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Chapter 1

Introduction

The main objective of the work presented in this thesis is the measurement
of CP violation in the decay B0

s → J/ψϕ. This measurement is a test of the
current model of elementary-particle interactions. It is performed within the
LHCb experiment, which studies particles produced in the proton–proton col-
lisions of the Large Hadron Collider (LHC) at Cern in Geneva, Switzerland.
The results presented here (see also reference [1,2]) are an update of previous
LHCb results [3] with a dataset that is more than three times larger.

Motivations for such a test of particle-physics models are discussed in
Section 1.1. The measurement is introduced in Sections 1.3 and 1.4, after an
introduction to CP violation in this context in Section 1.2.

Details of the phenomenology of the B0
s → J/ψϕ decay are discussed in

Chapter 2. A discussion of the measurement and the applied data-analysis
techniques can be found in Chapter 3. Finally, results of the measurement are
presented in Chapter 4.

1.1 The Standard Model of Particle Physics

1.1.1 Elementary-Particle Interactions

Interactions between quarks and leptons are described by the Standard Model
of Particle Physics (Standard Model, SM).The Standard Model unifies the elec-
tromagnetic and weak forces in a theory of electroweak interactions [4], while
strong interactions are described separately by Quantum Chromodynamics
(QCD) [5]. Both theories are based on quantum field theory, in which quarks

1



2 Chapter 1. Introduction

and leptons are described as fermionic fields that interact via bosonic fields.
In the electroweak model there are four vector bosons that mediate inter-

actions, three of which acquire a mass through the Brout-Englert-Higgs (BEH)
mechanism [6]. Generating particle masses with this mechanism implies the
existence of the scalar Higgs boson, which was recently discovered by the At-
las and CMS experiments at the LHC [7]. The BEH mechanism is believed to
be also responsible for generating the masses of quarks and leptons through
so-called Yukawa interactions.

The three massive vector bosons are the W+, the W– and the Z0. These
particles are the carriers of the weak interaction. The remaining massless
vector boson is the photon, which mediates the electromagnetic interaction.

Contrary to leptons, quarks carry the “charge” of the strong force, or
colour. This makes them subject to strong interactions, described by QCD.
The mediators of the strong interaction are gluons, which come in eight dif-
ferent types and are themselves colour-charged particles.

One of the features of the strong force is that it becomes weaker with
increasing interaction energy. This phenomenon is called asymptotic free-
dom [8]. The increasing interaction strength with decreasing energy (or,
equivalently, increasing interaction distance) makes it impossible to com-
pletely separate coloured particles. As a result, quarks and gluons are confined
within colour-neutral objects, such as hadrons.

Low-energyQCD interactions between quarks and gluonswithin hadrons
are so strong that they cannot be described with perturbation theory, where
amplitudes are expanded as a series in the coupling strength of the interac-
tion. The series would diverge and the exact solution of a calculation is not
approximated by the leading terms in the series. Numerical methods may be
applied to treat low-energy QCD interactions in an alternative way. Strong
interactions at high energies and electroweak interactions can be described
with perturbative methods.

Decays of hadrons that contain heavy quarks can be approximately de-
scribed using a factorization approach. In the case of B0

s mesons, for example,
the decay of the constituent b quark is treated separately from the strong in-
teractions among the quarks in the B0

s meson and its decay products. The
decay takes place at a relatively high energy scale set by the b-quark mass
and is calculated perturbatively. The strong hadronic interactions are less
energetic and non-perturbative.

For the decay of a (heavy) quark or lepton a transition to one of the lighter
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quarks or leptons is required. In the Standard Model, such a flavour change is
only possible in a weak interaction that is mediated by the W± boson [9–11].
This mixing of quark flavours in the context of meson decays is discussed in
more detail in Section 1.2.1.

Another interesting property of the weak interaction is that it only cou-
ples to left-handed particle states and to right-handed antiparticle states. As
a result, two transformations are needed to obtain the equivalent antiparticle
interaction for a given particle interaction: A charge-conjugation operation
(C) transforms particles into the corresponding antiparticles and a parity op-
eration (P) inverts spatial coordinates, which transforms left-handed states
into right-handed states.

Most interactions in the Standard Model are invariant under the com-
bined C and P operation, which makes matter and antimatter almost sym-
metric. The only source of CP-symmetry violation is the flavour-changing
weak interaction. Measurements of the amount of CP violation provide tests
of the Standard Model description of particle interactions, which is discussed
in Section 1.2.2.

In addition to the charge and parity operations there is the transformation
of time reversal (T), which inverts the time coordinate. Quantum field theory
is based on the principle of Lorentz invariance, which implies invariance un-
der a combined C, P, and T transformation for any interaction [12]. CPT is
assumed to be an exact symmetry in the studies presented in this thesis.

1.1.2 Beyond the Standard Model

Since the start of its construction in the 1960s, the Standard Model has been
tested extensively by experiments. Interactions of elementary particles have
been studied over a wide range of energies, both with particles that natu-
rally occur and with particles created in laboratories. The Standard Model
has proven to be a consistent description of particle physics.

Despite its success, there are strong motivations for developing descrip-
tions of particle physics that go beyond the Standard Model. Some of these
motivations are theoretical, while others are based on experimental observa-
tions.

The Standard Model contains 18 parameters, for which it predicts no val-
ues. There are nine unpredicted quark and lepton masses, the mass and vac-
uum expectation value of the Higgs field, four quark-mixing parameters (see
Section 1.2.1), and three interaction coupling constants. These parameters
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have been measured, but it would be more satisfying to have a more funda-
mental description without unpredicted quantities.

Another missing feature in the Standard Model is unification of all forces.
While the electric and magnetic forces are unified in electromagnetism and
the electromagnetic and weak forces in electroweak theory, the Standard
Model does not attempt to unify the electroweak and strong forces. The
gravitational force is left out completely. Although not strictly necessary to
describe the physics of current experiments, the knowledge of how to de-
scribe all these phenomena consistently would significantly improve our un-
derstanding of nature.

There is amore practical theoretical issue known as the hierarchy problem.
The mass of the Higgs boson is affected by quantum corrections from loops of
other particles. These corrections are large and with only the particles in the
Standard Model one would expect the Higgs mass to be much larger than the
measured value [13]. The only way to get around this within the Standard
Model is a careful fine-tuning of its parameters, which is considered to be
unnatural.

Several experimental observations also indicate that the current Standard
Model is incomplete. Experiments studying neutrinos from various sources
have observed transitions between neutrinos from different generations [14].
This implies mixing between leptons of different flavours, but also non-zero
neutrino masses. Neutrinos are massless in the original Standard Model, but
in principle their masses can be included by a minimal extension, assuming
neutrino masses have the same origin as quark and charged-lepton masses.

There is also a more exciting possibility to include neutrino masses. Since
all quantum numbers of neutrinos and antineutrinos are equal, neutrinos
may be their own antiparticles, which could lead to Majorana mass compo-
nents [15]. This scenario would open up new possibilities to explain why
neutrino masses are so much smaller than quark and charged-lepton masses.
The masses of the left-handed Standard Model neutrinos could be suppressed
by the very large masses of hypothetical right-handed Majorana neutrinos
via a so-called see-saw mechanism [16].

A related observation is that the universe contains matter, but almost no
antimatter. One of the required conditions to create such an imbalance is a
sufficient amount of CP violation in particle interactions [17]. CP violation in
the Standard Model is believed to be too small to generate the large matter–
antimatter asymmetry that is observed [18].



1.1. The Standard Model of Particle Physics 5

The right-handed neutrinos introduced by a see-saw mechanism would
also provide a natural way to introduce the required additional CP violation in
particle interactions. Couplings of charged leptons to these neutrinos would
in general be CP violating, which leads to a lepton–antilepton asymmetry in
neutrino decays. This asymmetry for leptons could subsequently lead to an
asymmetry for baryons [19].

There are other cosmological observations that also suggest the need for
extensions of the Standard Model. If measurements of the spatial fluctuations
in the cosmic microwave background are interpreted with the current cosmo-
logical models, the bulk of the matter in the universe has an unknown ori-
gin [20]. Less than a fifth is conventional matter, which consists of Standard
Model particles. The remainder interacts neither strongly nor electromag-
netically and is therefore termed dark matter. The Standard Model does not
provide any particles that would be viable candidates to form dark matter.

Besides see-saw mechanisms, there are many other ideas on how to ex-
tend the Standard Model, or even to find a more fundamental theory. A pop-
ular candidate is Supersymmetry [21], which leads to a class of models to be
tested by experiments. Supersymmetry is based on an additional symmetry
between bosons and fermions, which would give all particles in the Standard
Model a so-called “superpartner”. Introducing these additional particles could
solve the hierarchy problem, may provide a dark-matter candidate, and could
be a first step towards unification of the electroweak and strong forces. See
reference [22] for a recent review of the status of Supersymmetry.

To make progress in the search for a more complete theory, observations
of particle interactions that cannot be described with the Standard Model are
needed. There are two different approaches to search for such inconsistencies.
One can assume a particular beyond-the-Standard Model theory and test its
predictions in a measurement. An example of this top-down approach is to
search for signs of the additional particles predicted by Supersymmetry. The
other method is a bottom-up search, where the Standard Model predictions
are tested instead.

In the bottom-up approach one generally searches for small deviations
in predictions for well-known processes. An example is the work presented
here, which is a study of the variables in the decay of a Standard Model parti-
cle, the B0

s meson. This particle is produced abundantly in the proton–proton
collisions of the LHC and its decays have been studied previously by other
collider experiments. One of the particularly interesting decays is that into a
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J/ψ and a ϕ(1020) meson, which could exhibit CP violation [23].
CP violation in the B0

s → J/ψϕ decay1 as predicted by the StandardModel
is very small. Studies of various extensions of the Standard Model show that
it can be significantly enhanced by introducing new contributions to this pro-
cess [24, 25]. The decay is also experimentally accessible, which makes it an
excellent tool to search for deviations from the Standard Model prediction.

The B0
s meson and the B0

s → J/ψϕ decay will be further introduced in Sec-
tion 1.3. First an overview of CP violation within the context of the Standard
Model is given in the next section.

1.2 Quark-Flavour Physics and CP Violation

1.2.1 Quark Mixing

The Feynman diagrams for the charged weak current that changes the flavour
of a quark are shown in Figure 1.1. The subscript “L” on the quark indicates
that only quark states with a left-handed chirality participate in this interac-
tion.

d′L uL

W

s′L cL

W

b′L tL

W

Figure 1.1: Charged-current weak interactions of quarks.

The primes on the d′L, s′L and b′L down-type quarks in the figure indicate
that the states that couple to the W boson are not the quark mass eigenstates.
The down-type states in the interaction are given by a rotation of the mass
eigenstates, which is described by the Cabibbo-Kobayashi-Maskawa (CKM)
quark-mixing matrix [11]:d′L

s′L
b′L

 ≡ VCKM

dL
sL
bL

 ≡

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

dL
sL
bL

 . (1.1)

1The symbol “ϕ” will be understood to mean “ϕ(1020)” in this context.



1.2. Quark-Flavour Physics and CP Violation 7

Diagrams with W-boson interactions in which only the quark mass eigen-
states occur are proportional to the corresponding matrix elements Vij . A
similar mechanism applies for mixing of leptons [26].

The CKMmatrix is a unitary complex matrix. The number of independent
parameters in the matrix is limited by the constraint of unitarity and by the
fact that part of the complex phases of the matrix elements can be absorbed
in the arbitrary phases of the quark fields. The representation of the CKM
matrix in terms of the four remaining parameters is convention dependent.
A commonly used choice is theWolfenstein parameterizationwith real-valued
Vud, Vus, Vcb, and Vtb and a single complex phase entering in the other ele-
ments [27]. Four real parameters, λ, A, ρ, and η, are then defined by

λ ≡ |Vus|√
|Vud|2 + |Vus|2

Aλ2 ≡
|Vcb|√

|Vud|2 + |Vus|2
Aλ3(ρ+ iη) ≡ V ∗

ub .

(1.2)
TheWolfenstein parameterization of the CKM matrix is motivated by the

orders of magnitude of matrix elements. The magnitudes of the diagonal el-
ements Vud, Vcs and Vtb, which describe the coupling between up-type and
down-type quarks of the same generation, are approximately equal to one.
Magnitudes of the couplings between the first and second generation are be-
tween a factor four and five smaller: |Vus| ≈ |Vcd| ≈ λ ≈ 0.23 [28, 29].

Couplings between the second and third and between the first and third
generation are suppressed by factors λ2 and λ3, respectively: |Vcb| ≈ |Vts | ≈
Aλ2 ≈ 0.04, |Vub| = Aλ3|ρ + iη| ≈ 0.004, and |Vtd| ≈ Aλ3|1 − ρ − iη| ≈
0.009. In this form of the Wolfenstein parameterization the complex phase is
introduced with the parameters ρ ≈ 0.13 and η ≈ 0.36, where arg(V ∗

ub) =
arg(ρ+ iη) ≈ 70◦.

The CKM matrix can be expanded in terms of the small parameter λ. Ne-
glecting terms of order λ4 and higher relative to the leading term for each
element, it is approximated by [28]

VCKM ≈

 c λ Aλ3 r∗

−λ c Aλ2

Aλ3(1− c r) −Aλ2(c+ λ2 r) 1

 , (1.3)

where c ≡ 1− 1
2λ

2 and r ≡ ρ+ iη.
Notice that only the elements Vub, Vtd and Vts have non-vanishing imag-

inary parts in this approximation. In Vts the parameter r is suppressed by
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a factor λ2, which makes the imaginary part of this element much smaller
than the real part. For Vcd and Vcs the suppression factors are λ4 and λ6,
respectively, which results in vanishing imaginary parts.

1.2.2 CP Violation

The Standard Model mixing formalism was introduced for quarks, but it also
applies to antiquarks. A CP operation on the states in Figure 1.1 results in the
interactions of right-handed antiquark states with the W boson.

In the transformation from quarks to antiquarks the CKM-matrix ele-
ments in the weak interaction states are replaced with their complex conju-
gates. If there were no complex phase in the CKMmatrix, its elements would
be real and the weak interactions of quarks would be invariant under the CP
transformation. Introducing a complex phase breaks this invariance and gives
rise to CP violation. The CKMmatrix is the only source of CP violation in the
Standard Model with massless neutrinos.

Although the complex phase in the CKM matrix formally breaks CP in-
variance, CP-violating phenomena cannot be observed directly in processes
that are described by a single amplitude withW-boson interactions. Themag-
nitude of an amplitude is squared to obtain the corresponding observable
probability, which makes its phase unobservable.

CP violation can only be observed in processes where two or more ampli-
tudes with different CKM elements interfere. The CKM elements then in-
troduce a different weak phase for each contribution, which changes sign
between CP-conjugate processes. Differences between the weak phases do
affect the observable magnitude of the total amplitude, provided that the con-
tributing amplitudes also have different strong phases, which do not change
sign under a CP transformation.

This can be illustrated by considering two interfering amplitudes A1 and
A2 with CKM factors F1 and F2. The asymmetry between the squared mag-
nitudes for CP-conjugate processes is then given by

ACP ≡ |A|2 − |A|2

|A|2 + |A|2
=

|F1A1 + F2A2|2 − |F ∗
1 A1 + F ∗

2 A2|2

|F1A1 + F2A2|2 + |F ∗
1 A1 + F ∗

2 A2|2

=
−2R sin(∆δ) sin(∆ϕ)

1 +R2 + 2R cos(∆δ) cos(∆ϕ)
,

(1.4)

where R ≡ |F2| |A2|
|F1| |A1| ,∆δ ≡ arg(A2)− arg(A1) and∆ϕ ≡ arg(F2)− arg(F1).

Notice that the CP asymmetry vanishes if there is no weak phase difference
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∆ϕ, but also if there is no strong phase difference ∆δ. The size of the asym-
metry also depends on the relative magnitudes of the amplitudes and CKM
factors. It vanishes in case the product |F2| |A2| is much smaller than its
counterpart |F1| |A1|.

To construct convention-independent measures of CP violation in quark
interactions, the CKM-matrix unitarity constraints are used. The unitarity
relation V †

CKMVCKM = VCKMV
†
CKM = 1 gives nine constraints. Six of these are

orthogonality relations, two of which are given by

“d–b”: VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

⇒ 1 +
VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

= 0 (1.5a)

“s–b”: VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0

⇒ 1 +
VusV

∗
ub

VcsV
∗
cb

+
VtsV

∗
tb

VcsV
∗
cb

= 0 . (1.5b)

Notice that the phases of the combinations of four CKM elements that
appear in Equation 1.5 are of the form

arg
(

VijV
∗
il

VklV
∗
kj

)
= arg(VijVklV

∗
ilV

∗
kj)

Each of the quark indices on the right-hand side of this expression appears
twice; once for a matrix element and once for the complex conjugate of a
matrix element. Absorbing CKM phases in the quark fields gives opposite
phase shifts for the two corresponding elements, which makes the phase of
the four-element combination invariant and convention independent.

The three terms in each of the orthogonality relations can be used to con-
struct a triangle in the complex plane. The resulting unitarity triangles are
schematically shown in Figure 1.2. Figure 1.2a shows the d–b triangle, which
corresponds to Equation 1.5a. Its sides are defined by the CKM elements for
the couplings of the up-type quarks and the down/beauty quarks. The angles
α, β and γ are defined by

α ≡ arg
(
−

VtdV
∗
tb

VudV
∗
ub

)
β ≡ arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
γ ≡ arg

(
−
VudV

∗
ub

VcdV
∗
cb

)
.

(1.6)
The coordinates of the triangle apex are defined as (ρ, η).
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ℜ

ℑ

(0,0) (1,0)

(ρ,η)
V
td V ∗tb

V
cd V ∗cb

V ud
V

∗
ub

V cd
V

∗
cb

α

βγ

(a)

ℜ

ℑ

(0,0) (1,0)

(ρs,ηs)

V ts
V
∗
tb

Vcs
V
∗
cb

V u
s
V

∗
ub

V c
s
V

∗
cb

αs

βsγs

(b)

Figure 1.2: CKM unitarity triangles (figures from [30]). (a) d–b triangle, cor-
responding to Equation 1.5a. (b) s–b triangle, corresponding to Equation 1.5b.

Equation 1.5b gives the s–b triangle in Figure 1.2b. It is defined in a sim-
ilar way as the d–b triangle, but its apex has negative real and imaginary
coordinates (ρs, ηs). The angles αs, βs and γs are defined by

αs ≡ arg
(
−
VusV

∗
ub

VtsV
∗
tb

)
βs ≡ arg

(
−
VtsV

∗
tb

VcsV
∗
cb

)
γs ≡ arg

(
−
VcsV

∗
cb

VusV
∗
ub

)
.

(1.7)
In Figure 1.2 the sides of the s–b and d–b triangles were scaledwith factors

VcdV
∗
cb and VcsV

∗
cb, respectively, to make the first side lie along the real axis

between 0 and 1. Without this scaling, the surface areas of all six possible
unitarity triangles are equal and provide a convention-independent measure
of the CP violation that is introduced by the CKMmatrix. The areas are given
by half of the Jarlskog invariant (J ) [31], which is defined by

ℑ(VijVklV
∗
ilV

∗
kj) ≡ J

∑
m,n

ϵikm ϵjln , (1.8)

where ϵ is the Levi-Civita symbol (no summation over the i, j, k, and l indices
implied).

Using the Wolfenstein parameterization and neglecting terms of relative
order λ4 and higher (Equation 1.3), the Jarlskog invariant can be expressed as

J ≈ A2 λ6 (1− 1
2λ

2) η . (1.9)
Its experimental value is approximately 3 · 10–5 [28, 29]. This value is four
orders of magnitude smaller than the theoretical maximum of 1

6
√
3 ≈ 0.1 given

by unitarity.
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In the same relative λ3 approximation, the only CKM-matrix elements
with imaginary parts are Vub, Vtd and Vts . Using the approximations from
Equation 1.3 and the angle definitions from Equations 1.6 and 1.7, the angles
γ, β, and βs are approximated by

γ ≈ π − γs ≈ arg(V ∗
ub) ≈ arctan

(
η

ρ

)
(1.10a)

β ≈ − arg(Vtd) ≈ arctan
(

(1− 1
2λ

2) η

1− (1− 1
2λ

2) ρ

)
(1.10b)

βs ≈ arg(−Vts ) ≈ arctan
(

λ2 η

1− 1
2λ

2 + λ2ρ

)
. (1.10c)

Expanding the expressions for the angles α and αs in the same way gives the
expected relations between the three angles in a triangle:

α ≈ π + arg(Vtd)− arg(V ∗
ub) ≈ π − β − γ (1.11a)

αs ≈ arg(V ∗
ub)− arg(−Vts ) ≈ π − βs − γs . (1.11b)

The experimental values of the CKM angles can be determined by a global
fit of the Standard Model to all relevant experimental data. Two of the groups
that are doing such a fit are CKMfitter and UTfit, which are using different
statistical methods and slightly different sets of input data. With the exper-
imental data that were available in the spring of 2013, the CKMfitter group
finds [28]

γ = (69.7+1.3
−2.8)

◦ β = (21.8+0.8
−0.7)

◦ βs = (1.05± 0.04)◦ . (1.12)

Figures 1.3 and 1.4 show the resulting CKMfitter unitarity triangles, to-
gether with the constraints on the coordinates of the triangle apices. At low-
est order inλ the apices of the d–b and s–b triangles are given by (ρ, η) ≈ (ρ, η)
and (ρs, ηs) ≈ (−λ2 ρ, −λ2 η), respectively. Constraints from the fit are given
by

(ρ, η) = (+0.129+0.018
−0.009, +0.348+0.012

−0.012)

(ρs, ηs) = (−0.0068+0.0005
−0.0010, −0.0185+0.0006

−0.0007)
(1.13)

The UTfit collaboration finds slightly different values for the angles with
the data available by summer 2013 [29]:

γ = (70.3± 3.5)◦ β = (22.0± 0.9)◦ βs = (1.07± 0.04)◦ . (1.14)
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Figure 1.3: Constraints on the d–b unitarity triangle resulting from the global
Standard-Model fit by the CKMfitter group [28]. The fit estimates the coordinates
of the triangle apex in the complex plane, which is given by the parameters ρ ≈ ρ
and η ≈ η. Constraints on these parameters from the measurements that are
input to the fit are shown as the coloured bands.
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Quark-flavour changing interactions and the CKM picture of CP violation
provide excellent probes for testing the Standard Model. They yield many
experimental observables, which all depend on only four independent CKM
parameters. If the measurement of one of these observables deviates from the
value predicted by a global fit or from the value from another measurement,
this would be clear evidence for physics beyond the Standard Model.

As will be discussed in the next section, the CP-violation measurement in
the B0

s → J/ψϕ decay yields the phase ϕs. This phase is approximately equal
to –2βs in the Standard Model. The value of the angle βs is very small, since
the imaginary part of Vts is proportional to a factor λ2 (see Equations 1.3 and
1.10c). Even if contributions of unknown new physics to ϕs are small, they
could still significantly add to the suppressed Standard Model contribution.

1.3 CP Violation in the B0
s → J/ψϕ Decay

1.3.1 The B0
s–B0

s System

The B0
s meson is a QCD bound state of an anti-b quark and an s quark. Its

antiparticle is the B0
s meson (b and anti-s). The B0

s and B0
s are charge-neutral

particles, which makes it possible to convert one into the other. Figure 1.5
shows the lowest-order diagrams for this transition.

s

B0
s

s

B0
s

t,c,u

W

b

W

b t,c,u

(a)

s

B0
s

s

B0
s

W−

t,c,u

b

b W+

t,c,u

(b)

Figure 1.5: Lowest-order diagrams for B0s–B
0
s mixing (figures from [3]).

Their mixing makes the B0
s and B0

s a coupled system of particles. The
system comprises two eigenstates with different masses and mean lifetimes
(see Section 2.1.1). A particle that is created as B0

s can at a later point in time
be observed as either a B0

s or a B0
s . As a result, the distribution of the time at

which the B0
s–B0

s system decays is not a simple exponential, as it would be in
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the absence of mixing. Because the expression for the probability to observe
the system as a B0

s or a B0
s as a function of time contains sinusoidal terms,

mixing is often referred to as “B0
s–B0

s oscillations”.
The decay time is defined as the elapsed time between the production and

the decay of the B0
s–B0

s system in its rest frame. In Section 2.1 the exact shape
of the decay-time dependence will be discussed. The applied formalism is
common to the D0, B0 and B0

s mesons and, to some extend, also the K0 meson,
which all mix with their respective antiparticles.

The parameters used to describe the B0
s–B0

s system are the mean decay
width, Γs, the difference between the decay widths of the eigenstates, ∆Γs,
and the difference between the masses of the eigenstates,∆ms. By definition,
the mean lifetime of the system is given by τs ≡ 1

Γs
. The mass difference will

turn out to be the frequency of the oscillations of the B0
s–B0

s probability in
time.

In the Standard Model, CP violation enters the mixing process through
the CKM-matrix elements at W-boson vertices. The amplitudes in Figure 1.5
depend on the mass of the internal up-type quark, which makes the B0

s–B0
s

mixing process dominated by diagrams with virtual top quarks. As a result,
CP violation is small, since it requires multiple contributions with different
weak phases. In terms of Equation 1.4, this corresponds to a small value ofR,
which suppresses the CP asymmetry.

The additional contributions that do give rise to small CP violation in mix-
ing are transitions via real intermediate states into which both B0

s and B0
s can

decay, which will be discussed in more detail in Section 2.1. The asymmetry
between the B0

s → B0
s and B0

s → B0
s rates is measured to be approximately one

per cent [32]. Given the current experimental uncertainties, this is compatible
with no CP violation.

Depending on the final state, there may also be different amplitudes con-
tributing to the decay of the B0

s meson. Also then interference can lead to
different decay rates, in this case for the B0

s → f and B0
s → f processes. This

form is termed CP violation in decay.
The first significant observation of CP violation in the B0

s system was re-
cently obtained by LHCb [33]. This was a measurement of CP violation in
decay for B0

s → K+π- and B0
s → K–π+, where an asymmetry in the decay

rates of about 30% was found.
An interesting situation occurs if both B0

s and B0
s can decay into the same

final state f ′. In that case the processes B0
s → f ′ and B0

s → B0
s → f ′ interfere,
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B0
s f ′

−ϕdec

−ϕdec−ϕmix B0
s

Figure 1.6: Interference between the B0s → f ′ and B0s → B0s → f ′ processes.
The phases ϕmix, ϕdec, and ϕdec are the relevant weak phases contributing to the
two decay paths from the mixing, B0s decay and B0s decay, respectively. This is
assuming no CP violation in mixing or CP violation in decay.

which is depicted schematically in Figure 1.6. Even without CP violation in
mixing or CP violation in decay, the interference of these two decay pathsmay
cause a difference between the rates of B0

s(→ B0
s) → f ′ and B0

s(→ B0
s) → f ′.

This difference is called CP violation in the interference of decays with and
decays without mixing.

Interference between the decays with and without mixing leads to a CP
asymmetry that depends on the decay time. A sinusoidal term is introduced
in the differential decay rate as a function of decay time with an amplitude
that depends on the amount of CP violation. This oscillation originates from
the time dependence of the transition amplitudes in B0

s–B0
s mixing and conse-

quently has a frequency equal to the mass difference∆ms. In an experiment
it is important to resolve the resulting oscillation in the decay-time distribu-
tion, which enables the measurement of its amplitude and hence the amount
of CP violation.

A special case of this form of CP violation is the one where f ′ is a CP
eigenstate. In this case f ′ and f ′ are identical and CP violation results in a
difference between the decay rates of B0

s(→ B0
s) → f ′ and B0

s(→ B0
s) → f ′.

An example of such a decay is the so-called “golden mode” B0 → J/ψK0
S.

The combination of CKM-matrix elements from B0–B0 mixing and the B0 →
J/ψK0

S decay makes the amplitude of the oscillations in decay time depend on
the CKM angle β. The measurement of β with this decay mode by the BaBar
and Belle experiments [34] was the first observation of CP violation in B0

decays. The result of combining all currently available measurements of the
angle β [32] is consistent with the value obtained from the global Standard
Model fits [28, 29].
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1.3.2 B0
s → J/ψϕ Decay

The B0
s → J/ψϕ decay2 of the B0

s system is equivalent to the B0 → J/ψK0
S

decay of the B0 system. Its decay-time distribution depends on the angle βs
instead of β, as will be shown below.

However, in comparison to B0 → J/ψK0
S, a complication arises from the

fact that both the J/ψ and the ϕ are spin-one mesons, whereas the K0
S is a

spin-zero meson. This leads to three possible orbital angular momentum con-
figurations of the J/ψϕ system, compared to one configuration for the J/ψK0

S
system. As a result, the B0

s → J/ψϕ decay comprises three different CP eigen-
states instead of one. The contributions of these states must be statistically
separated by an analysis of the J/ψ and ϕ spin polarizations for an optimal
measurement [35, 36], as will be explained in Section 2.2.

s
B0
s

s

c

b
W+

c

s

J/ψ

ϕ

(a)

s
B0
s

s

c

b u,c,t
c

W+

s

J/ψ

ϕ

(b)

Figure 1.7: B0s → J/ψϕ decay (figures from [3]): (a) tree-level diagram; (b)
penguin diagram. The curled/dashed line in (b) represents a colour-neutral state,
which can be a Z0, a photon, or colour-singlet gluons.

At quark level, the B0
s → J/ψϕ decay is a b → ccs transition. The b quark

decays into an s quark and a cc pair, where the s quark forms a ϕ meson with
the spectator s quark and the cc pair forms a J/ψmeson. Figure 1.7a shows the
dominant Standard Model contribution. This is a tree-level diagram, which is
proportional to the CKM-matrix elements Vcs and V ∗

cb.
Since the CP-violation phenomenology is governed by B0

s–B0
s mixing and

the b → ccs transition, decays in which the cc and ss pairs form different

2Charge-conjugate particles, CP-conjugate decays and neutral-meson mixing are implied,
unless stated otherwise.
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mesons may be used in addition to B0
s → J/ψϕ. An example is the B0

s →
J/ψπ+π– decay [37], which is also used by LHCb to measure ϕs.

The dominant contributions to the B0
s–B0

s mixing with internal top quarks
(Figure 1.5) are proportional to (VtsV

∗
tb)

2. In combination with the tree-level
decay, these give a weak phase difference between decays with and decays
without mixing of

arg
[
(VtsV

∗
tb)

2
]
+ arg (V ∗

csVcb)− arg (VcsV
∗
cb)

= 2 arg
(
−
VtsV

∗
tb

VcsV
∗
cb

)
= 2βs ,

(1.15)

where the first contribution comes from the B0
s → B0

s transition, the second
contribution from the subsequent B0

s decay, and the third contribution from
the B0

s decay path without mixing.
Additional contributions to the mixing and decay processes can affect this

prediction of the weak phase. The quantity that is observed in this measure-
ment is the phase ϕs, which is equal to –2βs with the above assumptions.3

In the Standard Model, corrections come from the mixing diagrams with
real states and from higher order contributions to the decay. While the former
lead to small StandardModel CP violation in mixing, these amplitudes are not
expected to contribute significantly to the value of ϕs (see Section 2.1.3). An
example of an additional contribution to the decay is the penguin diagram
in Figure 1.7b. Although hard to estimate, small contributions from penguin
diagrams to the decay are expected [38].

Apart from CP violation in the interference between decays with and de-
cays without mixing, the B0

s → J/ψϕ process is affected by CP violation
in mixing and by CP violation in decay. As discussed above, CP violation
in mixing is small and its effects are not expected to be measurable in the
B0
s → J/ψϕ measurement. CP violation in decay arises from interference

between different decay amplitudes. Since the decay is dominated by the
tree-level amplitude, also CP violation in decay is expected to be small in the
B0
s → J/ψϕ process.
Beyond the Standard Model, CP violation can arise from new contribu-

tions to the B0
s–B0

s mixing process [23,24] as well as the B0
s decay [25]. In gen-

3There are various, often contradicting notations of the phase difference in use. In this
work βs is the CKM-triangle angle (Equation 1.7) and ϕs the model-independent observable
(see Sections 2.2 and 2.3.1). If only dominant Standard Model contributions to both mixing
and decay are considered, ϕs is equal to –2βs.
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eral it is expected that potential corrections to the Standard Model are largest
in processes with virtual particles in loops at lowest order. Loop processes
are smaller than tree-level processes, which makes Standard Model contri-
butions compete with potential new contributions at the same level. New
particles must be heavy and cannot be created in decays of Standard Model
particles. In loop processes, however, they can enter as virtual particles and
replace, for example, the internal top quarks in the B0

s–B0
s mixing diagrams.

For these reasons, the focus of the measurement will be on mixing-induced
CP violation rather than CP violation that arises from the B0

s → J/ψϕ decay,
which is dominated by the tree-level amplitude in Figure 1.7a.

If the effect of new contributions on the value of ϕs is large compared to
the Standard Model prediction, the corresponding deviation can be revealed
by the measurement of a large non-zero value of ϕs. In this case an exact
estimate of the Standard Model value is not required and subleading penguin
contributions can be neglected. Such a large deviation could be detected by
a low-statistics measurement, which would not have the precision to distin-
guish between the cases of no CP violation, the Standard Model, and a small
deviation from the Standard Model.

Measurements of ϕs with the B0
s → J/ψϕ decay prior to this thesis have

been performed by the D0 [39], CDF [40], Atlas [41], and LHCb [3] exper-
iments. LHCb also measured ϕs in the B0

s → J/ψπ+π– decay channel [42].
All measurements and their combination [32] are compatible with no CP vi-
olation and also with the value of βs from the Standard Model fit. The LHCb
measurement in the B0

s → J/ψϕ channel yielded

ϕs = +0.07 ± 0.09 (stat.) ± 0.01 (syst.) rad , (1.16)

where the first uncertainty is statistical and the second systematic. This value
is to be compared with the Standard Model estimate –2βs = –0.0368+0.0013–0.0014 rad
(see Equation 1.12 and reference [28]).

A measurement of the decay-time distribution in B0
s → J/ψϕ is not only

sensitive to the phase ϕs, but also to the lifetime parameters of the B0
s–B0

s
system. The previously mentioned CP violation measurements yielded esti-
mates of Γs and ∆Γs as well. These parameters were also estimated by CMS
in a measurement that assumed no CP violation [43].

In the Standard Model the parameter Γs is expected to be equal to the
B0 decay width, Γd, up to relative corrections of the order of 10–3 [44]. Γd
is measured to be 0.6583 ± 0.0030 ps–1 [32]. A prediction of the decay-width
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Figure 1.8: Combination of ϕs (here represented as ϕccs
s ) and ∆Γs measure-

ments by HFAG [32]. The estimates at 68% confidence level (CL) by the different
experiments are shown by the dashed contours. Note that the LHCb contour is
a combination of measurements in the B0s → J/ψϕ and B0s → J/ψ π+π– de-
cays. The combined 68% confidence region is shown by the shaded area and the
Standard Model prediction by the vertical bar.

difference ∆Γs yields 0.087 ± 0.021 ps–1 [44]. The measurements of Γs and
∆Γs and their combination [32] are compatible with these predictions. The
estimates from the LHCb measurement are given by

Γs = 0.663 ± 0.005 (stat.) ± 0.006 (syst.) ps–1 (1.17a)
∆Γs = 0.100 ± 0.016 (stat.) ± 0.003 (syst.) ps–1 . (1.17b)

A graphical representation of the status of ϕs and ∆Γs measurements in
the spring of 2014 by the Heavy Flavour Averaging Group (HFAG) is shown
in Figure 1.8. The LHCb contribution is a combination of the B0

s → J/ψϕ and
B0
s → J/ψπ+π– results with data from 2011, which form roughly one third

of the currently available dataset. The 68% confidence-level (CL) contour of
the combined result is consistent with the region that represents the Standard
Model prediction.

As it is clear from Figure 1.8 that possible effects fromnon-StandardModel
physics on ϕs and ∆Γs cannot be large, more precise measurements are re-
quired to probe them. With the currently available LHCb data, combination
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of the ϕs estimates from the two decay channels is expected to reach a pre-
cision of approximately 0.04 rad, which is roughly equal to the value of the
Standard Model prediction. An improvement of this precision by an order of
magnitude is expected with future LHCb data.

For a measurement with this precision, effects have to be taken into ac-
count that have not been considered for previous measurements. A precise
estimate of Standard Model CP violation is required, which also includes
higher order penguin contributions to the b → ccs transition. A compli-
cation arises from the fact that these additional contributions affect the value
of ϕs differently for the B0

s → J/ψϕ and B0
s → J/ψπ+π– decays and for the

different intermediate states that contribute to the decays [38]. Moreover,
physics beyond the Standard Model may also affect all intermediate states
differently [25]. These effects need to be considered not only in theoretical
predictions, but also in measurements.

In the B0
s → J/ψϕmeasurement that is presented in this thesis the depen-

dence of CP violation on the intermediate state is taken into account for the
first time. The value of ϕs is estimated separately for each of the CP eigen-
states in the decay, which is possible if the contributions of the states are
statistically separated. The decay model for this measurement is presented in
Chapter 2.

1.3.3 The μ+μ–K+K– Final State

The J/ψϕ system is unstable and only its decay products can be detected.
There are many possibilities for both the J/ψ and ϕ mesons to decay [45].
The only final state that will be considered here is μ+μ– K+K–, where the muon
pair originates from the J/ψ decay and the kaon pair from the ϕ decay. All
four particles can be detected efficiently and with low background by the
LHCb detector, as will be described in Section 1.4. This makes B0

s → J/ψ(→
μ+μ–)ϕ(→ K+K–) the optimal channel to measure CP violation in B0

s decays
with a b → ccs transition.

Since the μ+μ– K+K– final state can also be reached through resonances
other than the J/ψ and the ϕ, interference with other processes needs to be
considered. To optimize for the detection of the J/ψ and ϕ resonances, a re-
gion in kinematic phase space is selected where this intermediate state dom-
inates.

The measured invariant mass of the muon pair is required to be between
3.03 and 3.15 GeV/c2 (see also Section 3.2). This restriction is assumed to select
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only those B0
s → μ+μ– K+K– decays with muons coming from a J/ψ, which

has a mass of approximately 3.10 GeV/c2 [45].
Also the invariant-mass range of the K+K– pair is restricted, but there the

situation is more complicated. An analysis of the resonant components in the
K+K– system [46] has shown that there is a mass region where the ϕ(1020)
dominates, but other contributions cannot be neglected.

TheK+K–-mass spectrum in B0
s → J/ψK+K– decays is shown in Figure 1.9.

The contribution of the ϕ(1020) is represented by the dashed, magenta curve.
Notice that part this peak is not visible, because of the truncated vertical scale.

For the B0
s → J/ψϕ CP-violation measurement, only K+K– pairs with a

mass between 0.99 and 1.05 GeV/c2 are selected. In this region the ϕ(1020)
clearly dominates, but there are also contributions from the f0(980) and from
K+K– pairs that do not originate from the decay of a resonance.

For both the f0(980) and non-resonant contributions the K+K– system is in
a state of zero orbital angular momentum and hence these contributions are
commonly referred to as the K+K– S-wave. Because the ϕ(1020) is a spin-one
particle, the orbital angular momentum of the K+K– system has an orbital an-
gular momentum equal to one for the J/ψϕ intermediate state. Therefore, the
B0
s → J/ψϕ contribution is sometimes termed K+K– P-wave. Since the J/ψϕ

and K+K– S-wave processes are observed simultaneously in themeasurement,
the analysed decay is referred to as B0

s → J/ψK+K–.
In addition to separating the three components of the B0

s → J/ψϕ pro-
cess, these components are also separated from the K+K– S-wave contribu-
tion. The latter could be accomplished on a statistical basis with an analysis
of the K+K–-mass distribution. However, this distribution does not discrim-
inate between the CP eigenstates of the B0

s → J/ψϕ decay, so a different
approach is chosen.

The spatial distributions of the final-state particles are different for the
B0
s → J/ψϕ and K+K– S-wave contributions, which enables a statistical sep-

aration of the two components. An analysis of the spatial distributions also
separates J/ψϕ spin-polarization states and hence the three CP eigenstates of
this system.

The directions of the final-state particles are specified with respect to the
momentum directions of the μ+μ– and K+K– systems in the centre-of-mass
system of the B0

s meson. This is done with three decay angles, which can be
computed given the four-momenta of the final-state particles. These angles
are included in the model of the decay, in addition to the decay time. The
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Figure 1.9: K+K–-mass spectrum in B0s → J/ψK+K– decays [46]. The black
points represent a histogram of decay candidates. A model of the mass distribu-
tion is shown as the blue curve. The largest contributions to the distribution come
from the ϕ(1020), f ′2(1525), and f0(980) resonances, which are shown as the ma-
genta, brown, and green, long-dashed lines, respectively. Notice that a large part
of the ϕ(1020) peak is not visible, because of the truncated vertical scale. Other
resonances (heavier ϕ, f0, and f2 states) are shown as the thin, black curves and
a non-resonant contribution as the dashed, cyan curve. The contribution from
interferences between the resonances is represented by the dotted-dashed, black
line. The small dotted, black and dashed, red contributions are backgrounds of
four particles that do not originate from a B0s → J/ψK+K– decay.
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formalism for the angular dependence of the decay is described in detail in
Section 2.4 and Appendix A.

1.4 The B0
s → J/ψK+K– Decay in LHCb

1.4.1 B0
s-Meson Production at the Large Hadron Collider

The B0
s mesons that are used for the B0

s → J/ψK+K– measurement are pro-
duced in the proton–proton collisions of the Large Hadron Collider (LHC)
[47]. The LHC accelerates protons to high energies and makes them collide
head-on at designated points. For the measurement presented here, data from
the LHC data-taking runs in 2011 and 2012 were used. In 2011 colliding pro-
tons had an energy of 3.5 TeV, while their energy was increased to 4 TeV for
2012 [48]. This gave a centre-of-mass energy in proton–proton collisions of
7 and 8 TeV, respectively.

Protons are brought to an energy of 0.45 TeV by a series of pre-accelerators
before they are injected into the LHC. There they are stored in two opposite,
circular beams and accelerated to the collision energy. Each beam contained
1380 bunches of 1011 protons for most of the 2011 and 2012 runs [48].

When the collision energy is reached, the beams are tuned to collide
bunches at four distinct interaction points, where the detectors of the LHC
experiments are located. The moment at which two bunches meet is called
a bunch crossing. If proton–proton collisions in a bunch crossing produce
particles that are of interest for an experiment, this is called an event. Af-
ter typically ten hours of collisions the number of remaining protons in the
beams becomes too small to maintain a sufficiently high collision rate and the
beams are dumped to restart the cycle of acceleration and collisions.

Themean number of collisions per bunch crossing that produce detectable
particles at the LHCb interaction point varied between one and two in 2011
and 2012. This number is determined by the probability that two protons
interact when they pass each other and by the probability that the protons
get close enough to enable such an interaction. These probabilities are rep-
resented by two effective quantities: the proton–proton cross section and the
beam luminosity.

The luminosity is an effective density of protons that meet each other per
unit of time across a surface perpendicular to the beams at the interaction
point. This quantity is fully determined by the beam parameters, in particular
by the number of protons per bunch and the number of bunch crossings per
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unit time. To get a quantity that represents the total number of protons that
passed each other per unit surface, the luminosity is integrated over time. The
integrated luminosity is 1fb–1 for 2011 and 2fb–1 for 2012.

To obtain the number of interactions per unit time, the luminosity is mul-
tiplied by the surface area of the effective proton cross section. This surface
area represents the strength of the interaction between the colliding particles,
which typically depends on the centre-of-mass energy of the collision.

The total proton–proton cross section is a sum of the cross sections for
all possible interactions, which can be either elastic or inelastic. While elastic
interactions do not break up the colliding protons, inelastic interactions do
and create new particles. The latter type is relevant for the production of B0

s
and B0

s mesons.
The sum of the cross sections for B0

s and B0
s production in LHCb is mea-

sured to be approximately 1 · 1010fb at an energy of 7 TeV [49]. Assuming
the cross section at 8 TeV is approximately the same, this gives a total of
3 · 1010 produced B0

s and B0
s mesons in 2011 and 2012. A fraction of 3 · 10–5

decays into J/ψ(→ μ+μ–)ϕ(→ K+K–) [45], which yields an expected number
of 9 · 105 decays. Including particle-detection inefficiencies and selection of
usable decays, about 9 · 104 decays are left for analysis (see Section 3.2).

To produce B0
s and B0

s mesons, (anti)beauty and (anti)strange quarks must
be created. Beauty quarks are predominantly produced as bb pairs. Beauty
hadrons are formed by combining the b and b quarks with lighter quarks that
are produced at a later stage. If this lighter quark is an s (s) quark, the result
is a B0

s (B0
s ) meson.

In the inelastic collisions that are relevant for bb production, the con-
stituents of the colliding protons interact. These constituents can be gluons or
(anti)quarks, which are collectively called partons. A proton consists of three
valence quarks: two up quarks and one down quark. In addition it contains
virtual partons, created by low-energy, non-perturbative QCD interactions.
The centre-of-mass energy of the collision is large enough to make the life-
time of these virtual states larger than the time needed to also interact with
partons from the other proton.

The colliding protons break up in the parton interaction, leaving coloured
remnants. Quarks and gluons created in the interaction and these proton rem-
nants recombine into colourless hadrons. This process is called hadronization.
Tens of hadrons can be created in a single proton–proton collision at the LHC.

The energy carried by a parton is a fraction of the proton energy. For
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bb production the energy fractions of the interacting partons must be mini-
mally the ratio of the energy corresponding to beauty-hadron masses and the
collision energy, which is of the order of 10–3. However, in most collisions
the fractions are different for the two interacting partons. This gives the pro-
duced particles additional energy and leads to large boosts along the beam
direction.

Conceptually the parton interaction can be separated into two parts. First
there are high-energy interactions, which are described by perturbative QCD.
The proton energy is converted into particle masses, which may be much
larger than the proton mass. Beauty quarks are created at this stage.

Interactions that follow are less energetic and create only lighter quarks
in quark–antiquark pairs. This non-perturbative process is called fragmen-
tation. A B0

s meson is formed with the strange quark from a created ss pair.
The remaining antistrange quark forms a hadron with other quarks in the
fragmentation process.

The B0
s production mechanism can be exploited to determine whether

the produced meson was a B0
s or a B0

s . This procedure is called flavour tag-
ging. The flavour information cannot be inferred directly from the decay
into μ+μ– K+K–, since both B0

s and B0
s decay into this final state. For the CP-

violation measurement in B0
s → J/ψK+K–, however, it is crucial to disentan-

gle the two contributions, because the important features in the decay-time
distribution cancel in their sum (see Sections 2.1.2 and 2.3).

Flavour tagging relies on the fact that both the beauty and strange quarks
that form an (anti-)B0

s meson are predominantly produced in quark–antiquark
pairs. Even if the flavour of the produced meson cannot be determined from
its decay products, it can still be inferred from the charges of the (anti)b and
(anti)s quarks that remain of the required bb and ss pairs. This is schematically
shown in Figure 1.10.

The charge of the beauty quark on the “opposite side of the event” can be
determined from the charges of the electron, muon, or kaon in the decay of
the hadron it formed. This procedure is termed opposite-side tagging and is
described in reference [50].

The efficiency of opposite-side tagging is limited. The required charged
particles are produced in many, but not all beauty decays. In addition, the
decay products may not be detectable by the LHCb detector. There is also
a probability that the determined flavour is wrong. A neutral beauty meson
may convert into its antiparticle before it decays, which gives the opposite
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Figure 1.10: Production and decay mechanisms exploited by flavour-tagging
algorithms. Same-side tagging determines the flavour of the B0s or B0s meson
from the charge of the kaon that is produced close to it (top half of the figure).
Opposite-side tagging determines the flavour from the charges of the decay prod-
ucts of the “opposite” b or b quark in the event (bottom half of the figure).

tag. A background of charged particles from elsewhere in the event gives
additional wrong tags. The resulting effective fraction of B0

s mesons with a
correct opposite-side tag in the B0

s → J/ψK+K– measurement is 2.6% (see
Section 3.6).

When combined with an (anti)up quark, the remaining quark from the ss
pair forms a charged kaon. In same-side kaon tagging the flavour of the B0

s
meson is estimated by determination of the charges of kaons that are close to
it in momentum space [51]. This procedure is limited by other possibilities for
fragmentation and hadronization of the strange quark and by the efficiency of
detecting the correct kaon. The effective fraction of B0

s mesons with a correct
same-side tag is 1.3% in the B0

s → J/ψK+K– measurement.

1.4.2 B0
s → J/ψK+K– Decays in LHCb

LHCb is one of the four large experiments that analyse the particles produced
by LHC collisions. The LHCb detector measures particle trajectories in the
“forward” direction, that is, along the direction of one of the proton beams.
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Particles produced with momenta at angles between typically 1 and 15 de-
grees from the beam direction can be detected. Although this acceptance re-
gion covers only a small part of possible particle directions, it contains roughly
a quarter of all produced beauty quarks. This makes the LHCb design efficient
for studies of hadrons containing beauty quarks.

The particles that are produced in an LHC collision get a momentum
from the boost introduced by asymmetric parton momenta, but also from the
centre-of-mass energy that is available in the parton interaction. B0

s mesons
that are selected for the analysis of B0

s → J/ψK+K– decays have an aver-
age momentum of the order of a hundred GeV/c (see Figure 1.11a). With the
5.4 GeV/c2 B0

s-meson mass [45], this gives an average Lorentz factor of about
20.

The B0
s meson has a relatively large mean lifetime of about 1.5 ps [32]. As

a result of the significant lifetime and boost, B0
s mesons cover a typical dis-

tance of several millimetres before they decay. Themeasurement of this flight
distance is used to infer the decay time. It is determined by reconstructing the
positions of the points of production and decay. The measured distribution
for B0

s mesons that are used in the B0
s → J/ψK+K– measurement is shown in

Figure 1.11b.
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Figure 1.11: Histograms of (a) the reconstructed momenta and (b) the flight
distances of B0s mesons in the B0s → J/ψK+K– measurement.

Since LHC bunches have a finite size and the positions of the colliding
protons in their respective bunches are not known a priori, the interaction
point has to be measured for each collision. This is done by measuring the
trajectories of produced particles and extrapolating them to the point of their
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common origin. This point is termed the primary vertex. The secondary vertex
is the point where the B0

s decayed, which is measured with only the trajecto-
ries of the four decay B0

s products.
Figure 1.12 schematically shows the vertices in the B0

s → J/ψK+K– de-
cay. The vertices are depicted by ellipsoids with a size that represents the
uncertainty in the vertex position. The resolution on the vertex position is
better for the primary vertex than for the secondary vertex, because a larger
number of particles is available for the reconstruction of the former.

The secondary vertex is constructed from the μ+μ– vertex and the K+K–

vertex, where the former dominates. This is caused by the fact that only K+K–

invariant masses in a range between 0.99 and 1.05 GeV/c2 are selected, which
is just above the threshold of twice the kaon mass. As a result, the opening
angle between the K+ and K– trajectories is small, which gives the measure-
ment of the point of common origin a large uncertainty.

The decay time can be calculated from the flight distance, provided that
also the B0

s momentum is known:

t =
1

γ(v)

d

v
=

md

γ(v)mv
=

md

|p|
, (1.18)

where t is the decay time in the rest system of the B0
s , d the flight distance, v

the B0
s velocity, γ the corresponding Lorentz factor, p the momentum, andm

the B0
s mass. The momentum is reconstructed as a vector sum of the decay-

product momenta, which are also required to calculate the decay angles. Mo-
menta of charged particles are inferred from the curvature of their tracks in
the magnetic field of the detector.

The B0
s momentum and flight distance are estimated by combining in-

formation from measured particle momenta and extrapolated positions [53].
Uncertainties in the measurements are propagated and ultimately lead to an
uncertainty in the estimated decay time. This decay-time resolution is es-
timated for each B0

s decay and taken into account in the analysis (see Sec-
tion 3.3.1). The effective resolution is about 0.05 ps. This suffices to resolve
the oscillations in the B0

s → J/ψK+K– decay-time distribution, which have a
period of 2π/∆ms ≈ 0.35 ps.

Before the vertex positions and momenta can be determined, the four
particles from a B0

s → J/ψK+K– decay have to be selected from all particles
that are produced in an LHC event. Since the particle multiplicity in inelastic
proton–proton collisions is high, there is a significant probability to select
four particles that do not originate from a B0

s decay.
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Figure 1.12: Vertices in a B0s → J/ψK+K– decay (figure from [52]). The vertices
are indicated by ellipsoids with a size that represents the uncertainty in the vertex
position. The primary vertex is indicated by the cyan ellipsoid, the μ+μ– vertex
with the small green ellipsoid and the K+K– vertex with the large blue ellipsoid.
The secondary vertex is the combination of the μ+μ– and K+K– vertices.

Combinations of four particles that are considered for analysis are called
decay candidates. Candidates can either be real B0

s → J/ψK+K– decays (sig-
nal) or combinations that fake the decay signature (background). Distribu-
tions of decay time and decay angles for background events are subtracted
from the measured distributions to obtain the net signal contribution (see
Section 3.2).

There are several categories of background decay candidates. Most back-
ground is combinatorial, which means that candidates are formed from ran-
dom combinations of four particles. Often all four particles originate directly
from a primary vertex. This combinatorial background is called prompt. For
non-prompt candidates some of the particles originate from a secondary ver-
tex in the decay of a long-lived particle, for example a beauty hadron. Since
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the μ+μ– vertex has a relatively small uncertainty in comparison with the
K+K– vertex, this often involves a J/ψ → μ+μ– decay combined with kaons
from the primary vertex.

To reduce the amount of prompt background that is considered for further
analysis, candidates for which the secondary vertex is too close to the primary
vertex are rejected. This leads to a detection inefficiency for candidates with a
small flight distance and, consequently, small decay time. This effect is visible
in Figure 1.11b, where the number of decays goes to zero at small decay time.

Another background category is misidentified background, which com-
prises decays where one or more particles have been incorrectly identified.
The two misidentified backgrounds that are taken into account in the B0

s →
J/ψK+K– measurement are B0 → J/ψK∗0(→ K+π–) and Λ0

b → J/ψpK–. In
the B0 decay the pion is misidentified as a kaon and in the Λ0

b decay the proton
as a kaon.

There are different stages of event and decay-candidate selection. Each
stage is optimized to find signal decays with high efficiency and at the same
time keep the background at a manageable level. The first three selection
stages are triggers [54], which are designed to select events of interest online,
before detector data are stored for further analysis. Two offline stages select
decay candidates in the stored events.

The first trigger is called Level 0 (L0). It is implemented in the detector
hardware and designed to bring the rate of incoming events down to less
than 1MHz, which is the maximum frequency at which the detector can be
read out. In proton collisions that create beauty hadrons, particles are cre-
ated in all directions in the centre-of-mass frame of the parton interaction.
As a result, particles in these collisions typically have significant momentum
components in the direction transverse to the proton beams. This is used
by the L0 trigger, which selects only events that contain particles above a
transverse-momentum threshold.

Events that are selected by L0 are processed by the High Level Trigger
(HLT). This trigger is implemented in software and consists of two stages:
HLT1 and HLT2. In the first stage a minimal reconstruction of particle tra-
jectories and vertices is performed. For the B0

s → J/ψ(→ μ+μ–)K+K– mea-
surement, events are selected if they contain the signatures of the muons in
this decay.

HLT1 selects roughly 40 kHz of events, which are subsequently processed
by HLT2. At this stage a more complete particle reconstruction is performed.
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Events are selected for the B0
s → J/ψK+K– measurement if they contain μ+μ–

pairs that are compatible with a J/ψ decay at a significant distance from a
primary vertex. Events for all LHCb measurements are stored at a rate of
3–5 kHz.

The first stage of the offline selection fully reconstructs the particle trajec-
tories and vertices in the remaining events and selects combinations of muon
and kaon pairs that form B0

s → J/ψK+K– candidates. A set of loose selection
criteria is applied to filter out part of the background, which reduces the num-
ber of remaining candidates to a manageable level. This procedure is termed
stripping.

Stripping yields about twelve million B0
s → J/ψK+K– decay candidates

for 2011 and 2012. A second set of stricter offline selection criteria is applied,
optimized to find the best compromise between selecting as many signal and
as few background candidates as possible. At this stage about 230 thousand
candidates are retained for further analysis, of which roughly 40% is signal
(see Section 3.2).

The total set of selection requirements for particles and decay candidates
removes background, but also a significant part of the signal. Since the effi-
ciency of the selection depends on the decay time and the decay angles, the
observed distributions of these variables do not directly reflect the underlying
true distributions. This effect has to be taken into account in the model of the
decay (see Sections 3.3.2 and 3.4).

1.4.3 The LHCb Detector

The LHCb detector was mainly built to measure beauty- and strange-hadron
decays into particles with an electric charge. It is capable of measuring trajec-
tories of charged particles and the locations of primary and secondary vertices
with a precision that is good enough to resolve oscillations in decay-time dis-
tributions with a frequency ∆ms ≈ 18 ps. Another important feature of the
detector is its ability to identify different types of particles.

The detector and its performance are described in detail in references [55]
and [56]. A schematic view is shown in Figure 1.13. The subdetectors are
placed around the LHC beams, which come in from the left and right. The
interaction point is contained within the subdetector labelled “Vertex Loca-
tor” on the left of Figure 1.13b. Particles that are produced within the LHCb
acceptance region traverse the various subdetectors from the left to the right.
This is indicated by the red lines in Figure 1.13a.
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(a)

(b)

Figure 1.13: Schematic views of the LHCb detector (courtesy of Cern). (a)
Three-dimensional view, where particles from the proton–proton collision are
depicted by red lines. (b) Cross sectional view of the various subdetectors, which
are discussed in the text.
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A magnetic field with an integrated strength of 4 Tm is produced by a
dipole magnet between approximately 3 and 8m from the interaction point.
The saddle-shaped coils of the magnet are surrounded by the magnet yoke,
which is indicated by the blue block in Figure 1.13. The magnetic field is
pointing either upwards or downwards, bending charged-particle trajectories
in the horizontal plane. During the two years of LHC running, the direction
of the magnetic field was reversed several times to control systematic uncer-
tainties related to the measurement of particle trajectories.

Trajectories of charged particles are reconstructed by measurement of
the positions at which the particles traverse the various tracking detectors of
LHCb. These measurements are all based on electromagnetic interactions of
the particle with detector material. The signal from a particle interaction with
sensitive detector material is called a hit. The collection of hits that represent
the trajectory of a particle is a track.

The LHCb tracking system consists of four components. The Vertex Lo-
cator (Velo) and the Tracker Turicensis (TT) before the magnet and the Inner
Tracker (IT) and Outer Tracker (OT) behind the magnet. Together, the IT and
OT form the three tracking stations labelled by “T1”, “T2”, and “T3” in Fig-
ure 1.13b. The inner region of roughly 0.5m2 around the proton beams is
covered by the IT and the region up to approximately 3m from the beams by
the OT.

Hit information from all tracking detectors is combined to build tracks.
The momentum of a particle can be inferred from the radius of curvature of
the track in the magnetic field, given the charge of the particle. Since most
charged particles that live long enough to reach the detector are electrons,
muons, pions, kaons, and protons, a unit charge can be assumed. The sign of
the charge is determined from the direction of the track curvature.

The performance of the tracking system is shown in Figures 1.14a and
1.14b. The former figure shows the relative resolution of the momentummea-
surement for muon tracks in J/ψ → μ+μ– decays, which varies from roughly
0.5% to 1.1% as a function of momentum over a range of 2 to 300 GeV/c. The
resulting resolution of the dimuon invariant-mass measurement is shown in
the latter figure. The relative mass resolution is about 0.5% up to 10GeV/c2,
but increases to 1.9% at the Z0 mass.

Vertices are reconstructed by extrapolating tracks to the point where they
are closest together. The most precise information on vertex locations comes
from the Velo, which detects particles very close to the interaction point down
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Figure 1.14: Performance of the LHCb detector [56]. (a) Relative momentum
resolution as a function of momentum for muon tracks in J/ψ → μ+μ– events.
(b) Relative μ+μ– invariant-mass resolution as a function of mass, measured for
the J/ψ, ψ(2S), Y(1S), Y(2S), Y(3S), and Z0 resonances. (c) Primary vertex res-
olution as a function of the number of tracks in the vertex, separately for the
two directions in the plane transverse to the beam direction. (d) Decay-time res-
olution of prompt B0s → μ+μ– K+K– background as a function of the combined
μ+μ– K+K– momentum, separately for 2011 and 2012. In (c) and (d) the distri-
bution of respectively vertices and background decay candidates in the relevant
variable is indicated by the shaded histogram.
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to a radius of 8mm around the beams.
Figure 1.14c shows the resolution of primary vertices in LHCb as a func-

tion of the number of tracks originating from the vertex. A minimum of five
tracks is required, where the resolution is about 35 μm. The resolution im-
proves with the number of tracks to less than 10 μm for more than 40 tracks.

Since only four tracks originate from the secondary vertex, its resolu-
tion dominates the uncertainty of the decay-time measurement. For B0

s →
μ+μ– K+K– events the decay-time resolution is measured with prompt back-
ground, for which the true decay time is equal to zero (see Section 3.3.1). The
resulting resolution as a function of μ+μ– K+K– momentum is shown in Fig-
ure 1.14d. Its value varies between roughly 0.04 ps and 0.05 ps.

Particles are identified with other subsystems. Electrons produce signals
in the Scintillator Pad Detector (SPD), Preshower detector (PS) and the Electro-
magnetic Calorimeter (ECal). The electron energy is absorbed by these de-
tectors and no signal is produced in the Hadronic Calorimeter (HCal). Pions,
kaons, and protons predominantly lose energy in the HCal and less in the
ECal. Energy measurements from the calorimeters are also used in the L0
trigger to select events with high-energy particles in the transverse direction.

Muons do not lose significant energy in the HCal. Therefore, they make
it through the calorimeters, and produce hits in the four muon stations be-
hind the HCal (M2–M5 in Figure 1.13b). These features distinguish muons
from hadrons. The Muon System is completed by the station M1 before the
calorimeters to provide an optimal momentum estimate for muons.

Two Ring Imaging Cherenkov (Rich) detectors are used to distinguish the
different charged hadrons. The first Rich detector (Rich1) is located between
the Velo and the magnet and the other (Rich2) behind the IT/OT. These de-
tectors determine the velocities of charged particles by measuring the angle
at which Cherenkov light is emitted when the particle traverses the Rich ra-
diator materials. Combined with the momentum measurement this gives an
estimate of the particle mass to distinguish between pions, kaons, and pro-
tons.

Figure 1.15 shows the information from the different subdetectors for an
event that contains a B0

s → J/ψK+K– decay candidate. The coloured lines
show reconstructed tracks. Three tracks are combined with hits in the muons
stations and represent particles that have been identified as muons.
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(a)

(b)

Figure 1.15: Reconstructed particle trajectories in the LHCb detector for an
event with a B0s → J/ψK+K– decay candidate (figure from [52]): (a) a view
from the top and (b) a view from the side, equivalent to Figure 1.13. Particle
tracks are shown by the coloured lines. The green crosses indicate hits in the
tracking detectors and the red and blue bars energy deposits in the calorimeters.
Hits in the muon stations are represented by green dots. Cherenkov photons in
the Rich detectors are shown by the purple lines and orange hits.
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Chapter 2

Phenomenology

2.1 Mixing and Decay of the B0
s–B0

s System

2.1.1 Mixing

A meson produced in a pure B0
s or B0

s state will evolve in time and become a
mixture of these two flavour states. If the time coordinate in the B0

s–B0
s centre-

of-mass system is given by t, the state of the system (Ψ) can be written as

|Ψ(t)⟩ = a(t) |B0
s⟩+ b(t) |B0

s⟩ . (2.1)

The states |B0
s⟩ ≡ |sb̄⟩ and |B0

s⟩ ≡ |̄sb⟩ are the flavour eigenstates of the system
and a and b are coefficients that describe its time dependence.

Assuming that the time scale of interest is much larger than the time scale
of strong interactions, the Weisskopf-Wigner approximation can be used and
the decay of the system has an exponential time dependence [57]. The time
evolution then follows from a Schrödinger equation with a constant Hamil-
tonian, which is given by1

i
∂

∂t

(
a(t)
b(t)

)
= H

(
a(t)
b(t)

)
. (2.2)

Without loss of generality, the Hamiltonian matrix H can be written as
the sum of a Hermitian matrix and an anti-Hermitian matrix: H ≡ M −

1All equations in this chapter are expressed in natural units, in which the reduced Planck
constant and the speed of light are equal to one (ℏ ≡ c ≡ 1).

39
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i
2 Γ, where the mass matrix M and the decay matrix Γ are both Hermitian.
Assuming CPT invariance, the mass and lifetime of a particle are equal to the
respective mass and lifetime of the corresponding anti-particle. This results
in equal diagonal elements of both the mass and decay matrices:

H ≡
(
H0 H12

H21 H0

)
= M − i

2 Γ ≡
(
Ms M12
M∗

12 Ms

)
− i

2

(
Γs Γ12
Γ∗
12 Γs

)
, (2.3)

where Ms is the B0
s mass and Γs the B0

s decay width.
Mixing of the B0

s and B0
s states is governed by the off-diagonal elements

of the Hamiltonian. The parameter M12 is the dispersive part of H12. This
part originates from contributions of virtual intermediate states to the mixing
process and is dominated by diagrams with virtual top quarks (Figure 1.5 on
page 14). Γ12 is the absorptive part, which originates from contributions of
real states into which both B0

s and B0
s can decay.

The absorptive part of the mixing process is dominated by tree-level b →
ccs transitions [44]. Following the arguments from Section 1.3.2, this means
that effects of physics beyond the Standard Model in Γ12 are expected to be
small. The virtual loop process that dominatesM12, on the other hand, can be
affected significantly and may lead to a deviation in the phase ϕs with respect
to the Standard Model prediction.

To solve Equation 2.2 and obtain expressions for the time evolution of the
B0
s and B0

s states, the system is decoupled with a transformation of the flavour
eigenstates that diagonalizes the Hamiltonian matrix. The decoupled states
aremass eigenstates, which have definite mass and lifetime. With transforma-
tionmatrixP , diagonalized HamiltonianH ′ andmass-eigenstate coefficients
a′ and b′, the transformation is specified by

H ′ = P−1HP and
(
a(t)
b(t)

)
= P

(
a′(t)
b′(t)

)
. (2.4)

The two eigenvalues of the matrix H are H0 ∓
√
H12H21, with correspond-

ing eigenvectors
(√

H12 ∓
√
H21

)
. The eigenvalues become the diagonal

elements of the decoupled HamiltonianH ′ and the transformation matrix is
constructed from the eigenvectors:

H ′ ≡
(
ML 0
0 MH

)
− i

2

(
ΓL 0
0 ΓH

)
(2.5a)
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=

(
H0 −

√
H12H21 0
0 H0 +

√
H12H21

)
(2.5b)

P =

( √
H12

√
H12

−
√
H21 +

√
H21

)
, (2.5c)

where the subscript L (light) is used for the state with the smaller mass and
the subscript H (heavy) for the state with the larger mass.

Mass and decay parameters of B0
s and B0

s are related to the masses and
decay widths of the diagonalized BL and BH states by Equations 2.5a and 2.5b.
Taking the sum and the difference of the two values on the diagonal of H ′

yields

H0 =
1
2 (MH +ML)− i

4 (ΓL + ΓH) (2.6a)√
H12H21 =

1
2 (MH −ML) +

i
4 (ΓL − ΓH) . (2.6b)

Using also Equation 2.3, it is found that

Ms ≡ ℜ(H0) = 1
2 (MH +ML) (2.7a)

Γs ≡−2ℑ(H0) = 1
2 (ΓL + ΓH) (2.7b)

and the following quantities can be defined:

∆ms ≡ MH −ML = 2ℜ
(√

H12H21

)
= 2ℜ

(√
(M12 − i

2 Γ12) (M∗
12 − i

2 Γ
∗
12)

)
(2.8a)

∆Γs ≡ ΓL − ΓH = 4ℑ
(√

H12H21

)
= 4ℑ

(√
(M12 − i

2 Γ12) (M∗
12 − i

2 Γ
∗
12)

)
, (2.8b)

where a convention is chosen in which∆Γs is positive in the StandardModel.
With these definitions of ∆ms and ∆Γs, the expression for

√
H12H21 reads√

H12H21 =
√
(M12 − i

2 Γ12) (M∗
12 − i

2 Γ
∗
12) =

1
2 ∆ms +

i
4 ∆Γs . (2.9)

Squaring this equation gives

4 |M12|2 − |Γ12|2 − 4iℜ(M12 Γ
∗
12) = ∆m2

s − 1
4 ∆Γ2

s + i∆ms∆Γs , (2.10)
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which results in the relations

∆m2
s − 1

4 ∆Γ2
s = 4 |M12|2 − |Γ12|2 (2.11a)

∆ms∆Γs = −4ℜ(M12 Γ
∗
12) = 4 |M12| |Γ12| cosϕ12 . (2.11b)

The parameter ϕ12 is defined as the phase difference between M12 and Γ12:
ϕ12 ≡ arg

(
–M12

Γ12

)
.

To find the transformation between flavour eigenstates and mass eigen-
states, the state of Equation 2.1 is expressed in matrix form and the transfor-
mation of Equation 2.4 is applied:

|Ψ(t)⟩ =
(
a′(t) b′(t)

)(|BL⟩
|BH⟩

)
=
(
a(t) b(t)

)(|B0
s⟩

|B0
s⟩

)
=
(
a′(t) b′(t)

)
P T
(
|B0

s⟩
|B0

s⟩

)
.

(2.12)

By comparing the first and second line of Equation 2.12 it can be seen that the
transformation matrix between flavour eigenstates and mass eigenstates is
the transpose of the matrix that diagonalizes the Hamiltonian (Equation 2.5c).

Introducing the complex parameters p and q and normalizing the mass
eigenstates, the transformation to flavour eigenstates can be expressed as(

|BL⟩
|BH⟩

)
= P T

(
|B0

s⟩
|B0

s⟩

)
=

(
p +q
p −q

)(
|B0

s⟩
|B0

s⟩

)
with |p|2 + |q|2 ≡ 1 .

(2.13)
Combining Equations 2.3, 2.5c, and 2.13 results in

q

p
= −

√
H21

H12
= −

√
M∗

12 − i
2 Γ

∗
12

M12 − i
2 Γ12

. (2.14)

The time evolution of the mass eigenstates is obtained by solving the
Schrödinger equation with the diagonal Hamiltonian of Equation 2.5, which
gives decoupled exponential decays for BL and BH. Transforming back to the
flavour basis then gives the coupled time evolution of B0

s and B0
s :(

a(t)
b(t)

)
= e−iH t

(
a(0)
b(0)

)
= P

(
a′(t)
b′(t)

)
= P e−iH′ t

(
a′(0)
b′(0)

)
= P e−iH′ tP−1

(
a(0)
b(0)

)
(2.15a)
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e−iH t = P e−iH′ tP−1

=

(
p p
q −q

)(
e−i (ML−iΓL/2) t 0

0 e−i (MH−iΓH/2) t

)(
q p
q −p

)
1

2 p q

=

(
g+(t)

p
q g−(t)

q
p g−(t) g+(t)

)
, (2.15b)

where the functions g± are given by

g±(t) ≡ 1
2

(
e−i (ML−iΓL/2) t ± e−i (MH−iΓH/2) t

)
(2.16)

= 1
2 e

−iMs t e−Γs t/2
(
e+i∆ms t/2 e−∆Γs t/4 ± e−i∆ms t/2 e+∆Γs t/4

)
.

The time evolution for mesons produced as B0
s (a(0) = 1 and b(0) = 0)

and mesons produced as B0
s (a(0) = 0 and b(0) = 1) can now be inferred

from Equations 2.1 and 2.15:

|ΨB0s (t)⟩ = g+(t) |B0
s⟩+

q

p
g−(t) |B0

s⟩ (2.17a)

|ΨB0s
(t)⟩ = g+(t) |B0

s⟩+
p

q
g−(t) |B0

s⟩ (2.17b)

2.1.2 Mixing and Decay

Time-dependent amplitudes for mixing and decay of the B0
s–B0

s system are
obtained by combining the state of Equation 2.1 with the amplitudes for the
decays of |B0

s⟩ and |B0
s⟩. Assuming the system is produced as either |B0

s⟩ or
|B0

s⟩, the required time-dependent states are given by Equation 2.17. The de-
cay amplitude of a decay of |B0

s⟩ into a final state |f⟩ is labelled by Af. The
amplitude for a system produced as a B0

s , being in a B0
s state at the time of

decay and decaying into |f⟩ is given by ⟨B0
s |ΨB0s (t)⟩Af ∝ g+(t)Af.

If also |B0
s⟩ can decay into the final state there is a second contribution

to the B0
s → f process, which is proportional to the decay amplitude labelled

by Af. Also considering decays into the CP conjugate of the final state, |f⟩,
the amplitudes of the four possible combinations of initial and final states are
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given by

A(B0
s→ f) ∝ g+Af +

q

p
g−Af ; A(B0

s→ f) ∝ q

p

(
g−Af +

p

q
g+Af

)
A(B0

s→ f) ∝ p

q

(
g−Af +

q

p
g+Af

)
; A(B0

s→ f) ∝ g+Af +
p

q
g−Af .

(2.18)

Notice that the amplitudes for the processes with final state |f⟩ have the
same structure as the amplitudes for the processes with final state |f⟩. A(B0

s→
f) andA(B0

s→ f) can be obtained fromA(B0
s→ f) andA(B0

s→ f), respectively,
by interchanging p and q, replacing Af by Af and replacing Af by Af. The
amplitude for B0

s → f (B0
s → f) is obtained from the amplitude for B0

s → f
(B0

s→ f) by interchanging g+ and g− and multiplying by a factor p
q

( q
p

)
.

The magnitudes of the amplitudes in Equation 2.18 are squared to obtain
an expression for the differential decay rates in time. For the B0

s→ f amplitude
this yields

dΓ(B0
s→ f)
dt ∝

∣∣A(B0
s→ f)

∣∣2
∝ |g+|2 |Af|2 +

∣∣∣q
p

∣∣∣2 |g−|2 |Af|2 +
q

p
g∗+ g−A∗

f Af +

(
q

p
g∗+ g−A∗

f Af

)∗

∝ |g+|2 |Af|2 +
∣∣∣q
p

∣∣∣2 |g−|2 |Af|2

+ 2ℜ(g∗+ g−)ℜ
(
q

p
A∗

f Af

)
− 2ℑ(g∗+ g−)ℑ

(
q

p
A∗

f Af

)
. (2.19)

Using the definition of g± from Equation 2.16, the required products of g+
and g− are given by

|g±|2 = 1
2 e

−Γs t
[

cosh
(
1
2∆Γs t

)
± cos(∆ms t)

]
(2.20a)

g∗+ g− = 1
2 e

−Γs t
[
− sinh

(
1
2∆Γs t

)
+ i sin(∆ms t)

]
, (2.20b)
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which yields

dΓ(B0
s→ f)
dt ∝ 1

2 e
−Γs t

[(
|Af|2 +

∣∣∣q
p

∣∣∣2 |Af|2
)

cosh
(
1
2∆Γs t

)
+

(
|Af|2 −

∣∣∣q
p

∣∣∣2 |Af|2
)

cos(∆ms t)

− 2ℜ
(
q

p
A∗

f Af

)
sinh

(
1
2∆Γs t

)
− 2ℑ

(
q

p
A∗

f Af

)
sin(∆ms t)

]
.

(2.21)

With the definitions

λf ≡
q

p

Af
Af

(2.22a)

Cf ≡
1− |λf|2

1 + |λf|2
Df ≡ − 2ℜ(λf)

1 + |λf|2
Sf ≡

2ℑ(λf)

1 + |λf|2
, (2.22b)

the differential decay rate can be expressed as

dΓ(B0
s→ f)
dt ∝ 1

2 |Af|2 (1 + |λf|2) e−Γs t

×
[
cosh

(
1
2∆Γs t

)
+ Cf cos(∆ms t)

+Df sinh
(
1
2∆Γs t

)
− Sf sin(∆ms t)

]
,

(2.23)

Expressions for the differential rates of the remaining three processes can
be obtained by applying the aforementioned relations between the four am-
plitudes. From Equation 2.20 it can be seen that interchanging g+ and g−
results in a sign change of the cos(∆ms t) and sin(∆ms t) terms. For the |f⟩
final state the parameter λf goes to λf:

λf ≡
p

q

Af
Af

(2.24a)

Cf ≡
1− |λf|

2

1 + |λf|
2 Df ≡ −

2ℜ(λf)

1 + |λf|
2 Sf ≡

2ℑ(λf)

1 + |λf|
2 . (2.24b)
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In addition, an asymmetry for CP-violation in mixing is defined as

Cmix ≡
1−

∣∣ q
p

∣∣2
1 +

∣∣ q
p

∣∣2 . (2.25)

This parameter is not to be confused with the complex-valued asymmetry
ϵ, which is generally used to parameterize CP violation in the neutral-kaon
system and is given by

ϵ ≡
1− q

p

1 + q
p

Cmix ≈ 2ℜ(ϵ) , (2.26)

where the approximation is first order in |ϵ| for values close to zero.
With the parameter Cmix, the factors

∣∣p
q

∣∣2 and
∣∣ q
p

∣∣2 for the B0
s → f and

B0
s→ f decay rates, respectively, are given by∣∣∣∣pq

∣∣∣∣2 = 1 + Cmix
1− Cmix

∣∣∣∣qp
∣∣∣∣2 = 1− Cmix

1 + Cmix
. (2.27)

The differential decay rates can now be expressed as

dΓ(f)
dt ∝ 1

2 |Af|2 (1 + |λf|2)
1− qfCmix
1− Cmix

e−Γs t

×
[
cosh

(
1
2∆Γs t

)
+ qfCf cos(∆ms t)

+Df sinh
(
1
2∆Γs t

)
− qf Sf sin(∆ms t)

]
(2.28a)

dΓ
(
f
)

dt ∝ 1
2 |Af|

2 (1 + |λf|
2
)
1− qfCmix
1 + Cmix

e−Γs t

×
[
cosh

(
1
2∆Γs t

)
− qfCf cos(∆ms t)

+Df sinh
(
1
2∆Γs t

)
+ qf Sf sin(∆ms t)

]
, (2.28b)

where the variable qf takes the value +1 for a B0
s initial state and –1 for a B0

s
initial state.

For flavour-specific final states, where |B0
s⟩ can only decay into |f⟩ and |B0

s⟩
only into |f⟩, the parameters λf and λf vanish. In that case Df, Sf, Df and Sf
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are equal to zero and Cf and Cf are equal to one. Only the cosh
(
1
2∆Γs t

)
and

cos(∆ms t) terms then remain in the expressions for the differential decay
rates. An example of this case are the CP-conjugate processes B0

s → D–
s π+

and B0
s → D+

s π–.
Another special case is a CP eigenstate, for which |f⟩ and |f⟩ are the same.

As a result, |Af| = |Af|, |Af| = |Af|, λf =
1
λf
, Cf = –Cf, Df = +Df, and Sf = –Sf,

which makes Equations 2.28a and 2.28b identical. The B0
s → J/ψK+K– decay

proceeds via several intermediate CP eigenstates and its decay-time depen-
dence will be discussed in Sections 2.2 and 2.3.

2.1.3 CP-Violation Observables

All three types of CP violation discussed in Section 1.3.1 affect the differential
decay rates in Equation 2.28. Notice that the expressions are CP symmetric
if Cmix = 0, |Af| = |Af|, and λf =λf. In that case the decay rates of B0

s → f and
B0
s→ f are equal and the decay rates of B0

s→ f and B0
s→ f are equal.

CP violation in mixing would give rise to a
∣∣ q
p

∣∣ that is not equal to one.
As a result, Cmix would have a nonzero value and the magnitudes of λf and λf
would be different. CP violation in decay leads to |Af| ≠ |Af| and/or |Af| ≠ |Af|,
which also gives a difference in |λf| and |λf|.

Although neither the phase of the ratio q
p nor the phases of the amplitudes

are directly observable, the phases of both λf and λf are. CP violation in
the interference of decays with and without mixing gives λf and λf different
phases, resulting in Df ≠Df and Sf ≠Sf.

If the final state is a CP eigenstate, λf and λf can only be equal if they
are real and equal to (minus) one, as a consequence of the relation λf =

1
λf
.

In other words, CP symmetry is violated if |λf| ≠ 1 or ℑ(λf) ≠ 0 in this case.
For the B0

s → J/ψK+K– decay the complex phases of the λf parameters, and
therefore their imaginary parts, are parameterized with ϕs (see Sections 2.2
and 2.3.1). The contribution from B0

s–B0
s mixing to ϕs is introduced by the

phase of the ratio q
p .

The CP-violation observables ϕs and Cmix are related to the parameters
∆ms and ∆Γs through the mixing process. The parameters q

p , ∆ms, and
∆Γs are all defined by the off-diagonal elements of the mixing Hamiltonian
matrix, as shown in Equations 2.7–2.11 and 2.14. The observed parameter
values allow for an approximation of these expressions, which simplifies the
relations between the parameters.
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The parameters∆ms and∆Γs are measured to be 17.768 ± 0.024 ps–1 [58]
and 0.091 ± 0.011 ps–1 [32], respectively, and hence |∆Γs|≪∆ms. In the Stan-
dard Model the magnitude of Γ12 is predicted to be approximately equal to
0.04 ps–1 [44]. Since effects from potential contributions beyond the Standard
Model onΓ12 are expected to be relatively small, also the relation |Γ12|≪∆ms
holds.

Using Equation 2.11a with the above parameter values, the magnitude
of M12 is approximated by |M12| ≈ 1

2∆ms, and consequently |Γ12|≪ |M12|.
This last inequality enables an expansion in the ratio

∣∣ Γ12
M12

∣∣ ≈ 5 · 10–3 for the
parameters q

p ,∆ms, and∆Γs. Starting from Equations 2.14, 2.8a, and 2.8b the
following expansions can be derived:

q

p
= −e−iϕM

[
1− 1

2

∣∣∣∣ Γ12
M12

∣∣∣∣ sinϕ12 +
1
8

∣∣∣∣ Γ12
M12

∣∣∣∣2 sin2 ϕ12

+ i
4

∣∣∣∣ Γ12
M12

∣∣∣∣2 sin 2ϕ12 +O
( ∣∣∣∣ Γ12

M12

∣∣∣∣3)] (2.29a)

∆ms = 2 |M12|
[
1− 1

8

∣∣∣∣ Γ12
M12

∣∣∣∣2 sin2 ϕ12 +O
( ∣∣∣∣ Γ12

M12

∣∣∣∣4)] (2.29b)

∆Γs = 2 |Γ12| cosϕ12

[
1 + 1

8

∣∣∣∣ Γ12
M12

∣∣∣∣2 sin2 ϕ12 +O
( ∣∣∣∣ Γ12

M12

∣∣∣∣4)] , (2.29c)

where ϕM ≡ arg(M12) and ϕ12 ≡ arg
(
–M12

Γ12

)
. Notice that the product of the

third order ∆ms and ∆Γs approximations is equal to 4 |M12||Γ12| cosϕ12 at
that order, as required by the relation in Equation 2.11b.

The phase ϕM is convention dependent and cannot be observed directly,
but contributes to the phases of λf and λf (see Equations 2.22a, 2.24a, and
2.29a). In a first order approximation in

∣∣ Γ12
M12

∣∣, this is the only mixing-induced
contribution to these phases, since other complex phases only enter at order∣∣ Γ12
M12

∣∣2. Consequently, only (the phase of)M12 is expected to contribute signif-
icantly to CP violation in the interference of decays with and without mixing
and not Γ12.

In the StandardModel, ϕM arises from the phases of the Vts and Vtb CKM-
matrix elements in the dominant contribution to the mixing process. In com-
bination with the phases in the B0

s → J/ψK+K– decay process, this leads to
ϕs ≈ –2βs = –0.0368+0.0013–0.0014 rad, as shown in Section 1.3.2, Equation 1.15.

The phase difference ϕ12 is directly observable and governs CP violation
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in mixing. The Standard Model prediction is ϕ12 = 0.0038 ± 0.0010 rad [44].
With Equations 2.25 and 2.29a, the CP asymmetry Cmix is approximated at
first order by

Cmix ≡
1−

∣∣ q
p

∣∣2
1 +

∣∣ q
p

∣∣2 ≈ 1
2

∣∣∣∣ Γ12
M12

∣∣∣∣ sinϕ12 . (2.30)

This relates to the asymmetry between the B0
s→ f and B0

s→ f rates in flavour-
specific decays, afs, as

afs ≡

∣∣p
q

∣∣2 − ∣∣ qp ∣∣2∣∣p
q

∣∣2 + ∣∣ qp ∣∣2 =
(1 + Cmix)

2 − (1− Cmix)
2

(1 + Cmix)2 + (1− Cmix)2
≈ 2Cmix , (2.31)

which is predicted to be (1.9 ± 0.3) · 10–5 in the Standard Model. With Equa-
tions 2.29, 2.30, and 2.31, an approximate relation between afs,∆ms, and∆Γs
can be derived:

afs ≈
∣∣∣∣ Γ12
M12

∣∣∣∣ sinϕ12 ≈
∆Γs
∆ms

tanϕ12 . (2.32)

Under the assumption that physics beyond the Standard Model only af-
fects M12 and not Γ12, deviations in ϕM and ϕ12 must be equal. Also assum-
ing that CP violation in B0

s → J/ψK+K– is fully induced by mixing (M12), the
same deviation should also be found in ϕs.

With these assumptions, Equation 2.32 can be used as a constraint in the
ϕs–∆Γs plane, given the measured values of afs and ∆ms and with the dif-
ference ϕs–ϕ12 fixed to the Standard Model prediction. The resulting 68%
and 95% confidence-level contours are shown in Figure 2.1, together with the
68% confidence-level contour from the combination of direct measurements
(Figure 1.8 on page 20). With the current precision, the measurements are
compatible at 95% confidence level.

2.2 Differential Decay Rate

With four particles in the final state, the kinematics of the B0
s → J/ψ(→

μ+μ–)K+K– decay are described by sixteen variables. All final-state particles
are assumed to be on their mass shell, which gives four relations between
the particle energies and three-momenta and only twelve degrees of free-
dom remain. The final-state momenta can be expressed in terms of the four-
momentum of the B0

s , three Euler angles that describe the orientation of the
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Figure 2.1: Constraints in the ϕs–∆Γs plane from measurements of CP vio-
lation in mixing (afs, here represented as the semi-leptonic observable As

SL) by
HFAG [32], under the assumptions mentioned in the text. Both the 68% (green)
and 95% (orange) confidence-level contours are shown. The confidence-level (CL)
contour from the combination of direct ϕs (here represented as ϕccs

s ) and ∆Γs
measurements is shown as the grey area (see also Figure 1.8 on page 20). The
Standard Model prediction is represented by the black bar.

J/ψ and K+K– momenta in the rest frame of the B0
s , the invariant masses of

the J/ψ and the K+K– system, and three decay angles that describe the orien-
tations of the final state momenta relative to the J/ψ and K+K– momenta.

As a result of the fact that the B0
s is a spinless particle, the B0

s → J/ψK+K–

decay amplitude does not depend on the B0
s momentum and the orienta-

tion of the J/ψ and K+K– momenta (see also Appendix A). The correspond-
ing variables can be integrated over and only five degrees of freedom re-
main. One of these is eliminated by treating the J/ψ as an on-shell parti-
cle, which makes its mass a constant. This also has the advantage that the
B0
s → J/ψ(→ μ+μ–)K+K– decay can be described as a B0

s → J/ψK+K– decay
followed by a J/ψ → μ+μ– decay.

The combined differential decay rate in terms of the four remaining vari-
ables can be expressed as [45]

dΓ ∝ |A(B0
s→ f)|2 dm2

J/ψK+ dm2
KK d cos θμ dφh , (2.33)
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where two squared invariant masses and two angles are used instead of one
invariant mass and three decay angles. The variablesmJ/ψK+ andmKK are the
invariant masses of the J/ψK+ and K+K– systems, respectively. The angles θμ
and φh specify the direction of the muons in the rest frame of the J/ψ with a
spherical coordinate system.

A change of variables to the K+K– mass and three decay angles requires
the introduction of an additional variable, θK. The three angles θK, θμ, and
φh form the set of so-called helicity angles, named after the formalism that
is used to describe the angular dependence of the decay (see Section 2.4 and
Appendix A). These decay angles specify the directions of the four final state
particles, given the B0

s , K+K–, and J/ψ invariant masses.
The definition of the helicity angles is shown in Figure 2.2. Starting from

the rest frame of the B0
s , the helicity axis is defined by the directions of the

J/ψ and K+K– momenta. The two polar angles θK and θμ are defined in the
K+K– and J/ψ rest frames, respectively, boosting along this axis. θK is the
angle between the direction of the K+ and the helicity axis and θμ the angle
between the direction of the μ+ and the helicity axis. The azimuthal angle
φh specifies the relative orientation of the K+K– and μ+μ– decay planes. It
is defined as the angle between the “K+ side” of the K+K– plane and the “μ–
side” of the μ+μ– plane, using a right-handed rotation around the helicity axis
that is positive in the direction of the J/ψ momentum. Notice that θμ and φh
form a spherical coordinate system in the J/ψ rest frame, as was required for
Equation 2.33.

The change of variables from m2
J/ψK+ and m2

KK to mKK and cos θK intro-
duces a Jacobian determinant in Equation 2.33. Given that m2

KK does not de-
pend on cos θK when expressed in terms of the new variables, this determi-
nant reads ∂m2

KK
∂mKK

∂m2
J/ψK+

∂ cos θK . Exploiting kinematic relations between the final-
state momenta an expression for m2

J/ψK+ can be derived:

m2
J/ψK+ = 1

2 (m
2
B0s
+m2

J/ψ+2m2
K+−m2

KK)+2
mB0s
mKK

|pJ/ψ| |pK+ | cos θK , (2.34)

wheremB0s is the B
0
s mass, pJ/ψ the J/ψ three-momentum in the rest frame of

the B0
s , and pK+ the kaon three-momentum in the K+K– rest frame. With the

derivative of this expression with respect to cos θK the determinant is given
by 4mB0s |pJ/ψ| |pK+ |. Including the determinant, ignoring constant factors,
the differential decay rate can now be expressed as

dΓ ∝ |pJ/ψ| |pK+ | |A(B0
s→ f)|2 dmKK d cos θK d cos θμ dφh . (2.35)
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Figure 2.2: Decay angles in the helicity formalism (figure from [30]).

The factors |pJ/ψ| and |pK+ | depend on the K+K– invariant mass, but not on the
decay angles and can be absorbed in themKK-dependent part of |A(B0

s→ f)|2
(see Section 2.5).

The squared amplitude for the B0
s → J/ψK+K– process can be obtained

by working out expressions for |Af|2, |Af|2 and A∗
f Af and combining these

with the decay time dependence of Equation 2.21. The resulting expression is
ordered by the four time-dependent functions, cosh

(
1
2∆Γs t

)
, sinh

(
1
2∆Γs t

)
,

cos(∆ms t), and sin(∆ms t). Each of the four function coefficients depends
on the kinematic variables. See Reference [59] for an example of this approach
for B0

q → J/ψh+h– processes in general.
However, it is often more convenient to order terms in the expression for

the differential decay rate by intermediate resonant or angular-momentum
state rather than by decay-time dependence. Each term then has a distinct
dependence on kinematic variables. For the CP-violation analysis, a set of
intermediate CP eigenstates is used to describe the decay.

The B0
s → J/ψϕ process is the decay of a spin-zero particle into two spin-

one particles, which gives three intermediate angular-momentum states. De-
scribing the decay in terms of linear spin-polarization, or transversity states,
there is one state where the polarization vectors of the J/ψ and the ϕ point
along the helicity axis and there are two states where the vectors are trans-
verse with respect to the helicity axis. The former polarization is called longi-
tudinal and is indicated with “0”. The two transverse polarizations are parallel
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(“∥”) and perpendicular (“⊥”), indicating the relative orientations of the two
vectors in the transverse plane.

The behaviour of the J/ψϕ system under a CP transformation depends
on its orbital angular-momentum configuration. Since both the J/ψ and the
ϕ(1020) particles are odd under a CP transformation, the CP of the system is
equal to the parity of the orbital angular-momentum state. For the longitudi-
nal and parallel polarizations the state of the J/ψϕ orbital angular momentum
is either an S-wave (L = 0) or a D-wave (L = 2), which are even under a parity
transformation. The perpendicular polarization state corresponds to a P-wave
(L = 1), which is odd under parity.

A fourth intermediate state is formed by the K+K– S-wave, indicated with
“S”. For this state the K+K– system has no angular momentum. Because the
decaying B0

s meson is spinless, the orbital angular momentum of the J/ψK+K–

system needs to be in a P-wave configuration, which compensates for the spin
of the J/ψ. As a result, the K+K– S-wave state is odd under CP.

To derive an expression for the squared amplitude in terms of intermedi-
ate states it is necessary to go back to the expression for the B0

s→ f amplitude
in Equation 2.18 and expand the decay amplitudes:

A(B0
s→ f) ∝ g+Af +

q

p
g−Af = g+

∑
i

Ai +
q

p
g−
∑
j

Aj , (2.36)

where Ai and Aj are the amplitudes for the |B0
s⟩ and |B0

s⟩ decays through
intermediate states i and j, respectively. The dependence of the |B0

s⟩ decay
amplitude on final state kinematics is given by

Ai = Ai Hi(Ω) Ri(mKK) , (2.37)

where Ai is the complex-valued coefficient for amplitude Ai (also termed
transversity amplitude), Hi is the amplitude’s dependence on decay angles
(denoted by Ω), and Ri is a model of the dependence on the K+K– invariant
mass.

The |B0
s⟩ decay proceeds through the same intermediate states as the |B0

s⟩
decay and the respective amplitudes have the same kinematic dependence.
Therefore, the |B0

s⟩ amplitude is obtained by replacing the coefficient Ai with
Ai. The total B0

s→ f amplitude can now be expressed as

A(B0
s→ f) ∝

∑
i

(
g+ + λi

s g−
)
Ai =

∑
i

TiAi , (2.38)
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where Ti ≡ g++λi
s g− represents the decay-time dependence and the param-

eter λi
s is defined in accordance with λf (Equation 2.22a):

λi
s ≡

q

p

Ai

Ai
(2.39)

The amplitude for the B0
s → f decay is obtained by interchanging g+ and g−

and multiplying by a factor p
q (see Equation 2.18). Notice that this only affects

the decay-time part of Equation 2.38, i.e. the factor Ti.
For intermediate CP eigenstates, the parameter λi

s can be expressed as

λi
s = ηi |λi

s| e−i ϕi
s , (2.40)

where ηi = ±1 is the CP eigenvalue of the state, |λi
s| =
∣∣ q
p

∣∣∣∣Ai
Ai

∣∣, and the CP-
violating phase ϕi

s is given by ϕi
s ≡ – arg

(
1
ηi
λi
s
)
. If CP symmetry is violated

by the same amount for all intermediate states, the combination 1
ηi
λi
s does

not depend on the state and ϕi
s → ϕs.

Squaring the magnitude of A(B0
s → f) gives an expression that contains

products of the terms in Equation 2.38 of the form A∗
iAj T ∗

i Tj H∗
iHj R∗

iRj .
Combining terms with indices ij and ji, which are each others complex con-
jugates, gives

|A(B0
s→ f)|2 ∝

∑
i

|Ai TiHiRi|2 +
∑
i̸=j

ℜ(A∗
iAj T ∗

i Tj H∗
iHj R∗

iRj) ,

(2.41)
where the indices i and j run over the intermediate states 0, ∥, ⊥, and S. The
first sum in this expression contains the diagonal termswith the squaredmag-
nitude of the contribution of each state and the second sum contains the in-
terference terms for the different combinations of two states. The dependence
on decay time, decay angles, and invariant K+K– mass of this expression are
discussed in the following sections.

2.3 Decay-Time Distribution

The distribution in decay time follows from the products T ∗
i Tj (see Equa-

tion 2.38). With |g±|2 and g∗+ g− from Equation 2.20, these products are given
by

T ∗
i Tj =

[
|g+|2 + λi

s
∗
λj
s |g−|2 + λi

s
∗
(g∗+ g−)

∗ + λj
s g

∗
+ g−

]
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= 1
2 e

−Γs t
[
(1 + λi

s
∗
λj
s) cosh

(
1
2∆Γs t

)
+ (1− λi

s
∗
λj
s) cos(∆ms t)

− (λi
s
∗
+ λj

s) sinh
(
1
2∆Γs t

)
− i(λi

s
∗ − λj

s) sin(∆ms t)
]
. (2.42)

Defining

C±
ij ≡ 1± λi

s
∗
λj
s√

(1 + |λi
s|
2)(1 + |λj

s |
2
)

Dij ≡
−(λi

s
∗
+ λj

s)√
(1 + |λi

s|
2)(1 + |λj

s |
2
)

Sij ≡
+i (λi

s
∗ − λj

s)√
(1 + |λi

s|
2)(1 + |λj

s |
2
)

(2.43)

in accordance with Equation 2.22b and a “CP-average” decay amplitude

ACP
i ≡ 1√

2
Ai

√
1 + |λi

s|
2∣∣ACP

i

∣∣2 = 1
2 |Ai|2

(
1 + |λi

s|
2
)
= 1

2

(
|Ai|2 +

∣∣ q
p

∣∣2 |Ai|2
)

,
(2.44)

the combination A∗
iAj T ∗

i Tj can be expressed as

A∗
iAj T ∗

i Tj = ACP
i

∗
ACP

j e−Γs t

×
[
C+
ij cosh

(
1
2∆Γs t

)
+ C−

ij cos(∆ms t)

+Dij sinh
(
1
2∆Γs t

)
− Sij sin(∆ms t)

]
.

(2.45)

In general, the coefficients C±
ij , Dij , and Sij are complex numbers and

hence the terms A∗
iAj T ∗

i Tj have both real and imaginary parts. Notice that
if i = j, the coefficients are real:

C+
ii = 1 C−

ii =
1− |λi

s|
2

1 + |λi
s|
2

Dii = − 2ℜ(λi
s)

1 + |λi
s|
2 Sii =

2ℑ(λi
s)

1 + |λi
s|
2 ,

(2.46)

as required by the relation A∗
iAi T ∗

i Ti = |Ai Ti|2.
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The equivalent expression for the B0
s→ f decay is obtained by changing the

signs of the cos(∆ms t) and sin(∆ms t) terms andmultiplying by a factor
∣∣p
q

∣∣2
(see Equations 2.18 and 2.20). Using the definition ofCmix from Equation 2.25,
the time dependence of the B0

s→ f and B0
s→ f decays is given by

A∗
iAj T ∗

i,qf
Tj,qf = ACP

i
∗
ACP

j

1− qfCmix
1− Cmix

e−Γs t

×
[
C+
ij cosh

(
1
2∆Γs t

)
+ qfC

−
ij cos(∆ms t)

+Dij sinh
(
1
2∆Γs t

)
− qf Sij sin(∆ms t)

]
,

(2.47)

where the expressions have become dependent on the flavour of the decaying
beauty meson, qf (see Equation 2.28). In Sections 2.4, 2.5, and 2.6 only the
expression for the differential decay rate of the B0

s decay will be discussed,
but the dependence on qf can be reintroduced at any point by multiplying the
cos(∆ms t) and sin(∆ms t) terms by qf and the total rate by 1−qf Cmix

1−Cmix
.

2.3.1 Common CP Violation

In case CP symmetry is violated equally for all intermediate states, the com-
mon parameter λs ≡ 1

ηi
λi
s can be defined, with ϕs = –arg(λs). The correspond-

ing real-valued parameters in the decay-time distribution are then given by

Cs ≡
1− |λs|

2

1 + |λs|
2 Ds ≡ − 2ℜ(λs)

1 + |λs|
2 Ss ≡

2ℑ(λs)

1 + |λs|
2 . (2.48)

For states i and j that are both CP even or both CP odd (ηi = ηj), the
coefficients from Equations 2.43, 2.45, and 2.47 reduce to

C+
ij → 1 C−

ij → Cs Dij → ηiDs Sij → ηi Ss , (2.49a)

Similarly, for ηi = –ηj , the coefficients reduce to

C+
ij → Cs C−

ij → 1 Dij → i ηi Ss Sij → −i ηiDs . (2.49b)

Notice that in this special case the coefficients for ηi = ηj are all real, the
coefficients C±

ij for ηi = –ηj are real, and the coefficients Dij and Sij for
ηi = –ηj are imaginary. As a result, simultaneously flipping the signs of Ds
and sinh

(
1
2∆Γs t

)
, which is accomplished by the operations ϕs→π –ϕs and

∆Γs→–∆Γs, gives the complex conjugate of the product T ∗
i Tj . This turns

out to give a discrete ambiguity in the parameter values, as will be explained
in Section 2.6.2.
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2.3.2 Alternative Parameterization

The coefficients of the time-dependent functions in Equation 2.47 are func-
tions of λi

s and hence contain both the effects of CP violation in mixing and
CP violation in decay. These two effects can be separated with an alternative
parameterization, which has been implemented in the software that was used
for data analysis in the measurement presented in this thesis.

Starting again from Equation 2.42, an alternative expression for the prod-
uct T ∗

i,qf
Tj,qf is derived by splitting the λi

s parameter into a q
p factor and an

amplitude factor. Defining

P±
ij ≡ 1

2

[
1±

(
Ai

Ai

)∗
Aj

Aj

]

Pℜ
ij ≡ 1

2

[(
Ai

Ai

)∗
+

Aj

Aj

]
Pℑ
ij ≡ i

2

[(
Ai

Ai

)∗
− Aj

Aj

] (2.50)

and

Cmix ≡
1−

∣∣ q
p

∣∣2
1 +

∣∣ q
p

∣∣2 Dmix ≡ −
2ℜ
( q
p

)
1 +

∣∣ q
p

∣∣2 Smix ≡
2ℑ
( q
p

)
1 +

∣∣ q
p

∣∣2 , (2.51)

the product A∗
iAj T ∗

i,qf
Tj,qf can be expressed as

A∗
iAj T ∗

i,qfTj,qf = A∗
iAj

1− qfCmix
1− C2

mix
e−Γs t

×
[
(P+

ij + P−
ij Cmix) cosh

(
1
2∆Γs t

)
+ qf (P

−
ij + P+

ij Cmix) cos(∆ms t)

+ (Pℜ
ij Dmix + Pℑ

ij Smix) sinh
(
1
2∆Γs t

)
+ qf (P

ℑ
ij Dmix − Pℜ

ij Smix) sin(∆ms t)
]
.

(2.52)
Notice that the amplitudes Ai and Aj occur in this expression and not the
CP-average amplitudes ACP

i and ACP
j .

The fact that the phases of q
p and Ai

Ai
cannot be observed independently is

reflected by the observation that only the combinations Pℜ
ij Dmix +Pℑ

ij Smix
and Pℑ

ij Dmix –Pℜ
ij Smix are observable and not the Pℜ

ij , P
−
ij , Dmix, and Smix
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parameters individually. A phase convention can be chosen by, for example,
setting arg( qp) ≡ 0, which makes the phase of Ai

Ai
equal to the phase of λi

s.
Another choice is arg(A0

A0
) ≡ 0, which results in the equations arg( qp) = arg(λ

0
s)

and arg(Ai
Ai
) = arg(λi

s) – arg(λ0
s) for the remaining parallel, perpendicular, and

S-wave amplitudes. This convention directly gives a measurement of phase
differences.

2.4 Decay-Angle Distributions

Expanding Equation 2.41 into terms with the real and imaginary parts of the
angular dependence gives

|A(B0
s→ f)|2 ∝

∑
i

|ci|2 |Hi|2

+
∑
i̸=j

ℜ(c∗i cj)ℜ(H∗
i Hj)−ℑ(c∗i cj)ℑ(H∗

i Hj) ,
(2.53)

where the amplitude coefficients ci are defined as ci ≡Ai TiRi. The angu-
lar dependence of this squared amplitude is described by the functions |Hi|2,
2ℜ(H∗

i Hj), and –2ℑ(H∗
i Hj). The factors two in the functions of the inter-

ference terms originate from adding the terms with indices ij and ji, which
give identical contributions.

Expressions for the productsH∗
i Hj are derived in Appendix A using the

helicity formalism [60, 61]. In this description the angular dependence for an
intermediate state in the B0

s → J/ψK+K– decaywith definite particle helicities
is given by the product of two Wigner D-matrices (see Equation A.5).

Squaring the magnitude of the sum over D-matrices for the different he-
licity states yields angular functions for each of the states and for their inter-
ferences (Equations A.9, A.10, A.14, and A.15). Because helicity states are not
CP eigenstates, the functions are combined into functions in the transversity
basis by substituting their coefficients (helicity amplitudes) by combinations
of the transversity amplitudes, Ai (Equation A.16). Finally, this gives the ex-
pressions for the functions |Hi|2, 2ℜ(H∗

i Hj), and –2ℑ(H∗
i Hj).

The resulting angular functions are shown for each combination of inter-
mediate states i and j in Tables A.1–A.4. A summary is given in Table 2.1.
While in the appendix the coefficients of the amplitudes are given by only
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the helicity/transversity amplitudes, the coefficients ci are used in Table 2.1
to also introduce the dependence on decay time (Ti) and K+K– mass (Ri).

Table 2.1: Angular functions for the B0s → J/ψK+K– decay in helicity angles.
The coefficients, which depend on the decay time and the K+K– mass, are given
by ci ≡Ai TiRi.

coefficient f(Ω)× 32π
9

|c0|2 2 cos2 θK sin2 θμ
|c∥|2 sin2 θK (1− sin2 θμ cos2 φh)

|c⊥|2 sin2 θK (1− sin2 θμ sin2 φh)

ℜ(c∗0c∥) + 1√
2
sin 2θK sin 2θμ cosφh

ℑ(c∗0c⊥) − 1√
2
sin 2θK sin 2θμ sinφh

ℑ(c∗∥c⊥) + sin2 θK sin2 θμ sin 2φh

|cS|2 2
3 sin2 θμ

ℜ(c∗0cS) 4
3

√
3 cos θK sin2 θμ

ℜ(c∗∥cS)
1
3

√
6 sin θK sin 2θμ cosφh

ℑ(c∗⊥cS)
1
3

√
6 sin θK sin 2θμ sinφh

After adding the results for the two possible helicity configurations of
the muons in the J/ψ decay, only ten terms in Equation 2.53 give non-zero
contributions. As a result, each combination of states i and j only appears
once in Table 2.1. For the interference terms either the real or the imaginary
part of the product c∗i cj appears.

As indicated in Equation 2.35, the functions cos θK and cos θμ are used
as variables in the decay model rather than the corresponding angles θK and
θμ. These angles are polar angles in a spherical coordinate system, which are
defined between 0 and π. The corresponding cosines, with ranges [–1, +1],
completely specify the values of these two angles and are the natural variables
to use. The angle φh is an azimuthal angle, defined between –π and +π.

The angular functions in Table 2.1 are normalized such that the integrals
over all three angular variables are equal to one for the diagonal terms (|c0|2,
|c∥|2, |c⊥|2, and |cS|2). All interference terms vanish when integrated over
all three variables. Also the one-angle distributions, given in Table 2.2, are
dominated by the contributions from the diagonal terms. Interference terms
that survive the integration over two angular variables are the ℜ(c∗0cS) term
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in cos θK and the ℑ(c∗∥c⊥) term in φh, but these contributions almost vanish
when integrated over decay time (see Table 2.3 in Section 2.6.1).

Table 2.2: Angular functions for the B0s → J/ψK+K– decay integrated over two
of the three angular variables. The coefficients, which depend on the decay time
and the K+K– mass, are given by ci ≡Ai TiRi.

coefficient f(cos θK) f(cos θμ) f(φh)

|c0|2 3
2 cos2 θK 3

4 (1− cos2 θμ) 1
2π

|c∥|2 3
4 (1− cos2 θK) 3

8 (1 + cos2 θμ) 1
4π (2− cos 2φh)

|c⊥|2 3
4 (1− cos2 θK) 3

8 (1 + cos2 θμ) 1
4π (2 + cos 2φh)

|cS|2 1
2

3
4 (1− cos2 θμ) 1

2π

ℑ(c∗∥c⊥) – – 1
2π sin 2φh

ℜ(c∗0cS)
√
3 cos θK – –

2.5 Invariant K+K–-Mass Distribution

Besides the dependence on decay-time via Ti, the angular coefficients in Equa-
tion 2.53 also depend on K+K– mass via Ri. This dependence is described by
a phenomenological model. To simplify the analysis of the time and angular
distributions, the model for the B0

s → J/ψK+K– decay is integrated over the
K+K– mass. As will be discussed in Sections 2.6.2 and 3.5, the model is split
into mass intervals, for which separate integrals are calculated.

As discussed in Section 1.3.3, the K+K– pair is required to have an invari-
ant mass between 990 and 1050MeV/c2. The plot of the K+K–-mass spectrum
in Figure 1.9 shows that the contribution of the ϕ(1020) dominates in this
region, but that there are also f0(980) and non-resonant contributions.

The K+K–-mass integral gives a factor for each term in Equation 2.41,
which is, in principle, different for each combination of intermediate states.
However, because the dependence on K+K– mass is approximately equal for
the three B0

s → J/ψϕ states, this contribution can be factored out as an over-
all normalization and only relative factors between the K+K– S-wave and the
B0
s → J/ψϕ contributions remain (see also [3, 62]).
Before integrating the expressions for R∗

i Rj over mKK they are multi-
plied by the factor |pJ/ψ| |pK+ | from Equation 2.35. The dependence of this
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factor on mKK can be derived from the kinematic relations in the “two-body
decays” of the B0

s and the K+K– pair. The expressions for the magnitudes of
the J/ψ momentum in the B0

s rest frame and the K+ momentum in the K+K–

rest frame depend only on the B0
s , J/ψ, K+K–, and K+ masses. Working out

the kinematic relations, the factor |pJ/ψ| |pK+ | is given by

|pJ/ψ| |pK+ | =

√
λ(mB0s ,mJ/ψ,mKK)λ(mKK,mK+ ,mK+)

4mB0s mKK
, (2.54)

with

λ(M,m1,m2) ≡ M4 +m4
1 +m4

2 − 2M2m2
1 − 2M2m2

2 − 2m2
1m

2
2 . (2.55)

The functions Ri(mKK) can be normalized by absorbing a constant fac-
tor into the corresponding transversity amplitude Ai, such that the integrals
for diagonal terms are given by

∫
dmKK |pJ/ψ| |pK+ | |Ri|2 ≡ 1. This procedure

moves the issue of overall normalization to the transversity amplitudes and
leaves only non-trivial mKK integrals in the interference terms. These inte-
grals are given by (the real and imaginary parts of)∫ m+

KK

m−
KK

dmKK |pJ/ψ| |pK+ |R∗
i Rj ≡ Kij e

−iκij , (2.56)

where m−
KK = 990MeV/c2, m+

KK = 1050MeV/c2. The real-valued parameters
Kij and κij form the K+K–-mass factor for interference term ij. By con-
struction, the conditionsKii = 1 and κii = 0 apply. With the Cauchy–Schwarz
inequality, |

∫
dxA∗B |2 ≤

∫
dx |A|2 ·

∫
dx |B|2, it follows that 0 ≤Kij ≤ 1.

Because only the magnitude of the B0
s → J/ψK+K– decay amplitude is

observable, the overall phase of the transversity amplitudes is arbitrary and
only phase differences between the individual amplitudes can be observed.
Integrating overmKK, the phases κij can be absorbed into these phase differ-
ences:∫ m+

KK

m−
KK

dmKK |pJ/ψ| |pK+ |A∗
iAj R∗

i Rj = A∗
iAj Kij e

−iκij

= Kij |Ai| |Aj | ei[arg(Aj)−arg(Ai)−κij ] .
(2.57)

The interference terms become proportional to the coupling factors be-
tween states i and j, Kij , which are treated separately from the transversity
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amplitudes. Although these factors can in principle be determined from the
angular distributions in the B0

s → J/ψK+K– data, their statistical uncertain-
ties would be large. For this reason theKij values are estimated by assuming
phenomenological models for the K+K–-mass shapes of the different compo-
nents of the decay and performing the integrals of Equation 2.56.

It is assumed that the K+K–-mass models only depend on the resonant
state of the K+K– system and not on the angular momentum of the J/ψK+K–

system. That is, the same mass shape is used for all three angular-momentum
states of the B0

s → J/ψϕ decay, which is assumed to be a good approximation.
See references [59] and [46] for a discussion of the small dependence on the
orbital angular momentum of the J/ψK+K– system.

Because the K+K–-mass shapes for the three B0
s → J/ψϕ intermediate

states are thus taken to be identical, only one non-trivialKij factor remains.
This factor is indicated by “KPS”, where “P” stands for “P-wave” and “S” for
“S-wave”, indicating the K+K– angular-momentum states for the B0

s → J/ψϕ
and K+K– S-wave contributions, respectively.

Similarly, the only remaining contribution to the phases of the transver-
sity amplitudes is κPS. The following phase differences are defined:

δ∥ – δ0 ≡ arg(A∥) − arg(A0)

δ⊥ – δ0 ≡ arg(A⊥)− arg(A0)

δS – δ⊥ ≡ arg(AS) − arg(A⊥)− κPS .

(2.58)

The remaining phase differences can be expressed in terms of the above three.
A relativistic Breit-Wigner function (see e.g. reference [45]) is used to

model the mKK dependence of the ϕ(1020) component of the K+K– system.
The f0(980) contribution is modelled by a Flatté function [63]. The contribu-
tion from non-resonant K+K– pairs, which is small compared to the ϕ(1020)
and f0(980) contributions in the 990–1050 MeV/c2 mass window, is neglected
in this measurement. See Section 3.5 for the result of the KPS calculation,
where also the experimental mKK resolution is taken into account.

2.6 Decay-Rate Equations

Combining the expressions for the decay-time and K+K–-mass dependence
from Equations 2.45 and 2.57 yields the coefficients in the sum of the angular
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dependence in Equation 2.53:∫ m+
KK

m−
KK

dmKK |pJ/ψ| |pK+ | c∗i cj =
∫ m+

KK

m−
KK

dmKK |pJ/ψ| |pK+ |A∗
iAj T ∗

i Tj R∗
i Rj

= Kij e
−iκij ACP

i
∗
ACP

j e−Γs t
[
C+
ij cosh

(
1
2∆Γs t

)
+ C−

ij cos(∆ms t)

+Dij sinh
(
1
2∆Γs t

)
− Sij sin(∆ms t)

]
.

(2.59)
The phase of the integral over the K+K–-mass functions can be absorbed in
the phase difference between the amplitudes, as in Equation 2.57:

e−iκij ACP
i

∗
ACP

j = |ACP
i | |ACP

j | ei(δj−δi)

= |ACP
i | |ACP

j | [cos(δj − δi) + i sin(δj − δi)] ,
(2.60)

where
δj − δi ≡ arg(ACP

j )− arg(ACP
i )− κij . (2.61)

Depending on whether the real or imaginary part of the coefficient is re-
quired in Equation 2.53, the real and imaginary parts of the time-dependence
of Equation 2.59 aremultiplied by either cos(δj−δi) or sin(δj−δi). Taking the
cosh

(
1
2∆Γs t

)
term as an example, the coefficients of the angular distribution

are proportional to

ℜ
(
ei(δj−δi)C+

ij

)
= cos(δj − δi)ℜ(C+

ij )− sin(δj − δi)ℑ(C+
ij ) (2.62a)

ℑ
(
ei(δj−δi)C+

ij

)
= sin(δj − δi)ℜ(C+

ij ) + cos(δj − δi)ℑ(C+
ij ) , (2.62b)

where the first equation applies to the diagonal terms and the “0∥”, “0S”, and
“∥S” terms and the second equation to the “0⊥”, “∥⊥”, and “⊥S” terms.

The full expression for the differential decay rate in decay time and de-
cay angles is obtained by summing the products of the angular functions
(Table 2.1) and their time-dependent coefficients (real or imaginary part of
Equation 2.59). This expression is used to build the probability density func-
tion that models the B0

s → J/ψK+K– decay, as will be discussed in Chapter 3.

2.6.1 Approximate Equations

To indicate where the sensitivity to the different parameters in the decay
model comes from, two approximations of the terms in the differential rate
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are given in Tables 2.3, 2.4, and 2.5. The first table shows the time-dependent
functions in the differential decay rate in the case of no CP violation. Since CP
violation in the B0

s → J/ψK+K– decay is small, this gives a good indication of
how the remaining parameters appear in the decay-rate equations. Without
CP violation, the parameters Cs and Ss are equal to zero and Ds is equal to
minus one. With Equation 2.49, this gives

C+
ij → 1 C−

ij → 0 Dij → −ηi Sij → 0 (ηi = +ηj) (2.63a)
C+
ij → 0 C−

ij → 1 Dij → 0 Sij → i ηi (ηi = −ηj) . (2.63b)

Because of the differences between coefficients for states with equal CP eigen-
values (ηi = +ηj) and states with opposite eigenvalues (ηi = −ηj) in Equa-
tion 2.49, different coefficients are non-zero for these two cases without CP
violation. The coefficients in Equation 2.63a correspond to the diagonal terms
(i = j) in the decay-rate equations and to interference terms with equal CP
eigenvalues. The coefficients in Equation 2.63b correspond to interference of
a CP-even and a CP-odd state, which have opposite eigenvalues.

Table 2.3: Functions of decay time without CP violation.

ij f(t)× e+Γs t

ii |ACP
i |2

[
cosh

(
1
2∆Γs t

)
− ηi sinh

(
1
2∆Γs t

)]
0∥ |ACP

0 ||ACP
∥ | cos(δ∥ – δ0)

[
cosh

(
1
2∆Γs t

)
− sinh

(
1
2∆Γs t

)]
0⊥ |ACP

0 ||ACP
⊥ | [sin(δ⊥ – δ0) cos(∆ms t)− cos(δ⊥ – δ0) sin(∆ms t)]

∥⊥ |ACP
∥ ||ACP

⊥ |
[
sin(δ⊥ – δ∥) cos(∆ms t)− cos(δ⊥ – δ∥) sin(∆ms t)

]
0S KPS|ACP

0 ||ACP
S | [cos(δS – δ0) cos(∆ms t) + sin(δS – δ0) sin(∆ms t)]

∥S KPS|ACP
∥ ||ACP

S |
[
cos(δS – δ∥) cos(∆ms t) + sin(δS – δ∥) sin(∆ms t)

]
⊥S KPS|ACP

⊥ ||ACP
S | sin(δS – δ⊥)

[
cosh

(
1
2∆Γs t

)
+ sinh

(
1
2∆Γs t

)]
Equation 2.63 and Table 2.3 show that for terms with ηi = ηj only the

cosh
(
1
2∆Γs t

)
and sinh

(
1
2∆Γs t

)
functions remain and for ηi = –ηj terms only

the cos(∆ms t) and sin(∆ms t) functions. In the experiment, flavour tagging
is required to determine the coefficients of the latter, since these terms have
opposite sign for B0

s and B0
s decays (see Equation 2.47) and cancel in the sum

of the two differential decay rates. Because it is not possible to tag all de-
cay candidates (correctly), the statistical uncertainties of the associated pa-
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rameters will generally be larger than the uncertainties of parameters in the
cosh

(
1
2∆Γs t

)
and sinh

(
1
2∆Γs t

)
terms.

Without CP violation, light and heavy eigenstates of the B0
s–B0

s system
coincide with the CP-even and CP-odd states, respectively. The time depen-
dence of the diagonal terms, which form the decay-time distribution inte-
grated over the decay angles, can consequently be expressed as

|ACP
i |2 e−Γs t

[
cosh

(
1
2∆Γs t

)
− ηi sinh

(
1
2∆Γs t

)]
=

{
|ACP

i |2 e−ΓL t if ηi = +1 (CP even)
|ACP

i |2 e−ΓH t if ηi = −1 (CP odd) .
(2.64)

The values of the parameters Γs, ∆Γs, and |ACP
i | can be estimated rela-

tively precisely from untagged decay candidates, but these estimates are cor-
related. The mean of the decay-time distribution is controlled by Γs, but also
by the relative contributions of CP-even and CP-odd states (|ACP

i |), which
have different lifetimes. The impact of changing the even and odd contribu-
tions depends on the value of ∆Γs, which controls the difference in lifetime
between the two states.

The phases of the transversity amplitudes can only be determined from
interference terms. The cosine of δ∥ – δ0 and the sine of δS – δ⊥ appear in
the untagged distribution, but tagged decay candidates are required to mea-
sure the sine of δ∥ – δ0 and the cosine of δS – δ⊥ from combinations of the
remaining interference terms. As a result, the measurements of sin(δ∥ – δ0)
and cos(δS – δ⊥) are less precise than the measurements of cos(δ∥ – δ0) and
sin(δS – δ⊥) and an approximate symmetry in the estimates of these parame-
ters arises for δ∥ – δ0→2π – (δ∥ – δ0) and δS – δ⊥→π – (δS – δ⊥), for which
the values of cos(δ∥ – δ0) and sin(δS – δ⊥) do not change. The parameter
δ⊥ – δ0 is only determined with cos(∆ms t) and sin(∆ms t) terms in the ap-
proximation of Table 2.3 and does not show a similar symmetry.

The interference term of the parallel and perpendicular states depends on
both the δ∥ – δ0 and the δ⊥ – δ0 parameters:

sin(δ⊥ – δ∥) = cos(δ∥ – δ0) sin(δ⊥ – δ0)− sin(δ∥ – δ0) cos(δ⊥ – δ0)
≈ sin(δ∥ – δ0)− sin(δ⊥ – δ0) (2.65a)

cos(δ⊥ – δ∥) = cos(δ∥ – δ0) cos(δ⊥ – δ0) + sin(δ∥ – δ0) sin(δ⊥ – δ0)
≈ 1 . (2.65b)
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In these equations an approximation was used where the values of δ∥ – δ0
and δ⊥ – δ0 are approximately equal to π, which is justified given previous
measurements of these phase differences (see for example [3]). The combina-
tion of sin(δ∥ – δ0) and sin(δ⊥ – δ0) in the sin(∆ms t) coefficient of this term
introduces a correlation between the parameters δ∥ – δ0 and δ⊥ – δ0.

Since the fraction of S-wave is small, the sensitivity for the parameter
∆ms is expected to mainly come from the “0⊥” and “∥⊥” interference terms.
The cos(∆ms t) and sin(∆ms t) functions in these terms can be combined
into a single sine function with a phase:

sin δ cos(∆ms t)− cos δ sin(∆ms t) = − sin(∆ms t− δ) . (2.66)

Because a change in the frequency of a sine function in a limited range can
be partially compensated by a phase shift, these terms introduce correlations
between ∆ms and the phases of the transversity amplitudes. Since practi-
cally all information on δ⊥ – δ0 comes from the “0⊥” and “∥⊥” terms, this
parameter is affected most.

Table 2.4 shows the time dependence of the differential decay rate in-
cluding CP violation, but with several approximations for small parameters.
Given previous measurements, it is known that the CP violation in B0

s →
J/ψK+K– is small, which leads to |λi

s| ≈ 1 and ϕi
s ≈ 0. To parameterize also CP

violation in decay and CP violation in mixing with a small parameter, |λi
s| is

replaced with

Ci
s ≡ C−

ii =
1− |λi

s|
2

1 + |λi
s|
2 . (2.67)

An expansion inCi
s and ϕi

s is used for the approximation in Table 2.4. Ex-
panding the coefficients of the decay-rate equations (Equation 2.43) in terms
of these parameters at first order yields

C+
ij ≈ 1 + i · 1

2(ϕ
i
s − ϕj

s )

C−
ij ≈ 1

2(C
i
s + Cj

s )− i · 1
2(ϕ

i
s − ϕj

s)

Dij ≈ −ηi
[
1 + i · 1

2(ϕ
i
s − ϕj

s)
]

Sij ≈ −ηi
[
i · 1

2(C
i
s − Cj

s ) +
1
2(ϕ

i
s + ϕj

s)
] (2.68a)
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for ηi = ηj and

C+
ij ≈ 1

2(C
i
s + Cj

s )− i · 1
2(ϕ

i
s − ϕj

s )

C−
ij ≈ 1 + i · 1

2(ϕ
i
s − ϕj

s)

Dij ≈ +ηi
[
1
2(C

i
s − Cj

s )− i · 1
2(ϕ

i
s + ϕj

s)
]

Sij ≈ +ηi
[
i− 1

2(ϕ
i
s − ϕj

s)
] (2.68b)

for ηi = –ηj .
Also the value of ∆Γs is small enough to allow an approximation of the

cosh
(
1
2∆Γs t

)
and sinh

(
1
2∆Γs t

)
functions. A first-order expansion in ∆Γs

gives
cosh

(
1
2∆Γs t

)
≈ 1 sinh

(
1
2∆Γs t

)
≈ 1

2∆Γs t . (2.69)

The sines and cosines of the phase differences δ∥ – δ0 and δ⊥ – δ0 are ex-
panded around π, as in Equation 2.65:

sin(δ∥ – δ0) ≈ π − (δ∥ – δ0) cos(δ∥ – δ0) ≈ −1

sin(δ⊥ – δ0) ≈ π − (δ⊥ – δ0) cos(δ⊥ – δ0) ≈ −1

sin(δ⊥ – δ∥) ≈ δ⊥ – δ∥ cos(δ⊥ – δ∥) ≈ +1 .

(2.70)

In the table, the remaining non-trivial sine and cosine functions are denoted
by

sij ≡ sin(δj − δi) cij ≡ cos(δj − δi) . (2.71)

Integrating over the decay angles, the shape of the distribution of decay
time is given by the sum of the diagonal terms in the differential rate. As
can be seen in Table 2.4, CP violation only affects the oscillatory terms in this
distribution in the first-order approximation. These terms have opposite sign
for B0

s and B0
s and can be isolated by taking the difference between the two

differential rates with qf = +1 and qf = –1 (see also Equation 2.47). For a single
term, this difference is approximately given by

T ∗
i,+1Ti,+1 − T ∗

i,−1Ti,−1 ∝ e−Γs t
[
Ci
s cos(∆ms t) + ηi ϕ

i
s sin(∆ms t)

]
.

(2.72)
The CP violation parameters also appear in the interference terms, which

provides additional information on their values. This is particularly notice-
able in cases where the parameters appear in the cosh

(
1
2∆Γs t

)
coefficient,

which is approximately equal to one and not suppressed by the small value
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Table 2.4: Functions of decay time with approximations for small CP violation,
small∆Γs, and phase differences close to 0 or π.

ij f(t)× e+Γs t

ii |ACP
i |2

[
1− 1

2 ηi∆Γs t+ Ci
s cos(∆ms t) + ηi ϕ

i
s sin(∆ms t)

]
0∥ −|ACP

0 ||ACP
∥ |
[
1− 1

2 ∆Γs t

+1
2(C

0
s + C

∥
s ) cos(∆ms t) +

1
2(ϕ

0
s + ϕ

∥
s ) sin(∆ms t)

]
0⊥ −|ACP

0 ||ACP
⊥ |
[
1
2(ϕ

⊥
s − ϕ0

s)− 1
4(ϕ

0
s + ϕ⊥

s )∆Γs t

−(s0⊥ + 1
2ϕ

⊥
s − 1

2ϕ
0
s) cos(∆ms t)− sin(∆ms t)

]
∥⊥ +|ACP

∥ ||ACP
⊥ |
[
1
2(ϕ

⊥
s − ϕ

∥
s )− 1

4(ϕ
∥
s + ϕ⊥

s )∆Γs t

+(s∥⊥ − 1
2ϕ

⊥
s + 1

2ϕ
∥
s ) cos(∆ms t)− sin(∆ms t)

]
0S −KPS|ACP

0 ||ACP
S |
[
1
2(C

0
s + CS

s )c⊥S − 1
2(ϕ

S
s − ϕ0

s)s⊥S

−
[
1
2(C

S
s − C0

s )c⊥S − 1
2(ϕ

0
s + ϕS

s)s⊥S
]
· 1
2∆Γs t

+
[
c⊥S + (s0⊥ + 1

2ϕ
S
s − 1

2ϕ
0
s)s⊥S

]
cos(∆ms t)

−
[
(s0⊥ + 1

2ϕ
S
s − 1

2ϕ
0
s)c⊥S − s⊥S

]
sin(∆ms t)

]
∥S +KPS|ACP

∥ ||ACP
S |
[
1
2(C

∥
s + CS

s )c⊥S − 1
2(ϕ

S
s − ϕ

∥
s )s⊥S

−
[
1
2(C

S
s − C

∥
s )c⊥S − 1

2(ϕ
∥
s + ϕS

s)s⊥S
]
· 1
2∆Γs t

+
[
c⊥S − (s∥⊥ − 1

2ϕ
S
s +

1
2ϕ

∥
s )s⊥S

]
cos(∆ms t)

+
[
(s∥⊥ − 1

2ϕ
S
s +

1
2ϕ

∥
s )c⊥S + s⊥S

]
sin(∆ms t)

]
⊥S −KPS|ACP

⊥ ||ACP
S |
[[

1
2(ϕ

S
s − ϕ⊥

s )c⊥S − s⊥S
]
(1 + 1

2∆Γs t)

−
[
1
2(ϕ

S
s − ϕ⊥

s )c⊥S +
1
2(C

⊥
s + CS

s )s⊥S
]
cos(∆ms t)

−
[
1
2(C

S
s − C⊥

s )c⊥S − 1
2(ϕ

⊥
s + ϕS

s)s⊥S
]
sin(∆ms t)

]
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Table 2.5: Functions of decay time with approximations for small CP violation,
ϕi
s ≡ϕs, Ci

s ≡Cs, small∆Γs, and phase differences close to 0 or π.

ij f(t)× e+Γs t

ii |ACP
i |2

[
1− 1

2 ηi∆Γs t+ Cs cos(∆ms t) + ηi ϕs sin(∆ms t)
]

0∥ −|ACP
0 ||ACP

∥ |
[
1− 1

2 ∆Γs t+ Cs cos(∆ms t) + ϕs sin(∆ms t)
]

0⊥ +|ACP
0 ||ACP

⊥ |
[
1
2 ϕs∆Γs t+ s0⊥ cos(∆ms t) + sin(∆ms t)

]
∥⊥ −|ACP

∥ ||ACP
⊥ |
[
1
2 ϕs∆Γs t− s∥⊥ cos(∆ms t) + sin(∆ms t)

]
0S −KPS|ACP

0 ||ACP
S |
[
Cs c⊥S +

1
2 ϕs s⊥S∆Γs t

+(c⊥S + s0⊥ s⊥S) cos(∆ms t)− (s0⊥ c⊥S − s⊥S) sin(∆ms t)
]

∥S +KPS|ACP
∥ ||ACP

S |
[
Cs c⊥S +

1
2 ϕs s⊥S∆Γs t

+(c⊥S − s∥⊥ s⊥S) cos(∆ms t) + (s∥⊥ c⊥S + s⊥S) sin(∆ms t)
]

⊥S +KPS|ACP
⊥ ||ACP

S |
[
s⊥S(1 +

1
2∆Γs t)

+Cs s⊥S cos(∆ms t)− ϕs s⊥S sin(∆ms t)
]
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of∆Γs or by the effects of imperfect flavour tagging. In most cases this con-
tributes to the estimates of the differences between the ϕi

s parameters, but in
the “0S” and “∥S” terms also the values of C0

s +CS
s and C

∥
s +CS

s .
Table 2.5 shows the time dependence of the differential decay rate in the

same approximation, but with the additional requirement that CP violation
is identical for all intermediate states. In this case the ϕi

s differences vanish,
but C0

s +CS
s and C

∥
s +CS

s reduce to 2Cs. As a result, a significant part of the
sensitivity for Cs (or |λs|) comes from the “0S” and “∥S” terms, despite the
small value of the S-wave amplitude.

2.6.2 A Symmetry in the Equations

In the limit of equal CP violation for all intermediate states (or small differ-
ences), Equation 2.62 reveals an (approximate) symmetry in the decay-rate
equations. As explained in Section 2.3.1, simultaneously applying the op-
erations ϕs→π –ϕs and ∆Γs→–∆Γs is equivalent to taking the complex
conjugates of the coefficients C±

ij ,Dij , and Sij in this limit. The correspond-
ing sign flip in the imaginary parts of the coefficients can be cancelled by
flipping the sign of either sin(δj – δi) for Equation 2.62a or cos(δj – δi) for
Equation 2.62b.

The specific structure of the appearance of real and imaginary parts of the
products c∗i cj in the angular coefficients in Table 2.1 enables the required sign
flips in sin(δj – δi) and cos(δj – δi). Simultaneously applying the operations
ϕs→π –ϕs,∆Γs→–∆Γs, δ∥ – δ0→–(δ∥ – δ0), δ⊥ – δ0→π – (δ⊥ – δ0), and
δS – δ⊥→π – (δS – δ⊥) does not change the value of the B0

s → J/ψK+K– dif-
ferential decay rate in the limit of equal CP violation for all intermediate
states. As a result, in this limit there is an alternative set of parameter val-
ues for each given set, for which the decay model fits the experimental data
equally well.

To resolve this discrete ambiguity, the measurement is performed in mul-
tiple intervals of K+K– mass. Integrating overmKK within each interval gives
different values for the phase κPS, which affects the value δS – δ⊥ that is mea-
sured for each interval. Comparing the behaviour of δS – δ⊥ across the in-
tervals to what is expected from the K+K–-mass models determines which
of the two ambiguous sets of parameter values corresponds to the physical
situation [64].

Moving through the ϕ(1020) resonance from low mKK to high mKK, the
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phase of the ϕ(1020) → K+K– contribution roughly increases by π, while the
phase of the f0(980) → K+K– contribution remains approximately constant.
As a result, the phase κPS is expected to increase from intervals at lowmKK to
intervals at highmKK and the phase difference δS – δ⊥ is expected to decrease.
This behaviour has been shown to correspond to a value ofϕs close to zero and
a positive value of∆Γs, as opposed to ϕs close to π and negative∆Γs [3, 65].

2.6.3 Parameterization

As mentioned in Section 2.6.1, the small parameter Ci
s (Equation 2.67) is used

instead of |λs|, in addition to ϕi
s. As can be seen from Table 2.4, the actual

CP-violation observables in the (angles-integrated) decay-time distribution
are the sums of Ci

s and ϕi
s, weighted by the squared magnitudes of the corre-

sponding transversity amplitudes. These observables form the coefficients of
the oscillatory functions in the diagonal terms of the differential decay rate.
Ignoring contributions from interference terms, these are also the observables
that are measured with the assumption that CP violation is identical for all
intermediate states.

To parameterize in terms of these CP-violation observables as much as
possible, the following linear combinations are defined:

Cav
s ≡ 1

2C
0
s +

1
4C

∥
s + 1

4C
⊥
s ϕav

s ≡ ϕ0
s +

1
2ϕ

∥
s − 1

2ϕ
⊥
s

∆C
∥
s ≡ C

∥
s − C0

s ∆ϕ
∥
s ≡ ϕ

∥
s − ϕ0

s

∆C⊥
s ≡ C⊥

s − C0
s ∆ϕ⊥′

s ≡ ϕ⊥
s − 1

2ϕ
0
s − 1

2ϕ
∥
s

CavS
s ≡ 1

2C
0
s +

1
2C

S
s ∆ϕS

s ≡ ϕS
s − ϕ0

s

(2.73)

The parameters Cav
s and ϕav

s are the observables measured in the angles-
integrated time distribution, ignoring interference terms, also ignoring the
S-wave, and approximating the ratio |ACP

0 |2 : |ACP
∥ |2 : |ACP

⊥ |2 by 2 : 1 : 1. This
last approximation is justified by the values reported in reference [3], which
are given by |ACP

0 |2 ≈ 0.52, |ACP
∥ |2 ≈ 0.23, and |ACP

⊥ |2 ≈ 0.25. The normalization
factors are chosen such that Cav

s →Cs and ϕav
s →ϕs in the case of equal CP

violation for all states.
The remaining parameters are the differences between the parameters of

the different states and the parameters of the longitudinal state, with the ex-
ceptions of∆ϕ⊥′

s and CavS
s . The parameter∆ϕ⊥′

s is a combination of ϕ⊥
s –ϕ0

s
and ϕ⊥

s –ϕ∥
s , which both appear as coefficients of cosh

(
1
2∆Γs t

)
in the inter-

ference terms. CavS
s appears in the cosh

(
1
2∆Γs t

)
coefficient of the “0S” term.
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Using these parameters instead of ϕ⊥
s –ϕ0

s and CS
s –C0

s reduces correlations
between the ϕi

s parameters and between the Ci
s parameters, respectively.

In the case of equal CP violation for all intermediate states, the coefficients
of the decay-time functions are given by (see also Equation 2.48)

Cs ≡
1− |λs|

2

1 + |λs|
2

Ds ≡ − 2ℜ(λs)

1 + |λs|
2 = −

√
1− C2

s cosϕs ≈ −1

Ss ≡ +
2ℑ(λs)

1 + |λs|
2 = −

√
1− C2

s sinϕs ≈ −ϕs ,

(2.74)

where a first-order expansion in the parameters Cs and ϕs was used for the
approximation. For historical reasons, the parameter |λs| is used in this case
instead of Cs.

The magnitudes of the transversity amplitudes are parameterized by their
squares, |ACP

i |2. Since only the shape of the time and angular distributions
are measured and not the absolute scale of the differential decay rate, the
overall scale of the transversity amplitudes is arbitrary. To fix the scale, the
magnitudes of the amplitudes are multiplied by a common factor, such that
the sum of the squares for the J/ψϕ polarization states is equal to one:

|ACP
0 |2 + |ACP

∥ |2 + |ACP
⊥ |2 ≡ 1 . (2.75)

The parameters |ACP
0 |2 and |ACP

⊥ |2 are used in the decaymodel and the value of
|ACP

∥ |2 follows from Equation 2.75. This procedure makes the squared magni-
tudes of the J/ψϕ amplitudes essentially polarization fractions, although one
should keep in mind that these amplitudes are combinations of the B0

s and B0
s

values, which also contain mixing parameters (see Equation 2.44).
The magnitude of the S-wave amplitude is parameterized by a fraction,

given by

FCP
S ≡ |ACP

S |2

|ACP
0 |2 + |ACP

∥ |2 + |ACP
⊥ |2 + |ACP

S |2
=

|ACP
S |2

1 + |ACP
S |2

. (2.76)

As discussed in Section 2.5, differences between the phases of the transversity
amplitudes are parameterized by δ∥ – δ0, δ⊥ – δ0, and δS – δ⊥. Both the S-
wave fraction and the phase difference between the S-wave and the J/ψϕ
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polarizations are measured in intervals of K+K– mass to resolve the discrete
ambiguity discussed in Section 2.6.2: FCP

S,b and δS,b – δ⊥,b.
Values of the parameters in the model are estimated by fitting the shape of

the differential decay-rate equation to the B0
s → J/ψK+K– data. To be able to

describe the experimental data several experimental effects have to be added
to the model that was discussed in this chapter. The final experimental model
will be discussed in Chapter 3.



74 Chapter 2. Phenomenology



Chapter 3

Data Analysis

To extract the parameters that describe the B0
s → J/ψK+K– decay from the

experimental data, the model of decay time and decay angles, as discussed in
Chapter 2, is fitted to the distribution of decays in the data. Several exper-
imental effects have to be taken into account in this fit. Some of these ef-
fects, for instance the uncertainty in the measurement of the decay time, are
included by augmenting the theoretical model. Backgrounds, on the other
hand, are dealt with by selecting signal-like decay candidates in the data and
by subtracting remaining background from the data after selection.

This chapter deals with the preparation of experimental data (Section 3.2)
and the model that can be used to fit these data (Sections 3.3–3.6). Also the
use of the decay model in the fit (Section 3.1) and in simulation (Section 3.7)
are discussed.

3.1 Maximum-Likelihood Fit

The fit of the decay model to the data is an unbinned maximum-likelihood
fit. A probability density function (PDF) is constructed by normalizing the
expression for the differential decay rate, including experimental effects, by
dividing by its integral over decay time and decay angles. A likelihood func-
tion of the PDF parameters for a single B0

s decay is given by the PDF at the
values of the variables, e.g. time and angles, for that decay. The likelihood
function for the full sample of decays is given by the product of all individual
likelihoods.

Parameter values are estimated by maximizing the likelihood function

75
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for the sample. In practice, the negative logarithm of the likelihood function
(NLL) is minimized to find the maximum likelihood. Instead of a product, the
NLL is a sum of the contributions from individual decays.

The shape of the NLL around the minimum can be approximated by a
second order Taylor series, i.e. a parabola. Since, by construction, the first
derivative of this function vanishes at the point where the NLL reaches its
minimum, the approximation for a given parameter µ can be written in the
form

NLL(µ) ≈ 1

2σ2
µ

(µ− µ̂)2 + C , (3.1)

where µ̂ is the value of parameter µ in the minimum, σµ determines the width
of the NLL shape around the minimum, and C is the NLL value in the mini-
mum. The width, σµ, is (related to) the statistical uncertainty of the estimate
of parameter µ. The wider the NLL shape around the minimum, the larger
the value of σµ and the uncertainty.

It depends on the actual shape of the NLL how well it is approximated by
a parabola away from theminimum. An important factor is the number of de-
cays that is used to build the NLL. With more data the statistical uncertainties
of the parameter estimates become smaller and, in general, the NLL becomes
more parabolic within an interval of a few times the value of σµ around the
minimum.

In case the distribution of parameter estimates µ̂ from different measure-
ments is described by a Gaussian shape, the shape of the NLL will be truly
parabolic. In this case the parameter σµ is an estimate of the standard devi-
ation of the µ̂ distribution, which can be used as a measure of the statistical
uncertainty of the parameter estimate. The parameter interval between the
values µ̂ –σµ and µ̂ +σµ contains the true value of µ in 68% of the measure-
ments in the Gaussian case. This is an example of a confidence interval with,
in this case, a coverage of 68%. The value of σµ is determined from the second
derivative of the NLL, which is given by 1

σ2
µ
.

If the shape of the NLL around its minimum is not sufficiently parabolic,
the value of σµ and the interval defined by the values µ̂ ±σµ are still well
defined, but may not provide the desired measure of the uncertainty in the
parameter estimate. In general, the value of σµ is not a good estimate of the µ̂
standard deviation and the corresponding confidence interval does not have
a coverage of 68%.

A more general method, which constructs a confidence interval with a
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coverage of approximately 68%, defines the interval as the range of µ val-
ues between the points where the NLL reaches a value of 1

2 + C . In the
parabolic case the NLL reaches this point at µ̂ ±σµ, which results in the ex-
pected Gaussian confidence interval with corresponding uncertainty σµ. In a
more general case this NLL value may be reached at different distances below
and above the value of µ̂, which results in an asymmetric uncertainty.

If the NLL has multiple minima or a very broad, shallow minimum, a
point estimate of the parameter value is not representative for the µ̂ distribu-
tion and the estimate is usually represented by confidence intervals only. A
straightforward way of constructing these intervals is to determine the points
between which the NLL is smaller than a certain value, as was done above
with 1

2 +C . Common NLL values to use are the values that a parabola would
reach at n · σµ from the minimum, which are given by 1

2 n
2 + C . Hence the

intervals are referred to as n-sigma intervals.
In general the NLL is a function of multiple parameters, which are esti-

mated by the values that minimize this multivariate function. The uncertainty
for an individual parameter, µ, can be obtained by minimizing the NLL with
respect to all other parameters for each value ofµ and applying the techniques
discussed above. The likelihood function corresponding to the resulting NLL
for µ is called a profile likelihood.

In the Gaussian case, the distribution of parameter estimates is given by
a multivariate Gaussian shape. A covariance matrix containing the standard
deviations and correlation coefficients of the parameter estimates takes the
place of σ2

µ in Equation 3.1. The elements of the (inverse) covariance ma-
trix are estimated by the second-order partial derivatives of the NLL in the
minimum for all pairs of parameters. Constructing the profile likelihood for
parameter µ, the minimum of the NLL in all other parameters, νi, for a given
µ value is reached at

1

σνi
(νi − ν̂i) = ρµνi

1

σµ
(µ− µ̂) , (3.2)

where ρµνi is the correlation coefficient between the parameters µ and νi.

3.1.1 Fit with Weighted Decay Candidates

As will be described in Section 3.2, the time and angular distribution for
B0
s → J/ψK+K– signal decays is obtained by subtracting the background dis-

tribution from the distribution that is observed in the data. This is accom-
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plished by adding background decay-candidates to the sample with negative
weights. In the NLL, the contribution of each decay candidate is then multi-
plied with the value of its weight.

Although the position of the minimum of a weighted NLL still gives a
good estimate of the values of the NLL parameters, the parameter uncertain-
ties cannot be estimated directly from the shape of the NLL at its minimum
any more. This can be seen by considering a fit in intervals of a given vari-
able, where the observed number of decays in each interval is compared to
the prediction of this number by a model. The uncertainties in the estimates
of the model parameters are now related to the uncertainties in the observed
number of decays in each interval.

For unweighted decays the distribution of the observed number of decays
(N ) is a Poisson distribution, for which both the mean and the variance are
given by the expected number in the interval (ν). An estimate of the expected
number of decays, ν̂, is given by N and an estimate of the corresponding
uncertainty by the square root of the estimated variance,

√
N .

In a fit withweighted decay candidates, where each candidate counts with
aweightwc, the observed number of decays is replaced by the sum of weights,
W ≡

∑
cwc. The estimate of ν is now also given by W , as expected, but the

uncertainty is estimated by
√
W , which cannot be correct. If all weights are

multiplied by a constant number, n, the relative uncertainty in the estimate of
ν should not change, since no information was added to the data sample. This
means that the absolute uncertainty should increase by a factor n, as ν̂ =W
does. If the uncertainty is estimated by

√
W , it only increases by a factor

√
n.

The correct uncertainty estimate for the expected number of decays is
given by the square root of W ′ ≡

∑
cw

2
c . Unlike

√
W ,

√
W ′ increases by a

factor n if all weights are multiplied by this common factor. To obtain this
estimate of the uncertainty, the original estimate from the Poisson distribu-
tion should be divided by a factor

√
α, where α is given by

α ≡ W

W ′ =

∑
cwc∑
cw

2
c

. (3.3)

In an unbinnedmaximum likelihood fit the correction factorα can be used
to modify the shape of the NLL. Since the uncertainties are estimated from
the second derivatives of the NLL, which are given by 1

σ2
µ
in the parabolic

case, the NLL is multiplied by a factor α:

NLL′(µ) ≈ α

2σ2
µ

(µ− µ̂)2 + C ′ . (3.4)
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This will make the shape of the parabola around the NLL minimum wider (if
α < 1) or narrower (if α > 1). Notice that this does not affect the position of
the minimum, from which the parameter values are estimated.

Note that this procedure was designed to correct the uncertainty esti-
mates for parameter distributions with a variance that scales with the ob-
served number of decays. In other cases the correctness of the obtained re-
sults is not guaranteed. The resulting uncertainties are verified by evaluating
the shape of the distribution of parameter estimates in simulated experiments,
as will be discussed in Sections 3.7 and 4.1.

3.2 Decay-Candidate Selection and Background

Whereas the decay model discussed in Chapter 2 describes the time and an-
gular distribution of B0

s → J/ψK+K– signal decays, the experimental data
contains both signal and background decay candidates. The background dis-
tribution is subtracted from the total distribution in the data to be able to
fit the model to the distribution of signal decays. Since there are statistical
uncertainties associated to both the total distribution and the subtracted back-
ground distribution, the resulting uncertainties in the signal-parameter esti-
mates become larger with an increasing amount of background decay candi-
dates. Therefore, a selection procedure is applied, designed to reject as many
background candidates as possible without removing too many signal candi-
dates.

3.2.1 Selection

The decay-candidate selection procedure was introduced in Section 1.4.2 and
is briefly described in the context of the B0

s → J/ψK+K– decay here. See
reference [66] for a detailed discussion.

As described in Section 1.4.2, the first selection requirements are applied
in the L0 trigger, which only selects events with hits in the muon stations and
particles with a sufficiently high (transverse) momentum. From the events
that remain, the HLT reconstructs and selects μ+μ– pairs that are likely to
originate from a J/ψ → μ+μ– decay. Offline, the resulting J/ψ → μ+μ– can-
didates are matched to K+K– pairs to form B0

s → J/ψK+K– decay candidates.
The four tracks these candidates consist of are required to be compatible with
a B0

s that was produced in the associated primary vertex and decayed at a
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decay time above a given threshold.
In both HLT1 and HLT2 there are two different types of selections ap-

plied. The first type does not use any information on the distance that the B0
s

travelled before it decayed and the second type does. Requiring a minimum
flight distance reduces the fraction of background candidates significantly,
since all four tracks originate from the primary vertex for most combinatorial
background, while the tracks in a B0

s decay originate from a secondary ver-
tex at some distance from the primary vertex. However, the flight distance
variable is correlated with the decay time variable and requiring a minimum
flight distance introduces a non-trivial selection efficiency as a function of
decay time. Therefore, the sets of selection criteria that use information on
the flight distance are called decay-time biasing or biased.

The unbiased HLT1 selection requires two oppositely charged muon can-
didates that are close enough to originate from one decay vertex and have a
μ+μ– invariant mass greater than 2.7 GeV/c2. The biased HLT1 selection does
not require a J/ψ candidate, but selects single tracks with a perpendicular
distance to any primary vertex greater than 0.1mm. Both of these selections
reduce the number of selected events to a manageable level. Approximately
68% of the decay candidates that are finally used in the fit is selected by both
the unbiased and biased selections, approximately 14% exclusively by the un-
biased selection, and approximately 19% exclusively by the biased selection.

Both the unbiased and the biased HLT2 selections require J/ψ → μ+μ–
candidates with an invariant μ+μ–-mass within a window of 0.24GeV/c2 cen-
tred at the J/ψmass of 3.10GeV/c2. In addition, the biased selection requires a
minimum decay-length significance (DLS) of three for the J/ψ candidate. The
DLS is defined as the distance between the μ+μ– vertex and the associated pri-
mary vertex (decay length) divided by the uncertainty on this distance. Since
the decay length is a measure of the flight distance of the B0

s , this requirement
is decay-time biasing.

Without the minimum-DLS requirement the rate of events that pass the
HLT2 selection would be too high to handle online. Therefore, the rate of
the unbiased selection is reduced by processing only a fraction of the events
that pass the HLT1 selection. To keep the selection unbiased, the processed
events are randomly selected, without considering any information on the
reconstructed particles. In the final data sample that is used in the fit, the
number of decay candidates that is exclusively selected by the unbiased HLT2
selection is three per cent of the number of candidates selected by the biased
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selection. Considering only signal candidates, the unbiased HLT2 selection
adds one per cent to the total.

The method of modelling the non-trivial decay-time efficiency shape in-
troduced by the biased HLT selections is discussed in Section 3.3.2. Because
the unbiased HLT2 selection adds only few signal candidates to the final data
sample and including these data complicates modelling of the efficiency sig-
nificantly, only the time and angular distributions of HLT2-biased candidates
are fitted. However, candidates selected by the unbiased HLT2 selection are
used to extract the efficiency shapes from the B0

s → J/ψK+K– data. The
efficiencies of the biased selections are determined relative to the uniform
efficiencies of the unbiased selections.

In the offline reconstruction process the muon tracks and the μ+μ– ver-
tex of J/ψ → μ+μ– candidates selected by HLT2 are combined into B0

s →
J/ψK+K– candidates with two oppositely charged kaons that form a K+K–

vertex. The subsequent stripping selection imposes requirements on how
well detector hits form tracks within experimental uncertainties, how well
tracks form μ+μ–, K+K–, and μ+μ– K+K– vertices, the particle transverse mo-
menta, the likelihood that the particles are identified correctly as muons and
kaons, the invariant masses of the reconstructed μ+μ–, K+K–, and J/ψK+K–

combinations, and the decay time of the candidate. About twelve million
B0
s → J/ψK+K– candidates remain after this selection stage.
The selection of decay candidates is refined in the final offline stage. To

visualize the effect of the selection, the distribution in J/ψK+K– mass of re-
maining decay candidates is plotted for different selection requirements in
Figure 3.1. Notice that the figure shows only a part of the mass range.

For B0
s → J/ψK+K– signal candidates this distribution is a peak around

the value of the B0
s mass of approximately 5367MeV/c2. Thewidth of this peak

is determined by the experimental resolution on the J/ψK+K–-mass measure-
ment. The background is mainly combinatorial and follows an exponential
distribution, which decreases slowly across the considered mass range. Be-
cause of the obvious difference in distributions of J/ψK+K– mass for the signal
and the background, this variable can be used to statistically separate the two
contributions.

The distribution of black data points in Figure 3.1 is for candidates that
pass the stripping selection without further requirements. A peak of signal
candidates is visible on top of a large background distribution. To determine
the numbers of signal and background candidates, the surface areas under-



82 Chapter 3. Data Analysis

]
2

) [MeV/c
-

K+ Kψm(J/

5300 5350 5400

)2
C

a
n

d
id

a
te

s 
/ 

(2
.5

 M
eV

/c

0

20000

40000

60000

80000

Figure 3.1: Distribution of B0s → J/ψK+K– decays in J/ψK+K– mass for dif-
ferent selection criteria. The data are shown as points, while the lines represent a
model that consists of the sum of two Gaussian shapes (signal) and an exponen-
tial shape (combinatorial background). Subsequent selection criteria are applied
in addition to previous criteria: black: stripping selection; blue: minimum qual-
ity of B0s decay-vertex reconstruction; green: minimumK+K– transverse momen-
tum; yellow: minimum decay time; red: full offline selection. Notice that only a
part of the total mass range is shown.

neath the peak and the exponential distribution are determined with a fit. The
signal peak is modelled with the sum of a narrow (σ ≈ 6MeV/c2) and wide
(σ ≈ 16MeV/c2) Gaussian shape and the background with and exponential
shape. The fit yields approximately 123 thousand signal candidates, which
corresponds to a signal fraction of approximately one per cent.

In the rest frame of the B0
s , the momentum of the K+K– pair is approxi-

mately 1.6 GeV/c for signal decays. Boosting into the frame of the detector,
approximately along the beam axis, this translates into a typical transverse
momentum above 1GeV/c. The sum of the transverse momentum compo-
nents of two kaons that accidentally form a suitable K+K– vertex in combi-
natorial background is often not sufficient to make a transverse momentum
of 1GeV/c. As a result, requiring this value as a minimum in the offline se-
lection removes about 74% of the background, but only 6% of the signal, with
respect to the stripping selection where already a minimum of 0.5 GeV/c was
required. The J/ψK+K–-mass distribution with the K+K– transverse momen-
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tum requirement is shown by the blue points in Figure 3.1.
To estimate the position of the B0

s decay vertex and the kinematics of the
particles in the decay aswell as possible, these variables are determined from a
fit. The fit takes the position of the primary vertex, the muon and kaon tracks,
and the corresponding experimental uncertainties as inputs and minimizes a
χ2 function for the position of the decay vertex and its perpendicular distance
to the flight path of the B0

s , which should be equal to zero. The value of the
χ2 function in its minimum is a measure of the quality of the fit, i.e. of how
well the four reconstructed particles form a B0

s decay vertex. The fit will, in
general, be good for signal candidates, which results in small values of the χ2

function.
Requiring a χ2 smaller than five times the number of degrees of freedom

in the vertex fit removes about 75% of the background that remains after re-
quiring a minimum K+K– transverse momentum of 1GeV/c. Approximately
8% of the remaining signal is lost. The distribution of decay candidates after
the K+K– transverse momentum and vertex fit quality requirements is shown
by the green points in Figure 3.1.

A third requirement that removes a significant part of the background is
a minimum on the reconstructed value of the decay time. For most of the
background candidates the four particles originate directly from the primary
vertex, which corresponds to vanishing decay time within experimental res-
olution. The stripping selection already requires a minimum decay time of
0.2 ps. Requiring a minimum of 0.3 ps in addition to the stripping selection
and the K+K– transverse momentum and vertex fit χ2 requirements removes
about 54% of the remaining background and 6% of the signal. The distribution
for remaining candidates is shown by the yellow points in Figure 3.1.

Finally applying the full offline selection removes another 62% of the back-
ground and 6% of the signal, leaving approximately 94 thousand signal can-
didates and 135 thousand background candidates for further analysis. This
corresponds to a signal fraction of 41% in the full J/ψK+K–-mass range of
5200–5550MeV/c2 after the full selection.

The final J/ψK+K–-mass distribution is shown by the red points in Fig-
ure 3.1 and also in Figure 3.2. The latter figure shows the distribution both in
the 5300–5440MeV/c2 mass range on a linear vertical scale (left) and in the
full mass range on a logarithmic vertical scale. The signal and combinatorial
background contributions as determined in the fit are shown separately.

In the areas below the J/ψK+K–-mass distributions in Figure 3.2 the pull
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Figure 3.2: Distribution of B0s → J/ψK+K– decay candidates in J/ψK+K– mass
in (a) the signal mass range and (b) the full mass range on a logarithmic vertical
scale. The black points show the distribution of the data and the blue, solid line
shows a model that was fitted to the data. The model is the sum of two Gaussian
shapes for the signal (shown by the red, short-dashed line) and an exponential
shape for combinatorial background (shown by the green, long-dashed line). The
panels below the distributions show the pulls of the data with respect to themodel
(see also text).
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is shown for each mass interval. The pull is defined as the difference between
the numbers of decay candidates that are observed (data) and expected (PDF),
divided by the estimated statistical uncertainty of the observed value. If the
PDF describes the data correctly, this quantity is expected to be distributed
according to the standard normal distribution in the limit of a large number of
decay candidates. Therefore, the pull quantifies howwell the model describes
the data in each interval.

The pulls in Figure 3.2b seem to indicate a problem with the mass model,
since the PDF generally underestimates the number of decay candidates in
the region of the signal peak, while it overestimates the number of candidates
towards the edges of the mass range at 5200MeV/c2 and 5550MeV/c2. This
issue is mainly caused by misidentified backgrounds and will be addressed in
Section 3.2.2.

Notice from Figures 3.1 and 3.2 that the signal candidates are concentrated
in a mass window of approximately 60MeV/c2, centred at the B0

s mass, where
the signal fraction is approximately 80%. The regions to the left and the right
of this signal window are called mass side bands and contain mainly back-
ground candidates. The candidates in the side bands are used to estimate the
time and angular distribution of the combinatorial background and to sub-
tract this from the total distribution in the signal window to obtain the signal
distribution. This procedure is described in the following section.

3.2.2 Background Subtraction

The distribution of background decay candidates that remain after selection
is subtracted from the total distribution by including background candidates
with negative weights in the data sample. For combinatorial background the
most straightforward method of doing this would be to give candidates in the
signal region a weight equal to plus one and candidates in the J/ψK+K–-mass
side bands a small negative weight, such that the contributions of background
in the signal and side-band regions exactly cancel. Note that this assumes that
the background distribution in all variables of interest does not depend on the
J/ψK+K– mass.

Because the definitions of the signal and side-band regions are rather ar-
bitrary, a more sophisticated technique is applied. Although the bulk of the
signal decay candidates have a reconstructed J/ψK+K– mass in a region of
approximately 60MeV/c2 around the B0

s mass, the tails of the signal mass dis-
tribution stretch beyond this mass window. Moreover, at the edges of the
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signal window the contribution of background is larger than in the centre.
To take these features of the mass distribution into account and estimate the
contribution of combinatorial background in the most optimal way, the can-
didate weights are not binary, but take a different value as a function of the
J/ψK+K– mass.

Theweights for subtracting combinatorial background are computedwith
the sP lot/sFit technique [67], which takes the J/ψK+K–-mass distributions of
the signal and the background as inputs. The resulting candidate weights are
called sWeights, which are larger than one in the centre of the signal peak and
gradually become smaller away from the peak and finally become negative in
the side bands.

The sP lot/sFit method assumes that, in addition to the background distri-
bution, also the signal distribution in the variables of interest does not depend
on the J/ψK+K– mass. In other words, there can be no correlations between
the J/ψK+K– mass and any other variable that is to be analysed for the sig-
nal and background distributions separately. Note that, in general, there are
correlations for the sum of signal and background.

Before fitting the distribution of signal and combinatorial-background
candidates and computing sWeights, contributions from other backgrounds
are subtracted by adding decay candidates with negative weights to the data
sample. Two additional backgrounds are considered, both originating from
the misidentification of particles in the detector: B0 → J/ψK∗0(→ K+π–) and
Λ0
b → J/ψpK–. Because the detected particles for these processes originate

from decays of unstable particles (resonances), these contributions are also
called resonant backgrounds.

Figure 3.3 shows the sum of the reconstructed J/ψK+K–-mass distribu-
tions for the two resonant backgrounds. They form a broad structure, with-
out features that clearly distinguish these backgrounds from the signal and
from combinatorial background. Therefore, the resonant backgrounds are
subtracted by adding simulated B0 → J/ψK∗0(→ K+π–) and Λ0

b → J/ψpK–

decay candidates to the data sample with negative weights that represent the
estimated amount of real resonant-background data, in total approximately
seven thousand candidates. Uncertainties in the numbers of background can-
didates and their distributions lead to systematic uncertainties in the final
parameter estimates, as will be discussed in Section 4.3.

The J/ψK+K–-mass distribution after subtracting the two resonant back-
grounds is shown in Figure 3.4. Comparing to Figure 3.2, it can be seen from
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Figure 3.3: Distribution of weighted simulated resonant-background B0s →
J/ψK+K– decay candidates in J/ψK+K– mass in the full mass range.

the pulls that the PDF follows the data more closely. The systematic under-
estimates of the numbers of decay candidates in the signal region and the
overestimates in the side-band regions have been reduced. It appears, how-
ever, that this effect is still partially present. Moreover, the pulls in the signal
region seem to be large than one would expect.

To address these issues, the double-Gaussian signal model is replaced by
a more sophisticated model for the mass resolution. Figure 3.5 shows the
distribution of the estimated uncertainty in the J/ψK+K–-mass measurement
for each decay. This distribution does not feature a structure with two sharp
peaks, as would be expected for a double-Gaussian mass model, but is instead
described by one broad peak. To describe the resulting mass distribution a
double-sided Hypatia function with a symmetric core [68] is used, which is
designed to describe the effects of an experimental resolution that varies from
decay candidate to decay candidate.

The Hypatia function is defined by

I(m) ≡



[
(m− µ)2 + δ2

] 1
2
λ− 1

4 Kλ− 1
2

(
α
√

(m− µ)2 + δ2
)

if − aL σ < m− µ < +aR σ
AL

(BL−m+µ)nL
if m− µ < −aL σ

AR
(BR+m−µ)nR

if m− µ > +aR σ

(3.5a)

with

α ≡ 1

σ

√
ζ Kλ+1(ζ)

Kλ(ζ)
and δ ≡ σ

√
ζ Kλ(ζ)

Kλ+1(ζ)
, (3.5b)
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Figure 3.4: Distribution of B0s → J/ψK+K– decay candidates in J/ψK+K– mass
after subtracting resonant backgrounds in (a) the signal mass range and (b) the
full mass range on a logarithmic vertical scale. The black points show the distri-
bution of the data and the blue, solid line shows a model that was fitted to the
data. The model is the sum of two Gaussian shapes for the signal (shown by the
red, short-dashed line) and an exponential shape for combinatorial background
(shown by the green, long-dashed line). The panels below the distributions show
the pulls of the data with respect to the model.
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Figure 3.5: Distribution of B0s → J/ψK+K– signal decays in the estimated
J/ψK+K–-mass uncertainty.

where m is the mass variable and Kν(z) the modified Bessel function of the
second kind. The parameter µ controls the position of the mass peak, σ con-
trols the width of its core, and λ and ζ control the shape of its core. The
double-sided Hypatia function has an enhanced tail on both the left and the
right side of the mass peak, the positions and shapes of which are controlled
by the parameters aL/R and nL/R, respectively. The parameters AL/R and
BL/R are obtained by imposing continuity and differentiability at the points
of transition between the core of the function and its tails.

The Hypatia parameters λ ≈ –2.5, 0 < ζ < 0.5, aL/R ≈ 2.5, and 0 <nL/R < 3
are determined from simulated B0

s → J/ψϕ signal decays. Only the mean
(µ ≈ 5368MeV/c2) and the width (σ ≈ 8MeV/c2) of the core are determined in
a fit to the real data. Consequently, the number of free parameters in the
Hypatia model is smaller than in the double-Gaussian model, for which the
mean, the two widths, and the relative contribution of the two functions were
free parameters.

The result of a fit with the Hypatia signal model and an exponential shape
for the combinatorial background is shown in Figure 3.6. The improvement
with the Hypatia model can be seen from the pulls, which are smaller in the
signal region and more symmetrically distributed around zero in comparison
to Figure 3.4.

Studies of the J/ψK+K–-mass shape of signal decays have shown that it
depends on the K+K– invariant mass. Therefore, the parameters of the mass
model are determined separately in the K+K–-mass intervals that are also used
in the final time and angular model to determine the trend in the difference
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Figure 3.6: Distribution of B0s → J/ψK+K– decay candidates in J/ψK+K– mass
after subtracting resonant backgrounds in (a) the signal mass range and (b) the
full mass range on a logarithmic vertical scale. The black points show the distri-
bution of the data and the blue, solid line shows a model that was fitted to the
data. The model is the sum of an Hypatia shape for the signal (shown by the
red, short-dashed line) and an exponential shape for combinatorial background
(shown by the green, long-dashed line). The panels below the distributions show
the pulls of the data with respect to the model.
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between the J/ψϕ and K+K– S-wave phases (see Section 2.6.2). Combinatorial
background is subtracted separately for each interval.

The K+K–-mass intervals are defined in Table 3.1. In addition to this
binning, the table also lists the final numbers of signal and combinatorial-
background decays and the weighted-likelihood correction factors (see Sec-
tion 3.1.1) for each interval.

There is no evidence for the J/ψK+K–-mass distribution of the background
to depend on the K+K– mass, but it does depend on two other variables in
the data. The background distribution is found to be different for the 2011
and 2012 run periods and for decay candidates that are selected by the bi-
ased HLT2 trigger and candidates that are exclusively selected by the unbi-
ased HLT2 trigger. Because these two variables are used in the measurement
and implementation of the decay-time efficiency function (see Section 3.3.2),
background subtraction is also performed separately in the four categories
associated to these variables. In addition, the width of the signal peak is de-
termined separately for HLT2-biased and not-HLT2-biased candidates.

The final parameters of the J/ψK+K–-mass model that were determined
from the real data are listed in Table 3.2, where the exponential function for
the background mass distribution is described by e−γm, where γ is a free
parameter that is different for the 2011 and 2012 runs and for HLT2-biased
and not-HLT2-biased candidates. The number of signal decays determined
with this model is 96 thousand and the number of combinatorial-background
decays 127 thousand.

To check whether the decay time and decay angles are correlated with
the J/ψK+K– mass, the mass distribution is plotted for different intervals in
time and angles. A correlation appears when considering cos θμ, for which
the distribution is shown in the intervals | cos θμ| < 0.25, 0.25 ≤ | cos θμ| < 0.7,
and | cos θμ| ≥ 0.7 in Figure 3.7. In all three cases the nominal mass model from
Figure 3.6 is shown.

From Figure 3.7 it is clear that the J/ψK+K–-mass resolution for the signal
depends on the value of cos θμ. This is also supported by Figure 3.8, which
shows that the distribution of the estimated J/ψK+K–-mass uncertainty varies
for the three cos θμ regions. Formally this implies that the procedure of back-
ground subtraction does not fully work for the cos θμ distribution. The impact
of this effect is studied by subtracting the background with the different mass
models obtained in the cos θμ intervals and a corresponding systematic un-
certainty is evaluated (see Section 4.3).



92 Chapter 3. Data Analysis

Table 3.1: Definition of the intervals in K+K– invariant mass. For each inter-
val, the numbers of signal and background candidates, and the correction factors
for a likelihood with weighted candidates for the 2011 and 2012 runs (see Sec-
tion 3.1.1) are shown.

int. range [MeV/c2] signal [103] comb. bkg. [103] α2011 α2012

1 990–1008 2 23 0.42 0.39
2 1008–1016 10 15 0.79 0.76
3 1016–1020 35 11 0.94 0.93
4 1020–1024 28 12 0.92 0.92
5 1024–1032 13 19 0.77 0.77
6 1032–1050 8 46 0.51 0.51

Table 3.2: Parameters of the J/ψK+K–-mass model that is used for background
subtraction. The subscripts on the parameters refer to the interval in K+K– mass
(1–6), the HLT2-biased/not-HLT2-biased category (b and nb, respectively), and
the run period (2011 and 2012).

par. value stat. uncert.
[MeV/c2] [MeV/c2]

µ1 5368.47 0.25
µ2 5367.79 0.09
µ3 5367.93 0.04
µ4 5368.65 0.05
µ5 5368.69 0.08
µ6 5368.39 0.13
σ1,b 8.9 0.4
σ2,b 8.23 0.11
σ3,b 7.98 0.05
σ4,b 7.87 0.05
σ5,b 8.40 0.10
σ6,b 8.90 0.18
σ1,nb 14.7 3.4
σ2,nb 6.2 0.9
σ3,nb 7.0 0.4
σ4,nb 7.0 0.5
σ5,nb 7.1 0.9
σ6,nb 7.6 1.8

par. value stat. uncert.
[c2/MeV] [c2/MeV]

γb,2011 0.00176 0.00006
γb,2012 0.00153 0.00003
γnb,2011 0.00032 0.00024
γnb,2012 0.00054 0.00015
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Figure 3.7: Distribution of B0s → J/ψK+K– decay candidates in J/ψK+K– mass
after subtracting resonant backgrounds in intervals of cos θμ, where the shape
of the model is set to the nominal shape from Figure 3.6. (a) | cos θμ| < 0.25, (b)
| cos θμ| ≥ 0.7, (c) 0.25 ≤ | cos θμ| < 0.7. (Compare to the nominal mass distribution
in Figure 3.6)
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Figure 3.8: Distribution of B0s → J/ψK+K– signal decays in the estimated
J/ψK+K–-mass uncertainty in different intervals of cos θμ: (a) | cos θμ| < 0.25,
(b) | cos θμ| ≥ 0.7, and (c) 0.25 ≤ | cos θμ| < 0.7.
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Figure 3.9: Distributions of B0s → J/ψK+K– decay candidates before (red)
and after (blue) background subtraction in (a) decay time, (b) cos θK, (c) cos θμ,
(d) φh, (e) μ+μ– mass, and (f) K+K– mass. The distributions before background
subtraction are for decay candidates in a J/ψK+K–-mass window of 60MeV/c2

around the B0s mass.
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Figure 3.9 shows the distributions of decay time, decay angles, μ+μ– in-
variant mass, and K+K– invariant mass before and after background subtrac-
tion. The distributions before background subtraction are only shown for a
J/ψK+K–-mass window of 60MeV/c2 around the B0

s mass.

From the decay-time distribution in Figure 3.9a it can be seen that most
background candidates have a small decay time. Notice that the decay-time
range in this plot starts at 0.3 ps. Even though the first of the oscillations in
the decay time distribution of the signal is lost, this requirement improves
the measurement, because it removes a significant amount of background, as
shown in Section 3.2.1.

Themodel that was fitted to the μ+μ–-mass distribution in Figure 3.9e con-
sists of the sum of two Gaussian shapes, with a polynomial that describes the
enhanced tail on the left of the mass peak, which is due to photon radiation
after the decay of the J/ψ. The model for the K+K–-mass distribution consists
of a relativistic Breit-Wigner shape for the J/ψϕ contribution and a polyno-
mial for the K+K– S-wave. From this fit, an S-wave fraction of approximately
5% is found.

Note that the models for the μ+μ– and K+K– mass that were used to fit
the distributions in Figures 3.9e and 3.9f are not used in the decay model,
except for the latter in the calculation of theKPS factors (see Section 3.5). The
distributions of time and angles in Figures 3.9a–d are described by the model
discussed in Chapter 2 with the experimental effects that will be discussed in
the following sections.

3.3 Decay Time

The theoretical model of the decay time of B0
s → J/ψK+K– decays is distorted

by two experimental effects; the uncertainty in the timemeasurement (resolu-
tion) and the efficiency of the measurement (acceptance) as a function of time.
As discussed in Section 1.4.2, the resolution is roughly 0.05 ps. The resolution
model is presented in Section 3.3.1. The decay-time measurement is affected
by non-trivial acceptance effects from both the trigger and reconstruction
processes, which will be discussed in Section 3.3.2.
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3.3.1 Resolution

The uncertainty in the decay-time measurement causes a difference between
the measured decay time and the true decay time. This difference is a ran-
dom variable and the resulting measured time distribution is a smeared ver-
sion of the underlying true distribution. For the oscillatory cos(∆ms t) and
sin(∆ms t) functions in the differential decay rate this smearing causes a de-
crease, or dilution, of the oscillation amplitude.

Not accounting for the effect of a finite resolution would lead to biases
in the estimates of the parameters that describe the oscillation, towards a
vanishing amplitude. As described in Section 2.6.1, the main sensitivity for
the CP-violation parameters originates from the oscillation terms and hence a
diluted oscillation amplitude reduces the statistical precision of the estimates
for these parameters if resolution effects are modelled.

For each decay the decay-time uncertainty is estimated by propagating
the uncertainties in the positions of the primary and secondary vertices and
particle momenta, as discussed in Section 1.4.2. The distribution of this es-
timate (σt) is shown in Figure 3.10. For each decay, the probability for the
measured decay time to deviate by a given amount from the true decay time
is approximately described by a Gaussian distribution with width σt.

 [ps]tσ

0 0.02 0.04 0.06

D
ec

a
y

s 
/ 

(0
.0

01
4 

p
s)

0

2000

4000

6000

Figure 3.10: Distribution of B0s → J/ψK+K– signal decays in the estimated
decay-time uncertainty.

Decay-time resolution is included in the model for the signal decay by
convolving the theoretical model with the model for the difference between
the measured time and the true time. This convolution is the integral of the
two-dimensional PDF of the true and measured decay times over all possible
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values of the former:

Pmeas(tmeas,Ω) ≡
∫ ∞

0
dttrueR(tmeas − ttrue|σt)Ptrue(ttrue,Ω) , (3.6)

where R is the PDF for the difference between the measured and true times,
or the resolution model. The resolution model is conditional on σt., i.e. nor-
malized with respect to decay time for each individual value of σt.

Although the resolution model is approximated by a Gaussian PDF with
width σt, a more sophisticated model is required to describe the resolution in
the PDF with sufficient precision. The model is a sum of two Gaussian PDFs
with a common, non-zero mean and a width that depends quadratically on
σt. The width of the first Gaussian PDF is approximately equal to σt, while
the width of the second Gaussian PDF is roughly a factor two larger.

The double-Gaussianmodel is based on and validated with both simulated
B0
s → J/ψK+K– decays and prompt background decay candidates. Since all

tracks of prompt background candidates can be assumed to originate from the
primary vertex, their “true” decay time is equal to zero and the distribution
of measured decay times is essentially the resolution model. Studies of the
model and its parameters are described in detail in references [66] and [2].
The values of the resolution parameters are fixed in the fit of decay time and
angles. Uncertainties in the parameter values are propagated after the fit and
accounted for as systematic uncertainties (see Section 4.3).

3.3.2 Acceptance

To account for the efficiencies of the decay-candidate reconstruction and se-
lection processes, the PDF is multiplied by an acceptance function and re-
normalized to create a new PDF. The acceptance is modelled as a product of
two functions of decay time and one function of decay angles. The angular
part will be discussed in Section 3.4. This section describes the two decay-time
functions.

Track-Reconstruction Acceptance

The first part of the non-trivial acceptance in decay time originates from an
inefficiency in the reconstruction of particle tracks. This efficiency decreases
for increasing perpendicular distance between the track and the symmetry
axis of the VELO detector, which coincides with the proton beams. Since the
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distance between the primary and secondary vertex and, therefore, the decay
time are correlated with the distance between the four B0

s → J/ψK+K– tracks
and the beams, the efficiency also decreases with increasing decay time.

In themeasurement presented here the track-reconstruction acceptance is
modelled by an exponential function in true decay time. The advantage of this
model is that its implementation in themodel of the decay-time distribution is
straightforward. An exponential function can be absorbed in the e−Γs t factor
of the differential decay rate (Equation 2.59):

e−Γs t −→ eβ t e−Γs t = e−(Γs−β) t ≡ e−Γeff
s t , (3.7)

where β is the parameter that quantifies the rate at which the efficiency
changes as a function of decay time. The parameter Γeff

s ≡Γs –β can now
be included in the model in the place of the parameter Γs.

The parameter β has been determined by a combination of studies with
real and simulated data [2]. Because of changes in the online reconstruction
algorithms between the 2011 and 2012 runs and the different proton-collision
energies in these periods, the corresponding values of β are evaluated sep-
arately: β2011 = –0.0090 ± 0.0022 ps–1 and β2012 = –0.0124 ± 0.0019 ps–1. These
values have to be compared with Γs ≈ 0.66 ps–1.

Although there is no sensitivity in the B0
s → J/ψK+K– data to the parame-

ters Γs, β2011, and β2012 separately, the value of Γeff
s can be determined in the

fit of decay time separately for the 2011 and 2012 periods. Reparameterizing,
there is sensitivity for the combinations Γs – 1

2(β2011 +β2012) and β2012 –β2011.
To include the external information on the β values, the likelihood func-

tion of the B0
s → J/ψK+K– model and data is multiplied by two Gaussian

likelihoods that represent the external measurements. For each parameter
this gives an additional parabolic term in the NLL of the form 1

2σ̂2 (β − β̂)2,
where the external estimate of β is denoted by β̂ and the estimated uncer-
tainty by σ̂.

This procedure pulls the β estimates towards the externally determined
values, effectively constraining them. Because the external constraints are
much tighter than the constraints from the B0

s → J/ψK+K– data, the values
that are finally estimated in the fit are comparable to the external values:

β2011 = −0.0086± 0.0021 ps–1 and β2012 = −0.0127± 0.0018 ps–1 .

There are some limitations to this model of the track-reconstruction ac-
ceptance. Themodel is implemented for true decay time, whereas the external
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values of the β parameters were evaluated with the measured decay time. In
this measurement, this is assumed to be a good approximation, because the
time scale of the variations in the model is much larger than the resolution.
That is, β−1 ≈ 102 ps≫ 0.05 ps.

In addition, the model itself is an approximation. As was shown in ref-
erence [2], the shape of the acceptance is better described by the function
1 +β t +β′ t2 than by eβ t ≈ 1 +β t. A systematic uncertainty in the parameter
estimates corresponding to the assumption of the shape eβ t is estimated in
Section 4.3.

Trigger Acceptance

As described in Section 3.2.1, there are also trigger requirements that intro-
duce non-trivial acceptance effects in decay time. The shapes of the accep-
tance functions corresponding to the decay-time biasing trigger categories
are determined relative to the shapes of the unbiased categories, which have
a uniform acceptance function.

The shape of the trigger acceptance is described in intervals of decay time.
For each interval, numbers of decays are counted in the different trigger cat-
egories to determine the relative efficiency in the interval. To also include
information on the exponential shape of the decay in the resulting binned
acceptance function, the decay counts are varied in the fit of decay time and
angles.

Since normally only the shape of the differential decay rate in time and
angles is determined in the fit, additional terms need to be included in the NLL
to count decays in the different trigger categories. For unweighted decays the
PDF for the number of decays in a category would be a Poisson distribution,
which is proportional to νn e−ν , where n is the observed number of decays
and ν the parameter for the expected number of decays. This PDF would give
an additional NLL term of ν –n ln ν. However, because each decay candidate
is counted with its signal weight, this term is modified to obtain the correct
uncertainty on the parameter ν from a maximum-likelihood fit.

The variable n in the Poissonian NLL term is replaced by the sum of the
decay-candidate weights and the NLL term is multiplied by a factor that also
depends on the weights: ∑

w∑
w2

(
ν − ln ν

∑
w
)

, (3.8)
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where
∑

w is the sum of the decay weights and
∑

w2 the sum of the squared
decay weights. This function reaches its minimum at ν =

∑
w, so the esti-

mated value for ν in a maximum-likelihood fit with only this function would
be the sum of the decay weights. The inverse of the second derivative of the
function, from which the uncertainty in ν is estimated, is given by

∑
w2 in-

stead of
∑

w for an unmodified Poisson term. The former number is equal to
the variance that is expected when counting weighted decay candidates.

Decays are categorized with the sets of HLT selection criteria discussed in
Section 3.2.1. For the purpose of determining selection efficiencies, the com-
bination of the HLT1 requirements and the part of the selection requirements
that the two HLT2 selections have in common is termed phase 1. The sub-
sequent phase 2 then only consists of the minimum-DLS requirement in the
biased HLT2 selection and the uniform reduction of decays in the unbiased
HLT2 selection.

Decays that pass the selection requirements of phase 1 are selected by
only the biasedHLT1 requirements, by only the unbiasedHLT1 requirements,
or by both sets. Only the shape of the acceptance in decay time is required
for the fit, which is assumed to be uniform for the unbiased phase-1 (HLT1)
selection. The shape of the biased phase-1 selection is determined relative
to the unbiased shape by calculating the ratio of the numbers of biased and
unbiased decays in each decay-time interval.

Since the uniform selection of decays in the unbiased HLT2 selection does
not depend on any of the properties of a decay, the biased and unbiased phase-
2 selections are independent. That is, the efficiency of the minimum-DLS
requirement does not depend onwhether a decay was selected by the uniform
selection and vice versa. As a result, decays selected by the unbiased phase-2
requirements are representative for the full sample of events and the biased
phase-2 efficiency is given by the fraction of unbiased decays that was also
selected by the minimum-DLS requirement.

Implementing these concepts in an acceptance model for the fit, six trig-
ger categories are defined based on whether of not decays were selected by
the unbiased set of requirements in phase 1, by the minimum-DLS require-
ment in phase 2, and by the uniform selection in phase 2. In principle this
gives a total of eight categories, but in two of these no decays are selected
by construction, because they are neither selected by the minimum-DLS re-
quirement nor by the uniform phase-2 selection. If a decay is not selected by
the unbiased phase-1 (HLT1) selection it can still be selected (exclusively) by
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Table 3.3: Definition of the six trigger categories that are used to determine the
shape of the decay-time acceptance introduced by the HLT. For each category it
is indicated if the decays it contains are selected by the unbiased phase-1 selec-
tion (“p1 unb.”), by the unbiased phase-2 selection (“p2 unb.”), and by the biased
phase-2 selection (“p2 bias.”). The ratio of the exclusively-biased and unbiased
phase-1 efficiencies is given by r1, the efficiency of the unbiased phase-2 selec-
tion by ε2U, and the efficiency of the biased phase-2 selection by ε2B. The number
of decays that passes the unbiased phase-1 selection is given by ν1U.

category p1 unb. p2 unb. p2 bias. number of decays
1 * * * ε2U ε2B ν1U
2 * * (1− ε2U) ε2B ν1U
3 * * ε2U (1− ε2B) ν1U
4 * * r1 ε2U ε2B ν1U
5 * r1 (1− ε2U) ε2B ν1U
6 * r1 ε2U (1− ε2B) ν1U

biased phase-1 (HLT1) selection, which leaves six non-empty categories. The
categories are listed in Table 3.3.

By counting decays in the fit in each of the six trigger categories the pa-
rameters in the last column of Table 3.3 can be determined. The expression
for the number of decays in the category takes the place of ν in Equation 3.8
and the parameters in the expression are varied in the fit.

The ratio of the phase-1 exclusively-biased and unbiased efficiencies, r1,
is effectively determined from the respective ratios of the numbers of decays
in categories 4, 5, and 6 and the categories 1, 2, and 3. The distributions of
decays over categories 1, 2, and 3 and over categories 4, 5, and 6 determine
the value of the number of decays the pass the unbiased phase-1 selection,
ν1U, the efficiency of the phase-2 unbiased selection, ε2U, and the efficiency
of the phase-2 biased selection, ε2B.

Because the efficiency of the biased phase-2 selection is high, 96–98%,
the not-biased phase-2 categories 3 and 6 contain few decays. For this rea-
son these two categories are merged and only the sum of weights of both
categories is parameterized. This reduces the sensitivity to the parameter r1,
which is only estimated with the ratio of categories 4 and 1 and the ratio of
categories 5 and 2.

Although the sums of weights are evaluated for all available decays, the
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NLL for the fit of decay time and angles is built with only biased phase-2 de-
cays. The PDF is multiplied by a factor ε2B for unbiased phase-1 decays (the
sum of categories 1 and 2) and a factor r1 ε2U for exclusively-biased phase-1
decays (the sum of categories 4 and 5). This simplifies the measurement, be-
cause no NLL is constructed for the remaining biased phase-2 decays. Almost
no sensitivity to parameter estimates is lost, because of the small fraction of
decays in these remaining categories.

The above description of the HLT acceptance function assumes that the
efficiencies for the phase-2 selection are independent of the phase-1 category.
That is, the values of the parameters ε2U and ε2B are equal for categories 1–3
and 4–6. This is based on the assumption that, at each point in decay time, the
minimum-DLS requirement in the biased phase-2 selection is independent of
any of the phase-1 requirements.

To test these assumptions the fit is repeated with an alternative accep-
tance model. In the alternative model, the unbiased phase-1 categories (1–
3) are unchanged and are give estimates of the phase-2 efficiencies for un-
biased phase-1 decays, ε2U|1U and ε2B|1U. Instead of counting decays in all
exclusively-biased phase-1 categories (4–6), only the total sum of weights for
phase-2 biased decays is used in the fit (the sum of categories 4 and 5). This
sum is parameterized by r1 ε2B|1exclB ν1U.

Only the product r1 ε2B|1exclB can be estimated in this model and not these
parameters separately, but this suffices, since it is exactly this product that
is required in the time and angular PDF. Although the removal of assump-
tions in the alternative model leads to slightly larger statistical uncertainties
on the efficiency parameters, the results with the two acceptance models are
compatible.

The shapes of the HLT-acceptance functions that are used in the time and
angular model are shown in Figure 3.11 for both the 2011 and 2012 runs. The
scale of the vertical axes was divided by the efficiency of the unbiased phase-1
selection, which is undetermined. Whereas 40 decay-time intervals are used
for the nominal measurement, only 11 intervals are used for these plots to
reduce statistical fluctuations.

A sharp rise in efficiency, or turn-on, is visible in all acceptance curves
just above the minimum decay time of 0.3 ps. After the turn-on, a dip in
the efficiency occurs around 2 ps for the unbiased phase-1 curve for 2011
(Figure 3.11a). This dip was caused by an inefficiency in the vertex recon-
struction, which was reduced in 2012 (Figure 3.11c). The exclusively-biased
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Figure 3.11: Trigger acceptance in intervals of decay time for (a, b) the 2011
run and (c, d) the 2012 run and for (a, c) the unbiased phase-1/biased phase-
2 selection and (b, d) the exclusively-biased phase-1/biased phase-2 selection.
Notice that the efficiency range of the unbiased phase-1/biased phase-2 graphs
is 90–100%. Because the absolute efficiency of the phase-1 selections is unknown,
the scales of the efficiencies in the graphs are given with respect to the efficiency
of the unbiased phase-1 selection.
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phase-1 curves (Figures 3.11b and 3.11d) have a slower turn-on than the unbi-
ased phase-1 curves, because of the decay-time biasing requirements onmuon
tracks in HLT1.

3.4 Decay Angles

Also the measurement of the decay angles has a finite precision and is af-
fected by a non-trivial acceptance shape. Whereas resolution effects in decay
time directly affect the amplitude of the measured decay-time oscillation and,
therefore, the estimates of the CP-violation parameters, the effect of angular
resolution are indirect and expected to be smaller. Because a convolution of
the angular functions in the decay model with a resolution function would be
far from trivial, angular resolution is not included in the model of the decay.
However, resolution effects cannot be entirely neglected and do introduce
systematic uncertainties in the final parameter estimates (see Section 4.3).

The acceptance as a function of decay angles is included in the decay
model. It can either be modelled as a function or by so-called normaliza-
tion weights, as will be described in Sections 3.4.1 and 3.4.2, respectively. The
shape of the acceptance function is determined from simulated decays, for
which the observed angular distribution including acceptance effects can be
compared to the original distribution that was generated.

The shape of the angular acceptance function is shown in Figure 3.12.
The figure shows the acceptance function for each of three angles, integrated
over the two remaining angles. The data points are sums of simulated decays,
weighted by the inverse of the PDF that was used to generate the decays at
each point in decay angles. This results in the ratio of the observed distribu-
tion including acceptance effects and the generated distribution. The shape of
this ratio in the decay angles is given by the shape of the angular acceptance
function. In essence this is also how the acceptance function for the decay
model, represented by the blue line, is determined.

Following the above reasoning, the observed angular shape of simulated
decays, after detector simulation and selection, can be expressed as the gen-
erated shape multiplied by the acceptance function. Normalizing these two
shapes to obtain the observed and generated PDFs, the ratio of the two dis-
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Figure 3.12: Shape of the acceptance function in each of the three decay angles:
(a) cos θK, (b) cos θμ, (c) φh. The angular acceptance function is integrated over
the two remaining angles in each of the figures. The blue line represents a pa-
rameterization of the function in terms of Legendre polynomials for cos θK and
real-valued spherical harmonics for cos θμ and φh. The data points are obtained
by a sum over simulated decays, which are weighted by the inverse value of the
PDF that was used to generate the decays at each point in decay angles. Notice
that the vertical scale of these figures does not start at zero.
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tributions can be written as

P obs(Ω|t)
P gen(Ω|t)

=
ε(t,Ω) p(t,Ω)∫
dΩ ε(t,Ω) p(t,Ω)

∫
dΩ p(t,Ω)

p(t,Ω)

=
ε(t,Ω)

∫
dΩ p(t,Ω)∫

dΩ ε(t,Ω) p(t,Ω)
=

ε(t,Ω)∫
dΩ ε(t,Ω)P gen(Ω|t)

=
ε(t,Ω)

⟨ε⟩(t)

ε(t,Ω) = ⟨ε⟩(t) P obs(Ω|t)
P gen(Ω|t)

,

(3.9)

where P obs is the observed PDF, P gen the generated PDF, p the function of
time and angles from which the PDFs are built, and ε the time and angular
acceptance function. Both angular PDFs are conditional on decay time. The
angular mean of the acceptance function, which depends on decay time, is
given by

⟨ε⟩(t) ≡
∫

dΩ ε(t,Ω)P gen(Ω|t) . (3.10)

Assuming the time and angular acceptance functions factorize, that is
ε(t,Ω) = εt(t)× εa(Ω), the mean acceptance can be expressed as

⟨ε⟩(t) = εt(t)×
∫

dΩ εa(Ω)P
gen(Ω|t) = εt(t)× ⟨εa⟩(t) . (3.11)

Inserting this expression into the last line of Equation 3.9 yields for the ac-
ceptance function

ε(t,Ω) = εt(t)× ⟨εa⟩(t)
P obs(Ω|t)
P gen(Ω|t)

, (3.12)

which means that the angular acceptance function is given by

εa(Ω) = ⟨εa⟩(t)
P obs(Ω|t)
P gen(Ω|t)

. (3.13)

The factor ⟨εa⟩(t) is the mean of the angular acceptance function, which gen-
erally depends on decay time. Since only the shape of the angular acceptance
function is relevant in this model, it is not required to determine the value of
this angular constant factor. The ratio of the observed and generated PDFs
suffices to determine the shape of the function in the decay angles.
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3.4.1 Acceptance Parameterization

The function εa(Ω) is represented in Figure 3.12 by the blue line. For this
figure, it is parameterized in terms of Legendre polynomials and real-valued
spherical harmonics, Pj(cos θK)Yl,m(cos θμ, φh) (see also Section A.2, Equa-
tions A.11 and A.13). These functions form an orthogonal basis of functions
of the three decay angles.

In principle an arbitrary function is expressed as an infinite sum of ba-
sis functions, but in practice the relatively uniform acceptance function can
be described by a limited number of contributions. The function P0 Y0, 0 is
a constant and would be the only contribution for a truly uniform accep-
tance function. A few higher-order functions up to j = 4, l = 4, and m = 2 are
included to describe the shape shown in Figure 3.12. Even higher orders rep-
resent faster changes in the acceptance function and can be omitted for this
slowly-changing shape.

The coefficients of the basis functions, which specify the shape of the ac-
ceptance function, are determined from the simulated B0

s → J/ψK+K– decays
that were used for Figure 3.12. Expressing the acceptance function as

εa(Ω) =
∑
j,l,m

cjlm bjlm(Ω) , (3.14)

the coefficients are defined as

cjlm ≡ (j + 1
2)

∫
dΩ bjlm(Ω) εa(Ω) , (3.15)

where bjlm is a basis function and cjlm the corresponding coefficient. The
normalization factor j+ 1

2 arises from the fact that Legendre polynomials are
orthogonal, but not orthonormal:∫

d cos θK Pj(cos θK) · Pj(cos θK) =
1

j + 1
2

. (3.16)

The integral in Equation 3.15 is calculated by means of Monte Carlo inte-
gration, using the simulated decays. A constant is defined to absorb the factor
⟨εa⟩(t) in Equation 3.13:

Ea ≡
[∫

dt P
obs(t)

⟨εa⟩(t)

]−1

. (3.17)
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Notice that Ea reduces to the mean angular acceptance, ⟨εa⟩, if the PDFs
for time and angles factorize, P gen(t,Ω) =P gen(t) ×P gen(Ω). In this case
P gen(Ω|t) is equal to P gen(Ω) and ⟨εa⟩ is independent of time and the in-
tegral in Equation 3.17 evaluates to ⟨εa⟩−1.

With the constant Ea and the definition of the angular acceptance in
Equation 3.13, the coefficients of Equation 3.15 can be expressed as

1
Ea

cjlm =

∫
dt P

obs(t)

⟨εa⟩(t)
· (j + 1

2)

∫
dΩ bjlm(Ω) εa(Ω)

= (j + 1
2)

∫
dt dΩ P obs(t)

⟨εa⟩(t)
bjlm(Ω) ⟨εa⟩(t)

P obs(Ω|t)
P gen(Ω|t)

= (j + 1
2)

∫
dt dΩ P obs(t,Ω)

bjlm(Ω)

P gen(Ω|t)
.

(3.18)

The value of this integral is estimated with a sum over simulated decays:

E
(

1
Ea

cjlm

)
= (j + 1

2)
1

Nobs

Nobs∑
e=1

bjlm(Ωe)

P gen(Ωe|te)
(3.19)

Since the “mean acceptance” is a constant equal for all coefficients, this factor
can be ignored for the shape of the acceptance function. The values of the
coefficients that were used for the function in Figure 3.12 are specified in
Table 3.4. Note that, although not shown in the table, there are correlations
between these estimates.

Table 3.4: Values of the coefficients of the angular acceptance function that
were used for the function shown in Figure 3.12, obtained from simulated B0s →
J/ψK+K– decays. The specified values are estimates of the quantity 1

Ea
cjlm

(Equation 3.19).

coefficient (jlm) value statistical uncertainty
000 3.5767 0.0011
020 +0.1535 0.0030
040 +0.0305 0.0031
022 +0.0096 0.0026
200 -0.125 0.006
400 -0.033 0.008
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For a uniform acceptance function, εa(Ω) = ⟨εa⟩ = constant, and Equa-
tion 3.18 reduces to

1
Ea

cjlm = (j + 1
2)

∫
dΩ bjlm(Ω) . (3.20)

This integral is only non-zero for j = l =m = 0, for which 1
Ea

c000 = 2
√
π ≈ 3.54.

Table 3.4 shows that the acceptance function is not too far from being uni-
form.

3.4.2 Acceptance Normalization Weights

In principle the parameterization of the acceptance function in terms of Leg-
endre polynomials and spherical harmonics could be used to describe the ac-
ceptance function in the PDF for the time and angular fit. However, this
would require criteria that specify which set of basis functions to include in
the description and a study of the effect of not including functions that are
not in this set. A slightly different approach circumvents this problem and
includes all relevant acceptance information.

Using the notation of Equation 3.9, the PDF including acceptance effects
is given by

P obs(t,Ω) =
ε(t,Ω) p(t,Ω)∫

dt dΩ ε(t,Ω) p(t,Ω)
(3.21)

Assuming the time and angular acceptance functions factorize and writing
the function p(t,Ω) in the normalization integral as a sum of angular terms
(see Sections 2.4 and 2.6), the PDF can be expressed as

P obs(t,Ω) = εt(t) εa(Ω)
p(t,Ω)∑

k

∫
dt εt(t)ft,k(t)

∫
dΩ εa(Ω)fa,k(Ω)

, (3.22)

where ft,k(t) and fa,k(Ω) are the time and angular functions of a term k in
the differential decay rate, respectively (see Equation 2.47 and Table 2.1).

If the angular acceptance function does not contain any free parameters,
the factor εa(Ω) in Equation 3.22 becomes a constant term in theminimization
of the NLL (see also Section 3.1) and can be ignored. The angular acceptance
function then only remains in the normalization integral

∫
dΩ εa(Ω)fa,k(Ω).

This integral is very similar to the integral in Equation 3.15 and can be esti-
mated in the same way (Equations 3.18 and 3.19).
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This procedure leads to the definition of normalization weights, as de-
scribed in [69]. The weights are determined for each term in the differential
decay rate and are defined by

ξk ≡
∫

dΩ εa(Ω)fa,k(Ω) , (3.23)

with a corresponding estimate from simulated events

E
(

1
Ea

ξk

)
=

1

Nobs

Nobs∑
e=1

fa,k(Ωe)

P gen(Ωe|te)
. (3.24)

The estimated values of the normalization weights are given in Table 3.5.
The largest correlations between these estimates are found between the “00”
weight and the “∥∥” and “⊥⊥” weights; -68% and -69%, respectively.

Table 3.5: Values of the normalization weights of the angular acceptance func-
tion. The specified values are estimates of the quantity 1

Ea
ξk (Equation 3.24).

weight (k) value statistical uncertainty
00 0.9744 0.0005
∥∥ 1.0245 0.0006
⊥⊥ 1.0263 0.0006
0∥ +0.0001 0.0005
0⊥ -0.0003 0.0004
∥⊥ -0.0006 0.0007
SS 0.9896 0.0004
0S +0.0007 0.0014
∥S +0.0007 0.0006
⊥S +0.0003 0.0006

For a uniform angular acceptance function, the expression for the accep-
tance weights reduces to

1
Ea

ξk =

∫
dΩ fa,k(Ω) . (3.25)

This integral evaluates to 1 for the “diagonal” terms “00”, “∥∥”, “⊥⊥”, and
“SS” and vanishes for the remaining interference terms. The values of the
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acceptance weights confirm that the acceptance function is close to being
uniform.

Since the full set of basis-function coefficients contains all the information
on the angular acceptance function, the acceptance weights can be expressed
in terms of the coefficients. Because the weights only contain the information
that is required for the PDF normalization integral, the set of weights does
not completely specify the acceptance function and the transformation from
weights to coefficients is not unique. That is, there is an infinitely large set of
acceptance functions that yield a given set of normalization weights.

Expressions for the acceptance weights in terms of basis coefficients are
derived by expressing the decay-rate functions fa,k in terms of basis func-
tions. The integral of Equation 3.23 can then be expressed as a sum of the
basis-function integrals in Equation 3.15. The resulting expressions for the
acceptance weights are given by

2
√
π ξ00 = c000 − 1√

5
c020 +

2
5c200 −

2
5
√
5
c220

2
√
π ξ∥∥ = 1

2 (2c000 +
1√
5
c020 −

√
3
5c022 −

2
5c200 −

1
5
√
5
c220 +

1
5

√
3
5c222)

2
√
π ξ⊥⊥ = 1

2 (2c000 +
1√
5
c020 +

√
3
5c022 −

2
5c200 −

1
5
√
5
c220 − 1

5

√
3
5c222)

2
√
π ξ0∥ = − 3

32

√
6
5π (c121 − 1

4c321 −
5

128c521 − . . .)

2
√
π ξ0⊥ = + 3

32

√
6
5π (c12−1 − 1

4c32−1 − 5
128c52−1 − . . .)

2
√
π ξ∥⊥ =

√
3
5 (c02−2 − 1

5c22−2)

2
√
π ξSS = c000 − 1√

5
c020

2
√
π ξ0S = 2√

3
(c100 − 1√

5
c120)

2
√
π ξ∥S = −3

8

√
2
5π (c021 − 1

8c221 −
1
64c421 − . . .)

2
√
π ξ⊥S = −3

8

√
2
5π (c02−1 − 1

8c22−1 − 1
64c42−1 − . . .) .

(3.26)

3.5 K+K–-Mass Integrals

As discussed in Sections 2.5 and 2.6.2, the dependence of the differential de-
cay rate on K+K– mass is summarized in the PDF by the quantities KPS and
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κPS, which represent the K+K–-mass integral of the rate. A separate PDF is
constructed for each interval in K+K– mass, with values of KPS and κPS that
correspond to the K+K–-mass shapes in the interval.

The phase κPS is absorbed in the phase difference between the J/ψϕ and
the S-wave amplitudes (see Equations 2.57 and 2.58), which is measured for
each interval. In principle, the KPS values could also be measured, but be-
cause these factors only modify the magnitudes of the small S-wave interfer-
ence terms more data would be needed for a sensible measurement. For this
measurement the KPS factors are computed and fixed in the fit of time and
angles.

The decay model of Chapter 2 is integrated over K+K– mass, where it is
assumed the mass shape of the B0

s → J/ψϕ decay is described by a relativistic
Breit-Wigner function (see e.g. reference [45]) and the K+K– S-wave contri-
bution to the B0

s → J/ψK+K– decay by a Flatté function [63]. Because the
K+K–-mass measurement has a finite resolution of approximately 1MeV/c2,
these functions are convoluted with a resolution function, which is deter-
mined from the resolution in simulated decays (see Reference [2]). The re-
sulting KPS factors are listed in the third column of Table 3.6.

Table 3.6: S-wave–J/ψϕ coupling factors in the six K+K–-mass intervals (Ki
PS).

The KPS factors are computed for three different scenarios [2]: the nominal
K+K–-mass model with a Flatté mass shape for the S-wave and the mass resolu-
tion estimated with simulated decays, a scenario with a 20% worse K+K–-mass
resolution, and a scenario with a uniform K+K–-mass shape for the S-wave.

int. KK mass [MeV/c2] nominal +20% resolution uniform S-wave
1 990 – 1008 0.9178 0.9152 0.9586
2 1008 – 1016 0.9022 0.8797 0.9110
3 1016 – 1020 0.8619 0.8357 0.8618
4 1020 – 1024 0.8875 0.8599 0.8828
5 1024 – 1032 0.9360 0.9207 0.9227
6 1032 – 1050 0.9641 0.9624 0.9110

Systematic uncertainties related to the assumed mass shapes and resolu-
tion are evaluated by varying these inputs (see Section 4.3). To this end the
KPS factors are recalculated with a 20% worse K+K–-mass resolution (fourth
column in Table 3.6) and with a uniform K+K–-mass shape for the S-wave
(fifth column in Table 3.6).
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3.6 Flavour Tagging

In Chapter 2 the expressions for the differential decay rates of B0
s and B0

s de-
cays are distinguished by the variable qf, which takes the value +1 for B0

s and
–1 for B0

s . Equation 2.47 in Section 2.3 shows the dependence on this variable.
As explained in Section 1.4.1, it is experimentally not possible to unam-

biguously determine whether the produced meson was B0
s and B0

s for each
individual decay. In practice, the meson flavour is estimated for each decay,
together with a probability that the estimate is wrong. This flavour tag is
denoted by qt, which takes the values +1 for a B0

s estimate and –1 for a B0
s

estimate. The estimate of the wrong-tag probability is denoted by η .
For either value of qt the differential rate is a sum of the rates for true B0

s
(qf = +1) and true B0

s (qf = –1), where the relative contributions depend on the
wrong-tag probability. For small wrong-tag probability the two contributions
are well separated, which enables the measurement of the oscillation ampli-
tude from which the main sensitivity to CP-violation parameters originates
(see Section 2.6.1). If the wrong-tag probability becomes larger, the opposite
oscillations of true B0

s and true B0
s start to cancel, reducing the sensitivity to

the CP-violation parameters.
Decay candidates are assigned to different flavour-tagging categories ac-

cording to the estimate of the wrong-tag probability. For the main mea-
surement the candidates are only classified as tagged (0 ≤ η < 0.5) or untagged
(η = 0.5). For tagged decay candidates the decay model depends on the value
of η for each candidate. For untagged candidates the flavour-tagging algo-
rithms are unable to estimate the B0

s flavour. For these candidates the wrong-
tag probability is 50% by definition.

Although the implementation of flavour tagging that uses the value of
η for each individual decay candidate is more optimal, the analysis can be
simplified by using an average wrong-tag probability for tagged candidates.
In this case the tagging information can be used more optimally by defining
several categories of tagged events, such that candidates with small and large
wrong-tag probabilities are separated. This is achieved by defining ranges in
η .

In summing the contributions of true B0
s and true B0

s any asymmetries
in their production and detection should be taken into account. The LHC
collides protons, which contain more matter than antimatter. This creates a
small matter–antimatter asymmetry in the fragmentation and hadronization
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processes and consequently a small asymmetry in the numbers of B0
s and B0

s
that are produced. In addition, the flavour-tagging process relies on the de-
tection of charged kaons, which is asymmetric for K+ and K–. This creates a
difference in the fractions of the B0

s and B0
s decays in each tagging category.

3.6.1 Formalism

The effect of any of B0
s–B0

s normalization asymmetries on the differential
decay rate can be written in the form 1 + qfA, where the asymmetry is de-
noted by A. Examining Equation 2.47, an additional normalization asymme-
try arises from CP violation in mixing. The factor 1 − qfCmix is included as
an asymmetry contribution, with A = –Cmix.

Exploiting the relation qf
2 = +1, the product of all asymmetries can be ex-

pressed in a general form as∏
i

(1 + qfAi) ≡ C
avg
E + qfC

avg
O , (3.27)

where C
avg
E and C

avg
O are factors that contain the asymmetries, but not the

variable qf. Denoting the cosh
(
1
2∆Γs t

)
and sinh

(
1
2∆Γs t

)
terms as E (even

under B0
s ↔ B0

s ) and the cos(∆ms t) and sin(∆ms t) terms as O (odd under
B0
s ↔ B0

s ), the differential decay rate can be expressed as

d4Γ
dt dΩ = (C

avg
E + qfC

avg
O )(E + qfO)

= (C
avg
E + qfC

avg
O ) E + (C

avg
O + qfC

avg
E )O .

(3.28)

The two tagging algorithms that are used for the B0
s → J/ψK+K– measure-

ment give separate estimates of the B0
s flavour and the corresponding wrong-

tag probability. The true wrong-tag probability for B0
s , which is a function of

the estimated probability η , is denoted by w . Because of the B0
s–B0

s tagging
asymmetries mentioned above, the probability for B0

s decays has a different
dependence on η and is denoted by w .

Expressions for the differential decay rates of different combinations of
opposite-side and same-side flavour tags can be derived by multiplying the
rates for true B0

s and true B0
s by the appropriate combinations of wrong-tag

probabilities. Assuming the probabilities for the opposite-side and same-side
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algorithms are uncorrelated and labelling the algorithms by “o” and “s”, re-
spectively, the resulting rates are given by

qot = +1; qst = +1 : (1− wo)(1− ws) (C
avg
E + C

avg
O )(E +O)

+ wows (C
avg
E − C

avg
O )(E − O)

qot = +1; qst = −1 : (1− wo)ws (C
avg
E + C

avg
O )(E +O)

+ wo (1− ws) (C
avg
E − C

avg
O )(E − O)

qot = −1; qst = +1 : ws (1− wo) (C
avg
E + C

avg
O )(E +O) (3.29)

+ (1− ws)wo (C
avg
E − C

avg
O )(E − O)

qot = −1; qst = −1 : wswo (C
avg
E + C

avg
O )(E +O)

+ (1− ws)(1− wo) (C
avg
E − C

avg
O )(E − O) .

Notice that the sum of the rates of the four cases is given by the expression
in Equation 3.28, summing the rates of qf = +1 and qf = –1.

Rewriting the expressions in Equation 3.29, the observed differential de-
cay rate in one of the tagging categories can be expressed in a form similar
to Equation 3.28: (

d4Γ
dt dΩ

)
c, qot , q

s
t

= εc (CE E + CO O) , (3.30)

where the coefficientsCE andCO both depend on the tagging category, c, and
on the flavour tags, qot and qst . The parameter εc is the average of the fractions
of true B0

s and true B0
s decays in the category. To express the coefficients

in terms of these quantities, a tagging-dilution factor and a corresponding
“asymmetry” are defined as

D = 1− w − w and ∆ =
w − w

1− w − w
. (3.31)

In general, all tagging parameters depend on the tagging category: Dc, ∆c,
C

avg
Ec , and C

avg
Oc

. In terms of these parameters the coefficients CE and CO are
given by

2CE ≡ C
avg
Ec + qot Do

c

(
C

avg
Oc

−∆o
c C

avg
Ec
)
+ qst Ds

c

(
C

avg
Oc

−∆s
cC

avg
Ec
)

+ qot q
s
t Do

c Ds
c

[
(1 + ∆o

c ∆
s
c)C

avg
Ec −∆o

c ∆
s
cC

avg
Oc

]
(3.32a)

2CO ≡ C
avg
Oc

+ qot Do
c

(
C

avg
Ec −∆o

c C
avg
Oc

)
+ qst Ds

c

(
C

avg
Ec −∆s

cC
avg
Oc

)
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+ qot q
s
t Do

c Ds
c

[
(1 + ∆o

c ∆
s
c)C

avg
Oc

−∆o
c ∆

s
cC

avg
Ec
]
. (3.32b)

Various limits can be considered for the CE and CO coefficients in Equa-
tions 3.30 and 3.32. Without B0

s–B0
s normalization asymmetries the coeffi-

cients Cavg
E and C

avg
O reduce to one and zero, respectively:

2CE = 1− qot Do
c ∆

o
c − qst Ds

c∆
s
c + qot q

s
t Do

c Ds
c (1 + ∆o

c ∆
s
c) (3.33a)

2CO = qot Do
c + qst Ds

c − qot q
s
t Do

c Ds
c∆

o
c ∆

s
c . (3.33b)

Without any asymmetries, the coefficients are given by

2CE = 1 + qot q
s
t Do

c Ds
c (3.34a)

2CO = qot Do
c + qst Ds

c . (3.34b)

In case only one of the two flavour tags is considered, the differential rate
is given by the sum of the B0

s and B0
s rates of the other tag. Considering only

opposite-side tagging gives∑
qst

CE = C
avg
Ec + qot Do

c

(
C

avg
Oc

−∆o
c C

avg
Ec
)

(3.35a)

∑
qst

CO = C
avg
Oc

+ qot Do
c

(
C

avg
Ec −∆o

c C
avg
Oc

)
. (3.35b)

Effectively this is the same as considering the candidates untagged for the
same-side algorithm, which gives w ≡w ≡ 0.5→D = 0. Without any flavour
tags the coefficients are given by∑

qot ,q
s
t

CE = 2C
avg
Ec (3.36a)

∑
qot ,q

s
t

CO = 2C
avg
Oc

. (3.36b)

Note that without flavour tagging, one is generally not interested in an
expression of the differential decay rate that depends on the tagging category.
The sum of all rates cannot depend on flavour-tagging variables or parameters
and should be given by∑

c, qot , q
s
t

(
d4Γ
dt dΩ

)
c,qot ,q

s
t

= 2C
avg
ES E + 2C

avg
OS

O , (3.37)
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where the coefficients Cavg
ES and C

avg
OS

are defined as in Equation 3.27, but in-
cluding only asymmetries that do not depend on tagging. As a result, the
weighted sums of asymmetry coefficients over tagging categories are given
by ∑

c

εcC
avg
Ec = C

avg
ES and

∑
c

εcC
avg
Oc

= C
avg
OS

. (3.38)

The above relations follow from the requirement that the fractions of true
B0
s and true B0

s decays in the tagging categories both add up to one:∑
c

εc
∏
l

(1 + qfAc,l) ≡ 1 (3.39)

for both values of qf, where l only iterates over category-dependent asymme-
tries, Ac,l. With this requirement the sum of coefficients is given by∑

c

εc (C
avg
Ec + qfC

avg
Oc

) =
∑
c

εc
∏
k

(1 + qfAk)
∏
l

(1 + qfAc,l)

=
∏
k

(1 + qfAk)
∑
c

εc
∏
l

(1 + qfAc,l)

= (C
avg
ES + qfC

avg
OS

)
∑
c

εc
∏
l

(1 + qfAc,l)

= C
avg
ES + qfC

avg
OS

,

(3.40)

where k iterates over asymmetries that do not depend on the tagging cate-
gory, Ak. The relations in Equation 3.38 follow from Equation 3.40.

3.6.2 Implementation

For themainmeasurement the data and the decaymodel are split into the four
tagging categories that are listed in Table 3.7. The categories are combinations
of the tagged and untagged categories for the opposite-side and same-side al-
gorithms. The second column in the table gives the number of signal decays in
each of the categories and the third column the effective fraction of perfectly
tagged decays.

The effective fraction of perfectly tagged decays is obtained by multiply-
ing the fraction of decays in a category by the mean of the squared dilution
factor, ⟨Dc

2⟩. Ignoring normalization and wrong-tag asymmetries, the oscil-
latory terms in the differential decay rate, from which the main sensitivity
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Table 3.7: Definition of the flavour-tagging categories.

category decays [103] effective fraction
untagged 31 0

OS tagged – SS untagged 13 1.2%
OS untagged – SS tagged 34 0.8%
OS tagged – SS tagged 16 1.7%

to CP-violation parameters originates, are proportional to the dilution factor
(Equations 3.30 and 3.34). With a non-zero wrong-tag probability the value of
this factor is between plus and minus one, which makes the measured oscil-
lation amplitudes for B0

s and B0
s tags smaller than the underlying amplitudes

for true B0
s and B0

s decays.
As a result, the uncertainties on the derived underlying amplitudes are

a factor 1
Dc

larger than the uncertainties on the measured amplitudes, for a
single value of the wrong-tag probability. Accounting for decays with dif-
ferent wrong-tag probabilities and assuming the statistical uncertainty of the
measured oscillation amplitude is inversely proportional to square root of the
number of decays in the category, the decrease in precision due to wrong tags
can be effectively described by a decrease in number of perfectly tagged de-
cays by a factor ⟨Dc

2⟩.
The η dependence of the wrong-tag probabilities for tagged decays, which

enters the differential rates through the factors D and ∆, is described by a
phenomenological model:

w = p0 + p1 (η − ⟨η⟩) (3.41a)
w = p0 + p1 (η − ⟨η⟩) (3.41b)

where ⟨η⟩ is the mean value of η for tagged decays. The parameters p0, p0, p1,
p1 are measured in a flavour-tagging calibration procedure and have differ-
ent values for the opposite-side and same-side algorithms. In the calibration
procedure, which is described in Reference [2], B-meson decays with known
decay-time distributions are used to measure the a-priori unknown tagging
parameters.

After calibration, the values of η , p0 and p1 are chosen such that for tagged
decays 1

2(p0 + p0) = ⟨η⟩ and
1
2(p1 + p1) = 1, which implies 1

2(w +w) = η . The
wrong-tag probabilities for untagged decays are given by w ≡w ≡ 0.5 by def-
inition. The resulting distributions of ηo and ηs for tagged decays are shown
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in Figure 3.13.
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Figure 3.13: Distribution of B0s → J/ψK+K– signal decays in the estimated
wrong-tag probability for (a) opposite-side tagging and (b) same-side tagging.
The contributions of untagged decays (η ≡ 0.5) are not shown.

From Figure 3.13 it can be seen that although the efficiency of same-
side tagging is higher than the efficiency for opposite-side tagging, the mean
wrong-tag probability of the former is closer to 0.5 (“untagged”). As a result,
the effective same-side efficiency is lower than the effective opposite-side ef-
ficiency (Table 3.7): 1.2% for OS-only decays and 0.8% for SS-only decays.

Because the oscillatory functions in the “0⊥” and “∥⊥” interference terms
are not proportional to unknown CP-violation parameters, there is some sen-
sitivity for the value of the tagging dilution in the B0

s → J/ψK+K– data. This
information is combined with the value measured in the tagging-calibration
process by applying the procedure that was also used for the parameters β
of the reconstruction-acceptance function (Section 3.3.2). The calibration pa-
rameters are varied in the fit, representing the calibration measurements by
additional parabolic terms in the NLL.

In practice the calibration parameters pi and pi are not measured directly,
but rather their averages and differences, defined as 1

2(pi + pi) and pi − pi,
respectively. The values measured after calibration [2] and the values from
the fit are shown in Table 3.8. The fit values are onlymarginally different from
the calibration values, which indicates that the estimates of these parameters
in the flavour-tagging procedure are more precise than the estimates from the
B0
s → J/ψK+K– data.
An individually normalized PDF is used for each tagging category to be
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Table 3.8: Values of tagging-calibration parameters.

parameter calibration value fit value
1
2(p

o
0 + po0) 0.379 ± 0.004 0.381 ± 0.004

1
2(p

s
0 + ps0) 0.445 ± 0.005 0.446 ± 0.005

1
2(p

o
1 + po1) 1.00 ± 0.04 1.01 ± 0.03

1
2(p

s
1 + ps1) 1.00 ± 0.09 0.97 ± 0.08

po0 − po0 +0.0140 ± 0.0012 +0.0140 ± 0.0012
ps0 − ps0 –0.0158 ± 0.0014 –0.0158 ± 0.0014
po1 − po1 +0.066 ± 0.012 +0.066 ± 0.012
ps1 − ps1 +0.008 ± 0.022 +0.008 ± 0.022

insensitive to the fractions of decays in the categories, for which there are
no predictions. Since also the distributions in estimated wrong-tag probabil-
ity are unpredicted, the PDFs are also made conditional on this variable and
normalized individually with respect to decay time and decay angles for each
combination of ηo and ηs values.

The PDFs are also normalized individually for each value of the estimates
of the B0

s flavour, qot and qst . Although expressions for the differential decay
rates do predict the relative amounts of B0

s tags and B0
s tags, a PDFwith a com-

mon normalization would be very sensitive to the values of the normaliza-
tion asymmetries that are used in the model. With individual normalizations
this sensitivity is reduced, which justifies the assumption of no normalization
asymmetries (see also Section 4.3).

To demonstrate the sensitivity to normalization asymmetries, the decay-
rate equations with one flavour tag (Equation 3.35) are considered in the limit
of small normalization asymmetries (Cavg

E ≈ 1, A ≡Cavg
O ≈ 0), large wrong-tag

probability (D ≈ 0), and no wrong-tag asymmetries (∆ ≡ 0):(
d4Γ
dt dΩ

)
qt

≈ (1 + qtAD) E + (A+ qtD)O . (3.42)

Using individually normalized PDFs for qt = +1 and qt = –1, an incorrect
value of the normalization asymmetry A gives an incorrect estimate of the
“effective dilution factor” A ±D . The effects of this incorrect dilution value
on the estimates of the parameters contained in E and O are expected to
roughly cancel between qt = +1 and qt = –1.
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If instead a common normalization is used for B0
s and B0

s tags, the distri-
bution of decays in qt is fitted, which is approximately given by

Pqt ≡

∫
dt dΩ

(
d4Γ
dt dΩ

)
qt∑

qt

∫
dt dΩ

(
d4Γ
dt dΩ

)
qt

≈ 1

2

1 + qtAD + (A+ qtD)RO/E

1 +ARO/E
, (3.43)

where RO/E is the ratio of the integrals over time and angles of the E and O
terms. As a result, the analysis is sensitive to the asymmetry between the B0

s
and B0

s values, approximated by

P+ − P−
P+ + P−

≈ D
A+RO/E

1 +ARO/E
. (3.44)

An incorrect estimate of the normalization asymmetryA now directly affects
the estimated values of the parameters contained in the ratioRO/E . Since the
time integral over the many cos(∆ms t) and sin(∆ms t) periods in O almost
vanishes, which makes RO/E very small by construction, this effect is large
and will be avoided by using individually normalized PDFs.

3.7 Simulation

Datasets of simulated decays are used to study the statistical precision of pa-
rameter estimates and the effect of the detector on distributions of relevant
variables. These data are produced using Monte Carlo methods, where ran-
dom values are generated for the variables that describe a decay. This can be
achieved either by directly generating values for the decay time and decay
angles or by generating the particles in the decay and their interactions with
the detector.

The latter option involves a full simulation of the proton–proton colli-
sions of the LHC, the decays of particles that are produced, and the response
of the LHCb detector to the resulting particles. These stages of the simulation
are performed separately for each simulated LHC event, generating values for
variables that describe particles and detector components. The resulting data
are stored in the format of real detector data and are processed in the same
way by applying trigger and selection requirements. This type of simulation
is applied to determine the contribution of resonant backgrounds (see Sec-
tion 3.2.2), the detector resolution (see Section 3.2.2 for J/ψK+K– mass and
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Section 3.3.1 for decay time), and the detector acceptance (see Section 3.3.2
for decay time and Section 3.4 for decay angles).

In the direct type of simulation the values of decay time and decay angles
in B0

s → J/ψK+K– decays are drawn from the PDF that is constructed with
the model discussed in Chapter 2 and this chapter. All effects of B0

s produc-
tion, B0

s → J/ψK+K– decay, detection, reconstruction, and selection are then
assumed to be described by this model, as in the fit of time and angles. This
type of simulation is applied to generate so-called pseudo experiments, each of
which consists of a dataset that is equivalent to the dataset obtained from the
real experiment. Distributions of the parameter estimates in the final fit are
obtained by performing the time and angular analysis on each of the pseudo
experiments. These distributions are used to determine the statistical uncer-
tainty in the parameter estimates (see Section 4.1) and the effects of variations
in the assumed model.

To get a realistic estimate of the parameter distributions from the pseudo
experiments not only signal decays, but also background decay candidates
should be generated. Because no PDF for the time and angular distributions
of these candidates is constructed for this measurement, these distributions
are taken from real background data.

Background decay-candidates are selected from the real data by taking
data from the J/ψK+K–-mass side bands. As in the background-subtraction
procedure, it is assumed that the signal contribution in the side bands is small
(and in this case negligible) and the time and angular distributions of back-
ground candidates in the side bands are representative for the full mass range
(see Section 3.2). The distribution of time and angles of the real candidates are
used to generate the distribution of background in the pseudo experiments.

Values of the J/ψK+K– mass are generated with the mass PDF that is also
used in the background-subtraction procedure. Since the mass distribution is
not modelled in the final fit of decay time and angles, statistical fluctuations
in this distribution are not propagated to the distributions of the fit parame-
ters. A single set of J/ψK+K–-mass values and corresponding signal weights
is generated, which is used for all pseudo experiments. The number of decay
candidates in this set is equal to the number of candidates in the real experi-
ment.

Both the J/ψK+K–-mass PDFs and PDFs for decay time and decay angles
are conditional on a number of other variables in the decay, such as the run-
period category (2011 or 2012), the K+K–-mass category, the trigger category,
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the estimated decay-time uncertainty, and the tagging variables. As for the
time and angular distributions of background candidates, no PDFs are avail-
able for these conditional variables and their distributions are taken from the
real data.

The distributions of conditional variables are not modelled in the time
and angular fit, so a single set of values is used for all pseudo experiments,
as for the J/ψK+K– mass. This set is “generated” by taking the values of the
conditional variables from the decay candidates in the real data. Differences
between the signal and the background distributions are taken into account
by generating the J/ψK+K–-mass values in intervals of the conditional vari-
ables, using the fractions of signal and background candidates that are found
for each individual interval.

Pseudo experiments are produced by generating values for the decay time
and the decay angles for each candidate in the set of mass and conditional-
variable values. For each candidate it is first decided whether to draw values
from the signal or from the background distribution for time and angles. The
probabilities to get either one of the distributions are given by the signal and
background fractions, which are determined by the values of the mass PDFs
and the fractions in the conditional-variable interval of the decay candidate.
As described above, the values of time and angles are generated with the
signal PDF for “signal candidates” and with the side-band distributions for
“background candidates”.

The application of pseudo experiments is discussed in the next chapter,
where the results of the B0

s → J/ψK+K– measurement are presented. Param-
eter uncertainties as estimated from the shape of the NLL are verified with
the distributions of parameter estimates in pseudo experiments. In addition
to these statistical uncertainties, systematic uncertainties in the parameter
estimates are evaluated.
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Results

The model of decay time and decay angles in the B0
s → J/ψK+K– decay, as

presented in Chapters 2 and 3, is fitted to the data from reconstructed and
selected B0

s and B0
s candidates, after background subtraction. Statistical un-

certainties in the resulting parameter estimates are evaluated from the shape
of the likelihood function, as described in Chapter 3. Systematic uncertainties
are estimated by repeating the fit with variations of the model or the data.

Results are presented for three different parameterizations of CP vio-
lation. Different assumptions are made, based on the conjectures that the
B0
s → J/ψK+K– decay is dominated by a tree-level amplitude and that CP vi-

olation in mixing is small, as discussed in Section 1.3.2. If contributions from
additional decay amplitudes are small, CP violation is induced by the B0

s–B0
s

mixing process and does not depend on the intermediate angular-momentum
state. Also CP violation in decay will be small in this case.

The first parameterization is the most general one and includes different
parameters ϕi

s andCi
s for the states i ∈ {0, ∥,⊥, S}. See Section 2.6.3 for a de-

scription of the actual parameters that are used. The second parameterization
is more restrictive and assumes that CP-violating effects are identical among
the intermediate states. Finally, for the third parameterization the additional
assumptions of no CP violation in mixing and no CP-violation in decay are
made, i.e., only CP violation in the interference between mixed and unmixed
decays is allowed. The following parameters describe CP violation for these
three cases:

1. ϕi
s/Ci

s model:
ϕav
s ,∆ϕ

∥
s ,∆ϕ⊥′

s ,∆ϕS
s and Cav

s ,∆C
∥
s ,∆C⊥

s , CavS
s

125
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2. ϕs/|λs| model:
ϕ0
s = ϕ

∥
s = ϕ⊥

s = ϕS
s ≡ ϕs and |λ0

s | = |λ∥
s | = |λ⊥

s | = |λS
s | ≡ |λs|

3. ϕs/|λs| = 1 model:
ϕ0
s = ϕ

∥
s = ϕ⊥

s = ϕS
s ≡ ϕs and |λ0

s | = |λ∥
s | = |λ⊥

s | = |λS
s | ≡ 1

Figures 4.1 and 4.2 show the background-subtracted distributions of de-
cays in time and angles and the corresponding one-dimensional PDF pro-
jections for case 2, the ϕs/|λs| model. The decay-time distribution is shown
in both the full selected range of [0.3, 14] ps on a logarithmic vertical scale
(Figure 4.1a) and in a reduced range of [0.3, 5] ps on a linear vertical scale
(Figure 4.1b).
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Figure 4.1: Background-subtracted distribution of decays in decay time (data
points) and the corresponding one-dimensional projection of the PDF (blue line).
Figure (a) shows the distribution in the full range between 0.3 and 14 ps on a log-
arithmic vertical scale, while Figure (b) shows the distribution between 0.3 and
5 ps on a linear vertical scale. Additional PDF projections are shown for the CP-
even (long-dashed, red line) and CP-odd (short-dashed, green line) components
of B0s → J/ψϕ and for the S-wave (dashed-dotted, magenta line).

The solid, blue lines in Figures 4.1 and 4.2 represent the projections of the
full PDF and are to be compared to the distributions of the data. In addition,
the contributions of CP-even and CP-odd intermediate states to the PDF are
shown separately. The long-dashed, red lines represent the sum of the |A0|2
and |A∥|2 terms in the PDF, which are CP even. The CP-odd |A⊥|2 and |AS|2
terms are shown as the short-dashed, green and dashed-dotted, magenta lines,
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Figure 4.2: Background-subtracted distribution of decays in decay angles (data
points) and the corresponding one-dimensional projections of the PDF (solid, blue
line). The distributions of cos θK, cos θμ, andφh are shown in Figures (a), (b), and
(c), respectively. Additional PDF projections are shown for the CP-even (long-
dashed, red line) and CP-odd (short-dashed, green line) components of B0s →
J/ψϕ and for the S-wave (dashed-dotted, magenta line).
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respectively. Contributions from interference terms are not shown. The dis-
continuities in the decay-time PDFs arise from statistical uncertainties in the
interval coefficients of the acceptance function.

The shapes of the CP-even and CP-odd projections are clearly different,
which enables a statistical separation. In cos θK and cos θμ the difference be-
tween the even and odd B0

s → J/ψϕ components is made by the |A0|2 and
|A⊥|2 angular functions (see Table 2.2). Where the |A0|2 term has a cos2 θ
behaviour, the |A⊥|2 term has a sin2 θ behaviour and vice versa. In φh the
|A0|2 function is uniform, but the oscillatory behaviour for |A∥|2 is opposite
to that of the |A⊥|2 function. The K+K– S-wave term is uniform in cos θK and
φh, but proportional to sin2 θμ.

The largest contribution to the B0
s → J/ψϕ decay rate comes from the

CP-even |A0|2 and |A∥|2 components, which account for approximately 75%.
Although this cannot be seen in these projection plots, |A∥|2 and |A⊥|2 are
roughly equal. The S-wave accounts for approximately 5% of the total.

From the decay-time plotwith logarithmic vertical scale it can be seen that
the CP-even intermediate states decay faster than the CP-odd intermediate
states. In case CP violation is small, the even states roughly correspond to
the light CP eigenstate of the B0

s–B0
s system and the odd states to the heavy

CP eigenstate (Equation 2.64). Under this assumption it can be inferred from
the lifetimes of the states that the decay width of the light state is larger and
hence that ∆Γs ≡ ΓL − ΓH is positive.

The plots in Figure 4.1 show the sum of the B0
s and B0

s decay-time dis-
tributions, for which the decay-time oscillation vanishes. Since most of the
sensitivity for the CP-violation parameters comes from the amplitudes of the
oscillation terms, these projection plots contain little information on the CP-
violation measurement. More information is contained in Figure 4.3, which
shows the asymmetry between B0

s tags and B0
s tags.

The B0
s–B0

s-tag asymmetry is defined as

Atag ≡
#B0

s tags− #B0
s tags

#B0
s tags+ #B0

s tags

and is shown in intervals of decay-time for the background-subtracted data.
The corresponding asymmetry in the PDFs for B0

s tags and B0
s tags at each

point in decay time is shown for the three parameterizations by the lines
in the figure. The data asymmetry in a interval is predicted by the mean
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Figure 4.3: Background-subtracted asymmetry in the numbers of decays with
B0s and with B0s flavour tags as a function of decay time (data points) and the
corresponding asymmetries in the PDFs for the ϕi

s/C
i
s (solid, blue line), ϕs/|λs|

(dashed-dotted, green line), and ϕs/|λs| = 1 (dashed, red line) parameterizations.
Data from the full decay-time range are mapped onto one period of the expected
oscillation in the asymmetry. Decay candidates are weighted by the product
of the corresponding estimated dilution factors from decay-time resolution and
wrong tags to optimize the significance of the displayed asymmetry.

of the PDF asymmetry in that interval. An oscillation can be observed in the
asymmetry as a function of decay time provided that CP symmetry is violated
(Equation 2.72) and that the dilution factors from flavour tagging and decay-
time resolution are non-zero.

To increase the statistical significance of the displayed asymmetry in the
data all oscillation periods are projected onto the one period of approximately
0.36 ps that is shown in Figure 4.3. This period starts at about –0.06 ps, onto
which the lower edge of the decay-time range in the analysis of 0.3 ps is
mapped.

The significance of the displayed oscillation is further enhanced by the
use of flavour-tagging and decay-time resolution information. The amplitude
of the oscillation in the plot is maximized with respect to its uncertainty by
weighting the contribution of each decay candidate by the product of the
corresponding dilution factors from tagging and resolution.
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With the assumption |λs| = 1 the cosine component of the PDF vanishes.
This can be seen in the figure, which shows a sine function for the ϕs/|λs| = 1
parameterization (dashed, red line). The function has a negative slope at zero
decay-time, which indicates a negative value of ϕs, assuming the CP-even
components dominate the decay (see Equation 2.72). The function for the
ϕi
s/Ci

s parameterization (solid, blue line) almost overlaps with the ϕs/|λs| = 1
function. This indicates that the Ci

s parameter values are small or that they
effectively cancel, resulting in a vanishing cosine component.

The oscillation for the ϕs/|λs| parameterization can be described as a neg-
ative sine function with a phase offset of about 0.055 ps ·∆ms ≈ 0.31π rad
(dashed-dotted, green line in Figure 4.3), implying that both the sine and the
cosine coefficients in Equation 2.72 have non-zero values for this parameter-
ization. The contribution of the cosine also makes the amplitude of the oscil-
lation larger than the amplitudes for the other two parameterizations. With
this phase offset the magnitude of the cosine coefficient is roughly a factor
1.5 larger than the magnitude of the sine coefficient. The latter coefficient is
again negative, which implies a negative value for ϕav

s .
Despite the fact that the asymmetry plot shows an oscillation in the B0

s
and B0

s PDFs, the statistical uncertainties on the data points show that this
oscillation is not significant. This indicates that that the estimates of the ϕs
and Cs from the fit also do not differ from zero significantly.

Also the overall mean B0
s–B0

s-tag asymmetry in the data, indicated by the
dotted, black line, is not statistically significant. A non-zero mean could arise
from production and tagging asymmetries. The PDFs for B0

s tags and B0
s tags

are weighted by the number of decays in the corresponding category, which
makes the mean asymmetry in the PDF equal to the value in the data by
construction.

4.1 Parameter Estimates

Parameter estimates from the three CP-violation parameterizations are listed
in Tables 4.1, 4.2, and 4.3. Correlations between the main parameters of the
ϕi
s/Ci

s parameterization are shown in Table 4.4.
The techniques discussed in Section 3.1 are applied to obtain the estimates

of the parameter values, corresponding statistical uncertainties, and correla-
tion coefficients. The uncertainty estimates are obtained from the one-sigma
confidence interval of the profile likelihood, which yields an asymmetric un-
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Table 4.1: Parameter estimates with the ϕi
s/C

i
s model. See text for details.

parameter value uncertainty pull mean pull width
ϕav
s [rad] –0.047 0.051 –0.013 ± 0.010 0.970 ± 0.007

∆ϕ
∥
s [rad] –0.019 0.043 –0.013 ± 0.009 0.915 ± 0.006

∆ϕ⊥′
s [rad] –0.003 0.029 +0.008 ± 0.009 0.875 ± 0.006

∆ϕS
s [rad] +0.014 0.062 – –

Cav
s –0.006 0.039 +0.048 ± 0.010 1.004 ± 0.007

∆C
∥
s –0.025 0.122 –0.011 ± 0.011 1.044 ± 0.007

∆C⊥
s +0.043 0.162 +0.017 ± 0.010 1.024 ± 0.008

CavS
s +0.060 0.032 – –

Γs [ps–1] 0.6591 0.0033 –0.015 ± 0.010 0.982 ± 0.007
∆Γs [ps–1] +0.0784 0.0092 +0.051 ± 0.010 0.989 ± 0.007
∆ms [ps–1] 17.697 0.062 –0.005 ± 0.010 1.032 ± 0.008
|ACP

0 |2 0.5236 0.0034 +0.016 ± 0.010 1.012 ± 0.007
|ACP

⊥ |2 0.2513 0.0049 –0.135 ± 0.010 1.018 ± 0.008
FCP
S1 0.424 0.054 – –

FCP
S2 0.057 0.018 – –

FCP
S3 0.009 +0.007 –0.005 – –

FCP
S4 0.009 +0.006 –0.005 – –

FCP
S5 0.048 0.015 – –

FCP
S6 0.191 0.026 – –

δ∥ – δ0 [rad] +3.247 +0.104 –0.201 – –
δ⊥ – δ0 [rad] +3.037 +0.160 –0.177 –0.021 ± 0.011 1.059 ± 0.007
δS1 – δ⊥1 [rad] [+0.3, +2.6] – –
δS2 – δ⊥2 [rad] [+0.6, +2.7] – –
δS3 – δ⊥3 [rad] [+0.1, +2.7] – –
δS4 – δ⊥4 [rad] [–2.2, +0.1] – –
δS5 – δ⊥5 [rad] [–2.7, –0.2] – –
δS6 – δ⊥6 [rad] [–1.6, –0.5] – –
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Table 4.2: Parameter estimates with the ϕs/|λs| model. See text for details.

parameter value uncertainty pull mean pull width
ϕs [rad] –0.057 0.050 +0.008 ± 0.010 0.980 ± 0.007
|λs| 0.9627 0.0188 –0.096 ± 0.011 1.052 ± 0.007
Γs [ps–1] 0.6592 0.0033 +0.026 ± 0.010 0.990 ± 0.007
∆Γs [ps–1] +0.0785 0.0092 +0.014 ± 0.010 0.991 ± 0.007
∆ms [ps–1] 17.723 0.057 +0.009 ± 0.010 1.020 ± 0.007
|ACP

0 |2 0.5237 0.0034 –0.002 ± 0.010 1.012 ± 0.007
|ACP

⊥ |2 0.2512 0.0049 –0.112 ± 0.010 1.015 ± 0.007
FCP
S1 0.426 0.054 – –

FCP
S2 0.059 0.018 – –

FCP
S3 0.010 +0.007 –0.006 – –

FCP
S4 0.009 +0.006 –0.005 – –

FCP
S5 0.048 0.015 – –

FCP
S6 0.192 0.025 – –

δ∥ – δ0 [rad] +3.257 +0.100 –0.172 – –
δ⊥ – δ0 [rad] +3.099 +0.141 –0.151 +0.001 ± 0.011 1.075 ± 0.008
δS1 – δ⊥1 [rad] [+0.3, +2.6] – –
δS2 – δ⊥2 [rad] [+0.6, +2.7] – –
δS3 – δ⊥3 [rad] [+0.1, +2.7] – –
δS4 – δ⊥4 [rad] [–2.3, +0.1] – –
δS5 – δ⊥5 [rad] [–2.7, –0.2] – –
δS6 – δ⊥6 [rad] [–1.6, –0.6] – –
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Table 4.3: Parameter estimates with the ϕs/|λs| = 1 model. See text for details.

parameter value uncertainty pull mean pull width
ϕs [rad] –0.056 0.049 –0.018 ± 0.010 0.973 ± 0.007
Γs [ps–1] 0.6591 0.0033 +0.018 ± 0.010 0.995 ± 0.007
∆Γs [ps–1] +0.0785 0.0091 +0.006 ± 0.010 0.991 ± 0.007
∆ms [ps–1] 17.697 0.060 –0.011 ± 0.010 1.025 ± 0.008
|ACP

0 |2 0.5236 0.0034 +0.005 ± 0.010 1.012 ± 0.007
|ACP

⊥ |2 0.2512 0.0049 –0.102 ± 0.010 0.997 ± 0.007
FCP
S1 0.426 0.054 – –

FCP
S2 0.059 0.018 – –

FCP
S3 0.010 +0.007 –0.006 – –

FCP
S4 0.008 +0.006 –0.005 – –

FCP
S5 0.045 0.016 – –

FCP
S6 0.192 0.025 – –

δ∥ – δ0 [rad] +3.264 +0.099 –0.180 – –
δ⊥ – δ0 [rad] +3.043 +0.158 –0.166 –0.026 ± 0.011 1.058 ± 0.008
δS1 – δ⊥1 [rad] [+0.3, +2.6] – –
δS2 – δ⊥2 [rad] [+0.5, +2.7] – –
δS3 – δ⊥3 [rad] [+0.1, +2.8] – –
δS4 – δ⊥4 [rad] [–2.6, +0.1] – –
δS5 – δ⊥5 [rad] [–2.8, –0.2] – –
δS6 – δ⊥6 [rad] [–1.6, –0.6] – –
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certainty for some parameters. For the S-wave phase differences the three-
sigma confidence interval is shown instead of a point estimate.

To indicate the meaning of the parameter uncertainties, the mean and
width of the parameter pull distribution in ten thousand pseudo experiments
are shown in the last two columns of the parameter tables. The pull is defined
as the difference between estimate of the parameter value and the true value,
divided by the estimated uncertainty.

The pull parameters are only shown for parameters with a pull distribu-
tion that resembles a Gaussian shape. In the limit of a large number of decay
candidates, the parameter distribution is expected to be Gaussian and the pull
is expected to be distributed according to the standard normal distribution,
which has a zero mean and a width equal to one. A non-zero mean indicates
a bias in the estimate of the parameter value. If the uncertainty is overesti-
mated or underestimated, the pull width will be smaller or greater than one,
respectively.

The pseudo experiments were generated with the nominal parameter es-
timates, except for the difference between the S-wave phase and the B0

s →
J/ψϕ phase in the first K+K–-mass interval. This parameter was generated
at δS1 – δ⊥1 = 2.2 rad to get the expected ordering of phases differences across
the K+K–-mass intervals (see also Section 3.5 and Figures 4.8c and 4.10).

Even though the pull distributions have means close to zero and widths
close to one, there are some small deviations. These deviations may originate
from the fact that the parameter distributions only approximately have Gaus-
sian shapes, but also from the inherent bias in parameter estimates from a
maximum-likelihood fit or the distortion of the likelihood by event weights.
Since these effects are small, they will not be investigated further and esti-
mates of parameter values and uncertainties will not be corrected.

Estimates of all CP-violation parameters are both compatible with the sce-
nario of no CP violation (ϕi

s = 0, Ci
s = 0) and with the naive Standard Model

prediction (ϕav
s = –2βs ≈ –0.037 rad, ∆ϕi

s = 0, Ci
s = 0). Not considering the S-

wave and assuming Gaussian distributions for the six parameters that de-
scribe CP-violation in the B0

s → J/ψϕ process, the probability to observe
values in a given range under these two hypotheses can be calculated. Under
the hypothesis of no CP violation the probability to observe themeasured val-
ues or values further from the hypothesis values is 97%. Under the hypothesis
of naive Standard Model CP violation, this probability is even 99.9%.

On the other hand, using the naive Standard Model prediction for the
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Figure 4.4: Log-likelihood scans of the CP-violating phases (a) ϕav
s , (b) ∆ϕ

∥
s ,

(c) ∆ϕ⊥′
s , and (d)∆ϕS

s in the ϕi
s/C

i
s model. See text for details.

two S-wave parameters (∆ϕS
s = 0 and CavS

s = 0), the probability to observe the
measured values of∆ϕS

s andCavS
s or values further from zero is only 2%. This

low probability is driven by the two-sigma deviation from zero of CavS
s and

the fact that the deviations in ∆ϕS
s and CavS

s are both positive, while there is
a negative correlation between the parameter estimates.

As expected, the value of ϕs in the ϕs/|λs| and ϕs/|λs| = 1 parameteri-
zations (–0.06 ± 0.05 rad) are similar to the value of ϕav

s = –0.05 ± 0.05 rad in
the ϕi

s/Ci
s model. The parameter Cs, however, is a combination of the pa-

rameters Cav
s and CavS

s . Its estimated value in the ϕs/|λs| parameterization
is 0.038 ± 0.019, which makes the estimate of the corresponding |λs| ≈ 1 –Cs
equal to 0.963 ± 0.019. Since the estimates of ϕs and |λs| are almost uncorre-
lated, the effect of assuming |λs| = 1 on the ϕs estimate is negligible.
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Figure 4.5: Log-likelihood scans of the asymmetries from CP violation in mix-
ing and in decay (a) Cav

s , (b) ∆C
∥
s , (c) ∆C⊥

s , and (d) CavS
s in the ϕi

s/C
i
s model.

See text for details.
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Figure 4.6: Log-likelihood scans of (a) ϕs and (b) |λs| in the ϕs/|λs| model. See
text for details.

The assumptions of a parabolic NLL and a Gaussian parameter distribu-
tion are only approximately correct. Figures 4.4, 4.5, and 4.6 show the profiled
NLL for the ϕi

s, Ci
s , and ϕs/|λs| parameters, respectively. The solid, blue line

represents the difference in profiled NLL with respect to its minimum value.
The dotted, black line represents the parabolic approximation based on the
inverse of the second derivative in the minimum. In the Gaussian case the
two lines would coincide.

Although none of the NLLs shown exactly has a parabolic shape, for most
parameters this is a sufficient assumption up to a difference in NLL of 4.5,
which corresponds to three standard deviations in the Gaussian case. Clear
exceptions are∆ϕS

s andCavS
s , for which the NLL difference is smaller than 4.5

in a large region. The sudden jumps in NLL for these (and also other) parame-
ters occur at points where a local minimum in one of the δS – δ⊥ differences
becomes the global minimum.

For the parameters with an approximately parabolic NLL also the distri-
bution in pseudo experiments will resemble a Gaussian shape, since the vast
majority of experiments will be generated within three standard deviations
from the mean. In these cases the pull distribution for the parameter are sum-
marized by the mean and width listed in Tables 4.1 to 4.3.

In the ϕi
s parameter estimates there are no significant biases, but widths

of the pull distributions indicate that the uncertainties are somewhat overes-
timated. For the ϕav

s and ϕs parameters the widths are different from one by
only a few per cent, but for the∆ϕ

∥
s and∆ϕ⊥′

s parameters this is around ten
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Figure 4.7: Distributions and Gaussian-fit results of S-wave CP-violation pa-
rameters in pseudo experiments: (a) ∆ϕS

s (µ = 0.018; σ = 0.077), (b) ∆ϕS
s pull

(µ = 0.16; σ = 0.96), (c) CavS
s (µ = 0.061; σ = 0.046), and (d) CavS

s pull (µ = –0.050;
σ = 1.04).

per cent.
The uncertainties of the∆C

∥
s and∆C⊥

s parameters are overestimated by
a few per cent. While the width of theCav

s pull distribution is compatible with
one, the estimate of the value of this parameter is biased by approximately
five per cent of the statistical uncertainty. This bias is also present for the |λs|
parameter, for which it is approximately ten per cent.

The parameter and pull distributions of the S-wave CP-violation parame-
ters, which are indeed not Gaussian, are shown in Figure 4.7. The solid, blue
lines in this plots represent Gaussian PDFs that were fitted to the distribu-
tions. The vertical lines in the parameter plots represent the input value in the
pseudo experiments. In the regions where the NLL plots show unexpectedly
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low values, the corresponding parameter distributions have tails that would
not have been present for a Gaussian shape. The tails do not directly appear
in the pull plots, indicating that the NLL shape, and therefore the uncertainty
estimate, varies with the position of the NLL minimum.

As discussed in Section 1.3.2, predictions for the decay-width parameters
are Γs ≈Γd = 0.6583 ± 0.0030 ps–1 and ∆Γs = 0.087 ± 0.021 ps–1. The estimates
of these parameters are almost identical for the three different CP-violation
parameterizations and statistically compatible with the predictions.

Also the parameter ∆ms can be estimated in the B0
s → J/ψK+K– mea-

surement, because of the interference between the different angular momen-
tum states (see Section 2.6, in particular Table 2.3). The values obtained for
∆ms are compatible with the most precise measurement of this parameter,
∆ms = 17.768 ± 0.024 ps–1 [58].

The three estimates of the value and uncertainty of∆ms are different due
to correlations with the Cav

s /|λs| and δ⊥ – δ0 parameters. For the ϕi
s/Ci

s and
ϕs/|λs| = 1 parameterizations the estimates of the values of these parameters
are very similar. Fixing the value of |λs| does make the uncertainties with
the ϕs/|λs| = 1 parameterization smaller, because of the correlations with this
parameter. With the ϕs/|λs|model the parameter values change. Because the
shape of the NLL depends on the parameter values, the uncertainty estimates
also change and become even smaller for ∆ms and δ⊥ – δ0.

Themeans and widths of the lifetime pull distributions for the ϕs/|λs|( = 1)
models are as expected. In the ϕi

s/Ci
s model the∆Γs estimate develops a small

bias of approximately five per cent of the statistical uncertainty.
Estimates for the transversity amplitudes yield fractions of 52% for the

longitudinal B0
s → J/ψϕ polarization (|ACP

0 |2) and 25% for the perpendicular
polarization (|ACP

⊥ |2), which leaves 23% for the parallel polarization (|ACP
∥ |2).

The fraction of K+K– S-wave varies from approximately 40% in the first K+K–-
mass interval to approximately 1% in the two central intervals. The total S-
wave fraction is approximately 4%.

The NLLs of |ACP
0 |2 and |ACP

⊥ |2 are parabolic, but the estimate of |ACP
⊥ |2 is

biased by about 14% of its statistical uncertainty. The NLLs and distributions
of the S-wave fractions are asymmetric, because these parameters cannot as-
sume negative values. At one sigma this only results in slightly asymmetric
uncertainty estimates in the two central K+K–-mass intervals, where the frac-
tions are closest to zero.

As explained in Section 2.6.1, there are approximate symmetries in the
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Figure 4.8: Log-likelihood scans of the phases of the transversity amplitudes
(likelihood with polarization-dependent CP violation): (a) δ∥ – δ0, (b) δ⊥ – δ0,
(c) δSi – δ⊥i, where the K+K–-mass interval is indicated with the corresponding
K+K–-mass range. See text for details.
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Figure 4.9: Distributions and Gaussian-fit results of the phase of the parallel
transversity amplitude in pseudo experiments (maximum of the likelihood with
polarization-dependent CP violation): (a) δ∥ – δ0 (µ = 3.22; σ = 0.12), (b) δ∥ – δ0
pull (µ = –0.10; σ = 1.20).

transversity-amplitude phase parameters, which lead to NLLs with a double-
minimum structure. The NLL curves for the phase parameters are shown
in Figure 4.8. Tables 4.1 to 4.3 list one-sigma asymmetric uncertainties for
the δ∥ – δ0 and δ⊥ – δ0 parameters. Three-sigma intervals are shown for the
δS – δ⊥ parameters in the tables.

The minimum of the δ∥ – δ0 NLL is located at approximately π + 0.1. At
a value of π – 0.1 the cosine of δ∥ – δ0, which is determined more precisely
than the sine, has the same value. As a result, the NLL is also pulled down at
this point, yielding a broad shape around δ∥ – δ0 =π. The δS – δ⊥ NLLs show
similar behaviour with aminimum at (δS – δ⊥)min and a second “minimum” at
π – (δS – δ⊥)min (or, equivalently, –π – (δS – δ⊥)min), where the sine of δS – δ⊥
is equal. For two of the K+K–-mass intervals this results in an actual second
minimum.

Despite the broad NLL shapes, a trend of decreasing δS – δ⊥ with increas-
ing K+K– mass is clearly visible in Figure 4.8c. This confirms the assumption
of ϕs ≈ 0 and ∆Γs > 0 in favour of ϕs ≈π and ∆Γs < 0, as discussed in Sec-
tion 2.6.2.

The S-wave contribution is smallest in the two central K+K–-mass inter-
vals, which results in the least significant measurement of the parameters
related to the S-wave. Above an NLL difference of approximately seven the
interval for the δS – δ⊥ phase differences in these intervals spans the full range
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Figure 4.10: Distributions of the phases of the S-wave amplitudes in pseudo
experiments in the six intervals in K+K–-mass (maximum of the likelihood
with polarization-dependent CP violation): (a) 990–1008MeV/c2, (b) 1008–
1016MeV/c2, (c) 1016–1020MeV/c2, (d) 1020–1024MeV/c2, (c) 1024–1032MeV/c2,
and (f) 1032–1050MeV/c2. Notice the change in horizontal scale between (a), (b),
(c) and (d), (e), (f).
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of [–π, +π]. At the plateaus in the NLL plots the S-wave fractions are equal
to zero and changes in the phase differences have no effect. The plots in the
other four intervals show similar behaviour at much larger NLL difference.

Figures 4.9 and 4.10 show the distributions of the δ∥ – δ0 and δS – δ⊥ val-
ues, respectively. Also the pull distribution for δ∥ – δ0 is shown, which is more
symmetric than the distribution of parameter values. Also in these distribu-
tions of the phase differences the effect of the double-minimum structure in
the NLL is visible.

4.2 Alternative Parameterizations

To justify the modelling choices made in Chapter 3, the time and angular fit is
repeated with alternative parameterizations. The effects of an external con-
straint on the estimate of∆ms, a narrower K+K–-mass window, and flavour-
tagging categories are studied. It is expected that the fits with alternative
models yield results that are comparable to or less precise than the results
from the nominal fit.

The parameters of the decay-time trigger-acceptance function are fixed
to their nominal vales in all alternative fits, since this considerably reduces
the time required to perform the fits. As a result, the estimated statistical
uncertainty on Γs decreases from 0.0033 ps–1 to 0.0031 ps–1.

4.2.1 Constrained Mass-Difference Parameter

Currently, the most precise estimate of ∆ms is given by 17.768 ± 0.024 ps–1
and comes from an LHCb analysis of B0

s → D–
s π+ decays [58]. This estimate

can be combined with the estimate from the B0
s → J/ψK+K– data, as was

done for previous measurements [3, 70]. The external measurement is repre-
sented by an additional parabolic term in the NLL, using the same procedure
as for the external measurements of the reconstruction-acceptance parame-
ters (Section 3.3.2) and the tagging calibration parameters (Section 3.6.2).

The value of the external∆ms constraint is about one standard deviation
larger than the nominal-fit estimate (∆ms = 17.697 ± 0.062 ps–1) and its uncer-
tainty is a factor 2.6 smaller. As a result, the estimates of the parameters that
are correlated to∆ms are expected to deviate from the nominal result. Espe-
cially the estimate of δ⊥ – δ0, for which the correlation with∆ms is 70%, will
be significantly affected.
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Table 4.5 lists the results of the fit with∆ms constrained. Estimates of the
parameter values are given in the second column. The third column contains
the differences of these estimates with respect to the values from the nominal
fit. The uncertainty estimates are given in the fourth column and the relative
change in the uncertainties in the fifth column.

Table 4.5: Results of a fit with the estimate of ∆ms constrained to an external
measurement (∆ms = 17.768 ± 0.024 ps–1 [58]).

parameter estimate (difference) uncertainty (rel. difference)
ϕav
s [rad] –0.051 (–0.004) 0.050 (–0.02)

∆ϕ
∥
s [rad] –0.023 (–0.004) 0.041 (–0.04)

∆ϕ⊥′
s [rad] –0.003 (–0.001) 0.024 (–0.15)

∆ϕS
s [rad] +0.000 (–0.014) 0.064 (+0.03)

Cav
s –0.004 (+0.010) 0.038 (–0.01)

∆C
∥
s –0.010 (+0.015) 0.122 (–)

∆C⊥
s +0.035 (–0.009) 0.164 (+0.01)

CavS
s +0.060 (–) 0.030 (–0.05)

Γs [ps–1] 0.6591 (–) 0.0031 (–)
∆Γs [ps–1] +0.0783 (–0.0001) 0.0092 (–)
∆ms [ps–1] 17.758 (+0.062) 0.022 (–0.64)
|ACP

0 |2 0.5236 (–0.0001) 0.0034 (–)
|ACP

⊥ |2 0.2512 (–0.0001) 0.0049 (–)
δ∥ – δ0 [rad] +3.255 (+0.009) +0.100 –0.177 (–0.04 –0.12)
δ⊥ – δ0 [rad] +3.154 (+0.118) +0.120 –0.125 (–0.25 –0.29)

The estimates of the value and uncertainty of ∆ms agree with what is
expected from a combination of the internal and external estimates. Also the
value and uncertainty of δ⊥ – δ0 change as expected. The decrease of the un-
certainty of the ∆ϕ⊥′

s estimate might be somewhat surprising, since there is
no correlation between∆ϕ⊥′

s and∆ms given in Table 4.4. However, the like-
lihood shape in ∆ϕ⊥′

s (Figure 4.4c) is not Gaussian, so the linear covariance
matrix is not sufficient to predict the changes for this parameter. The sim-
ilarity of these results to the nominal results justifies omission of the ∆ms
constraint in the fit, although this choice may have to be re-evaluated for
future analyses, depending on the ∆ms correlations with a larger dataset.
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4.2.2 Narrow K+K–-Mass Window

Since the main interest of this measurement is CP violation in the B0
s →

J/ψϕ decay, one could argue to limit the range of K+K– masses to the re-
gion where the ϕ(1020) significantly contributes. This is a region of approx-
imately 24 MeV/c2 around the centre of the ϕ peak at 1020 MeV/c2 (see also
Figure 3.9f).

Results of a fit in a K+K–-mass window of [1008, 1032] MeV/c2 are shown
in Table 4.6. The window was split up into the four intervals of the nominal
analysis. The structure of the table is the same as for Table 4.5.

The uncertainties of the parameter estimates are larger than the uncer-
tainties obtained with the nominal fit, because the information on the K+K– S-
wave in the [990, 1008]MeV/c2 and [1032, 1050]MeV/c2 intervals is lost. Para-
meters which are (partially) determined with the S-wave (interference) terms
are affected. From these results it can be seen that the two outer K+K–-mass
intervals do add valuable information for the CP-violation measurement.

Table 4.6: Results of a fit in the K+K–-mass window of [1008, 1032] MeV/c2 with
four intervals.

parameter estimate (difference) uncertainty (rel. difference)
ϕav
s [rad] –0.039 (+0.007) 0.053 (+0.05)

∆ϕ
∥
s [rad] –0.044 (–0.025) +0.053 –0.058 (+0.24 +0.36)

∆ϕ⊥′
s [rad] –0.024 (–0.021) +0.040 –0.045 (+0.40 +0.56)

∆ϕS
s [rad] +0.033 (+0.018) +0.098 –0.117 (+0.57 +0.89)

Cav
s –0.018 (–0.011) 0.039 (–)

∆C
∥
s –0.104 (+0.129) +0.150 –0.140 (+0.23 +0.15)

∆C⊥
s –0.013 (–0.056) 0.166 (+0.02)

CavS
s +0.094 (+0.034) +0.806 –0.063 (+24 +0.95)

Γs [ps–1] 0.6572 (–0.0019) 0.0032 (+0.04)
∆Γs [ps–1] +0.0821 (+0.0036) 0.0094 (+0.02)
∆ms [ps–1] 17.665 (–0.031) 0.073 (+0.17)
|ACP

0 |2 0.5252 (+0.0016) 0.0035 (+0.02)
|ACP

⊥ |2 0.2496 (–0.0016) 0.0051 (+0.04)
δ∥ – δ0 [rad] +2.980 (–0.266) +0.333 –0.108 (+2.2 –0.46)
δ⊥ – δ0 [rad] +2.794 (–0.242) +0.282 –0.195 (+0.76 +0.10)
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4.2.3 Flavour-Tagging Categories

Theflavour-tagging schemewith an estimated wrong-tag probability for each
decay candidate is expected to give more precise results than a scheme with
an average wrong-tag probability. To test this assumption the data are fitted
using three alternative flavour-tagging parameterizations.

Table 4.7 shows the results of a fit in which no flavour-tagging informa-
tion is used. Neglecting B0

s–B0
s nuisance asymmetries, the cos(∆ms t) and

sin(∆ms t) terms vanish from the PDF used in this untagged fit and only the
cosh

(
1
2∆Γs t

)
and sinh

(
1
2∆Γs t

)
terms remain (see Section 3.6). As a result,

there is no sensitivity for the parameter ∆ms in this fit, but also the uncer-
tainties in the estimates of other parameters increase significantly.

Table 2.3 shows that with small CP violation δ∥ – δ0 appears in the coef-
ficients of the cosh

(
1
2∆Γs t

)
and sinh

(
1
2∆Γs t

)
terms, but δ⊥ – δ0 does not.

The latter is fixed to π in the untagged fit, because its uncertainty becomes
too large. In the nominal fit the main sensitivity for ϕav

s and Cav
s comes from

the |Ai|2 oscillation terms. In the untagged fit the information has to come
from interference terms and, at second order, from the |Ai|2 cosh

(
1
2∆Γs t

)
and sinh

(
1
2∆Γs t

)
terms. As a result, ∆C⊥

s also becomes too uncertain and
is fixed to zero.

Tables 4.9 and 4.10 list the results of fits in which the data sample is split
into tagging categories and separate tagging-calibration parameters are used
for each category. The split is based on the estimated wrong-tag probabilities
for OS and SS tags. The categories are given in Table 4.8.

For the results in Table 4.9 the tagging-dilution factors for the categories
are varied independently. Asymmetries in the tagging calibration are ne-
glected, because the information in the data is insufficient to determine the
corresponding parameters. The resulting dilution factors are also shown in
Table 4.8.

The third column in Table 4.8 shows the mean of the estimated wrong-
tag probability in each category. These numbers can be used to calculate the
tagging-calibration parameters with the linear model that is used in the nom-
inal fit for each event. The parameter estimates in Table 4.10 are the result of
a fit with this model.

Uncertainties in the parameter estimates with tagging categories are com-
parable to the uncertainties in the nominal fit, although they are still larger.
The parameter estimates are more precise with the linear calibration model
and also with event-by-event tagging, as expected.
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Table 4.7: Results of a fit in which no flavour-tagging information is used.

parameter estimate (difference) uncertainty (rel. difference)
ϕav
s [rad] –0.336 (–0.290) 0.145 (+1.9)

∆ϕ
∥
s [rad] –0.099 (–0.080) +0.103 –0.194 (+1.4 +3.6)

∆ϕ⊥′
s [rad] +0.005 (+0.007) +0.108 –0.068 (+2.8 +1.4)

∆ϕS
s [rad] –0.038 (–0.053) +0.069 –0.573 (+0.10 +8.2)

Cav
s –0.282 (–0.275) 0.271 (+6.0)

∆C
∥
s –0.054 (–0.030) 0.128 (+0.05)

∆C⊥
s 0 (–0.044) – (–)

CavS
s +0.071 (+0.011) +0.190 –0.033 (+4.9 +0.04)

Γs [ps–1] 0.6606 (+0.0015) +0.0038 –0.0034 (+0.24 +0.08)
∆Γs [ps–1] +0.0849 (+0.0064) +0.0120 –0.0105 (+0.31 +0.14)
∆ms [ps–1] – (–) – (–)
|ACP

0 |2 0.5242 (+0.0006) 0.0035 (+0.01)
|ACP

⊥ |2 0.2514 (+0.0001) 0.0049 (–)
δ∥ – δ0 [rad] +2.943 (–0.303) +0.260 –0.171 (+1.5 –0.15)
δ⊥ – δ0 [rad] π (+0.104) – (–)

Table 4.8: Tagging categories and estimates of the corresponding dilution fac-
tors from the fit without external calibration constraints (Table 4.9).

OS index ηo range mean ηo dilution estimate
0 (untagged) ηo = 0.5 0.5 0
1 0.34 ≤ ηo < 0.50 0.43 0.06 ± 0.04
2 0.22 ≤ ηo < 0.34 0.29 0.41 ± 0.08
3 ηo < 0.22 0.18 0.74 ± 0.14

SS index ηs range mean ηs dilution estimate
0 (untagged) ηs = 0.5 0.5 0
1 0.40 ≤ ηs < 0.50 0.47 0.07 ± 0.03
2 0.30 ≤ ηs < 0.40 0.36 0.17 ± 0.07
3 ηs < 0.30 0.26 0.43 ± 0.12
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Table 4.9: Results of a fit with four tagging categories for OS tags and four
tagging categories for SS tags. Tagging-dilution factors are varied independently
for the categories, without external calibration constraints.

parameter estimate (difference) uncertainty (rel. difference)
ϕav
s [rad] –0.061 (–0.014) 0.059 (+0.16)

∆ϕ
∥
s [rad] –0.025 (–0.007) 0.043 (+0.01)

∆ϕ⊥′
s [rad] +0.003 (+0.005) +0.036 –0.031 (+0.27 +0.08)

∆ϕS
s [rad] +0.013 (–0.001) +0.060 –0.067 (–0.04 +0.07)

Cav
s +0.004 (+0.011) 0.049 (+0.26)

∆C
∥
s –0.011 (+0.013) 0.131 (+0.08)

∆C⊥
s +0.066 (+0.021) 0.195 (+0.20)

CavS
s +0.059 (–0.001) +0.036 –0.031 (+0.11 –0.04)

Γs [ps–1] 0.6592 (+0.0001) 0.0031 (–)
∆Γs [ps–1] +0.0786 (+0.0001) 0.0092 (–)
∆ms [ps–1] 17.709 (+0.013) 0.071 (+0.15)
|ACP

0 |2 0.5242 (+0.0001) 0.0035 (–)
|ACP

⊥ |2 0.2514 (+0.0002) 0.0049 (–)
δ∥ – δ0 [rad] +2.943 (–0.040) +0.124 –0.236 (+0.19 +0.17)
δ⊥ – δ0 [rad] +3.034 (–0.003) +0.177 –0.211 (+0.11 +0.19)
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Table 4.10: Results of a fit with four tagging categories for OS tags and four
tagging categories for SS tags. Tagging-dilution factors follow from the linear
model that is also applied in the nominal fit.

parameter estimate (difference) uncertainty (rel. difference)
ϕav
s [rad] –0.040 (+0.007) 0.054 (+0.06)

∆ϕ
∥
s [rad] –0.019 (–0.001) 0.045 (+0.05)

∆ϕ⊥′
s [rad] +0.003 (+0.005) 0.032 (+0.12)

∆ϕS
s [rad] +0.017 (+0.003) +0.060 –0.067 (–0.03 +0.08)

Cav
s –0.017 (–0.011) 0.041 (+0.07)

∆C
∥
s –0.040 (–0.016) 0.128 (+0.05)

∆C⊥
s +0.119 (+0.075) 0.172 (+0.06)

CavS
s +0.066 (+0.006) 0.035 (+0.08)

Γs [ps–1] 0.6591 (–) 0.0031 (–)
∆Γs [ps–1] +0.0783 (–0.0001) 0.0092 (–)
∆ms [ps–1] 17.679 (–0.017) 0.065 (+0.05)
|ACP

0 |2 0.5236 (–) 0.0034 (–)
|ACP

⊥ |2 0.2515 (+0.0003) 0.0049 (–)
δ∥ – δ0 [rad] +3.224 (–0.023) +0.118 –0.253 (+0.14 +0.26)
δ⊥ – δ0 [rad] +2.996 (–0.042) +0.170 –0.212 (+0.06 +0.20)
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4.3 Systematic Uncertainties

Systematic uncertainties in the parameter estimates arise from uncertainties
in the models used to describe the distributions of invariant masses, decay
time, and decay angles. They are evaluated by repeating the fit of decay time
and decay angles with varied values of relevant nuisance parameters or with
manipulated data.

The value of some of the nuisance parameters can be determined with the
B0
s → J/ψK+K– data that are used in the time and angular fit. In these cases

the value of the parameter is varied in the fit, often constrained by external
information. Uncertainties originating from these parameters are therefore
absorbed in the statistical uncertainties quoted in Section 4.1.

As described in Section 3.3.2, the parameters of the trigger decay-time
acceptance function are fully determined from the B0

s → J/ψK+K– data and
constrained in the fit by counting decay candidates in the different trigger cat-
egories. The externally determined exponential factors for the reconstruction
decay-time acceptance in 2011 and 2012 are combined with the information
on their difference from the B0

s → J/ψK+K– data by representing the external
measurements as additional parabolic contributions to the NLL.

The resulting contributions of the decay-time acceptance uncertainties
are estimated by repeating the fit with fixed acceptance parameters and sub-
tracting the statistical uncertainties with varying and with fixed parameters
in quadrature. Only the uncertainty of Γs is significantly affected. The con-
tribution from the trigger acceptance is 0.0011 ps–1 and the contribution from
the reconstruction acceptance 0.0015 ps–1.

Other nuisance parameters constrained by external measurements are the
parameters that describe the flavour-tagging calibration, as discussed in Sec-
tion 3.6.2. Fixing the tagging parameters does not significantly affect any of
the uncertainty estimates for other parameters.

Systematic effects that are not propagated to the statistical uncertainties
are listed in Tables 4.11, 4.12, 4.13, and 4.14 for the principal parameters. Also
a total uncertainty is shown for each parameter, determined by adding the sta-
tistical and systematic uncertainties in quadrature. The effects for the three
CP-violation parameterizations are found to be similar and for most parame-
ters only the results with the ϕi

s/Ci
s model are shown. Systematic uncertain-

ties for ϕs are assumed to be the same as those for ϕav
s and uncertainties for

|λs| are shown in Table 4.12.
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Table 4.11: Systematic uncertainties for the CP-violating phases.

ϕav
s ∆ϕ

∥
s ∆ϕ⊥′

s ∆ϕS
s

[rad] [rad] [rad] [rad]
J/ψK+K– mass
resonant 0.003 0.001 0.001 0.009
factorization 0.003 0.005 0.001 0.016
K+K– mass
integrals – – – 0.006
decay time
resolution 0.003 0.002 0.001 0.001
decay angles
resolution 0.004 0.014 0.009 0.007
acc. statistical 0.002 0.007 0.004 0.004
acc. simulation – 0.002 0.001 0.007
total systematic 0.007 0.017 0.010 0.022
statistical 0.051 0.043 0.029 0.062
total 0.05 0.05 0.03 0.07

Table 4.12: Systematic uncertainties for the asymmetries from CP-violation
in mixing and in decay. Uncertainties arising from K+K–-mass integrals and
decay-time resolution are negligible for these parameters.

|λs| Cav
s ∆C

∥
s ∆C⊥

s CavS
s

J/ψK+K– mass
resonant 0.0028 0.001 0.008 0.004 0.004
factorization 0.0008 0.001 0.042 0.011 0.014
decay angles
resolution 0.0014 0.004 0.030 0.011 0.010
acc. statistical 0.0024 0.001 0.015 0.006 0.005
acc. simulation 0.0048 0.001 0.003 0.001 0.011
total systematic 0.0063 0.005 0.055 0.018 0.021
statistical 0.0188 0.039 0.122 0.162 0.032
total 0.020 0.04 0.13 0.16 0.04
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Table 4.13: Systematic uncertainties for the B0s -lifetime parameters.

Γs ∆Γs ∆ms
[ps–1] [ps–1] [ps–1]

J/ψK+K– mass
resonant – 0.0002 0.001
factorization – 0.0006 0.002
decay time
resolution – – 0.006
B+
c → B0

s X 0.0005 – –
reco. acc. model 0.0013 0.0023 0.012
decay angles
resolution – 0.0008 0.006
acc. statistical – 0.0001 0.001
acc. simulation – 0.0001 0.001
total systematic 0.0014 0.0025 0.015
statistical 0.0033 0.0092 0.060
total 0.004 0.010 0.06

Table 4.14: Systematic uncertainties for the transversity amplitudes.

|ACP
0 |2 |ACP

⊥ |2 δ∥ – δ0 δ⊥ – δ0
[rad] [rad]

J/ψK+K– mass
resonant 0.0002 0.0003 0.024 0.011
factorization 0.0064 0.0030 0.050 0.048
K+K– mass
integrals – – 0.003 0.007
decay time
resolution – – 0.004 0.008
decay angles
resolution 0.0002 0.0009 0.036 0.022
acc. statistical 0.0005 0.0007 0.019 0.009
acc. simulation 0.0020 0.0011 0.006 0.002
total systematic 0.0067 0.0034 0.069 0.056
statistical 0.0034 0.0049 0.132 0.165
total 0.008 0.006 0.15 0.17
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J/ψK+K–-mass model: resonant backgrounds
Resonant backgrounds fromB0 and Λ0

b decays are subtracted by injecting sim-
ulated events with negative weights into the B0

s → J/ψK+K– data sample, as
described in Section 3.2. Two types of uncertainties arise from this procedure:
uncertainties in the estimates of the numbers of background events that af-
fect the B0

s → J/ψK+K– measurement and uncertainties in the distributions
of the relevant variables for the reflection backgrounds.
A systematic uncertainty for the numbers of background events is estimated
by changing the subtracted background yields by one standard deviation. The
(absolute) variations resulting from an upward and a downward fluctuation
are averaged. The yields of all background components are varied simultane-
ously.
The distributions of the decay angles and tagging variables of simulated back-
ground events are reweighted to make them match the distributions in B0

and Λ0
b data as closely as possible. Since the results of this procedure are

not expected to be perfect, the difference in results with datasets containing
reweighted and not reweighted distributions is taken as an additional sys-
tematic uncertainty. The resulting numbers are added in quadrature to the
average of the yield uncertainty for the total systematics arising from reso-
nant backgrounds. The total uncertainties are dominated by the results of the
reweighting procedure.

J/ψK+K–-mass model: statistical
Signal weights for B0

s → J/ψK+K– candidates are determined with the model
of J/ψK+K– mass after a fit to the mass distribution in data (Section 3.2). Sta-
tistical uncertainties in the signal and the combinatorial background mass
models are propagated by repeating the time and angular fit five thousand
times with different sets of signal weights. The sets of weights are obtained by
calculating sWeights with different sets of mass-model parameters, which are
generated according to a multivariate-Gaussian distribution using the means
and covariances from the mass fit. Effects on the parameter estimates from
the time and angular fit are found to be negligible.

J/ψK+K–-mass model: factorization
The J/ψK+K–-mass model depends on the angle θμ, as shown in Section 3.2.
Since the background-subtraction procedure relies on the absence of cor-
relations between the mass and other variables, this dependence leads to
a systematic uncertainty. To evaluate the uncertainty, the background is
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subtracted in intervals of cos θμ and parameter estimates with the resulting
dataset are compared to the nominal estimates.

The J/ψK+K–-mass model is found to be symmetric with respect to the point
cos θμ = 0. Signal weights are calculated separately for three cos θμ intervals:
| cos θμ| < 0.25, 0.25 ≤ | cos θμ| < 0.7, and 0.7 ≤ | cos θμ|. The choice of interval
boundaries is motivated by the differences in the mass distribution. The dif-
ferences between the parameter estimates from fits with these signal weights
and the nominal weights are taken as a systematic uncertainty.

K+K–-mass model: interval integrals
The expression for the differential decay rate is integrated over the K+K– mass
in six intervals. As discussed in Sections 2.5 and 3.5, this leads to the KPS
factors in the J/ψϕ–K+K– S-wave interference terms, which represent the
ratios of the interval integrals for the two contributions. The KPS factors
depend on the K+K–-mass models used in their calculation and a systematic
uncertainty arises from uncertainties in the J/ψϕ and S-wave line shapes.

Two uncertainties are considered. The first originates from a finite K+K–-
mass resolution, which is estimated with simulated events. An alternative
set of KPS factor is calculated with a resolution that is 20% larger than the
nominal estimate (fourth column in Table 3.6). To enhance the significance
of the effect of resolution, the differences inKPS factors with the nominal set
are doubled before repeating the time and angular fit and the resulting devi-
ations in the parameter estimates are divided by two for the corresponding
systematic uncertainties.

The second uncertainty comes from themodel of the K+K– S-wave. Nominally
it is assumed that the S-wave consists only of a J/ψ f0(980) contribution, which
is modelled with a Flatté function. However, the true composition of the S-
wave is not exactly known. This uncertainty is evaluated by repeating the
fit with KPS factors calculated with a uniform line shape in K+K– mass (fifth
column in Table 3.6). Deviations in the parameter estimates are added in
quadrature to the resolution uncertainty.

Decay-time model: resolution
Parameters of the resolution model discussed in Section 3.3.1 are determined
for prompt background candidates with zero decay time and it is assumed that
these parameter values are applicable to the resolution of signal candidates.
The systematic uncertainty associated with this assumption is evaluated with
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simulated events. See reference [66] for a detailed description of this proce-
dure.

In simulation the differences between the resolution-model parameters for
signal candidates and prompt background are determined. With these dif-
ferences a transformation between the two models is constructed, which is
applied to themeasured real-data parameters to obtain estimates of the signal-
model parameters for real data. The difference in results between fits with the
signal and background resolution models for real data is taken as a systematic
uncertainty.

Decay-time model: B+
c → B0

s X decays
A fraction of B0

s mesons in the B0
s → J/ψK+K– sample originates from B+

c →
B0
s X decays, where X is a charged particle or combination of particles, for in-

stance a pion. The B+
c meson has a mean lifetime of approximately 0.5 ps [45],

resulting in a decay at a significant distance from the primary vertex where
the B+

c is produced. Because it is assumed that the B0
s is produced in the pri-

mary vertex in the reconstruction of its decay time, the measured decay time
for the B+

c → B0
s X contribution is wrong and leads to a systematic uncer-

tainty.

The contribution of B+
c → B0

s X decays was estimated to be 0.8% of the B0
s →

J/ψK+K– signal sample [2]. The corresponding systematic uncertainty was
estimated by generating pseudo experiments, where simulated B+

c → B0
s(→

J/ψK+K–)X decays were injected into each generated data sample. Themean
deviations in the resulting parameter estimates are taken as systematic un-
certainties. Only the estimate of Γs is significantly affected.

Decay-time model: reconstruction acceptance
The acceptance arising from reconstruction is modelled as a function with
an exponential shape in decay time, as described in Section 3.3.2. This model
only describes the acceptance function approximately, which gives systematic
uncertainties in the estimates of the lifetime parameters.

The uncertainties are evaluated with the differences between fit results on
a data sample that is corrected for the reconstruction acceptance and the
nominal data sample. Data are corrected for acceptance by assigning decay-
candidateweights that are inversely proportional to the estimated acceptance.
The weights are calculated with the shape of the acceptance in the recon-
struction variables of a candidate. Although this acceptance shape is still an
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approximation, it describes the exact function significantly better than an ex-
ponential shape [2].

Decay-time model: B0
s–B0

s normalization asymmetries
In the nominal analysis the absence of all time-independent B0

s–B0
s asymme-

tries is assumed. That is, the assumption is made that there is no asymmetry
between the B0

s and B0
s decay-rate equations from the factor 1−qfCmix (Equa-

tion 2.47), no production asymmetry between B0
s and B0

s , and no asymmetry
between the numbers of B0

s and B0
s in each tagging category. The assumption

is expected to have no effect on the parameter estimates, as explained in Sec-
tion 3.6. This is verified by generating ten thousand pseudo experiments with
non-zero values for the normalization asymmetries and comparing the re-
sulting parameter distributions with the distributions in the nominal pseudo
experiments. No significant differences are found.

Since no precise values of the normalization asymmetries are available, val-
ues for each pseudo experiment are drawn from Gaussian distributions that
represent the current estimates of these asymmetries. The uncertainties in
the asymmetry-parameter estimates propagate to the widths of the parame-
ter and pull distributions in the pseudo experiments.

The asymmetry Cmix ≈ 1
2 afs is estimated with the current average of mea-

surements of CP-violation in mixing, afs = –0.0109 ± 0.0040 [32]. The uncer-
tainty in the production asymmetry is estimated with a measurement of the
B0 production asymmetry in LHCb, 0.006 ± 0.009 [71], where the B0

s asymme-
try is expected to be smaller than the B0 asymmetry. As an estimate of the
uncertainty for the B0

s asymmetry the sum of the value and uncertainty is
taken and the production asymmetry is generated as 0 ± 0.15. Uncertainties
in the tagging-efficiency differences for B0

s and B0
s are estimated in tagging

calibration [2] and lead to generated values of 0 ± 0.0015 for OS tagging and
= 0 ± 0.0046 for SS tagging.

Tagging-efficiency asymmetries for OS-untagged and SS-untagged decay can-
didates are equal but opposite to the asymmetry in the corresponding tagged
category, weighted by the ratio of the tagged and untagged efficiencies. As a
consequence, the OS and SS tagging efficiencies are required to calculate the
untagged asymmetries. Assuming small asymmetries, the average of the B0

s
and B0

s efficiencies is estimated by the fraction of candidates in a category,
yielding εOS = 0.3076 ± 0.0017 and εOS = 0.5291 ± 0.0018.
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Defining tagging efficiencies for the OS and SS categories implicitly assumes
factorization for these categories. That is, the efficiency for doubly-tagged
candidates is given by εOS εSS, the efficiency for candidates only tagged by
the OS algorithms by εOS (1 – εSS), and so on. Calculating the OS efficiency
separately for SS-tagged and SS-untagged candidates and vice versa indicates
that factorization is not perfect. To account for this, half of the difference
between the two efficiency estimates for each category is added in quadra-
ture to the statistical uncertainties, which finally gives εOS = 0.308 ± 0.013 and
εOS = 0.529 ± 0.016.

Decay-angles model: acceptance statistical
A non-trivial acceptance shape in the decay angles is included in the decay
model with the normalization weights that were introduced in Section 3.4.
The values of the normalization weights are estimated with simulated events.
Because of the finite size of the simulated sample the estimates are affected
by statistical uncertainties, which are propagated to the final parameter es-
timates. The time and angular fit is repeated for five thousand sets of varied
normalization weights, generated according to a multivariate Gaussian dis-
tribution. The square roots of the parameter-estimate variances are taken as
systematic uncertainties.

Decay-angles model: acceptance simulation
Kinematic distributions of simulated events do not match the distributions in
real data perfectly. Although corrections are applied to the simulated dis-
tributions before calculating the angular-acceptance weights (see [2]), the
discrepancies in the simulation are not fully understood and an associated
systematic uncertainty remains. The size of this effect is estimated with the
difference between the fit results with weights from a corrected and an un-
corrected simulation.

Decay-angles model: resolution
The finite experimental resolution of the decay angles is not accounted for in
the decay model. A study of the effects of a finite resolution is described in
reference [2]. The resolution was estimated with simulated events and found
to be of the order 0.01 rad. Its effect on the parameter estimates was studied by
generating pseudo experiments and smearing the values of the decay angles
according to the resolution distributions found in the simulation. Effects were
quantified by the distribution of the difference in pull values for the fit results
with and without angle smearing for each pseudo experiment. The mean and



4.4. Summary and Outlook 159

the width of the pull-difference distribution are multiplied by the statistical
uncertainty from the real-data fit for each parameter and added in quadrature
to obtain the systematic uncertainty associated to decay-angle resolution.

The study of angular resolutionwas only performed for theϕs/|λs| parameter-
ization. Therefore, the systematic uncertainties for the CP-violation parame-
ters in the other two models are estimated in a different way. The systematic
for ϕav

s is taken to be equal to the estimate for ϕs. The parameter Cav
s appears

in similar terms of the PDF as ϕav
s and, therefore, the systematic for Cav

s is
also estimated to be equal to the systematic of ϕs.

The parameters that describe the differences between the ϕi
s and Ci

s parame-
ters are measured from the interference terms in the PDF, as are the phase
differences δ∥ – δ0 and δ⊥ – δ0. To estimate the effect of decay-angle resolu-
tion on the CP-violation parameters, the effects of decay-angle resolution and
decay-angle acceptance are compared for δ∥ – δ0 and δ⊥ – δ0. For these phase
differences, the impact of the propagation of statistical uncertainties in the
acceptance is roughly half of the impact of resolution. To get an estimate for
the resolution uncertainty in the CP-violation parameters it is assumed that
the same factor of two applies.

4.4 Summary and Outlook

Estimates of the principal parameters are given in Table 4.15. As pointed
out in Section 4.1, all results are statistically compatible with Standard Model
predictions.

For some parameters the systematic uncertainty is comparable to or even
larger than the statistical uncertainty. With roughly a factor ten increase
in number of decay candidates this would be true for all parameters, which
creates a need for reduction of the systematics.

A systematic with a significant contribution for most of the CP-violation
parameters (Tables 4.11 and 4.12) is the uncertainty from decay-angle res-
olution. If this effect is going to be included as a systematic uncertainty in
further measurements, the study of the resolution and its effect on the param-
eter estimates will have to be improved. Instead of describing the resolution
separately for the three decay angles, a multidimensional resolution function
can be constructed to include correlations. Further studies can also evaluate
the effect on all parameters of the ϕi

s/Ci
s model.
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Table 4.15: Estimates of the principal parameters.

parameter value uncertainty
statistical systematic

ϕav
s [rad] –0.05 ±0.05 ±0.01

∆ϕ
∥
s [rad] –0.02 ±0.04 ±0.02

∆ϕ⊥′
s [rad] –0.00 ±0.03 ±0.01

∆ϕS
s [rad] +0.01 ±0.06 ±0.02

Cav
s –0.01 ±0.04 ±0.01

∆C
∥
s –0.02 ±0.12 ±0.06

∆C⊥
s +0.04 ±0.16 ±0.02

CavS
s +0.06 ±0.03 ±0.02

Γs [ps–1] 0.659 ±0.003 ±0.001
∆Γs [ps–1] +0.078 ±0.009 ±0.003
∆ms [ps–1] 17.70 ±0.06 ±0.02
|ACP

0 |2 0.524 ±0.003 ±0.007
|ACP

⊥ |2 0.251 ±0.005 ±0.003
δ∥ – δ0 [rad] +3.25 +0.10

–0.20 ±0.07
δ⊥ – δ0 [rad] +3.04 +0.16

–0.18 ±0.06
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When the systematic from angular resolution resolution becomes domi-
nating, the possibility of including this effect in the model of decay time and
angles must be considered. It will be challenging to implement this, since not
all functions can be analytically convolved with the angular functions in the
expression for the differential decay rate. Either functions should be found for
which this is possible or numerical convolution methods should be explored.

Also uncertainties in the angular acceptance contribute to the systematics
of the CP-violation parameters. The statistical component of these uncertain-
ties can be reduced by generating more simulated decays. However, this will
only emphasize the fact that the simulation does not perfectly describe real
decays. If the simulation is to be used for future measurements, it has to be
improved to provide a more accurate description of the production, decay,
and detection of particles in LHCb events.

Another potential method of obtaining the angular acceptance would be
to study detection efficiencies in real data particles and decays for which the
underlying physics description is known. This is also an option for the re-
construction component of the decay-time acceptance, which dominates the
systematic uncertainties of the B0

s-lifetime parameters (Table 4.13). For the
latter the shape of the acceptance function is already partially determined
with real data.

An improved description of the reconstruction decay-time acceptance is
already available and was used here to evaluate a systematic uncertainty and
in reference [1] as the nominal description. Although this method provides
a better description of the acceptance shape, it still introduces the dominant
systematic uncertainties on the lifetime parameters and further study of this
acceptance effect is required for further measurements.

Removing the uncertainty from decay-time acceptance leaves only the
effect of B+

c → B0
s X decays for the parameter Γs. This uncertainty could

be reduced by including a component for this contribution in the resolution
model for the decay time, since these are real B0

s → J/ψK+K– decays with
a modified decay-time measurement. Remaining uncertainties would then
originate from the estimates of the number of contributing B+

c → B0
s X decays

and the shape of the resolution component.
Dominating contributions to systematic uncertainties for some of the CP-

violation parameters and all of the transversity amplitudes (Table 4.14) are the
uncertainties introduced by the model of J/ψK+K– mass. The part originat-
ing from resonant backgrounds can be reduced by improving the accuracy
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of the description of the distributions of these backgrounds in the relevant
variables. This can be achieved by improving the simulation of background
decays, exploiting analyses of these background distributions in real data, or
a combination of these methods.

The dominant J/ψK+K–-mass systematics, however, originate from the
background-subtraction procedure. A possible way of reducing the system-
atic from the non-factorization of the mass and time/angles models would be
background subtraction in intervals of cos θμ, as was done in this analysis to
evaluate the systematic uncertainties. Alternatively, introducing the estimate
of the uncertainty in the J/ψK+K–-mass measurement in both the models
could provide a way to describe the correlations between mass and angles.
This could be implemented in combination with a background-subtraction
procedure, but an alternative is to fit unweighted B0

s → J/ψK+K– decays
with a five-dimensional model of mass, decay time, and decay angles.

In addition to reducing systematic uncertainties, the precision of the CP-
violation measurement can potentially be improved by reducing the number
of wrong flavour tags. Given a wrong-tag probability of 40%, a 10% improve-
ment of this value gives almost a factor two increase in the effective number of
perfectly tagged decays (see also Section 3.6.2). Improvements of the flavour-
tagging procedure may include the use of more sophisticated (multivariate)
techniques to select and analyse tagging particles, the development of addi-
tional tagging algorithms, and an improved understanding of the properties
of particles that are created in association with B0

s mesons.



Conclusions

Figure C.11 shows the current status of ϕs and ∆Γs measurements. It is an
update of Figure 1.8 in Section 1.3.2, which gives an overview of the status in
the Spring of 2014, when only results with the 2011 dataset from LHCb were
available. Results of the measurement presented in this thesis, which uses
both the 2011 and 2012 LHCb datasets and was published in [1], are shown in
combination with the results from measurements in the B0

s → J/ψπ+π– [42]
and B0

s → D+
s D–

s [72] decay channels. The other results in the figure are from
a new CMSmeasurement [73], the updated Atlas measurement [74], and the
CDF [40] and D0 [39] measurements in the B0

s → J/ψϕ channel.
The objective of these measurements, as described in Sections 1.1–1.3, is

to test the Standard Model by comparing the CP violation that is measured in
b → ccs transitions to the prediction obtained by interpreting other measure-
ments within the Standard Model framework. The current combined preci-
sion of the ϕs result is 0.04 rad, which is equal to the deviation of the Standard
Model prediction from zero. This precision is not yet sufficient to measure po-
tential small deviations from the Standard Model, but these measurements do
rule out large contributions from non-Standard Model physics. As discussed
in Section 1.3.2, both experimental and theoretical improvements are required
for a more precise analysis of CP violation in b → ccs transitions.

At lowest order, the decays that are included in the combination of Fig-
ure C.11 are governed by a single tree-level b → ccs transition and CP vio-
lation is described by common ϕs and |λs| parameters. To compare a more
precise measurement of CP violation to its prediction in the Standard Model,
higher order (penguin) contributions must be considered. These potentially
yield CP violation parameters with different values for each decay and each
angular-momentum state contributing to the B0

s → J/ψK+K– decay.
A close interplay between theory and experiment will be required to in-

terpret a precise measurement of these CP-violation parameters. Calculations
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Figure C.11: Combination of ϕs (here represented as ϕccs
s ) and ∆Γs measure-

ments by HFAG [32]. The estimates at 68% confidence level (CL) by the different
experiments are shown by the coloured contours. Note that the LHCb contour
(green) is a combination of measurements in the B0s → J/ψϕ, B0s → J/ψπ+π–,
and B0s → D+

s D
–
s decays. The combined 68% confidence region is shown by the

grey area and the Standard Model prediction by the vertical bar.

of their values (see e.g. [75]) suffer from uncertainties in the strong inter-
actions within the involved hadrons. However, by exploiting approximate
symmetries between different decays of B0 and B0

s mesons, a framework of
measurements and calculations can be built to interpret the experimental re-
sults [38, 76]. Both precise measurements and precise estimates of how the
symmetries between different decays are broken are required for such an
analysis.

In reference [76] it is proposed to use the interplay between the decays
B0
s → J/ψϕ, B0

s → J/ψK0
S, B0

s → J/ψK∗0, B0 → J/ψK0
S, and B0 → J/ψρ0

for an analysis of CP violation in b → ccs and b → ccd transitions. For
both the B0

s → J/ψϕ and B0 → J/ψρ0 decays measurements of CP violation
per intermediate angular-momentum state is required in this framework. The
results of the first measurement in this format for the B0

s → J/ψϕ channel



Conclusions 165

was presented in Chapter 4 (see also reference [1]).
While the current CP-violation results are still compatible with both the

StandardModel and no CP violation, it is expected that themeasurement with
future LHCb data will start to distinguish between the Standard Model and
other scenarios. With the final dataset of the LHCb experiment an increase
in precision of roughly an order of magnitude is expected [77, 78]. This im-
provement has to come from an increased number of decays produced by the
LHC, but also from improvements in the analysis procedure, as described in
Section 4.4.

To implement all the required improvements, it may be necessary to re-
design key analysis components. In particular the treatment of background
decay candidates and the methods of obtaining and describing the acceptance
and resolution shapes must be improved to enable more precise measure-
ments of CP-violation and B0

s-lifetime parameters. Any enhancements of the
flavour-tagging algorithms will contribute to a better statistical CP-violation
precision, in addition to the increased set of B0

s → J/ψK+K– data.
As indicated in Section 4.4, there are plenty of openings to achieve the

experimental precision needed for the next generation of B0
s → J/ψK+K–

measurements. Combined with developments in theory, these measurements
have the potential to play a key role in the continuation of Standard Model
tests and the establishment of a description of particle interactions beyond
the Standard Model.
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Appendix

Angular Differential Decay
Rate

A.1 Angular Amplitude

The dependence of the B0
s → J/ψK+K– decay on the three decay angles, as

described in Section 2.4, can be derived within the helicity formalism [60,61].
In this formalism the decay is described in terms of three two-body decays;
first the decay of the B0

s into a J/ψ and a second intermediate particle, followed
by the decay of the J/ψ into a μ+μ– pair and the decay of the second particle
into a K+K– pair. The angular dependence arises from the rotations of the
spin vectors of the decaying particles into the momentum directions of the
decaying particles.

A generalized form of the decay is shown in Figure A.1. The three co-
ordinate systems in part (a) of the figure are defined in the centre-of-mass
frames of particles B, a, and b in the decay B → a(→ P1 P2) b(→ P3 P4).
The spherical coordinates θ and φ specify the momentum direction of one of
the particles in each two-body decay. The other particle, which is not shown
in the figure, has an opposite momentum.

The directions of the decay-product momenta define a helicity axis for
each of the three decays. The z axis of a particle coordinate system lies along
the helicity axis that is associated to the production of the particle. The mo-
mentum direction of one of the two particles in a decay is chosen as the pos-
itive z direction, as depicted in Figure A.1a for particles a and b.

The sum of the spin projections of the two particles in each decay along
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Figure A.1: Helicity frames for the decayB → a(→ P1 P2) b(→ P3 P4) in (a)
a general configuration where the coordinate systems in the a and b rest frames
are aligned and (b) with the Jacob–Wick convention, in which the coordinate
system in the b rest frame is rotated. A definition of the helicity angle φh in the
Jacob–Wick convention is shown in (c).
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the helicity axis is given by the difference of the particle helicities. Assuming
the spin projection of the decaying particle in the z direction is known, the
amplitude for the measuring the required spin projection along the helicity
axis is given by the complex conjugate of aWigner D-matrix, which is a func-
tion of three Euler angles that specify the rotation of the spin projection from
the z axis to the helicity axis.

The D-matrix for each of the two-body decays is expressed in terms of a
real-valued d-matrix and two exponential functions as

Dj
m, n(φ, θ, φ

′) = e−imφ djm, n(θ) e
−inφ′

, (A.1)

where j is the spin of the decaying particle,m the projection of the spin in the
direction of the z axis, n the projection of the spin in the positive direction
of the helicity axis. The Euler angles that specify the rotation of the spin
projection are φ, θ, and φ′. The angles θ and φ are equal to the spherical
coordinates in the mother-particle rest frame, while the angle φ′ rotates the
coordinate system of a decay product around the helicity axis. In the Jacob-
Wick convention [60] φ′ is chosen to be equal to –φ, resulting in

Dj
m, n(φ, θ,−φ) = djm, n(θ) e

−i(m−n)φ . (A.2)

A boost along the helicity axis does not affect the spin projections along
this axis. Therefore, the projection of the spin of a decay product along the
helicity axis in the centre-of-mass frame of its production is equal to the spin
projection in the z direction of the coordinate system in its rest frame. As a
result, this projection relates the spins of the decays that are described in the
two frames.

To define angles that are consistent with the helicity angles in Figure 2.2,
the coordinate system of particle b is rotated by 180° around the yb axis, as
shown in Figure A.1b. This operation introduces an additional D-matrix,
which represents the amplitude for a rotation with θ =π and arbitrary, but
equal remaining Euler angles. The spin projection in the zb direction goes
from –λb to +λb, where λb is the helicity of particle b in the B rest frame.
Using the d-matrix property djm, n(π) = (–1)j–n δm,–n, this D-matrix can be
written as

Djb
−λb, λb

∗
(γ, π, γ) = e−iλbγ djb−λb, λb

(θ) e+iλbγ = (−1)jb−λb . (A.3)

Identifying the particles P1 and P3 with K+ and μ+, respectively, the angle
θa corresponds to θK and the angle θb to θμ. The angle φh is given by the sum
of φa and φb, as shown in Figure A.1c.
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Combining the D-matrices for the three decays, the factor H in Equa-
tion 2.37 is given by

Hh =

√
2jB+1
4π

2jha+1
4π

2jhb +1
4π

× (−1)j
h
b −λh

b DjB
λB , λh

a−λh
b

∗
(ΩB) D

jha
λh
a , λ1−λ2

∗
(Ωa) D

jhb
λh
b , λ3−λ4

∗
(Ωb) ,

(A.4)
where Ωp is a shorthand notation for the set of Euler angles in the decay of
particle p and the factors

√
2j+1
4π are normalization factors for the two-particle

states in the B, a, and b decays. The index h runs over the intermediate he-
licity states, for which the particles have definite helicities. The final expres-
sions for helicity states will be combined into expressions for the transversity
states of Equation 2.37. Notice that the spins and helicities of particles B and
1–4 do not depend on the intermediate state, since these particles are external
and their spin state is thus, in principle, observable.

Concentrating only on the case where particleB is a spinless particle, jB ,
λB , and λa –λb are equal to zero. As a result, the D-matrix corresponding
to the B decay reduces to D0

0, 0
∗ = 1, which makes the decay independent

of the orientation of the helicity axis with respect to the direction of the B
momentum. Introducing the notationλa =λb ≡λ, λ1 –λ2 ≡α, andλ3 –λ4 ≡β,
Equation A.4 reduces to

Hh =
(−1)j

h
b −λh

(4π)3/2

√
(2jha + 1) (2jhb + 1) D

jha
λh, α

∗
(Ωa) D

jhb
λh, β

∗
(Ωb) .

(A.5)

A.2 Squared Angular Amplitude

With Equation A.5 the products H∗
hHh′ that appear in Equation 2.41 can be

expressed as

H∗
hHh′

=
(−1)j

h
b +jh

′
b +Mhh′−2λh

(4π)3

√
(2jha + 1) (2jh′

a + 1) (2jhb + 1) (2jh
′

b + 1)

×D
jha
λh, α

(Ωa) D
jh

′
a

λh′ , α

∗
(Ωa) D

jhb
λh, β

(Ωb) D
jh

′
b

λh′ , β

∗
(Ωb) .

(A.6)
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To evaluate the dependence between the D-matrices in this expression the
following relations are applied:

Dj
m, n

∗
= (−1)m−n Dj

−m,−n (A.7a)

Dj
m, n D

j′

m′, n′ =

j+j′∑
J=|j−j′|

⟨j m, j′m′|J m+m′⟩

× ⟨j n, j′ n′|J n+ n′⟩DJ
m+m′, n+n′ (A.7b)

⟨j m, j′m′|J M⟩ = (−1)j−j′+M
√
2 J + 1

(
j j′ J

m m′ −M

)
(A.7c)

where ⟨j m, j′m′|J M⟩ is a Clebsch-Gordan coefficient, which is related to

the Wigner 3j symbol
(

j j′ J

m m′ −M

)
. The product of a D-matrix and a com-

plex conjugate D-matrix with equal indices n can now be written as

Dj
m, n Dj′

m′, n

∗
= (−1)m

′−n Dj
m, n Dj′

−m′,−n

= (−1)m
′−n

j+j′∑
J=|j−j′|

⟨j m, j′ −m′|J m−m′⟩

× ⟨j n, j′ − n|J 0⟩ DJ
m−m′, 0

= (−1)m−n
j+j′∑

J=|j−j′|

(2J + 1)

(
j j′ J

m −m′ −m+m′

)

×
(

j j′ J

n −n 0

)
DJ

m−m′, 0 .

(A.8)

With this expression the products of two D-matrices in Equation A.6 that are
functions of the same set of angles can be substituted by a sum of single D-
matrices. After this substitution and with the definition Mhh′ ≡λh –λh′ , the
product H∗

hHh′ is given by

H∗
hHh′

=
(−1)j

h
b +jh

′
b +Mhh′−α−β

(4π)3

√
(2jha + 1) (2jh′

a + 1) (2jhb + 1) (2jh
′

b + 1)

×
jha+jh

′
a∑

Jhh′
a =|jha−jh

′
a |

(
2Jhh′

a + 1
) (

jha jh
′

a Jhh′
a

λh −λh′ −Mhh′

) (
jha jh

′
a Jhh′

a

α −α 0

)
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×
jhb +jh

′
b∑

Jhh′
b =|jhb −jh

′
b |

(
2Jhh′

b + 1
) (

jhb jh
′

b Jhh′
b

λh −λh′ −Mhh′

) (
jhb jh

′
b Jhh′

b

β −β 0

)

×D
Jhh′
a

Mhh′ , 0
(Ωa) D

Jhh′
b

Mhh′ , 0
(Ωb) .

(A.9)

Notice that the angular dependence is still written in terms of the sets
of Euler angles corresponding to the decays of particles a and b, Ωa and
Ωb, respectively. The dependence on the helicity angles, θK ≡ θa, θμ ≡ θb, and
φh ≡φa +φb, becomes apparent by expressing the product of D-matrices in
Equation A.9 in terms of d-matrices and exponential functions (see Equa-
tion A.2):

D
Jhh′
a

Mhh′ , 0
(Ωa) D

Jhh′
b

Mhh′ , 0
(Ωb)

= d
Jhh′
a

Mhh′ , 0
(θa) e

−iMhh′φa d
Jhh′
b

Mhh′ , 0
(θb) e

−iMhh′φb

= d
Jhh′
a

Mhh′ , 0
(θK) d

Jhh′
b

Mhh′ , 0
(θμ) e

−iMhh′φh

=

√
(Jhh′

a −Mhh′)!

(Jhh′
a +Mhh′)!

4π

2Jhh′
b + 1

PMhh′

Jhh′
a

(cos θK)Y Mhh′

Jhh′
b

∗
(θμ, φh) .

(A.10)
The functions Pm

j (cos θ) and Y m
j (θ, φ) are associated Legendre polynomials

and spherical harmonics, respectively, which are defined by

Pj(x) ≡
1

2jj!

dj

dxj
(
x2 − 1

)j with j ≥ 0 (A.11a)

Pm
j (x) ≡

 (−1)m
(
1− x2

)1
2m dm

dxmPj(x) (m ≥ 0)

(j−|m|)!
(j+|m|)!

(
1− x2

)1
2 |m| d|m|

dx|m|Pj(x) (m < 0)
(A.11b)

Y m
j (θ, ϕ) ≡

√
2j+1
4π

(j−m)!
(j+m)! P

m
j (cos θ) eimϕ (A.11c)

djm, 0(θ) =
√

(j−m)!
(j+m)! P

m
j (cos θ) . (A.11d)

The angular functions that eventually appear in the expression of the dif-
ferential decay rate are given by the real and imaginary parts of the prod-
uctsH∗

hHh′ . After substituting the expression forDJa
M, 0(Ωa)D

Jb
M, 0(Ωb) from
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EquationA.10, the only complex-valued factor on the right-hand side of Equa-
tion A.9 is the spherical harmonic Y M

Jb

∗
(θμ, φh). Notice that this function is

real valued if its upper index is equal to zero:

Y 0
j (θ, ϕ) =

√
2j+1
4π Pj(cos θ) . (A.12)

In the implementation of the angular functions real-valued spherical harmon-
ics are used, which are defined by

Yj,m(θ, ϕ) =


Y 0
j (θ, ϕ) (m = 0)√

2 ℜ[Y m
j (θ, ϕ)] (m > 0)

√
2 ℑ[Y |m|

j (θ, ϕ)] (m < 0)

(A.13)

The squared amplitude in the helicity basis can be expressed in a form
that is similar to Equation 2.53:

|A|2 ∝
∑
h

|HhHh|2 +
∑
h̸=h′

ℜ(H∗
h Hh′ H∗

hHh′)

∝
∑
h

|Hh|2 |Hh|2

+
∑
h̸=h′

ℜ(H∗
h Hh′)ℜ(H∗

hHh′)−ℑ(H∗
h Hh′)ℑ(H∗

hHh′) .

(A.14)

Terms in the second sum of Equation A.14 with h and h′ swapped are identi-
cal, sinceH∗

h Hh′ H∗
hHh′ andH∗

h′ HhH∗
h′ Hh are complex conjugates, which

have identical real parts. The sign of Mhh′ ≡λh –λh′ is opposite for these
terms. Adding the two contributions for each of the h ↔ h′ pairs, the angu-
lar functions in the helicity basis are given by

|Hh|2 ∝ P 0
Jhh′
a

(cos θK)Y 0
Jhh′
b

∗
(θμ, φh)

= P 0
Jhh′
a

(cos θK)YJhh′
b , 0

(θμ, φh) (A.15a)

2ℜ(H∗
hHh′) ∝ 2ℜ

[
P

|Mhh′ |
Jhh′
a

(cos θK)Y |Mhh′ |
Jhh′
b

∗
(θμ, φh)

]
=

√
2P

|Mhh′ |
Jhh′
a

(cos θK)YJhh′
b , |Mhh′ |(θμ, φh) (A.15b)

−2ℑ(H∗
hHh′) ∝ −2ℑ

[
P

|Mhh′ |
Jhh′
a

(cos θK)Y |Mhh′ |
Jhh′
b

∗
(θμ, φh)

]
=

√
2P

|Mhh′ |
Jhh′
a

(cos θK)YJhh′
b ,−|Mhh′ |(θμ, φh) (A.15c)
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A.3 Angular Functions for B0
s → J/ψK+K–

Identifying particles B, a, and b with the B0
s , the K+K– pair, and the J/ψ,

respectively, the angular dependence of the B0
s → J/ψK+K– decay can be de-

rived from Equations A.9, A.10, A.14, and A.15. As discussed in Section 2.2,
the indices h and h′ in Equation A.14 run over three B0

s → J/ψϕ polarization
states and one B0

s → J/ψK+K– state where the K+K– pair is in an S-wave
configuration.

Both the spins of the ϕ and the J/ψ are equal to one (ja = jb = 1), which
results in sums over Ja, Jb = 0, 1, 2 for each combination of the B0

s → J/ψϕ
helicity states. The three states are given by the possible ϕ and J/ψ helicities:
λ = 0 (“0”), λ = +1 (“+”), and λ = –1 (“–”). Since the K+K– system has no orbital
angularmomentum for the K+K– S-wave (“S”) and the kaons are spinless, both
ja and λ are equal to zero for this state. The value of Ja can only be zero for
h =h′ = S and one for h ≠ S and h′ = S. Only one value for |Mhh′ | ≡ |λh –λh′ |
is possible for each combination of states, varying from zero (λh =λh′ = 0) to
two (λh = –λh′ = 1).

Kaons are spinless, which results in α = 0 for the B0
s → J/ψK+K– decay.

The helicities of the muons from the J/ψ decay can both be either + 1
2 or – 1

2 ,
which gives the combinations β ∈ {0, ±1}. Since the μ+ and the μ– are pro-
duced with opposite chirality, the case β = 0 requires the helicity of one of
the muons to be opposite to its chirality. These contributions are suppressed
by a factor m2

μ/m2
μ+μ– ≈ 10-3 [79], where mμ is the muon mass and mμ+μ– the

dimuon invariant mass, the latter of which is equal to the mass of the J/ψ.
For this reason only contributions with opposite helicities are considered, for
which β = ±1.

Evaluation of the angular functions for the combinations of the B0
s →

J/ψϕ states leads to Table A.1. The first column of the table shows a com-
bination of coefficients (helicity and transversity amplitudes) and the second
column the corresponding angular functions. The angular functions for the
K+K– S-wave and the interference between B0

s → J/ψϕ and the K+K– S-wave
are listed in Table A.2. All functions are multiplied by a factor 8π2, which
makes their integrals over all three angles equal to either one or zero.

The top halves of the tables show the angular functions in the helicity ba-
sis, while the bottom halves show the functions in the transversity basis. For
both bases helicity angles are used. The transversity functions are obtained
by substituting the helicity amplitudes (H0,H+, andH−) by combinations of
transversity amplitudes (A0, A∥, and A⊥), after which the helicity functions
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Table A.1: Angular functions for the B0s → J/ψϕ decay expressed in terms
of associated Legendre polynomials and spherical harmonics in helicity angles.
Functions are shown for β = ±1. Top: functions in the helicity basis. Bottom:
functions in the transversity basis.

amplitudes f(Ω)× 16
√
π

|H0|2 4 (P 0
0 + 2P 0

2 ) (Y0, 0 − 1√
5
Y2, 0)

|H+|2 2 (P 0
0 − P 0

2 ) (2Y0, 0 +
1√
5
Y2, 0 ±

√
3Y1, 0)

= P 2
2 (2Y0, 0 +

1√
5
Y2, 0 ±

√
3Y1, 0)

|H−|2 2 (P 0
0 − P 0

2 ) (2Y0, 0 +
1√
5
Y2, 0 ∓

√
3Y1, 0)

= P 2
2 (2Y0, 0 +

1√
5
Y2, 0 ∓

√
3Y1, 0)

ℜ(H∗
0H+) +2

√
3
5 P

1
2 (Y2,+1 ±

√
5Y1,+1)

ℑ(H∗
0H+) −2

√
3
5 P

1
2 (Y2,−1 ±

√
5Y1,−1)

ℜ(H∗
0H−) +2

√
3
5 P

1
2 (Y2,+1 ∓

√
5Y1,+1)

ℑ(H∗
0H−) +2

√
3
5 P

1
2 (Y2,−1 ∓

√
5Y1,−1)

ℜ(H∗
+H−) −2

√
3
5 P

2
2 Y2,+2

ℑ(H∗
+H−) −2

√
3
5 P

2
2 Y2,−2

|A0|2 4 (P 0
0 + 2P 0

2 ) (Y0, 0 − 1√
5
Y2, 0)

|A∥|2 P 2
2 (2Y0, 0 +

1√
5
Y2, 0 −

√
3
5 Y2,+2)

|A⊥|2 P 2
2 (2Y0, 0 +

1√
5
Y2, 0 +

√
3
5 Y2,+2)

ℜ(A∗
0A∥) +2

√
2
√

3
5 P

1
2 Y2,+1

ℑ(A∗
0A∥) ∓2

√
2
√
3P 1

2 Y1,−1

ℜ(A∗
0A⊥) ±2

√
2
√
3P 1

2 Y1,+1

ℑ(A∗
0A⊥) −2

√
2
√

3
5 P

1
2 Y2,−1

ℜ(A∗
∥A⊥) ±2

√
3P 2

2 Y1, 0

ℑ(A∗
∥A⊥) +2

√
3
5 P

2
2 Y2,−2
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Table A.2: Angular functions for the B0s → J/ψK+K– decay with a K+K– S-
wave and the B0s → J/ψϕ and K+K– S-wave interference expressed in terms
of associated Legendre polynomials and spherical harmonics in helicity angles.
Functions are shown for β = ±1. Top: functions in the helicity basis. Bottom:
functions in the transversity basis.

amplitudes f(Ω)× 16
√
π

|HS|2 4P 0
0 (Y0, 0 − 1√

5
Y2, 0)

ℜ(H∗
0HS) 8

√
3P 0

1 (Y0, 0 − 1√
5
Y2, 0)

ℑ(H∗
0HS) 0

ℜ(H∗
+HS) +6P 1

1 ( 1√
5
Y2,+1 ± Y1,+1)

ℑ(H∗
+HS) +6P 1

1 ( 1√
5
Y2,−1 ± Y1,−1)

ℜ(H∗
−HS) +6P 1

1 ( 1√
5
Y2,+1 ∓ Y1,+1)

ℑ(H∗
−HS) −6P 1

1 ( 1√
5
Y2,−1 ∓ Y1,−1)

|AS|2 4P 0
0 (Y0, 0 − 1√

5
Y2, 0)

ℜ(A∗
0AS) 8

√
3P 0

1 (Y0, 0 − 1√
5
Y2, 0)

ℑ(A∗
0AS) 0

ℜ(A∗
∥AS) +6

√
2 1√

5
P 1
1 Y2,+1

ℑ(A∗
∥AS) ±6

√
2P 1

1 Y1,−1

ℜ(A∗
⊥AS) ±6

√
2P 1

1 Y1,+1

ℑ(A∗
⊥AS) +6

√
2 1√

5
P 1
1 Y2,−1



A.3. Angular Functions for B0
s → J/ψK+K– 177

can be combined into functions corresponding to the transversity amplitudes.
The amplitude for the K+K– S-wave is the same in both bases (HS =AS). The
substitution is given by [35]

H0 = A0

H± = 1√
2
(A∥ ±A⊥) .

(A.16)

The differences between contributions from β = ±1 are distinguished with
± and ∓ signs in the tables. Because the decay of the J/ψ is not a weak process
it conserves parity, which results in equal helicity/transversity amplitudes for
β = +1 and β = –1. Since the muon helicities are not measured in the experi-
ment, the two contributions are added, resulting in cancellation of the terms
with opposite sign.

Both Legendre polynomials and real-valued spherical harmonics can be
expressed in terms of sines and cosines of the angles. Tables A.3 and A.4
show the angular functions in terms of sines and cosines that correspond to
the functions in Tables A.1 and A.2, respectively.
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Table A.3: Angular functions for the B0s → J/ψϕ decay expressed in terms
of sines and cosines in helicity angles. Functions are shown for β = ±1. Top:
functions in the helicity basis. Bottom: functions in the transversity basis.

amplitudes f(Ω)× 32π
9

|H0|2 2 cos2 θK sin2 θμ
|H+|2 1

2 sin2 θK (1± cos θμ)2

|H−|2 1
2 sin2 θK (1∓ cos θμ)2

ℜ(H∗
0H+) ± sin 2θK sin θμ (1± cos θμ) cosφh

ℑ(H∗
0H+) ∓ sin 2θK sin θμ (1± cos θμ) sinφh

ℜ(H∗
0H−) ∓ sin 2θK sin θμ (1∓ cos θμ) cosφh

ℑ(H∗
0H−) ∓ sin 2θK sin θμ (1∓ cos θμ) sinφh

ℜ(H∗
+H−) − sin2 θK sin2 θμ cos 2φh

ℑ(H∗
+H−) − sin2 θK sin2 θμ sin 2φh

|A0|2 2 cos2 θK sin2 θμ
|A∥|2 sin2 θK (1− sin2 θμ cos2 φh)

|A⊥|2 sin2 θK (1− sin2 θμ sin2 φh)

ℜ(A∗
0A∥) + 1√

2
sin 2θK sin 2θμ cosφh

ℑ(A∗
0A∥) ∓

√
2 sin 2θK sin θμ sinφh

ℜ(A∗
0A⊥) ±

√
2 sin 2θK sin θμ cosφh

ℑ(A∗
0A⊥) − 1√

2
sin 2θK sin 2θμ sinφh

ℜ(A∗
∥A⊥) ±2 sin2 θK cos θμ

ℑ(A∗
∥A⊥) + sin2 θK sin2 θμ sin 2φh
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Table A.4: Angular functions for the B0s → J/ψK+K– decay with a K+K– S-
wave and the B0s → J/ψϕ and K+K– S-wave interference expressed in terms
of sines and cosines in helicity angles. Functions are shown for β = ±1. Top:
functions in the helicity basis. Bottom: functions in the transversity basis.

amplitudes f(Ω)× 32π
9

|HS|2 2
3 sin2 θμ

ℜ(H∗
0HS)

4
3

√
3 cos θK sin2 θμ

ℑ(H∗
0HS) 0

ℜ(H∗
+HS) ±2

3

√
3 sin θK sin θμ (1± cos θμ) cosφh

ℑ(H∗
+HS) ±2

3

√
3 sin θK sin θμ (1± cos θμ) sinφh

ℜ(H∗
−HS) ∓2

3

√
3 sin θK sin θμ (1∓ cos θμ) cosφh

ℑ(H∗
−HS) ±2

3

√
3 sin θK sin θμ (1∓ cos θμ) sinφh

|AS|2 2
3 sin2 θμ

ℜ(A∗
0AS)

4
3

√
3 cos θK sin2 θμ

ℑ(A∗
0AS) 0

ℜ(A∗
∥AS) +1

3

√
6 sin θK sin 2θμ cosφh

ℑ(A∗
∥AS) ±2

3

√
6 sin θK sin θμ sinφh

ℜ(A∗
⊥AS) ±2

3

√
6 sin θK sin θμ cosφh

ℑ(A∗
⊥AS) +1

3

√
6 sin θK sin 2θμ sinφh



180 Appendix. Angular Differential Decay Rate



References

[1] LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 114 (2015) 041801,
arXiv:1411.3104.

[2] R. Aaij et al., LHCb-ANA-2014-039 (internal LHCb note) (2014).

[3] LHCb collaboration, R. Aaij et al., Phys. Rev. D87 (2013) 112010,
arXiv:1304.2600; R. Aaij et al., LHCb-ANA-2012-067 (internal LHCb
note) (2013).

[4] S. Glashow, Nucl. Phys. 22 (1961) 579; S. Weinberg, Phys. Rev. Lett. 19
(1967) 1264; A. Salam, Conf. Proc. C680519 (1968) 367.

[5] H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Phys. Lett. B47 (1973) 365.

[6] F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; P. W. Higgs, Phys.
Lett. 12 (1964) 132; P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508; G. Gural-
nik, C. Hagen, and T. Kibble, Phys. Rev. Lett. 13 (1964) 585.

[7] ATLAS Collaboration, G. Aad et al., Phys. Lett. B716 (2012) 1,
arXiv:1207.7214; CMS Collaboration, S. Chatrchyan et al., Phys. Lett.
B716 (2012) 30, arXiv:1207.7235.

[8] D. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; H. D. Politzer,
Phys. Rev. Lett. 30 (1973) 1346.

[9] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.

[10] S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2 (1970) 1285.

[11] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

181

http://dx.doi.org/10.1103/PhysRevLett.114.041801
http://arxiv.org/abs/1411.3104
http://cdsweb.cern.ch/search?p=LHCb-ANA-2014-039&f=reportnumber&action_search=Search&c=LHCb+Internal+Notes&c=LHCb+Analysis+Notes
http://dx.doi.org/10.1103/PhysRevD.87.112010
http://arxiv.org/abs/1304.2600
http://cdsweb.cern.ch/search?p=LHCb-ANA-2012-067&f=reportnumber&action_search=Search&c=LHCb+Internal+Notes&c=LHCb+Analysis+Notes
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1016/0370-2693(73)90625-4
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1143/PTP.49.652


182 References

[12] O. W. Greenberg, Phys. Rev. Lett. 89 (2002) 231602, arXiv:hep-
ph/0201258.

[13] S. Weinberg, Phys. Rev. D13 (1976) 974; L. Susskind, Phys. Rev. D20
(1979) 2619; G. ’t Hooft, NATO Adv. Study Inst. Ser. B Phys. 59 (1980)
101.

[14] Super-Kamiokande Collaboration, Y. Fukuda et al., Phys. Rev. Lett.
81 (1998) 1562, arXiv:hep-ex/9807003; SNO Collaboration, Q. Ahmad
et al., Phys. Rev. Lett. 89 (2002) 011301, arXiv:nucl-ex/0204008; Kam-
LAND Collaboration, K. Eguchi et al., Phys. Rev. Lett. 90 (2003) 021802,
arXiv:hep-ex/0212021; DAYA-BAY Collaboration, F. An et al., Phys.
Rev. Lett. 108 (2012) 171803, arXiv:1203.1669.

[15] E. Majorana, Nuovo Cim. 14 (1937) 171.

[16] P. Minkowski, Phys. Lett. B67 (1977) 421.

[17] A. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

[18] M. Gavela, P. Hernandez, J. Orloff, and O. Pene, Mod. Phys. Lett. A9
(1994) 795, arXiv:hep-ph/9312215; P. Huet and E. Sather, Phys. Rev.D51
(1995) 379, arXiv:hep-ph/9404302; M. Gavela et al., Nucl. Phys. B430
(1994) 382, arXiv:hep-ph/9406289.

[19] V. Kuzmin, V. Rubakov, and M. Shaposhnikov, Phys. Lett. B155 (1985)
36; M. Fukugita and T. Yanagida, Phys. Lett. B174 (1986) 45.

[20] WMAP, G. Hinshaw et al., Astrophys. J. Suppl. 208 (2013) 19,
arXiv:1212.5226.

[21] Y. Golfand and E. Likhtman, JETP Lett. 13 (1971) 323; D. Volkov and
V. Akulov, Phys. Lett.B46 (1973) 109; J. Wess and B. Zumino, Nucl. Phys.
B70 (1974) 39.

[22] J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351, arXiv:1302.6587.

[23] Y. Nir and D. J. Silverman, Nucl. Phys. B345 (1990) 301; D. Silver-
man, Phys. Rev. D58 (1998) 095006, arXiv:hep-ph/9806489; P. Ball
and R. Fleischer, Phys. Lett. B475 (2000) 111, arXiv:hep-ph/9912319;
I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D63 (2001) 114015,
arXiv:hep-ph/0012219.

http://dx.doi.org/10.1103/PhysRevLett.89.231602
http://arxiv.org/abs/hep-ph/0201258
http://arxiv.org/abs/hep-ph/0201258
http://dx.doi.org/10.1103/PhysRevD.13.974
http://dx.doi.org/10.1103/PhysRevD.20.2619
http://dx.doi.org/10.1103/PhysRevD.20.2619
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://arxiv.org/abs/hep-ex/9807003
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://arxiv.org/abs/nucl-ex/0204008
http://dx.doi.org/10.1103/PhysRevLett.90.021802
http://arxiv.org/abs/hep-ex/0212021
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://arxiv.org/abs/1203.1669
http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://dx.doi.org/10.1142/S0217732394000629
http://dx.doi.org/10.1142/S0217732394000629
http://arxiv.org/abs/hep-ph/9312215
http://dx.doi.org/10.1103/PhysRevD.51.379
http://dx.doi.org/10.1103/PhysRevD.51.379
http://arxiv.org/abs/hep-ph/9404302
http://dx.doi.org/10.1016/0550-3213(94)00410-2
http://dx.doi.org/10.1016/0550-3213(94)00410-2
http://arxiv.org/abs/hep-ph/9406289
http://dx.doi.org/10.1016/0370-2693(85)91028-7
http://dx.doi.org/10.1016/0370-2693(85)91028-7
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://dx.doi.org/10.1016/0370-2693(73)90490-5
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1146/annurev-nucl-102010-130447
http://arxiv.org/abs/1302.6587
http://dx.doi.org/10.1016/0550-3213(90)90388-T
http://dx.doi.org/10.1103/PhysRevD.58.095006
http://arxiv.org/abs/hep-ph/9806489
http://dx.doi.org/10.1016/S0370-2693(00)00061-7
http://arxiv.org/abs/hep-ph/9912319
http://dx.doi.org/10.1103/PhysRevD.63.114015
http://arxiv.org/abs/hep-ph/0012219


References 183

[24] A. J. Buras, PoS EPS-HEP2009 (2009) 024, arXiv:0910.1032.

[25] C.-W. Chiang et al., JHEP 1004 (2010) 031, arXiv:0910.2929; A. Datta
and S. Khalil, Phys. Rev. D80 (2009) 075006, arXiv:0905.2105.

[26] B. Pontecorvo, Sov. Phys. JETP 6 (1957) 429; B. Pontecorvo, Sov. Phys.
JETP 7 (1958) 172; Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor.
Phys. 28 (1962) 870; B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984.

[27] L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945; L.-L. Chau and W.-Y.
Keung, Phys. Rev. Lett. 53 (1984) 1802; A. J. Buras, M. E. Lautenbacher,
and G. Ostermaier, Phys. Rev. D50 (1994) 3433, arXiv:hep-ph/9403384.

[28] CKMfitter Group, J. Charles et al., Eur. Phys. J. C41 (2005) 1, arXiv:hep-
ph/0406184, and updates at http://ckmfitter.in2p3.fr/.

[29] UTfit Collaboration, M. Bona et al., JHEP 0507 (2005) 028, arXiv:hep-
ph/0501199, and updates at http://www.utfit.org/.

[30] S. Ali, Visualizations of CKM unitarity triangles and helicity angles (pri-
vate communication).

[31] C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039.

[32] Heavy Flavor Averaging Group, Y. Amhis et al., arXiv:1207.1158, and
updates at http://www.slac.stanford.edu/xorg/hfag/.

[33] LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 110 (2013) 221601,
arXiv:1304.6173.

[34] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 87 (2001) 091801,
arXiv:hep-ex/0107013; Belle Collaboration, K. Abe et al., Phys. Rev.
Lett. 87 (2001) 091802, arXiv:hep-ex/0107061.

[35] A. S. Dighe, I. Dunietz, H. J. Lipkin, and J. L. Rosner, Phys. Lett. B369
(1996) 144, arXiv:hep-ph/9511363.

[36] A. S. Dighe, I. Dunietz, and R. Fleischer, Eur. Phys. J. C6 (1999) 647,
arXiv:hep-ph/9804253.

[37] S. Stone and L. Zhang, Phys. Rev. D79 (2009) 074024, arXiv:0812.2832.

http://arxiv.org/abs/0910.1032
http://dx.doi.org/10.1007/JHEP04(2010)031
http://arxiv.org/abs/0910.2929
http://dx.doi.org/10.1103/PhysRevD.80.075006
http://arxiv.org/abs/0905.2105
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1103/PhysRevLett.51.1945
http://dx.doi.org/10.1103/PhysRevLett.53.1802
http://dx.doi.org/10.1103/PhysRevD.50.3433
http://arxiv.org/abs/hep-ph/9403384
http://dx.doi.org/10.1140/epjc/s2005-02169-1
http://arxiv.org/abs/hep-ph/0406184
http://arxiv.org/abs/hep-ph/0406184
http://ckmfitter.in2p3.fr/
http://dx.doi.org/10.1088/1126-6708/2005/07/028
http://arxiv.org/abs/hep-ph/0501199
http://arxiv.org/abs/hep-ph/0501199
http://www.utfit.org/
http://dx.doi.org/10.1103/PhysRevLett.55.1039
http://arxiv.org/abs/1207.1158
http://www.slac.stanford.edu/xorg/hfag/
http://dx.doi.org/10.1103/PhysRevLett.110.221601
http://arxiv.org/abs/1304.6173
http://dx.doi.org/10.1103/PhysRevLett.87.091801
http://arxiv.org/abs/hep-ex/0107013
http://dx.doi.org/10.1103/PhysRevLett.87.091802
http://dx.doi.org/10.1103/PhysRevLett.87.091802
http://arxiv.org/abs/hep-ex/0107061
http://dx.doi.org/10.1016/0370-2693(95)01523-X
http://dx.doi.org/10.1016/0370-2693(95)01523-X
http://arxiv.org/abs/hep-ph/9511363
http://dx.doi.org/10.1007/s100520050372
http://arxiv.org/abs/hep-ph/9804253
http://dx.doi.org/10.1103/PhysRevD.79.074024
http://arxiv.org/abs/0812.2832


184 References

[38] S. Faller, R. Fleischer, and T. Mannel, Phys. Rev. D79 (2009) 014005,
arXiv:0810.4248; B. Bhattacharya, A. Datta, and D. London, Int. J. Mod.
Phys. A28 (2013) 1350063, arXiv:1209.1413.

[39] D0 Collaboration, V. M. Abazov et al., Phys. Rev. D85 (2012) 032006,
arXiv:1109.3166.

[40] CDF Collaboration, T. Aaltonen et al., Phys. Rev. Lett. 109 (2012) 171802,
arXiv:1208.2967.

[41] ATLAS Collaboration, G. Aad et al., JHEP 1212 (2012) 072,
arXiv:1208.0572; ATLAS Collaboration, ATLAS-CONF-2013-039
(2013).

[42] LHCb collaboration, R. Aaij et al., Phys. Lett. B736 (2014) 186,
arXiv:1405.4140.

[43] CMS Collaboration, CMS-PAS-BPH-11-006 (2012).

[44] A. Lenz and U. Nierste, JHEP 0706 (2007) 072, arXiv:hep-ph/0612167;
A. Lenz and U. Nierste, arXiv:1102.4274.

[45] Particle Data Group, J. Beringer et al., Phys. Rev. D86 (2012) 010001.

[46] LHCb collaboration, R. Aaij et al., Phys. Rev. D87 (2013) 072004,
arXiv:1302.1213.

[47] L. Evans and P. Bryant, JINST 3 (2008) S08001.

[48] M. Pojer, EPJ Web Conf. 60 (2013) 01002.

[49] LHCb collaboration, R. Aaij et al., JHEP 08 (2013) 117, arXiv:1306.3663.

[50] LHCb collaboration, R. Aaij et al., Eur. Phys. J. C72 (2012) 2022,
arXiv:1202.4979.

[51] LHCb collaboration, LHCb-CONF-2012-033 (2012).

[52] D. van Eijk, Ageing and the Decay of Beauty, PhD thesis, VU University
Amsterdam, 2012, CERN-THESIS-2012-137.

[53] W. D. Hulsbergen, Nucl. Instrum. Meth. A552 (2005) 566,
arXiv:physics/0503191.

http://dx.doi.org/10.1103/PhysRevD.79.014005
http://arxiv.org/abs/0810.4248
http://dx.doi.org/10.1142/S0217751X13500632
http://dx.doi.org/10.1142/S0217751X13500632
http://arxiv.org/abs/1209.1413
http://dx.doi.org/10.1103/PhysRevD.85.032006
http://arxiv.org/abs/1109.3166
http://dx.doi.org/10.1103/PhysRevLett.109.171802
http://arxiv.org/abs/1208.2967
http://dx.doi.org/10.1007/JHEP12(2012)072
http://arxiv.org/abs/1208.0572
http://cdsweb.cern.ch/search?p=ATLAS-CONF-2013-039&f=reportnumber&action_search=Search
http://dx.doi.org/10.1016/j.physletb.2014.06.079
http://arxiv.org/abs/1405.4140
http://cdsweb.cern.ch/search?p=CMS-PAS-BPH-11-006&f=reportnumber&action_search=Search
http://dx.doi.org/10.1088/1126-6708/2007/06/072
http://arxiv.org/abs/hep-ph/0612167
http://arxiv.org/abs/1102.4274
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.87.072004
http://arxiv.org/abs/1302.1213
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1051/epjconf/20136001002
http://dx.doi.org/10.1007/JHEP08(2013)117
http://arxiv.org/abs/1306.3663
http://dx.doi.org/10.1140/epjc/s10052-012-2022-1
http://arxiv.org/abs/1202.4979
http://cdsweb.cern.ch/search?p=LHCb-CONF-2012-033&f=reportnumber&action_search=Search&c=LHCb+Reports&c=LHCb+Conference+Proceedings&c=LHCb+Conference+Contributions&c=LHCb+Notes&c=LHCb+Theses&c=LHCb+Papers
https://cds.cern.ch/record/1484405
http://dx.doi.org/10.1016/j.nima.2005.06.078
http://arxiv.org/abs/physics/0503191


References 185

[54] R. Aaij et al., JINST 8 (2013) P04022, arXiv:1211.3055.

[55] LHCb collaboration, A. A. Alves Jr. et al., JINST 3 (2008) S08005.

[56] LHCb collaboration, R. Aaij et al., Int. J. Mod. Phys. A30 (2015) 1530022,
arXiv:1412.6352.

[57] V. F. Weisskopf and E. P. Wigner, Z. Phys. 63 (1930) 54; V. F. Weisskopf
and E. Wigner, Z. Phys. 65 (1930) 18; T. Lee, R. Oehme, and C.-N. Yang,
Phys. Rev. 106 (1957) 340.

[58] LHCb collaboration, R. Aaij et al., New J. Phys. 15 (2013) 053021,
arXiv:1304.4741.

[59] L. Zhang and S. Stone, Phys. Lett. B719 (2013) 383, arXiv:1212.6434.

[60] M. Jacob and G. Wick, Annals Phys. 7 (1959) 404.

[61] S. U. Chung, CERN Yellow Report 71-8 (1971); J. D. Richman, Caltech
Preprint CALT-68-1148 (1984); R. K. Kutschke, An Angular Distribution
Cookbook, internal CLEO note, 1996.

[62] F. Azfar et al., JHEP 1011 (2010) 158, arXiv:1008.4283.

[63] S. M. Flatté, Phys. Lett. B63 (1976) 224.

[64] Y. Xie, P. Clarke, G. Cowan, and F. Muheim, JHEP 0909 (2009) 074,
arXiv:0908.3627.

[65] LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 108 (2012) 241801,
arXiv:1202.4717.

[66] R. Aaij, Triggering on CP Violation, PhD thesis, VU University Amster-
dam, 2015, CERN-THESIS-2015-102.

[67] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Meth. A555 (2005) 356,
arXiv:physics/0402083; Y. Xie, arXiv:0905.0724.

[68] D. Martínez Santos and F. Dupertuis, Nucl. Instrum. Meth. A764 (2014)
150, arXiv:1312.5000.

[69] T. du Pree, Search for a Strange Phase in Beautiful Oscillations, PhD thesis,
VU University Amsterdam, 2010, CERN-THESIS-2010-124.

http://dx.doi.org/10.1088/1748-0221/8/04/P04022
http://arxiv.org/abs/1211.3055
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1142/S0217751X15300227
http://arxiv.org/abs/1412.6352
http://dx.doi.org/10.1007/BF01336768
http://dx.doi.org/10.1007/BF01397406
http://dx.doi.org/10.1103/PhysRev.106.340
http://dx.doi.org/10.1088/1367-2630/15/5/053021
http://arxiv.org/abs/1304.4741
http://dx.doi.org/10.1016/j.physletb.2013.01.035
http://arxiv.org/abs/1212.6434
http://dx.doi.org/10.1016/0003-4916(59)90051-X
http://dx.doi.org/10.1007/JHEP11(2010)158
http://arxiv.org/abs/1008.4283
http://dx.doi.org/10.1016/0370-2693(76)90654-7
http://dx.doi.org/10.1088/1126-6708/2009/09/074
http://arxiv.org/abs/0908.3627
http://dx.doi.org/10.1103/PhysRevLett.108.241801
http://arxiv.org/abs/1202.4717
https://cds.cern.ch/record/2037893
http://dx.doi.org/10.1016/j.nima.2005.08.106
http://arxiv.org/abs/physics/0402083
http://arxiv.org/abs/0905.0724
http://dx.doi.org/10.1016/j.nima.2014.06.081
http://dx.doi.org/10.1016/j.nima.2014.06.081
http://arxiv.org/abs/1312.5000
https://cds.cern.ch/record/1299931


186 References

[70] LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 108 (2012) 101803,
arXiv:1112.3183; R. Aaij et al., LHCb-ANA-2011-036 (internal LHCb
note) (2011).

[71] LHCb collaboration, R. Aaij et al., JHEP 10 (2013) 183, arXiv:1308.1428.

[72] LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 113 (2014) 211801,
arXiv:1409.4619.

[73] CMS Collaboration, CMS-PAS-BPH-13-012 (2014).

[74] ATLAS, G. Aad et al., Phys. Rev. D90 (2014), no. 5 052007,
arXiv:1407.1796.

[75] X. Liu, W. Wang, and Y. Xie, Phys. Rev. D89 (2014), no. 9 094010,
arXiv:1309.0313.

[76] K. De Bruyn and R. Fleischer, JHEP 03 (2015) 145, arXiv:1412.6834.

[77] LHCb Collaboration, CERN-LHCC-2011-001 (2011).

[78] LHCb collaboration, R. Aaij et al., and A. Bharucha et al., Eur. Phys. J.
C73 (2013) 2373, arXiv:1208.3355.

[79] W. Altmannshofer et al., JHEP 0901 (2009) 019, arXiv:0811.1214.

http://dx.doi.org/10.1103/PhysRevLett.108.101803
http://arxiv.org/abs/1112.3183
http://cdsweb.cern.ch/search?p=LHCb-ANA-2011-036&f=reportnumber&action_search=Search&c=LHCb+Internal+Notes&c=LHCb+Analysis+Notes
http://dx.doi.org/10.1007/JHEP10(2013)183
http://arxiv.org/abs/1308.1428
http://dx.doi.org/10.1103/PhysRevLett.113.211801
http://arxiv.org/abs/1409.4619
http://cdsweb.cern.ch/search?p=CMS-PAS-BPH-13-012&f=reportnumber&action_search=Search
http://dx.doi.org/10.1103/PhysRevD.90.052007
http://arxiv.org/abs/1407.1796
http://dx.doi.org/10.1103/PhysRevD.89.094010
http://arxiv.org/abs/1309.0313
http://dx.doi.org/10.1007/JHEP03(2015)145
http://arxiv.org/abs/1412.6834
http://cdsweb.cern.ch/search?p=CERN-LHCC-2011-001&f=reportnumber&action_search=Search
http://dx.doi.org/10.1140/epjc/s10052-013-2373-2
http://dx.doi.org/10.1140/epjc/s10052-013-2373-2
http://arxiv.org/abs/1208.3355
http://dx.doi.org/10.1088/1126-6708/2009/01/019
http://arxiv.org/abs/0811.1214


Summary

Measurement of CP Violation in Mixing and Decay
of Strange Beauty Mesons

Despite its precise and accurate description of elementary-particle interac-
tions, the Standard Model of Particle Physics has several shortcomings. To
find a more complete description of nature, particle interactions are tested
for deviations from Standard Model predictions, which would indicate how
to extend the model. The LHCb experiment at Cern’s Large Hadron Collider
searches for such deviations in the description of particle decays.

In particular, the LHCb experiment studies the decay of the bound states
formed by beauty and strange quarks, or “strange beauty mesons”. The com-
bination of antibeauty and strange is a B0

s meson, beauty and antistrange form
the corresponding antiparticle, denoted by B0

s .
An important feature of these particles is that they can turn into each

other, which creates a mixed system of a particle and its antiparticle. Starting
with a B0

s meson, the particle evolves and can be either a B0
s or a B0

s meson at
the time it decays into other particles. Similarly, there is a probability that a
particle created as a B0

s meson decays as a B0
s meson.

A particularly interesting mode of decay is that into a J/ψ meson and a
ϕ(1020) meson, which occurs for both B0

s and B0
s . For this mode there are

two possible decay paths for each of the two initial particles. In one path the
initial particle first turns into its antiparticle an then decays into the J/ψϕ
final state and in the other path the initial particle decays directly into this
state.

This mixing and decay process is predicted to be almost identical for B0
s

and B0
s within the Standard Model framework. Measurements indicate that

the difference in the rates for the transitions from B0
s to B0

s and vice versa are
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very small. Also the rates of the decays into the J/ψϕ state are expected to
be nearly equal. This equivalence between matter and antimatter is known
as CP symmetry.

Contributions from particle interactions that are not described by the
Standard Model may increase the amount of violation of CP symmetry in the
B0
s → J/ψϕ process. In particular, a difference between the complex phases

of the probability amplitudes for the B0
s–B0

s mixing transitions may be intro-
duced. In general this does not lead to CP violation, since the rate of a process
only depends on the magnitude of the corresponding probability amplitude.
In this case, however, the amplitude is a sum of the interfering contributions
from the two decay paths. The relative phases of these contributions do af-
fect the magnitude of the sum, leading to an observable difference between
the B0

s → J/ψϕ and B0
s → J/ψϕ processes.

This type of CP violation in the interference between decay paths with
and without mixing is measured by examining the distribution of the time
between the production and the decay of B0

s and/or B0
s mesons. Without CP

violation, this distribution is given by the sum of two exponential contribu-
tions with slightly different mean lifetimes. CP violation introduces an oscil-
lation on top of this exponential shape with an amplitude of opposite sign for
initial B0

s and B0
s mesons.

In the LHCb experiment, B0
s and B0

s mesons are abundantly produced in
roughly equal amounts in the proton–proton collisions of the Large Hadron
Collider. Decays into J/ψϕ followed by decays of the J/ψ meson into two
muons and the ϕmeson into two kaons are selected by requiring the signature
of these muons and kaons in the detector is compatible with this decay chain.

The produced B0
s and B0

s mesons have a mean lifetime of about 1.5 ps,
which means typical distances of several millimetres are covered before their
decay. These distances are measured by determining the positions of the
proton–proton collision and the common point of origin of the muons and
kaons from the decay. Also including the measurement of the combined mo-
mentum of the decay particles, the time between production and decay of the
original meson is inferred.

The shape of the decay-time distribution is modelled and the resulting
model is fitted to the measured distribution to determine the values of its
parameters. Parameters that describe CP violation determine the amplitude of
the oscillation in decay time. The frequency of the oscillation and the lifetimes
of the two exponential shapes are controlled by parameters that describe the
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coupled B0
s–B0

s system.
Different types of CP violation are included in the decay model, which

are measured individually for the three different angular-momentum states
of the J/ψϕ system for the first time in this measurement. Small differences
between the contributions of these states are expected, which become im-
portant in a precision measurement of CP violation. The different contribu-
tions are separated by including the measurement of the angles between the
momentum directions of the four final-state particles. This results in a four-
dimensional distribution of the decay time and three decay angles.

To describe the measured distribution of these variables, experimental
effects such as detection and selection efficiencies and finite measurement
resolutions are included in the model. Also the fact that the measured dis-
tribution is a sum of B0

s and B0
s decays is taken into account. Uncertainties

in the estimates of these experimental effects lead to systematic uncertainties
in the estimated decay-time and CP-violation parameters, in addition to the
statistical uncertainties associated with the size of the sample of decays.

Themeasured distribution of time and angles is constructed from roughly
ninety thousand decays, collected in the years 2011 and 2012. Estimates of
the parameter values with these data are compatible with Standard Model
predictions, given the experimental uncertainties. These results show that
potential non-Standard Model contributions to the B0

s → J/ψϕ mixing and
decay process must be smaller than the current experimental precision.

An improvement in precision of an order of magnitude is expected with
future data from the LHCb experiment, which provides new opportunities for
measuring deviations from the Standard Model with B0

s → J/ψϕ decays. The
measurement with this larger sample of decays requires some improvements
in the experimental procedure, to keep systematic uncertainties smaller than
the statistical uncertainties.

Adopting the new strategy of measuring CP violation individually for the
different angular-momentum states of the J/ψϕ system would enable inter-
pretation of future precision measurements within a framework of measure-
ments and theoretical calculations of several different meson decays. Such
a combined analysis is likely to be required to overcome limitations in the
theoretical predictions of CP-violation parameters. Combining these experi-
mental and theoretical tools, the measurement of CP violation in mixing and
decay of strange beauty mesons has the potential to continue playing an im-
portant role in the search for a more complete description of nature.
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Meting van CP-schending in het vermengen en ver-
vallen van vreemde schoonheidmesonen

Ondanks dat het Standaardmodel van de deeltjesfysica een juiste en nauwkeu-
rige beschrijving geeft van de interacties tussen elementaire deeltjes, heeft het
meerdere tekortkomingen. Om een completere beschrijving van de natuur te
vinden, worden deeltjesinteracties getest op afwijkingen van voorspellingen
door het Standaardmodel, welke een indicatie zouden geven van de manier
waarop het model moet worden uitgebreid. Het LHCb experiment bij de
“Large Hadron Collider” van Cern zoekt naar dit soort afwijkingen in de be-
schrijving van het verval van deeltjes.

In het bijzonder wordt in het LHCb experiment het verval bestudeerd
van gebonden toestanden van schoonheid- en vreemdquarks, of “vreemde
schoonheidmesonen”. De combinatie van antischoonheid en vreemd is een
B0
s meson, terwijl schoonheid en antivreemd het bijbehorende antideeltje vor-

men, aangeduid met B0
s .

Een belangrijke eigenschap van deze deeltjes is dat ze in elkaar kunnen
overgaan. Dit geeft een gemengd systeem van een deeltje en zijn antideeltje.
Een B0

s meson evolueert in de tijd en kan of een B0
s of een B0

s meson zijn op
het moment dat het vervalt in andere deeltjes. Op dezelfde manier kan een
deeltje dat is geproduceerd als B0

s meson vervallen als een B0
s meson.

Met name de modus van verval in een J/ψ meson en een ϕ(1020) meson
is interessant. Deze modus is mogelijk voor zowel B0

s als B0
s . Er zijn daardoor

twee mogelijke vervalpaden voor ieder van de twee aanvankelijke deeltjes.
In een van de paden gaat het vervallende deeltje eerst over in zijn antideeltje
en vervalt vervolgens naar de J/ψϕ eindtoestand. In het andere pad vervalt
het aanvankelijke deeltje direct naar deze toestand.
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Het Standaardmodel voorspelt dat dit proces van vermengen en vervallen
bijna gelijk verloopt voor B0

s en B0
s . Metingen laten zien dat het verschil in de

snelheden van de overgangen van B0
s naar B0

s en vice versa erg klein is. Ook
de snelheden van de vervallen naar de J/ψϕ toestand zijn naar verwachting
bijna gelijk. Deze overeenkomst tussen materie en antimaterie staat bekend
als CP-symmetrie.

Bijdragen van deeltjesinteracties die niet worden beschreven door het
Standaardmodel zouden de mate waarin CP-symmetrie wordt geschonden in
het B0

s → J/ψϕ proces kunnen vergroten. Met name zou er een verschil
kunnen ontstaan tussen de complexe fases van de waarschijnlijkheidsampli-
tudes van de B0

s–B0
s mengovergangen. In het algemeen leidt dit niet tot CP-

schending, omdat de waarschijnlijkheid van een proces alleen afhangt van
de absolute waarde van de bijbehorende waarschijnlijkheidsamplitude. In dit
geval is de amplitude echter een som van de interfererende bijdragen van de
twee vervalpaden. De relatieve fases van deze bijdragen hebben wel invloed
op de absolute waarde van de som en dit leidt tot een waarneembaar verschil
tussen de B0

s → J/ψϕ en B0
s → J/ψϕ processen.

Deze vorm van CP-schending in de interferentie tussen vervalpaden met
en zonder vermenging wordt gemeten door de verdeling van de tijd tussen
de productie en het verval van B0

s en/of B0
s mesonen te bestuderen. Zonder

CP-schending is deze verdeling gegeven door de som van twee exponentiële
bijdragen met een klein verschil in gemiddelde levensduur. CP-schending
introduceert een oscillatie op deze exponentiële vorm met een amplitude die
een tegengesteld teken heeft voor aanvankelijke B0

s en B0
s mesonen.

In het LHCb experiment worden B0
s en B0

s mesonen in overvloed en in
gelijke hoeveelheden geproduceerd in de proton–proton botsingen van de
“Large Hadron Collider”. Vervallen naar J/ψϕ gevolgd door de vervallen van
het J/ψ meson naar twee muonen en het ϕ meson naar twee kaonen worden
geselecteerd door te eisen dat het patroon van deze muonen en kaonen in de
detector overeenkomt met deze vervalketen.

De geproduceerde B0
s en B0

s mesonen hebben een gemiddelde levensduur
van ongeveer 1,5 ps, waardoor ze typische afstanden van enkele millimeters
afleggen voor hun verval. Deze afstanden worden gemeten door de posities
te bepalen van de proton–proton botsing en het gezamenlijke punt van oor-
sprong van demuonen en kaonen. Door ook demeting van de gecombineerde
impuls van de vervaldeeltjes mee te nemen, kan de tijd tussen productie en
verval van het oorspronkelijke meson worden afgeleid.
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De vorm van de verdeling van vervaltijden wordt gemodelleerd en het re-
sulterende model wordt gefit aan de gemeten verdeling om de waarden van
parameters in het model te bepalen. Parameters die CP-schending beschrij-
ven, bepalen de amplitude van de oscillatie in de vervaltijd. De frequentie
van de oscillatie en de levensduren van de twee exponentiële vervallen wor-
den bepaald door parameters die het gekoppelde B0

s–B0
s systeem beschrijven.

Het vervalmodel beschrijft verschillende vormen van CP-schending, die
in deze meting voor het eerst individueel worden gemeten voor de drie ver-
schillende impulsmomenttoestanden van het J/ψϕ systeem. Naar verwach-
ting bestaan er kleine verschillen tussen de bijdragen van deze toestanden,
die belangrijk worden in een precisiemeting van CP-schending. De bijdragen
worden gescheiden door demeting van de hoeken tussen de impulsrichtingen
van de vier deeltjes in de eindtoestand mee te nemen in het model. Dit geeft
een vierdimensionale verdeling van de vervaltijd en drie vervalhoeken.

Om de gemeten verdeling van deze variabelen te kunnen beschrijven,
worden experimentele effecten als detectie- en selectie-efficiënties en resolu-
ties van metingen meegenomen in het model. Ook wordt rekening gehouden
met het feit dat de waargenomen verdeling een som is van B0

s en B0
s vervallen.

Onzekerheden in de inschattingen van deze experimentele effecten leiden tot
systematische onzekerheden in de parameterschattingen, naast de statistische
onzekerheden die worden geassocieerd met de grootte van de verzameling
vervallen.

De gemeten verdeling van tijd en hoeken is opgebouwd uit ongeveer ne-
gentigduizend vervallen, die verzameld zijn in de jaren 2011 en 2012. Schat-
tingen van de parameterwaarden met deze data komen overeen met de voor-
spellingen van het Standaardmodel, gegeven de experimentele onzekerheden.
Deze resultaten laten zien dat potentiële bijdragen van buiten het Standaard-
model aan het vermengen en vervallen in het B0

s → J/ψϕ proces kleiner zijn
dan de huidige experimentele nauwkeurigheid.

Een verbetering in nauwkeurigheid met een orde van grootte wordt ver-
wacht met toekomstige data van het LHCb experiment. Dit biedt nieuwe
mogelijkheden voor het meten van afwijkingen van voorspellingen van het
Standaardmodel met B0

s → J/ψϕ vervallen. De meting met deze grotere ver-
zameling vervallen vereist enige verbetering in de experimentele procedure
om systematische onzekerheden kleiner te houden dan statistische onzeker-
heden.

Het overnemen van de nieuwe strategie van het individueel meten van
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CP-schending voor de verschillende impulsmomenttoestanden van het J/ψϕ
systeem, zou het mogelijk maken om toekomstige precisiemetingen te inter-
preteren in een raamwerk van metingen en theoretische berekeningen van
verschillende meson vervallen. Een dergelijke gecombineerde analyse wordt
waarschijnlijk nodig om te kunnen omgaan met beperkingen in theoretische
voorspellingen van CP-schendingparameters. Door het combineren van deze
experimentele en theoretische analyses kan de meting van CP-schending in
het vermengen en vervallen van vreemde schoonheidmesonen potentieel een
belangrijke rol blijven spelen in de zoektocht naar een completere beschrij-
ving van de natuur.
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