenoside Rb2 gle(2—1)glc  gle(6—1)glc p Ginsenoside Rf gle(2—1)glc H
Ginsenoside Rc gle(2—1)glc  gle(6—1)glc f Ginsenoside Rgl  glc glc
Ginsenoside Rd gle(2—1)glc glc

Ginsenoside Rg3 gle(2—1)glc

Metabolites
CK H H Rh1 gle H
Rh2 gle H

glc= B-D-glucose
rha=o-L-rhamnose
ara=a-L-arabinose
p=pyranose

f=furanose
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Oleanane types(Ro)

Figure 1-1 Structures of ginsenosides

1.2.2.2 Standardized Extracts of Herbs

Standardized Extracts of herbs (SEH) are referred to the extraction that satisfied certain
quality level through standardized production procedures. They are deep processing
products of herbs. SEH are widely used in China and other countries. In United States, the
herb extracts are weighted as 95% in herb market, comparing with the raw materials and
other product market shares that are less than 5%. In Germany, the herb extracts held 10%
market shares in national medicine market. In China, as the major herb extracts exporter,
supplies various herb extracts including Ginkgo Biloba, Hypericum Perforatum Linn,
Acanthopanax, Angelica, Ginseng, etc. All herb extracts must comply with Chinese Herbal
Medicine Production Quality Management Standards (GAP) and Pharmaceutical
Production Quality Management Standard (GMP). At the same time, they should satisfy
advanced technology and quality inspection standards, and use technology and equipment
such as Macroporous Resin Separation Technology (MRS), High Performance Liquid
Chromatography (HPLC, HPTLC), Gas Chromatography (GC), Gas Chromatography -
Mass Spectrometry (GCMS), High Pressure Liquid Chromatography - Mass Spectrometry

HPLC-MS) .
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In China, the herb extracts have got some levels of scale of production. The enterprises
specialized in producing herb extracts are over 200. However, due to the difference of
purification technology and origin of herb planted, even the same herb extracts but with
the different brand, the contents of active ingredient still have some difference, which
results the pharmacology mechanism of these herb extracts has some slightly difference.
The above reasons determined we need compose prescription from different brands of

herbs extracts according to different requirement.

1.2.2.2.1 Standardized Extracts of Ginseng

Ginseng comprises a variety of active compounds. The pharmacological actions of ginseng
were also determined by these compounds. Many factors can result in the change of the
contents of these compounds in ginseng, such as different origin or harvest time of
ginseng. Accompanied by the inevitably change of the content of these active compounds,
the pharmacological actions of ginseng will also alter. In order to fix pharmacological
actions of ginseng, we use ginseng standardized extracts to keep the content ratio of the

different active compounds at a fixed range.

As we all know, different active compound of ginseng correspond to the specific
pharmacological action. For example, polysaccharides of ginseng have the anti-tumour
property, but ginsenosides have anti-inflammation property>?%3?°. It means that we should
choose a suitable preparation method to extract ginseng according to medicinal purposes.
Actually, there are mainly two types of extracts of ginseng in clinical. One is a ginseng
polysaccharides extracts, using ginseng as representation!® another is ginsenosides extract,

using G115 as representation®23,
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G115 is a commercially available standardized ginseng extracts (Pharmaton SA,
Switzerland). The total amount of ginsenosides in G115 is adjusted to 4% (w/w). Previous
studies on G115 using high-performance liquid chromatography (HPLC) demonstrated
that Rbl, Rb2, Rc, Rd, Re, Rgl and Rg2 are the main ginsenosides which compose of
G115°%*, To compare with other commercial extracts of Ginseng, G115 has higher Rgl
than others®*. In the early application in clinical, G115 was always used for anti-aging
purpose and previous studies show G115 improved the memory**!-3%, Later, G115 was
used in the treatment of Parkinson's disease, and study showed G115 prevented various
forms of neuronal cell loss including the nigrostriatal degeneration seen in Parkinson's
disease’**. G115 has anti- inflammatory properties®®>. As we all know, G115 is a
ginsenosides-extract from Ginseng, so G115 reflect anti-inflammatory characteristic of

ginsenosides.

1.2.2.2.2 The Orally Administered Ginseng Formulas

Orally administered herbal formula is the traditional administration method in Chinese
medicine. To avoid variability of contents of active compounds of herbs among
preparations of formulas, many researchers used commercial standardized extracts to

replace raw herbs to compose the formula.

1.2.2.3 Ginseng Formula

From ancient time to current, ginseng is widely used as a main component in the formula
of TCM. In TCM masterpiece, Treatise on Cold Pathogenic and Miscellaneous Diseases,
there are 17 prescriptions include ginseng in all 112 prescriptions recorded. Treatise on
Cold Pathogenic was written by Zhongjing Zhang in the Eastern Han Dynasty of China,

who was regarded as the saint of Chinese Medicine. The book is a masterpiece that
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discussed the treatment of various diseases, and was regarded as ancestor of Chinese

prescriptions.

Some well known prescriptions using ginseng as main components including (1)Pure
Ginseng Decoction (Books about Cold Pathogenic) (2) Ginseng, Aconite Decoction
(Annotation of Women Fang) (3) Ginseng, Aconite, Dragon Bone, and Oyster Shell
Decoction ( Ye ShiFang) (4) Ginseng-Ant Powder ( Ji Sheng Fang) (5) Ginseng, Poria,
and White Atractylodes & Powder (Ju Fang) (6) Ginseng Root-Securing Pill (Ye Shi Fang)
(7) Shengmai Powder (Differentiating Internal and External Source of Sickness). In
modern time, some physicians composed many prescriptions based on ancient
prescriptions and experience of themselves, such as Supplemented Ginseng Astragalus
Decoction that used to treat myasthenia gravis, Ginseng, Curnu Cervi Pantotrichum and
Qi Grass used to treat cancer, Cinnamon and Ginseng Decoction used to treat chronic

gastritis.

1.2.3 Ginseng and COPD

There is a long history of ginseng to be used in the treatment of COPD in China. Seven
hundred years before, there is a famous Chinese medicine work in China, named
JishengFang. In this book, ginseng and ant composed of Shenyi Formula was used to treat
the chronic cough, shortness of breath, rapid breathing, wheezing after exercise or activity
and low voice. Although there was no name of emphysema was shown in the work, all of

these symptoms match the performance of emphysema which is among a group of COPD.

Recently, ginseng becomes a hot-point herb which is widely used in the treatment of
various diseases, including COPD. G115 is a commercial standard extract of ginseng.

Studies showed G115 improved PFTs, MVV, MIP and VOzmax in patients with

43



moderately-severe COPD'®?. Oral administration ginseng formula also improved the FEV1

and SGRQ in stable COPD patients*®,

Ginseng-Huanggi-Maidong Formula(GHMEF) is one of the effective formula of COPD. It
is provided by Guangdong Provincial Hospital and is composed by ginseng, Huangqi and
Maidong. This formula is formed according to the clinical experiences from many famous
Chinese medicinal doctors and has been used in the treatment of COPD for a long time. In
order to improve the efficacy and standardize the quality control of GHMF, Guangdong
Provincial Hospital provided four forms of GHMF for the secondary development. Among
these forms, there are two forms which are composed by commercial extracts of Ginseng,
Huangqi and Maidong from Guangdong and Jiangsu. We named them as GHMF-I
(Guangdong) and GHMF-II (Jiangsu). The other two forms are directly extracted from raw
herbs using different method. The difference between them is whether or not to contain
polysaccharide in the final products. So we named them GHMF-III (excluding the

polysaccharide) and GHMF-IV (including the polysaccharide).

Although ginseng (G115) and GHMF have a significant efficacy on COPD, the
pharmacological mechanism of them is still uncertain. We are very interesting in the effect
of G115, GHMF and ginsenosides on the inflammatory response, especially on the

production of TNF-a and the activity of NF-xB pathway.

1.2.4 Effects of Ginseng /Ginsenosides on NF-«xB Signalling Pathway

There is strong evidence that ginseng/ginsenosides can modulate multiple signalling
components in NF-kB pathway, including NF-«xB activation and related DNA binding and
transcriptional activity, as well as the upstream regulating factors of NF-kB. The summary

of multiple actions of ginsenosides is illustrated in Fig.1. In general, activation of NF-kB
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leads to increase in its DNA binding activity and transcriptional activity, while inhibition
of NF-xB activation leads to decrease in its DNA binding activity and transcriptional
activity. The actions of ginseng and ginsenosides on NF-kB activation may explain their
actions subsequent DNA binding and transcriptional activities. Thus detailed analysis is

needed if identifying a direct action of ginseng or ginsenosides on particular components.

oo % oo
: ) ..0. Receptor °
— T~
TAK1 Akt

IKBQ ,

Transcription

mRNA of TNF-O

Figure 1-2 Cell signalling targets by ginsenosides on NF-kB signalling and related
pathways.

Inactive NF-«kB is located in the cytosol in a complex with the inhibitory protein [-kBa. A
variety of extracellular stress-related signals can initiate phosphorylation of PI3K/Akt,
IRAKI1/TAK1/ERK1/2 to activate I-xB kinase (IKK). Activated IKK phosphorylates [kBa,
which results in the dissociation of IkBo from NF-kB. Phosphorylated NF-«xB is
translocated into the nucleus and bind with specific sequences of DNA. The DNA/NF-xB

complex then recruits CBP for co-activation, and then transcribes the mRNA expression of
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TNF-a. cAMP degraded by phosphodiesterases (PDEs) works by activating protein kinase
A (PKA). PKA can activate a cAMP response element-binding (CREB). Phosphorylated
CREB can competitively bind with CBP to inhibit the transcriptional activity of NF-«xB.
Activated IRAK1/TAKI1 also phosphorylates p38 MAPK pathway to up-regulate the

transcriptional activity of NF-kB.

1.2.4.1 Regulation on NF-kB Activation

The key signalling components in regulating NF-kB activation include NF-«B, IKK, IkBa
and phosphorylated products of them*’. In different conditions, ginseng and ginsenosides
displayed different regulation on the expression of these proteins. Under stressed
conditions (e.g. treated with inducers such as LPS, H2O2, PMACI, TNBS, TNF-a and
Streptozotocin), a number of ginseng, ginsenosides and their metabolites have been
demonstrated to inhibit the expression of NF-kB, p65&p-p65, IKKa&p-IKKa and p-IkBa
(Tablel). In the basic condition (without any inducers), the transgenic ginseng (TG) and
ginsenoside Rg3 showed the up-regulation on the expression of p-IkBa, and TG also up-
regulated the expression of p-p65 in LLC-1cells**#3¥(Tablel). We collected the studies
which involved in the inhibitions of more than one ginsenoside/its metabolite on these
protein expressions, and tried to compare the distinction between them. We found all the
papers just qualitatively determined the inhibition of ginsenoside and/or its metabolit on
these protein expressions, but didn’t do any quantitatively comparison between

184,340,341

them . Thus, the methodological perfection is necessary for the studies about

ginseng and ginsenosides of the regulation on these protein expressions.
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Table 1-5 Actions of ginseng and ginsenosides on protein expression related with

activation of NF-xB

Protein Test Agent Source Treatment Effects
Rb2 N9 microglial cells LPS 113
NF-<B Rd N9 m%crogl%al cells LPS 113
Rgl N9 microglial cells LPS 118
pheochromocytoma PC12 cells H>02 1**
P-65 GSE HMC-1 cell PMACI 13
Rb1 colon tissue TNBS 1340
mouse peritoneal macrophages LPS 1340
PP6S cK colon tissue TNBS 1340
mouse peritoneal macrophages LPS 1340
Rgl pheochromocytoma PC12 cells H20: 1*
GSE LLC-Icells -- 1338
IKKa Re 3T3-L1 adipocytes cells TNF-a 13
CK human astroglial cells TNF-a l341
1937 LPS 13
p-IKKa Rh2 human astroglial cells TNF-o (Rad
u937 LPS [Rat
Re 3T3-L1 cells TNF-a 134
IKBa Rg3 Raw264.7 cells -- 13
Rbl mouse peritoneal macrophages LPS 1340
Rb2 N9 microglial cells LPS L84
Rd N9 microglial cells LPS 118
Rg3 Raw264.7 cells -- 1339
mouse peritoneal macrophages LPS 1340
p-IKBa CK human astroglial cells TNF-a et
u937 LPS [Rak
human astroglial cells TNF-a (Rat
Rh2 341
w937 LPS |
Rgl N9 microglial cells LPS 118
TGS LLC-Icells -- 1338
FG Rat pancreas , in vivo Streptozotocin | |*%

LPS=Lipopolysaccharide; PMA+PMACI=12-myristate 13-acetate plus calcium ionophore;

GSE= Ginseng extract; TGS=Transgenic ginseng; TNBS=2,4,6-trinitrobenzene sulfuric

acid; LLC-1= Lewis lung carcinoma cells; FG=Fermented ginseng; STZ= Streptozotocin.
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1.2.4.2 Regulation on NF-kB DNA Binding Activity

Many studies showed that ginseng and ginsenosides inhibited the NF-kB DNA binding
activity in vitro and in vivo. All of the GSE, red ginseng extract (RGE), FG and
ginsenosides including Rb1, Rc, Re, Rgl, Rg3 and the metabolite of Rgl (Rh1) inhibited
the NF-kB DNA binding activity>*-**. Ginsenoside Rg3 used as a popular inhibitor of
DNA binding of NF-kB activity was widely applied in many kinds of inflammatory cell
models, such as TPA induced human breast epitelial cells (MCF-10A), docetaxel treated
colon cancer cells and AP42 treated BV-2 cells**®3%35! Tt also inhibited the NF-kB DNA
binding activity in vivo®¥’. In addition, ginsenoside Rgl seemed also displayed the more
powerful inhibition on the DNA binding of NF-kB activity than other ginsenosides (Rb2,

Rc, Re and Rgl1)*¥,

1.2.4.3 Regulation on NF-kB Transcriptional Activity

RGE, GTS and the PTG type ginsenoside Rgl and its metabolite Rhl significantly
inhibited the transcriptional activity of NF-kB373%352 Jung et al. showed Rhl just
inhibited the transcriptional activity of NF-kB, but not the DNA binding activity of NF-xB
in LPS induced BV-2 cells**2. It meant that Rh1 inhibited the transcriptional activity of

NF-«B through other way, but not NF-kB pathway.

Transcriptional activity of NF-kB, as representing terminal-response activity of NF-kB
pathway, can be regulated by different pathway. It has been known that activation of cyclic
adenosine monophosphatec (AMP)-dependent pathway can inhibit the activity of NF-xB
pathway. One of the important cross links of cAMP and NF-xB pathways is
phorsphorylated cAMP response element-binding (p-CREB), which is an activated

transcriptional factor of cAMP-dependent pathway and can competitively bind to activated
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NF-kB, and then inhibit the transcriptional activity of NF-kB?7>?%°, P38 mitogen-activated
protein kinases(p38 MAPK) pathway also involves in the regulation of transcriptional
activity of NF-xB. Study showed that blocking p38 activity attenuated the transcriptional
activity of NF-xB without altering its DNA-binding activity?®*. Ginseng and ginsenosides
can also regulate the activity of both two pathways, so maybe they regulate the
transcriptional activity of NF-kB through many pathways or specific pathway. However,
to summarize the regulation of ginseng and ginsenosides on these pathways maybe help us

to find out how to inhibit the transcriptional activity of NF-kB by Rhl.

1.2.4.4 Interaction with cAMP-dependent Pathway

Ginseng/ginsenosides can activate cAMP-dependent pathway, and ginsenoside Rgl and
Rb1 plays a crucial role in the regulation of ginseng on cAMP depend pathway. Both Rgl
and Rbl increased the level of intracellular cAMP, and then increased the activity of
PKA3%3, Rgl increased the level of cAMP in hippocampus of both young and old rats, and
Rb1 also increased the level of cAMP in rat liver compared with that in controls®>,
However, in the study of Jeong, ginseng total saponin (GTS) inhibited cAMP levels and
protein expression of PKA in the tissue of locus coeruleus from morphin injected ICR
mice**. It is possible that the regulation of cAMP by gisenosides depends on the nature of

individual ginsenosides. As in this study, the content of Rgl in GTS was very lower, only

6.42%%°. The effect of Rgl on cAMP maybe was eliminated by other potent ginsenosides.

It is likely that the effects of ginseng and its related product on cAMP may involve
phosphodiesterases (PDEs), the key enzyme in cAMP degradation. An early study
demonstrated that Rgl inhibited the activity of cAMP-specific PDE in frontal cortex

striatum, hypothalamus and hippocampus of young and aged rats, and Rg3 concentration-
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dependently inhibited PDE resulting in increase of cAMP, as well as cyclic guanosine

monophosphate (¢cGMP) contents in corporal smooth muscles®®.

Summary of existing evidences, we inferred that Rhl inhibited the transcriptional activity
of NF-kb through cAMP pathway, as the inhibited transcriptional activity by Rhl

accompanied with the increased p-CREB expression®2.

There are some conflicting
evidences about the regulation of Rh1 on the activity. Jung et al. showed Rhl just inhibited
the transcriptional activity of NF-kB, but not the DNA binding activity of NF-xB in LPS
induced BV-2 cells *>2. However, Jung, J. S et al. demonstrated Rh1 significantly inhibited
the DNA binding activity of NF-kB in IFN-y-stimulated BV2 microglial cells. Is Rhl
using p-CREB as a specific signalling component to modulate the transcription activity of

NF-kB or p-CREB just a cofactor for Rh1 to modulate the transcription activity of NF-kB

with NF-kB pathway? We need more experiment data to answer this question.

Many conclusive evidences showed that PTG type gisenoside Rgl inhibited the
transcriptional activity of NF-kB not only through down-regulating the up-steam activity
of NF-«B pathway, but also down-regulating the activity of cAMP pathway>*"-*>3. Thus, as
a more powerful inhibitor of NF- kB pathway, ginsenoside Rgl can be more widely used

in the related study.

1.2.4.5 Interaction with p38 MAPK Pathway

PDG type ginsenosides seems to play a key role in the inhibition of ginseng on the activity
of p38 MAPK pathway. Studies demonstrated that PDG type ginsenoside Rb1, Rb2, Rg3
and CK, but not Rc or Rd, significantly inhibited the expression of p-p38349-357:358,
Although many studies proved that ginsenoside Rb1, Rb2, Rg3 and CK down-regulated

the activity of up-stream phosphorylation response and/or DNA binding activity of NF-
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kB340:184. 339, 341397 “there are still lack of the direct evidence that ginsenoside Rbl, Rb2,
Rg3 and CK inhibited the transcriptional activity of NF-kB through down-regulating the
up-stream activity of NF-kB and the activity of p38 MAPK pathway. In addition,
ginsenoside Rb1 displayed the inhibition on the up-stream activity of NF-kB and activity
of p38 MAPK pathway and the up-regulation on the cAMP pathway>** ¢, It may be the
more powerful inhibitor on the activity of NF-kB pathway than Rgl, however, this

hypothesis need more experimental results to verify.

1.2.4.6 Regulation on Upstream Pathway

It is possible that ginseng and ginsenosides may act on the upstream regulating factors of
NF-kB pathway to modulate its activity, in particular TAK1/ extracellular signal-regulated
kinasel/2( ERK1/2) and phosphoinositide 3-kinase( PI3K)/Akt pathways (Figure 2). As
we all know, TAK1 can activate ERK1/2 pathway, and ERK1was used to activate IKK in
NF-kB pathway?*!?%2, Ginsenoside Rg1l and its metabolit (CK) have been shown to inhibit
the p-IkB through inhibiting phorsphorylation of IRAK-1(p-IRAK1) which is known to
activate TAK1, and this decreased expression of p-IRAK1 by Rbl and CK accompanied
with the down-regulation on the expression of phorsphorylated ERK1/2 (p-ERK1/2)*%.
There is a bidirectional regulation of ginseng and ginsenosides on the activity of ERK1/2
pathway. Under stress conditions, FG, GSE, TGS, Rbl, CK and Rglsignificantly inhibited
the expression of p-ERK1/2340:343.345359-361 "except one study showing no effect of Re on
ERK /2 expression in TNF-a induced 3T3-L1 adipocytes*** (Table3). On the other hand,
under basal conditions, RG, Rgl and CK were shown to enhance the expression of p-
ERK /2 under***36* Choi compared the effects of the traditional GSE and novel TGS on

the expression of P-ERK1/2 in human mast cell line cells, and found that EGS had more

significant inhibition than GSE**%,
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Table 1-6 Actions of Ginseng/Ginsenosides on the Expression of p-ERK1/2

Test agent Source Treatment Effect
Rbl mouse peritoneal macrophages LPS 1*
CK human astroglioma cells PMA 1360

mouse peritoneal macrophages LPS 1*

mouse skin, in vivo PMA 1%

MDA-MB-231 cells - 1362

Re 3T3-L1 adipocytes TNF-a -3

Rel human breast cancer cells - 1363
rat basophilic leukemia-2H3 cells SPEIS)EP- 13

FG pancreas tissue of Sprague Dawley rat STZ 1%

RINmSF cells STZ 13

RG HUVECs -- 1364
GSE human mast cell line PMA+PMACI 13
TGS human mast cell line PMA+PMACI 13

SP+DNP-BSA=Substance P+dinitrophenyl-bovine serum albumin; HUVECs= human

umbilical vein endothelial cells.

Many studies have demonstrated that ginseng/ginsenosides may act on PI3K/Akt pathway.
Zhou et al. found GSE significantly reduced infarct size in a dose-dependent manner, and
this effect of GSE on infract was abolished by LY294002 (an inhibitor of PI3K) and Akt

)6, The difference in actions of

inhibitor IV (an inhibitor of Akt protein kinase
ginsenosides on PI3K/Akt pathway has been reported. In mouse model of ischemia-
reperfusion (I-R) injury, GSE, TGS, Rb1 and CK protected the myocardiumin in I-R injury
through increasing the expression of phorsphorylated-PI3K (p-PI3K)*¢77°. Ginsenoside
Rd, also increased the expressions of p-PI3K in the study of anti-apoptotic®’!. In addition,
ginsenoside Rbl rapidly increased the expression of p-Akt in human aortic endothelial

372

cells”’“, and ginsengoside Rg3 elevated the enzyme activities of PI3-kinase in ECV 304

373

human endothelial cells’’”. However, similar with the regulation on NF-«kB activation, in

the inflammatory condition, ginsenoside Rb1 significantly inhibited the phosphorylation of
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AKT induced by high glucose®’; CK, the metabolite of Rbl, also prevented the
phosphorylation of Akt in basic fibroblast growth factor (bFGF) treated human umbilical

vein endothelial cells (HUVECs)*®,

1.2.4.7 Actions of Ginseng/Ginsenosides on TNF-a Production

Most of the studies showed the down-regulation of ginseng and ginsenosides on the
expression and /or lease of TNF-o (Table5). Only one paper reported that ginseng
extracted by saline increase the protein level of TNF-a in anti-CD3 and the outer
membrane protein of P. aeruginosa (OMP)/ Concanavalin A (ConA) treated the primary
lung cells from CBA/J mice*™. In this paper, Song et al. established a T helper type 2
(Th2)-like response cell model through being treated by monoclonal hamster anti-mouse
CD3 without sodium azide (anti-CD3), and then stimulated by OMP/ConA to release
TNF-o. The extract of ginseng collaborating with OMP and ConA promoted a Thl-like
response to up-regulate the release of TNF-a and IFN-y. However, in Th1-like response to
cell model, ginseng demonstrated the significant down-regulation on the release of TNF-a.
As we all know, that activated macrophages induced a strong polarized Thl-like T cell
response’”>. The extract of red RG significantly reduced the expression of TNF-a in LPS
induced monocyte-derived macrophage THP-1 cells*’®. Thus, there should be a
bidirectional regulation of ginseng on the release of TNF-a in different type of cell model.
In addition, different extraction methods may be another possible factor which influences

the effect of ginseng extracts on the release of TNF-a.

Ginseng extracted by saline up-regulated the production of TNF-a, but RG extracted by
water down-regulated it. Previous study provided a similar result that the aqueous and

alcoholic extracts of ginseng have opposite regulation on the release of TNF-a. In this
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paper, aqueous extract of ginseng , but not alcoholic extract of ginseng up-regulated the
release of TNF-0*"’. We couldn’t confirm whether different extract methods were the
reason leading to opposite regulation of the ginseng extracts on TNF-a, as there are no -
results of HPLC in these studies. It is just an assumption and need more experimental data

to prove it.

All of the studies involved in ginsenosides showed the significant inhibition on the
production of TNF-a (Table5). There seemed to be no difference of the regulation on the
production of TNF-o between PDGs and PTGs!®*. Wu showed both PDGs (Rb2& Rd) and
PTGs (Rgl& Re) inhibited the protein level of TNF-a in LPS induced N9 microglial
cells'. Although Rgl showed stronger inhibition compared with other ginsenosides,

another PTG (Re) showed the similar inhibition with PDGs.

There are two aspects affect the widespread use of ginseng, low absorption rate and
complex actions (sometime opposing or contradictory). Many studies focused on finding
novel ginseng extracts to increase absorption rate and/or be beneficial to biological
activity. Different ginseng extracts, such as fermented ginseng (FG)**°and transgenic

)378

ginseng(TG)’’® have been used in the studies, and they showed significant inhibition on

TNF-a

Table 1-7 Actions of ginseng and ginsenosides on the TNF-a expression

Products cell/tissue Treatment Effects
FG RINmSF insulinoma cells streptozotocin 12
RG pancrease tissue, in Vivo diethyldithiocarbamate 1437

THP-1 cells LPS 1
TG HMC-1 cells PMA&PMACI* et
Ginseng lung cells of CBA/J mice anti-CD3,0PM&ConA 374
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PBMC&FLS cells IFN-y, LPS or IL-1 17380

Rbl1 Raw264.7& U937 cells LPS 1P¥
HaCaT cells Capsaicin 1%

Rb2 N9 microglial cells LPS [
Raw264.7& U937 cells LPS 178

Rc Raw264.7& U937 cells LPS 178

Rd N9 microglial cells LPS L8

Rgl N9 microglial cells LPS 18
R murine BV2 microglial cells B-amyloid 1A%t
ears tissue, in vivo Oxazolone 138

Re N9 microglial cells LPS ik

Rf ears tissue, in Vivo Oxazolone 1738

Rh2 ears tissue, in vivo Oxazolone 1738
murine BV2 microglial cells LPS/IFN-y 14384

*: gene expression
A: protein expression

#: protein level

1.2.5 Yin and Yang Actions of Ginseng and Ginsenosides

“Yin” and “Yang” are two important ancient philosophical concepts in China. “Yin” covers
a variety of inhibition and down-regulating response, and “Yang” covers a variety of
promotion and up-regulating response. It has been reported previously that ginseng has a
complex action on modulation of cell functions with both “Yin” and “Yang” aspects. For
example, it has been shown that Rgl stimulates angiogenesis, whereas Rbl exerts an
opposing effect, and mechanistic studies revealed that such responses were mediated
through the PI3K/Akt pathway>*® . In this review, ginseng and ginsenosides also displayed
the “Yin” and “Yang” actions on the activity of NF-kb pathway and the production of
TNF-a. We found different conditions may be the main reason resulting in these opposite
actions. In non-inflammatory condition, such as cancer cell models, immune cell models
and normal cells, ginseng and ginsenosides display up-regulation (Yang action) on the

activity of NF-xB pathway and the production of TNF-a, but in inflammatory model
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ginseng and ginsenosides demonstrate significant down-regulation(Yin action). In
addition, opposite regulation of individual ginsenosides maybe also play a role in it, as
different extract method also result in the opposite action of ginseng in the same

inflammatory cell model*”’.

In conclusion, ginseng and ginsenosides have multiple actions on NF-«kB signalling
pathway and TNF-a production, including modulation of NF-«B activation and related
DNA binding and transcriptional activities, upstream regulating pathways such as
TAKI1/ERK1/2 and PI3K/ Akt, as well as other potential mechanisms through P38 MARK
and cAMP pathways. The difference in actions of individual ginsenosides may be involved
in diverse pharmacological activities of ginseng. Given TNF-o and certain NF-xB
signalling components are defined or potential drug targets, further studies on the actions
of ginsenosides on TNF-a and NF-kB pathways may facilitate the development of novel
agents to target the relevant mechanisms for potential therapeutic application for treating

chronic inflammatory diseases.

1.3 Objectives of my Ph.D Thesis

In this project, we hypothesized that ginsenosides, G115 and GHMFs may target TNF-a

and NF-«B signalling pathway. To test our hypothesis, we have:

a) Finished the review: Regulations of cellular NF-kB pathway by ginseng and

ginsenosides

b) Finished the review: Inflammatory cells, mediators and singling pathways in COPD

¢) Set up inflammatory models in vitro.
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d) Investigated the effect of ginseng and ginsenosides on cytokines production induced by

LPS.

e) Investigate the effect of ginseng and ginsenosides on NF-kB pathway induced by LPS

f) Investigate the effect of ginseng and ginsenosides on cAMP pathway induced by LPS

In addition, we also put forward hypothesis that TNF-o inhibitors used in the
conjunction in the MTX provide a better efficacy against the progression of JD in
patients with active RA comparing with MTX used alone; the degree of the disease
activity of RA is important factor for the efficacy of TNF-o inhibitors on the
progression of DJ in active RA patients. To test our hypothesis, we have used Meta

analysis to -

g) Compare the effect of TNF-a inhibitors used alone and combined with MTX on the RP

of active RA patient.

h) Investigate the correlation between the degree of activity of RA and the efficacy of

TNF-a inhibitors on RP in active RA patients

i) compare the effect of different type of TNF-o inhibitors on RP in active RA patients
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Chapter 2. Establishment of Inflammatory Cell Models Related to COPD

2.1 Introduction

The main pathology of COPD is persistent inflammation in the airway and lungs (see
Sectionl.1.1). In order to understand the actions of ginseng and its cellular mechanisms on
COPD, it is important to study the effects of ginseng on inflammatory mechanisms using

an appropriate cell model.

LPS and CSE are commonly used in studies on inflammatory mechanism of COPD and
macrophages are the common cell type to study various inflammatory mediators®%63%7. As
there are no commercially available human macrophage cell lines, researchers use PMA
induced U937 cells differentiation to macrophage-like U937 cells in related studies (see
Sectionl.1.5.2.4). Previous studies have shown that LPS and CSE can stimulate
macrophages to release TNF-a, IL-1p, IL-6 and other cytokines through the activation of
the NF-kB pathway?*!3836 1PS can also elevate the production of cAMP to activate the
cAMP pathway®®. Thus, aim of this part of my project was to establish the inflammatory
cell models using LPS and CSE induced macrophage-like U937 cells. The focus was on

the cytokine, in particular TNF-o production and the changes of NF-kB and cAMP

pathways.

2.2 Materials and Method

2.2.1 Materials

Phorbol 12-myristate 13-acetate (PMA), Lipopolysaccharide (LPS), Bayl1-7082,

Forskolin, H89, Cilostamide (PDE3 inhibitor), Rolipram (PDE4 inhibitor), Sildenafil
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citrate salt (PDES inhibitor) and Penicillin-Streptomycin were purchased from Sigma

(Aldrich PTY LTD, Australia).

RPMI1640, heat-inactivated fatal bovine serum, Opti-MEM® Reduced Serum Medium
and MEM Non-Essential Amino Acids Solution were purchased from Gibco (Invitrogen
Australia Pty Limited, Australia). The ELISA Kits of TNF-a, IL-1p and IL-6 were from
GE (GE Healthcare Australia Pty. Ltd, Australia). Cyclic AMP EIA Kit was purchased
from Cayman (Sapphire Bioscience Pty. Ltd, Australia). Phospho-IKKa/B (Ser176/180)
antibody, IKK antibody, Phospho-NF-kBp65 (Ser536) antibody, NF-kB p65 antibody,
Phospho-CREB (Ser133) antibody, CREB (48M2) antibody, Phospho-IkBa antibody and
IkBa antibody were purchased from Cell Signalling (Genesearch PTY. Ltd.). NE-PER
nuclear & cytoplasmic extraction kit was obtained from Thermo Fisher (Thermo Fisher
Scientific Australia Pty Ltd). Dual-Glo® Luciferase Assay System and with reporter lysis
buffer was purchased from Promega (Promega Australia). Attractene Transfection Reagent

and Signal NF-kB Reporter (luc) Kit was purchased from QIAGEN (QIAGEN Pty. Ltd.).

2.2.2 Method

2.2.2.1 Cell Culture

U937 cells were obtained from the lab of Bernard O’Brien (Bernard O’Brien Institute of
Microsurgery, The University of Melbourne, Victoria, Australia) and cultured in
RPMI1640 medium supplemented with 100 units/ml penicillin, 100 pg/ml streptomycin
and 10% heat-inactivated fetal bovine serum at 37°C and 5% CO: in humidified air and

harvested at the log phase of growth.
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To differentiate suspension U937 cells into adherent macrophages, cells (10°cells/ml) were
incubated in petri dish (24x10°cells/dish) for 24 hours in the presence of 10 ng/ml PMA.
The differentiated cells were made quiescent in fresh completed RPMI without PMA for
48 hours and during which the culture medium was replaced daily. U937 macrophages

were obtained as slightly modified method described previously¥%-2,

2.2.2.2 Preparation of Cigarette Smoke-treated Cell Culture Medium

CSE was obtained from four cigarettes (Marlboro Red, 12 mg tar, 0.9 mg nicotine each).
Briefly, smoke from combustion cigarettes was bubbled through 50 ml of culture medium
and the burning time of each whole cigarette is 3 minutes. In order to avoid the difference
among different cigarettes, the absorbance of this CSE was adjusted to 1.0 (optical density,
OD) at 320 nm, which was used as the stock CSE (defined as 100 %)***. For cell
experiments, the stock CSE was diluted with the cell culture medium at 5-fold dilution

(20%).

2.2.2.3 Cytokines Assay

Macrophage-like U937 cells were detached with trypsin, washed, resuspended in medium
at 10°cells/ml and incubated in 96-well plates (10°cells/well). After 24 hours, treated with
LPS (1pg/ml) for 6 hour or added 5—fold dilution of raw CSEM for 18 hours; or treated
with LPS (1pg/ml) in absence or presence of Bayl1-7082, Forskolin, H89, Cilostamide,
Rolipram or Silderafil for 6 hours. The supernatant of the test samples was collected and
stored at -80°C to determine TNF-a, IL-1B and IL-6.The concentrations of TNF-a, IL-1
and IL-6 in the culture supernatants were determined by human enzyme-linked

immunosorbent assay (ELISA) kit, according to the manufacturer’s protocol.
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2.2.2.4 cAMP Assay

Macrophage-like U937 cells were cultured in 24-well cell culture plates at a concentration
of 1x10° cells/well. After 24 hours, cells were treated with 1ug/ml LPS in the absence or
presence. After 6 hours, the cell culture medium was aspirated. The cells were placed on
the ice and washed by cold PBS for three times. Adding 0.25ml lysis buffer (0.1 M HCI) in
each well. After 10 minutes, the total cell lysates were centrifuged at 6000g for 10 minutes.
The supernatants were assayed directly using the cAMP EIA kit from Cayman Chemical

according to the manufacturer’s instruction (Sapphire Bioscience Pty. Ltd, Australia).

2.2.2.5 Western Blot

Macrophage-like U937 cells were detached with trypsin, washed, resuspended in the
medium at 10%ells/ml and incubated in 6-well plates (2.5x10° cells/ well) for 24 hours.
Cells were treated with LPS (1pg/ml) for 5, 15, 30 or 60 minutes. Samples were washed by
cold PBS and put on ice for protein collection. The cells were lysed using RIPA buffer and
plus protease and phosphatase inhibitors on the day of use to obtain total protein
(Appendix1). The lysate was immediately scraped, collected into microcentrifuge tubes
and vortexed for 15 seconds. The samples were extracted by high-speed centrifugation at
14000Xg for 15 minutes to precipitate the insoluble materials. The nuclear and
cytoplasmic protein were lysed and separated by NE-PER nuclear & cytoplasmic
extraction kit (Thermo Fisher Scientific Asutralia Pty Ltd) according to manufacturer’s
instructions. Protein was quantified using Bradford Protein concentration assay (Appendix
2). The total protein was adjusted at 1.5pg/ul. The nuclear and cytoplasmic protein was

adjusted at 1pg/pl.
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Protein levels were measured by Western blot analysis. Protein samples were loaded in
wells of SDS-polyacrylamide gel (10%acrylamide, Appendix 3) for electrophoresis at 90V
for 30 minutes and then increased the voltage to 150v for another 60 minutes in running
buffer (Appendix 4). The separated gel was transferred to PVDF by electrophoresis at 100
V for 120 minutes in transferring buffer (Appendix 4). The membranes were washed once
by TBS-T (Appendix 4) and then blocked for 1 hour in TBS-T containing 1% (wt/vol)
bovine serum albumin (BSA). After washing the membranes with TBS-T 6 times, the
membranes were incubated with primary antibody of target protein overnight at 4°C.
Polyclonal antibodies were diluted in different concentrations in TBS-T containing 3%
(wt/vol) BSA before incubation. The concentrations of these antibodies were 1:2000
(Phospho-IKKa/f), 1:600 (Phospho-Ika, NF-kB and Phospho-NF-kB) and 1:1000 (CREB
and Phospho-CREB). After incubation with primary antibody in TBS-T containing 5%
(wt/vol) skim milk or 3% BSA, membranes were washed with TBS-T for 6 times again
and treated with anti-rabbit antibody (1:3000) for 2 hours in room temperature. After six
washes with TBS-T, the blots were incubated with chemiluminescence reagent and
exposed to X-ray film. After exposure, membranes were stripped by stripping buffer
(Appendix 4) at 50°C for 15 minutes, washed for 3 times, incubated with blocking buffer
for 1 hour and washed for another6 times. The stripped membranes were prepared for the
second- time incubation of primary antibodies, including IKKf (1:2000), IkBa(1:600) and
B-Tublin used as internal control(1:3000). These membranes were also incubated with the
second antibody, including anti-rabbit antibody (1:2000) or anti-mouse antibody (1:3000)

for 2 hours.

2.2.2.6 NF-kB Reporter Assay
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Macrophage-like U937 cells were seeded in 24-well plate (2.5x 10°/well). After 24h,
refresh medium with 500ul Opti-MEM® containing 1.5ul attractene transfection reagent
(QIAGEN Pty. Ltd.) and 0.6pug NF-kB promoter-firefly/Renilla luciferase (40/1)/negative
control/positive control (QIAGEN Pty. Ltd.) each well. After 18 hours incubation,
refreshed the cell with normal culture medium for another 6 hours, and then refreshed the
medium with 1pg/ml LPS. After 6 hours, the cells were rinsed with cold PBS and lysed
with 100ul reporter lysis buffer (Promega) in each well. The lysate was centrifuged at
15,000 x g for 5 minutes at 4°C, and the supernatant was harvested. Both firefly and
Renilla luciferase levels were measured by a luminometer using the Dual-Glo® Luciferase

Reporter Assay System (Promega Australia).

2.2.2.7 PDE Assay

Macrophage-like U937 cells were seeded in 6-well plates (2x 10%well). After 24h, cells

were treated with or without 10uM Rolipram?®”*

, following incubation with 1pg/ml LPS for
4 hours. The medium were aspirated and the cells washed with ice-cold PBS, which was
then aspirated before lysis buffer was added. The lysis buffer used to extract PDE for PDE
assay was made from 50 mM Tris (pH 7.5), 1.5 mM EDTA, 1 mM benzamidine, 0.1 mM
sodium orthovanadate, | mM DTT and supplemented with a protease inhibitor cocktail for
use with mammalian cells. Lysis was allowed to progress on ice for 1 hour before gentle

agitation. The homogenate was subjected to centrifugation 10 minutes at 12,000xg (4°C)

and the supernatant was stored at —80°C for further analysis.

PDE activity was determined using the method described by Thompson and Appleman

394-396

two-step procedures with modification . Briefly, cells were incubated with the

incubation mixture and treated with various test agents (0.1 ml/sample) at 30°C for 10
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minutes. The incubation mixture (0.4 ml) contained 1 puM cAMP, [3H]cAMP in 40 mM
Tris-Cl buffer (pH 8.0) containing 3.75 mM B-mercaptoethanol and 15 mM MgClz. The
reaction was terminated by incubation for 1 minute in a boiling water bath, and the
crotalus atrox snake venom was added for 5-min incubation at 30°C. The hydrolyzed
nucleotide was separated using an A-25 anion exchange resin column. The reaction
combined with scintillation cocktail, which was quantified by scintillation counting.

Protein concentration was determined using the Bradford method.

2.3 Statistical Analysis

All values presented are mean + SEM of the given number (n) of experiments. The two-
group comparison was conducted by Student’s t-test. The multi-group comparisons were
conducted by one-way analysis of variance (one-way ANOVA) followed by Bonferroni’s
test. P values of 0.05 or less were considered to be statistically significant and tests were
performed using GraphPad Prism version 5.0 Software (GraphPad Software, Inc La Jolla,

CA).

2.4 Results

2.4.1 Release of Cytokines in LPS and CSEM Induced Cell Models

In unstimulated macrophage-like U937 cells, the basal level of TNF-o was barely
detectable. Cells treated with LPS (1pg/ml) or CSE (20%) significantly increased the
release of TNF-a. There is a significant increase in TNF-a release (600 and 500-fold) in
cells after the treatment with LPS(6 hours) or CSE(18 hours) respectively, compared with

the blank control (p<0.001; Fig.2-1-A). There was no statistically difference between LPS
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and CSEM on TNF-a release (p>0.05; Fig.2-1-A). In addition, LPS also significantly

stimulated macrophage-like U937 cells to release IL-1p and IL-6 (p<0.001; Fig.2-1-B).
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Figure 2-1 Release of TNF-a induced by LPS&CSE and the release of IL-1p & IL-6
induced by LPS in macrophage-like U937 cells.

Macrophage-like U937 cells were treated with or without lug/ml LPS for 6 hours; or
treated with or without CSE (20%) for 18 hours. The concentration of TNF-a (A), IL-1P
and IL-6(B) were tested by ELISA. Data represent the mean £SEM (n=3) performed in
duplicate. *p < 0.001 Vs blank vehicle by Student’s t-test. Student’s t-test also was used to

compare the difference between LPS and CSE group.

2.4.2 Production of cAMP in LPS Induced Macrophage-Like U937 Cells

Macrophage-like U937 cells treated with LPS (1pg/ml) for 6 hours had a significant higher
level of cAMP, determined by EIA method, compared with the blank

control.(p<0.05;Fig.2-2).
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Figure 2-2 Production of cAMP in LPS Induced Macrophage-Like U937 Cells.
Macrophage-like U937 cells were treated with or without 1ug/ml LPS for 6 hours. The
level of cAMP was tested by EIA method. Data represents the meantSEM (n=3)

performed in duplicate. *p < 0.05 Vs blank vehicle by Student’s t-test.
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2.4.3 Expression of Phosphorylated Proteins in NF-kB and cAMP Pathways in LPS

Induced Macrophage-Like U937 Cells

To confirm the involvement of the activation of IKK, IkBa, p65 and CREB in LPS
induced macrophage-like U937 cells, the time course of expressions of p-IKK, p-IkBa, p-
p65 and p-CREB were analysed by Western blot. Stimulation with LPS (1pg/ml) induced
a rapid phosphorylation of IKK as early as 5 minutes, with the maximal activity was
observed at 15 minutes. Similarly, the activated IxkBa was appeared at 5 minutes, and the
maximal activity of at 30 minutes. LPS increased the expression of p-p65 in a time-
dependent manner; with the maximal effect at 30 minutes and then declined after 30
minutes. The expression of p-CREB was not significantly changed at 5 and 15 minutes,

but it was increased at 30 minutes, and this increase was sustained at 60 minutes. (Fig.2-3)

LPS (1pg/mll_0 5 15 30 60 (min)
p-IKKP
p-IKK L- £pkKa

B-Tublin | S S s S

p-lkBa

B-Tublin | . -

p-p65 - - .

B-Tublin | - —

p-CREB |# "

B-Tublin

Figure 2-3 Expression of Phosphorylated Proteins in NF-kB and cAMP Pathways in LPS
Induced Macrophage-Like U937 Cells.
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Macrophage-like U937 cells were treated with or without LPS (I1pg/ml) at 5, 15, 30, 60
minutes. The expression of p-IKK, p-IkBa, p-p65 and p-CREB were analysed by western
blot using p-IKK, p-IxBa, p-p65 and p-CREB antibodies as described in the methods. B-

Tublin was used as a loading control.

2.4.4 Effects of Bay11-7028 and Foskolin on the Expression of Proteins in NF-xB and

cAMP Pathways in LPS Induced Macrophage-Like U937 Cells

Bay11-7082, but not Foskolin, significantly inhibited the expression of p-IKK, p-IxBa, p-
p65 and IKK, IkBa, p65 induced by LPS (p<0.001, p>0.05; Fig. 2-4-A&B). Foskolin
statistically increased the expression of p-CREB (p<0.001), but not CREB (p>0.05)

induced by LPS ( Fig.2-4-A&B).
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Figure 2-4 Effects of Bay11-7028 and Foskolin on the Expression of Proteins in NF-xB
and cAMP Pathways in LPS Induced Macrophage-Like U937 Cells.

Macrophage-like U937 cells were treated with or without LPS(1pg/ml) in absence or
presence of Bay11-7082(10uM) or Foskolin(10uM) for 15mins (p-IKK&IKK), for 30 mins (p-
IkBa & IkBa and p-p65&p65) or for 60mins(p-CREB&CREB).The expressions of p-IKK, p-
IkBa, p-p65,p-CREB(A) and IKK, IkBa, p65,CREB(B) were measured by western blot using
corresponding antibodies as described in the methods. B-Tublin was used as a loading
control. Data represents the mean + SEM (n=3). *p<0.001, Vs control vehicle using

Student’s t-test.
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2.4.5 Effect of NF-xB and cAMP Pathways on the Release of TNF-a by LPS Treated

Macrophage-Like U937 Cells

The activated NF-kB and cAMP pathways were associated with increased TNF-a
production by LPS, the effects of Bay11-7082, the inhibitor of NF-xB pathway (1, 10 and
100uM) and Foskolin, the elevator of cAMP pathway (0.1, 1 and 10uM) on the release of
TNF-o were tested with or without LPS (1pg/ml) treatment. BAY11-7082 significantly
inhibited the release of TNF-a at 10uM and 100uM (p<0.001; Fig.2-5-A). Foskolin also
statistically inhibited TNF-a release at 1uM (p<0.01) and 10uM (p<0.001; Fig.2-5-A). At
100uM, BAY11-7082 almost completely inhibited the LPS-induced release of TNF-a (Fig.
2-5-A). At 10 uM, both Bayl11-7082 and Foskolin reduced 70% the release of TNF-a
induced by LPS (Fig. 2-5-A). The presence of Bay11-708(10uM) and Foskolin (10uM)
caused a further inhibition of TNF-a release (p<0.001), and the inhibition of Foskolin
(10uM) was significantly reduced by H89 (2uM; Fig. 2-5-B), an antagonist of cAMP
pathway. In addition, in order to investigate the role of PDEs on LPS-induced TNF-a
release, the effects of specific PDE inhibitors (PDE3 inhibitor, Cilostamid; PDE4 inhibitor,
Rolipram and PDES inhibitor, Sildenafil) on the release of TNF-a were studied.
Macrophage-like U937 cells were treated with LPS (1pg/ml) in the absence or presence of
Cilostamid, Rolipram and Sildenafil (0.1uM, 1uM and 10uM) for 6 hours. Rolipram, a
cAMP-specific PDE inhibitor, significantly inhibited the release of TNF-o at all
concentrations tested (p<0.001). Cilostamid, an inhibitor of cAMP & ¢cGMP PDE, only
reduced the release of TNF-a at 0.1uM (p<0.001). In contrast, Sildenafil, a cGMP PDE
inhibitor, had no significant effect at 0.1 and 1 pM, but increased the release of TNF-a

induced by LPS at 10uM. (Fig. 2-5-C)
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Figure 2-5 Effect of NF-kB and cAMP pathways on the release of TNF-a by LPS treated
macrophage-like U937 cells.

Macrophage-like U937 cells were treated with or without LPS(1pg/ml) in absence or
presence of Bay11-7082(1uM, 10uM, 100uM), Foskolin (0.1uM, 1uM, 10uM)(A), Bay11-
7082(10uM)&Foskolin (10uM), Foskolin (10uM) &H89(2uM)(B), Cilostamide (0.1uM,
1uM, 10uM), Rolipram (0.1puM, 1uM, 10uM) or Sildenafil (0.1uM, 1uM, 10uM) (C) for 6
hours. The concentration of TNF-a was tested by ELISA. Data represents the mean+SEM
(n=3) in duplicate. *p < 0.05; **p < 0.01; ***p < 0.001, Vs control vehicle, by one-way
ANOVA followed by Bonferroni’s test. # p<0.001, Vs Bay11-7081&Foskolin treatment
vehicle by one-way ANOVA followed by Bonferroni’s test. A p<0.001, Vs Foskolin&H89
treatment vehicle by ne-way ANOVA followed by Bonferroni’s test.

2.4.6 Effect of NF-kB and cAMP Pathways on the Transcriptional Activity of NF-«xB in

LPS Induced Macrophage-Like U937 Cells

In order to investigate the involvement of NF-kB and cAMP pathways in the
transcriptional activity of NF-kB induced by LPS, the effects of Bay11-7028, Foskolin and

H89 on the transcriptional activity of NF-kB induced by LPS were determined.
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Macrophage-likeU937 cells were pre-treated with or without LPS (1pg/ml) in absence or
presence  with  Bayl1-7082(10uM), Foskolin  (10uM), H89(2uM), Bayll-
7082(10uM)&Foskolin  (10uM) or Foskolin (10uM)&H89(2uM) for 6 hours. LPS
increased 90% transcriptional activity of NF-kB, and this was significantly inhibited by
Bay11-7082(p<0.001) and Foskolin (p<0.001) respectively. There was no significant
difference of the effect between Bayl11-7082 and Foskolin (p>0.05). Bay11-7082 plus
Foskolin further inhibited the transcriptional activity of NF-xB induced by LPS
(p<0.05,p<0.001). H89, an inhibitor of cAMP pathway, didn’t affect the transcriptional
activity of NF-xB induced by LPS (p>0.05). However, it significantly weakened the effect

of Foskolin on the transcriptional activity of NF-kB induced by LPS (p<0.001; Fig.2-6)
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Figure 2-6 Effect of NF-kB and cAMP Pathways on the Transcriptional Activity of NF-
kB in LPS Induced Macrophage-Like U937 Cells.

Macrophage-like U937 cells were treated with or without LPS(lug/ml) in absence and
presence with Bayl1-7082(10uM), Foskolin (10uM), H89(2uM), Bayl1-
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7082(10uM)+Foskolin(10uM) or Foskolin(10uM)+ HE9(2uM) for 6  hours. The
transcriptional activity of NF-kB was measured by the Dual-Glo® Luciferase Reporter
Assay System. Data represent the mean = SEM (n=3) in duplicate. *<0.001, Vs blank
vehicle Student t-test. #<0.001, Vs control vehicle by one-way ANOVA followed by
Bonferroni’s test. A<0.05; AAp< 0.001, Vs Bayl11-7082+Foskolin vehicle by one-way
ANOVA followed by Bonferroni’s test. d< 0.001, Vs Foskolin vehicle by one-way
ANOVA followed by Bonferroni’s test.

2.4.7 PDE4 Activity in LPS Induced Macrophage-Like U937 Cells

PDE4 activity in LPS-induced U937 cells were studied using a specific PDE4 inhibitor
Rolipram. Cells pre-treated with Rolipram (30uM) for 2 hours, then treated with

LPS(1pg/ml) for 4 hours, showed a significant increase in PDE4 activity (p<0.001; Fig. 2-

7).
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Figure 2-7 PDE4 Activity in LPS Induced Macrophage-Like U937 Cells.

Cells were pre-treated with or without Rolipram(30uM) for 2 hours, and then treated with
or without LPS(1pg/ml) for 4 hours. PDE4 activity was quantified by scintillation
counting. Data represents the mean £ SEM (n=3) performed in duplicate. *p<0.001, Vs

blank vehicle by Student t-test.
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2.5 Discussion

LPS and CSE induced macrophage-like U937 cells have been frequently used as the
inflammatory cell model to study the pathogenesis of COPD***%, Findings from our study
showed that both LPS and CSE caused a massive release of TNF-a in macrophage-like
U937 cells (600-fold and 500-fold increase), which is consistent with previous
studies*®33%7 In addition, LPS also significantly increased the release of IL-1f and IL-6.
The findings on the activation of IKK, IkBa, p65, and the increased transcriptional activity
of NF-xB by LPS indicate that NF-kB pathway is significantly activated in LPS induced
macrophage-like U937 cells. Overall, these results suggest that LPS and CSE inducing
macrophage-like U937 cell models are suitable for studying the inflammatory mechanisms
related to TNF-a and NF-kB pathways. In addition, the present study also observed that
LPS elevated cAMP levels and increased the expression of activated p-CREB and PDE4
activity, indicating that cAMP pathway is also activated by LPS, which is also consistent

with previous studies®*+3983%,

The effects of activated NF-«B and cAMP pathways on the release of TNF-a induced by
LPS is further supported by the findings of using NF-xB pathway inhibitor (Bay11-7082),
cAMP pathway elevator (Foskolin) and cAMP pathway inhibitor(H89). The activated
cAMP pathway seems to involve in the regulation of TNF-a release induced by LPS, as
Foskolin reduced the release of TNF-a and this effect was blocked by H89. There seems to
be a synergy effect between the inhibited NF-kB pathway and the activated the cAMP
pathway on the release of TNF-a induced by LPS, as Foskolin further enhanced the action
of Bay11-7082 on TNF-a release and both of them almost abolished the release of TNF-a

induced by LPS .
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The effect of activated cAMP pathway on the transcriptional activity of NF-xB induced by
LPS was also demonstrated in this part of my project. Foskolin showed no effect on the
expression of IKK, IkBa and p65, but it significantly inhibited the transcriptional activity
of NF-«B induced by LPS, and this inhibition of activity was almost completely eliminated
by H89. It indicated that the activated cAMP pathway inhibited the transcriptional activity
of NF-kB induced by LPS, but not through down-regulating the expression of the key
proteins in NF-kB pathway, which was consistent with previous studies®’>-?*°. In addition,
there seems to be a synergy effect between the inhibited up-stream activity of NF-xB
pathway and the activated the cAMP pathway on the transcriptional activity of NF-kB
induced by LPS, as Foskolin further elevated the inhibition of Bayl1-7082 on the
transcriptional activity of NF-kB and both of them almost completely inhibited the

transcriptional activity of NF-kB.

In addition, we also showed that Bayl1-7082 not only inhibited the expression of total
IKK, but also non-specifically inhibited the expression of p-IkBa, p-IKK, p-p65 IxBa and
p65. Interestingly, IkBa as a stable factor binding with NF-kB to inhibit the activation of
NF-«kB (see Sectionl.1.4.4), was also inhibited by Bay11-7082. Previous study proved that
down-regulating expression of IkBa can elevate the activity of NF-kB pathway. Our
results indicate that there is a bidirectional regulation of Bay11-7082 on the activity of NF-

kB pathway.

There is evidence that PDE4 plays an important role in the production of TNF-a in
macrophages induced by LPS. It has been reported that there was a 90% decrease in TNF-
o mRNA accumulation in the LPS inducing macrophages from PDE4B-deficient mice®**,

Rolipram (PDE4 inhibitor) also significantly inhibited the release of TNF-a in

macrophages induced by LPS and in vivo*®4! The effect of Cliostamide (PDE3 inhibitor)
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on LPS-inducing release of TNF-a in macrophages has not been reported, although some
studies showed that Cliostamide significantly inhibited the production of TNF-a in
HUVECs induced by LPS, this result also was proved in vivo *®2. On the other hand,
sildenafil was shown to have no effect on the release of TNF-a in ovalbumin (OVA)
challenged mice*®. In the present study, it was found that LPS significantly increased the
PDE4 activity in macrophage-like U937 cells, Rolipram and Cliostamide but not Sildenafil
significantly inhibited the release of TNF-a induced by LPS. These findings are consistent
with previous observations, confirming the involvement of mainly PDE4, also PDE3 but
not PDES5 in LPS-induced cytokine release in macrophage-like U937 cells. The reason for
a slight increase of TNF-a production by high concentration of sildenafil is not clear. One
possibility is that the down-steam product of PDES, cGMP, may have an opposite effect of
cAMP to regulate TNF-a release*™. Further study is necessary to elucidate the exact

mechanism involved.

In summary, LPS inducing macrophage-like U937 cells exhibited an elevated cytokine
levels and activated NF-kB pathway which is the main source of TNF-a production. LPS
also activates cAMP and PDE4 pathways to regulate cytokine release to avoid the excess
production of inflammatory mediators. These findings indicate that this cell model is ideal
for studying the mechanism involved in the regulation of cytokines and related NF-xB and
cAMP pathways, as well as the effects of ginseng and ginsenosides on inflammatory

mediators relevant to COPD.
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Chapter 3. Regulation of Ginseng and Ginseng-Related Products on
Cytokines

3.1 Introduction

Ginseng is a well-known medicinal herb which has been widely used in the treatment of
COPD and other conditions (see Section1.2.3). Ginseng and ginseng related products, such
as G115 and some ginseng formulas have been shown in clinical trials with significant
improvement on lung function and quality of life of COPD patients'®>**, However, the
pharmacological mechanism of G115 and ginseng formula in COPD is still not clear.
Given the importance of inflammation in the pathogenesis mechanisms of COPD, it is
possible that the anti-inflammatory effect of ginseng may play an important role in its
therapeutic efficacy on COPD. The support evidence is that ginsenosides, the major active
components of ginseng and G115, have been demonstrated with anti-inflammatory actions

(see Sectionl.2.4.7).

One of the key inflammatory mediators involved in COPD is cytokine, such as TNF-a, IL-
1B and IL-6, which plays an important role in inducing, maintaining and amplifying the
inflammatory response in COPD!?. Previous studies have demonstrated that inhibiting the
release and activity of cytokines improved the symptom of COPD patients (see
Sectionl.1.3). However, there is certain deficiency in the study on the effects of ginseng
and ginseng related products on the release of cytokine. Firstly, most previous studies used
individual ginsenosides, often ignored their metabolites. It has been known that the
absorption of some ginsenosides through the gastrointestinal tract is very low in vivo326:4%,
For some ginsenosides, such as Rbl, the metabolites are more important in mediating the

biological effects of ginseng in vivo*®”. Secondly, there is deficiency in the study on the

correlation between the regulation of the ginseng and ginseng formula on the release of

78



cytokines. Therefore, we are difficult to determine that the regulation of ginseng formula

on cytokines is related to that of ginseng.

Thus, the objective of the study described in this chapter was to investigate the effects of
ginseng, ginseng formulas and ginsenosides on the release of cytokines in the established
inflammatory cell model as described in Chapter2. The specific research aims were to
investigate the effect of different kinds of GHMFs, G115 and ginsenosides on the release
of TNF-a and other cytokines (IL-1p and IL-6) in LPS-induced macrophage-like U937

cells, and the study possible correlations of their actions.

3.2  Materials and Method

3.2.1 Materials

All herbal compounds tested were the highest grade (purity > 99%) available from Chinese
National Institute for the Control of Pharmaceutical and Biological Products (Beijing,
China). GHMFI & II were obtained from Guangdong Provincial Hospital and GHMFIII
&IV were prepared by Mr Xifeng Zhai from the Chinese medicine research laboratory at
RMIT University. G115 was supplied by Pharmaton SA (Switzerland). The details of other

materials are described in section 2.2.1

3.2.2 Method

3.2.2.1 Cell culture

See Section 2.2.2.1

3.2.2.2 Preparation of Cigarette Smoke-Treated Medium
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See Section 2.2.2.2

3.2.2.3 Cytokines Assay

PMA induced Macrophage-like U937 cells were treated with Rb1, Rgl, Rg3, Rhl, Rh2,
CK (1, 10 and 100uM), GHMF-I, GHMF-II(0.1, 1 and 10mg/ml), GHMF-III and GHMF-
IV, G115(0.01, 0.1 and 1mg/ml) or vehicles for 2 hours, and with LPS (1pg/ml) for 6
hours. The supernatant of the test samples was collected to determine the concentrations of
TNF-0, IL-1p and IL-6 using ELISA kits, according to the manufacturer’s protocol. Other

details see section 2.2.2.3.

3.3 Statistical Analysis

All values are presented as mean + SEM of the given number (n) of experiments. The two-
group comparison was conducted by Student’s t-test. The multi-group comparisons were
conducted by one-way ANOVA followed by Bonferroni’s test or by Tukey’s post hoc
according different aims. Correlation analysis was performed to determine the relationship
between G115 and GHMF-III on the release of TNF-a in different cell models. P values of
0.05 or less were considered to be statistically significant and tests were performed using

GraphPad Prism version 5.0 software (GraphPad Software, Inc La Jolla, CA).

3.4 Result

3.4.1 Effects of GHMFs on the Release of TNF-a in LPS induced macrophage-like U937

cells

The release of TNF-a from macrophage-like U937 cells was significantly inhibited by all

GHMFs tested (0.1, 1 and 10mg/ml for GHMF-I and GHMF-II, and 0.01, 0.1 and 1mg/ml
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for GHMF-III and GHMF-IV) (p<0.001; Fig 3-1). The most effective concentration of
GHMF-I and GHMF-II was at Img/ml. GHMF-I demonstrated more potent inhibition on
TNF-a release than GHMF-II at 10mg/ml, but not at Img/ml (p<0.001; Fig.3-1-A). The
most effective concentration of GHMF-III and GHMF-IV was at Img/ml, and GHMF-III
showed more potent inhibition on TNF-a release than GHMF-IV at any concentration
(P<0.01), especially at 0.1mg/ml and 1mg/ml (p<0.001, Fig.3-1-B). At 1mg/ml, GHMF-III

produced a more potent inhibition on the release of TNF-a than GHMF-I (P<0.001; Fig. 3-

1-C).
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Figure 3-1 Effects of GHMFs on the Release of TNF-a in LPS induced macrophage-like
U937 cells.

Macrophage-like U937 cells were treated with different concentrations (0.01-10 mg/ml) of
GHMFs or vehicles. GHMF were composed by the commercial herbal extracts (A), or

raw-herbs (B). Cells were treated with test agents for 2 hours, and then induced by
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LPS(1pg/ml) for 6 hours. The effect of GHMF-I and GHMF-III on the release of TNF-a
was also compared at 1mg/ml (C). The concentration of TNF-a was tested by ELISA. Data
represent the mean+SEM (n=3) in duplicate. *p < 0.001, Vs control vehicle by one-way
ANOVA followed by Bonferroni’s test. #<0.01; ##p < 0.001, Vs GHMF-I and A<0.01;
AA<0.001,Vs GHMF-III at the same concentration by one-way ANOVA followed by
Tukey’s post hoc test.

3.4.2 Effects of GHMF-III and G115 on the Release of TNF-a in macrophage-like U937

cells Induced by LPS or CSE

After the pre-treatment of cells with G115 (0.01, 0.1 and 1mg/ml) for 2 hours and then
stimulation with LPS for another 6 hours, the release of TNF-a was significantly inhibited
by G115 at 0.01lmg/ml (p<0.05,p<0.01), 0.Img/ml (p<0.001) and 1mg/ml(p<0.001). The
most effective concentration of G115 is at Img/ml, which was more potent than that at
0.0lmg/ml (p<0.001). No significant differences between the inhibitions of G115 and
GHMFIII on the LPS-induced TNF-a release at the same concentration were observed
(p>0.05; Figure3-2-A). In CSE induced cell model, G115 and GHMF-III significantly
decreased the level of TNF-a at 0.1mg/ml and 1mg/ml (p<0.001). At 0.01mg/ml, GHMF-
IIT but not G115 statistically inhibited the release of TNF-o (P<0.001). GHMF-III
demonstrated more powerful inhibition than G115 at 0.0lmg/ml (p<0.001) and at
0.1mg/ml (p<0.01; Fig.3-2-B). The correlation between the effects of GHMF-III and G115
on the release of TNF-a in LPS or CSE inducing cell models was conducted. There was a
significant correlation between the effects of GHMF-III and G115 on the release of TNF-a

in both cell models (P<0.0001, R=0.9658; p<0.0001, R=0.8685).
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Figure 3-2 Effects of GHMF-III and G115 on the Release of TNF-a in macrophage-like
U937 cells Induced by LPS or CSE.

After treatment with or without G115 or GHMF-III (0.01, 0.1 and 1mg/ml) for 2 hour,
macrophage-like U937 cells were induced by LPS(1pg/ml)(A) or CSE (20%)(B) in
absence or presence for 6 or 18 hours respectively, The concentration of TNF-a was tested

by ELISA. Data represent the mean £ SEM (n=3) in duplicate. *p < 0.05; **p < 0.01;
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*#%p < 0.001, Vs control (LPS or CSE) vehicle by one-way ANOVA followed by
Bonferroni’s test. # p<0.001, Vs G115 or GHMF-III at Img/ml by one-way ANOVA
followed by Bonferroni’s test. A p < 0.001; AAp< 0.001, Vs GI15 at the same
concentration by one-way ANOVA followed by Tukey’s post hoc test. Correlation
analysis was performed to determine the relationship between G115 and GHMF-III on the

release of TNF-a in different cell models.

3.4.3 Effects of Ginsenosides and Their Metabolites on the Release of TNF-a in

Macrophage-Like U937cells Induced by LPS.

In order to investigate the effects of main active components of G115 on the release of
TNF-a, cells were treated with ginsenoside Rb1, Rgl, Rg3 and their metabolites( CK, Rhl
and Rh2) at 0.1, 1 and 1uM for 2 hours and then stimulated with LPS for another 6 hours.
Ginsenoside Rbl significantly inhibited the release of TNF-a at 1uM (p<0.05) and 10uM
(p<0.01), but not at 100uM (p>0.05). Its metabolites, CK, also significantly inhibited the
TNF-a release at 10uM (p<0.05) and 100uM (p<0.01), but not at 1uM (p>0.05) (Fig.3-3-
A). Both Rgl and its metabolite (Rhl) significantly inhibited the release of TNF-a at
10uM (p<0.01; p<0.05) and at 100 uM (P<0.001), but not at 0.1uM (p>0.05, Fig.3-3-B).
There was no significant difference in the effects of Rb1/Rgl and its metabolite(CK/Rhl1)
at any concentrations (p>0.05, Fig.3-3-A&B). Similarly, Rg3 significantly inhibited TNF-
a release at 1uM (p<0.01) and 10uM (p<0.001), but not at 100uM (p>0.05). The
metabolite (Rh2) had no effect on the release of TNF-a at 1uM and 10uM (p>0.05). At
100uM, Rh2 enhanced the release of TNF-a (p<0.01, Fig.3-3-C). Ginsenoside Rb1 and
Rg3 display more powerful inhibitions on the release of TNF-a at 10uM than at 100uM,

however, there was no significant difference between them (p>0.05; Fig.3-3-A&C).
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Figure 3-3 Effects of Ginsenosides and their metabolites on the release of TNF-a in LPS
induced macrophage-like U937 cells.

Macrophage-like U937 cells were treated with different concentrations (1pM, 10uM,
100uM) Rbl / CK(A), Rg3 / Rh2(B) or Rgl / Rh1(C) or vehicle for 2 hours, and then
induced by LPS (lug/ml)for 6 hours. The concentration of TNF-a was tested by ELISA.
Data represent the mean+SEM (n=3) in duplicate. *p < 0.05; **p < 0.01; ***p < 0.001,
Vs control vehicle by one-way ANOVA followed by Bonferroni’s test. One-way ANOVA
followed by Tukey’s post hoc test was used to test the difference between the effects of

ginsenosides and its metabliltesat any concentrations.

3.4.4 Effects of GMHM-III, G115, Rb1 and Rgl on the Release of IL-1p and IL-6 in

Macrophage-Like U937 Cells Induced by LPS.

In order to investigate the effects of G115, GHMF-III, Rb1 and Rgl on the release of other
cytokines, cells were treated with GHMF-III(1mg/ml), G115(1mg/ml), Rb1(10uM) or
Rgl1(10uM) for 2 hours, and then stimulated with LPS(1pg/ml) for another 6 hours. The
secretion of IL-1P was significantly inhibited by GHMF-III (p<0.001), G115 (p<0.001),

Rb1 (p<0.05) and Rgl (P<0.01) compared with the control group. There was no significant
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difference in the effects of these agents (p>0.05; Fig. 3-4-A). The secretion of IL-6
induced by LPS was also significantly inhibited by GHMF-III (p<0.001), G115 (p<0.01),
Rbl (p<0.001) and Rgl (P<0.001). GHMF-III and Rgl displayed the more powerful

inhibition on the release of IL-6 than G115 (p<0.05; Fig. 3-4-B).
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Figure 3-4 Effects of GHMF-III, G115, Rb1 and Rgl on the release of IL-1P and IL-6 in
LPS induced macrophage-like U937 cells.

The concentrations of IL-1B(A) and IL-6(B) were determined by ELISA. Data represent
the mean + SEM (n=3) in duplicated. *<0.05; **p < 0.01; ***p < 0.001, Vs control
vehicle by Bonferroni’s test. One-way ANOVA followed by Tukey’s post hoc test was
used to test the different regulation among GHMF-III, G115,Rb1 and Rg1 on the release of
TNF-a, # p<0.05.

3.5 Discussion

As mentioned in Chapter 1, the key pathological mechanism of COPD is consistent
inflammation of the lung and airway, and cytokines play an important role in this process
(see Section 1.1.3). It has been shown that TNF-o leads to the amplification of
inflammation, emphysema and the weight loss of COPD**!"172_ TNF-q inhibitors, as
powerful drugs against inflammatory response, have been used in the treatment of
COPD'7®, However, the side effect, medical cost and uncertain efficacy have affected their
clinical application in COPD!8%!18! Therefore, identifying other agents with actions of
TNF-a inhibition may help to improve the current therapies for COPD. In this regard, the
present study has found for the first time that ginseng and several ginseng formulas
inhibited TNF-a release from macrophage-like U937 cells induced by LPS. The inhibition
of LPS induced cytokine release by ginseng and ginseng formula is further supported by
the finding that ginseng and ginseng formula as well as ginsneosides also inhibited IL-13
and IL-6 release induced by LPS, indicating they may act through inhibition of NF-xB
pathway (Further evidence on that will be discussed in Chapter 4).These findings provide
supporting evidence at cell level for the use of ginseng and ginseng related products for

treating COPD.
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Among several ginseng formulas tested, GHMF-III showed more effective inhibitory
effect on the release of TNF-a than other formulas (p<0.01). GHMF-III is a GHMF
excluding polysaccharide. It is possible that polysaccharide in the ginseng extracts may be
responsible for such difference. Previous studies have demonstrated that polysaccharides
can up-regulated the product of many inflammatory factors such as TNF-a, IL-18, IL-6,

IL-12, GM-CSF and IFN-y to aggravate the inflammatory response??6-40%

, so the
polysaccharides in GHMF-I, II and IV may actually weaken the anti-inflammatory action
of these formulas. In addition, GHMF-I demonstrated more significant inhibition on the
release of TNF-a than GHMF-II. The difference between GHMF-I and GHMF-II may be

caused by the different content of active components in each GHMF. Further study is

necessary to determine the contents of active components in these formulas.

G115, a standardized extract of ginseng, and GHMF-III showed a significant inhibition on
the release of TNF-a in LPS and CSE induced macrophage-like U937 cells. Previous study
demonstrated that G115 significantly increased the release of TNF-a in LPS induced
animal model*”. There may be an opposite regulation of G115 on the release of TNF-a in
vivo and in vitro. The present study also found a correlation between the effect of GHMF-
IIT on the release of TNF-a and that of G115 in both LPS and CSE cell models, indicating
the main active component of GHMF-III is likely to be similar to that of G115. In addition,
GHMF-III showed a more powerful inhibition on the secretion of TNF-o than G115 in
CSE but not LPS- cell model, indicating it may more suitable for the treatment of cigarette

smoking induced inflammation.

Given the ginsenosides are the main active compounds for ginseng (G115) and GHMF-III,
the present study also investigated the effects of different ginsenosides on LPS-induced

cytokine release. Ginsenosides Rb1 and Rg3 significantly inhibited the release of TNF-a at

90



a non-concentration-dependent manner. Ginsenosides Rgl significantly inhibited the
release of TNF-a at a concentration-dependent manner. These results were similar to
previous studies!84331:380.382.383 'The difference of inhibition among Rb1, Rg3 and Rgl may
be caused by the difference of absorption rate of them, as previous study showed that the
gastrointestinal-tract absorption rate of Rgl was higher than that of Rb1l and Rg3*>. As a
proof of this guess, the metabolite of Rb1l, CK displayed the similar concentration-
dependent inhibition on the release of TNF-a with Rgl. The metabolite of Rgl (Rh1) also
inhibited the release of TNF-a induced by LPS at a concentration-dependent manner. In
contrast, the metabolite of Rg3 (Rh2) didn’t affect TNF-a release at low concentrations,
but enhanced the release of TNF-o at high concentration. However, this result is not
consistent with previous studies, as Rh2 was found to inhibit the release of TNF-a in LPS/
INF-y inducing murine BV2 microglial cells, and in the ears tissue from the rat induced by
oxazolone®333844%° "t is not clear whether such difference is due to different cell type
involved. Comparing the inhibition of ginsenosides and their metabolits, we found there
was a similar inhibition on TNF-a between Rgl and Rhl; the difference of inhibition
between Rb1 and CK seemed to be related with the low absorption rate of Rb1. However,

it is still uncertain that the up-regulating mechanism of Rh2 on TNF-a induced by LPS.

In summary, the present study demonstrated that ginseng and several ginseng formulas
significantly inhibited LPS and CSE induced the release of TNF-a and/or other cytokines
from macrophage-like U937 cells. Among these, GHMF-III and G115 are the most
effective. The actions of ginseng and ginseng formula are likely to be mediated by the
active compounds ginsenosides. Among the ginsenosides studied, Rb1, Rg3 and Rgl may
be the main contributors to the actions of ginseng. Further study is warranted to investigate
if the effects of GHMF-III, G115, Rb1 and Rgl on cytokine release are through inhibition

of NF-kB pathway.
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Chapter 4. Regulation of G115, GHMF-III and Ginsenosides on NF-xB
Pathway

4.1 Introduction

NF-«B is the key transcriptional factor which regulates the transcription of many
inflammatory factors/proteins involved in COPD?®, such as TNF-o, IL-IL-1B and IL-
6419411 Findings as described in the Chapter 3 have demonstrated that G115, GHMF-III,
Rgl, Rbl, Rg3, CK, Rhl significantly inhibited the production of TNF-a induced by LPS.
Moreover, the inhibition of G115, GHMF-III, Rbl and Rgl on TNF-a release was
accompanied by a significant inhibition of IL-1p and IL-6 release induced by LPS. These
findings indicate that ginseng and ginsenosides may inhibit the TNF-a release through
down-regulating the activation of NF-kB. Thus, we hypothesise that ginseng and
ginsenosides inhibit the release of TNF-a through decreasing the activity of NF-xB

pathway in LPS induced macrophage-like U937 cells.

LPS activates NF-kB through a series of phosphorylation reactions (PRs), including the
phosphorylation of IKK, IxBa and NF-kB*'?. Phosphorylated IKK can activate IxBa, and
then activate NF-kB. In the study described in the last Chapter3, the inhibitor of IKK
(Bay11-7082) almost completely inhibited the release of TNF-a induced by LPS,
indicating that PRs are likely to be involved in the cellular generation of TNF-a. Evidence
from previous studies suggests that ginseng/ginsenosides may regulate NF-kB pathway.
For example fermented ginseng significantly inhibited the expression of p-IkBo’*;
ginsenosidesRb1l, Rb2, Rd, Rgl and the metabolits of ginsenosides(CK and Rh2)also
significantly inhibited the expression p-IkBo***18434!; in addition, the expression of p-IKK

was also down-regulated by CK and Rh2**!. However, the regulating mechanism of G115,

GHMF-III, Rgl, Rbl, Rg3, CK, Rhl and Rh2 on PRs in NF-kB pathway was still
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uncertain. As in these PRs, the activation of any upstream protein (IKK, IkBa), finally
resulting in the activation of NF-«xB, if we want to confirm initiator-protein which is
triggered by the ginseng and ginseng-related products, we should screen the effect of them
on the expression of all total proteins and their corresponding phosphorylated products in
these PRs. However, there is no one paper that comprehensively analysed the regulation of

G115, GHMF-III, Rgl, Rbl, Rg3, CK, Rh1 or Rh2 on the protein expression in these PRs.

In the NF-kBpathway, activated NF-kB needs to be transmitted into the nucleus to achieve
its transcriptional activity. Transcriptional activity of NF-xB is another important
regulating target in NF-kB pathway. It displays the terminal action of NF-kB pathway, and

279280 Previous

can be regulated by various factors including cAMP dependent pathway
studies showed that activated CREB, the downstream factor of cAMP-dependent pathway,
competitively inhibited transcriptional activity of NF-kB%!°. Similarly, as described in
Chapter 3, Foskolin(the elevator of cAMP) reduced the LPS-induced TNF-a production
which was eliminated by the PKA inhibitor H89, indicating an interaction between cAMP
and NF-xB pathway. Although there is no previous studies on the involvement of such
mechanism in the anti-inflammatory actions of ginseng, there is evidence that ginsenoside
Rb1 and Rgl increased intracellular cAMP and the activity of PKA®3. Interestingly, the
metabolite of Rgl(Rhl1) significantly inhibited the transcriptional activity of NF-xB , but
not the DNA binding activity of NF-«kB in LPS induced BV-2 cells, and this inhibited
transcriptional activity of NF-kB by Rh1 accompanying with the up-regulating expression
of p-CREB in nucleus®¥. Therefore, G115, GHMF-III, Rgl, Rbl, Rg3, CK, Rhl or Rh2

may up-regulated the activity of cAMP pathway to decrease the transcriptional activity of

NF-«xB.
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The level of cellular cAMP is regulated by PDE (see Section 1.1.4). Since cAMP-specific
PDE inhibitors, especially PDE4 inhibitor (Rolipram) significantly inhibited the LPS-
induced TNF-aproduction in U937 cells (See Chapter 3), it is possible that ginseng and
certain ginsenosides may act as PDE inhibitors to regulate cellular cAMP . Previous
studies showed that ginsenoside Rgl and Rg3 were used as cAMP-specific PDE inhibitors
for decreasing the activity of cAMP-specific PDE to up-regulate the level of cAMP*®. We
inferred that G115, GHMF-III, Rgl, Rb1, Rg3, CK, Rh1 or Rh2 could regulate the activity
of cAMP pathway induced by LPS, and they perhaps played these actions through
regulating the activity of PDE4. Thus the aim of studies described in this chapter is to
investigate the effects of GHMF-III, G115 and ginsenosides on regulation of activity of
NF-kB and cellular cAMP pathways and their relationships to inhibition of the
transcriptional activity of NF-kB. Specifically, to investigate (1)the regulations of GHMF-
III, G115, ginsenoside Rb1, Rgl, Rg3 and their metabolites on expression of total & p-

IKK, IkBa and p65; (2)the regulations of GHMEF-III, G115, ginsenoside Rb1, Rgl, Rg3

and their metabolites on the level of cAMP and the expression of CREB & p-CREB; (3)
the effects of G115, GHMF-III and ginsenoside Rgl on the transcriptional activity of NF-
kB ; (4) the effects of G115, GHMF-III and ginsenoside Rgl on the activity of PDE4,

using LPS induced macrophage-like U937 cells.

4.2 Materials and Method

4.2.1 Materials

See Section 2.2.1&3.2.1
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4.2.2 Method

42.2.1 Cell Culture

See Section 2.2.2.1

4.2.2.2 cAMP Assay

Cells were incubated with G115 (Img/ml), GHMF-III (Img/ml) or Rb1, Rgl, Rg3, CK,
Rh1, Rh2 (10uM) for 2 hour, and then treated with 1pg/ml LPS in the absence or presence
for 6 hours. The supernatants of cell lysates were assayed directly using EIA method
according to the manufacturer’s instruction (Sapphire Bioscience Pty. Ltd, Australia). The

details see Section 2.2.2.4

4.2.2.3 Western Blot

Cells were incubated with or without G115 (1mg/ml), GHMF-III (1mg/ml) or Rb1, Rgl,
Rg3, CK, Rhl, Rh2 (10uM) for 2 hour, and then treated with 1pg/ml LPS in the absence or
presence for 15, 30 or 60 mins respectively. The protein from the lysed cells was measured

by Western blot analysis. The details see Section 2.2.2.5

4.2.2.4 NF-kB Reporter Assay

The transfected macrophage-like U937 cells were pre-incubation with or without G115
(1mg/ml), GHMF-III (1mg/ml) or Rb1, Rgl, Rg3, CK, Rh1, Rh2(10uM) for 2 hour, and
then treated with 1pug/ml LPS in the absence or presence for 6 hours. The lysate of cells
were measured by Dual-Glo® Luciferase Reporter Assay System (Promega Australia).

The details see Section 2.2.2.6
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4.2.2.5 PDE Assay

Macrophage-like U937 cells were treated with or without 10uM Rolipram®**, 1mg/ml
G115, Img/ml GHMF-III or 10uM Rgl for 2 hour, following incubation with or without
lpg/ml LPS for 4 hour. The lysate were assayed for PDE activity using the method of
Thompson and Appleman two-step procedures with modification’**3%, The details see

Section 2.2.2.7.

4.3  Statistical Analysis

See Section 3.3

4.4 Result

4.4.1 Effects of G115, GHMF-III, Ginsenosides and their Metabolites on the Expression
of IKK, IkBa, P65 and their phosphorylated products in NF-kB Pathway in Macrophage-

like U937 Cells Induced by LPS.

In order to observe the effect of G115(Img/ml), GHMF-III(1mg/ml), RbI1(10uM),
CK(10puM), Rh2(10uM), Rg1(10uM) and Rh1(10uM) on the expression of p-IKK, p-IkBa,
p-p65 and total IKK, IkBa, p65, the macrophage-like U937 cells were pre-treated with the
test agents for 2 hours, and then induced by LPS for 15 minutes (for p-IKK and IKK
expressions) or 30 minutes (forp- IkBa&lIkBaand p-p65&p65 expressions). Bay11-7082,
the inhibitor of IKK, was used as a positive control. Bay11-7082(10uM) displayed a
significant inhibition on the expression of p-& total IKK, p-& total IxkBa and p-& total
p65(p<0.001) (Table-4-1-A,B&C). Foskolin, an elevator of cAMP pathway, had no

significant effect on the expression of these proteins (p>0.05; Table4-1-A, B&C). Rh2, the
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metabolite of Rg3, also couldn’t inhibit the expression of these proteins (p>0.05; Table4-1-

A, B&C).

As the start point in PRs of NF-xB pathway, the expression of p-IKK induced by LPS was
significantly inhibited by G115 (p<0.001), GHMF-II(p<0.001), Rb1(p<0.001),
CK(p<0.05), Rg3(p<0.05), Rgl(p<0.001) and Rh1(p<0.05; Fig.4-1-A). Only
G115(p<0.01), GHMEF-III(p<0.001), Rb1(p<0.001) and Rg3(p<0.05)inhibited the

expression of IKK induced by LPS at the same time(Fig.4-1-B).

The expression of p-IkBoa was significantly inhibited by G115 (P<0.01), GHMEF-
[I(P<0.01), Rb1(P<0.001), CK(P<0.01), Rg3(P<0.05), Rgl(p<0.001)and Rh1(p<0.05)
(Fig.4-2-A). Although Rgl and Rbl tended to have more powerful inhibition on the
expression of p- IkBa, no statistically significant difference  with other test
agents(p>0.05)was observed. G115 and GHMF-III significantly up-regulated the
expression of IkBa (p<0.05, p<0.01). Gisenoside Rbl also increased the expression of

IxBa induced by LPS (p<0.05; Figure4-2-B).

The expression of p-p65 was significantly inhibited by G115 (p<0.001), GHMF-
[I(p<0.01),Rb1(p<0.001), CK(p<0.01), Rg3(p<0.001), Rgl(p<0.01) and
Rh1(p<0.05;Fig.4-3-A). There was no significant difference among the test agents on p-
p65 expressions (p>0.05). Only ginsenoside Rg3 displayed the down-regulation on the

expression of p65 (p<0.05; Figure4-3-B).
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Figure 4-1 Effects of G115, GHMF-III, Ginsenosides and their Metabolites on the
Expression of p-IKK and IKK in NF-kB Pathway in Macrophage-like U937 Cells Induced by
LPS.

Macrphage-like U937 cells were treated with or without Bayl1-7082(10uM),
Foskolin(10uM), G115(Img/ml), GHMF-III(1mg/ml) and Rbl, Rgl, Rg3, CK, Rhl,
Rh2(10uM) for 2 hour, and then stimulated with or without LPS(1pg/ml) for 15 minutes.
The expression of p-IKK and IKK was measured by western blot using p-IKK antibody
and IKK antibody as described in the methods (A&B). B-Tublin was used as a loading
control. Data represent the mean = SEM (n=3). *<0.05; **p < 0.01; ***p < 0.001, Vs
control vehicle by one-way ANOVA followed by Bonferroni’s test.
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Figure 4-2 Effects of ginseng and ginseng related products on the expression of p-IkBa
and IkBa in macrophage-like U937 cells induced by LPS.

Macrphage-like U937 cells were treated with or without Bay11-7082(10uM), Foskolin
(10uM), G115 (Img/ml), GHMF-III(1mg/ml) and Rbl, Rgl, Rg3, CK, Rh1, Rh2(10uM)
for 2 hour, and then stimulated with or without LPS(1pg/ml) for 30 minutes. The
expression of p-IkBa (A) and IxkBa(B) was measured by western blot using p- IkBa
antibody and IxBa antibody as described in the methods. B-Tublin was used as a loading
control. Data represent the mean + SEM (n=3)*<0.05; **p < 0.01; ***p < 0.001, Vs
control vehicle by one-way ANOVA followed by Bonferroni’s test.
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Figure 4-3 Effects of ginseng and ginseng related products on the expression of p-p65 and
p65 in macrophage-like U937 cells induced by LPS.

Macrphage-like U937 cells were treated with or without Bay11-7082(10uM), Foskolin
(10uM), G115(1mg/ml), GHMF-III(1mg/ml) and Rbl, Rgl, Rg3, CK, Rhl, Rh2(10uM)
for 2 hour, and then stimulated with or without LPS(1pg/ml) for 30 minutes. The
expression of p-p65 (A) and p65(B) was measured by western blot using p- p65 antibody
and p65 antibody as described in the methods. B-Tublin was used as a loading control.
Data represent the mean =+ SEM (n=3). *<0.05; **p < 0.01; ***p < 0.001, Vs control
vehicle by one-way ANOVA followed by Bonferroni’s test.
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4.4.2 Effects of G115, GHMF-III, Ginsenosides and their Metabolites on the

Transcriptional Activity of NF-kB Induced by LPS.

To investigate the effects of G115, GHMF-III, Rbl, Rgl, Rg3, CK, Rhl and Rh2 on the
transcriptional activity of NF-kB induced by LPS, U937 cells were pre-treated with or
without G115(1mg/ml), GHMF-III(1mg/ml) and Rbl, Rgl, Rg3, CK, Rh1, Rh2(10uM)
for 2 hours, and then were induced by LPS(1pg/ml) for 6 hours. The transcriptional
activity of NF-«kB induced by LPS was significantly inhibited by G115(p<0.001), GHMF-
I(p<0.001), Rb1(p<0.001),Rgl(p<0.01), Rg3(p<0.001), CK(p<0.001) and Rh1(p<0.01),

but not Rh2(p>0.05; Figure4-4)

1.5

1.0
*% *%
- *%% - :
**k% **k%
) H 1 H
0.0 |=|
LPS (1pg/ml) -+ o+ o+ 4

GHMF-111(1mg/ml) -

G115(1mg/ml) - - - -

Rb1(10uM) - - oo

CK(10uM) - . ..y

Rg3(10uM) - - - - - - + -
Rh2(10uM) - . ...
Rgl(10uM) - - - - - - - -4
Rb1(10uM) - oL

Relative NF-KB Lucierase activity

101



Figure 4-4 Effects of GHMF-III, G115, Ginsenosides and their Metabolites on the
transcriptional activity of NF-kB in macrophage-like U937 cells induced by LPS.

Macrphage-like U937 cells were treated with or without GHMF-III (1mg/ml), G115
(Img/ml) and Rb1, CK, Rg3, Rh2, Rgl, Rh1 (10uM) for 2 hours, and then stimulated with
or without LPS(1pg/ml) for 6hours. The transcriptional activity of NF-kB was measured
by the Dual-Glo® Luciferase Reporter Assay System. Data represent the mean + SEM
(n=3) in duplicate. *p<0.05;**p<0.01; ***p<0.001 Vs LPS vehicle by one-way ANOVA

followed by Bonferroni’s test.

4.4.3 Effects of G115, GHMF-III, Ginsenosides and their Metabolites on the Level of

cAMP in LPS Induced macrophage-like U937 cells

In order to test the effects of G115,GHMF-IILLRb1, Rgl, Rg3, CK, Rhl and Rh2 on
cAMP pathway, U937 cells were treated with or without Rolipram (1uM), G115 (1mg/ml),
GHMF-III(1mg/ml), Rb1(10 uM), CK(10 uM), Rg3(10 uM), Rh2 (10 uM), Rg1(10 uM)
and Rh1(10 pM) for 2 hours, and then stimulated by LPS (Ipg/ml) for 6 hours. LPS
slightly increased the level of cAMP, however, there was no statistically difference on the
level of cAMP between LPS and blank group (p>0.05). As positive control, Rolipram
almost increased 40% of production of cAMP induced by LPS. The level of cAMP
induced by LPS was also significantly up-regulated by G115 (p<0.05), GHMF-III (p<0.0g)
and ginsenoside Rgl (p<0.01), but not Rb1, Rg3, CK, Rhl or Rh2 (p>0.05). Rolipram
displayed a significant increase in cAMP level than G115 (p<0.001), GHMF-III (p<0.001)

and Rg1(p<0.01; Fig.4-5).
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Figure 4-5 Effects of G115, GHMF-III, Ginsenosides and their Metabolites on the Level of
cAMP in LPS Induced macrophage-like U937 cells.

Macrophage-like U937 cells were treated with or without Bay11-7082(10uM),
Rolipram(1uM), G115(1mg/ml), GHMF-llI(1mg/ml) and Rb1, Rgl, Rg3, CK, Rhi,
Rh2(10uM) for 2 hour, and then stimulated with or without LPS(1pg/ml) for 6 hours. The
level of cAMP was measured by EIA. Data represent the mean + SEM (n=3) in
duplicate.*p<0.05; **p < 0.01,***p<0.001 Vs control vehicle by one-way ANOVA followed
by Bonferroni’s test.#p<0.01; ##p<0.001, Vs Rolipram vehicle by one-way ANOVA

followed by Bonferroni’s test.
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4.4.4 Effects of G115, GHMF-III and Ginsenosides Rgl on the Expression of CREB and

p-CREB in LPS Induced Macrophage-like U937 Cells.
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Figure 4-6 Effects of G115, GHMF-IIl and Ginsenosides Rgl on the Expression of CREB and p-CREB
in LPS Induced Macrophage-like U937 Cells.

Macrphage-like U937 cells were treated with or without Rolipram (1uM), G115(1mg/ml), GHMF-
{1mg/ml) and Rg1(10uM) for 2 hours, and then stimulated with or without LPS(1ug/ml) for 30
minutes. The expression of p-CREB(A) and CREB(B) was measured by western blot using p-CREB
antibody and CREB antibody as described in the methods. B-Tublin was used as a loading control.
Data represent the mean = SEM (n=3). *p<0.05; **p < 0.01; ***p < 0.001, Vs control vehicle by

one-way ANOVA followed by Bonferroni’s test.
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As the positive control, Rolipram significantly increased the expression of c-CREB
induced by LPS, compared with LPS group (p<0.001; Fig.4-6-A). However, it had no
significant effect on the expression of total CREB (p>0.05; Fig.4-6-B). The expression of
p-CREB induced by LPS was also significantly increased by ginsenoside Rgl (p<0.001),
GHMF-III (p<0.001) and G115 (p<0.01). Ginsenoside Rgl displayed the more significant
up-regulation on the expression of ¢c-CREB than G115 (P<0.05; Fig.4-6-A). Among Rgl,
GHMF-III and G115, only Rgl up-regulated the expression of total CREB compared with

LPS group (p<0,05;Fig.4-6-B)

4.4.5 Effects of G115, GHMF-III and Ginsenoside Rgl on the Activity of PDE4 in LPS

Induced Macrophage-like U937 Cells

U937 cells with 1pg/ml LPS elicited a significant increase in PDE4 activity. The LPS
increased PDE4 activity was significantly inhibited by 10uM Rgl (p<0.001), Img/ml
GHMEF-III (P<0.001) and Img/ml G115 (P<0.05). No significant difference was observed
among the effects of Rgl, GHMF-III and Gl150on Rolipram-sensitive PDE activity

induced by LPS (P>0.05; Fig. 4-7).
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Figure 4-7 Effects of G115, GHMF-III and Ginsenoside Rgl on the Activity of PDE4 in
LPS Induced Macrophage-like U937 Cells.

Macrophage-like U937 cells were pre-treated with or without Rolipram (30uM),
Rgl(1mg/ml), GHMF-III(1mg/ml) and G115(Img/ml) for 2 hour, and then induced by
LPS(1pg/ml) for 4 hours. PDE4 activity was quantified by scintillation counting. Data
represent the mean = SEM (n=3) performed in duplicate. *<0.001, Vs blank vehicle by
T’student test.#<0.05; ##<0.001, Vs control vehicle by one-way ANOVA followed by

Bonferroni’s test.

4.5 Discussion

NF-kB pathway is the important inflammation-related pathway, which involves the
pathogenesis of abnormal inflammation of COPD (see Section 1.1.4.4). In this part of my
project, ginseng and its related products displayed the different regulation on the activity

of NF-«xB pathway induced by LPS.

GHMF-III, as a ginseng formula, displayed a similar and more potent regulation on the

activation of PRs in NF-kB pathway induced by LPS with G115 (the standardised extract
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of ginseng), as both of them not only inhibited the expression of activated products of PRs
in NF-xB induced by LPS, including p-IKK, p-IkBa and p-p65, but also inhibited the
expression of total IKK and IkBa induced by LPS. Only PDG type ginsenoside Rbl
displayed the similar regulation on the activation of PRs induced by LPS in NF-kB
pathway with G115 and GHMF-III, so it seemed that G115 and GHF-III displayed the
pharmacological actions of Rbl on the activation of PRs induced by LPS in NF-kB
pathway. Another PDG ginsenoside Rg3 displayed the analogous regulation with Rb1 on
the activation of PRs induced by LPS in NF-kB pathway, but couldn’t increase the
expression of IkBa. Previous study showed that Rg3 inhibited the expression of IkBa in
RAW264.7 cells without any stimulation®*. We inferred that Rg3 perhaps displayed the
dissimilar regulation on the expression of IxkBa at different condition. The PTG type
ginsenoside Rgl also inhibited the expression of p-IKK, p-IkBa and p-p65, but couldn’t

inhibit the expression of total protein.

There were some differences of the regulation on the activity of RPs between the
metabolite and the PDG type ginsenoside. CK, the metabolite of Rbl showed the similar
effect as Rgl and Rhl. It inhibited the expression of phosphorylated proteins, but not the
expression of total protein of PRs. Rh2, the metabolite of Rg3 had no obvious effect on
the activation of PRs in NF-kB, which however, was different with a previous study
showing that Rh2 inhibited the expression of p-IkBa in TNF-a induced human astroglial
cells®*!. The reason for these discrepancies is not clear, but it may be related to different

cell lines used. Further study is necessary to elucidate the exact mechanisms involved.

Previous studies only involved in the regulation of Rbl, Rgl and Rhl on the
transcriptional activity of NF-«kB, and all of them display significant inhibition on it (see

Section 1.2.4.3). In this part of our project, we also investigated the regulation of other
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ginseng and its related products on the transcriptional activity of NF-kB induced by LPS as
supplementary. We found that G115, GHMF-III, Rg3 and CK also inhibited the
transcriptional activity of NF-kB induced by LPS and the inhibition of Rb1, Rgl and Rh1

on it also was proved.

Interestingly, both GHMF-III and G115 up-regulated the activity cAMP pathway, the
effect may link directly to their inhibitory actions on the transcriptional activity of NF-kB.
GHMF-III and G115 mainly displayed the pharmacological action of PTG type
ginsenoside Rgl on the regulation of cAMP pathway, as only GHMF-III, G115 and
ginsenoside Rgl, but not Rbl, Rg3, CK, Rhl or Rh2, up-regulated the level of cAMP
induced by LPS, which was accompanied with the increase of the expression of p-CREB.
Thus, it is possible that the cAMP-component actions of G115 and GHMF-III are
mediated by Rgl in these ginseng extracts. Given these agents also inhibited the
transcriptional activity of NF-xB, it is likely that a synergistic action may be involved in
the regulatory actions of ginseng on NF-kB pathway. .In addition, the up-regulation of
cAMP by GHMF-III, G115 and Rgl is associated with the decreased in activity of PDE4,
which indicates that GHMF-III, G115 and Rgl may act as PDE4 inhibitor to reduce the
PDEA4 activity, resulting in the increase of cellular cAMP levels. Liang reported earlier that
Rb1 also increased the level of intracellular cAMP in rat liver compared with that in

controls*>* | but this was not confirmed in our study.

G115 is a ginsenoside-extract from ginseng and PDGs (Rbl, Rb2, Rc and Rd) and
PTGs(Re, Rgl and Rg2) are the main active components of it***, Thus, G115 maybe
display both pharmacological actions of PDGs and PTGs. This hypothesis has been proved
in my project that G115 exhibited more potent inhibition on the activity of NF-kB pathway

and up-regulation on the activity of cAMP pathway than Rb1(PDGs) and Rg1(PTGs) used
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alone. It indicates that crude extracts of ginseng may target more broadly than purified
individual ginsenosides. GHMF-III showed the similar regulation on the activity of NF-xB
and cAMP pathways, however as the chemical information for GHMF-III is not fully

characterized, further study about the chemical construction of GHMF-III is necessary.

In conclusion, the study has clearly demonstrated that ginseng and ginsenosides can
regulate NF-kB pathway in LPS induced macrophage-like U937 cells. They act via at least
two separate mechanisms: inhibition of the activity of PRs in NF-kB to decrease the
activity of NF-xB, and activation of cAMP pathway, via inhibition of PDE, which in turn
to inhibit the transcriptional activity of NF-kB. The study also discovered a non-specific
inhibition of Bay11-7082 on the expression of p-IKK, p-IkBa, p-p65, IkBa and p65. In
addition, there are differences among ginseng and ginseng related products on the
regulations of cAMP pathway, as only G115, GHMF-III and ginsenoside Rgl share
similar actions on activation of cAMP pathway. Some of the findings in the study have not
been reported previously. These new findings may help to understand the mechanism of

anti-inflammatorty actions of ginseng and ginseng related products.
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Chapter 5.  Efficacy of TNF-a Inhibitors on Radiological Progression in
Active Rheumatoid Arthritis- A systematic review

5.1 Introduction

Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder characterized by
inflammation of the articular synovium, resulting in bony erosions, deformity and
ultimately, joint destruction (JD). RA is one of the most common and costly diseases,
affecting about 0.3-1.2% of the population and 20%-35% of the patients stop work during
first 2-3 years in disease®*!>*!®. The prevalence of work disability can be decreased
through slowing and arresting the progression of JD. Therefore preventing the progression

of ID is the key treatment objective of RA*!.

5.2 JD and Active RA

5.2.1 JD of RA Patients

JD is an important part of illness development in RA*'® and occur throughout the whole
course of disease, the functional loss and irreversible disability caused by JD are the most
important manifestations leading to the medical cost of RA*°“*! Preventing the
progression of JD not only can improve life quality of patients, but also can lead to
substantial savings in medical costs******, Hence, the control of the progression of JD is
delineated as the key treatment goal outlined in the Guidelines of American College of

Rheumatology (ACR)*"".

JD in RA is the result of a series of inflammatory responses. First, a large number of
inflammation-related cells is attracted to the joint cavity to cause secretion of various

inflammatory mediators which results in the occurrence of synovitis secondary to swelling
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of synovial cells, excess synovial fluid, and the development of fibrous tissue (pannus) in
the synovium*?®. These inflammatory response lead to the destruction of articular cartilage
and the fusion of bone under cartilage. JD is the most important pathological

manifestations of RA and the progression of JD can be evaluated by x-ray*?S.

5.2.1.1 Scoring of the Radiological Progression of JD in RA

It has been known that joint external manifestations do not correspond to the inner JD in
patients with RA. Therefore, radiographic outcome, the gold standard for JD progression
assessment, is widely used in the clinical setting*?®. There are many kinds of scoring
systems for calculating the radiographic outcome, including Steinbrocke, Kellgren, Sharp
and Lanser scoring systems*?%#?1427:428 ' Among these, Sharp system is commonly used to

monitor the progression of JD through continuous improvement 4*-43!,

The improved Sharp method defines erosions as: 0 = Normal, 1 = Discrete erosions, 2 to 3
= Larger erosions according to surface area involved, 4 = Erosions extending over middle
of the bone, and 5 = Complete collapse. Generally, 15 areas from the hands to wrists and
six areas from the feet are used to calculate the joint space narrowing score. The maximum
joint space narrowing score is 120; the maximum erosion score is 160 for hands and wrists,
and 120 for feet. Thus, the maximum Sharp radiographic score is 448.17%*!. The
progression of JD in RA patients and the efficacy of therapeutic drugs can be evaluated

using the Sharp scoring system.

5.2.2 Active RA

American Rheumatism Association (ARA) first proposed that RA should be divided into

active RA and inactive RA according to the classification criteria for RA 32, Later the
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Rome criteria was introduced since some histological features as proposed in ARA criteria

could not be used in the population setting**>.

5.2.2.1 Criteria of Active RA

Currently, there is still no real “gold standard” to judge RA disease activity. Nevertheless,
many clinical trials have used the Disease Activity Score (DAS) as an assessment method
to value RA activity. DAS is a combined index to assess important impact factors affecting
RA activity, such as the number of swollen and tender joints and measures the Erythrocyte
sedimentation rate (ESR)/C-reactive protein (CRP). DAS is usually scored between 0 and
10 to indicate RA activity***. The DAS28 is analogous to the DAS but includes simplified

28-joint counts**>.

5.2.3 JD in Patients with Active RA

Many rheumatologists believe that patients with active RA have most JD. Kirwan et al
collected related clinical data and illustrated that continued disease activity is obvious in
the whole course of RA, accompanied with temporal fluctuations reflected in a gradual
increase in JD*°. Further studies support that active RA is the main developing period of
JD*#7438_Interestingly, although the patients in early stage of RA displayed slow and
slight disease progression and only some of these patients will develop into RA**, the

patients in early stage of active RA also showed the significant JD*38440:441,

In addition, one study showed that the fluctuation in RA disease activity is directly related
to changes in radiologic progression in patients with active RA**2. This indicates that the
change of RA disease activity may affect the progression of JD, and also the efficacy of

therapeutically drugs of RA for treating JD.
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5.3 Treatment of JD in patients with active RA

5.3.1 Treatment of RA

In 1970s, some rheumatologists proposed a "pyramid" treatment protocol for RA treatment
based on past experience*®. They believe that the treatment of RA should follow a step-
by-step three line administration protocol. RA treatment drugs can be divided into Non-
steroidal anti-inflammatory drugs (NSAIDS) as the first-line drugs, disease modifying
anti-rheumatic drugs(DMARDs), such as Methotrexate (MTX), as the second-line drugs,
and the glucocorticoid as the third-line drug. Patients from early, middle and late stages of
RA are corresponded to the use of the first-line, the second-line and the third-line drugs
respectively. However, subsequent accumulating clinical evidence indicates that the use of
a single drug was not enough to control the RA progression, and then many
rheumatologists proposed an "inverted pyramid"(step down) treatment protocol in 1989*44,
This protocol suggests to treat RA patients using all three line drugs in conjunction, and
gradually reduces the types and doses of drugs, and finally using one or two kinds of drugs
with small doses for long-term maintenance of steady state of RA. Although the "inverted
pyramid" protocol caused some controversy, it has been used as the reasonable and
preferred treatment protocol for RA treatment by global rheumatologists. However, the
therapeutic treatment of RA has not been significantly improved until the clinical
application of TNF-a inhibitors. TNF-a inhibitors significantly improved the American
College of Rheumatology core criteria 20 (ACR20), DAS score and Health Assessment
Questionnaire(HAQ) scores, as well as swollen joint count, tender joint count, and CRP
level**447_ Most importantly, TNF-a inhibitors significantly inhibited the progression of

ID in active RA 437,438,446,448-452
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MTX and TNF-a inhibitors are the most important and popular anti-JD progression drugs
in patients with RA. However, according to the efficacy, side effect and medical costs,
these drugs are often used in different conditions. For example, low-dose MTX was used
for treating the patients with early RA**3433454 byt for the patients with active RA TNF-o

inhibitors displayed showed more efficacy on the progression of JD than MTX?*37:438:446.448-

452

5.3.2 Efficacy of MTX on the Progression of JD in Patients with Early RA

MTX, formerly known as amethopterin, is an anti-metabolite and anti-folate drug. It has
been widely used in the treatment of autoimmune diseases, including RA, psoriatic
arthritis and Crohn's disease*>*7. MTX in low doses is generally safe and well tolerated
as the preferred therapy for the treatment of RA*®. Previous studies demonstrated that
low-dose MTX used for up to one year significantly slowed the radiographic progression
of JD in patients with early RA, though not anyone was responsive to the treatment with
MTX*344  Ag patients with early RA always displayed slight JD, MTX is suitable for
retarding mild JD, but not moderate or severe JD. Many studies showed that MTX used in
conjunction with other DMARD type drugs, such as Sulfasalazine, Ciclosporin and
Azathioprine, to increase the efficacy of these drugs**-4!. Thus, there is a synergy effect

between MTX and other drugs to inhibit the progression of JD.

5.3.3 Efficacy of TNF-a Inhibitors on the JD Progression in Active RA Patients

TNF-a is an important inflammatory mediator and play an important role in initiating and
perpetuating inflammatory and tissue damage in the rheumatic joint**>46*, Thus, down-
regulating the activity of inflammatory mediators to inhibit the progression of JD in

patients with active RA became the core therapeutic objective in RA treatment.
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TNF-o inhibitors have been used in the treatment of RA since 2000. Three TNF-a
inhibitors are currently approved by the FDA and the European commission(EC) for the
treatment of RA, which are infliximab (Remicade), etanercept (Enbrel) and adalimumab
(Humira). These drugs are also listed in the Pharmaceutical Benefits Scheme (PBS) in
Australia. ACR recommended using TNF-a inhibitors as biological DMARD to treat RA,
especial to treat active RA**. There are strong evidence that TNF-a inhibitors displayed
more powerful inhibition on the progression of JD in active RA comparing with MTX

used 3101’16437’438’446’448_452,

TNF-a inhibitors for the treatment of active RA can be used alone and in combination with
MTX. Many studies have shown that TNF-a inhibitors, Infliximab (INF), Adalimumab
(ADA), and Etanercept (ETA), can retard the progression of JD when used alone or in
combination with MTX in active RA patients*7-446:448-452422 'Tpy the guideline of biological
drug in RA, ACR believed there was no distinction between these two different
administration of TNF-a inhibitor on the efficacy of active RA*'7. However, many
rheumatologists were more inclined to use TNF-a inhibitors in conjunction with MTX to
inhibit the progression of JD in active RA patients*7#46:448-432 The rational for this is not

4605466 1t is important for the

well defined as all drugs for RA have obvious side effects
patients and rheumatologists to select drugs based on evidence of efficacy and safety. In
addition, there are still certain unanswered questions about the treatment of TNF-a
inhibitors in the JD of active RA patients, including factors affecting the efficacy of TNF-a
inhibitors, and which type of TNF-a inhibitor provide a better efficacy. The aim of this
systemic review is to quantitatively assess all the randomised controlled trials that assessed

the effect of TNF-a inhibitors on radiological progression (RP) of JD in active RA to

answer these questions.
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Based on the available evidence, we hypothesized that TNF-a inhibitors used in
conjunction with MTX provide a better efficacy against the progression of JD in patients
with active RA comparing with TNF-a used alone, as well as MTX used alone. In addition,
the degree of the disease activity of RA is an important factor for the efficacy of TNF-a
inhibitors on the progression of JD in active RA patients. To test our hypothesis, we have

used meta-analysis to -

e Compare the effect of TNF-a inhibitors used alone and in combination with MTX
on the RP of active RA patient.

e Investigate the correlation between the degree of activity of RA and the efficacy of
TNF-a inhibitors on RP in active RA patients

e Compare the effect of different types of TNF-a inhibitors on RP in active RA

patients

5.4 Methods

5.4.1 Search Strategy

A search was conducted which was not restricted by language for all publications on TNF-
a inhibitors and RA between January 1966 and July 2012. The electronic database
included PubMed, Embase, Cumulative Index to Nursing and Allied Health Literature
(CINAHL), Database of Abstracts of Reviews of Effects (DARE), Cochrane Central
Register of Controlled Trials (CENTRAL), and the Cochrane Database of Systematic
Reviews. We also searched for the articles published in the conference, unpublished trials
and those trials in progress. We supplemented search by checking references cited in
published systematic reviews and by references to the bibliographies of the articles

extracted from the literature reviews.
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The search used the following medical subject headings (MeSH) and relevant keywords:
(1) “Arthritis, Rheumatoid, or “Rheumatoid Arthritis”; (2) “TNFR-fc”, “Infliximab”,
“Adalimumab”, or “Etanercept”; (3) “methotrexate” or “MTX" ; (4) “joint destruction” or

“joint damage”. (5) “Radiological progression”.

5.4.2 Inclusion Criteria

All randomised trials that used TNF-o inhibitors alone, or in combination with MTX,
reported the radiological progression of arthritis as an outcome, and patients with active

RA, were included.

Articles were excluded based on abstracts if they did not pertain to RA and TNF-a
inhibitors. Selected abstracts were excluded if they did not report radiological progression
of arthritis as an outcome, and they were reviews or animal studies. Full texts of selected
articles were reviewed and excluded if they were duplicated studies, were not randomized

trials, and subjects were not at active stage (Fig.5-1).

Figure 5-1: Selection of Articles

8291 Potentially relevant
reference collected

8085 excluded because they did not report
radiographic progression of arthritis as
an outcome

206 abstracts screened

132 excluded because they were irrelevant,
> e.g. review of animal study

Y
74 studies for full text

reviewed
66 excluded, e.g. patients were not in active
—> stage, duplicated studies, were not
Y randomized trials, and did not use a
7 studies included in placebo or control group
analysis

117



5.4.3 Outcome Measurement

Radiological outcome is deemed as the gold standard for assessing the progression of JD
in RA**, Sharp and Lanser scoring systems were recommended as the main method to
assess the progression of JD in all radiological assessment method*?. According to these
methods, researcher can calculate the mean change (MC) of radiological scores between
the baseline and after treatment of patients with RA and the percentage progression of JD
above a certain cut-off level, which is equivalent to the risk ratio (RR) of every study.
Recommended cut-off levels for progression were 0 or 0.5, as well as the smallest
detectable difference (SDD) in order to account for measurement errors. In this project, all
papers used the Sharp scoring system as the measure method at the end point. Using this
method, MC and RR, as two outcomes of the end point, can be calculated in patients with

active RA.

5.4.4 Data Extraction

Data were extracted from the papers which were collected according to the inclusion
criteria by two independent reviewers. Disagreements were resolved by consensus
involving in a third investigator. If the results which we needed were not expressed in the
article, we approached the investigators by letter for more information. Four investigators

were approached; two of them responded.

Descriptive information was also collected, including the name of the study, year of
publication, total number of participants, intervention, the list of study providing available

data about RR & MC and trial quality.
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5.4.5 Assessment of Study Quality

Two independent reviewers blindly evaluated methodological quality of each study using
Jadad scale, and disagreements were resolved by a third assessor. It contains three
questions: the type of the study (randomized and double-blinded), the description of the
withdrawals and dropouts; one point is awarded for each affirmative answer. One
additional point is given or deducted if the study satisfy or dissatisfy the demand of the
quality of the randomization and blindness. The Jadad scale goes from 0 to 5, and scores of

3 or higher indicate a good methodological quality*¢’.

5.5  Statistical Analysis

In all selected study, the RR was calculated as the primary outcome. MC in radiological
scores between baseline and after therapy, along with the 95 % confidence intervals (95%
CL) was calculated as the secondary outcome. Data were dealt with Comprehensive meta-

analysis to pool results of comparable studies (RevMan5.1).

As data exclusion was finished by two reviewers independently, to quantify the level of
agreement between reviewers, Cohen's kappa coefficient was calculated. The « statistic is
a statistical measure of inter-rater agreement, and values were ranged from +1 (perfect

agreement) to -1(complete disagreement).

Heterogeneity was evaluated with Cochran’s Q test statistic for collection of studies with
large sample sizes, and quantified using the I? statistic. Values of I* equal to 25%, 50%,
and 75% representing low, moderate, and high heterogeneity respectively. When there was

a significant heterogeneity (I>>50%) among the independent studies, we used random-
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effects meta-analysis; when the heterogeneity was insignificant (I><50%) among the

related studies, the fix-effects meta-analysis was done.

To assess whether the efficacy of TNF-a inhibitors on the progression of JD in active RA
patients was modified by clinical and demographic variables, we pre-specified a list of 13
variables for subgroup analysis. Variables were chosen on the basis of either biological
plausibility (e.g., age, the percent of baseline administration medicine, or different kinds of
TNF-a inhibitors) or known risk factors of JD in RA (e.g. DAS28, ESR and CRP). Each
variable was used as the standard to divide available studies into different subgroup, and
the subgroup analysis was done for them to confirm whether there was a significant

distinction between subgroups.

To analyse the heterogeneity, studies were divided into different subgroups according to
the results of subgroup analysis. “Complemented with MTX” and “different type of TNF-a
inhibitors” were confirmed as two major factors to modify the efficacy of TNF-a inhibitors
on RR of the progression of JD in patients with active RA, so we divided our studies into 5
subgroups (INF combination with MTX, ETA combination with MTX, ADA combination
with MTX, ETA alone and ADA alone) according to these two factors. Meta-analysis was

done for pooling results of independent studies in each subgroup.

To assess the correlation between the treatment efficacy and the duration of RA, age,
DAS28, or CRP, meta-regression was used. Duration of RA, age, DAS28, CRP and ESR
were used as independent variables, and log risk ratio was used as dependent variable.

There are statistically significant correlation between two variables, if p<0.05.

We assessed publication bias using the Egger’s regression. Publication bias was assessed

via a funnel plot—in which the log RR was plotted against the standard error for all studies
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included. There is not publication bias if p>0.05. If publication bias was detected, the
effect of such bias was assessed with the fail-safe number method. The fail-safe number
was the number of unpublished studies that would be needed to nullify the observed result

to statistical non-significance at 0=0.05 level.

5.6 Results

Of the 8291 references screened, 7 clinical trials were included in the final analysis (Fig.5-
1). There were three types of TNF-a inhibitors involved in these 7 trials, including INF,
ADA, and ETA. All of these TNF-a inhibitors were recommended by ACR*!. 7 trials
included 11 types of treatment groups (different drug administration methods), such as
MTX+INF 3mg/kg every 8wk, MTX+INF 3mg/kg every 4wk, MTX+INF 10mg/kg every
8wk, MTX+INF 10mg/kg every 4wk, MTX+INF 6mg/kg every 8wk, MTX+ETA 50mg
weekly, MTX+ ETA 25mg twice week, MTX+ADA 40mg every other week, ETA 25mg
twice week, ADA 40mg every other week and ADA 20mg every week treatment groups
(Tab.5-1). As all treatment groups in these trails were analysed separately, we regarded
these treatment groups as the independent studies for further meta-analysis. As a result, the
placebo group was counted repeatedly. Every independent study which provided available
data about RR and MC was marked in the “table 5-1”. In total 14 independent studies,
there were 12 independent studies providing available results of RR of the progression of
JD in active RA patients, and 11 independent studies providing available results of MC of
the progression of JD in active RA patients (Tab.5-1). In all of 7 clinical trials, there were
2 types of comparisons involving in the effect of TNF-o and MTX inhibitors on RR of the
progression of JD in active RA patients, including TNF-a inhibitors used alone comparing
with MTX and TNF-a inhibitors in combination with MTX comparing with MTX. In the

first comparison, there were 9 independent studies providing available results of RR of the
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progression of JD in active RA patients. In the second comparison, there were 3
independent studies providing available results of RR of the progression of JD in active

RA patients.

In total, 5704 individuals were analysed, whose mean age were between 49.99 and 56.62
years old. The mean span of the disease duration was very large. It was between 8.73 and
131.58 months. All the studies performed measure of radiographic progression after one

year (48, 52 or 54 weeks) , and so one year was chosen as observation time of end point

(Tab.5-1).

The quality of all trials was good. The Jadad scales of all trials were 3 or higher, which
meant a good methodological quality (Tab.5-1). Only two studies didn’t use double-blind

d446,45 1

metho 41,

. Only one study didn’t record the result of withdrawal and dropou
Cohen’s kappa coefficient was calculated, and result was 0.79. It meant that data exclusion

finished by two reviewers independently were substantial agreement.
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Table 5-1 Characteristics of Studies

Study No. of duration of Trial
. MC
i . Intervention o .
(year) patients | radiographs RR Quality

(weeks)

UK group Base-line MTX+INF(3mg/kg every 8wk) Vs MTX V V

(1999)*6 428 /54wks MTX+INF(3mg/kg every 4wk) Vs MTX v \ 5
/102wks MTX+INF(10mg/kg every 8wk) Vs MTX V \

MTX+INF(10mg/kg every 4wk) Vs MTX V \

ASPIRE group Base-line MTX+INF(3mg/kg every 8wk) Vs MTX + placebo \ v

(2004)*¥ 1490 /54wks MTX+INF(6mg/kg every 8wk) Vs MTX + placebo V V >

]éeosot ;;g?y 508 B/Zséewllze MTX+INF(3-10mg/kg every 8wk) Vs MTX N I ;

COMET study | ) Base-line | Ty ETA(50mg weekly) Vs MTX + placebo V|- 5

(2008)*2 /52wks

TEMPO study Base-line

(2005)*° 636 /48wks ETA(25mg twice weekly)+placebo Vs MTX+placebo V - 5
/96wks MTX+ETA(25mg twice weekly) Vs MTX + placebo \ -
/144wks

PREMIER Base-line ADA(40mg every other week)+placebo Vs MTX+placebo | V -

stud

(2002)437 799 /48wks MTX+ ADA(40mg every other week) Vs MTX + placebo | V - 4
/96wks

BBOTT study 619 Base-line ADA(40mg every other week)+ placebo Vs MTX+ placebo - \

(2004)68 /52wks ADA(20mg every week)+ placebo vs MTX+ placebo - \ 5

RR= the risk ratio, MC= Mean change in radiographic scores between baseline and after treatment.
* Number of RR and MC may not add up to 100% of total because data provided by some studies were empty or not available.
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Figure 5-2 Comparison between the Effect Size of TNF-a Inhibitors and MTX on RR of
JD in Patients with Active RA

Experimertal Control Rigk Ratic Risk Ratio
Study or Subdroup Evertz  Total Euverts Total Weight  WH, Random, 95% C IWEH, Reandom, 950 1
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COMET S0mg weekly a0 246 20 1A% 0.4 [0.37, 066 —_
PR EMIER 40mg ewery alone 134 74 B2 257 131% 0.78 [0A7, 090 -
PREMIER 40mg every other G5 268 162 257 128% 047 [0.47, 068 -
TEMPO 258mg twice alone 54 170 BE1E 119% 0.74 [0.56, 0.95] ]
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Heterogeneity; Tawk=0.14; Chi* =57 32, df= 11(P < 000001, = 21% ' ' ' |

0102 08 1 2 5 10

TestTor overdll effect: 2= 627 (F < 0.00001) Fawours experimental  Fawours confrol

In 12 independent studies which compared the effect of MTX and TNF-a
inhibitor(including TNF-a inhibitor used alone and in combination with MTX) on RR of
joint damage in active RA patients, we used random effects model for heterogeneity
(P=0.00001, 1>=81%). The effect size of TNF-a inhibitors group was significantly better
than MTX group (Z=6.27, P<0.00001). The use of TNF-a inhibitors was associated with a
57% reduction in progression of JD comparing with MTX used alone (RR 0-43, 95% CI
0.33-0.56; Fig.5-2). All the studies displayed the consistent beneficial efficacy of TNF-a
inhibitors comparing with the efficacy of MTX on RR of the progression of JD in active
RA patients (Fig. 5-2). Of 11 independent studies which compared the effect of MTX and
TNF-a inhibitors(including TNF-a inhibitor used alone and in combination with MTX) on
MC in active RA patients, we used random effect model for heterogeneity (P=0, 1>=84%)).
The effect size of TNF-a inhibitors groups was also significantly better than MTX groups
(Z=-6.921, P=0). The use of TNF-a inhibitors was associated with a JD scores improvement

of -2.313(-2.663 - -1.963; Table:5-2).
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Table 5-2 Comparison between the effect size of TNF-a inhibitors and MTX on MC of the

progression of JD in patients with active RA.

Study name

Difference
in means

Standard
error

Variance

Lower
limit

Upper
limit

Value

p_
Value

UK
MTX+INF3mg/kg
every 8wk

-5.7

1.55

2.401

-8.737

-2.663

-3.678

UK
MTX+INF3mg/kg
every 4wk

-5.4

1.776

3.155

-8.881

-1.191

-3.04

0.002

UK
MTX+INF10mg/kg
every 8wk

1.273

1.621

-9.295

-4.305

-5.341

UK
MTX+INF10mg/kg
every 4wk

-1.7

1.364

1.861

10.374

-5.026

-5.645

ASPIRE
MTX+INF3mg/kg
every 8wk

0.65

0.423

-4.574

-2.026

-5.077

ASPIRE
MTX+INF6mg/kg
every 8wk

0.641

0.411

-4.457

-1.943

-4.989

BeSt MTX+INF3-
10mg/kg every
8wk

1.449

2.1

-8.64

-2.960

-4.003

TEMPO ETA25mg
twice weekly

0.288

0.083

-1.734

-0.606

-4.067

TEMPO
MTX+ETA25mg
twice weekly

0.363

0.132

-3.012

-1.588

-6.336

BBOTT 40mg
every other week

0.675

0.455

-3.923

-1.277

-3.853

BBOTT
MTX+20mg every
other week

-1.9

0.667

0.455

-3.207

-0.593

-2.848

0.004

Effect size

-2.313

0.179

0.032

-2.663

-1.963

-12.935

We also compared the effect between TNF-o inhibitor combined with MTX/TNF-a

inhibitor used alone and MTX on RR of the progression of JD in active RA patients. In 10

independent studies which compared the effect of MTX and TNF-a inhibitor in

combination with MTX on RR of the progression of JD in active RA patients, we used
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random effects model for heterogeneity (P=0.001, I>=67%). We found the effect size of
TNF-a inhibitor in combination with MTX on RR of the progression of JD was
significantly inhibited than that of MTX (Z=6.98; P=0.00001). In 2 independent studies
which compared the effect of MTX and TNF-a inhibitor used alone on RR of the
progression of JD in active RA, we used fixed effects model for heterogeneity (P=0.79,
I’=0). We found TNF-a used alone also displayed a more distinctive advantage than MTX
on RR of the progression of JD in active RA patients (Z=3.83, P=0.0001; Fig.5-3).
Comparing the effect of these two subgroups, we found there was a significant difference
between TNF-a inhibitors used alone and combined with MTX on RR of the progression
of JD in active RA patients(P=0.0001;Table5-3). In addition, TNF-a inhibitors combined
with MTX was associated with a 31% reduction on RR of the progression of JD

comparing with TNF-a inhibitors used alone (Fig.5-3).
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Figure 5-3 Comparison between the size effects of TNF-a inhibitors/combined with MTX
and MTX on RR of the progression of JD in patients with active RA

Combination MTX Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
1.1.1 Combination vs MTX
ASPIRE 3mg/kg every 8wk 14 306 31 226 8.0% 0.33[0.18, 0.61] -
ASPIRE 6mg/kg every 8wk 7 306 31 226 6.1% 0.17[0.07,037] ———
BeSt 3mglkg every 8wk 8 121 38 114 6.9% 020[0.10,041] €
COMET 50mg weekly 50 246 95 230 11.8% 0.4910.37, 0.66] -
PREMIER 40mg every other 9% 268 162 257 12.8% 0.57[0.47, 0.68] -
TEMPO 25mg twice weekly 39 193 68 159 11.3% 0.47[0.34, 0.66] -
UK 10mglkg every 4wk 0 65 14 44 09% 0.021[0.00,0.38]) ¥——
UK 10mg/kg every 8wk 8 75 14 44 6.3% 0.3410.15,0.73] -
UK 3mg/kg every 4wk 7 66 14 44 59% 0.33[0.15,0.76] — =
UK 3mg/kg every 8wk 5 63 14 44 50% 0.25[0.10,064] ¥
Subtotal (95% Cl) 1709 1388  75.0% 0.36 [0.27, 0.48] <&
Total events 234 481

Heterogeneity: Tau? = 0.11; Chi? = 27.06, df = 9 (P = 0.001); I*= 67%
Test for overall effect: Z = 6.98 (P < 0.00001)

1.1.2 TNF vs MTX

PREMIER 40mg every other 134 274 162 257 13.1% 0.7810.67, 0.90] -
TEMPO 25mg twice weekly 54 170 68 159 11.9% 0.7410.56, 0.99] 7
Subtotal (95% CI) 444 416 25.0% 0.77[0.67, 0.88] ¢
Total events 188 230

Heterogeneity: Tau? = 0.00; Chiz = 0.07, df =1 (P = 0.79); 1> = 0%
Test for overall effect: Z = 3.83 (P = 0.0001)

Total (95% CI) 2153 1804 100.0% 0.43 [0.33, 0.56] &
Total events 422 711

Heterogeneity: Tau? = 0.14; Chi? = 57.32, df = 11 (P < 0.00001); I>= 81%
Test for overall effect: Z = 6.27 (P < 0.00001)

Test for subgroup differences: Not applicable

0102 05 1 2 5 10
Favours experimental  Favours control

There was a significant heterogeneity among the data from studies selected in our project,
when we tried to put the related data together to do meta-analysis (1>>50%). In order to
find which reason caused these heterogeneities, the subgroup analysis was done. We found
that there was a significant distinction among the effect size of subgroups on RR of the
progression of JD in activated RA patients, when we divided the group according to
whether using MTX as a complementary or different type of TNF-a inhibitors(p<0.0001,
p=0.00007). In addition, dividing the group according to the degree of HAQ also resulted

in the significant distinction between the effect size of subgroups on RR of the progression
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of JD in activated RA patients (p=0.02). However, there was no statistic difference
between the effect sizes of subgroups on RR of the progression of JD in activated RA
patients, when we divided the group according to whether took DMARDs before, whether
took Corticosteroids/ Glucocorticoid before, whether took NSAIDs before, whether RF
appeared a positive response, the level of CRP(mg/L), the level of ESR(mm/h), the degree
of DAS28, the number of swelling joints, the number of tender joints, the compliance of

RA patients, the age of patients or the duration of RA(months)(p>0.05;Table5-3)

Table 5-3 Subgroup analysis for confirming the influencing factors of heterogeneities.

Subtotal(n) RR(95%CL) P value
Complementarity
TNF-a inhibitors 860 0.77(0.67,0.88) 0.0001
Combinated with
MTX 3957 0.43(0.33,0.56)
Different type of TNF-a inhibitor
Inflixmab 1744 0.23(0.17,0.32) 0.00007
Etanercept 767 0.56(0.47,0.66)
Adalimab 1056 0.67(0.6,0.76)
Previous took DM ARDs,No.%
20-40 2596 0.48(0.34,0.68) 0.84
0-19 916 0.45(0.25,0.81)
Previous took Corticosteroids or Glucocorticoid ,No.%
40-65 1602 0.45(0.32,0.62) 0.8
15-39 2120 0.47(0.31,0.72)
Previous took NSAID,No.%
>80 1745 0.41(0.24,0.70) 0.62
60-79 921 0.34(0.21,0.56)
RF positive,No.%
>75 445 0.28(0.15,0.56) 0.56
55-74 1980 0.36(0.21,0.61)
CRP(mg/L)
250-350 681 0.60(0.38,0.93) 0.2
20-50 3041 0.41(0.29,0.56)
ESR(mm/h)
46-55 921 0.34(0.21,0.56) 0.48
35-55 1064 0.25(0.13,0.49)
DAS28
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6.0-8 532 0.61(0.47,0.80) 0.14

4-5.9 916 0.41(0.26,0.65)

HAQ

>1.6 1532 0.48(0.35,0.66) 0.02
<1.6 235 0.20(0.10,0.41)

Number of swelling joints(0-68 possible joints)

20-29 3246 0.45(0.33,0.60) 0.62
10.0-19 476 0.49(0.37,0.66)

Number of tender joints(0-71 possible joints)

27-36 3246 0.45(0.33,0.60) 0.62
17-26 476 0.49(0.37,0.66)

Compliance

>95 235 0.20(0.10,0.41) 0.11
60-80 2908 0.38(0.27,0.54)

Age(years)

<52 1736 0.40(0.26,0.60) 0.5
>52 681 0.33(0.31,0.64)

Duration of RA(months)

125-132 1501 0.47(0.32,0.69) 0.83
60-80 2221 0.44(0.31,0.64)

NSAID =non-steroidal anti-inflammatory drugs; RF= Rheumatoid factor; CRP=C-reactive
protein; ESR= erythrocyte sedimentation rate; DAS28=28-joint Disease Activity Score;
HAQ=Health Assessment Questionnaire.

“ Number may not add up to 100% of total because of missing data in some variables.

Through subgroup analysis, we found “whether using MTX as a complementary” and
“different types of TNF-a inhibitors” were two major factors which strongly modify the
efficacy of TNF-a inhibitors on RR of the progression of JD in activated RA patients.
Thus, we divided 12 independent studies into 5 subgroups (including INF combination
with MTX, ETA combination with MTX, ADA combination with MTX, treated with ETA
and treated with ADA groups) according these two major factors. In five subgroups, only
first two subgroups (INF combination with MTX and ETA combination with MTX) were
composed by multi-studies, and other subgroups just comprised one trial. There was low
heterogeneity in first two subgroups (p=0.38 1>=6%; p=0.86 1’=0). Both effect sizes of INF

combination with MTX and ETA combination with MTX on RR of the progression of JD
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in activated RA  were better than that of MTX used alone
(Z=9.35,p<0.00001;Z=6.49,p<0.00001). INF used with MTX displayed a 77% (RR 0-23,
95% CI 0.17-0.32) and ETA displayed a 52% (RR 0-48, 95% CI 0.39—-0.60) reduction RR
of the progression of JD in patients with activated RA comparing with MTX used alone.

(Figure 5-4)
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Figure 5-4 Comparing between the effect size of TNF-a inhibitors combined with MTX
and MTX on RR of the progression of JD in active RA patients after grouping according

the result of subgroup analysis

Experimental Control Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% ClI
5.1.1 Infliximab combination with MTX
ASPIRE 3mg/kg every 8wk 14 306 31 226 47% 0.33[0.18, 0.61]
ASPIRE 6mg/kg every 8wk 7 306 31 226 47% 0.17[0.07,0.37) ———
BeSt 3mg/kg every 8wk 8 121 38 114 52% 0.20[0.10,041] ———
UK 10mg/kg every 4wk 0 65 14 44  23% 0.02[0.00,0.38] +———
UK 10mg/kg every 8wk 8 75 14 44 23% 0.34[0.15, 0.73]
UK 3mg/kg every 4wk 7 66 14 44 22% 0.33[0.15, 0.76]
UK 3mg/kg every 8wk 5 63 14 44  22% 0.25[0.10,0.64) ¢————
Subtotal (95% Cl) 1002 742 23.7% 0.23[0.17,0.32] <
Total events 49 156

Heterogeneity: Chi = 6.36, df = 6 (P = 0.38); I?= 6%
Test for overall effect: Z = 9.35 (P < 0.00001)

5.1.2 Etanercept combination with MTX

COMET 50mg weekly 50 246 95 230 13.0% 0.49[0.37, 0.66] -
TEMPO 25mg twice weekly 39 193 68 159  9.9% 0.47[0.34, 0.66] -
Subtotal (95% Cl) 439 389  22.9% 0.48 [0.39, 0.60] L
Total events 89 163

Heterogeneity: Chi? = 0.03, df = 1 (P = 0.86); I?= 0%
Test for overall effect: Z = 6.49 (P < 0.00001)

5.1.3 Adalimab combination with MTX

PREMIER 40mg every other 9% 268 162 257 21.9% 0.57 [0.47, 0.68] -
Subtotal (95% Cl) 268 257 21.9%  0.57 [0.47,0.68] .
Total events 96 162

Heterogeneity: Not applicable

Test for overall effect: Z = 5.97 (P < 0.00001)

5.1.5 Treat with Etanercept

TEMPO 25mg twice alone 54 170 68 159 9.3% 0.7410.56, 0.99] ]
Subtotal (95% Cl) 170 159  9.3%  0.74[0.56, 0.99] <
Total events 54 68

Heterogeneity: Not applicable

Test for overall effect: Z=2.05 (P = 0.04)

5.1.6 Treat with Adalimab

PREMIER 40mg every alone 134 274 162 257 22.2% 0.7810.67, 0.90] -
Subtotal (95% Cl) 274 257 22.2%  0.78[0.67,0.90] L 2
Total events 134 162

Heterogeneity: Not applicable

Test for overall effect: Z = 3.25 (P = 0.001)

Total (95% Cl) 2153 1804 100.0%  0.53[0.48, 0.58] ¢

Total events 422 71
Heterogeneity: Chi? = 57.32, df = 11 (P < 0.00001); I* = 81%
Test for overall effect: Z = 13.04 (P < 0.00001)

Test for subgroup differences: Not applicable

0102 05 1 2 5 10
Favours experimental  Favours control
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We used meta-regression analysis to examine the correlation between the common risk
leading to the progression of JD and the effect size of TNF-a inhibitors on the RR of the
progression of JD in active RA patients. These risk factors included the duration of RA,
age, DAS28, CRP and ESR. We selected the available independent studies for these risk
factors, 10 studies for the duration of RA, 11 studies for the age, 6 studies for DAS2S, 9
studies for CRP and 7 studies for ESR (Table5-4).We noted there was no correlation
between log RR and the increased disease duration/age (p=0.23, p=0.25; Table5-4). There
was a significant negative correlation between log RR and the increased the degree of

DAS28, CRP and ESR (p=0.026, p=0.0073, p=0.014; Table5-4)

Table 5-4 Summary of meta-regression analysis

Available
Slope (CL95%) P value studies
Duration of RA 0.00189(0.00026, 0.00352) 0.23 10
Age 0.075 (0.036, 0.114) 0.25 11
DAS28 0.23(-0.009,0.47) 0.026 6
CRP 0.00017 (-0.0008,0.0012) 0.0073 9
ESR 0.085 (-0.028, 0.198) 0.014 7

Egger’s regression analysis showed that publication bias was present (p=0-0002; Figure5-
5). We therefore used the fail-safe methods to estimate the number of potential missing
studies needed to significantly change the conclusion of our findings. This analysis showed
that, to nullify our estimated effect size, 484 studies with non-significant findings would be
needed. In view of the fact that there have been no more than 10 studies published over the
last 8 years, it is highly improbable that such a large number of similar studies would have
gone unpublished or have been missed out by our extensive search strategy. Furthermore,

the missing studies were likely to be small, the effect of which is probably very negligible.
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Figure 5-5 Funnel plot to assess publication bias
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5.7 Discussion

The main finding of this systemic review is that TNF-a inhibitors (used alone and in
combination with MTX) significantly improved the progression of JD compared with
MTX alone in active RA patients. Through further analysis, we found that both two
administrations of TNF-a inhibitors significantly retarded the progression of JD compared
with MTX in active RA patients respectively, and TNF-a inhibitors in combination with
MTX displayed the more powerful inhibition on the progression of JD than TNF-a
inhibitors used alone in active RA patients. These findings indicate a better efficacy can be
achieved when using TNF-a in conjunction with MTX to prevent the progression of JD in

active RA patients.

It should be pointed out that heterogeneity was observed in the present study with the

pooled data from the selected studies, but not with dividing these studies into different
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subgroups, according to identified impact factor for meta-analysis. Many factors may
affect the heterogeneity in meta-analysis. We have summarized 13 common factors
specific to RA, including complementary with MTX, different types of TNF-a inhibitors,
HAQ, took DMARDs before, took / Glucocorticoid before, took NSAIDs before, RF
appeared a positive response, CRP, ESR, the number of swelling joints, the number of
tender joints, the compliance of RA patients, the age of patients and the duration of
RA(months)*7450469-473  Among these factors, complementary with MTX and different
types of TNF-a inhibitors seems the main reason for the heterogeneity. After we divided
the all involved studies into subgroups according these two main factors, the
heterogeneities in subgroups disappeared. TNF-a inhibitors in combination with MTX
displayed the most powerful inhibition on the progression of JD in active RA patients

comparing with TNF-a inhibitors/ MTX used alone.

Among the three types of TNF-a inhibitors approved by the FDA, ADA is constructed
from a fully human monoclonal antibody, while INF is a mouse-human chimeric antibody
and ETA is a TNF receptor-IgG fusion protein. Comparing the effect of different types of
TNF-a inhibitors on the progression of JD in active RA patients, we found that INF in
combination with MTX displayed more powerful inhibition on the progression of JD than
EDA or ADA in combination with MTX. This result indicates that to control the
progression of JD of active RA patients, INF in combination with MTX seems a good
choice. There is no one paper about INF used alone to improve the progression of JD in
active RA. However, comparing the effect of EDA and ADA used alone on the
progression of JD in active RA patients, we found that there is no distinction between the

inhibitions of them on the progression of JD.
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The degree of activity of RA was directly related to changes in radiologic progression in
patients with active RA*?. In this study, we have also found that the degree of activity of
RA affected the efficacy of TNF-a inhibitors on the progression of JD in active RA. Three
important markers of RA activity are CRP, ESR and DAS28. We found there was a
negative correlation between the therapeutic effect by TNF-a inhibitors and the increased
level of CRP, ESR or DAS28. This suggests that a better outcome for the patients with
higher level CRP, ESR or DAS28 than those patients with lower level CRP, ESR or

DAS28.

In summary, the present study has demonstrated that TNF-a inhibitors in combination with
MTX has a better efficacy on the progression of JD in active RA than TNF-a
inhibitors/MTX used alone, and INF in combination with MTX exhibits more powerful
effect than other types of TNF-a inhibitors. In addition, CRP, ESR and DAS28 are factors
affecting the efficacy of TNF-a inhibitors on progression of JD in active RA patients. The
evidence obtained may provide a guide /support for rheumatologists and patients to select

and best use of anti-RA drugs.
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Chapter 6. General Discussion

6.1 Major Findings of this Project

As mentioned in Chapter 1, COPD is characterised by a persistent inflammation in the
airway and lungs which results in airway obstruction. Current treatments for COPD are
still not satisfactory and there is a need to develop new therapies targeting inflammatory
mechanisms. Ginseng is a well-known medicinal herb and has been used in the treatment
of COPD. Understanding the mechanism of anti-inflammatory actions of ginseng and
ginseng based formulas will facilitate the development of novel agents for treating COPD
and other inflammatory diseases. The main objective of this project is to study the action
and mechanism of ginseng and ginsenosides on cytokine mediators in inflammatory cells
models.The key hypothesis is that ginseng and ginsenosides may target TNF-a, cAMP and
NF-kB signalling pathway to exert their anti-inflammatory actions. In order to test this
hypothesis, a cell inflammatory model was firstly set up using macrophage-like U937 cells
induced by LPS or CSE, which then be used to evaluate the effects of ginseng and
ginsenosides on cellular release of cytokines and activation of NF-xB and cAMP

pathways.

Firstly, a cell inflammatory model was successfully set up using macrophage-like U937
cells induced by LPS and CSE. The model exhibited significant activation NF-xB
pathway, supported by the findings of increased release of cytokine (NF-a, IL-1f and IL-
6) and up-regulated expression of key NF-«kB proteins (IKK, p-IKK, IkBa, p-IkBa, p65
and p-p65), as well as the transcriptional activity of NF-kB by LPS and/or CSE. In
addition, a possible interaction between NF-xB and CAMP pathways was also

demonstrated with findings of effects of NF-kB pathway inhibitor (BAY11-7082), cAMP
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pathway activator and inhibitor (Foskolin and H89) on TNF-a release, and on the

transcriptional activity of NF-kB by LPS (Fig. 6-1).
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Figure 6-1: Establishment of LPS induced macrophage-like U937 cell models and the
interaction between NF-kB and cAMP pathways in this model.

“1” is used to display the up-regulating effect of LPS on the expression of p-IKK, p-IkBa,
p-p65 and p-CREB, the level of cAMP, the activity of PDE4, the transcriptional activity of
NF-kB and the release of IL-1pB, IL-6 and TNF-a in macrophage-like U937 cells. “]” is
used to display the inhibitory effect of Bay11-7082 on the expression of p-IKK, p-IxBa, p-
p65, IKK, IkBa and p65, the transcriptional activity of NF-kB and the release of TNF-a
induced by LPS. “'” is used to display the up-regulation of Foskolin on the level of cAMP
and the expression of p-CREB induced by LPS; “ ” is used to display the down-regulation
of Foskolin on the transcriptional activity of NF-kB and the release of TNF-a induced by
LPS. “X” is used to display H89 abolished the inhibition of Foskolin on the transcriptional
activity of NF-«B and the release of TNF-a induced by LPS.

Secondly, the effects of ginseng (G115) and several ginseng formulas (GHMFs) as well as

ginsenosides on the release of cytokines were investigated. GHMF I&II, composed by
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commercial herbal extracts from China, displayed the similar inhibition on the release of
TNF-a, GHMF-III, composed by raw-herbal extracts without polysaccharide components,
displayed more potent inhibition on the release of TNF-a than that of GHMF-IV which
was prepared in the same way as GHMF-III except including polysaccharide components,
indicating that the polysaccharide components in ginseng may weak the anti-inflammatory
actions of ginseng.It was found that the release of TNF-a was significantly inhibited by
GHMF-III, Rb1, Rgl, Rg3, CK and Rh1 in LPS induced cell model and G115and GHMF-
III in CSE induced cell model. GHMF-III, G115, Rb1 and Rgl also inhibited the release of
IL-1pB and IL-6 induced by LPS. Among the GHMFs tested, GHMF-III seemed to be most

potent.

Thirdly, the effects of ginseng and ginsenosides on the activation of NF-kB signalling
proteins were investigated. G115, GHMF-III, Rbl, Rgl, Rhl and CK, but not Rh2
significantly inhibited the expression of IKK, p-IKK, IkBa, p-IkBa, p65 and p-p65
(Table6-1) and decreased the transcriptional activity of NF-kB induced by LPS. G115,
GHMF-III and Rgl, but not Rbl, Rhl, CK and Rh2 also significantly increased the
cellular level of cAMP and the expression of p-CREB, but inhibited the activity of PDE4
induced by LPS. These findings indicate that ginseng has a significant inhibition of
cytokine release and activation of NF-kB pathway in LPS-induced macrophage-like U937
cells. In addition, ginseng and ginseng related products may also act as PDE4 inhibitor to

regulate cAMP pathway.
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Table 6-1 Regulation of Ginseng and Ginseng related products on the expression of

proteins in RPs of NF-kB pathway

p-IKK IKK p-IxBa IkBa p-p65 p65
G115 = = = e = o
GHMF-III I I I . I o
RbI U U v r U o
CK 1 no 1 no 1" no
Re3 IR I I o e I
Rh2 No no no no no no
Rel e o U o IS o
Rh1 1 no 1 no 1 no
*:p<0.05
**:p<0.01
*#%:p<0.001

Finally, as a separate research objective in the present project, a systemic review was
conducted to evaluate the clinical efficacy of TNF-a inhibitors in the treatment of
progression of JD in active RA. Data from randomised controlled trials were collected and
a meta-analysis was conducted to compare the effects of TNF-a inhibitors on the
radiological progression of active RA patients when used alone or combined with MTX,
and to study the correlation between the degree of activity of RA and the efficacy of
different types of TNF-a inhibitors. It was found that TNF-a inhibitors showed a better
efficacy on the progression of JD in active RA than that of MTX, and TNF-a inhibitors in
combination with MTX produced a better efficacy than TNF-a inhibitors used alone.
Among different types of TNF-a inhibitors, infliximab in combination with MTX
exhibited a better efficacy than other types of TNF-a inhibitors on the progression of JD in
active RA patients. The markers of RA activity, including CRP, ESR and DAS28, were
shown to be associated with the efficacy of TNF-a inhibitors on progression of JD in
active RA. These findings may help to guide clinical use of TNF-a inhibitors to treat JD in

active RA patients.

139



6.2 Inflammatory Cell Model

LPS and CSE induced macrophage-like U937 cells have been used as inflammatory cell
models for studying the pathogenesis of human-COPD***3%6474 It has been demonstrated
that inflammatory mediators generated by macrophage-like U937 cells in response to LPS
and CSE, initiate and/or amplify abnormal inflammations in COPD?7***47>  Previous
studies showed that LPS induced macrophages to secrete a broad-spectrum inflammatory
mediators, including TNF-a, IL-1B, IL-6, IL-8, IL-10, IL-12, TGF-B and MMP-1474475,
CSE, as a specific pathogen of COPD, also stimulated macrophage to release the IL-8,
TNF-o, IL-1pB, IL-6 and IL-17%7%-280476-478 The present study has focused on the regulation
of ginseng and its related products on the release of TNF-a. TNF-a is powerful
inflammatory mediator released by LPS and CSE induced cell models*”*%*3¢ The
demonstration of TNF-a release and activation of related NF-xB pathway are a clear
indication of success of the cell model. In this regard, the present results are consistent

with previous findings?7%-3943%,

>

6.3 Actions of G115 and Ginseng Formulas

G115 is a standardized extract of ginseng with ginsenosides as its main active components
and a clinical trial has demonstrated its efficacy in moderately-severe COPD condition 2,
However, the pharmacological mechanism involved is not clear. The finding that G115
inhibited the release of TNF-o in LPS and CSE induced macrophage-like U937 cells
indicate it may act through inhibition of inflammatory mediators. Thus the study provides

experimental evidence to support the use of G115 for COPD. We also proved G115 and

GHMF-III inhibited the release of TNF-a through down-regulating the activity of NF-xB
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and up-regulating the activity of cAMP pathways to inhibit the transcriptional activity of

NF-«B induced by LPS.

The present study has tested several ginseng formulas. All these formulas are developed
based on clinical experience Guangdong Provincial Hospital in China. These formulas are
three herb formulations with ginseng as main ingredient. The first type of GHMEF is
composed by commercial extracts of individual herbs. This type of GHMF is convenient
for standardization of application of GHMF in clinic. This kind of preparation is more
easily administrated than traditional oral decoction. In this project, we compared the effect
of GHMFs from different pharmaceutical companies. GHMF-I is composed by extracts
from Guangdong, and GHMF-II composed by extracts from Jiangsu. Although GHMF-I
demonstrated more significant inhibition on the release of TNF-a than GHMF-II at low
and high concentration, at middle concentration (the most effective concentration) of
GHMF-1&II, there was no distinction between the release of TNF-o of them. The second
type of GHMF is extracted from traditional mixture of raw herbs with different extracting
techniques. The most significant difference between GHMF-III and GHMF-IV is
polysaccharide components. The findings that GHMEF-III exhibits a more powerful
inhibition on TNF-a release than GHMF-IV indicates that polysaccharide component of
ginseng may affect the anti-inflammatory actions of ginsenosides. Studies have shown that
ginsenosides displayed inhibitions on inflammatory response, such as decreasing the
release of cytokines, down-regulating the activity of inflammation-related pathway,
etc?’”*% On the other hand, the polysaccharides of many herbs have been used in the
treatment of cancers, such as Ginsan which is the polysaccharide extract from ginseng.
Previous studies demonstrated that Ginsan showed an anti-tumor effect through increasing
the production of inflammatory factors, such as TNF-a, IL-1p, IL-6, IL-12, GM-CSF and

IFN-y to aggravate the inflammatory response*®!****. Thus, the polysaccharide in GHMF-
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IV may weaken the anti-inflammatory effect of GHMF-IV comparing with GHMF-III.
This is consistent with the finding that GHMF-III, as only GHMF excluding
polysaccharide, displayed the most potent inhibition on TNF-a release among all GHMFs
tested. Thus, GHMF-III may have a potential for further development as ginseng-based

formula for the treatment of COPD.

In the classical theory of Chinese medicine, there is usually the main herb in a formula
which displays the pharmacological characteristics in the course of treatment of diseases,
and other herbs in the formula usually play a supporting role. However, this theory
although seems to have been verified in clinic, is difficult to be proved in the experimental
setting. In this project, we chose TNF-a as a target, and tried to find the correlation
between the ginseng and GHMF-III on the inhibition of the release of TNF-a induced by
LPS. We found that there is a significant correlation between the GHMF-III and G115 on
the inhibition on the release of TNF-a induced by LPS/CSEM, indicating the action of
GHMF-III may mainly related to ginseng. However, further study is necessary to exclude

the contributions of other herbs on this effect.

6.4 Actions of Ginsneosides

6.4.1 PDGs & PTGs

The main bioactive compounds in ginseng are ginsenosides, which can be classified into
two types, dammarane and oleanane (Ro). The dammarane type ginsneosides includes two
sub-types: protopanaxadiols(PDGs) and protopanaxatriols (PTGs)(see Section 1.2.2.1).
PDGs and PTGs include the most commonly used ginsenosides, such as Rbl, Rb2, Rec, Rd
and Rg3(PDGs) Rgl, Re and Rf (PTGs)***. Some studies have shown that PDGs and PTGs

displayed different effects on the specific biological mechanisms. For example, Liu found
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that PDGs inhibited the pancreatic lipase activity in a dose-dependent manner, but PTGs
showed no such effect. In the present study, Rbl and Rg3 were selected as the
representative of PDGs and Rgl as the representative of PTGs to test their effects on the

release of TNF-a and NF-kB pathway in macrophage-like U937 cells induced by LPS.

Both ginsenoside Rbl and Rg3 significantly inhibited the release of TNF-a induced by
LPS, accompanied with down-regulations of the expression of IKK, p-IKK, p-IkBa and p-
p65, as well as the decreased the transcriptional activity of NF-kB. Rb1 also increased the
expression of [kBa and Rg3 also decreased the expression of p65. These results indicate
that PDGs type ginsenoside Rbl, Rg3 inhibited the release of TNF-a through down-
regulating the NF-kB pathway. Similarly, Ginsenoside Rgl significantly inhibited the
release of TNF-a induced by LPS, accompanied with inhibition of the expression of p-
IKK, p-IxkBa and p-p65and decrease in the transcriptional activity of NF-kB. In addition,
Rgl increased the level of cAMP, the up-regulated expression of p-CREB and CREB. The
results indicate that Rgl not only inhibited the activity of NF-kB pathway, but also up-
regulated the activity of cAMP pathway to inhibited the release of TNF-a induced by LPS.
Most likely Rgl achieved the up-regulation of cAMP pathway through inhibition of the
activity of PDE4. Since Rb1 had no effect on cAMP level, the results suggest that PDGs
may act on mainly on NF-xB pathway, while PTGs may regulate both NF-kB and cAMP
pathways to inhibit the release of TNF-a, which is partly through inhibiting the activity of
PDE4. Such different actions of ginsenosides may help to understand the complex actions

of ginseng.
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6.4.2 Metabolites of Ginsenosides

The study on the effect of metabolites of ginsenosides is very important, as the absorption
of some ginsenosides through the gastrointestinal tract is very low in vivo*®3*’, Most of
metabolites displayed the analogous pharmacological actions to corresponding
ginsenosides. Previous studies showed that both ginsenoside Rb1 and its metabolite, CK,
significantly inhibited the expression of p-p65 and p-IkBa in LPS induced mouse
peritoneal macrophages®*’. In addition, both ginsenoside Rgl and its metabolit, Rhl,
activated cAMP pathway and decreased the transcriptional activity of NF-«kB. In the
present study, rRgl and Rhl also showed the analogous regulation on the expression of
proteins in NF-xB pathway, the transcriptional activity of NF-kB and the release of TNF-a
induced by LPS. However, Rh2, the metabolite of ginsenoside Rg3 couldn’t inhibit the
expression of proteins in NF-kB pathway, the transcriptional activity of NF-kB and the
release of TNF-a induced by LPS as Rg3, and increased the release of TNF-a induced by
LPS at high concentration. The regulatory mechanism of Rh2 on TNF-a is still uncertain.

It maybe involve in some specific mechanism.

6.5 Interaction between NF-kB and cAMP Pathways

It is known that NF-kB can be activated by a series of the PRs in NF-kB pathway, and then
enter into nucleus to transform into promoter to classically transcribe the mRNA

expression of TNF-a*%4. This is supported from findings of the present study ,as well as the

effect of Bay11-7082, an inhibitor of NF-xB pathway (see Chapter 4). .

One of interesting finding is the interaction between NF-kB and cAMP pathways. It has
been demonstrated that the transcriptional activity of NF-kB can be inhibited by activated

cAMP pathway through its down-stream factor (p-CREB) competitively binding with
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CBP?7%280 The elevated the level of cAMP also decreased the release of TNF-o, which
was accompanied with the activation of cAMP pathway*®. However, there was no
evidence on inhibition of release of TNF-a by activated cAMP pathway through down-
regulating the transcriptional activity of NF-«kB. In the present study, Foskolin, a cAMP
pathway stimulator, had no effect on the activity of PRs in NF-kB pathway, but
significantly inhibited the release of TNF-a induced by LPS*®, the effect accompanied
with the increased levels of cellular cAMP and expression of p-CREB, and the decreased
transcriptional activity of NF-kB. The effects of Foskolin were blocked by the cAMP
pathway inhibitor H89. Thus, it is most likely that activated cAMP pathway cause down-

regulate the release of TNF-a through inhibiting the transcriptional activity of NF-kB.

6.6 Inhibition by Ginseng and Ginseng Related Products on the Release of IL-1p and IL-6

IL-1B and IL-6 are the important inflammatory factors in COPD. A previous study in IL-
1B type 1 receptor knockout mice showed that IL-1p was involved in the formation of
emphysema®®’. IL-1B was also involved in the regulation on the production of MMPs*,
The role of IL-6 in the phathogensis of COPD is still uncertain, however, it has been
shown that IL-6 was increased in sputum, bronchoalveolar lavage, and exhaled breath
condensate of COPD patients, especially during exacerbations!>**%?, The concentration IL-

125126227 particularly during

6 was also increased in the plasma of COPD patients
exacerbations®®. In the present study, G115, GHMF-III, Rbl and Rgl significantly
decreased the secretion of IL-1p and IL-6 induced by LPS, the effect was very similar with
the inhibitions by these agents on the release of TNF-a. These results further support the
anti-inflammatory effect of ginseng and ginseng products, and their actions on NF-kB

pathway. 2728,
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6.7 Use of TNF-a Inhibitors for Treating JD in Patients with Active RA.

Controlling the progression of JD is the most important treatment consideration for
managing RA. However, there was no effective drug available to control or slow the

419 Now

progression of JD in active RA until the recent application of TNF-a inhibitors
there clear evidence showing that both TNF-a inhibitors used alone and combined with
MTX significantly improved the progression of JD in active RA patients through valuing
the radiological scores of these patients** 746448452 However, there is still no evidence to
verify which kind of administration of TNF-a inhibitors in combination with MTX or
using alone is better and which particular TNF-a inhibitors are more beneficial for the
improvement of JD in active RA patients. In addition, we are also unclear that the affecting
factor of efficacy of TNF-a inhibitors on the progression of JD in active RA patients. The
present meta-analysis reveal that TNF-a inhibitors (used alone and combined with MTX)
significantly improved the progression of DJ, comparing with MTX used alone, in active
RA patients. Thus, the synergic action of TNF-a inhibitors and MTX should be considered
as a preferred treatment option for managing progression of DJ in active RA patients.
Among the TNF-a inhibitors, INF in combination with MTX seems to be more potent than
others. In addition, the finding of a negative correlation between the inhibition of
progression of DJ by TNF-a inhibitors and the increased level of CRP, ESR or DAS28
indicates that a better clinical outcome may be achieved for RA patients with higher level
CRP, ESR or DAS28 than those patients with lower level CRP, ESR or DAS28. Thus, it is

recommended that TNF-a inhibitors in conjunction with MTX should be used to treat the

progression of DJ for active RA patients, especially for those with the high active risk.
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6.8 Limitations of the Study

The present study has achieved the main research objective to identify the mechanism of
anti-inflammatory actions of ginseng and ginseng related products. However, the study

also has some limitations.

First, the nature of study is in vitro and limited to LPS and CSE related mechanisms. It is
not clear if the observed actions of ginseng also occur in other inflammatory conditions
and more importantly in vivo. Previous studies showed that RG, PDGs, Rg3, Rf and Rh2
significantly inhibited the release of TNF-a in diethyldithiocarbamate and LPS induced
animal model’””,;*®3; Rgl increased the level of cAMP in hippocampus of both young and
old rats, and Rbl also increased the level of cAMP in rat liver compared with that in
controls***. These results indicate that TNF-o, as well as NF-xB and cAMP pathways may

also be the target of ginseng and ginsenosides in vivo.

Second, the present study has used a commercial cell line U937. It is important to extend
the study to primary cells. Previous study demonstrated that ginseng significantly inhibited
the release of TNF-a in OMP, ConA or anti-CD3 induced lung cells from CBA/J mice
374, Rb1 and CK down-regulated the expression of p-IkBo and p-p65 in mouse peritoneal
macrophages induced by LPS**. These results show that ginseng and ginsenosides may
also involve in the regulation on the release of TNF-a and the activation of the key

proteins in NF-kB pathway in primary cells.

Thirdly, the present study only studied key proteins in NF-kB and cAMP pathways, It is
not clear if other mechanisms, including PI3K/Akt and ERK1/2 and P38, are also

involved, as all of them contribute the activation of NF-kB pathway (see chapterl).
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Finally, it should be pointed out the concentrations tested in vitro may not apply to the
situation in vivo, as It is not clear how the body metabolism process affects the absorption

and fate of ginseng and ginseng products in vivo.
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6.9 Future Directions

It is important to carry out further studies on ginseng. Based on the results of the present
study, the following research work can be carried out in the future:

e Test the effects of ginseng, ginseng formulas and ginsenosides in smoke-induced
COPD animal model in vivo.

e Extend the in vitro study to primary human cells and tissues

e Employ gene modification technique to study the role of particular proteins, e.g.
CREB on actions of ginseng

e Conduct further studies on interactions between NF-kB and cAMP pathways on
regulation of cellular cytokine productions in vitro and in vivo

e Conduct clinical studies to evaluate the efficacy and safety of ginseng and effective
ginseng formula on managing COPD.

e Using Mass spectrum and HPLC to find activation compound of Ginseng and
GHMFs.

e And more control experiments need to be down by using GHFs(Ginseng and
HunagQi Extraction), GMFs(Ginseng and Maidong Extraction)and HMFs(Ginseng
free, only HuangQi and Maidong extraction), to narrow down the activate
compounds.

e To identify and the active some molecular compound as NFkB inhibitor or

activator form GHMFs is the goal of future direction.
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Appendix

Appendix 1 : RIPA Buffer

For 250mL stock, to be stored at 4°C:
e 65mM Tris = 1975mg
e 150mM NaCl =2250mg
e Add dd H20 to ~180ml, stir until clear and pH to 7.4 with HCI
e 5mM EDTA =12.5ml of a 100mM stock
e 1% NP-40 =2.5ml of a 100% stock
e 0.5% Na-deoxycholate = 12.5ml of a 10% stock
e 0.1% SDS = 2.5ml of a 10% stock
e 10% glycerol = 25ml of a 100% stock

On the day of use, to a total of 50ml of RIPA buffer, add the following protease and
phosphatase inhibitors:

e lpg/ml aprotinin = 24ul of a 2.1mg/ml stock (inhibits trypsin and related

proteolytic enzymes)

e lpg/ml leupeptin = Sul of a 10mg/ml stock (inhibit cysteine, serine and threonine

peptidases)

e 10mM NaF = 2.5ml of a 200mM stock (inhibits serine and threonine

phosphorylation)
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ImM Na3zVO4 = 250ul of a 200mM stock (inhibits tyrosine phosphorylation)

ImM PMSF = 250ul of a 200mM stock (dissolved in 100% ethanol) (serine

protease inhibitor)

Prosease inhibitor cocktail and phosphatase inhibitor cocktail 250ul respectively.
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Appendix 2: Bradford Protein Concentration Assay

e Dilute the extracts in d-H20

e Make up standards using Bovine Serum Albumen (BSA) at 3, 2, 1.5, 1, 0.75, 0.5,
0.25 mg/ml.

¢ Dilute the Biorad protein dye reagent 1:4 with d-H20 and load this solution in a flat
bottom 96 wells plate (200ul/well).

e Add 10ul standard or protein sample in each well. Perform all samples in duplicate.

¢ Include a room template for 30 minutes.

e Read plate at 595nm.
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Appendix 3: The preparation of 10% Gel

e Thoroughly clean glass plates with detergent, wash with tap water, rinse with

distilled water several times, and air dry.

e Assemble gel unit in the casting mode according to the instructions.

e Check for potential leaks by pipetting some distilled water into the assembled unit.

Then drain away the water by inverting the unit.

e Prepare the separating gel

0 Acrylamidebi-acrylamide(30%) : 8ml

0 3M Tris-Hcl, PH8.8: 3 ml

0 Dd H20: 12.56ml

o 10% SDS: 240pl

o 10% APS: 200ul

o TEMED: 12ul

e Immediately pipette the separating gel mixture into the assembled unit up to level

that is ~3 cm from the top.

e Load 1 ml isopropanol onto the surface of the acrylamide gel solution. The
isopropanol layer will make the surface of the gel very even. After 20 minutes, a

sharp gel-water interface can be visible after the gel has polymerized.

¢ Drain away theisopropanol layer by gently tilting the casting unit and rinse with dd

H20, and dry it.
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e Prepare the stacking gel

0 Acrylamidebi-acrylamide: 1ml

0 2M Tris-Hel, PH6.8: 500ul

0 Dd H20: 6.4ml

0 10% SDS: 80ul

o 10% APS: 200ul

o TEMED: 4pl

e Pipette the stacking get mixture and insert the comb into the unit according to the

instructions.

e Allow the gel to polymerize and sit for 20 minutes.
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Appendix 4: The formulations of various buffers in Western blot

1. Running Buffer

10x Running buffer, for 1L

Glycine — 144g

e Tris Base — 30g

e Add distilled H20 to 900ml

e pHto8.9

e Add 50ml of 10% SDS solution

e AddH:Oto 1L

2. Transfer Buffer

1x Transfer Buffer, for 1L

e 100ml 10 x stock

e 200 ml(20%) methanol

e AddddH.Oto 1L

3. TBS-T

TBS-T (10X) pH: 7.5
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o Trisbase:24.2 ¢

e Sodium Chloride (NaCl): 80.0 g

e Tween-20: 10 ml

e AddddH20O to 1L

e Stripping Buffer

e 62.5ml 1MTris-HCI, pH 6.7

e 100ml 20% SDS

e 837.5ml d- H20

On the day of use add 700ul 2-mercaptoethanol per 100ml
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Appendix 5: NF-kB reporter assay

e Seed 2.5x 105 macrophage-like U937 cells per well of a 24-well plate in 500ul of

an appropriate culture medium containing serum and antibiotics.

e Incubate the cells under normal growth conditions (typically 37°C and 5% COz2) for
24 hours.

e Wash cells in the plate once with Dulbecco’s PBS without calcium and

magnesium.

e Refresh medium with 500ul Opti-MEM® containing 0.6 pug NF-«kB promoter-
firefly/Renilla luciferase (40/1) /Negative control/positive control (QIAGEN Pty.
Ltd.) and 1.5ul attractene transfection reagent (QIAGEN Pty. Ltd.) each well

e Dilute 0.6 pg DNA in 493 ul Dilute 0.6 pug DNA in 60 pl culture medium without
serum. Add 1.5 ul of Attractene Transfection Reagent to the diluted DNA and mix
by vortexing.

e Incubate the samples for 10-15 minutes at room temperature (15-25°C) to allow the

formation of transfection complexes.

e Add the complexes drop-wise onto the cells. Gently swirl the plate to ensure

uniform distribution of the transfection complexes.

e After 18 hrs incubation, refresh the cell with normal culture medium for another

6hrs

e Refresh the medium with treatment drug.

e After 2hrs pre-incubation, treat 1pg/ml LPS for 6hrs.

e After the treatment, the cells were rinsed with cold PBS and lysed with reporter
lysis buffer (Promega) 100ul/well. Place the culture plates on a rocking platform or

orbital shaker with gentle rocking. Rock the culture plates at room temperature for
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15 minutes. The lysate was centrifuged at 15,000 x g for 5 min at 4°C, and the
supernatant was harvested. Transfer the lysate to a tube or vial for further handling

and storage.

Both firefly and Renilla luciferase levels were measured in a luminometer using the

Dual-Glo® Luciferase Reporter Assay System (Promega Australia).

Predispense 100ul of Luciferase Assay Reagent II (LAR II) into each well.
Carefully transfer up to 20pl of cell lysate into the well containing LAR II; mix by
pipetting 2 or 3 times. Do not vortex. Place the plate in the luminometer and initiate
reading. Program the luminometer to perform a 2-seconds premeasurementdelay,

followed by a 10-second measurement period for each reporter assay.

Add100ul of Stop & GloR Reagent into each well and vortex briefly to mix.

Replace the sample in the luminometer, and initiate reading.
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Appendix 6: The protocol of cCAMP assay

1. Buffer Preparation

e EIA Buffer Preparation

Dilute the contents of one vial of EIA Buffer Concentrate (10x) with 90 ml
of Ultra-pure water. Be certain to rinse the vial to remove any salts that may

have precipitated.

e Wash Buffer Preparation

Dilute the Wash Buffer Concentrate (400x) to a total volume of 2 L with

Ultra-pure water and add 1 ml Polysorbate 20.

e Note

Water used to prepare all reagents and buffers must be deionised and free of

trace organic contaminants.

Store all diluted buffers at 4°C; they will be stable for about two months.

2. Preparation of Assay —Specific Reagents

e cAMP AChE Tracer

Dilute 100 dtn cAMP AChE Tracer with 6 ml EIA Buffer.

e cAMP EIA Antiserume

Dilute 100 dtn cAMP EIA Antiserume with 6 ml EIA Buffer.

e Note
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Store the reconstituted cAMP EIA Antiserume at 4C; they will be stable at

least four weeks.

3. Sample Preparation

e Aspirate medium from 24 well-plate

e Add55ulof0.1 M HCL for every well of surface area.

e Incubate at room temperature for 20 minutes.

e Scrape cells off the surface with a cell scraper.

e Dissociate the mixture by pipetting up and down until the suspension is

homogeneous, and transfer to 1 ml centrifuge tube.

e Centrifuge at 1000*g for 10 minutes.

e Decant the supernatant into a new tube.

e The preparation of cAMP standards

e Reconstitute the cAMP EIA standard with 1 ml of EIA buffer. The
concentration of this solution will be 7,500 pmol/ml. Store this solution at

4C; it will be stable for approximately six weeks.

e To prepare the standard for use in EIA

Obtain eight clean 1ml tubes and number them Ithrough 8. Aliquot 900 pl
EIA buffer to tube 1 and 600 pul EIA buffer to tubes 2-8. Transfer 100 ul of
the bulk standard (7500pmol/ml) to tube 1 and mix thoroughly. The
concentration of this standard, the first point on the standard curve, is 750
pmol/ml. Serially dilute the standard by removing 300 pl from tube 1 and
placing in tube2; mix thoroughly. Next, remove 300 pl from tube 2 and

place it into tube 3; mix thoroughly. Repeat this process for tube 4-8. The
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concentrations of these standards are 750 pmol/ml,250 pmol/ml,83.3
pmol/mL,27.8 pmol/ml, 9.3 pmol/ml, 3.1 pmol/ml,1.0 pmol/ml and 0.3
pmol/ml separately. These dilupted standards should not be store for more

than 24 hours.

4. Performing the assay

Add 50 pl ETA buffer to Maximum binding(B0 ) each well.

Add 50ul standard sample in standard well (1-8) and 50 pl sample in

common well.

Add 50ul cAMP AChE Tracer to each well.

Add 50 pl cAMP EIA Antiserum to each well.

Cover each plate with platicfil, and incubate 18 hours at 4C

Reconstitute Ellman’s Reagent immediately before use.

Dilute 100 dtn vial Ellman’s Reagent with 20 ml of Ultra-pure water.

Empty the wells and rinse five times with wash buffer.

Add 200 pl of Ellman’s reagent to each well.

Cover the plate with plastic film. Optimum development is obtained by
using an orbital shaker equipped with a large, flat cover to allow the plate to

develop in the dark for 120 mins.

Wipe the bottom of the plate with a clean tissue to remove fingerprints, dirt,

etc.

Remove the plate cover being careful to keep Ellman’s reagent from

splashing on the cover.
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e Read the plate at 420 nm.

5. Calculations

e Average the absorbance readings from all data.

e C(Calculate the B/BO (sample or standard bound/maximum bound) for the

remaining wells.

e Plot the standard curve

e Plot %B/B0 for standards 1-8 versus cAMP concentration using linear(y)
and log(x) axes and perform a 4-parameter logistic fit. Plot the data as logit

(B/B0) versus log concentrations and perform a linear regression fit.

e Determine the sample concentration

e Determine the concentration of each sample using the equation obtained

from the standard curve plot.
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