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Chapter 1

Introduction

The introduction of this dissertation is organised as follows. Section 1.1 explains the

title of this dissertation to a general audience and uses a football example as a lively

illustration of the use of time-varying parameter models. Here, the use of mathematical

notation is avoided as much as possible. Starting from Section 1.2, the focus is on the

more experienced reader in the field of econometrics and statistics.

1.1 Introduction for a general audience

Suppose in the very unlikely event that a football aficionado with knowledge of econo-

metrics, statistics, and finance is interested in predicting the outcome of the next football

match. This dissertation, with the title ‘time-varying parameter models for discrete valued

time series’, can assist with these predictions.

Let us start by getting a good understanding of what a time series is. Here, I consider

a time series as a set of observations taken at (possibly unequally spaced) intervals over

time. For example, we can observe the number of goals scored by a football team over a

period of time (for example each week for a period of five years). It is crucial that the

order of the observations is preserved since without this we cannot do any meaningful

time series analysis. If we denote the number of goals scored by the football team at time

index t by yt for t = 1, . . . , n, then y = (y1, . . . , yn)
′ is a time series of length n.

The part discrete valued refers to the type of data the time series consists of. In this

dissertation I focus on integers (whole numbers) and do not consider categorical data

which could also be regarded as discrete. An example of discrete data are the number

of goals scored by a football team. This number is in this case restricted to a positive

integer since a football team cannot score a negative number of goals. Negative integers,

however, play a prominent role in this dissertation in Chapter 3–5.

Time-varying parameters form the core of this dissertation. To make a forecast about

the next football match we could be interested in a measure of strength of the football
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teams. It is an unrealistic assumption that the strength of a team is constant over time

since the composition of football teams change over time as well. Also, recent match

results probably tell us more about the current strength of a team than match results

from the more distant past. Therefore, it can be expected that time-varying parameters

generally allow us to obtain (much) more accurate forecasts than their static counterparts.

The evolution of the team’s strength over time can be used in, for example, the analysis

of the performance of the teams in a competition or they can form the basis of a betting

strategy.

The dynamics of the parameters are determined by the econometric model that is

developed and/or applied. There are many econometric models, varying largely in com-

plication. The next section discusses the two classes of time-varying parameter models

that form the econometric modelling framework of this dissertation.

The football illustration is a nice example of the wide applicability of time-varying

parameter models for discrete valued time series. There are, however, many other fields

where these models play a role in analysing data and forecasting future observations. One

can think about the number of hospital admissions in the field of medical research or the

number of earthquakes of magnitude > 5 along the San Andreas fault line in the field

of geology. A prominent example in this dissertation is the extraction of volatility from

discrete stock price changes in the field of econometrics and finance.

1.2 Econometric methodologies

1.2.1 Non-Gaussian state space models

Consider a parametric model for an observed time series y = (y′1, . . . , y
′
n)

′ that is formu-

lated conditionally on a latent m × 1 time-varying parameter vector αt, for time index

t = 1, . . . , n. We are interested in the statistical behavior of the state vector, αt, given

a subset of the data, i.e. the data up to time t − 1 (forecasting), the data up to time t

(filtering) or the whole data set (smoothing). One possible framework for such an analysis

is the state space model, the general form of which is given by

yt|αt ∼ p(yt|αt;ψ), αt+1 ∼ p(αt+1|αt;ψ), α1 ∼ p(α1;ψ), (1.1)

where p(yt|αt;ψ) is the observation density, p(αt+1|αt;ψ) is the state transition density

with initial density p(α1;ψ) and ψ is a static parameter vector.

Minimum mean square error (MMSE) estimates of αt and MMSE forecasts for yt

can be obtained by the Kalman filter and related smoother methods if the following

three conditions are met: (i) the state transition density p(αt+1|αt;ψ) for αt is linear

and Gaussian, (ii) the relation between yt and αt in p(yt|αt;ψ) is linear and (iii) the

2
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observation yt is, conditional on αt, normally distributed. In other words, p(yt|αt;ψ),

p(αt+1|αt;ψ) and p(α1;ψ) are Gaussian and the observation and transition relations are

linear. If all three conditions are satisfied, the state space model of (1.1) reduces to the

linear Gaussian state space model, see for example Durbin and Koopman (2012, Part I).

The violation of at least one of the three properties means that the state space model

becomes nonlinear and/or non-Gaussian for which we have to rely on other methods to

obtain optimal estimates.

Several methods to analyse nonlinear non-Gaussian state space models are available

in the literature. For example, particle filters, Markov Chain Monte Carlo methods and

Gaussian approximations. In this dissertation we opt for a classical analysis and work

with the principle of maximum likelihood estimation (MLE). More specifically, we rely on

Monte Carlo simulation methods based on importance sampling as proposed by Shephard

and Pitt (1997), Durbin and Koopman (1997) and the improvements on these methods

by Koopman, Lucas, and Scharth (2014). The main motivation to use MLE are the well

established and well documented properties of MLE.

We define α = (α′
1, . . . , α

′
n)

′ and assume that, given the unobserved state, the obser-

vations are conditionally independent which implies,

p(y|α;ψ) =
n∏

t=1

p(yt|αt;ψ). (1.2)

Importance sampling techniques are employed because the likelihood function for y, based

on the observation density p(yt|αt;ψ) and given by

�(ψ) = p(y;ψ) =

∫
p(y, α;ψ)dα =

∫
p(y|α;ψ)p(α;ψ)dα, (1.3)

does not have an analytical solution and requires simulation methods since numerical

integration of a multi-dimensional integral quickly becomes infeasible. A naive Monte

Carlo estimate of the likelihood function is given by

�̂(ψ) =
1

M

M∑
k=1

p(y|α(k);ψ), α(k) ∼ p(α;ψ), (1.4)

whereM is the number of Monte Carlo replications and draws α(1), . . . , α(M) are generated

independently from one another. This Monte Carlo estimate is numerically not efficient

since the simulated paths have no support from the observed data y. A more effective

approach for the evaluation of the likelihood function is to adopt Monte Carlo simulation

methods based on importance sampling for which details are given in Chapter 2.

3
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1.2.2 Score-driven models

In the class of score-driven models, the latent time-varying parameter vector αt is updated

over time using an autoregressive updating function based on the score of the conditional

observation probability density function, see Creal, Koopman, and Lucas (2013) and

Harvey (2013). The updating function for αt is given by

αt+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjαt−j+1,

where ω is a vector of constants, A and B are fixed coefficient matrices and st is the scaled

score function which is the driving force behind the updating equation. The unknown

coefficients ω, A and B depend on the static parameter vector ψ. The definition of st is

st = St · ∇t, ∇t =
∂ log p(yt|αt,Ft−1;ψ)

∂αt

, t = 1, . . . , n,

where ∇t is the score vector of the (predictive) density p(yt|αt,Ft−1;ψ) of the observed

time series y = (y′1, . . . , y
′
n)

′. The information set Ft−1 usually consists of lagged variables

of αt and yt but can contain exogenous variables as well. To introduce further flexibility

in the model, the score vector ∇t can be scaled by a matrix St. Common choices for

St are unit scaling, the inverse of the Fisher information matrix, or the square root of

the Fisher inverse information matrix. The latter has the advantage of giving st a unit

variance since the Fisher information matrix is the variance matrix of the score vector.

In this framework and given past information, the time-varying parameter vector αt is

perfectly predictable one-step-ahead.

The score-driven model has three main advantages: (i) the ‘filtered’ estimates of the

time-varying parameter are optimal in a Kullback-Leibler sense, see Blasques, Koopman,

and Lucas (2015); (ii) since the score-driven models are observation driven, their likelihood

is known in closed-form; and (iii) the forecasting performance of these models is compa-

rable to their parameter-driven counterparts, see Koopman, Lucas, and Scharth (2015).

The second point emphasizes that static parameters can be estimated in a straightforward

way using maximum likelihood methods.

1.3 Contributions

1.3.1 Chapter 2

In the non-Gaussian state space models that we consider in this dissertation, we can

reformulate the observation density p(yt|αt;ψ) by a density that can be written in terms

4
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of the signal vector θt, i.e. p(yt|θt;ψ). The r×1 signal vector is defined as θt = Ztαt where

Zt is a selection matrix often consisting of zeros and ones, and possibly some unknown

coefficients that are collected in ψ. In contrast to the state vector, the dimension of the

signal vector θt is often low (typically r = 1) since increasing the dimension of the signal

vector has the drawback of reducing the efficiency of the importance sampler. We show

that the methodology of Shephard and Pitt (1997) and Durbin and Koopman (1997) can

be extended to a large dimensional signal that consists of bivariate signal building blocks.

We apply this methodology to a large panel of football match results which assumes a

bivariate Poisson distribution with intensity coefficients that change stochastically over

time. The importance sampling methods are computationally efficient despite the high

dimensional signal and state vector (r = 36 and m = 72 respectively). This can be

regarded as an achievement as in no other contributions in the field such high dimensions

are ever used.

1.3.2 Chapter 3

Stochastic volatility is typically associated with the time-varying variance in time series

of daily continuously compounded rates of financial returns. Münnix, Schäfer, and Guhr

(2010) show that returns concentrate around the tick-size, are severely multi-modal and,

consequently, highly non-Gaussian. We propose to model stochastic volatility in discrete

price changes of a stock which are measured on a grid of one dollar cent and hence we

face the challenge to model positive, zero, or negative tick-by-tick price changes. One

possible option is to consider such data as Skellam distributed random variables that take

values in Z = {. . . ,−2,−1, 0, 1, 2, . . .}. We develop a new statistical model that builds on

a dynamic modified Skellam distribution to make the model congruent with the realised

data and we analyse the model with the state space methodology discussed in Section

1.2.1. Our modified Skellam distribution features a dynamic variance parameter that is

allowed to be different over the course of a trading day due to intraday seasonal patterns,

which we capture by including a spline function over the time of day. On top of this,

we also allow for autoregressive intraday stochastic volatility dynamics to capture any

remaining volatility dynamics over the course of the trading day that cannot be attributed

to seasonal patterns. Finally, our data requires a careful treatment when the observed

price changes are equal to 0, 1, or -1 dollar cents. For this purpose, we modify the dynamic

Skellam distribution by allowing for a probability mass transfer between these different

price change realisations. The probability mass transfer needs to vary over time as well

because it turns out that trades with a zero price-change are not spread evenly across

the trading day. We analyse stock price changes on a second-by-second basis within a

single trading day on the New York Stock Exchange. As a consequence, all series have

the same length of n = 23,400 (6.5 hours × 3600 seconds) with many missing values. Our

5
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state space framework for the dynamic modified Skellam model is able to account for the

possibly many missing values efficiently. Long time series (large n) are known to reduce

the efficiency of importance sampling, see the discussion in Cappé, Moulines, and Ryden

(2005). We show that time series with a length of n = 23,400 can efficiently be evaluated

by the Numerically Accelerated Importance Sampling (NAIS) methodology of Koopman

et al. (2014). The resulting new model with the new features embedded performs well in

terms of fit, diagnostics, and forecasting power compared to a range of alternative models.

Hence we may conclude that a satisfactory modelling solution is developed.

1.3.3 Chapter 4

We show in Chapter 3 that the univariate NAIS methodology of Koopman et al. (2014)

is able to efficiently analyse long univariate time series. In Chapter 4, we extend the

univariate NAIS methodology to a bivariate signal to accommodate two ‘intensity’ pa-

rameters that are part of the Skellam distribution as originally derived by Skellam (1946).

The bivariate NAIS methodology adopts a bivariate Gauss-Hermite quadrature to solve

the integral that describes the variance of the importance sampling log weights and de-

termines the parameters of the importance density by minimizing this integral. To avoid

any unnecessary repetition of notation and equations, the bivariate NAIS methodology is

already introduced in Appendix D of Chapter 3.

We test the bivariate NAIS methodology in a large scale application by studying the

score differences of football matches of 29 teams observed over seven seasons of the German

Bundesliga. We allow the intensities of the Skellam distribution to vary stochastically

over time in the state space framework that was discussed in Section 1.2.1. The two

intensities of the Skellam distribution correspond with the scoring intensities of the two

football teams that face each other. After estimating and presenting the results of the

basic model, which serves as a benchmark, several extensions are proposed. We introduce

an ‘away ground disadvantage’ to test for a disadvantage of scoring by the away team

and we allow the panel to be heterogeneous by assigning individual dynamic properties

to groups of teams. Moreover, we test whether home ground advantage may depend on

the stadium capacity of the home team. A larger stadium may have a larger impact

on the performance of the two teams and perhaps the referee. Furthermore, we apply a

zero inflated Skellam model since the observed number of draws in the data set is higher

than the expected number of draws based on the benchmark model. Finally, we let the

strengths of attack and defence to be correlated since they are typically related due to,

for example, overlap in training or investments in a team.

6
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1.3.4 Chapter 5

In many studies into intraday tick data of continuously compounded rates of financial

returns, it is found that stock return volatility is higher during opening hours than during

the rest of the day; see, for example, Andersen and Bollerslev (1997) and Tsay (2005). It

is confiremed in Chapter 3 that this intraday pattern is present for discrete stock price

changes as well. We continue to study discrete stock price changes and focus on a much

less known topic, namely the intraday pattern of the dependence structure between stock

price changes. We study the pattern of intraday dependence dynamics (beyond correlation

structures) by adopting a flexible dynamic copula framework for the modelling of the

dependence structure. We analyse intraday dependence structures for each trading day

in 2012 and allow for marginal distributions and the dependence structure to vary over

time. The stock price changes are assumed to be Skellam distributed and this distribution

is adopted for the marginal distributions of the copula distribution. We provide a novel

and parsimonious framework that is congruent with the empirical data. In particular,

the dynamic parameters in our model, including stock return volatilities and dependence

parameters, are updated using an observation-driven, autoregressive updating function

based on the score of the conditional observation probability mass function, see Section

1.2.2.

7





Chapter 2

A Dynamic Bivariate Poisson Model

for Analysing Football Match Results

Almost all results in this chapter previously appeared in Koopman and Lit (2015).

2.1 Introduction

Predicting the outcome of a football match is a challenging task. The pundit usually has

strong beliefs about the outcomes of games. Bets can be placed on a win, a loss, a draw or

on the match score itself. The collection of the predictions is reflected by the bookmaker’s

odds. In this chapter we study a history of nine years of football match results from the

English Premier League. The number of goals scored by a team may depend on the

strength of attack of the team, the strength of defence of the opposing team, the home

ground advantage (when applicable) and the development of the match itself. We analyse

the match results on the basis of a dynamic statistical modelling framework in which

the strengths of attack and defence of the teams can vary over time. We show that

the forecasts from this model are sufficiently accurate to gain a positive return over the

bookmaker’s odds.

Many statistical analyses of match results are based on the product of two independent

Poisson distributions, which is also known as the double-Poisson distribution. The means

of the two distributions can be interpreted as the goal scoring intensities of the two

competing teams. In our modelling framework, the bivariate Poisson distribution is used

which includes a dependence parameter that allows for correlation between home and

away match scores. It represents the phenomenon that the ability or the effort of a team

for a particular game is influenced by the other team or by the way that the match

progresses. The performances of the teams due to the interactions between teams are

captured by the dependence parameter. Furthermore, we let the goal scoring intensities
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of the two teams depend on the strengths of attack and defence of the two teams. These

strengths for each team are allowed to change stochastically over time. This time-varying

feature becomes more important when we jointly analyse the match results for a series

of consecutive football seasons. For example, when an excellent scorer leaves a team,

the strength of attack weakens. Overall we expect that strengths of attack and defence

change slowly over time.

The basis of our modelling approach was proposed by Maher (1982). In this study, the

double-Poisson distribution, with the means expressed as team-specific strengths of attack

and defence, is adopted as the underlying distribution for goal scoring. Maher (1982)

explored the existence of a small correlation between home and away scores; he found

a considerable improvement in model fit by trying a range of values for the dependence

parameter. He did not provide parameter estimates of the correlation or dependence

parameter. Furthermore, Maher’s basic model is static; the team’s strengths of attack

and defence do not vary over time. Dixon and Coles (1997) consider the double-Poisson

model with a dependence parameter that is estimated together with the other parameters.

They suggested that the assumption of independence between goal scoring is reasonable

except for the match results 0-0, 1-0, 0-1 and 1-1. They also introduced a weighting

function to downweight likelihood contributions of observations from the more distant

past. Karlis and Ntzoufras (2003) also used a bivariate Poisson distribution for match

results; they showed that even a small value for the dependence parameter leads to a more

accurate prediction of the number of draws. However, strengths of attack and defence

are kept static over time in their analysis. Rue and Salvesen (2000) incorporated the

framework of Dixon and Coles (1997) within a dynamic generalized linear model and

adopted Markov Chain Monte Carlo methods to study the time-varying properties of the

football teams in continuous time. In their analysis of match results, they truncated the

number of goals to a maximum of five because they argued that the number of goals

beyond five provides no further information about the strengths of attack and defence of

a team. Owen (2011) adopted a similar dynamic generalized linear model and also uses

Markov Chain Monte Carlo methods for estimation. However, he argued strongly for a

model in discrete time. He found that the evolution of parameters over time, the role of

strengths of attack and defence and the effect of home and away match scores are more

effectively analysed in discrete time. We also formulate the model in discrete time but our

model is based on the bivariate Poisson distribution and we estimate the parameters by

simulated maximum likelihood methods rather than Markov Chain Monte Carlo methods.

Owen (2011) empirically verified the model for a low dimensional data set whereas we

consider all matches in the English Premier League for nine years.

The following contributions in the literature involve multivariate time series models

and sports but are less relevant to our study. Ord, Fernandes, and Harvey (1993) consid-
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ered a moderate multivariate extension of a Bayesian dynamic count data model for the

analysis and forecasting of the number of goals scored by a small number of teams over

a period of time. Furthermore their modelling framework is not based on Maher (1982).

In Crowder, Dixon, Ledford, and Robinson (2002), the dynamic generalized linear model

of Dixon and Coles (1997) is formulated as a non-Gaussian state space model with time-

varying strengths of attack and defence as well. However, they used approximate methods

for parameter estimation as they stated that an exact analysis is computationally too ex-

pensive. Given the rapid development of simulation methods for time series models, we

shall show that exact maximum likelihood methods for an extensive analysis of match

results can be carried out as a matter of routine. Our empirical study aims to analyse

match results from the English Premier League. Earlier and leading studies have anal-

ysed match results from other sport leagues. In particular, Glickman and Stern (1998)

and Glickman (2001) have considered match results from the American Football League,

Fahrmeir and Tutz (1994) from the German Bundesliga and Knorr-Held (2000) from the

American National Basketball Association.

We show that football match results from a high dimensional data set can be analysed

effectively within a non-Gaussian state space model where the observed pairs of counts

are assumed to come from a bivariate Poisson distribution. We have strengths of attack

and defence that are stochastically evolving over time. The statistical analysis is based on

exact maximum likelihood and signal extraction methods which rely on efficient Monte

Carlo simulation techniques such as importance sampling. Several extensions can be

considered within our modelling framework. For example, we introduce a parameter

that accounts for the transition of summer and winter breaks. We also introduce the

diagonal inflation method of Dixon and Coles (1997) for the bivariate Poisson distribution

to account for the overrepresentation of draws. Finally we emphasize that we do not need

to truncate the observed match outcomes to some maximum value in our analysis.

The remainder of this chapter is organised as follows. Our dynamic statistical mod-

elling framework for the bivariate Poisson distribution is introduced and discussed in

detail in Section 2.2. It is shown how we can represent the dynamic model in a non-

Gaussian state space form. The statistical analysis relies on advanced simulation-based

time series methods which are developed elsewhere. We provide the implementation de-

tails and some necessary modifications of the methods. The analysis includes maximum

likelihood estimation, signal extraction of the strengths of attack and defence of a team

and the forecasting of match results. In Section 2.3 we illustrate the methodology for

a high dimensional data set of football match results from the English Premier League

during the seasons 2003−2004 to 2011−2012. The first seven seasons are used for parame-

ter estimation and in-sample diagnostic checking of the empirical results whereas the last

two seasons are used for the out-of-sample forecast evaluation of the model. A forecast-

11
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ing study is presented in Section 2.4 where we give evidence that our model can turn a

positive return over the bookmakers’ odds by applying a simple betting strategy during

the seasons of 2010−2011 and 2011−2012. Concluding remarks are given in Section 2.5.

2.2 The statistical modelling framework

We analyse football match results in a competition for a number of seasons as a time

series panel of pairs of counts. We assume that an even number of J teams play in a

competition and hence each week J/2 matches are played. It also follows that a season

consists of 2(J−1) weeks in which each team plays against another team twice, as a home

team and as a visiting team. The specific details of our data set for the empirical study

is discussed in Section 2.3.

2.2.1 Bivariate Poisson model

The result or outcome of a match between the home football team i and the visiting

football team j in week t is taken as the pair of counts (X, Y ) = (Xit, Yjt), for i �= j =

1, . . . , J and t = 1, . . . , n where n is the number of weeks available in our data set. The

first count Xit is the non-negative number of goals scored by the home team i and the

second count Yjt is the number of goals scored by the visiting team j, in week t. Each

pair of counts (X, Y ) is assumed to be generated or sampled from the bivariate Poisson

distribution with probability density function

pBP (X, Y ;λx, λy, γ) = exp (−λx−λy−γ) λ
X
x

X!

λY
y

Y !

min(X,Y )∑
k=0

(
X

k

)(
Y

k

)
k!

(
γ

λx λy

)k

, (2.1)

for X = Xit and Y = Yjt, with λx and λy being the intensities for X and Y respectively,

and γ being a coefficient for the dependence between the two counts in the pair, X and

Y . In short notation, we write

(X, Y ) ∼ BP (λx, λy, γ).

The means, variances and covariance for the home team score X and the away team score

Y are

E(X) = Var(X) = λx + γ, E(Y ) = Var(Y ) = λy + γ, Cov(X, Y ) = γ, (2.2)
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and hence the correlation coefficient between X and Y is given by

ρ =
γ√

(λx + γ)(λy + γ)
.

This definition of the bivariate Poisson distribution is not unique: other formulations

have also been considered; see, for example, Kocherlakota and Kocherlakota (1992) and

Johnson, Kotz, and Balakrishnan (1997). A different formulation for the bivariate Poisson

distribution also implies different means, variances and covariances in expression (2.2).

The difference between the counts X and Y determines whether the match is a win,

a loss or a draw for the home team. The variable X − Y has a discrete probability

distribution known as the Skellam distribution and it is invariant to γ when (X, Y ) ∼
BP (λx, λy, γ) for γ > 0; see Skellam (1946). Karlis and Ntzoufras (2006, 2009) have used

the Skellam distribution to analyse differences in scores in football matches.

2.2.2 Dynamic specification for goal scoring intensities

The scoring intensities of two teams playing against each other are determined by λx, λy

and γ. In our modelling framework, we let λx and λy to vary with the pairs of teams that

play against each other. Furthermore, we allow these intensities to change slowly over

time since the composition and the performance of the teams will change over time. The

intensity of scoring for team i, when playing against team j, is assumed to depend on the

strength of attack of team i and the strength of defence of team j. We also acknowledge

the home ground advantage in scoring by having the coefficient δ; this relative advantage

is considered to be the same for all teams and constant over time. In section 2.2.3, we

introduce a model extension in which δ is not the same for all teams. The strength of

attack of the home team i in week t is denoted by ξit and its strength of defence is denoted

by βit for i = 1, . . . , J . The goal scoring intensities for home team i and away team j in

week t are then specified as

λx,ijt = exp(δ + ξit − βjt), λy,ijt = exp(ξjt − βit). (2.3)

In a football season with J(J − 1) matches, 2J(J − 1) goal counts and for some time

index t, we can identify the unknown signals for attack ξit’s and defence βit’s together

with coefficient δ, i.e. 2J + 1 unknowns, when the number of teams is J > 2. The time

variation of the strengths of attack and defence can be identified when we analyse match

results from a series of football seasons.

All teams in the competition are assumed to have unique strengths of attack and

defence which we do not relate to each other. In effect we assume that each team can

compose their teams independently of each other. The strengths of attack and defence of

13
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the team can change over time since the composition of the team will not be constant over

time. Also the performances of the teams are expected to change over time. We therefore

specify the strengths of attack and defence as auto-regressive processes. We have

ξit = μξ,i + φξ,iξi,t−1 + ηξ,it, βit = μβ,i + φβ,iβi,t−1 + ηβ,it, (2.4)

where μξ,i and μβ,i are unknown constants, φξ,i and φβ,i are auto-regressive coefficients and

the disturbances ηξ,it and ηβ,it are normally distributed error terms which are independent

of each other for all i = 1, . . . , J and all t = 1, . . . , n. We assume that the dynamic

processes are independent of each other and that they are stationary. It requires that

|φκ,i| < 1 for κ = ξ, β and i = 1, . . . , J . The independent disturbance sequences are

stochastically generated by

ηκ,it ∼ NID(0, σ2
κ,i), κ = ξ, β, (2.5)

where NID(c, d) refers to normally independently distributed with mean c and variance

d, for i = 1, . . . , J and t = 1, . . . , n.

The initial conditions for the auto-regressive processes ξit and βit can be based on

means and variances of their unconditional distributions, which are given by

E(κit) = μκ,i / (1− φκ,i), Var(κit) = σ2
κ,i / (1− φ2

κ,i), κ = ξ, β.

Other, and possibly more complicated, dynamic structures for ξit and βit can be considered

as well but in our current study we shall consider only the first-order auto-regressive

processes as given in expression (2.4).

2.2.3 Some extensions of the basic model

Our basic modelling framework for match results can be extended in several directions.

First, we address the tendency of the bivariate Poisson distribution (2.1) to underestimate

draws in match results, in particular when γ = 0, that is the double-Poisson model. For

example, Dixon and Coles (1997) find that the scores 1-0 and 0-1 are underrepresented in

their extended data set in favour of 0-0 and 1-1. They proposed to adjust their double-

Poisson model by introducing an adjustment term that shifts probability mass from 1-0

and 0-1 towards 0-0 and 1-1. The adjustment is referred to as diagonal inflation and we

apply it to the bivariate Poisson density function (2.1). The resulting density function is

14
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obtained by multiplying the term πλx,λy(X, Y ) with density function (2.1) where

πλx,λy(X, Y ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 + λxλyω, if (X, Y ) = (0, 0),

1− λxω, if (X, Y ) = (0, 1),

1− λyω, if (X, Y ) = (1, 0),

1 + ω/ {1 + (γ/λxλy)} , if (X, Y ) = (1, 1),

1, otherwise,

(2.6)

where coefficient ω determines how much probability mass is shifted. The multiplication

leads to a proper density with moments that are the same as those of the bivariate Poisson

distribution. A different but related adjustment was considered by Karlis and Ntzoufras

(2003).

Another extension of our basic model is to allow for summer and winter breaks in

league matches. In most football leagues, players can be bought or hired only during the

summer and winter breaks. A change in the composition of a team can lead to changes

in their strengths of attack and defence. We allow for such changes in the paths of ξit

and βit by letting the random shocks ηξ,it and ηβ,it respectively have different scalings for

the first time period after the summer and winter breaks. When the processes for ξit and

βit are sufficiently persistent, large random shocks will lead to breaks in these processes.

Hence we replace the distributions for the disturbance sequences ηκ,it in expression (2.5)

by

ηκ,it ∼ NID
{
0, σ2

κ,i + σ2
κ,SτS(t) + σ2

κ,W τW (t)
}
, κ = ξ, β, (2.7)

for team i = 1, . . . , J , where the indicator variables τS(t) and τW (t) are set equal to 1 at

the end of the summer and winter breaks respectively, and to 0 otherwise, with σ2
κ,S > 0

and σ2
κ,W > 0. As a result, all disturbance variances are time-varying. The two additional

variances for the strengths of both attack and defence are estimated jointly with the other

parameters in ψ of equation (2.18) in Section 2.3.2.

Our final extension concerns the home ground advantage δ which is the same for all

teams. It is realistic to expect that the home ground advantage has different effects on

different teams. By introducing a team-specific home ground advantage in the model, the

number of parameters increases and it will slow down the estimation process. A more

feasible option is to limit this extension by pooling home ground advantage coefficients

for groups of teams. For example, in Section 2.3.5 we consider a different home ground

coefficient for the traditionally well-performing teams in the English Premier League:

Arsenal, Chelsea, Liverpool, Manchester City and Manchester United. We may expect

that for these teams the effect of home ground advantage on match results is higher.

An interesting discussion of what home ground advantage represents is given by Pollard

(2008).
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2.2.4 General state space representation of the model

For our model-based analysis, it is convenient to present the model in the general state

space form. The pair (Xit, Yjt) is the observed outcome of the match of home team i

against the visiting team j which is played at time t. The statistical dynamic model for

the match result (Xit, Yjt) of home team i against team j is given by

(Xit, Yjt) ∼ BP (λx,ijt, λy,ijt, γ), (2.8)

where BP refers to the bivariate Poisson distribution with density function (2.1) and with

the goal scoring intensities λx,ijt and λy,ijt specified via the link functions

λx,ijt = sx,ij(αt), λy,ijt = sy,ij(αt), i �= j = 1, . . . , J.

Here the so-called state vector αt contains the strengths of attack and defence of all J

teams at time t, i.e.

αt = (ξ1t, . . . , ξJt, β1t, . . . , βJt)
′, t = 1, . . . , n. (2.9)

Hence the dimension of the state vector is 2J × 1. We can represent the goal scoring

intensity specifications in expression (2.3) by having the link functions as

sx,ij(αt) = exp(δ + wij αt), sy,ij(αt) = exp(wji αt), i �= j = 1, . . . , J, (2.10)

where wij selects the appropriate ξit and βjt elements from αt in expression (2.9). The

transformation of the state vector into goal scoring intensities is illustrated in the Ap-

pendix. The bivariate Poisson distribution used in expression (2.8) relies further on de-

pendence coefficient γ and sx,ij(αt) relies also on the home ground advantage coefficient

δ. We collect such unknown coefficients in the parameter vector ψ for which more details

are given below.

The linear dynamic process for the 2J × 1 state vector is given generally by

αt = μ+ Tαt−1 + ηt, ηt ∼ NID(0, Q), (2.11)

for t = 1, . . . , n, where μ is the constant vector of dimension 2J×1, T is the auto-regressive

coefficient matrix of dimension 2J×2J and the disturbance vector ηt of dimension 2J×1

is normally independently distributed with mean zero and variance matrix Q. The vector

μ and matrices T and Q may rely partly on unknown coefficients which we also collect

in the parameter vector ψ. The initial condition for the state vector α1 can be obtained

from the unconditional properties of αt.

The dynamic specifications of the strengths of attack and defence in expression (2.4)
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can be represented in the general form of expression (2.11) as follows. We collect the

disturbances of expression (2.4) in ηt = (ηξ,1t, . . . , ηξ,Jt, ηβ,1t, . . . , ηβ,Jt)
′. Next we need to

define only the matrices μ, T and Q as

μ = (μξ,1, . . . μξ,J , μβ,1, . . . , μβ,J)
′,

T = diag(φξ,1, . . . φξ,J , φβ,1, . . . , φβ,J),

Q = diag(σ2
ξ,1, . . . σ

2
ξ,J , σ

2
β,1, . . . , σ

2
β,J),

where diag(v) refers to a diagonal matrix with the elements of v on the leading diagonal.

The constant vector μ is captured in the unknown initial state vector α1. The remaining

unknown coefficients are then placed in the parameter vector ψ. In this case we have

ψ = (φ′, q′, δ, γ)′,

where the column vectors φ and q contain the diagonal elements of T and Q respectively.

It can imply that the number of unknown coefficients is large and the burden of parameter

estimation is high. In practice, we shall pool many unknown coefficients into a smaller

set of parameters. This is illustrated in our empirical study of Section 2.3.

2.2.5 Evaluation of likelihood function and estimation

We opt for the method of maximum likelihood to obtain parameter estimates with optimal

properties in large samples. Hence we develop an expression for the likelihood function of

our model. For the evaluation of the likelihood function we require simulation methods

because the multivariate model is non-Gaussian and nonlinear and hence we cannot rely

on linear estimation methods for dynamic models such as the Kalman filter.

We have J/2 match results for each week t. A specific match result is denoted by

(Xit, Yjt) with i �= j and i, j ∈ {1, . . . , J}. The number of goals scored by all teams in

week t are collected in the J × 1 observation vector yt. The observation density of yt for

a given realization of the state vector αt is then given by

p(yt|αt;ψ) =

J/2∏
k=1

pBP (λx,ijt, λy,ijt, γ), (2.12)

where pBP is the probability density function (2.1) of the bivariate Poisson distribution

and where index k represents the kth match between home team i against visiting team

j. We note that λx,ijt = sx,ij(αt) and λy,ijt = sy,ij(αt) where the link functions can, for

example, be based on expression (2.3). In this case we can express the signal vector that
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is associated with the density p(yt|αt;ψ) as

E(yt|αt;ψ) = exp(atδ +Wtαt), (2.13)

where vector at consists of elements equal to 1 when the scores of the corresponding

elements in yt are from the home team and 0 otherwise, whereas matrix Wt is composed

of the appropriate row vectors wij as introduced in expression (2.10). The home ground

advantage coefficient δ is part of the parameter vector ψ.

We define y = (y′1, . . . , y
′
n)

′ and α = (α′
1, . . . , α

′
n)

′ for which it follows that

p(y|α;ψ) =
n∏

t=1

p(yt|αt;ψ). (2.14)

It implies that, given the strengths of attack and defence in α1, . . . , αn and given the

home ground advantage δ and the dependence coefficient γ, the scores from week to week

are conditionally independent. Finally, we can express the joint density as p(y, α;ψ) =

p(y|α;ψ)p(α;ψ) where

p(α;ψ) = p(α1;ψ)
n∏

t=2

p(αt|α1, . . . , αt−1;ψ). (2.15)

Given the linear Gaussian auto-regressive process for the state vector αt in expression

(2.11), the evaluation of p(αt|α1, . . . , αt−1;ψ) is straightforward. The parameter vector ψ

includes the coefficients φκ,i and σ2
κ,i for κ = ξ, β and i = 1, . . . , J . The evaluation of the

initial density p(α1;ψ) can be based on the unconditional properties of αt. The constants

μκ,i, for κ = ξ, β and i = 1, . . . , J , are incorporated in the initial condition for α1.

The likelihood function for y is based on the observation density (2.1) and is given by

�(ψ) = p(y;ψ) =

∫
p(y, α;ψ)dα =

∫
p(y|α;ψ)p(α;ψ)dα, (2.16)

which we want to evaluate for different values of the parameter vector ψ. An analytical

solution to evaluate this integral is not available and therefore we rely on numerical eval-

uation methods. It is well established that numerical integration of a multi-dimensional

integral becomes quickly infeasible when the dimension increases. We therefore adopt

Monte Carlo simulation methods. We can use such methods since explicit expressions for

the densities p(y|α;ψ) and p(α;ψ) are available. A naive Monte Carlo estimate of the

likelihood function is given by

�̂(ψ) =
1

M

M∑
k=1

p(y|α(k);ψ), α(k) ∼ p(α;ψ), (2.17)
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where M is the number of Monte Carlo replications. Since the state vector density

p(α;ψ) is associated with the auto-regressive process (2.11), we obtain α(k) simply via

the simulation of auto-regressive processes for a given parameter vector ψ. The draws

α(1), . . . , α(M) are generated independently from each other. This Monte Carlo estimate

is numerically not efficient (nor feasible) since the simulated paths are having no support

from the observed data y. A more effective approach for the evaluation of the likelihood

function is to adopt Monte Carlo simulation methods based on importance sampling as

proposed by Shephard and Pitt (1997) and Durbin and Koopman (1997). The details

of this estimation methodology for likelihood evaluation and for the signal extraction of

strengths of attack and defence are discussed in the Appendix.

Parameter estimation is carried out via the maximisation of the likelihood function

with respect to ψ by using standard numerical maximisation procedures. To obtain a

smooth multi-dimensional likelihood surface in ψ for its maximisation, each likelihood

evaluation is based on the same random numbers for the generation of M simulated paths

of α. The method of maximum likelihood produces parameter estimates with optimal

properties in large samples. These optimal properties remain when using Monte Carlo

simulation methods whereas the estimates are subject to simulation error.

2.3 Empirical application

2.3.1 Data description

We analyse a panel time series of nine years of football match results from the English

Premier League for which 20 football clubs are active in each season. The 20 football

clubs that participate in a season vary because the three lowest placed teams at the end

of the season are relegated. In the new season they are replaced by three other teams. The

number of different teams in the panel is 36. Only 11 teams have played in all nine seasons

of our sample and 10 teams have only played in one season. In the time dimension, we

span a period from the season 2003−2004 to the season 2011−2012. The seasons run from

August to May. Each team plays 38 matches in a season (19 home and 19 away games) so

that in total we have 380 matches in the season. Most games are played in the afternoons

of Saturdays and Sundays; the other games are played during weekday evenings (often

on Mondays). The total number of matches played in our data set is 9 × 380 = 3420.

The first seven years are used for parameter estimation and the last two years are used

to explore the out-of-sample performance of the model. The data used in our study can

be found at http://www.football-data.co.uk. Our data set of football match results

can be treated as a time series panel of low counts. In approximately 85% of all matches

in our sample, a team has scored only 0, 1 or 2 goals. The distribution of home and away
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goals scored during the nine seasons is presented in the Appendix. Although working

with low counts, a significant difference can be identified in the number of goals scored

and conceded between the competing teams. A low ranking team rarely scores more than

two goals in an away match while the top ranking teams sometimes reach scores of five

or higher.

2.3.2 Details of the basic model

Our analysis of the Premier League football match results is based on the modelling

framework presented in Section 2.2. The panel data set has J = 36 teams and we

therefore need to estimate 36 attack strengths and 36 defence strengths over time; the

dimension of the state vector αt is 72. In comparison with other empirical studies where

also state space time series analyses are carried out, the state vector is high dimensional.

Since only 20 teams are active during a season, we need to treat large sections of the

observations in the time series panel as missing. The state space methodology can treat

missing observations in a routine manner; see the discussion in the Appendix. The time

index t in our analysis does not refer to calendar weeks. Only weeks in a football season

for which at least one match is played officially for the Premier League are indexed. The

last week of football matches in one season and the first week in the next football season

have then consecutive time indices. In our basic model of Section 2.2, the summer and

winter breaks are not taken into account. In Section 2.2.3 we discuss a modification of

our model that accounts for summer and winter breaks. If all teams play their matches

weekly, each season consists of 38 weeks. However, owing to unforeseen circumstances,

specific matches are postponed and extra time periods need to be added in the data set.

The resulting calendar is adopted for the time index t in our analysis.

The dynamic processes of the strengths of attack and defence are given by expression

(2.4) or collectively for the state vector by expression (2.11). Given the high number of

teams, we restrict the auto-regressive coefficients and the disturbance variances to be the

same among the teams:

φξ,i = φξ, φβ,i = φβ, σ2
ξ,i = σ2

ξ , σ2
β,i = σ2

β,

for i = 1, . . . , J . These restrictions are not strong since we expect the persistence and

the variation of the time-varying strengths of attack and defence to be small and similar

between the teams. In other words, we expect the strengths of attack and defence for all

teams to be evolving slowly over time. However, the strengths of attack and defence of

the different teams can still evolve over time by following very different time paths. For

the basic model, the home ground advantage δ and the dependence γ are assumed to be
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the same for all teams and matches. The parameter vector is then given by

ψ = (φξ, φβ, σ
2
ξ , σ

2
β, δ, γ)

′, (2.18)

and is estimated by the method of Monte Carlo maximum likelihood of Section 2.2.5.

The parameters in ψ are transformed during the estimation process so that the parameter

values are within their restrictive ranges, which are

0 < φκ < 1, σ2
κ > 0, δ > 0, 0 < γ < c,

for κ = ξ, β and where c represents the upper bound that is implied by the model and

derived in the Appendix. The transformations for the elements in expression (2.18) are

given by

ψj =

⎧⎪⎨⎪⎩
expψ∗

j

1+expψ∗
j
, j = 1, 2,

exp(ψ∗
j ), j = 3, 4, 5,

ψ∗
j j = 6,

(2.19)

where ψj is the jth element of ψ and ψ∗
j is the transformed coefficient that is actually

estimated, for j = 1, . . . , 6. We note that ψ6 = γ is not restricted because the upperbound

c is implied by the model.

The signal extraction of the time-varying strengths of attack and defence has been

carried out by the Monte Carlo methods described in Section 2.2.5. We have used a

common set of random numbers to generate M simulated paths for α. The choice of M

can be relatively low because we use efficient importance sampling methods; the details are

provided in the Appendix. The computations have been implemented using the numerical

routines developed and presented in Koopman, Shephard, and Doornik (2008); they are

carried out on a standard computer. We have not encountered numerical problems while

the computing times have been relatively low despite the high-dimensional state vector.

2.3.3 Parameter estimates

We present in Table 2.1 the parameter estimates for our time series panel of number

of goals scored by teams in the English Premier League during the seven seasons from

2003−2004 to 2009−2010. To show the robustness of our Monte Carlo maximum likelihood

methods, we present the estimates for various importance sampling replications M . The

parameter estimates are robust to different choices ofM . We may conclude that the choice

of M = 200 is sufficient in our analysis but that we can also take M = 50 for repeated

analyses of the model. Further evidence of the reliability of our results is presented in the

Appendix.

The estimates of the auto-regressive coefficients of the latent dynamic processes for
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the signals related to the strengths of attack and defence are close to one. They imply

that the strengths of attack and defence are highly persistent and behave as random-walk

processes. However, the auto-regressive coefficients reflect the persistence from week to

week during the football seasons for which we do not expect many changes. More changes

are expected from season to season in which a season consists of 38 weeks. When we

consider the persistence of the signals from season to season, the implied estimates of the

auto-regressive coefficients are equal to (0.9985)38 = 0.94 and (0.9992)38 = 0.97 which

still imply persistent processes for the signals but they are stationary.

The estimated disturbance variances for the signals are relatively small, which illus-

trate that the attack and defence signals do vary over time in a smooth way. We emphasize

that the estimated variances determine the scale of the fluctuations from week to week

which we expect to be very small. We do not expect that a top team turns into a rele-

gation candidate during one season. Furthermore, the number of goals in a match scored

by one team is typically low. The main changes in the signals for strengths of attack and

defence take place in the data over longer time periods.

Table 2.1: Monte Carlo estimates for the parameter vector ψ together with the value of the maximised log-
likelihood value for different numbers of simulated paths M = 50, 200, 1000. The Monte Carlo estimates
of the standard errors are given below the estimates and between parentheses. The dataset that was used
for estimation covers seven seasons of the English Premier League (from 2003-2004 to 2009-2010)

ψ M = 50 M = 200 M = 1000

φξ 0.9985 0.9985 0.9985
(0.00044) (0.00044) (0.00044)

φβ 0.9992 0.9992 0.9992
(0.00027) (0.00027) (0.00027)

σ2ξ 0.000205 0.000206 0.000206

(2.20e-05) (2.27e-05) (2.28e-05)

σ2β 0.000141 0.000143 0.000143

(2.05e-05) (2.02e-05) (2.02e-05)

δ 0.3662 0.3643 0.3641
(0.0196) (0.0269) (0.0252)

γ 0.0966 0.0966 0.0966
(0.0232) (0.0232) (0.0232)

�̂(ψ) -9608.56 -9608.38 -9608.38

2.3.4 Signal estimates of strengths of attack and defence

By replacing the parameter vector ψ with its estimate as given in Table 2.1, we can apply

the Monte Carlo simulation methods of Section 2.2.5 to obtain the estimates for the attack

and defence signals. The state vector α contains the strengths of attack and defence for

all time periods and for all football teams. Once we have computed α̂, the importance
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sampling estimate of the state vector, we can graphically present the estimated attack and

defence signals over time together with their standard errors. We note that the standard

errors are also computed using the importance sampling method; see the Appendix for

details.

The estimation results of the previous section have indicated that the strengths of

attack and defence do not fluctuate strongly from week to week but from season to season

they can be more substantial. We present in Figure 2.1 the signal estimates for the time-

varying strengths of attack and defence of the well-known football teams of Manchester

United and Manchester City. The strength of attack of United has remained relatively

constant from 2006 onwards whereas in the earlier years we observe an upwards trend

in their strength of attack. The strength of attack of City has increased much more

dramatically since 2007 and stabilized somewhat in the most recent season of 2011−2012.
Manchester City has been able to invest more in high quality players in the previous five

years owing to the new owners of the club. It is interesting to observe that the investments

by City have been more directed towards forward players since the upward trend of the

strength of attack is stronger than the trend of the strength of defence. An assessment of

the strengths of attack and defence for all teams is presented in the Appendix.
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Figure 2.1: Strengths of attack and defence of the two highest ranking teams at the end of the 2011-2012
season of the English Premier League. The solid lines are the estimated strengths of attack and defence.
The dotted lines provide the symmetric confidence intervals based on one standard error. The bars
represent the number of goals scored and conceded from the 2003-2004 towards the 2011-2012 season
which accounts for 404 time periods.
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2.3.5 Model evaluations: in-sample and out-of-sample

To validate in-sample estimation and out-of-sample prediction results for the basic model,

we present a selection of estimation and testing results for a set of extended, restricted and

related model specifications. This study considers the following seven model specifications.

(a) the basic model with parameter estimates presented in Table 2.1.

(b) the basic model with time invariant strengths of attack and defence. (the auto-

regressive processes (2.4) for ξit and βit are replaced by fixed coefficients; the state

vector (2.9) reduces to αt = μ in expression (2.11); hence we can adopt the same

state space time series analysis but with system matrices T = 0 and Q = 0 in

expression (2.11); the parameter vector consists only of the dependence parameter

γ and home ground advantage δ);

(c) the basic model with dependence parameter set equal to zero, i.e. γ = 0 in expression

(2.1) (the observation model reduces to a double-Poisson distribution for match

outcomes);

(d) the basic model with a time-varying, team-specific dependence parameter given by

γijt = γ∗√λx,ijtλy,ijt, γ∗ ≥ 0, (2.20)

where γ∗ is a scaling coefficient that replaces γ in the parameter vector given in

expression (2.18) (the dependence coefficient is time-varying owing to its dependence

on the strengths of attack and defence; this specification was proposed by Goddard

(2005) but the time-varying feature of the dependence in expression (2.20) has not

been considered before);

(e) the diagonal inflation model for which the density function (2.1) is multiplied by

expression (2.6) (the coefficient ω in expression (2.6) is added to the parameter

vector (2.18));

(f) the basic model with time-varying strengths of attack and defence that account for

the summer and winter breaks (the disturbance variances for the state vector are

time-varying as specified in expression (2.7) and the additional variance parameters

are added to the parameter vector (2.18); here we concentrate on only the long

summer break);

(g) the basic model with two home ground advantage parameters, δ1 for the group

{Arsenal, Chelsea, Liverpool, Manchester City, Manchester United} and δ2 for the

group with all other teams; see the discussion in Section 2.2.3.
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In-sample evaluation

For all the model specifications (a)− (g) reported above, we have estimated the parame-

ter vector by the method of Monte Carlo maximum likelihood using the match results in

seven seasons of the English Premier League, from 2003−2004 to 2009−2010. Importance

sampling methods are used for likelihood evaluation by using a simulation sample size of

M = 50. The same random draws are used for each model specification, for each param-

eter vector and for each likelihood evaluation. The usual t-test (for a single restriction)

and likelihood ratio statistics are used for the in-sample validation of the restricted and

extended model specifications (a) − (g). The test statistics are computed on the basis

of maximum likelihood estimates of the parameter vector ψ. Under standard regularity

conditions and for sufficiently large sample sizes, the reported t-test and likelihood ratio

statistics converge in distribution to a standard normal and a χ2 distribution with k de-

grees of freedom, where k is the number of restrictions, respectively. The test statistics

are reported in Table 2.2.

A major aspect of our basic model (a) is the inclusion of time-varying strengths of

attack and defence. Model (b) reduces the strengths of attack and defence to fixed coeffi-

cients. By comparing models (a) and (b) using the likelihood ratio statistic, we conclude

that model (b) is not supported by our data set. Another key aspect of our basic model

is the use of the bivariate Poisson distribution rather than the double-Poisson distribu-

tion as adopted in model (c). The test statistic for model (c) provides clear evidence

that our data set favours the model with dependence between the match results. With

respect to model (d), we find that the estimated dependence coefficient γ∗ in expression

(2.20) is significant. However, the dependence as specified by Goddard (2005) is not

strongly favoured in our data set since the maximised likelihood value for basic model (a)

is somewhat higher than the maximised likelihood value for model (d).

To account for the overrepresentation of draws in the data set, we consider the diagonal

inflation model (e). The maximum likelihood estimate of ω in expression (2.6) is not

significant although the t-test statistic is positive and close to the critical value of 1.96.

Hence the number of draws 0-0 and 1-1 implied by our basic model is somewhat too small

for our data set.

Model (f) allows for breaks in the strengths of attack and defence after the winter and

summer holidays in the football calendar. It requires the estimation of four additional

variances in the parameter vector. The estimated variances for the winter breaks are not

significant and close to zero. Hence we have re-estimated the model with two additional

variances for the summer break only. The two estimated variances have almost equal

values. In our final specification we therefore restrict the two summer break variances to

be equal to each other. The restricted variance estimate is highly significant as indicated

by the reported t-test statistic in Table 2.2. It also affects the estimates of the other
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variances in the model. In particular, the dynamic coefficients for attack, φξ and σ2
ξ are

estimated to be close to one and zero respectively. It implies that the strength of attack

is close to a constant within each season and its evolution over time behaves as a step

function with breaks at the beginning of each football season. The dynamic coefficients

for the strength of defence are not affected in the same way. The strength of defence

continues to vary within the season at a slow pace. We present the estimated patterns of

attack and defence of Manchester United and Manchester City from model (f) in Figure

2.2. We can compare these patterns with those presented in Figure 2.1 for our basic

model (a). The patterns for a selection of other teams in the English Premier League are

presented in the Appendix.

Finally, we verify whether the home ground advantage is different for the larger teams

in the English Premier League. The home ground advantage parameters δ1 and δ2 in model

(g) are estimated as an extension of our basic model. The null hypothesis H0 : δ1 = δ2

cannot be rejected given the low value of the reported t-test in Table 2.2. Hence the home

ground advantage is not significantly different for the larger teams in our data set.

Attack strength +/- 1SE 

2003 2005 2007 2009 2011

0.00

0.25

0.50

0.75 Manchester City
Attack strength +/- 1SE Defence strength +/- 1SE 

2003 2005 2007 2009 2011

0.25

0.50

0.75 Manchester City
Defence strength +/- 1SE 

Attack strength +/- 1SE 

2003 2005 2007 2009 2011

0.25

0.50

0.75 Manchester Utd
Attack strength +/- 1SE Defence strength +/- 1SE 

2003 2005 2007 2009 2011

0.25

0.50

0.75

1.00 Manchester Utd
Defence strength +/- 1SE 

Figure 2.2: Strengths of attack and defence of the two highest ranking teams at the end of the 2011-2012
season of the English Premier League. The stepwise evolution of the patterns is due to an additional
variance for the strengths of attack and defence at the start of the new football season after the summer
break. The solid lines are the estimated strengths of attack and defence. The dotted lines provide the
symmetric confidence intervals based on one standard error. The bars represent the number of goals
scored and conceded from the 2003-2004 towards the 2011-2012 season which accounts for 404 time
periods.
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Out-of-sample evaluation

For the out-of-sample evaluation of the considered models, we carry out a one-step ahead

forecasting study. For each model, we forecast the outcome of the matches in the football

seasons 2010−2011 and 2011−2012 using a so-called rolling window strategy. We estimate

the parameter vector for the time series of all match results from the seven seasons. At

time T , the week before the first week of football season 2010−2011, we forecast the match

outcomes for the first week of the season 2010−2011, i.e. time T + 1, based on a specific

model and the estimated parameter vector. We then can compare the forecasts with the

actual outcomes. The differences between realisations and forecasts are collected in the

20× 1 forecast error vector eT+1. Next we compute the sum of squared errors, which we

take as our loss function, that is LT+1 = e′T+1eT+1. This loss function is computed for

each model m, i.e. L
(m)
t+1 for m = a, . . . , g. The difference in accuracy compared to our

main model can be measured as d
(m)
T+1 = L

(a)
T+1 − L

(m)
T+1 for m = b, . . . , g. For the next

period T +1, we re-estimate the parameter vector by including the match results of time

T + 1 in our data but removing the match results in the first week of our sample, seven

years ago. Hence the estimation sample length remains constant when re-estimating the

parameter vector for producing the next forecasts. This procedure of re-estimation and

forecasting is then repeated for each week in the two football seasons that we use for our

out-of-sample evaluations.

The difference in the one-step-ahead predictions of the models, d
(m)
j , for j = T +

1, . . . , T+N with out-of-sample length N , are compared with each other with the Diebold-

Mariano (DM) test statistic; see Diebold and Mariano (1995). The test is designed for

the null hypothesis of equal out-of-sample predictive accuracy between two competing

models. The DM test statistic for model m is computed by (i) taking the average of the

out-of-sample computed values d
(m)
j ’s over time, for each m = b, . . . , g; (ii) standardizing

this average by a consistent measure of the long-term variance of dj. We require the long-

term variance because the time series of dt+1 is serially correlated by construction since at

least only one of the two competing models can be correctly specified. In general, the DM

test statistic should not be applied when we compare the predictive accuracy between two

nested models since the numerator and denominator of the DM test statistic have their

limits at zero, when the in-sample and out-of-sample dimensions increase. However, it

is argued by Giacomini and White (2006) that the DM test statistic can still be applied

as long as the forecasts are generated with a rolling window and for a relatively short

out-of-sample horizon. Diebold and Mariano (1995) show that the DM test statistic is

asymptotically distributed as a standard normal random variable. Hence, we reject the

null hypothesis of equal predictive accuracy at the 5% significance level if the absolute

value of the DM test statistic is larger than 1.96. The resulting loss function values and

DM test statistics in our out-of-sample forecasting study are reported in Table 2.2.
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Table 2.2: We compare the in-sample fit and out-of-sample forecasting accuracy for seven model specifi-
cations. The number of parameters #pars (p1/p0) is given for each model (p1) and for the model under
the null hypothesis H0 (p0), see Section 2.3.5 for further details. The in-sample results are based on
seven seasons of the English Premier League (from 2003-2004 to 2009-2010). The t-tests are computed
and presented for the hypotheses with a single restriction while the likelihood ratio (LR) test is presented
for the multiple restriction in (b). The out-of-sample results are based on the two seasons 2010-2011 and
2011-2012. The squared loss functions and the Diebold-Mariano (DM) tests are based on one-step ahead
forecasts from a rolling window sample. The test statistic values with ∗∗ indicate significance at the 5%
significance level.

Model specification #pars H0 LR test t-test Sqr loss DM

(a) Basic model 6 2087.10
(b) ... time-invariant signals 6/2 123.04∗∗ 2190.80 −3.67∗∗
(c) ... no dependence 6/5 γ = 0 4.16∗∗ 2087.90 −0.62
(d) ... time-varying dependence 6/5 γ∗ = 0 3.84∗∗ 2088.60 −1.51
(e) Diagonal inflation model 7/6 ω = 0 1.85 2086.70 0.91
(f) Summer break for signals 7/6 σ2κ,S = 0 2.84∗∗ 2098.50 −1.75
(g) Two home ground advantages 7/6 δ1 = δ2 0.35 2089.00 −1.08

The out-of-sample squared loss function values reported in Table 2.2 show that model

(e) has the smallest loss compared with all other models. Except for models (b) and (f),

the forecast losses of the other models are only small and similar in size. This finding

is confirmed by the reported DM test statistics which indicate that we cannot reject the

hypothesis any of the models (c), (d), (e) and (g) are equally accurate as model (a) in our

out-of-sample forecasting exercise. Although the same conclusion can be drawn for model

(f), this model is closest to rejection and appears to provide less accurate forecasts. The

stepwise evolution of the strengths of attack and defence from season to season may have

a negative impact on its forecasting ability. Given the non-significant DM test statistic

for model (c) and despite the in-sample significance of the dependence parameter γ, it

appears that the presence of γ does not have much impact on the out-of-sample forecast

performance of the basic model. This finding may be due to our choice of a relatively

short out-of-sample forecasting window. The only significant DM statistic is reported for

model (b) which is consistent with our in-sample rejection of the null hypothesis of time

invariant signals. Overall we can conclude that the model extensions of Section 2.2.3 do

not lead to significant improvements in their forecast performance except for model (e).

However, the extensions may be more beneficial for longer forecast horizons and for other

data sets.

2.4 Out-of-sample performance in a betting strategy

Finally, we verify the out-of-sample performance of our basic model (a) in a realtime

study into the betting on a win, a loss or a draw of the home team for a weekly selection

28



2.4. OUT-OF-SAMPLE PERFORMANCE IN A BETTING STRATEGY

of matches during the two seasons of 2010−2011 and 2011−2012. The betting on matches

in the English Premier League is immense popular and is a truly world-wide activity. In

our betting evaluation study we carry out the same out-of-sample rolling window strategy

as used in the previous section. At time T , we estimate the model parameters and

forecast the intensities λx,ij,T+1 and λy,ij,T+1. The resulting full distributional properties

of the next ten games implied by the bivariate Poisson model (2.1), with its unknown

parameters replaced by their estimates, enables us to compute the probabilities of all

possible outcomes of a match. Hence we can compute the probabilities of a win, a loss

or a draw, for each match. We can now visit the bookmaker’s office and bet on matches

accordingly.

Different betting strategies can be pursued and we illustrate our basic and conservative

strategy by using an example. Consider the first match of the out-of-sample 2010−2011
season where Aston Villa plays against West Ham. The intensity forecasts are λx,ij,t+1 =

1.7272 and λy,ij,t+1 = 0.8127 which correspond to win, loss and draw probabilities for the

home team of 0.591, 0.174 and 0.235 respectively. The bookmaker offers the following

odds for the home team: 1.96 for a win, 4.03 for a loss and 3.30 for a draw. For each

outcome, the expected value (EV) of a unit bet on an event A is given by

EV(A) = P (A) {odds(A)− 1} − P (Ac)× 1 = P (A)odds(A)− 1,

where event A represents a win, a loss or a draw of the home team, Ac is the complement

of A, P (A) is the probability of event A and odds(A) is the bookmaker’s odds for event A.

In our illustration we obtain 0.159, −0.300 and −0.224 as expected values for a unit bet on

a win, a loss and a draw for the home team respectively. A basic strategy could be to bet

on all events for which the expected value is positive, EV(A) > 0. In this illustration we

bet on a win for the home team. However, we shall consider a less risky betting strategy

which is based on the following guidelines. First, we bet only on ‘quality’ events which are

defined as bets with EVs that exceed some benchmark τ , i.e. EV(A) > τ for some τ > 0.

Second, we also consider longshot events which are defined as small probability events

with very high odds. The probability of losing the bet on a longshot is of course high.

We consider events with odds higher than 7 as longshots. Our basic strategy consists of

betting a unit value on each quality event for some value of τ . We also bet on longshots

but reduce the bet to a fixed value of 0.3 units. The definition of a longshot and the

bet sizes in our basic betting strategy are assumptions and are not based on optimizing

payoff or minimizing variance betting strategies. A betting strategy that determines which

proportion of the bettors bankroll should be risked in a sequence of positive expected value

bets to maximize the growth rate of the bankroll was determined by Kelly (1956). Since

this betting exercise is only meant as an illustration of the performance of our model we

refrain from more advanced betting strategies like the Kelly betting strategy.
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The 2010−2011 and 2011−2012 season of the English Premier League consist of 760

matches and therefore 760 is the maximum number of betting opportunities. It is, how-

ever, not guaranteed that a match is a betting opportunity since EV(A) can be negative

for all possible match outcomes (win, draw, loss). The expected and actual profit for

all our bets in the 2010−2011 and 2011−2012 seasons can be determined for a range of

τ values. Confidence intervals for the mean return are obtained by a bootstrap related

method in which football matches are sampled with replacement. We emphasize that we

do not take model or parameter uncertainty into account here but we solely focus on the

effect of ‘(un)lucky betting streaks’. Match outcomes, bookmakers’ odds and time-varying

parameters (and thereby match probabilities) are fixed. The only uncertainty comes from

the drawing of 760 matches, with replacement, out of the pool of 760 matches which is

repeated a 1000 times.

The odds for betting are offered by many different bookmakers. We consider the aver-

age odds taken from 28 to 40 bookmakers (depending on the match) which are collected

online at http://www.football-data.co.uk. In the example match between Aston Villa

and West Ham, the implied probabilities given by the bookmakers’ odds were, on aver-

age, 1/1.96, 1/4.03 and 1/3.30 for a win, a loss and a draw respectively. The sum of

these probabilities is 106.1%. Everything above the 100% is the profit of the bookmaker

(or the bookmaker’s edge) which is 7% on average. This means that the expected profit

under random betting of a unit value is −0.07. Random betting is referred to as having

a unit bet on a win, a loss or a draw randomly chosen for each match. Hence our betting

strategy must achieve an overall return that overtakes the bookmaker’s edge of 7% but

also generates a positive overall return.

In Figure 2.3 we present the outcomes of our betting strategy for various values of τ .

In the first panel (i) the overall return is presented as the full curve and is compared with

the negative overall return of 7%, the bookmaker’s edge. The 90% bootstrap confidence

interval is represented by the dotted curves. A similar graph was presented by Dixon and

Coles (1997). For τ = 0, the majority of betting opportunities is marked by the model

as quality bets, i.e. EV(A) > 0. We start to obtain positive mean returns at τ > 0.12

and although the confidence interval often includes 0, we expect to outperform a random

betting strategy for higher values of τ . The number of betting opportunities becomes

small, less than 40, for τ = 0.45. Hence the generated mean returns for τ > 0.45 are not

reliable as reflected by the bootstrap confidence intervals. We therefore do not display

mean returns for τ > 0.45 in Figure 2.3.

We observe that, for small values of τ , the forecasts of our model imply a zero return

on average and a negative return on average also finds support in the 90% interval. When

the benchmark τ for a quality bet increases, the number of actual bets decreases in our

strategy as is shown in panel (ii) of Figure 2.3. However, the quality bets from a higher
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Figure 2.3: Returns of a betting strategy for the 2010-2011 and 2011-2012 seasons of the English Premier
League: (i) average return from betting on match outcomes by our strategy for various values of the
threshold τ ; the dashed line represents the average return under random betting which we have established
at −0.07; the dotted curves are 90% bootstrap confidence intervals. (ii) number of quality bets for various
values of τ out of the 760 betting opportunities in the two seasons.

benchmark will also provide us with a higher return on average as we learn from panel (i).

The average return curve in Figure 2.3(i) is not smooth in τ . This is partly due to

the role of longshots in this exercise. For example, at τ = 0.11, we have 74 longshots

from which eight have been correct, resulting in a net profit of 5.07 units. Even when we

bet with 0.3 units for longshots, the betting strategy remains highly variable because for

another value of τ , another small number of correct longshots is obtained that can lead

to a very different net profit. A more advanced betting strategy takes into account the

variation of odds. We abstain from such more advanced strategies since we only want

to illustrate the performance of our model in a basic and simple betting strategy. The

presented results can be used as a benchmark for the more advanced betting strategies

based on our model. We regard this validation study as only an example of how our

modelling framework can be used in practice. Results are obtained only for the 2010−2011
and 2011−2012 seasons of the English Premier League and results may differ greatly for

other seasons and/or football competitions.
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2.5 Conclusions

We have presented a non-Gaussian state space model for the analysis and forecasting of

football matches. Our basic model takes a match result as a pairwise observation that is

assumed to come from a bivariate Poisson distribution with intensity coefficients for the

number of goals scored by the two teams and a dependence coefficient for measuring the

correlation between the two scores. The intensity coefficients depend on the strengths of

attack and defence of the teams and they are allowed to evolve stochastically over time.

The intensities are also subject to a fixed coefficient for home ground advantage. The

resulting dynamic bivariate Poisson model is a novelty and can be used for the analysis

of match results in many different competitions for team sports. Several extensions of

the basic model have been considered including amendments for the overrepresentation

of draws in data sets, breaks in strengths of attack and defence after winter and summer

breaks, and a team-specific home advantage. Our empirical study is for a data set of match

results from nine seasons of the English Premier League. The two seasons 2010−2011 and

2011−2012 are used as an out-of-sample evaluation period for the forecasting of football

match results. The model-based forecasts are of sufficient accuracy to beat a random

betting strategy and can be used as the basis for a more advanced betting strategy. The

confidence interval for the return on betting often includes zero return which can be

viewed as a sign of market efficiency. The betting market for the English Premier League

is also a liquid betting market, especially when compared to betting markets for other

football leagues.

Although we have presented promising results for our basic model and some of its ex-

tensions, we believe that further improvements can be made in different directions. First,

other dynamic model specifications for the strengths of attack and defence can be con-

sidered such as random walk or long memory processes. Second, our statistical modelling

framework only uses match results as data. The forecasting performance of the model

can be further improved by adding more information about the matches. For example,

potential explanatory variables for match results are the duration between matches, the

traveling distance of the visiting team and shots on target which can be included as covari-

ates or be part of a mixed measurement framework to increase forecasting results further.

Third, our statistical analysis is carried out from a classical perspective. Bayesian Markov

Chain Monte Carlo methods can be used to obtain predictive densities that account for

parameter uncertainty. Fourth, given the popularity of betting on football matches, the

odds provided by bookmakers are expected to be highly efficient. In such a liquid market

of football betting, one can easily find higher odds than the averages that we have used in

our study. More advanced betting strategies, like Kelly (1956) betting, that take account

of the variance of a bet can improve (long run) returns further.
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Appendices

The following appendices are part of the chapter ‘A dynamic bivariate Poisson model

for analysing football match results’ and are organised as follows. Appendix A, B and

C provide the specific details of the estimation methodology that we pursue in the main

chapter. Details are given on, likelihood evaluation, construction of the approximating

model and the derivatives for the model observation density. Appendix D provides further

computational details and Appendix E shows figures of the data used in the main chapter

and tables with strengths of attack and defence off all teams at different time points.

A Likelihood evaluation

Given our model specification for the time series of pairs of counts collected in y with

its dependence on the states in α, we can express the likelihood function �(ψ) as given

by (2.16). The individual observations and states at time t are indicated by yt and αt,

respectively; see the discussion in Section 2.4. We evaluate the integral numerically by the

method of importance sampling as developed by Shephard and Pitt (1997) and Durbin

and Koopman (1997), hereafter referred to as SPDK. A comprehensive treatment of the

method, together with other and related methods, is provided by (Durbin and Koopman,

2012, Part II). The SPDK method is based on an approximating linear Gaussian model

g(y, α;ψ) which allows us to compute the approximate likelihood function g(y;ψ) by

means of the Kalman filter and to simulate random samples for α from g(α|y;ψ) by means

of the simulation smoother; see the discussions in Jungbacker and Koopman (2007). The

simulated random samples for α will give a better support to y although they come from

an approximating model.

The likelihood function of the Gaussian model g(y, α;ψ) = g(y;ψ)g(α|y;ψ) can be

expressed as

�g(ψ) = g(y;ψ) =
g(y, α;ψ)

g(α|y;ψ) =
g(y|α;ψ)p(α;ψ)

g(α|y;ψ) , (2.21)

since p(α;ψ) ≡ g(α;ψ). Substituting p(α;ψ) = g(y;ψ)g(α|y;ψ)/g(y|α;ψ) into (2.16), we

obtain

�(ψ) = g(y;ψ)

∫
p(y|α;ψ)
g(y|α;ψ)g(α|y;ψ)dα = �g(ψ)Eg

{
p(y|α;ψ)
g(y|α;ψ)

}
, (2.22)

where Eg refers to expectation with respect to the Gaussian density g(α|y;ψ). This

method has proved to work effectively for multivariate time series models; see, for example,

Koopman and Lucas (2008). In our model specification, the individual observations yt

are independent for given αt as implied by (2.12) for t = 1, . . . , n. Hence we can also

assume that g(y|α;ψ) =∏n
t=1 g(yt|αt;ψ). The construction of an approximating model is

discussed in Appendix B.
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For a given approximating model, we estimate the likelihood function via Monte Carlo

simulation as

�̂(ψ) = �g(ψ)
1

M

M∑
i=1

wi, wi =
p(y|αi;ψ)

g(y|αi;ψ)
, αi ∼ g(α|y;ψ), (2.23)

where wi is referred to as an importance weight, �g(ψ) is obtained from the Kalman filter

and αi is computed by the simulation smoother for i = 1, . . . ,M . We can refer to �̂(ψ) as

the importance sampling estimate of the likelihood function. For the purpose of likelihood

maximisation with respect to ψ, it is preferred to work with the loglikelihood function.

Taking the log of �̂(ψ) in (2.23) introduces a bias that can be accounted for in the usual

way; see Durbin and Koopman (1997).

The effectiveness of the importance sampling method for likelihood evaluation relies

on the properties of the importance sampling weight function wi = w(y, α;ψ); see Geweke

(1989) who provides conditions for w(y, α;ψ) under which a central limit theorem is valid

for the estimate �̂(ψ). An important condition is the existence of a variance for weight

function w(y, α;ψ). Based on a sample of importance weights w1, . . . , wM , Koopman,

Shephard, and Creal (2009) discuss diagnostic test statistics to validate the existence of

a variance for the importance sampling weights.

B Construction of approximating model

For the implementation of the SPDK importance sampling method, the approximating

linear Gaussian state space model is given by

g(y, α;ψ) = g(y|α;ψ)g(α;ψ) = g(α;ψ)
n∏

t=1

g(yt|αt;ψ), (2.24)

with g(α;ψ) the density of the dynamic state process (2.11) and we let g(yt|αt;ψ) be

represented by the linear Gaussian model equation

yt = atδ +Wtαt + ct + εt, εt ∼ NID(0, Vt), t = 1, . . . , n, (2.25)

or more explicitly

g(yt|αt;ψ) = NID(atδ +Wtαt + ct, Vt), t = 1, . . . , n, (2.26)

where vector at has element 1 if the number of goals in the corresponding element of yt

is from a home team and 0 otherwise, matrix Wt, with elements of 1s, 0s and -1s, selects

the attack (+1) and defence (-1) strengths of the relevant teams, and mean correction
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ct and variance Vt are selected such that the first and second derivatives of logdensities

log p(yt|αt;ψ) and log g(yt|αt;ψ) with respect to αt are equal to each other, for t = 1, . . . , n.

We note that atδ + Wtαt represents the signal as also defined in (2.13). Closed-form

solutions of these two sets of n equalities are not available and hence we solve them

iteratively with the use of the Kalman filter and smoother; more details and discussions

are given by Jungbacker and Koopman (2007). The approximating model g(y, α;ψ) is

effectively a second-order Taylor expansion of the true model and it is also equivalent

to computing the mode of p(α|y;ψ) for α; see the discussions in Durbin and Koopman

(1997), So (2003) and Jungbacker and Koopman (2007). Our application for the bivariate

Poisson model is not straightforward and we require to provide some further clarification.

We will briefly discuss these necessary details for a successful implementation next.

To obtain values for ct and Vt in (2.25), we need to solve the equations

ġt(αt) = ṗt(αt), g̈t(αt) = p̈t(αt), t = 1, . . . , n,

where

ṗt(αt) =
∂ log p(yt|αt;ψ)

∂αt

, p̈t(αt) =
∂2 log p(yt|αt;ψ)

∂αt∂α′
t

,

and ġt(αt) and g̈t(αt) are defined similarly. It follows straightforwardly that

ġt(αt) ≡ W ′
tV

−1
t (yt − ct − atδ −Wtαt), g̈t(αt) ≡ −W ′

tV
−1
t Wt, t = 1, . . . , n.

The derivatives for log p(yt|αt;ψ) are more intricate and we develop expressions for ṗt(αt)

and p̈t(αt) in the next section. Hence we obtain expressions for ct and Vt by

Vt = −Wtp̈
−1
t (αt)W

′
t , ct = yt−atδ−Wt

[
αt + p̈−1

t (αt)ṗt(αt)
]
, t = 1, . . . , n. (2.27)

The mean ct and variance Vt depend on the state vector αt and hence we solve these

equations iteratively. For starting values of ct and Vt, we construct the linear Gaussian

state space model for g(y, α;ψ) and apply the Kalman filter smoother to obtain α̂ =

Eg(α|y;ψ). From the value α = α̂, we can obtain new values for ct and Vt and can

construct or update a new approximating model. The Kalman filter smoother produces

a new α̂ and we iterate this process until convergence. When this process has converged,

the linear Gaussian model with the final values for ct and Vt represents the approximating

model g(y, α;ψ) as given by (2.25). It is well established that the Kalman filter and

related methods can treat missing observations straightforwardly; see the discussions in

(Durbin and Koopman, 2012, Part I).
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C The derivatives for the model observation density

Equation (2.12) implies that the matches played at time t, for a given αt, are treated as

independent events. Hence we can treat each match separately. A match is for home team

i and visiting team j. The scoring intensities for both teams are collected in the 2×1 vector
λijt = (λx,ijt, λy,ijt)

′ which are functions of αt, that is λijt = sij(αt) since λx,ijt = sx,ij(αt)

and λy,ijt = sy,ij(αt); see the discussion in Section 2.3. The first derivative of the log of

the bivariate Poisson density (2.1) with respect to αt can be obtained via the chain rule

as
∂ log p(X, Y ;λx,ijt, λy,ijt; γ)

∂αt

= ṡij(αt)× ṗλ(λijt),

where X and Y are specific elements of yt and represent the numbers of goals scored by

teams i and j, respectively, at time t, and where

ṡij(αt) =
∂λ′

ijt

∂αt

, ṗλ(λijt) =
∂ log p(X, Y ;λx,ijt, λy,ijt; γ)

∂λijt

.

The second derivative can be obtained in the same way, that is

∂2 log p(X, Y ;λx,ijt, λy,ijt; γ)

∂αt∂α′
t

= ṡij(αt)× p̈λ(λijt)× ṡij(αt)
′,

where

p̈λ(λijt) =
∂2 log p(X, Y ;λx,ijt, λy,ijt; γ)

∂λijt∂λ′
ijt

.

An expression for ṡij(αt) is obtained easily for link functions sx,ij(αt) and sy,ij(αt) as given

by (2.3).

The general expressions for ṗλ(λijt) and p̈λ(λijt) follow from (2.1) and are decomposed

as

ṗλ(λijt) =

(
ṗλx(λijt)

ṗλy(λijt)

)
, p̈λ(λijt) =

[
p̈λxx(λijt) p̈λxy(λijt)

p̈λxy(λijt) p̈λyy(λijt)

]
. (2.28)

The first derivative elements are given by

ṗλx(λijt) = λ−1
x,ijt[X − λx,ijt − U(1, λijt)], ṗλy(λijt) = λ−1

y,ijt[Y − λy,ijt − U(1, λijt)],

where U(m,λ) = S(m,λ)/S(0, λ) with

S(m,λ) =

min(X,Y )∑
k=0

(
X

k

)(
Y

k

)
k! km

(
γ

λx λy

)k

,
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and with λ = (λx, λy)
′ for m = 0, 1, 2. We note that

∂S(m,λ)

∂λu

= −λ−1
u S(m+ 1, λ), u = x, y, m = 0, 1,

and S(m,λ) = 0 when γ = 0, for m = 1, 2. We further observe that S(0, λ) = 1 when

k = 0 so that function U(m,λ) is properly defined for all γ ≥ 0. The second derivative

elements are given by

p̈λxx(λijt) = −λ−1
x,ijt

[
1 + ṗλx(λijt)− λ−1

x,ijtU̇(λijt)
]
,

p̈λyy(λijt) = −λ−1
y,ijt

[
1 + ṗλy(λijt)− λ−1

y,ijtU̇(λijt)
]
,

p̈λxy(λijt) = λ−1
x,ijtλ

−1
y,ijtU̇(λijt),

with

U̇(λ) = U(2, λ)− U(1, λ)2,
∂U(1, λ)

∂λu

= −λ−1
u U̇(λ), u = x, y.

Finally, it follows that

ṗt(αt) =
∑
i,j∈yt

ṡij(αt)× ṗλ(λijt), p̈t(αt) =
∑
i,j∈yt

ṡij(αt)× p̈λ(λijt)× ṡij(αt)
′,

where the notation i, j ∈ yt implies that we consider all matches played at time t with

a home team i and a visiting team j, for t = 1, . . . , n. First and second derivatives of

the diagonal inflated Bivariate Poisson distribution, discussed in section 2.3 of the main

chapter, can be derived straightforwardly from the results in this section.

D Computational details

Selection matrix

Assume a competition with four teams. At time t we have the following match up; team

1 against team 3 and team 2 against team 4. The log scoring intensities (or signal) θt,

selection matrix Wt and state vector αt are then given by⎛⎜⎜⎜⎝
θ1t

θ2t

θ3t

θ4t

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
δ

δ

0

0

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎣
1 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 −1
0 0 1 0 −1 0 0 0

0 0 0 1 0 −1 0 0

⎤⎥⎥⎥⎦αt. (2.29)

with

αt =
(
ξ1t ξ2t ξ3t ξ4t β1t β2t β3t β4t

)′
(2.30)
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Signal extraction of strengths of attack and defence

We use simulation methods for the signal extraction of the strengths of attack and defence

ξit and βit in a similar fashion as for the Monte Carlo maximum likelihood estimation of

the parameters φκ,i, σ
2
κ,i, γ and δ, with i = 1, . . . , J , based on the simulated likelihood

function (2.23). However, the same drawbacks apply as for likelihood evaluation via

(2.23). For a given value of the parameter vector ψ, we estimate the strengths of attack

and defence in the state vector α by evaluating the conditional expectation α̂ = E(α|y;ψ)
where

E(α|y;ψ) =
∫

αp(α|y;ψ)dα = p(y;ψ)−1

∫
αp(α, y;ψ)dα = p(y;ψ)−1

∫
αp(y|α;ψ)p(α;ψ)dα.

Given the Monte Carlo method for computing the observation density p(y;ψ) and given

the known expressions for p(y|α;ψ) and p(α;ψ) above, we can estimate α̂ by the same

Monte Carlo simulation importance sampling method. This argument can be generalized

to the estimation of any known (linear and nonlinear) function of the state vector α. It

implies that we can evaluate the estimated variance, percentile and distribution of any

element of α but also that we can evaluate the estimate of the intensities λx,ijt and λy,ijt.

Negative definite variance matrix

The construction of the approximating model and the generation of the importance sam-

ples require the application of the Kalman filter smoother applied to the linear Gaussian

model (2.25). Since matrix Vt in (2.27) is a variance matrix, we require that Vt is positive

definite or that p̈−1
t (αt) is negative definite which effectively insists that the 2× 2 matrix

p̈λ(λ) in (2.28) is negative definite. Jungbacker and Koopman (2007) have argued that

even when Vt is not positive definite, the application of the Kalman filter and the corre-

sponding computations are still appropriate for our purposes. However, it is insightful to

verify under which conditions p̈λ(λ) in (2.28) is negative. We therefore need to verify the

determinant of p̈λ(λ). Without providing the details, we present in Figure 2.4 the values

of X and Y for which we obtain a positive definite matrix p̈λ(λ). In case γ = 0, the

variance Vt is well defined since the model reduces to a double Poisson which imposes a

proper variance; see (Durbin and Koopman, 2012, Chapter 10.6) for the details. In case

γ > 0, the variance Vt becomes negative when X and/or Y are large in relation to their

intensities λx and/or λy, respectively. The benchmark values can be deduced from Figure

2.4.
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Upper bound for correlation coefficient

Assume that X and Y are from the bivariate Poisson distribution with means λx+ γ and

λy + γ, respectively, where γ = ρ
√
mxmy with mx = λx + γ and my = λy + γ; see the

definitions in Section 2.1. Since λx, λy ≥ 0, we have mx ≥ γ and hence ρ ≤ √
my/mx.

Similarly, we have my ≥ γ and ρ ≤√
mx/my. The upper bound for ρ is given by

ρ ≤ min

{√
λx + γ

λy + γ
,

√
λy + γ

λx + γ

}
.
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Figure 2.4: The figure illustrates combinations of counts which generate positive, negative and indefinite
‘variances’ in the approximating model, for various values of λx, λy and γ. The areas below and left
from the lines correspond to counts that generate positive variances. The areas above and right from
the lines represent counts that provide negative or indefinite variances. The coefficient γ ranges from
0.05 to 0.20 with 0.05 increments. The panels are for (i) λx = λy = 1.0; (ii) λx = 1.5, λy = 1.0; (iii)
λx = 2.0, λy = 1.5; (iv) λx = 2.5, λy = 2.0.
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Figure 2.5: Histograms of home and away goals in the English Premier League over nine seasons ranging
from 2003-2004 to 2011-2012. The average of home goals and away goals is 1.5287 and 1.0994, respectively.
Averages are calculated as the average number of goals scored by the home and visiting teams in official
time. No matches are played in overtime or finished with penalties.
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Figure 2.10: The panels show strengths of attack and defence of the two lowest ranking teams at the end
of the 2011-2012 season of the English Premier League. The bars represent the number of goals scored
and conceded from the 2003-2004 towards the 2011-2012 season which accounts for 404 time periods.
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Figure 2.11: The panels show strengths of attack and defence of two low ranking teams at the end of the
2011-2012 season of the English Premier League with summer breaks. The bars represent the number of
goals scored and conceded from the 2003-2004 towards the 2011-2012 season which accounts for 404 time
periods.
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Table 2.3: The table reports average strength of attack ξ̄ = 1
n

∑n
t=1 ξit for team i, . . . , J of all teams

active in the 2003-2004 to 2011-2012 season of the English Premier League. Standard errors are given by
SE(ξ̄) = 1

n

∑n
t=1 SE(ξit). The same analogy applies for β̄. Lowest ξ̄ and β̄ are both from Derby County

with average strengths of −0.45 and −0.42 respectively. The one season (2007-2008) Derby County played
in our dataset, enters the statistical books as one of the worst in the Premier League ever with 1 win, 8
draws and 29 losses. Derby County was already relegated in March with the last match of the Premier
League played on May 11, 2008. The team with the highest ξ̄ is Manchester United with 0.49 whereas
Chelsea has the highest β̄ with 0.68. Columns six and eleven show average number of goals scored and
conceded which correspond with ξ̄ and β̄.

Teams ξ̄ SE(ξ̄) min ξ max ξ avg sc β̄ SE(β̄) min β max β avg con

Arsenal 0.48 0.09 0.42 0.52 1.94 0.40 0.10 0.26 0.50 0.96
Aston Villa 0.06 0.10 -0.06 0.19 1.29 0.10 0.09 0.07 0.13 1.29
Birmingham -0.18 0.11 -0.21 -0.15 1.02 0.05 0.10 0.00 0.11 1.36
Blackburn 0.00 0.10 -0.05 0.06 1.20 -0.01 0.09 -0.14 0.09 1.46
Blackpool 0.11 0.18 0.07 0.15 1.45 -0.26 0.17 -0.30 -0.23 2.05
Bolton 0.00 0.10 -0.05 0.05 1.20 -0.01 0.09 -0.17 0.11 1.46
Burnley -0.06 0.18 -0.09 -0.04 1.11 -0.33 0.15 -0.38 -0.28 2.16
Charlton -0.09 0.15 -0.13 0.00 1.11 -0.05 0.13 -0.07 0.00 1.47
Chelsea 0.44 0.09 0.37 0.55 1.89 0.68 0.10 0.44 0.82 0.74
Crystal Palace -0.07 0.19 -0.09 -0.07 1.08 -0.10 0.17 -0.12 -0.09 1.63
Derby County -0.45 0.18 -0.51 -0.37 0.53 -0.42 0.15 -0.46 -0.38 2.34
Everton 0.07 0.09 -0.04 0.14 1.31 0.23 0.10 0.11 0.30 1.15
Fulham -0.03 0.10 -0.11 0.07 1.18 0.08 0.09 0.00 0.16 1.34
Hull -0.18 0.16 -0.23 -0.14 0.96 -0.20 0.14 -0.23 -0.17 1.83
Leeds -0.08 0.19 -0.11 -0.06 1.05 -0.30 0.18 -0.35 -0.25 2.08
Leicester 0.01 0.19 0.00 0.03 1.26 -0.13 0.17 -0.16 -0.11 1.71
Liverpool 0.25 0.09 0.16 0.37 1.56 0.48 0.10 0.38 0.55 0.89
Man City 0.17 0.09 -0.02 0.48 1.47 0.22 0.09 0.14 0.39 1.16
Man United 0.49 0.09 0.33 0.58 1.98 0.61 0.11 0.55 0.66 0.78
Middlesbrough -0.08 0.12 -0.17 0.04 1.14 0.03 0.11 0.00 0.06 1.38
Newcastle 0.04 0.10 -0.02 0.14 1.25 0.04 0.09 -0.02 0.13 1.38
Norwich 0.01 0.15 -0.06 0.08 1.24 -0.25 0.13 -0.30 -0.19 1.88
Portsmouth -0.10 0.11 -0.17 -0.03 1.10 -0.02 0.10 -0.07 0.06 1.43
QPR -0.06 0.19 -0.07 -0.04 1.13 -0.12 0.18 -0.14 -0.10 1.74
Reading 0.01 0.15 -0.03 0.05 1.22 -0.03 0.13 -0.05 -0.01 1.49
Sheffield Utd -0.20 0.19 -0.24 -0.16 0.84 -0.02 0.17 -0.04 0.00 1.45
Southampton -0.02 0.18 -0.06 -0.01 1.17 -0.04 0.16 -0.06 0.04 1.46
Stoke -0.15 0.14 -0.18 -0.11 1.01 0.07 0.13 0.05 0.09 1.34
Sunderland -0.21 0.12 -0.32 -0.07 1.03 -0.06 0.10 -0.16 0.06 1.49
Swansea -0.04 0.19 -0.06 -0.03 1.16 0.07 0.18 0.03 0.09 1.34
Tottenham 0.19 0.09 0.04 0.27 1.47 0.15 0.09 0.09 0.22 1.24
Watford -0.26 0.19 -0.31 -0.20 0.76 -0.06 0.16 -0.07 -0.04 1.55
West Brom -0.13 0.12 -0.21 0.02 1.07 -0.13 0.10 -0.16 -0.08 1.63
West Ham -0.03 0.12 -0.06 0.01 1.14 -0.06 0.10 -0.15 -0.02 1.51
Wigan -0.15 0.11 -0.22 -0.08 1.01 -0.05 0.10 -0.13 0.01 1.54
Wolves -0.18 0.14 -0.20 -0.12 1.03 -0.23 0.11 -0.30 -0.17 1.85

Mean -0.01 0.14 -0.07 0.06 1.20 0.01 0.12 -0.05 0.07 1.49
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Table 2.4: The table reports strengths of attack and defence at the start of the denoted seasons. On
August 28, 2011 Manchester United defeated Arsenal by 8-2 and reached the highest strength of attack
the model identified (0.5748). During the 2004-2005 season Chelsea reached the highest defence strength
(0.8308).

Teams ’03 ξ ’05 ξ ’07 ξ ’09 ξ ’11 ξ ’03 β ’05 β ’07 β ’09 β ’11 β

Arsenal 0.49 0.49 0.45 0.52 0.43 0.50 0.49 0.44 0.35 0.27
Aston Villa 0.01 0.04 0.13 0.12 -0.01 0.12 0.09 0.12 0.13 0.08
Birmingham -0.15 -0.20 -0.18 -0.19 -0.19 0.11 0.08 0.04 0.05 0.01
Blackburn 0.00 -0.03 0.06 -0.03 -0.01 0.02 0.09 0.04 -0.05 -0.12
Blackpool 0.07 0.08 0.10 0.13 0.14 -0.23 -0.24 -0.25 -0.28 -0.30
Bolton 0.03 0.04 -0.02 -0.05 -0.01 0.06 0.10 0.02 -0.07 -0.15
Burnley -0.04 -0.06 -0.06 -0.07 -0.07 -0.28 -0.31 -0.33 -0.36 -0.36
Charlton 0.00 -0.07 -0.12 -0.11 -0.09 0.00 -0.05 -0.06 -0.06 -0.06
Chelsea 0.39 0.44 0.41 0.51 0.44 0.76 0.82 0.75 0.64 0.49
Crystal Palace -0.08 -0.08 -0.07 -0.08 -0.07 -0.11 -0.11 -0.11 -0.10 -0.09
Derby County -0.37 -0.44 -0.50 -0.47 -0.42 -0.38 -0.41 -0.44 -0.44 -0.41
Everton -0.03 -0.03 0.11 0.13 0.11 0.11 0.14 0.26 0.28 0.29
Fulham 0.07 0.03 -0.09 -0.08 -0.02 0.03 0.00 0.03 0.16 0.16
Hull -0.14 -0.15 -0.17 -0.22 -0.21 -0.17 -0.18 -0.19 -0.22 -0.21
Leeds -0.11 -0.09 -0.08 -0.07 -0.06 -0.35 -0.34 -0.30 -0.28 -0.26
Leicester 0.02 0.01 0.02 0.01 0.00 -0.16 -0.15 -0.14 -0.12 -0.11
Liverpool 0.17 0.19 0.32 0.36 0.21 0.43 0.49 0.55 0.49 0.40
Man City 0.07 0.02 0.02 0.26 0.46 0.15 0.18 0.17 0.22 0.37
Man United 0.33 0.41 0.51 0.55 0.57 0.56 0.60 0.65 0.63 0.57
Middlesbrough 0.00 0.02 -0.07 -0.17 -0.15 0.05 0.04 0.02 0.01 0.01
Newcastle 0.06 0.00 -0.01 0.02 0.12 0.12 0.10 0.02 -0.01 0.01
Norwich -0.05 -0.03 0.00 0.04 0.06 -0.27 -0.30 -0.26 -0.22 -0.19
Portsmouth -0.03 -0.06 -0.05 -0.16 -0.16 -0.02 -0.02 0.05 -0.03 -0.07
QPR -0.05 -0.05 -0.05 -0.06 -0.07 -0.11 -0.11 -0.12 -0.12 -0.13
Reading 0.03 0.04 0.03 -0.02 -0.02 -0.01 -0.02 -0.03 -0.04 -0.05
Sheffield Utd -0.20 -0.22 -0.23 -0.19 -0.16 0.00 -0.01 -0.02 -0.02 -0.03
Southampton -0.06 -0.03 -0.02 -0.01 -0.01 0.04 -0.05 -0.05 -0.05 -0.05
Stoke -0.11 -0.14 -0.15 -0.18 -0.16 0.05 0.05 0.06 0.09 0.09
Sunderland -0.28 -0.31 -0.25 -0.15 -0.08 -0.14 -0.15 -0.09 0.00 0.05
Swansea -0.03 -0.04 -0.05 -0.04 -0.06 0.03 0.05 0.07 0.08 0.09
Tottenham 0.04 0.12 0.25 0.25 0.27 0.09 0.14 0.09 0.17 0.22
Watford -0.24 -0.28 -0.29 -0.25 -0.22 -0.06 -0.06 -0.07 -0.05 -0.05
West Brom -0.18 -0.20 -0.18 -0.10 0.02 -0.13 -0.12 -0.14 -0.15 -0.11
West Ham 0.01 0.01 -0.04 -0.05 -0.05 -0.02 -0.02 -0.03 -0.06 -0.14
Wigan -0.08 -0.09 -0.18 -0.22 -0.16 0.00 0.01 -0.03 -0.08 -0.11
Wolves -0.20 -0.19 -0.20 -0.20 -0.13 -0.30 -0.27 -0.23 -0.19 -0.22

Mean 0.02 -0.02 -0.02 -0.01 0.01 0.01 0.02 0.01 0.01 0.00
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Chapter 3

Intraday Stochastic Volatility in

Discrete Price Changes

3.1 Introduction

Stochastic volatility is typically associated with the time-varying variance in time series of

daily continuously compounded rates of financial returns; for a review of the relevant liter-

ature, see Shephard (2005). The availability of high-frequency intraday trade information

has moved the focus towards the estimation of volatility using realised measures such as

realised volatility and realised kernels; see the seminal contributions of Barndorff-Nielsen

and Shephard (2001, 2002), Andersen, Bollerslev, Diebold, and Labys (2001) and Hansen

and Lunde (2006). Recent research has moved beyond the use of high-frequency data

for obtaining daily observations of (realised) variances to the actual modelling of high-

frequency price changes themselves at the intraday level. For example, Barndorff-Nielsen,

Pollard, and Shephard (2012) and Shephard and Yang (2015) formulate continuous-time

stochastic processes and design econometric models based on integer-valued Lévy pro-

cesses using Skellam distributed random variables. Price changes of a stock are measured

on a grid of one dollar cent and hence the tick-by-tick price change can be treated as a Skel-

lam distributed random variable that takes values in Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Also

Hansen, Horel, Lunde, and Archakov (2015) study the discrete nature of high-frequency

price changes and explore their dynamic properties by formulating a stochastic Markov-

chain process.

In our current study we develop a new statistical model that is empirically relevant

for the discrete time series of tick-by-tick financial data. Such data enjoy the increasing

interest of government regulators as well as industry participants given their potential

impact on the stability of financial markets. Our new model has three important features

that are needed to capture typical intraday properties of the data. First, the model builds
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on a dynamic modified Skellam distribution to make the model congruent with the realised

data that consist of discrete-valued tick-size price changes defined on the set of integers Z.

Second, our modified Skellam distribution features a doubly dynamic variance parameter.

The variance is allowed to be different over the course of a trading day due to intraday

seasonal patterns, which we capture by including a spline function over the time of day.

On top of this, we also allow for autoregressive intraday stochastic volatility dynamics to

capture any remaining volatility dynamics over the course of the trading day that cannot

be attributed to seasonal patterns. Third, our data requires a careful treatment of small

price changes of the order of 0, 1, or -1 dollar cents. For this purpose, we modify the

dynamic Skellam distribution by allowing for a probability mass transfer between these

different price change realisations. The probability mass transfer needs to vary over time

as well because the data reveal that trades with a zero price-change are not spread evenly

across the trading day. The resulting new model with these three features embedded

performs well in terms of fit, diagnostics, and forecasting power compared to a range of

alternative models.

Our model stands in a much longer tradition of dynamic models for count data. Early

contributions regarding the dynamic modelling of count data in N are reviewed in Durbin

and Koopman (2012, Ch. 9). An example is the contribution of Jorgensen, Lundbye-

Christensen, Song, and Sun (1999), who propose to model Poisson counts by a state

space model driven by a latent gamma Markov process. The Skellam distribution is

a natural extension to this literature, as it was originally introduced as the difference

of two Poisson random variables; see Irwin (1937) and Skellam (1946). However it is

not immediately clear how the treatment of Jorgensen et al. (1999) can be extended for

the difference of Poisson random variables as it requires an analytical expression of a

conditional distribution for a gamma variable given a Skellam variable. Other related

initial work is presented by Rydberg and Shephard (2003) who propose a dynamic model

for data in Z by decomposing stock price movements into activity, direction of moves,

and size of the moves. A very different approach to observations in Z is related to integer

autoregressive (INAR) models. Barreto-Souza and Bourguignon (2013), Zhang, Wang,

and Zhu (2009), Freeland (2010), Kachour and Truquet (2010), Alzaid and Omair (2014)

and Andersson and Karlis (2014) all propose extensions to the INAR model to enable the

treatment of variables in Z. These models are relatively simple to analyse as closed form

expressions for the likelihood are available. However, a major drawback of these models

in our current context is their lack of flexibility to incorporate missing observations and to

allow for a time-varying variance process. Most related to our work is the contribution of

Shahtahmassebi (2011) and Shahtahmassebi and Moyeed (2014) who adopt the Skellam

distribution to analyse time series data in Z within a Bayesian framework, whereas we use

simulated maximum likelihood methods. However, their work does not treat the specific
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features of intraday financial price changes such as intraday seasonality, long stretches

of missing values, and the time-varying modifications for the Skellam distribution. All

these features are key for our current analysis of the empirical data. In addition, our

new dynamic modified Skellam distribution may also provide a useful flexible modelling

framework in other empirical settings.

Our data consist of tick-by-tick discrete price changes for four stocks traded on the New

York Stock Exchange (NYSE). For each second, there is either a trade or a missing value,

such that the methodology needs to be able to account for possibly many missing values

efficiently. Our state space framework for the dynamic modified Skellam model meets

this requirement and can handle long time series that consist of a mix of observations and

missing values. The number of zeros in the data does not appear to match the prediction

by the standard Skellam distribution as it fails to pass various residual diagnostic tests.

We therefore introduce a modified Skellam distribution that allows for a time-varying

probability mass transfer and obtain a zero-deflated or zero-inflated Skellam model. This

appropriately modified Skellam model passes the diagnostic tests and is successful in our

forecasting exercise when compared to alternative models.

The new dynamic modified Skellam model has an intractable likelihood function. We

therefore reformulate the model in terms of a nonlinear non-Gaussian state space model

and estimate the static parameters by means of simulated maximum likelihood and impor-

tance sampling methods. In particular, we apply the numerically accelerated importance

sampling (NAIS) methods of Koopman et al. (2014) which is an extension of the effi-

cient importance sampling (EIS) method of Liesenfeld and Richard (2003) and Richard

and Zhang (2007). The NAIS methodology obtains the parameters of the importance

sampling distribution using Gauss-Hermite quadrature rather than simulation, and is ap-

plicable for high-dimensional state vectors. In Appendix D we provide the details of how

the NAIS methodology can be implemented to accommodate for both a time-varying

mean and variance. Long time series can pose particular efficiency problems for impor-

tance sampling methods; see Robert and Casella (2004, §3.3) and Cappé et al. (2005, §6.1
and 9.1). However, we find that the dynamic Skellam model can be efficiently treated

using the NAIS methodology for time series as long as 23,400 observations. The presented

diagnostic tests show that the importance sampling weights are well-behaved in almost

all cases.

The remainder of this chapter is organised as follows. We present the new dynamic

modified Skellam model in Section 3.2 and explain how it can be cast into a nonlinear

non-Gaussian state space form. Section 3.3 applies the dynamic Skellam model to four

stocks, traded on NYSE, for all trading days in the year 2012. This section also contains

information on model fit, diagnostic checks and forecasting performance. Section 3.4

concludes.
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3.2 The dynamic Skellam model

Consider a variable Yt that only takes integer values, i.e. Yt ∈ Z. Our aim is to analyse

a time series of realisations for Yt denoted by y1, . . . , yn where n is the length of the time

series. We consider the Skellam distribution for Yt, propose a novel modification of the

Skellam distribution, and specify dynamic processes for the mean and variance.

3.2.1 The Skellam distribution

The probability mass function (pmf) of a Skellam distributed random variable Yt ∈ Z with

parameters E(Yt) = μ ∈ R and Var(Yt) = σ2 ∈ R
+ is defined as Pr(Yt = yt) = p(yt;μ, σ

2),

with

p(yt;μ, σ
2) = exp

(−σ2
)(σ2 + μ

σ2 − μ

)yt/2

I|yt|(
√
σ4 − μ2), (3.1)

where I|yt|( · ) is the modified Bessel function of order |yt|; see Abramowitz and Stegun

(1972). The Skellam distribution was originally derived from the difference of two Poisson

distributions; see Irwin (1937) and Skellam (1946). We then have μ = λ1 − λ2 and σ2 =

λ1 + λ2, where λ1 and λ2 are the intensities of the two underlying Poisson distributions;

see also Alzaid and Omair (2010). Karlis and Ntzoufras (2009) show that the underlying

Poisson assumption can be dispensed with and that the Skellam distribution can also be

considered by itself as an interesting distribution defined on integers.

The Skellam distribution is right-skewed for μ > 0, left-skewed for μ < 0, and sym-

metric for μ = 0. If μ = 0, the Skellam pmf simplifies to

p(yt; 0, σ
2) = exp

(−σ2
)
I|yt|(σ

2). (3.2)

In the upper panels of Figure 3.1 we present examples of Skellam distributions for a range

of values for μ and σ2. The excess kurtosis of the Skellam distribution is 1/σ2 and the

Gaussian distribution is a limiting case of the Skellam distribution; see Johnson, Kotz,

and Kemp (1992) and references therein.

3.2.2 The modified Skellam distribution

The upper panels of Figure 3.1 reveal that the Skellam distribution is highly peaked at

zero for low values of σ2. This particular feature does not match the high-frequency

tick-by-tick discrete stock price data well in our empirical application. To accommodate

some more flexible patterns, we propose a modification of the Skellam distribution to

compensate for the over- or under-representation of specific integers. For example, in our

empirical application the standard Skellam distribution over-predicts the occurrence of 0s

and under-predicts the occurrence of ±1s.
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Figure 3.1: Panel 1: Skellam distribution examples with pmf (3.1) for several combinations of μ and σ2.
Panel 2: zero-mean (μ = 0) Skellam distribution (3.2) examples for several combinations of σ2. Panel 3:
MSKII(−1, 1, 0;μ, σ2, γ) distribution examples with pmf (3.3) for μ = 0 and several combinations of σ2

and γt. The distributions provide discrete support: the connecting lines are drawn for clarity and do not
indicate continuity. Panel 4: unimodality bound and parameterized zero deflation bounds.

The first obvious modification of the Skellam distribution is the zero-altered Skellam

distribution of Karlis and Ntzoufras (2006, 2009). Although they originally propose a

modified Skellam distribution with a higher (zero-inflated) probability of observing Yt = 0,

their method can easily be adapted to accommodate a lower (zero-deflated) probability of

observing Yt = 0. To obtain a zero-deflated Skellam distribution, we transfer probability

mass from Yt = 0 to Yt �= 0. We refer to this distribution as the modified Skellam

distribution of type I (MSKI). More details of MSKI are presented in Appendix A.

The obvious consequence of redistributing the probability mass for Yt = 0 to all

remaining integers is that the tails of the distribution inflate or deflate. The effect on the

tails may be undesirable and we may want to accommodate for it by a further modification

of MSKI. Our new proposed modified Skellam distribution of type II transfers probability

mass from one specific integer to two other integers, i.e. from Yt = k to Yt = i and Yt = j,

for the case of k-deflation, and the other way around for k-inflation, with i, j, k ∈ Z.

In this way, the probability mass at the remaining integers remains unchanged. The
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MSKII(i, j, k;μ, σ2, γ) distribution is defined by its pmf

pII(yt; i, j, k, μ, σ
2, γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pyt , for yt �∈ {i, j, k},
(1− γ)Pi, for yt = i,

(1− γ)Pj, for yt = j,

γPi + γPj + Pk, for yt = k,

(3.3)

where Pq = p(q;μ, σ2) is defined in equation (3.1) and q ∈ Z, and with coefficient

γ ∈ {−Pk/(Pi + Pj), 1}. The sign of the coefficient γ determines whether we inflate

Pk (positive) or whether we deflate this probability (negative). For γ = 0, we recover the

original Skellam distribution defined in (3.1). The lower bound of γ follows directly from

the last equation in (3.3) since γPi + γPj +Pk ≥ 0 implies γ ≥ −Pk/(Pi +Pj). The mean

and variance of the MSKII(i, j, k;μ, σ2, γ) distribution are given by

E(Yt) = μII = μ− γ(i · Pi + j · Pj) + k · γ(Pi + Pj),

Var(Yt) = σ2
II = σ2 + μ2 + γPi(k

2 − i2) + γPj(k
2 − j2)− μ2

II ,
(3.4)

respectively, see Appendix B for derivations. For γ = 0, we clearly have μII = μ and

σ2
II = σ2. Given the data in our empirical application below, the MSKII(−1, 1, 0; 0, σ2, γ)

distribution will prove to be of particular interest.

If γ is sufficiently negative, the MSKII(i, j, k;μ, σ2, γ) distribution may become bi-

modal which can be undesirable in specific applications and for estimation purposes.

However, we can formulate a stricter lower bound on γ to enforce unimodality. In par-

ticular, to ensure unimodality for the MSKII(−1, 1, 0;μ, σ2, γ) distribution under zero

deflation we require P0,II > P−1,II and P0,II > P1,II , such that the lower bound γ(μ, σ2)

for γ is given by

γ(μ, σ2) = {min(P−1, P1)− P0}
/ {min(P−1, P1) + P1 + P−1} , (3.5)

where Pq,II = pII(q; i, j, k, μ, σ
2, γ) is defined in equation (3.3) and q ∈ Z. The probability

Pq,II is a function of μ and σ2 for all q ∈ Z. In Panel 3 of Figure 3.1 we present

MSKII(−1, 1, 0;μ, σ2, γ) distributions for μ = 0 and different values of σ2 and γ. The

figure reveals the effect of γ on the peakedness of the distribution. Panel 4 of Figure 3.1

presents examples of unimodal bounds γ(μ, σ2) for μ = 0 and for different values of σ2.

We can select different model specifications to enforce γ to lie in the unimodality range;

see section 3.3.2.
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3.2.3 The Skellam model with dynamic mean and variance

Consider an observed time series for yt ∈ Z with t = 1, . . . , n where n is the time series

length. The possible serial dependence in the time series y1, . . . , yn can be analysed on

the basis of a Skellam model with dynamic stochastic processes for the mean μt and the

variance σ2
t . The dynamic MSKII model can be specified by

Yt|μt, σ
2
t ∼ MSKII

(− 1, 1, 0;μt, σ
2
t , γt

)
, t = 1, . . . , n, (3.6)

where γt = γ(μt, σ
2
t ) is the time-varying coefficient γ in (3.3) and is a function of μt

and σ2
t . Hence we assume that the serial dependence in Yt is accounted for by the time

variation in μt and σ2
t only. In other words, conditional on μt and σ2

t , Yt is not subject to

other dynamic processes. We model the dynamics of μt and σ2
t by a (possibly) nonlinear

transformation of an autoregressive process,(
μt

σ2
t

)
= s(θt), θt = ct + Ztαt, (3.7)

αt+1 = dt + Ttαt + ηt, ηt ∼ NID(0, Qt), (3.8)

for t = 1, . . . , n, where vector s( · ) is referred to as the link function, θt ∈ R
r×1 is the signal

vector, with r = 2, αt ∈ R
m×1 is the state vector, ct ∈ R

r×1 is a scalar intercept, dt ∈ R
m×1

is a vector of intercepts, Zt ∈ R
r×m is a matrix of coefficients, Tt ∈ R

m×m is a transition

matrix, and the disturbances ηt are normally and independently distributed (NID) with

mean zero and variance matrix Qt ∈ R
m×m. The vectors ct, dt and matrices Zt, Tt, Qt are

typically constant but possibly time-varying in a deterministic manner. Typical examples

of link functions s( · ) are the exponential function (to ensure positivity) and the scaled

logistic function (to preserve lower and upper bounds). When the link function s( · )
directly requires the state vector αt as an argument, we simply set r = m, ct = 0, and

Zt = Im. For an application with an observation distribution that only requires a time-

varying mean or variance, we have a univariate signal and r = 1. The initial conditions

for the elements of the state vector α1 depend on their dynamic properties. The variance

matrix Qt is possibly positive semi-definite and hence the vector ηt may contain zeros.

The model specified in equations (3.7)–(3.8) allows for a wide variety of dynamic

patterns in μt and σ2
t , including autoregressive moving average dynamics, time-varying

seasonal and cyclical patterns, deterministic and stochastic trends, and their combina-

tions. Regression and intervention effects can be added to the signal as well. More details

of their formulations in the form of (3.8) are provided in Durbin and Koopman (2012, Ch.

3). The dynamic Skellam model as specified above falls within the class of non-Gaussian
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nonlinear state space models which can be represented as

yt ∼ p(yt|θt;ψ), θt = ct + Ztαt, αt+1 ∼ pg(αt+1|αt;ψ), t = 1, . . . , n, (3.9)

with α1 ∼ pg(α1;ψ), where ψ is an unknown and fixed parameter vector gathering all the

parameters in ct, Zt, dt, Tt, and Qt, and possibly in the signal function s( · ). The obser-

vation density p(yt|θt;ψ) refers to the dynamic (possibly modified) Skellam distribution

from Section 3.2 with signal θt representing the dynamic mean μt and/or variance σ2
t .

The updating Gaussian state density pg(αt+1|αt;ψ) refers to the linear Markov process

(3.8), and pg(α1;ψ) represents the initial condition for α1. We assume that for given

realisations of the signal θ′ = (θ′1, . . . , θ
′
n) the observations y = (y1, . . . , yn)

′ are condition-
ally independent, and also write θ = c + Zα with c′ = (c′1, . . . , c

′
n), α = (α′

1, . . . , α
′
n)

′,
and Z a block-diagonal matrix with blocks Z1, . . . , Zn on the leading diagonal. The joint

conditional density for all observations and the marginal density for all states can now be

written as

p(y|θ;ψ) =
n∏

t=1

p(yt|θt;ψ), pg(α;ψ) = pg(α1;ψ)
n∏

t=2

pg(αt|αt−1;ψ), (3.10)

respectively. Given the linear dependence of θ on α, the density pg(θ;ψ) can be constructed

directly from pg(α;ψ).

The state space representation implied by equations (3.9) or (3.10) for the dynamic

Skellam model allows us to build on a well developed framework for the parameter es-

timation of ψ, for the signal extraction of θ and the filtering and smoothing of α; see

Durbin and Koopman (2012) for a textbook treatment. As for all non-Gaussian nonlinear

state space models, the main complication for the dynamic Skellam model is that the

likelihood function
∫
p(y|θ;ψ)pg(α;ψ) dα is analytically intractable. We therefore adopt

the method of Monte Carlo maximum likelihood for parameter estimation, but also for

signal extraction. In particular, we apply the numerically accelerated importance sam-

pling (NAIS) method of Koopman et al. (2014) and show that it can efficiently handle

long univariate time series (large n). If we require a time-varying μt or σ2
t , i.e. a uni-

variate signal, r = 1, we can apply the NAIS method of Koopman et al. (2014) without

extensions. For handling both a time-varying mean μt and variance σ2
t , we have developed

a bivariate extension of the NAIS methodology available in Appendix D. In our empirical

study below we set μt = 0, such that we only consider a stochastic time-varying variance

σ2
t . In the application of Chapter 4, an illustration with a bivariate signal is presented.
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3.3 Analysis of high-frequency Skellam price changes

We study the dynamic properties of intraday high-frequency U.S. stock price changes

listed at the New York Stock Exchange using our new dynamic Skellam model. High-

frequency changes in stock prices evolve as positive and negative integer multiples of a

fixed tick size. The tick size of stock prices at the NYSE is $0.01, irrespective of the level

of the stock price. This contrasts with other exchanges where tick sizes may increase with

the price level of the traded instrument. For example, a sufficiently liquid stock with a

price of $4.00 rarely faces price jumps higher than 4 ticks, that is a 1% price change. On

the other hand, a 4 tick price jump for a stock priced at $100.00 represents a price change

of only 0.04% and occurs much more frequently.

Rather than aggregating the data to one-minute or five-minute intervals, we analyse

stock price changes on a second-by-second basis within a single trading day. As a con-

sequence, all series have the same length of n = 23,400 (6.5 hours × 3600 seconds) with

many missing values. By explicitly considering missing values in our analysis we take

account of the duration between consecutive trades. Since there is more active trading at

the beginning and end of a trading day, the number of missing values also varies through-

out the day. We exploit Kalman filter and smoothing methods to handle missing values.

Descriptive statistics for the data are reported in Table 3.1 and Table 3.5 and further

discussed below.

We analyse the intraday prices using the dynamic Skellam model as developed above.

In accordance with other analyses of high-frequency stock returns, the sample mean in

price changes for a sufficiently large sample size is typically close to zero; see, for exam-

ple, Andersen and Bollerslev (1997). Hence we set μt = 0 and focus on the modelling

of stochastic volatility σ2
t . This yields a univariate signal (r = 1) in our state space

representation of the model as discussed in Section 3.2.3.

3.3.1 Data

We use data from the trades and quotes (TAQ) database of the New York Stock Exchange

at a one-second frequency. The data consist of the prices of four different stocks traded

over the entire year 2012. We select companies from different industries and with different

trade intensities. We analyse the tick-by-tick data without the “odd-lots” that represent

trades with volumes less than 100 and are not recorded on the consolidated tape; see

the discussion in O’Hara, Yao, and Ye (2014). The data require standard pre-processing.

For a review of high-frequency data cleaning procedures; see for example Falkenberry

(2002). We apply the cleaning algorithm of Brownlees and Gallo (2006) after applying

a rudimentary filter corresponding to the cleaning steps P1, P2, P3 and T1, T2, T3 of

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008, p. 8).
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Table 3.1: Descriptive statistics of the four selected stocks for all trading days in 2012 combined as one
sample. The table reports data characteristics of tick changes between 9:30am and 4:00pm. We report
the “opening price” at 9:30 am (OP) January 1, 2012, the “closing price” at 16:00 pm (OP) December
31, 2012, the total number of trades in 2012 (#Trades), the percentage of zero price changes (%0), the
percentage of −1, 1 price changes (% ± 1), variance (V), skewness (S), kurtosis (K) and the largest up
tick (Max) and down tick (Min).

Company OP CP #Trades %0 %± 1 V S K Max Min

Wal-Mart Stores Inc. 59.98 68.27 647,707 51.25 39.17 1.07 -0.01 13.59 19 -21
Coca-Cola Company 70.40 36.27 679,556 58.31 36.01 0.75 -0.00 15.65 19 -19
JPMorgan Chase 34.10 44.00 1,029,957 55.29 38.66 0.72 -0.01 7.96 15 -16
Caterpillar Inc. 93.43 89.57 792,829 27.13 36.32 4.82 -0.00 8.84 32 -32

The large difference in opening price and closing price for Coca-Cola Company is due

to a 2:1 stock split on August 13, 2012. The number of trades ranges from almost 650,000

to more than a million over 2012. At the same time, the column “%0” in Table 3.1

shows that many trades do not result in a price change: the percentage of zeros ranges

from 27% for Caterpillar to 58% for Coca-Cola. We can conclude from the “%0” and

“% ± 1” columns that the majority of trades only induce a maximum price change of

±1. A full breakdown of the empirical distribution of tick-size price changes is provided

in the Supplementary Appendix E. The correct handling of zero price change trades is

challenging for two reasons. First, zero price changes are not randomly distributed over

the trading day. A Wald-Wolfowitz runs test, see Bradley (1968, Ch. 12), strongly rejects

the null hypothesis of zeros following a random sequence throughout the trading day. The

largest p-value of the runs test is 8.73× 10−6 out of the 1000 days under consideration (4

stocks × 250 trading days in 2012). Second, long streaks of zeros and/or missing values

occur regularly during slow trading periods of the day. This leads to a low volatility

in price changes. Although the majority of observations within a trading day are either

missing or are equal to −1, 0 and 1, large price changes (or jumps) do occur as indicated by

the “Max” and “Min” columns in Table 3.1. Also the reported yearly sample variance and

kurtosis for each stock reflect sufficient variation in the tick-by-tick stock price changes.

The challenge for our statistical dynamic model is to address all of these salient features

appropriately.

3.3.2 Dynamic Skellam with Intraday Stochastic Volatility

We consider the conditional observation density (3.6) with pmf (3.3). The standard

Skellam model is a special case with γt = 0. The model specification for the dynamic

variance, or the stochastic volatility, is based on the link function with r = 1 given by

σ2
t = s(θt) = exp(θt), t = 1, . . . , n, (3.11)

58



3.3. ANALYSIS OF HIGH-FREQUENCY SKELLAM PRICE CHANGES

where scalar θt represents log-volatility. The dynamic signal process accommodates the

salient features of intraday volatility by the following decomposition:

θt = c+ st + αt, αt+1 = φαt + ηt, ηt ∼ NID
(
0, σ2

η,t

)
, (3.12)

for t = 1, . . . , n, where the constant c represents the overall daily log-volatility, st reflects

the seasonal variation in intraday volatility, and the autoregressive component αt captures

the local clustering of high and low price changes throughout the day. The constant and

seasonal effects are treated as fixed and deterministic. The dynamic component αt is

assumed stationary (|φ| < 1) and is driven by the disturbance or innovation ηt. We

assume ηt is normally and independently distributed with mean zero and a time-varying

variance. The time-varying variance is specified as a fixed function of time and reflects

scheduled news announcements that may lead to relatively large price adjustments.

The seasonality in volatility is typically due to the high trading intensity at the be-

ginning and end of the trading day, and the low intensity during the lunch break. A

parsimonious specification for the seasonal effect is obtained by using a spline function

that can interpolate different levels of volatility smoothly over the time-of-day. In partic-

ular, we let st be an intraday zero-sum regression spline function that we can represent

as

st = β ′ W̃t, t = 1, . . . , n,
n∑

t=1

st = 0, (3.13)

where β is a K×1 vector of parameters associated with the location of K+1 spline knots

and W̃t is the t-th column of the zero sum interpolation weight matrix W̃ as constructed

in Harvey and Koopman (1993); see also Poirier (1973). The zero-sum spline implies a

restriction (K+1 knots, K parameters) to ensure the identification of the constant c. For

our data set, a sharp decrease in volatility takes place in the first half hour (09:30-10:00)

of many trading days. Furthermore, the lunch break and close of the market are key

events. Therefore, we set K = 3 and choose the knot positions at {09:30, 10:00, 12:30,
16:00}. Many variations around these knot locations have been considered but do not

significantly affect the results reported below.

The variance of the innovations for the stationary component αt is time-varying to

account for increased volatility due to special news announcements during the trading

day. Many of such news announcements are released at pre-set time periods, such as

08:30, 10:00, and other; see Andersen, Bollerslev, Diebold, and Vega (2003). The effect of

the news announcement before the opening of the market at 09:30 is captured by the first

knot of the spline st. The possible effect of, say, a 10:00 news announcement, however, is

harder to accommodate by the spline or AR(1) process only. For this purpose we introduce

a separate parameter to model a (possible) temporary jump in volatility between 10:00

and 10:01. We do so by defining the indicator variable τS(t) = 1 for t = 1800, . . . , 1860
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(corresponding to the first minute after 10am), and zero otherwise, thus increasing the

variance of ηt from σ2
η to σ2

η + σ2
η,S during this period, where σ2

η,S > 0. An increase of the

variance for ηt allows αt+1 to vary more than in other time periods.

We ensure unimodality of the MSKII(−1, 1, 0; 0, σ2
t , γt) distribution under zero defla-

tion via a parsimonious re-parameterization as follows. We introduce the coefficients

−1 < γ∗ < 1 and δ > 0. Then we determine γt as γt = γ∗, when γ∗ ≥ 0, and

γt = −γ∗ × γ(0, σ2
t + δ), when γ∗ < 0, since γ(0, ·) < 0. The coefficient δ ensures a

left-horizontal shift from the lower bound of γ(0, σ2
t ) in order to avoid potential numerical

issues for its limit as σ2
t → 0; see Panel 4 of Figure 3.1. The condition of unimodal-

ity stabilizes some numerical issues in likelihood evaluation since the construction of an

importance density for bimodal distributions is rather challenging; see the discussion in

Durbin and Koopman (2012, p. 253).

3.3.3 Parameter estimation results

The parameter vector for our dynamic Skellam model is given by

ψ = (φ, ση, ση,S, c, δ, γ
∗, β′)′ .

The log-likelihood function is computed by the NAIS algorithm of Koopman et al. (2014);

see Appendix D for the details. The log-likelihood is maximised for each trading day and

stock using a quasi-Newton optimization method based on the numerical evaluation of

the score with respect to ψ. In NAIS, we require the evaluation of a Gauss-Hermite

polynomial and base it on M = 12 abscissae points. Higher values of M does not lead

to more accurate results. The actual likelihood evaluation in NAIS is based on S =

100 simulations with common random numbers during the optimization. The average

optimizing time for one trading day (K = 3, 9 parameters, n = 23,400) is between 5 and

15 minutes. Computations are performed on a i7-2600, 3.40 GHz desktop PC using four

cores. Appendix C provides some further simulation evidence of the estimation procedure

and its time requirements.

The parameter vector is estimated for each stock and each trading day in 2012. Given

the large number of estimates, we provide a graphical presentation in Figure 3.2. In

particular, we present the parameter estimates of φ, ση, c, and γ∗. The estimates vary

from day to day and characterize the intraday dynamics of price changes for that specific

day. We have, for each stock on average, between 2500 and 4000 observations available

for the estimation of ψ on daily basis; see Table 3.1. It also allows us to carry out a

meaningful forecasting study in Section 3.3.7.

The top row in Figure 3.2 shows the estimates of φ. Overall, the estimates indicate

a high degree of persistence of the autoregressive process αt. The average estimate of φ
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Figure 3.2: The figure shows the maximum likelihood estimates of the first four elements of ψ where
each column correspond to one of the four stocks in the order WMT, KO, JPM and CAT and the rows
represent the parameter estimates in the order (φ, ση, c, γ

∗).

over all trading days of 2012 exceeds 0.94 for each stock. Some individual days exhibit a φ

estimate that is clearly below the average. It indicates that the cubic spline c+ st already

captures most of the information for that specific day. We investigate the individual

contribution of the spline versus the autoregressive component in Section 3.3.6 in more

detail.

The second row reveals how the daily estimate of the volatility of the autoregressive

component varies over time. Volatility levels appear to be somewhat higher in February

and/or August for most stocks.

The third row shows the daily estimates of the constant c. For Walmart, the time series

of c estimates shows a steady increase of the overall average daily volatility level during

the year. For Coca-Cola, the structural break in the daily estimates of c in Augustus 13,

2012, clearly coincides with the 2:1 stock split on that day. The constants c naturally

play a dominant role in the overall level of daily log-volatility. As such, they may be

compared to alternative estimates of integrated volatility based on high-frequency data.

Interestingly, the time series correlations over all trading days in 2012 of our estimates

of c with the logged realised volatility (RV) measure as estimated using the algorithm

of Aı̈t-Sahalia, Mykland, and Zhang (2011), based on 5-minute intervals, are high. The
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correlations are 0.90, 0.88, 0.67, and 0.93 for Walmart, Coca-Cola, JPMorgan, and Cater-

pillar, respectively.

The bottom panels in Figure 3.2 show the parameter estimates of γ∗. The estimates

of γ∗ are typically highly statistically significant, which indicates that our modification

of the standard Skellam distribution is empirically relevant. For all stocks the 0-deflated

model (γ∗ < 0) is clearly preferred. Only for CAT we have that some periods are subject

to 0-inflation. CAT has the largest stock price compared to the others stocks, resulting in

a larger value of σ2
t on average. A larger value of σ2

t comes with a lower predicted proba-

bility of 0s, such that zero inflation rather than deflation becomes more relevant for CAT

compared to the other stocks. Our type II modified Skellam model also outperforms the

standard zero-deflation type I modification of the Skellam model of Karlis and Ntzoufras

(2006, 2009), which is why we do not report the latter here.

3.3.4 Signal extraction

Figure 3.3 presents the time series average of our estimated zero sum cubic spline st, with

corresponding 95% confidence bands. Instead of the commonly found volatility U-shape,

we only find increased levels of volatility at the start, but not at the end of the average

trading day in 2012.

To highlight the possible departures of the the fitted signal from the average spline

level across all days, we also present the estimates of the spline plus the autoregressive

component (st + αt) for one specific day (August 1, 2012) in Figure 3.3. We find that for

each of the four stocks the intraday volatility pattern is close to the overall average spline

pattern. At the same time, we observe that particularly the autoregressive component

picks up substantial temporary departures from the average level within the day. The

size and patterns of the departures vary per stock and per day. For some stocks, depar-

tures appear relatively short-lived; see, for example, Caterpillar and JPMorgan. For other

stocks, such as Walmart and Coca-Cola, departures are much more persistent. These pat-

terns reveal why the autoregressive component αt contributes to the model specification

and why it is statistically significant. In Section 3.3.7 we also verify whether αt leads to

more precise forecasts of the magnitude of price changes for the next day.

3.3.5 Goodness-of-fit

To assess the model fit and the statistical contribution of the autoregressive component

αt, we consider three different model specifications. All three specifications are based on

the modified type II Skellam distribution but differ in the composition of the log-volatility

signal:
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Figure 3.3: The figure shows the time series average of the zero sum spline st and a 95% confidence band
based on all trading days of 2012. For Aug 1, 2012, it also shows the value of st + αt.

1. Model A: the static type II modified Skellam model with μt = 0 and static σ2
t =

exp(c). The parameter vector is given by ψ = (c, δ, γ∗)′.

2. Model B: the spline-based model with μt = 0 and time-varying σ2
t = exp(c + st),

where st is the zero sum cubic spline specified in (3.13). The parameter vector is

given by ψ = (c, δ, γ∗, β′)′.

3. Model C: the complete model with μt = 0 and σ2
t = exp(c + st + αt) as in (3.12).

The parameter vector is given in Section 3.3.3.

For each model specification, the parameter vector is estimated by maximum likelihood.

Figure 3.4 presents the log-likelihood differences (times 2) between Model B and Model C
only, because the log-likelihood differences with respect to Model A are all much larger.

For almost all stocks and days, the differences between the maximised log-likelihood values

are large and statistically significant. In most cases the differences are so large that also

in terms of model selection criteria, such as the Akaike information criterion, model C is

strongly preferred over model B.
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Figure 3.4: Each panel is for a stock and presents the log-likelihood differences (times 2) for all days in
2012. A dot indicates the log-likelihood ratio values for a specific day in 2012 between a model with only
a constant and a spline c+st, Model B, and a model with spline and autoregressive component c+st+αt,
Model C. The horizontal line indicates the 5% critical value for the χ2(2) distribution corresponding to
hypothesis H0: φ = 0, ση = 0. The differences are capped at 100 for visualization purposes.

3.3.6 Diagnostic checking

Variance of importance sampling weights

The estimation results from Section 3.3.3 rely on importance sampling methods. The

log importance sampling weights can be used for diagnostic checking purposes. When

the sample variance of the importance weights is high, likelihood calculations and signal

extraction may change substantially when a different simulation sample is used. Geweke

(1989) argues that importance sampling methods should only be used if the variance of

the importance weights is known to exist. Robert and Casella (2004) provide examples of

importance samplers that do not meet this condition and cases where this leads to biased

results.

For our data, we find that sample variances of the importance sampling weights are

generally low, typically smaller than 1. To verify more formally whether the variances

of the importance weights exist, we follow Koopman et al. (2009). Using maximum

likelihood, they estimate the shape parameter ξ and the scale parameter β of a generalized
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Pareto distribution for the largest 1% to 50% out of 100,000 importance sampling weights.

If the null hypothesis H0 : ξ ≤ 1/2 cannot be rejected, they conclude that the variance of

the importance sampling weights is finite and that results can be trusted.

Pearson residuals

Diagnostic tests can also be based on the standardised Pearson residuals as given by

et =
yt − E(yt|y1:t−1)√

Var(yt|y1:t−1)
, t = 1, . . . , n, (3.14)

where y1:t−1 is the set of past Skellam returns {y1, . . . , yt−1}, and where E(yt|y1:t−1) and

Var(yt|y1:t−1) are the one-step ahead observation forecast and its variance. Both of these

depend on the filtered estimate of the scale parameter E(σ2
t |y1:t−1). The importance

sampling methods used for estimation can also be used for filtering and forecasting, albeit

at a substantial computational cost given the large time series length n. However, for

diagnostic checking purposes these computations only need to be performed once. We

therefore regard the extra computation time as acceptable. An alternative is the use

of nonlinear filtering methods such as the particle filter. The Pearson residuals et, for

t = 1, . . . , n, of a correctly specified model have mean zero and unit variance, and both

et and e2t should be serially uncorrelated. These properties can be verified by a number

of diagnostic tests.

Forecast distribution tests

Once the one-step-ahead predicted estimates of σ2
t , for t = 1, . . . , n, are obtained we

can test the distributional assumptions of the model. In particular, we test whether our

dynamic modified Skellam model assigns the correct probabilities to the observations.

We follow Jung, Kukuk, and Liesenfeld (2006) and draw a uniform random variable ũt

on the interval [P (xt ≤ yt − 1|y1:t−1) , P (xt ≤ yt|y1:t−1)]. For a correctly specified model,

the random draws ũt, for t = 1, . . . , n, are serially independent and uniformly distributed

on the interval [0, 1]. The variable ũt can be transformed to a standard normal variable:

e∗t = F−1
N (ũt), where F−1

N is the inverse normal distribution function. The transformed

residuals e∗t are also standard normally distributed, and both e∗t and (e∗t )
2 are serially

uncorrelated, when the model is correctly specified.

Diagnostic testing results

We apply the above diagnostic tests to our MSKII(−1, 1, 0; 0, σ2
t , γ(σ

2
t )) model, Model C.

We benchmark the results against the two alternative specifications, Models A and B. We

65



CHAPTER 3. INTRADAY STOCHASTIC VOLATILITY

select the first trading day of every even month and present the corresponding diagnostic

test results for this day in Table 3.2.

Table 3.2 shows that except for the single case of Caterpillar on Dec 03, 2012, the

null hypothesis of a finite variance of the importance sampling weights is never rejected.

The results also clearly support that allowing for intraday dynamics in σ2
t is important.

The static model A is uniformly rejected based on all versions of the Ljung-Box test

statistics. Interestingly, the results for the spline-based model B and the dynamic model

C appear to be more similar. Based on autocorrelations in the levels of et or e∗t the

two models perform very similar, with a slight advantage for model C. However, the

dynamic model is much more adequate in filtering out the serial dependence in the second

order moments, as revealed by the test results for e2t and e∗2t . Whereas model B has

unacceptable diagnostics for most stocks and days, the diagnostic tests for model C are

mostly insignificant. We conclude that the autoregressive intraday component present in

our new dynamic modified Skellam model is key to the good performance of the model.

It results in a better performance than the commonly used intraday spline-based model.

3.3.7 Forecasting study

To verify the performance of the new model further, we perform a forecasting study for all

21 trading days in June 2012 in which we compare our dynamic modified Skellam model

to four alternative methods. We focus on the prediction of volatility for each model by

evaluating the probability of absolute price tick changes Xt+1 = |Yt+1|, for intraday times

t = τ, . . . , n− 1, for each day. The pmf of Xt is given by

p|II|(Xt = xt; σ
2
t , γt) =

{
pII(Yt = 0;−1, 1, 0, 0, σ2

t , γt), for xt = 0,

2 · pII(Yt = xt;−1, 1, 0, 0, σ2
t , γt), for xt ≥ 1.

(3.15)

The five considered models have in common that they all derive probabilities according to

the type II modified Skellam distribution. They differ in the way the Skellam parameters

σ2
t+1 and γt+1 are obtained. Models A,B, C are the parametric models as listed in Section

3.3.5. Models D and E are nonparametric benchmarks that are specified as follows.

(iv) Model D: we estimate σ2
t+1 using the sample variance using all observations in a

rolling window of the past 900 seconds. We set γt = 0, such that the model collapses

to the standard Skellam model.

(v) Model E : both σ2
t+1 and γt+1 are obtained non-parametrically from the data. Define

the empirical probability of a zero as P̂0 and σ̂2
t+1 as obtained under model D. We
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Table 3.3: The table presents the total log loss (LOGL) of the 21 trading days of June 2012. The losses
are based on the forecasting study presented in Section 3.3.7. The DM statistic represents the Diebold
and Mariano (1995) statistic which is asymptotically distributed as a standard normal random variable
and hence rejects the null hypothesis of equal predictive accuracy at the 5% level of significance in favour
of Model C if the DM test statistic is smaller than −1.65.

Model Wal Mart (WMT) Coca-Cola (KO) JPMorgan (JPM) Caterpillar (CAT)
LOGL DM LOGL DM LOGL DM LOGL DM

A −57846 −25.18 −58754 −22.24 −96479 −31.43 −128170 −40.81
B −56595 −20.03 −57283 −18.91 −94611 −26.97 −124351 −35.27
C −55221 −55993 −92943 −121218
D −55715 −7.61 −56612 −8.06 −93860 −11.40 −121325 −1.20
E −55907 −9.58 −57147 −12.21 −93729 −9.94 −121901 −6.32

then solve two equations for two unknowns, namely

σ̂2
t+1 = σ2

t+1 − 2γt+1P1, (3.16)

P̂0 = P0 + 2γt+1P1, (3.17)

where equations (3.16) and (3.17) follow from equations (3.4) and (3.3), respectively.

By the substitution of (3.17) into (3.16), we obtain σ̂2
t+1 = σ2

t+1 − P̂0 + P0 which

we solve numerically for σ2
t+1 using a binary search algorithm. The resulting σ2

t+1 is

substituted into (3.16) to obtain γt+1.

We emphasize that Models A, B, C use the subsequent estimated parameter vectors from

the day before. Further extensions can be obtained by considering a forecasting model

for the daily estimates of ψ; for instance, see Diebold and Li (2006). Even without these

modifications, the forecasting experiment already produces some clear advantages of the

new dynamic Skellam model, Model C. For all models and all trading days, we start our

forecast evaluation after a burn-in period of τ = 60 seconds. Models D and E subsequently

extend the burn-in window to 900 seconds, after which the forecasts are updated using a

rolling window. The results are presented in Table 3.3.

The performance of the models is first assessed in terms of an out-of-sample proba-

bilistic loss function LOGL, which can be classified as a proper scoring rule; see Winkler

(1969). LOGLh sums the log probabilities for Model h ∈ {A,B, C,D, E} using the model’s

predictive pmf and the realised absolute tick-size change xt+1. A loss of zero indicates

that the absolute tick-size change xt+1 was perfectly predicted by the model. The log loss

differences can also be compared between models using the Diebold Mariano (DM) test

statistic; see Diebold and Mariano (1995). The DM statistic is asymptotically normally

distributed under the null hypothesis of equal predictive accuracy. We take Model C as

our benchmark in the computation of the Diebold Mariano statistics.
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Table 3.3 shows that the forecasts based on Model C have always the lowest log loss.

The new fully dynamic type II modification of the Skellam model clearly outperforms its

static (Model A) and spline-based (Model B) counterparts, as well as the non-parametric

zero-inflation model, Model E . Using a one-sided test, Model C also significantly out-

performs the nonparametric benchmark Model D for 3 out of the 4 stocks. Only for

Caterpillar, the two models cannot be distinguished in a statistically significant manner.

However, the excellent forecasting performance of Model C remains despite its use of the

estimate of the constant, spline, and autoregressive parameters of the day before. We em-

phasize that the parameter estimates are not recursively updated during the day. Models

D and E , by contrast, do not rely on any parameter estimates from the previous day.

3.4 Conclusions

We have modelled tick-by-tick discrete price changes for U.S. stocks listed on the New

York Stock Exchange. The analysis of high-frequency data attracts ever more attention

from both government regulators and the financial industry. Hence the understanding

of the dynamics in high-frequency data has become important. We have shown that the

empirical analysis of high-frequency tick-by-tick data can be based on modifications and

dynamic extensions of the Skellam distribution. Our type II modified Skellam distribu-

tion features a dynamic variance parameter, and a dynamic transfer of probability mass to

accommodate the non-standard properties of the data in terms of the occurrence of zero-

price-changes. These features of our model are needed to have a stable importance sam-

pling estimation procedure, a good in-sample fit, an adequate diagnostic performance, and

an accurate out-of-sample forecasting performance, in comparison to a number of relevant

benchmark models. We conclude that the new dynamic modified Skellam model provides

a flexible modelling framework that can be effectively employed to capture the dynamics

in high-frequency tick-by-tick data with many missing entries. Since the model produces

intraday patterns of high-frequency volatility dynamics, it may provide an interesting and

complementary perspective to the literature on nonparametric realised volatility measures

and realised kernels which are proposed by Barndorff-Nielsen and Shephard (2001, 2002)

and Andersen et al. (2001). Further research could be directed towards the comparison of

the Skellam stochastic volatility model and the ‘standard’ stochastic volatility literature

that usually applies continuous distributions like the Gaussian or Students t distribution.

Interesting results could be obtained by comparing the efficiency of both models and the

characteristics of the discovered dynamics.
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Appendices

The following appendices are part of the chapter ‘Intraday Stochastic Volatility in Discrete

Price Changes’ and are organised as follows. Appendix A and B provide moments of the

modified Skellam distribution, type I and II. Appendix C shows a simulation study and

provides evidence of the accuracy of the novel Skellam model. Appendix D discusses

the numerically accelerated importance sampling methodology and the extensions to a

bivariate signal framework. This part contains more material than strictly necessary,

however, Chapter 4 relies on Appendix D as well. Additional tables and figures are

provided in Appendix E.

A Modified Skellam distribution of type I

The MSKI distribution in which probability mass is transferred from Yt �= 0 to Yt = 0 or

vice versa is defined by its pmf

pI(yt;μ, σ
2, γ) =

{
(1− γ)p(Yt = yt;μ, σ

2), for yt �= 0,

γ + (1− γ)p(Yt = 0;μ, σ2), for yt = 0,
(3.18)

where γ ∈ ( P0

P0−1
, 1) and Pq = p(q;μ, σ2) as defined in equation (3.1), q ∈ Z. For γ = 0 we

recover the Skellam distribution as defined in (3.1) and for γ = P0

P0−1
we have the lower

bound P0,I = 0 with Pq,I = pI(q;μ, σ
2, γ) as defined in equation (3.18). If unimodality is

required the zero deflation should be bounded as γ ∈ ( min(P−1,P1)−P0

1+min(P−1,P1)−P0
, 1) which ensures

P0,I ≥ min(P−1,I , P1,I). The mean and variance of the MSKI distribution are E(Yt) =

(1− γ)μ and Var(Yt) = (1− γ)σ2 + γ(1− γ)μ2 which follows from

Var(Yt) = (1− γ)
∞∑

x=−∞
x2 p(Yt = x;μ, σ2)− (1− γ)2

[ ∞∑
x=−∞

x p(Yt = x;μ, σ2)

]2

,

with
∑∞

x=−∞ x2 p(Yt = x;μ, σ2) = σ2 + μ2 being the second moment of the Skellam

distribution of (3.1). The inflation/deflation of probability mass to non-zero values of Yt

can be achieved in a similar way.

B Moments of the MSKII(i, j, k) distribution

Let μ and σ2 denote the mean and variance of the standard (non-deflated) Skellam dis-

tribution. The mean of the MSKII(i, j, k, μ, σ2, γ) distribution is given by
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E(Yt) =
∑
x∈Z

x pII(Yt = x;μ, σ2, γ)

=

⎡⎣ ∑
x∈Z\{i,j,k}

x p(Yt = x;μ, σ2)

⎤⎦+ i(1− γ)Pi + j(1− γ)Pj + k(γPi + γPj + Pk)

=

⎡⎣ ∑
x∈Z\{i,j,k}

x p(Yt = x;μ, σ2)

⎤⎦+ iPi + jPj + kPk − iγPi − jγPj + kγPi + kγPj

= μ− iγPi − jγPj + kγPi + kγPj,

(3.19)

which is equal to the first equation of (3.4).

The second moment of the MSKII(i, j, k, μ, σ2, γ) distribution is given by

E(Y 2
t ) =

∑
x∈Z

x2 pII(Yt = x;μ, σ2, γ)

=

⎡⎣ ∑
x∈Z\{i,j,k}

x2 p(Yt = x;μ, σ2)

⎤⎦+ i2(1− γ)Pi + j2(1− γ)Pj + k2(γPi + γPj + Pk)

=

⎡⎣ ∑
x∈Z\{i,j,k}

x2 p(Yt = x;μ, σ2)

⎤⎦+ i2Pi + j2Pj + k2Pk

− i2γPi − j2γPj + k2γPi + k2γPj

= σ2 + μ− i2γPi − j2γPj + k2γPi + k2γPj.

(3.20)

Combining (3.19) and (3.20) leads to the variance of the MSKII(i, j, k) distribution as

presented in the second equation of (3.4).

C Simulation study

We conduct a simulation study to verify the performance of the importance sampling

estimation methodology explained in Appendix D in combination with the Skellam model

as presented in (3.12). The case of zero inflation, zero deflation and zero neutral is

covered in this study. We assume that the Skellam model of (3.12) is the true data

generating process and we simulate time series of Skellam variables with length n = 23,400

which is equal to the length of the tick price change series in the application of this

chapter. To incorporate missing values in the simulated data sets we denote P.NaN which

is the probability of no trade at time t. We set P.NaN = 0.85 at 09:30 and 16:00 and
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Table 3.4: This table reports simulation averages of maximum likelihood estimates of the static parameters
for the dynamic Skellam model of Section 3.3. The simulation averages are calculated with R = 100
replications of time series with length n = 23,400. The true parameter values are in the table above
the simulated values. Standard deviations of the estimates over the Monte Carlo simulations are in
parentheses. The column t(s) denotes the average computation time (in seconds) for finding the maximum
of the log likelihood function. Computations are carried out on a i7-2600, 3.40 GHz desktop PC using
four cores.

φ ση c γ∗ β1 β2 t(s)

true 0.99 0.05 −0.30 0.00 1.00 −0.40
0.987 0.055 −0.298 −0.024 1.005 −0.400 356.24
(0.007) (0.022) (0.065) (0.082) (0.131) (0.064)

true 0.95 0.15 0.10 −0.50 1.00 −0.40
0.944 0.154 0.101 −0.498 0.997 −0.395 271.71
(0.022) (0.046) (0.059) (0.140) (0.110) (0.055)

true 0.95 0.15 0.10 0.25 1.00 −0.40
0.945 0.150 0.104 0.252 0.996 −0.396 269.58
(0.030) (0.054) (0.056) (0.028) (0.107) (0.054)

P.NaN = 0.95 at 13:00. Every P.NaN between the time points 09:30−13:00 and 13:00−16:00
is determined by two triangles with the hypotenuses connecting P.NaN = 0.95 in the middle

of the day and P.NaN = 0.85 at the beginning and end of the day. With the probability

of a missing value over the day, missing values are randomly positioned at time points

with the idea that the probability of a missing values is highest when trading activity is

lowest. We refer to, for example, Koopman, Lit, and Lucas (2015) for graphs of trading

patterns. For this simulation study, we obtain an average of 2000-2500 simulated trades

out of 23,400 which is just below average.

The simulated data comes from a slightly more parsimonious model specification than

(3.12). We set δ = 0.30, ση,S = 0 and the vector of hyper parameters has dimension 6

and is given by

ψsim = (φ, ση, c, γ
∗, β′, )′ ,

where the elements of the 2×1 vector β correspond to a zero sum spline with spline knots

placed at {09:30, 12:30, 16:00}. We present the estimation results in Table 3.4.

Given that we are estimating a non-Gaussian state space model for a time series of

length of n = 23,400, our estimation procedure is generally fast with optimizing times

of only a couple of minutes. We also note that our methodology in combination with

the novel Skellam model is able to estimate the parameter vector ψ with high precision.

Finally, the model is able to distinguish both zero-inflation and zero-deflation situations

accurately. The results of this simulation study provide confidence for applying the Skel-

lam model to real data sets.
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D Numerically accelerated importance sampling

Likelihood evaluation and importance sampling

We can express the likelihood function for the non-Gaussian nonlinear state space model

(3.9) as

L(y;ψ) =

∫
p(y, θ;ψ) dθ =

∫
p(y|θ;ψ)pg(θ;ψ) dθ. (3.21)

An analytical expression is not available for this high dimensional integral. In cases where

the model is linear and Gaussian, the Kalman filter can be used for likelihood evaluation,

signal extraction and forecasting. Here we rely on numerical integration techniques that

need to be both practical and feasible. It is well established that we can use Monte

Carlo simulation methods for the evaluation of (3.21); see Ripley (1987) for a general

introduction. A naive Monte Carlo estimate of L(y;ψ) is given by

1

S

S∑
k=1

p(y|θ(k);ψ), θ(k) ∼ pg(θ;ψ),

where S is the number of Monte Carlo replications and the simulated value of θ(k) is

obtained by simulating the state vectors from the vector autoregressive process (3.8) and

with θ = c+Zα for a given parameter vector ψ. This Monte Carlo estimate is numerically

highly inefficient since the simulated paths have no support from y.

In various contributions in statistics and econometrics it is argued that (3.21) can be

evaluated efficiently using the method of importance sampling; see, for example, Shep-

hard and Pitt (1997), Durbin and Koopman (1997), Liesenfeld and Richard (2003) and

Richard and Zhang (2007). For a feasible implementation of this method we require a

Gaussian importance density g(θ|y;ψ∗) from which the θs are sampled conditional on the

observation vector y, where ψ∗ denotes a fixed parameter vector, containing ψ as well as

parameters ψ̃ particular to the importance density g(y|θ; ψ̃), i.e., ψ∗ = (ψ′, ψ̃′)′. Under

the assumption that a numerically efficient device can be developed for sampling θ from

g(θ|y;ψ∗), we can express the likelihood function (3.21) in terms of the importance density

as

L(y;ψ) =

∫
p(y, θ;ψ)

g(θ|y;ψ∗)
g(θ|y;ψ∗) dθ, (3.22)

with the importance sampling estimate given by

1

S

S∑
k=1

ω(y, θ(k);ψ∗), ω(y, θ;ψ∗) =
p(y, θ;ψ)

g(θ|y;ψ∗)
, θ(k) ∼ g(θ|y;ψ∗), (3.23)
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where the number of simulations S should be sufficiently high and where θ(k) is drawn

independently for k = 1, . . . , S. In this framework we assume that pg(θ;ψ) = g(θ;ψ),

which implies that the marginal stochastic properties of θ in the model are the same as

in the importance sampling distribution. It follows immediately that

ω(y, θ;ψ∗) =
p(y, θ;ψ)

g(θ|y;ψ∗)
=

p(y|θ;ψ)pg(θ;ψ)
g(y|θ; ψ̃)g(θ;ψ)/g(y;ψ∗)

= g(y;ψ∗)
p(y|θ;ψ)
g(y|θ; ψ̃) , (3.24)

see, for example, Durbin and Koopman (2012). The density g(y;ψ∗) can be taken as a

scaling function since it does not depend on θ. The function ω(y, θ;ψ∗) is usually referred

to as the importance sampling weight function. If the variance of ω(y, θ;ψ∗) exists, the
estimate (3.23) is consistent for any g(y|θ; ψ̃) and a central limit theorem applies; see

Geweke (1989) and Koopman et al. (2009). We may expect that a well-behaved weight

function leads to an efficient importance sampling estimate of the likelihood function.

Construction of the importance density

The key choice in selecting an importance density g(θ|y;ψ∗) is numerical efficiency. We

follow the predominant choice in the literature and opt for the Gaussian density; we

construct g( · ) efficiently using standard techniques such as regression analysis and the

Kalman filter.

Several proposals for constructing a Gaussian g(θ|y;ψ∗) have been developed. Shep-

hard and Pitt (1997) and Durbin and Koopman (1997) determine the choice of ψ̃ via a

second order Taylor expansion of density p(y|θ;ψ) around a θ that is equal to the mode

of p(θ|y;ψ). The mode can be found by an iterative method involving the Kalman filter

and the related smoother. Alternatively, in the EIS method of Liesenfeld and Richard

(2003) and Richard and Zhang (2007), the appropriate Gaussian importance density is

found by solving

argmin
ψ̃t

∫
λ2(yt, θt;ψ

∗)ωt(yt, θt;ψ
∗) g(θt|y;ψ∗) dθt, (3.25)

for each t = 1, . . . , n, with ψ̃′ = (ψ̃′
1, . . . , ψ̃

′
n), ψ

∗′ = (ψ′, ψ̃′), and

λ(yt, θt;ψ
∗) := log ωt(yt, θt;ψ

∗) := log p(yt|θt;ψ)− log g(yt|θt; ψ̃t). (3.26)

The importance density is effectively determined by the minimization of the variance of the

log weight ωt, for each t. Richard and Zhang (2007) evaluate the integral in (3.25) using

importance sampling and perform its minimization via weighted least squares regression.

Koopman, Lit, and Nguyen (2012) show that the EIS method can also fully rely on

computationally efficient Kalman filter and smoothing methods. Their modification leads
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to a faster and efficient importance sampling method, especially for large state dimensions.

In a further development of EIS, Koopman et al. (2014) replace the evaluation of the

integral in (3.25) by standard Gauss-Hermite quadrature methods. This results in a highly

numerically efficient importance sampling technique, that can be augmented with easy-

to-compute control variates to increase efficiency even further. They label their method

numerically accelerated importance sampling (NAIS). The key to NAIS is the availability

of analytic expressions for the marginal densities g(θt|y;ψ∗) given the Gaussian importance

densities g(y|θ; ψ̃) and a Gaussian marginal density g(θ;ψ) = pg(θ;ψ). Although NAIS

was originally developed for a univariate signal θt ∈ R, the method can easily be extended

to multiple dimensions; see Scharth (2012, Ch. 5) and the discussions in Koopman et al.

(2014). Scharth (2012) proposes Halton sequences and quasi-Monte Carlo integration

for the evaluation of high dimensional integrals. In the case of our dynamic Skellam

model, the signal is only two-dimensional and hence we can still rely on Gauss-Hermite

quadrature methods efficiently.

Bivariate numerically accelerated importance sampling

To facilitate the exposition, we express the Gaussian density as a kernel function in θt,

g(y|θ; ψ̃) =
n∏

t=1

g(yt|θt; ψ̃t), g(yt|θt; ψ̃t) = exp

(
at + b′tθt −

1

2
θ′tCtθt

)
, (3.27)

with scalar at, 2× 1 vector bt, a symmetric 2× 2 matrix Ct, and bivariate θt = (θ1t, θ2t)
′.

To ensure that g(yt|θt; ψ̃t) integrates to one, we set at = − log 2π + 1
2
log |Ct| − 1

2
b′tC

−1
t bt.

We gather the five remaining parameters in bt and Ct into the vector ψ̃t. NAIS obtains

the importance sampling parameters ψ̃t iteratively, starting from an initial guess ψ̃
(0)
t , and

updating it sequentially to ψ̃
(k)
t for k = 1, 2, . . ., until convergence. Given ψ̃

(k)
t , the next

parameter vector ψ̃
(k+1)
t for the importance densities solves the EIS criterion

argmin
ψ̃
(k+1)
t

∫ ∫
λ2(yt, θt;ψ

∗(k+1))ωt(yt, θt;ψ
∗(k))g(θt|y;ψ∗(k)) dθ1t dθ2t, (3.28)

where ψ∗(k) contains ψ and ψ̃(k). The key to the implementation of NAIS is the availability

of an analytical expression for the smoothing density g(θt|y;ψ∗(k)). In our case of Gaussian

importance sampling distributions, we have

g(θt|y;ψ∗(k)) = N(θ̂
(k)
t , V

(k)
t ) =

1

2π|V (k)
t |1/2

exp

(
−1

2
(θt − θ̂

(k)
t )′(V (k)

t )−1(θt − θ̂
(k)
t )

)
,

(3.29)

where θ̂
(k)
t and V

(k)
t are obtained from the Kalman filter and smoother, for given ψ∗ =

ψ∗(k), applied to the linear Gaussian model xt = θt + ut with disturbance ut ∼ N(0, C−1
t )
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and pseudo-observation xt = C−1
t bt, for t = 1, . . . , n. It is straightforward to verify that

the observation density
∏n

t=1 g(xt|θt; ψ̃t) is equivalent to g(y|θ; ψ̃) in (3.27).

We numerically implement the minimization in (3.28) by the Gauss-Hermite quadra-

ture method; see, for example, Monahan (2001). For this purpose we define

ϕ(yt, θt; ψ̃
(k+1)
t , ψ∗(k)) = λ2(yt, θt;ψ

∗(k+1))ωt(yt, θt;ψ
∗(k)), (3.30)

and we select a set of abscissae {zi}Mi=1 with associated Gauss-Hermite weights h(zi), for

i = 1, . . .M . The numerical implementation of the minimization (3.28) becomes

argmin
ψ̃
(k+1)
t

M∑
i=1

M∑
j=1

wij · ϕ(yt, z̃(k)
ij,t; ψ̃

(k+1)
t , ψ∗(k)), (3.31)

with weight wij = h(zi)h(zj) exp(
1
2
z2i ) exp(

1
2
z2j ) and z̃

(k)
ij,t = θ̂t + F

(k)
t zij, where the 2 ×

2 square root matrix F
(k)
t is the result of the decomposition V

(k)
t = F

(k)
t F

(k)
t

′
and

zij = (zi , zj)
′ for i, j = 1, . . . ,M . In this implementation we have used the fact that

g(z̃
(k)
ij,t|y;ψ∗(k)) ∝ exp(−1

2
z′
ijzij); see Koopman et al. (2014) and Scharth (2012, Ch.

5). The decomposition of V
(k)
t is needed because the joint set of M2 abscissae zij, for

i, j = 1, . . . ,M , is associated with the bivariate standard normal distribution.

We can express the minimization problem (3.31) as a standard weighted least squares

computation applied to M2 observations for the regression equation

log p(yt|z̃(k)
ij,t) = constant + κ′z̃(k)

ij,t −
1

2
ξ′vech(z̃(k)

ij,tz̃
(k)
ij,t

′) + error, (3.32)

where κ and ξ are regression coefficient vectors and the regression weights are given by

wij · ωt(yt, z̃
(k)
ij,t;ψ

∗(k)) · g(z̃(k)
ij,t|y;ψ∗(k)), and where vech( · ) stacks elements of the upper

triangular part of a symmetric matrix into a vector. The resulting weighted least squares

estimates for κ and ξ yield the new values for b
(k+1)
t and vech(C

(k+1)
t ), respectively. Hence,

new values for ψ̃
(k+1)
t are obtained for each t = 1, . . . , n. Using these new estimates, we

can determine a new g(θt|y;ψ∗(k+1)) in (3.29) by constructing a new time series xt and

applying the Kalman filter and smoother to the linear Gaussian model given below (3.29).

In this last step we obtain new values for θ̂
(k+1)
t and V

(k+1)
t , which we require in (3.29).

This procedure is iterated until convergence. Typically, we only need a small (<

10) number of iterations for the applications in this chapter. We emphasize that the

regression computations can be carried out in parallel over t, leading to a very efficient

implementation.
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NAIS: the algorithm

The minimum of (3.31) is obtained when log p(yt|θt;ψ) = log g(yt|θt; ψ̃t). Therefore we

regress the log Gaussian density log g(yt|θt; ψ̃t) as given by (3.27) on the log observation

density log p(yt|θt;ψ) by use of weighted least squares. The regression coefficient vector

at time t, Ψt, consists of the intercept at, the individual components of the 2 × 1 vector

bt and the 2 × 2 matrix Ct at time t, i.e. Ψt = (at, κ
′, ξ′)′. The optimum values Ψ̂t are

obtained by applying the following iterative algorithm

(i) Find appropriate starting values for κ and ξ with t = 1, ...., n and set s = 1 and

Ψ
(s)
t = (at, κ

′, ξ′)′. In most cases the algorithm is not very sensitive to starting values

so κ consisting of ones and Ct(ξ) set to I2 suffices.

(ii) Construct the linear Gaussian state space model with observation equation xt =

θt + ut with disturbance ut ∼ N(0, C−1
t ) and pseudo-observation xt = C−1

t bt, for

t = 1, . . . , n and apply the Kalman filter and smoother to obtain θ̂
(k)
t and V

(k)
t and

use these to calculate z̃
(k)
ij,t as described below equation (3.31).

(iii) Minimize equation (3.31) by weighted least squares and obtain Ψ
(s+1)
t .

(iv) If
∑n

t=1 ||Ψ(s+1)
t −Ψ

(s)
t || < ε, for some threshold value ε, the algorithm has converged

and can be terminated. Otherwise, set s = s+ 1 and go to step (ii).

Once the iterative algorithm has converged in step (iv), Ψ
(s+1)
t , t = 1, . . . , n represents the

new importance density. The number of times the algorithm needs to be called before

convergence depends on the model and the size of the dataset. Starting from init values

the algorithm converges most of the time in 10 steps or less. The minimization of (3.31)

can be carried out independently for all time points t and can therefore be done in parallel

over t.

E Intradaily time series of price changes in 2012

Table 3.5: The table reports the empirical distribution (in percentage points) of tick price changes for
the four stocks Walmart (WMT), Coca-Cola (KO), JPMorgan (JPM), and Caterpillar (CAT), in 2012.
The majority of the observations are -1, 1 and 0, the distribution is close to symmetric and it centers
around zero which validates the use of the MSKII(-1,1,0) distribution presented in (3.3).

Company ≤ −4 −3 −2 −1 0 1 2 3 ≥ 4

Wal-Mart Stores Inc. (WMT) 0.46 0.83 3.43 19.66 51.25 19.51 3.52 0.86 0.48
The Coca-Cola Company (KO) 0.25 0.44 2.09 18.11 58.31 17.90 2.20 0.45 0.25
JPMorgan Chase & Co. (JPM) 0.15 0.40 2.42 19.37 55.29 19.29 2.53 0.41 0.14
Caterpillar Inc. (CAT) 4.66 4.39 9.22 18.20 27.13 18.12 9.20 4.46 4.62
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Figure 3.5: The panels show the observed price changes for August 1, 2012 for the four stocks
{WMT,KO,JPM,CAT}.
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Figure 3.6: The panels show the absolute values of observed price changes for August 1, 2012 for the four
stocks {WMT,KO,JPM,CAT}. Furthermore, in each panel the estimate of 2 × σt is presented together
with its estimated 95% confidence interval.
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Chapter 4

A Skellam Model for Analysing the

Differences in Count Data

4.1 Introduction

Various recent contributions have raised renewed interest in the Skellam distribution to

model integer outcomes; see for example Karlis and Ntzoufras (2006), Karlis and Nt-

zoufras (2009), Barndorff-Nielsen et al. (2012) and Chapter 3 and 5 of this dissertation.

The Skellam distribution can be viewed as a distribution on positive and negative inte-

gers, but can also be constructed from differences in pairs of Poisson counts; see Skellam

(1946). Paired count observations and their differences appear in many situations and

research fields. For example, in medical research, experiments for measuring the effect

of treatments and drug intake lead to paired counts. A famous example is the decayed,

missing and filled teeth (DMFT) index for a region that measures the effect of preventive

methods in dental care; see Bohning, Dietz, Schlattmann, Mendonca, and Kirchner (1999)

and Karlis and Ntzoufras (2006). The change of the DFMT index over time or between

regions can be modelled by the Skellam distribution. Another example is low-scoring

sports such as ice-hockey and football where the score difference between the teams can

be viewed as the difference between two Poisson counts and thus be modelled by a Skellam

distributed random variable.

The Skellam distribution that we apply in this chapter is originally derived by Skellam

(1946) and is characterized by two ‘intensity’ parameters. The Skellam distribution of

Chapter 3 and 5 are a re-parameterization of the one we apply in this chapter. In earlier

studies, the Skellam distribution is used from a perspective of static parameters. When

we analyse time series of differences in counts, we often obtain significant improvements

in model fit and forecasting performance if the parameters of the Skellam distribution are

allowed to vary over time. Time variation in the parameters of the Skellam distribution
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may capture the developments of relative team strengths over longer periods of time in

sports applications, trends in health and demography in medical applications, or market

circumstances and risk attitudes in economic and finance applications.

We present a novel dynamic Skellam model with stochastically time-varying intensities.

We formulate the model in terms of a nonlinear non-Gaussian state space process for which

we rely on the numerical and simulation based methods (NAIS methodology) as described

in Chapter 3. The difference between the methodology of this chapter and Chapter 3 is

the use of the extended bivariate NAIS methodology by adopting bivariate Gauss-Hermite

quadrature which we presented in Appendix D of Chapter 3.

To study the performance of our new model and the resiliency of the associated esti-

mation methodology based on the bivariate NAIS, we present the results of a large scale

application. We consider score differences of football matches of 29 teams observed over

7 seasons of the German Bundesliga. The resulting panel data set has many missing

values and is clearly high dimensional. In addition, we model the score difference for each

match by a dynamic Skellam distribution with intensity parameters that vary with the

strengths of attack and defence of the home and away teams. Given the large number of

teams in the Bundesliga, the state vector in the state space representation of the model

is also high dimensional. The combination of missing values and high dimensions poses

well-known challenges to the computational feasibility of the estimation methodology. We

show, however, that the dynamic Skellam model for this complex data set can be esti-

mated successfully using NAIS in a feasible way. Several interesting extensions of the

basic model are also considered.

The remainder of this chapter is organised as follows. We present the new dynamic

Skellam model in Section 4.2 and explain how it can be cast in nonlinear non-Gaussian

state space form. Section 4.3 treats a large unbalanced panel data set of German Bun-

desliga football matches to show how the method performs for high dimensional data sets,

missing values and high dimensional state vectors. Section 4.4 concludes.

4.2 The dynamic Skellam model

4.2.1 Skellam distribution

The probability mass function (pmf) of a Skellam distributed random variable Y ∈ Z

with parameters λ1, λ2 ∈ R
+ is given by

P(Y = y;λ1, λ2) = exp (−λ1−λ2)
(
λ1/λ2

)y/2
I|y|(2

√
λ1λ2), (4.1)

where I|y|( · ) is the modified Bessel function of order |y|, see Abramowitz and Stegun

(1972) for more details. Following Skellam (1946), we can derive the Skellam distribution
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by defining Y as the difference C1−C2 of a bivariate Poisson count pair (C1, C2), see also

Mardia (1970). If C1 and C2 are independent Poisson, λ1 and λ2 can be directly interpreted

as the Poisson intensities for C1 and C2, respectively. More background information on

the Skellam distribution and further references are provided by Johnson et al. (1992).

The mean and variance of Y are given by

E(Y ) = λ1 − λ2, Var(Y ) = λ1 + λ2. (4.2)

Moreover,

p(Y = y;λ1, λ2) = p(Y = −y;λ2, λ1),

such that the Skellam distribution is symmetric for λ1 = λ2, right-skewed for λ1 > λ2, and

left-skewed for λ1 < λ2. Just as for the Poisson distribution, we can also construct a zero-

inflated version of the Skellam distribution, see for example Karlis and Ntzoufras (2009).

This transfers probability mass from Y �= 0 towards Y = 0 if the latter is over-represented.

The zero-inflated Skellam distribution is defined by its pmf

pz(Y = y;λ1, λ2, γ) =

{
(1− γ) p(Y = y;λ1, λ2), for y �= 0,

γ + (1− γ) p(Y = 0;λ1, λ2), for y = 0,
(4.3)

with γ ∈ [0, 1) an additional unknown and fixed parameter, and p(y;λ1, λ2) as defined in

(4.1). For γ = 0, we recover the original Skellam distribution. The mean and variance of

the zero-inflated Skellam distribution are

E(Y ) = (1− γ)(λ1 − λ2), Var(Y ) = (1− γ)(λ1 + λ2) + γ(1− γ)(λ1 − λ2)
2. (4.4)

The inflation of probability mass to non-zero values of Y can be achieved in a similar way.

In Figure 4.1 we present a few examples of Skellam and zero-inflated Skellam distributions.

The figure shows that the distribution is highly peaked at the center for low values of λ1

or λ2. The effects of λ1 �= λ2 and γ �= 0 are also clearly visible.

4.2.2 Dynamic specification of intensities

In the dynamic Skellam model, we replace Y , y, λ1, and λ2 in (4.1) by their time-varying

counterparts Yt, yt, λ1t, and λ2t, respectively. We denote the dynamic model as

Yt ∼ Skellam(λ1t, λ2t), t = 1, . . . , n, (4.5)

where n is the length of the time series. We assume that the serial correlation in Yt

is accounted for by the time-variation in the intensities λ1t and λ2t which means that,

conditional on λ1t and λ2t, Yt is not subject to other dynamic processes. The dynamics
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Figure 4.1: Skellam and zero-inflated Skellam distributions with density functions (4.1) and (4.3), re-
spectively, for different λ1, λ2 and γ coefficients. These are discrete distributions, the connecting lines
are drawn for clarity and do not indicate continuity. ( )λ1 = λ2 = 1; ( )λ1 = λ2 = 2;
(−−−)λ1 = 3, λ2 = 1; (· · · · · · )λ1 = λ2 = 2, γ = 0.1.

of λ1t and λ2t are modelled by a nonlinear transformation of an autoregressive process,

λit = si(θt), (4.6)

θt = ct + Ztαt, (4.7)

αt+1 = dt + Ttαt + ηt, ηt ∼ NID(0, Qt), (4.8)

for i = 1, 2 and t = 1, . . . , n. The link functions si(θt), i = 1, 2 are exponential functions

to ensure positivity of the intensities λ1t and λ2t. We refer to Section 3.2.3 for the

specifications of equations (4.7) and (4.8) and we note that, except for the link functions in

(4.6), the dynamic Skellam model specified above is identical to that of Section 3.2.3. We

therefore refer to Section 3.2.3 for details of the non-Gaussian nonlinear state space model

specified above and to the bivariate NAIS methodology in Appendix D of Chapter 3 for

likelihood evaluation, importance sampling and construction of the importance density.

4.3 Analysing football scores

We consider score differences for football matches in the German Bundesliga. The number

of goals per match in a football game is typically low, such that the score balance can
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easily be viewed as a difference of two Poisson count variables, see Section 4.2. Let C1,ijt

and C2,ijt denote the number of goals scored by the home team i and the visiting team j

in week t, respectively, in a match of team i versus j. Our dependent variable is the score

balance yij,t = C1,ijt − C2,ijt, which determines whether the match is won or lost, or ends

in a tie. We assume that yij,t is Skellam distributed.

Our data consists of weekly match results for 7 seasons of the German Bundesliga for

the period from 2006−2007 to 2012−2013. The number of teams active in the Bundesliga

during one season is 18. Each week, 9 matches are played and the total season consists of

34 weeks. Due to team promotions and relegations, we have J = 29 teams in total that

have played in the Bundesliga for at least one season during the sample period. The total

sample thus consists of an unbalanced panel over 238 weeks for 29 teams and 2142 team

pairs (i, j). In each of the seasons in our data set, matches are postponed and extra time

periods need to be added in the data set. The resulting calendar is adopted for the time

index t in our analysis. This means that on the added time periods several teams do not

play and missing observations need to be added to the data set which can be treated by

the state space methodology in a routine manner; see also the discussion in the Appendix

of Chapter 2.

Since we model the match outcomes in the Bundesliga over a prolonged period, team

performance and the ability to score goals may vary over the sample, possibly due to

changes in the composition and management of the teams. We can handle this directly

using our dynamic Skellam model. The current data set allows us to investigate the

performance of our model and the associated bivariate NAIS estimation methodology

for large unbalanced panels with many missing observations. Our state space modelling

framework turns out to be well suited for the analysis of such data.

We extend our dynamic Skellam model to a panel setting and specify the model as

yij,t ∼ Skellam(λ1,ijt, λ2,ijt), i �= j, i, j = 1, . . . , J, t = 1, . . . , n,

where λ1,ij,t and λ2,ij,t are the intensities of scoring goals for the home and away teams,

respectively, during a match played in week t. Team i is likely to win on its home ground

from team j if λ1,ij,t > λ2,ij,t. We assume that these intensities depend on the strengths

of attack (ξit and ξjt) and strengths of defence (βit and βjt) of both teams in week t.

We assume a fixed time-invariant home ground advantage δ for all teams and model the

scoring intensities as

λ1,ij,t = exp(θ1,ij,t) = exp
(
δ + ξit − βjt

)
, λ2,ij,t = exp(θ2,ij,t) = exp

(
ξjt − βit

)
. (4.9)

This parsimonious modelling framework for league match results using strengths of attack

and defence is based on Maher (1982) and provides our benchmark model. The gener-
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alization towards a dynamic bivariate Poisson model is developed in Chapter 2, building

on the work of Dixon and Coles (1997) and Rue and Salvesen (2000). The home ground

advantage assumes that a team scores, on average, more goals in a home game than in

an away game; see Pollard (2008) for a review.

We collect the home ground advantage coefficient and the time-varying strengths of

attack and defence for each team in the state vector αt in (4.8), i.e.

αt = (δ, ξ1t, . . . , ξJt, β1t, . . . , βJt)
′ . (4.10)

We note that the state vector αt has 59 elements in our analysis for the Bundesliga. For

each week t with Kt scheduled matches, we collect the log intensity pairs in the signal

vector θt. When all teams play in week t, Kt = 9 and θt has 18 entries with a result

out of a total of 29 (total number of teams) and has 11 missing entries. The vector θt

can be constructed from (4.7) using the state vector αt in (4.10) with ct = 0 and Zt an

appropriate selection matrix as implied by (4.9). The strengths of attack and defence for

each team evolve separately over time as

ξi,t = φξξi,t−1 + εξ,it,

βi,t = φββi,t−1 + εβ,it,

(
εξ,it

εβ,it

)
∼ NID

(
0,

[
σ2
ξ 0

0 σ2
β

])
,

for i = 1, . . . , J , and where the εit are mutually independent over i and t. Although each

team has its own unique strength of attack and defence, the persistence coefficients φξ and

φβ and the innovation variances σ2
ξ and σ2

β are common to all teams. This again results

in a highly parsimonious model. We retain 4 parameters ψ = (φξ, φβ, σ
2
ξ , σ

2
β)

′, which we

estimate using the techniques outlined in Section 3.2.3.

An important difference between Chapter 3 and Chapter 4 is made in the applications.

The Skellam distribution of Chapter 3 has one time-varying parameter, i.e. a time-varying

variance (and a mean set to zero) whereas in the application of this chapter, λ1t and λ2t

are both time-varying. In other words, here we have a non-Gaussian nonlinear state

space model with a bivariate signal for which we need the bivariate NAIS methodology as

presented in Appendix D of Chapter 3 in contrast to the univariate signal and methodology

in the application of Chapter 3.

4.3.1 Estimation results

To verify the effect of different values of the number of importance draws S and the

number of Gauss-Hermite quadrature points M on the estimation results, we present the

estimation results for ψ in Table 4.1 using S = 50, 200, 1000 and M = 10, 20. The values

of the maximised log likelihood function are also presented. All reported estimates differ

only slightly for different values of S and M . In particular, the differences are negligible
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Table 4.1: Estimates of parameter vector ψ: Bundesliga team strengths. The table presents the Monte
Carlo estimates of the five model coefficients, where δ is estimated as part of the state vector. The
remaining parameters are estimated using non-linear numerical optimization. The estimates are given
for different values ofM and S (in columns). The standard errors of the estimates are presented in italics
below. The last row contains the maximised estimated log likelihood values (�).

S = 50 S = 200 S = 1000
M = 10 M = 20 M = 10 M = 20 M = 10 M = 20

φξ 0.9958 0.9958 0.9958 0.9958 0.9958 0.9958
0.0019 0.0019 0.0018 0.0018 0.0019 0.0019

φβ 0.9911 0.9911 0.9911 0.9911 0.9912 0.9912
0.0048 0.0050 0.0050 0.0046 0.0050 0.0050

σ2ξ × 104 8.649 8.653 8.607 8.615 8.658 8.654

3.950 3.833 3.807 3.711 3.892 3.859

σ2β × 104 5.738 5.744 5.698 5.704 5.685 5.672

3.706 3.851 3.849 3.542 3.865 3.814

δ 0.2617 0.2617 0.2617 0.2617 0.2617 0.2617
0.0262 0.0262 0.0262 0.0262 0.0262 0.0262

� -8137.50 -8137.50 -8137.54 -8137.54 -8137.51 -8137.51

compared to the estimated standard errors. We conclude that reasonable choices for S and

M have no major impact on the results which shows the robustness of the methodology.

Table 4.1 shows that the strengths of attack and defence on a weekly basis are highly

persistent and smooth. This is to be expected: the strengths of attack or defence of a

particular team do not change dramatically from one week to another. When we consider

the persistence year-by-year (34 weeks), the corresponding persistence coefficients are

0.995834 = 0.87 and 0.991234 = 0.74 for the defence and attack strength, respectively.

These values clearly point to stationary dynamics. Interestingly, the strengths of attack

evolve more persistently over time than the strength of defence.

4.3.2 Model extensions

The benchmark Skellam dynamic panel model for match results as described above can be

extended in many different ways. In this section, we explore a number of such extensions

and provide further results. We introduce the extensions briefly and then comment on

the empirical findings for the German Bundesliga data. A compilation of the various

extensions is presented in Table 4.2. All results are computed for S = 100 and M = 10.
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Heterogeneous panel

The benchmark model assumes that the dynamic properties of the attack and defence

processes are the same for all teams, i.e., the coefficients φξ, φβ, σ
2
ξ and σ2

β do not depend

on i. It is possible that these processes behave differently over time for the different

teams. A first attempt to relax this constraint is to have different properties for the more

constant performing teams. For the definition of a constant performing team we look at

the final tables of the four most recent years before the start of our data set, the period

from 2002−2003 to 2005−2006. We make two groups. In the first group, labeled group

I, we have the teams that finished four years in a row in the top half, i.e. best 9 out of

18 teams. Group I consists of {Dortmund, Hamburg, Bayern Munich, Werder Bremen,

Schalke 04, Stuttgart}. The second group, labeled group II, holds all other teams. The

four additional parameters are placed in ψ. This heterogeneous panel specification leads

to a much better in-sample fit with a likelihood ratio test value of 14.74 for 4 additional

parameters. The estimates for this model are

φξ,I = 0.9986, φβ,I = 0.9958, σ2
ξ,I × 104 = 6.43, σ2

β,I × 104 = 5.24, δ = 0.263,

φξ,II = 0.9737, φβ,II = 0.9851, σ2
ξ,II × 104 = 30.8, σ2

β,II × 104 = 8.00.

We conclude that the traditionally better performing teams have more persistent strengths

of attack and defence processes. Although the values φξ,I and φβ,I are estimated close

to one, which points towards random walks, we maintain the autoregressive processes

since 0.998634 = 0.95 still indicates to stationary dynamics if we look at the persistence

year-by-year (34 weeks).

Correlated strengths of attack and defence

The strengths of attack and defence of teams are typically related; both should be good for

a successful team. We therefore consider the innovations of the autoregressive processes

for the strength of attack and defence to be correlated, i.e.(
εξ,it

εβ,it

)
∼ NID

(
0,

[
σ2
ξ ρσξσβ

ρσξσβ σ2
β

])
, −1 < ρ < 1, i = 1, . . . , J,

where ρ is the correlation coefficient which is common to all teams. The estimate of ρ is

0.97 while the other estimates are given by

φξ,I = 0.9987, φβ,I = 0.9942, σ2
ξ,I × 104 = 5.12, σ2

β,I × 104 = 4.40, δ = 0.267,

φξ,II = 0.9263, φβ,II = 0.9894, σ2
ξ,II × 104 = 92.6, σ2

β,II × 104 = 3.84.
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The likelihood ratio test for one extra coefficient is 5.96, which is statistically significant

at the 5% level. The estimated value of ρ = 0.97 is close to one which indicates that

the dynamic development of the strengths of attack and defence are almost perfectly co-

dependent. A possible explanation for this might be that clubs when building their teams

make progressive steps in acquisitions both on the attack and defence side: having a team

with a great scoring potential but a poor defence is much less effective for securing a

high final position in the competition. The reverse is also true, explaining why the two

processes will probably be heavily correlated.

Away ground disadvantage

Apart from the fixed effect δ for home ground advantage in the scoring intensity of the

home team, we can also introduce a fixed effect δa for the disadvantage of scoring by the

away team: λ2,ij,t = exp(δa+ ξjt−βit). We find δa = 0.066 with a standard error of 0.054,

such that this effect is not statistically significant in our study.

Zero inflated model

In order to capture a (possible) excess of draws, yij,t = 0, we consider a zero-inflated

version of the model using equation (4.3) where an extra parameter γ is added that

accounts for the possible transfer of probability mass towards zero. The log likelihood for

this model is not significantly higher than the benchmark model and the estimate for γ

is not statistically significant. We conclude that an excess of draws is not present in the

Bundesliga data set as modelled by the dynamic Skellam model.

Home stadium capacity

Home ground advantage may depend on the stadium capacity of the home team. A larger

stadium that can contain a larger crowd may have a larger impact on the performance

of the two teams and perhaps the referee; see the discussion in Pollard (2008). The team

specific home ground advantage is added as a regression effect to the home team scoring

intensity, i.e.

λ1,ij,t = exp(δ + δxxi + ξit − βjt),

where xi is the stadium capacity of team i (measured in multiples of 10,000) and δx is the

regression coefficient that is placed in the parameter vector ψ. This model specification

does not lead to a significant improvement of the log likelihood value and the estimate

for δx = 0.00.
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Table 4.2: Model comparison. We present the fit improvements of different model specifications discussed
in Section 4.3.2. Each row represents an extension of the model. The sign � is used to indicate whether
the model extension is adopted in the final model. The dimension of ψ denoted by k, the log likelihood
value (�), the likelihood ratio (LR), the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) are reported for each extension. The AIC is calculated as 1

n∗ (2k − 2�) and the BIC is
calculated as 1

n∗ (log(n∗)k − 2�)where n∗ = 2142 are the number of matches in the data set. In case the
model extension only concerns a single parameter, the null hypothesis and the t-test are reported as well.
The LR test with ∗ and ∗∗ indicates significance at the 5% and 1% significance level respectively.

Model specification k � LR test H0 t-test AIC BIC

Basic model 4 -8137.51 7.6018 7.6124
Heterogeneous panel � 8 -8130.14 14.74∗∗ 7.5986 7.6198
Correlated attack and defence � 9 -8127.16 5.96∗ 7.5968 7.6206
Away ground disadvantage 10 -8126.59 1.14 δa = 0 1.22 7.5972 7.6237
Zero inflated model 10 -8126.73 0.86 γ = 0 0.92 7.5973 7.6238
Home stadium capacity 10 -8127.16 0.00 δx = 0 0.00 7.5977 7.6242

Synthesis

Table 4.2 reviews our empirical findings for the Bundesliga. For each model extension

the estimated log likelihood function is maximised and the Akaike information criterion

(AIC) and the Bayesian Information Criterion (BIC) are computed to facilitate model

comparison. Based on AIC, we can conclude that team heterogeneity in the dynamics,

and correlation between the strengths of attack and defence are two important extensions

for football match outcomes in our Bundesliga data set. These findings are backed up

by likelihood ratio tests. However, BIC, which penalizes the addition of parameters more

than AIC does, favours the basic model.

4.3.3 Signal extraction

We present the estimated strengths of attack and defence in Figure 4.2 using the bivariate

NAIS methodology as described in Section 3.2.3. The smooth and persistent processes

for the strengths of attack and defence of the overall stronger teams in group I are clearly

visible. The teams in group II have not played in the Bundesliga for all seasons in our

sample. A number of those teams have only played during one season. It emphasizes

that our estimation procedure can handle such a large and unbalanced panel of teams

without much problems, despite the intricacies of the Skellam distribution and the high

dimensional state and signal vector.

The correlation between the strengths of attack and defence for each team is also

clearly visible. The teams of Dortmund and Bayern Munich have increased their strength

of attack consistently from season to season which is also true for their strength of defence.

On the other hand, the strength of attack of Werder Bremen has deteriorated over time,

which only partly applies to its strength of defence.
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Figure 4.2: Strengths of attack and defence of teams in the Bundesliga. The two panels of graphs present
respectively the extracted strengths of attack and defence for all teams in the Bundesliga from the season
2006 − 2007 towards 2012 − 2013, together with confidence intervals based on one standard error. The
more persistent strengths of attack and defence processes of the group I teams are clearly visible. Group
I = {Dortmund, Hamburg, Bayern Munich, Werder Bremen, Schalke 04, Stuttgart}. Group II is formed
by the remaining teams.
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4.4 Conclusions

In this chapter we introduced a general dynamic model for Skellam distributed difference

in counts. We made the two intensity parameters of the Skellam distribution time-varying

and showed how to formulate the resulting model as a non-Gaussian state space model.

We then performed a likelihood-based analysis of the model using importance sampling

methods. In particular, we showed how to estimate the parameters and states of the

dynamic Skellam model using a bivariate extension of the numerically accelerated im-

portance sampling (NAIS) method of Koopman et al. (2014). In contrast to the higher

dimensional generalization of NAIS based on Halton sequences in Scharth (2012, Chapter

5), we were still able to use the bivariate Gauss-Hermite numerical integration techniques

to compute the appropriate integrals. In Table 4.1 we presented maximised log likelihood

values and parameter estimates for various values of the number of importance draws S

and number of Gauss-Hermite quadrature pointsM and concluded that reasonable choices

for S and M did not have a major impact on the results which showed the robustness of

the methodology.

Based on an illustration, we demonstrated the versatility of our dynamic Skellam

analysis. In our application, we showed that our analysis can handle a large panel of

differences of scores by matches played in the German Bundesliga. We showed that the

dynamic Skellam model in its state space formulation can handle large sections of missing

data. We also showed how the model can be extended to include regression effects,

heterogeneous dynamics in the panel, and extensions of the Skellam distribution that

assign different probability mass to a small number of discrete outcomes. A key example

of the latter is the dynamic zero inflated Skellam model. Results were summarized in

Table 4.2 from which we concluded that heterogeneity in the dynamics, and correlation

between the strengths of attack and defence significantly improved model fit based on the

Akaike information criterion and likelihood ratio tests. We conclude that the new dynamic

Skellam model is robust and computationally feasible for large unbalanced panels. The

model may even rely on high dimensional state vectors. Our flexible modelling framework

for time series may provide a useful benchmark for empirical applications based on integer

outcomes that can take both positive and negative values.

Further research should be focused in the direction of including additional explanatory

variables, see also the conclusion and further research recommendations of Chapter 2. It

is not yet clear if modelling the home and away scores as two observations (Chapter 2) is

better than modelling the difference between scores (Chapter 4). One could argue that

with the modelling of the difference between scores, information is lost. However, if one

is interested in the probabilities of a home win, draw or away win, it can be beneficial to

model the differences. The reasoning behind this is the accumulation of modelling error.

In Chapter 2, the probability of a home win is the sum of all the individual probabilities
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for which x > y where x and y are the number of goals scored by the home and away team

respectively. By modelling the difference between x and y, the probability of a home win,

draw or away win consists of less individual probability components. It should be further

investigated which method yield better results.
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Chapter 5

Dynamic Discrete Copula Models for

High Frequency Stock Price Changes

5.1 Introduction

A key empirical finding from many analyses of intraday tick data is that stock price

volatility is higher during opening hours than during the rest of the day; see, for example,

Andersen and Bollerslev (1997) and Tsay (2005). Much less is known about the intraday

pattern of the dependence structure between stock price changes. These dependence

structures are of direct importance for intraday risk management, for example, when

managing a book of multiple stocks that are traded repeatedly over the course of the

day. In this chapter we investigate the pattern of intraday dependence dynamics (beyond

correlation structures) for a number of U.S. financial stocks observed at the tick-by-

tick frequency. Earlier studies typically analysed lower-frequency data (5 minutes) using

standard correlation models; see, for example, Allez and Bouchaud (2011). We account for

the discreteness of tick-by-tick stock price changes in our analysis by adopting a flexible

dynamic copula framework for the modelling of the dependence structure. Bibinger,

Hautsch, Malec, and Reiss (2014) developed a realised intraday covariance measure which

also relies on high frequency data, but does not rely on copula functions and does not

account for the discrete nature of the tick data.

There are at least two possible reasons to expect intraday time-variation in the de-

pendence structure of stock price changes. First, news may accumulate overnight. As

many of the firm-specific announcements are scheduled after trading hours whereas most

common macro announcement are scheduled during normal trading hours, a relatively

higher percentage of idiosyncratic, firm-specific news is impounded in stock prices dur-

ing the first minutes after the opening. Such increased information flows are known to

affect intraday volatilities upwards immediately after the opening of the exchange; see
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for example Wood, McInish, and Ord (1985) and Admati and Pfleiderer (1988). Given

the relatively higher fraction of idiosyncratic information directly after the opening, price

changes are likely to exhibit lower dependence during the first minutes after the open-

ing compared to during the rest of the day. Second, idiosyncratic components may also

play an important role towards the end of the day. This may result in lower levels of

dependence during the closing minutes of the trading day. In particular, we expect many

players to unwind inventory positions that are built up over the course of the day due to

idiosyncratic liquidity shocks, in order to limit the (overnight) risk. The positions at the

end of the day are therefore likely to contain relatively more idiosyncratic components.

Hence the expected dependence between price changes at the end of the trading day is

lower.

We study intraday dynamics in price changes using tick-by-tick data observed at the

one-second frequency over the year of 2012 for four financial stocks that are heavily traded.

As the tick-size for our stocks is 1 dollar cent, prices as well as price changes move on a

discrete grid. It is well-established that intraday price changes are subject to time-varying

volatility and hence a time-varying marginal distribution. Many econometric challenges

arise in the modelling of the dependence structure between discrete variables in case

both the marginal distributions and the dependence structure are allowed to vary over

time. The main methodological contribution of this chapter is that we provide a novel

framework to address these issues in a way that is congruent with the empirical data and

parsimonious. In particular, the dynamic parameters in our model, including stock return

volatilities and dependence parameters, are updated using an observation-driven, autore-

gressive updating function based on the score of the conditional observation probability

mass function; for an introduction to the score-driven approach, see Creal, Koopman,

and Lucas (2011); Creal et al. (2013) and Harvey (2013), and for successful applications

see, for example, Lucas, Schwaab, and Zhang (2014), Harvey and Luati (2014), Creal,

Schwaab, Koopman, and Lucas (2014), and De Lira Salvatierra and Patton (2015). The

score-driven model has several favorable features: (i) the ‘filtered’ estimates of the time-

varying parameter are optimal in a Kullback-Leibler sense, see Blasques et al. (2015); (ii)

it is an inherently observation-driven model rather than a parameter-driven model in the

classification of Cox (1981), such that its likelihood is known in closed-form; and (iii) its

forecasting performance is at least comparable to parameter-driven counterparts, even

when the latter constitute the true data generating process, see Koopman et al. (2015).

The second point emphasizes that static parameters can be estimated in a straightforward

way using maximum likelihood methods.

We adopt a dynamic Skellam distribution to model the tick-size price changes on the

grid . . . ,−2,−1, 0, 1, 2, . . .; see Irwin (1937) and Skellam (1946). The Skellam distribu-

tion has also been used to model price change series in other recent contributions; see
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Barndorff-Nielsen et al. (2012) for Skellam Lévy processes, and Shahtahmassebi (2011)

for a Bayesian analysis of a parameter-driven Skellam model. Rather than only having a

dynamic generalization of the Skellam distribution for the marginal models, our main fo-

cus is on formulating a time-varying specification for the dependence structure in discrete

data based on a copula framework. In this regard, we amend the time-varying copula

models of Creal et al. (2013) and De Lira Salvatierra and Patton (2015) for continuous

data towards discrete data.

Discrete copulas and, in particular, dynamic discrete copulas pose a number of chal-

lenges. First, copulas for discrete marginals are not unique over the entire domain of the

unit hypercube. Second, the copula density is no longer well-defined for discrete marginals,

but is replaced by a copula probability mass function. Third, given the time-varying na-

ture of the marginal distributions, the grid that defines the copula uniquely changes from

one time period to the next. We address these issues using a parametric copula specifi-

cation that parsimoniously describes the copula surface. This function should cover grid

points over which the copula at the current time point is uniquely defined but also at grid

points that may become relevant at future time points given the time-varying nature of

the marginal distributions. We further allow for time-variation in the dependence struc-

ture by endowing the copula parameters with autoregressive dynamics that are a function

of the score of the copula probability mass function. In a Monte Carlo study, we show

that our dynamic copula approach works well in uncovering the true parameter dynamics

if the model is correctly specified; we can extract the path of the dynamic parameters

with high precision. Moreover, when the model is not correctly specified, we show that

our approach still accurately extracts the correct parameter path as well.

In our empirical study, we investigate the dependence in tick-by-tick price changes

for a selection of four U.S. financial stocks which are traded on the NYSE. We present

key evidence that significant intraday time-variation in the dependence structure of these

four stocks is present. The intraday dependence in all trading days of 2012 increases

during the first 30 minutes after the opening. The average intraday dependence remains

relatively constant after the first 30 minutes until, say, 15 minutes before the close when

a sharp decrease in the dependence takes place for the six stock pairs considered in our

analysis. An alternative approach is to specify the intraday pattern of the dependence as

a fixed intraday seasonality pattern based on a flexible spline function. However, we show

that in almost all cases our score-driven time-varying copula methodology significantly

outperforms the alternative spline-based approach. This indicates that time-variation in

the intraday dependence is captured accurately by the score-driven model and varies sub-

stantially between days. Furthermore, it suggests that substantial day-to-day deviations

from the average intraday pattern occur regularly.

The remainder of this chapter is organised as follows. We introduce the model in
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Section 5.2. Section 5.3 presents simulation results on the model’s adequacy. Our em-

pirical analysis is presented in Section 5.4, while Section 5.5 contains the conclusions.

The Appendix gathers a number of the more technical background expressions for the

score-dynamics of the different marginals and copulas used in this chapter.

5.2 Score-driven dynamic discrete copula model

Consider a d-dimensional integer-valued vector yt = (y1,t, . . . , yd,t)
′ ∈ Z

d with time-varying

conditional marginal distributions Fi(yi,t | Ft−1; θ
m
i,t) for i = 1, . . . , d and t = 1, . . . , T ,

where θmi,t is a time-varying parameter vector for the ith marginal distribution, and Ft =

{yt, yt−1, . . .}. The elements of yt may for instance consist of counts, such as Poisson or

binomial counts, or alternatively of changes in counts, such as the Skellam distributed

discrete (tick-size) price changes in our empirical application in Section 5.4. The mean

and variance of the Skellam distribution for stock i are then part of θmi,t. We characterize

the dependence structure by a parametric conditional d-dimensional copula function

C
[
F1(y1,t | Ft−1; θ

m
1,t), . . . , Fd(yd,t | Ft−1; θ

m
d,t) | Ft−1; θ

c
t

]
, (5.1)

where θct is the parameter vector defining the copula function C; see Sklar (1959). The

time-varying nature of θct allows us to study settings where the dependence structure

changes over time. For example, in Section 5.4 we study the intraday dependence between

discrete stock price changes. For notational simplicity, we suppress the dependence on

the conditioning set Ft−1 and write the marginal distributions as

Fi := Fi(yi,t; θ
m
i,t) ≡ Fi(yi,t | Ft−1; θ

m
i,t), i = 1, . . . , d,

and the copula function as C
[
F1(y1,t; θ

m
1,t), . . . , Fd(yd,t; θ

m
d,t); θ

c
t

]
. The dynamic specifica-

tions of the parameter vectors θmi,t and θct are provided below. The dynamic conditional

copula formulation presented in equation (5.1) is obtained from Patton (2002, 2006).

A discrete data analysis based on dynamic copulas faces several challenges; see also the

review of Genest and Nešlehová (2007) on the use of static copulas for discrete marginals.

For example, standard summary dependence measures such as Kendall’s τ or Spearman’s

ρ are no longer guaranteed to lie in the [−1, 1] interval and need to be used with caution

in a discrete setting. In addition, we can no longer guarantee the uniqueness of the

copula function in the standard Sklar (1959) representation of a distribution in terms of

its marginal distributions and a copula function. The copula is only uniquely determined

on the set RanF1 × . . . × RanFd, where RanFi denotes the range of the cumulative

distribution function (cdf) Fi, i = 1, . . . , d. This stands in sharp contrast with the case

of continuous marginal distributions, where the copula function is unique over the entire
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unit hypercube [0, 1]d.

Despite its non-uniqueness, discrete copulas can still be usefully applied in an empirical

setting; see, for example, Zimmer and Trivedi (2006). At one extreme, we can model the

value of the copula function at each point of its domain separately. This method can

work in simple settings where the discrete data only takes a small number of different

values; for example, in case of Bernoulli variables. This approach becomes infeasible,

however, when the copula is defined over many different points as is the case in the

empirical setting of Section 5.4. First, the price changes in our empirical example take

values on Z, and are therefore defined on (countably) infinitely many points. Second,

and most importantly, the marginal distributions are time-varying. As a result, also the

ranges RanFi(·; θmi,t) and therefore the domain over which C is uniquely identified are

time-varying. Consequently, it is no longer feasible to estimate the value of the copula

function over all points in the domain across all time periods, as there will be infinitely

many of them. A possible solution is to model the copula in a parsimonious way. For

example, we can use a parametric copula function defined over the entire [0, 1]d space even

though uniqueness is only guaranteed over a set of discrete points. This is the approach

we will adopt in our analyses below.

The dynamic specifications for θmi,t and θct in (5.1) are based on the score-driven ap-

proach of Creal et al. (2011, 2013) and Harvey (2013). We collect the time-varying pa-

rameters in θ′t = (θm′
1,t, . . . , θ

m′
d,t, θ

c′
t ). The score-driven model represents a class of models in

which the update of θt over time is formulated as a function of past data yt−1, yt−2, . . . and

past realised parameter values θt−1, θt−2, . . .. At time t we can write the update function

as

θt+1 = θt+1 (yt, yt−1, . . . , θt, θt−1, . . . ;ψ) ,

where ψ is an unknown parameter vector that contains the update coefficients and the

remaining static parameters of the marginal distributions and the copula function. It fol-

lows that θt is Ft−1-measurable and the approach is observation-driven in the classification

of Cox (1981). The estimation of the static parameter vector ψ is typically carried out by

the method of maximum likelihood in a straightforward manner. A score-driven model

updates θt in the direction of the steepest increase of the log conditional probability mass

function (pmf) at time t given the past information set Ft−1. Updating θt in this way

possesses information theoretic optimality properties as shown by Blasques et al. (2015).

Let p(yt|Ft−1; θt) denote the pmf of yt, which we again write in short-hand notation

as p(yt; θt), suppressing its dependence on the parameter vector ψ. Using the so called

‘inclusion-exclusion’ formula, we obtain from equation (5.1) that

p(yt; θt) =
∑

φ1=0,1

. . .
∑

φd=0,1

(−1)φ1+...+φd × C
[
F1(y1t − φ1; θ

m
1,t), . . . , Fd(ydt − φd; θ

m
d,t); θ

c
t

]
.

(5.2)
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For instance, for the bivariate case (d = 2), the pmf becomes

p(yt; θt) = C
[
F1(y1,t; θ

m
1,t), F2(y2,t; θ

m
2,t); θ

c
t

]− C
[
F1(y1,t − 1; θm1,t), F2(y2,t; θ

m
2,t); θ

c
t

] −
(5.3)

C
[
F1(y1,t; θ

m
1,t), F2(y2,t − 1; θm2,t); θ

c
t

]
+ C

[
F1(y1,t − 1; θm1,t), F2(y2,t − 1; θm2,t); θ

c
t

]
,

where the evaluation of equation (5.2) requires 2d evaluations of the copula function, for

any t, and is feasible for low values of d as in (5.3). The evaluation of (5.2) clearly becomes

more challenging for larger values of d; see, for example, Panagiotelis, Czado, and Joe

(2012). The score-based update function for θt takes the form

θt+1 = ω + A∇t +Bθt, ∇t =
∂ log p(yt; θt)

∂θt
, (5.4)

where ∇t is the score vector of the (predictive) mass function p(yt; θt) in (5.2), ω is a

vector of constants, and A and B are fixed coefficient matrices. These coefficients are

functions of the parameter vector ψ that also includes the unknown parameters of the

marginal distributions Fi and the copula function C in (5.2). Since p(yt; θt) relies on ψ,

it follows that ∇t is also a function of ψ. The derivative ∇t in (5.4) is straightforward to

obtain because the pmf is typically differentiable in the time-varying parameters θt. The

updating equation (5.4) corresponds to the unit scaling option of Creal et al. (2013) and

can be generalized in different ways; for example, by adding more lagged values of θt and

∇t.

The time-varying parameter vector θt is initialized at θ1, which we include in the

parameter vector ψ. In the case of a bivariate copula, the individual components of θt

consist of two marginal parameter vectors and one copula dependence parameter. To

introduce further parsimony, we assume diagonal matrices for A and B, such that each

element of θt is updated by its own score function only. The static parameter vector

ψ becomes ψ = {θ′1, ω′, diag(A)′, diag(B)′}, where diag(M) denotes the vector of the

diagonal elements of any matrix M . A more parsimonious specification is obtained by

having θ1 as to the unconditional mean of θt, i.e. θ1 = ω� (1−diag(B)) where � denotes

the Hadamard division (pointwise division).

The score function for∇′
t = (∇m′

1,t, . . . ,∇m′
d,t,∇c′

t ) has an analytical solution that is given

by the elements ∇m
k,t, k = 1, . . . , d, and ∇c

t specified as

∇m
k,t =

∂ log p(yt; θt)

∂θmk,t
=

∑
φ1=0,1 . . .

∑
φd=0,1(−1)φ1+...+φd

∂C(u1,t, . . . , ud,t; θ
c
t )

∂uk,t

· uk,t

∂θmk,t∑
φ1=0,1 . . .

∑
φd=0,1(−1)φ1+...+φdC(u1,t, . . . , ud,t; θct )

,

(5.5)
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∇c
t =

∂ log p(yt; θt)

∂θct
=

∑
φ1=0,1 . . .

∑
φd=0,1(−1)φ1+...s+φd∂C(u1,t, . . . , ud,t; θ

c
t )/∂θ

c
t∑

φ1=0,1 . . .
∑

φd=0,1(−1)φ1+...+φdC(u1,t, . . . , ud,t; θct )
, (5.6)

with ui,t = Fi(yi,t − φi; θ
m
i,t), for φi ∈ {0, 1}, i = 1, . . . , d, and t = 1, . . . , T . The denomi-

nators in (5.5) and (5.6) are equal to the pmf as given in (5.2). In case of the Gaussian

copula as well as the commonly encountered copulas from the Archimedean class, ana-

lytical expressions for ∇t are available. We refer to Appendix A for further details and

to Schepsmeier and Stöber (2014) for expressions for a range of derivatives of bivariate

copulas.

Given that θt is Ft−1-measurable and our model specification is observation-driven in

the classification of Cox (1981), we obtain the likelihood function in closed form by a

standard prediction error decomposition,

L(y;ψ) =
T∑
t=1

log p(yt; θt), (5.7)

with y = (y1, . . . , yT ). We define the corresponding maximum likelihood estimator (MLE)

of ψ as ψ̂ = argmaxψ L(y;ψ). In practice we obtain the MLE of ψ via the direct numerical

maximisation of L(y;ψ) with respect to ψ.

Example: Frank copula with Skellam marginals

As a concrete example, consider the bivariate Frank copula with Skellam marginals. This

combination of copula and marginals is used to perform the simulation study in Section

5.3. The Frank copula is a symmetric copula given by

CFr(u1,t, u2,t; θ
c
t ) =

1

θct
log

[
1 +

(exp(−θctu1,t)− 1)(exp(−θctu2,t)− 1)

exp(−θct )− 1

]
, (5.8)

with θct ∈ R\{0}; see Frank (1979) and Nelsen (2006). When θct → 0, the Frank copula

converges to the independence copula CFr(u1,t, u2,t; 0) = u1,tu2,t.

A Skellam pmf with location parameter μt and scale parameter σ2
t is given by

Pr(Yt = yt;μt, σ
2
t ) = exp

(−σ2
t

)(μt + σ2
t

σ2
t − μt

)yt/2

I|yt|
(√

σ4
t − μ2

t

)
, (5.9)

with yt ∈ Z and where I|yt|(·) is the modified Bessel function of order |yt|. The shape of the
Skellam distribution depends on μt and σ2

t and is symmetric for μt = 0, skewed right when

μt > 0, and left-skewed for μt < 0. The excess kurtosis of the Skellam pmf is 1/σ2
t , and it

has the Gaussian distribution as a limiting case. The Skellam distribution was originally

derived by Irwin (1937) and Skellam (1946) as a distribution for the difference between

two Poisson variables. Our parameterization in equation (5.9) is a reparameterization
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of the original version and can be transformed back by substituting μt = λ1,t − λ2,t and

σ2
t = λ1,t + λ2,t in (5.9), where λ1,t and λ2,t are the means of the underlying Poisson

distributions; see also Alzaid and Omair (2010). The mean μt and variance σ2
t in the full

model in equation (5.9) are time-varying. In our application of Section 5.4, however, the

mean turns out to be insignificantly different from zero and not time-varying, whereas

the variance remains time-varying. In this case, equation (5.9) simplifies to

Pr(Yt = yt; σ
2
t ) = exp

(−σ2
t

)
I|yt|(σ

2
t ). (5.10)

We then obtain a Frank copula function C(u1t, u2t; θ
c
t ) with θmi,t = σ2

i,t and

ui,t = Pr(Yi,t ≤ k; σ2
i,t) = exp

(−σ2
i,t

) k∑
φ=−∞

I|φ|(σ2
i,t), i = 1, 2. (5.11)

5.3 Simulation study

To investigate the properties of our model in a controlled setting, we carry out two sim-

ulation studies. In our first study, we assume that the score-driven model of equations

(5.2) and (5.4) is the true data generating process and verify the finite sample behaviour

of the maximum likelihood estimates for the parameter vector ψ. In the second study, we

consider a misspecified model setting. We assume that the marginal parameters and the

dependence parameter come from some exogenous dynamic patterns that do not rely on

the score function. We then verify to what extent the score-driven framework is able to

recover the true underlying dynamics of the time-varying parameter vector θt. In both

simulation studies, we focus on a positive dependence between two series, i.e. θct ∈ R
+. We

specify θ̄ct = log(θct ) as the time-varying parameter rather than θct itself. We adopt the same

specification for the variance of the Skellam distribution, that is θ̄mi,t = log(θmi,t) = log(σ2
i,t)

and θ̄mi,t varies over time. The score function ∇t in (5.5) and (5.6) adapt to this repa-

rameterization into θ̄t by pre-multiplying ∇t by ∂θ′t/∂θ̄t. This reparameterization yields

an estimation procedure that is numerically more stable. In both simulation studies, the

observation series are simulated from a bivariate Frank copula with Skellam marginals as

discussed in Section 5.2.

5.3.1 Estimating parameters when model is correctly specified

We simulate S = 500 series of correlated Skellam observations. The length of the sam-

ple is set to T ∈ {250, 1000, 3000}. To generate the data, we apply the algorithm of

Nelsen (2006, p.41) using a numerical inverse cdf of the Skellam distribution. For the log-

transforms of the dynamic parameters θt, we consider equation (5.4). The estimates of
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Table 5.1: Simulation results under correct model specification. This table reports simulation averages
of maximum likelihood estimates of the static parameters for the Skellam-Frank score-driven model of
Section 5.2. The results use S = 500 replications of time series of length T ∈ {250, 1000, 3000}. The
intercepts ω in (5.4) are set to (I − B)θ̄1 = ω, such that θ̄1 is the unconditional mean of θ̄t, where θ̄t
contains the logs of the elements of θt. The matrices A and B are diagonal with elements (a1, a2, a3)
and (b1, b2, b3), respectively. Standard deviations of the estimates over the Monte Carlo simulations
are in parentheses. The column t(s) denotes the average computation time (in seconds) for finding the
maximum of the log likelihood function. Computations are carried out on a i7-2600, 3.40 GHz desktop
PC using four cores.

T θ̄1,1 θ̄2,1 θ̄3,1 a1 a2 a3 b1 b2 b3 t(s)

true 1.00 1.00 2.00 0.10 0.05 0.10 0.90 0.95 0.98 -

250 1.00 1.01 2.03 0.11 0.06 0.11 0.74 0.77 0.87 17.76
(0.14) (0.14) (0.28) (0.08) (0.06) (0.08) (0.28) (0.27) (0.21) -

1000 1.00 1.00 2.00 0.10 0.05 0.10 0.87 0.91 0.97 59.98
(0.07) (0.07) (0.15) (0.03) (0.03) (0.03) (0.09) (0.09) (0.03) -

3000 1.00 1.00 2.00 0.10 0.05 0.10 0.89 0.94 0.98 108.30
(0.04) (0.04) (0.06) (0.02) (0.02) (0.02) (0.04) (0.08) (0.01) -

the parameter vector ψ are obtained via the numerical maximisation of the loglikelihood

function (5.7) using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

Table 5.1 presents the results. The method of maximum likelihood is able to es-

timate the parameters in ψ accurately, even for the small sample size T = 250. For

T ∈ {1000, 3000}, the maximum likelihood estimates for the unconditional mean θ̄1 and

the score loadings (a1, a2, a3)
′ in the updating equations are virtually equal to the corre-

sponding true parameters. In the case of T = 250, the persistence parameters b1, b2, b3

are underestimated, which matches small sample biases encountered in similar studies for

standard linear time series models. The biases disappear for larger sample sizes. In the

case of T = 3000, the b1, b2, b3 parameters are estimated close to their true values. Finally,

we can conclude from the average computing times t(s) for estimation, also reported in

Table 5.1, that the score-driven methodology applied to the bivariate Frank copula is quite

fast. The computing times for parameter estimation ranges from less than 18 seconds, on

average, for T = 250, to approximately 108 seconds, for T = 3000. The computations are

carried out by an i7-2600, 3.40 GHz desktop PC using four cores.

5.3.2 Estimating time-varying paths when model is misspecified

Next we deviate from the assumption that the score-driven model (5.2) and (5.4) is the

data generation process. In our second Monte Carlo study, the time-varying Skellam

variances and the time-varying dependence parameter are generated as sinusoidal patterns

with different periods and amplitudes. We investigate to what extent our misspecified
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Figure 5.1: Simulation results under misspecification. The figure presents the point wise Monte Carlo
averages (solid fat) over 500 replications of the Skellam variances σ2

1,t and σ
2
2,t, and of the Frank copula

parameter θct . All three parameters are parametrized in log form in the score-driven specification. Each
panel also contains the true time-varying parameter (solid thin) and a band of two times the point wise
standard deviations (dotted). From left to right the panels show time series length of T = 250, 1000, 3000,
respectively.

score-driven framework is able to identify these time-varying patterns. We generate S =

500 time series of length T ∈ {250, 1000, 3000} and estimate the parameters in vector ψ

by the method of maximum likelihood.

In Figure 5.1, we present the true time-varying parameters σ2
1t, σ

2
2t and θct together

with their estimated counterparts σ̂2
1t, σ̂

2
2t and θ̂ct , respectively. The results for T = 1000

and T = 3000 show that the score-driven model is able to capture the true paths of

the time-varying parameters accurately, despite its misspecification. Only in the case of

the small sample size T = 250 and the rapidly changing parameter paths for σ2
1,t, the

estimates are less accurate. The fact that the filtered paths lag behind the true path

is typical for misspecified observation-driven models, see for example Creal, Koopman,

Lucas, and Zamojski (2015). In our empirical study in Section 5.4, we have more than

40,000 observations per month. Hence we expect the score-driven model to perform

sufficiently accurate in our empirical study. Admittedly, we only explore one type of

misspecification, however, several types of misspecification of score-driven models were

studied in Creal et al. (2015) with the same convincing results.
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5.4 Dependence between discrete price changes

The dependence measures between price changes of individual stocks or assets are the

key ingredients in, for instance, portfolio risk management. In our empirical study, we

establish the intraday dependence structure in high-frequency price changes. Whereas

most studies concentrate on the intraday dynamics of volatility, our study is, to the best

of our knowledge, the first to concentrate on the intraday dynamics of the dependence

structure using a copula approach in a tick-by-tick data analysis.

The data sets consist of price changes of stocks traded at the New York Stock Ex-

change (NYSE). The resulting series consist of discrete, integer multiples of the tick-size

of one dollar cent. The observations take values in Z. We model the discrete tick-size price

changes instead of the returns. Münnix et al. (2010) argue that the discrete nature of

the price grid affects the empirical distribution of returns severely. This distribution con-

centrates around the actual tick-sizes, is severely multi-modal and, consequently, highly

non-Gaussian.

Several models for data in Z are available in the literature. For example, the model of

Rydberg and Shephard (2003) decomposes stock price movements into activity, direction

of moves, and size of the moves. Freeland (2010), Alzaid and Omair (2014) and Andersson

and Karlis (2014) extend the integer autoregressive (INAR) model for N variables to

the case of Z variables. They propose the Skellam distribution and use static Skellam

parameters. Barndorff-Nielsen et al. (2012) analyse Skellam Lévy processes for intraday

price changes. Shahtahmassebi (2011) present a Bayesian analyses based on a Skellam

model for Z variables. The dynamic Skellam model for time series observations in Z is

developed by Koopman et al. (2014) based a non-Gaussian state space analysis. In our

current framework, we adopt the Skellam distribution for the marginals and allow the

corresponding parameters to vary over time using the score-driven model of Section 5.2.

Although the Skellam distribution is an important ingredient of our analysis, our main

focus is on the dependence structure as this feature has received much less attention in

other related studies so far. Our analysis proceeds in two steps. First, we study the

dependence characteristics between price changes of four major NYSE listed financials

over a period of one trading month for a variety of copulas. We consider Bank of America

Corporation (BAC), Citigroup Inc. (C), JPMorgan Chase & Co. (JPM) and Wells Fargo

& Company (WFC). Based on our initial findings for these four stocks, we select the

best copula for the second part of our analysis: an analysis of the intraday dependence

dynamics over the long time span of an entire calendar year.
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Figure 5.2: Tick price changes of Bank of America Corporation (BAC), Citigroup Inc. (C), JPMorgan
Chase & Co. (JPM) and Wells Fargo & Company (WFC) on April 23, 2012.

5.4.1 Data description

We first analyse intraday stock prices obtained from the TAQ database for April 2012. We

clean the high-frequency data by following the standard procedures described in Brownlees

and Gallo (2006) and Barndorff-Nielsen et al. (2008) for TAQ data. This database has

a time stamp precision of 1 second so that for many seconds we obtain a number of

transactions with the same time stamp. It is common practice to merge these transactions

and to replace them by the median price rounded to the nearest tick.

Figure 5.2 presents the intraday tick price changes for our four selected stocks. We

present the results for a typical trading day, April 23, 2012. We find that more trades with

relatively large price changes occur at the beginning of the day and a quiet period with

small or no price changes takes place during lunch-time. Appendix B contains additional

descriptive plots of the data.

Table 5.2 presents descriptive statistics of the tick-size price changes. We find that

Citigroup and JPMorgan are the most liquid stocks in terms of the number of trades,

followed by Wells Fargo and Bank of America. The absolute price level has a clear impact

on the tick-size volatility: the minimum and maximum tick-size changes as well as the

tick-size variance are substantially lower for Bank of America than for the other three
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Table 5.2: The table reports company name, ticker symbol (Code), the number of trades (#Trades), the
opening price at 9:30 AM of the first trading day in the sample (Popen), the closing price at 16:00 PM of
the last trading day in the sample (Pclose), the largest up-tick (↑) measured in multiples of the tick-size,
the largest down-tick (↓), the variance (Var) and mean (Mean) of the tick-size price changes, and the
percentage of 0-trades (%0).

Company Code #Trades Popen Pclose ↑ ↓ Var Mean %0

Apr 2012
Bank of America Corp. BAC 41,640 9.53 8.09 7 -6 0.242 -0.004 76.84
Citigroup Inc. C 93,872 36.34 33.03 8 -11 0.753 -0.004 55.93
JPMorgan Chase & Co. JPM 90,936 45.79 42.95 8 -8 0.747 -0.001 54.12
Wells Fargo & Company WFC 64,529 33.85 33.40 8 -9 0.575 0.000 60.77

Jan 2012 - Dec 2012
Bank of America Corp. BAC 560,102 5.76 11.62 7 -6 0.232 0.001 77.30
Citigroup Inc. C 1,084,943 27.20 39.59 11 -15 0.663 0.001 57.87
JPMorgan Chase & Co. JPM 1,029,844 34.10 44.00 20 -16 0.725 0.001 55.30
Wells Fargo & Company WFC 766,712 28.00 34.22 13 -14 0.510 0.001 63.30

institutions. We account for this effect by using different parameters in the marginal

models for each stock.

5.4.2 Missing values

Our observation-driven model is formulated for a time frequency in seconds. Since we do

not observe a trade for every second during the trading day, we encounter many missing

observations. We distinguish four situations that can occur at second t during a day.

Situation 1: At time t, stock 1 trades while stock 2 does not trade so that the price change

for series 2 is missing at time t. The copula dependence parameter cannot be updated as

we require two observations to update the parameter related to instantaneous dependence.

Furthermore, the marginal variance σ2
1,t cannot be updated by taking derivatives from the

copula mass function in (5.6) since both observations from series 1 and 2 are needed

as input. In this case, variance σ2
1,t is updated by only using the score of the marginal

Skellam log pmf in (5.10). No score updating takes place for σ2
2,t and θct and hence these

parameters mean revert by setting∇m
2,t and∇c

t to zero in (5.5) and (5.6). The contribution

to the likelihood at time t is given by the logarithm of the pmf in (5.10) with σ2
1,t and y1,t

as input.

Situation 2: At time t, stock 1 does not trade while stock 2 is traded. This is the

converse of Situation 1 and has an analogous solution.

Situation 3: At time t, both stocks trade. The whole time-varying parameter vector θt

is updated according to (5.4), where the score is obtained by taking derivatives from the
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Figure 5.3: The figure displays the number of simultaneous trades per half hour of the trading day as
well as the the number of trades if only CitiGroup or JPMorgan trade. The numbers are averaged over
all 250 trading days of the year 2012.

copula mass function in equation (5.6). The contribution to the likelihood at time t is

made by the logarithm of the copula mass function in (5.5).

Situation 4: At time t neither stock 1 nor stock 2 trades. In this case, none of the

parameters is updated and there is no contribution to the likelihood.

For the purpose of estimating a dependence parameter, situation 3 has clearly the

most impact. We therefore present in Figure 5.3 the number of simultaneous trades per

half hour of the trading day. The numbers are averaged over all 250 trading days of the

year 2012. Figure 5.3 reveals more joint trades at the beginning and the end of the day

compared to the middle of the day. We may therefore expect more information in the

data on the dependence parameter θct at the start and at the end of the day. Figure 5.7

in the Appendix reveals that the same increased trading intensity at the start and end of

the trading day occurs for other stock combinations as well.

5.4.3 Copula selection

We take the independence copula as a benchmark and verify for a range of copulas whether

they improve the model fit. The model fits are compared by means of the Bayesian In-
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formation Criterion (BIC) for both static dependence θc and time-varying dependence

θct . For all models considered, the marginal parameters of the Skellam distribution, σ2
1t

and σ2
2t are allowed to vary over time. Our selection of copula functions includes the

independence copula (Indep), the symmetric Ali-Mikhail-Haq (AMH), Frank, and Gaus-

sian copulas, and the asymmetric Clayton (lower tail dependence), Gumbel (upper tail

dependence), Joe (upper tail dependence), and Symmetrized Joe Clayton (SJC) copula

(upper and lower tail dependence); see, for instance, Nelsen (2006) and Patton (2006) for

the functional specifications of the these copulas.

For each day, the vector of time-varying parameters θt is initialized at θ1 which is

estimated as part of the vector of static parameters ψ. Table 5.3 presents the model

selection results for all trading days in April 2012. Entries indicate the number of points

by which the corresponding copula outperforms the BIC of the independence copula.

Higher entries are thus preferred.

From Table 5.3 we learn that dynamic dependence is preferred over static dependence

for five out of the six pairwise data sets based on the BIC. The symmetric copulas, Gaus-

sian, AMH, and Frank, are generally preferred over the asymmetric ones. It confirms the

somewhat symmetric patterns in the pairwise up and down tick movements encountered

in the scatter plots of the data; see the Appendix for more evidence. The main conclusion

of our first analysis is clear: both for static dependence as well as for dynamic depen-

dence, the Gaussian copula fits the data best for all stock pairs. The Gaussian copula

exhibits zero tail dependence. Given that copula functions with upper and/or lower tail

dependence, such as Clayton, Gumbel, Joe, and Symmetrized Joe Clayton copulas, fit the

data less well, we infer that tail dependence is not a dominant feature in tick-size price

change series.

5.4.4 Full year results

In this section we extend our analysis over the entire year 2012. Descriptive statistics

for this larger time span were given in Table 5.2. The characteristics of the data for

all trading days in 2012 are broadly similar to those for the trading days in April 2012

only. Therefore, we use the Gaussian copula as our best fitting specification based on our

preliminary analysis in Section 5.4.3. For the Gaussian copula correlation parameter ρt,

we use the time-varying parameter θct , with

ρt = θct

/√
1 + (θct )

2 . (5.12)

This parameterization of ρt via θ
c
t ensures that the copula dependence parameter is always

within the appropriate interval, i.e. ρt ∈ (−1, 1). The likelihood for a full year of tick price

changes is maximised in approximately 4 to 15 hours (depending on starting values and
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Table 5.3: BIC Improvements compared to the Independence Copula over April 2012. The table reports
the difference in Bayesian information criterion for the independence copula vis-à-vis the Gaussian, Ali-
Mikhail-Haq (AMH), Frank, Clayton, Gumbel, Joe, and Symmetrized-Joe-Clayton (SJC) copulas: DBs =
BICIndep

s − BICτ
s , with s ∈ {st, dy} and where τ denotes the copula under consideration. The data are

tick price change series for Bank of America (BAC), Citigroup (C), JPMorgan (JPM), and Wells Fargo
(WFC), observed during April 2012. #st and #dy denote the number of parameters in the case of a static
and dynamic dependence model, respectively. The marginal Skellam distributions are always dynamic.
The largest difference in BIC compared to the independence copula is boxed for static dependence and
highlighted in gray for dynamic dependence.

BAC/C BAC/JPM BAC/WFC
Copula #st #dy DBst DBdy DBst DBdy DBst DBdy

Gaussian 9 12 367.72 492.44 454.74 430.19 309.00 320.44
AMH 9 12 348.47 456.91 428.41 407.31 288.07 294.79
Frank 9 12 338.51 465.47 416.51 398.64 283.25 283.45
Clayton 9 12 284.95 398.11 368.14 337.74 257.40 255.70
Gumbel 9 12 253.44 369.16 322.37 301.15 222.86 216.10
Joe 9 12 151.58 260.74 190.49 168.69 136.11 119.80
SJC 10 16 268.74 407.11 350.56 353.04 262.81 233.91

C/JPM C/WFC JPM/WFC
Copula #st #dy DBst DBdy DBst DBdy DBst DBdy

Gaussian 9 12 4545.80 4793.97 3593.87 3771.53 3929.64 4108.64
AMH 9 12 4264.01 4421.15 3336.53 3441.86 3660.14 3770.96
Frank 9 12 4469.20 4694.16 3593.59 3751.12 3895.69 4029.04
Clayton 9 12 3447.26 3680.29 2653.37 2836.15 3027.43 3200.86
Gumbel 9 12 3868.24 4083.63 3174.97 3311.71 3468.41 3612.73
Joe 9 12 2693.09 2889.16 2294.63 2410.84 2474.92 2621.57
SJC 10 16 4227.30 4413.54 3411.32 3500.54 3733.42 3835.32

data sets) on a i7-2600, 3.40 GHz desktop PC using four cores. The parameter estimates

are presented in the Appendix.

We are mainly interested in the intraday pattern of the copula dependence parameter.

Therefore, we first compute the point-wise sample mean of the intraday path of the copula

dependence parameter over all 250 trading days of 2012. Figure 5.4 presents these sample

means together with the confidence bands based on the corresponding sample variances.

We compare our estimates of the intraday Gaussian dependence with an adjusted version

of Spearman’s rank correlation coefficient. This non-parametric rank correlation measure

is computed for a rolling window of 600 seconds using only the observations with simulta-

neous trades. The observations are ordered while ties in ranks are corrected in the usual

way by averaging the ranks. The resulting ranks are divided by 1 plus the number of ob-

servations. Finally we transform the ranks through the inverse normal cdf. The Pearson

correlation between these transformed ranks are presented in Figure 5.4.

We find that the dependence between tick-size price changes exhibits a clear daily
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Figure 5.4: Point wise mean copula dependence intraday patterns over the 250 trading days in 2012 based
on the Gaussian copula with Skellam marginals (smooth line). The smooth bounds are based on two
sample standard deviations. The noisy series is the adjusted version of Spearman’s non-parametric rank
based estimator.

pattern across all stocks. We see that the trading day starts with a relatively small

positive dependence level. But within the first hour of trading, the average dependence

increases to a higher level where it remains throughout the trading day. Only during the

last 15 minutes of trading, the dependence drops abruptly to a somewhat lower value. This

pattern is found across all stock pairs. The point wise sample mean of the non-parametric

rank-based dependence measure is much less smooth than our model-based measure.

We also observe that the rank-based measure is significantly lower than the score-driven

dependence implied by the Gaussian copula, which is partly due to the problems with

rank-based statistics such as Spearman’s rho for discrete data. We may conclude that

our copula framework uses the data more efficiently. We emphasize that the estimated

dependence patterns are not due to a lack of observation pairs at the end of the day. By

contrast, Figure 5.3 shows that the number of joint observations is relatively higher at

the start and at the end of the day.

The empirical intraday pattern for the dependence parameter can be expected given

the flow of information over the 24 hour cycle. Throughout the trading day, information

becomes available and can immediately be processed and impounded into stock prices due
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to active trading. The accumulated overnight information can only be impounded at the

opening of the trading day. While most of the common macro announcements are made

during the trading day, most major firm-specific information is revealed after the active

trading hours. The information available at the opening may therefore have a relatively

larger idiosyncratic component. This causes the lower dependence level at the start of

the trading day. Interestingly, the lower level in dependence at the opening mirrors the

typically higher levels of intraday volatility during the opening.

It is likely that the short, sudden drop in dependence at the end of the day is related

to the unwinding of open positions by market participants built up over the trading day.

Such unwinding may be spurred by the need to satisfy overnight risk constraints. Hence

it comprises a relatively larger idiosyncratic component and therefore also results in a

decrease in the dependence parameter.

5.4.5 Comparison with intraday spline

The smooth patterns for the estimated intraday dependence across all stock pairs may

prompt the question whether we can alternatively consider a smooth function to capture

intraday dependence. We therefore compare our score-driven updating function for the

copula dependence parameter ρt with a basic cubic spline function to account for the

intraday seasonal pattern. The width of the confidence bands around the sample averages

of the intraday dependence estimates presented in Figure 5.4 indicate that there exists

considerable variation in the dependence parameter across the 250 trading days of 2012.

For example, according to the 95% confidence bands the dependence parameter can vary

between 0.1 and 0.3 at Noon.

To investigate whether a spline suffices to model the dependence parameter, we keep

our score-driven approach for the marginal Skellam distributions, but model the copula

dependence path by a cubic spline regression function as proposed by Poirier (1973). For

the cubic spline regression, we specify the copula parameter by θct = κ ′ Wt where κ is a

q×1 vector of parameters associated with the location of the q spline knots, and Wt is the

t-th column of the weight matrix W as constructed in Poirier (1973). We have considered

different numbers of knots and different locations for the knots in order to control for

the possible sensitivity of the approach. The elements of κ become part of the parameter

vector ψ and are jointly estimated by the method of maximum likelihood.

Table 5.4 presents the results for a range of different models. We report the loglikeli-

hood gains and BIC reductions (in parentheses) for the considered spline model compared

to the dynamic score-driven Skellam-Gaussian copula model. For almost all combinations,

the loglikelihood gains are reported to be negative, indicating that the score-driven model

outperforms the spline-based dynamic copula model in terms of fit. Although the models

are not nested, the loglikelihood reductions are considerable. It comes as no surprise

110



5.5. CONCLUSIONS

Table 5.4: Model comparison: intraday dependence spline versus score-driven dynamics. The entries
reflect the gain in log likelihood points (and improvements in BIC in parentheses) of the spline model
compared to the dynamic score-driven Skellam-Gaussian copula model. The time points between braces
are the positions of the spline knots. #ψ denotes the number of estimated parameters, i.e., the dimension
of ψ. Stocks are Bank of America (BAC), Citi (C), JPMorgan (JPM), and Wells Fargo (WFC).

Model description #ψ BAC/C BAC/JPM BAC/WFC

Spline {09:30, 12:00, 16:00} 11 -60.13 -54.61 -31.27
(106.06) (95.05) (48.53)

Spline {09:30, 10:00, 16:00} 11 -54.97 -45.84 -19.97
(95.72) (77.50) (25.94)

Spline {09:30, 10:00, 13:00, 16:00} 12 -54.76 -44.23 -18.61
(109.52) (88.45) (37.23)

Spline {09:30, 10:00, 12:00, 14:00, 16:00} 13 -13.89 4.88 25.89
(41.99) (4.41) (-37.77)

C/JPM C/WFC JPM/WFC

Spline {09:30, 12:00, 16:00} 11 -845.33 -604.49 -571.95
(1676.28) (1194.70) (1129.65)

Spline {09:30, 10:00, 16:00} 11 -768.95 -538.29 -504.24
(1523.50) (1062.30) (994.22)

Spline {09:30, 10:00, 13:00, 16:00} 12 -736.52 -513.78 -470.66
(1473.03) (1027.57) (941.32)

Spline {09:30, 10:00, 12:00, 14:00, 16:00} 13 -525.16 -343.89 -254.51
(1064.71) (702.06) (523.27)

therefore that when we compare the models in terms of BIC reductions, we conclude

that a fixed intraday spline does not capture the intraday dependence dynamics between

discrete price changes as accurately as a model with a time-varying score-driven depen-

dence parameter. The score-driven approach provides a better statistical description of

our high-frequency data. To provide further evidence, we graphically display the dynamic

copula parameter in Figure 5.5, for three randomly chosen trading days in 2012. These

graphs also reveal that the daily pattern of θct may deviate substantially from the average

intraday seasonal pattern.

5.5 Conclusions

Many empirical studies have concentrated on extracting high-frequency intraday volatility

measures using tick-by-tick data. Here we have extended this literature to capture the

intraday dynamic features of dependence using an observation-driven model-based copula

approach with discrete marginals. We have developed a new model to capture the intra-

day seasonal pattern of dependence between discrete tick-size price changes of different

stocks. The complete dependence model is composed of dynamic Skellam marginal dis-
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Figure 5.5: Copula dependence intraday patterns for a random selection of three days in 2012 based on
the Gaussian copula with Skellam marginals. The selected days are 18 January 2012, 6 June 2012 and
12 November 2012. The panels show that the dependence pattern of a single day can be substantially
less smooth than the point wise mean copula dependence path as presented in Figure 5.4.

tributions for the discrete price changes combined with a time-varying copula structure.

The dynamic specifications rely on the score of the predictive loglikelihood with respect

to the relevant dynamic parameters. The model performs well both in a controlled Monte

Carlo setting and in an empirical study using high-frequency data. For four liquid U.S.

financial stocks we found that the pairwise dependence varies over time during the trading

day. There is a steep increase in dependence within the first hour of trading, and a de-

crease within the last 15 minutes of trading. We attribute these changes in dependence to

the existence of more idiosyncratic risk components in the discrete price changes during

the opening and closing hours of trading, in particular overnight firm-specific informa-

tion accumulation when the market opens and the unwinding of inventory positions when

the market closes. The time-varying dependence structures are of direct importance for

intraday risk management. When managing a book of multiple stocks that are traded

repeatedly over the course of the day, one should take into account the time-varying

dependence between the stocks during the day.

Further research should be directed towards extending the bivariate copula model to

a multivariate copula model. Pair copula constructions are a flexible way of decomposing
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multivariate distributions into a distribution consisting of bivariate building blocks. We

expect this approach to be an interesting extension to the current model since in this

framework the dependence between several stocks can be investigated.
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Appendices

The following appendices are part of the chapter ‘Dynamic Discrete Copula Models’ and

are organised as follows. Appendix A provides derivations of the score vector and Ap-

pendix B presents additional tables and figures.

A Derivation of the score vector

The derivations presented here focus on bivariate copulas but can easily be extended

to higher dimensions. We assume a time-varying factor θt that consist of three elements,

where the first two elements correspond to the marginal parameters and the third element

corresponds to the copula dependence parameter. We have θt = (θm1,t, θ
m
2,t, θ

c
t )

′. The

derivative of a bivariate copula with respect to θm1,t is given by

∂C(u1,t, u2,t; θ
c
t )

∂θm1,t
=

∂C(u1,t, u2,t; θ
c
t )

∂u1,t

· ∂u1,t

∂θm1,t
. (5.13)

We observe that for the continuous parametric copula functions used in this chapter, the

first component on the right hand side of (5.13) can be written as a conditional copula

P (U2,t ≤ u2,t|U1,t = u1,t) =
∂C(u1,t, u2,t; θ

c
t )

∂u1,t

. (5.14)

The second component on the right hand side of (5.13) is the derivative of the first

marginal cdf, u1,t = F1(y1,t; θ
m
t,1), with respect to θm1,t. The derivative of a bivariate copula

with respect to θct is denoted by
∂C(u1,t,u2,t;θct )

∂θct
.

As a concrete example, consider a bivariate Gaussian copula with Skellam marginals,

where θmi,t = log(σ2
i,t), and ρt = θct/

√
1 + (θct )

2. This combination of copula, marginals,

and parameterization is used in the application of Section 5.4. The Skellam distribution

is discussed is Section 5.2. The bivariate Gaussian copula is given by

CGa(u1,t, u2,t; ρt) = Φ2

(
Φ−1(u1,t),Φ

−1(u2,t); ρt
)
, (5.15)

where Φ2 is a bivariate standard normal cdf, Φ−1 a univariate inverse standard normal

cdf, and ρt ∈ (−1, 1) is a correlation parameter. The first expression on the right hand

side of (5.13) follows directly from a bivariate normal cdf, we have

∂CGa(u1,t, u2,t, ρt)

∂u1,t

= Φ

(
Φ−1(u2,t)− ρtΦ

−1(u1,t)√
1− ρ2t

)
. (5.16)

A probably less well-known, but very useful result is given by Plackett (1954). It states
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that for a bivariate standard Gaussian cdf, we have

∂Φ2(x, y; ρ)

∂ρ
= (2π)−1(1− ρ2)−1/2exp

(
−(x2 − 2ρxy + y2

2(1− ρ2)

)
, (5.17)

where we can substitute x = Φ−1(u1,t), y = Φ−1(u2,t) and ρ = ρt to obtain the appropriate

expression for

∂C(u1,t, u2,t; θ
c
t )

∂θct
=

∂CGa(u1,t, u2,t; ρt)

∂ρt
· ∂ρt
∂θct

= (1 + θct )
−3/2 · ∂CGa(u1,t, u2,t; ρt)

∂ρt
. (5.18)

The first derivatives of the marginal Skellam cdfs in (5.13) are given by

∂ui,t

∂σ2
i,t

= exp
(−σ2

i,t

) k∑
ν=−∞

[(
ν

σ2
i,t
− 1

)
I|ν|(σ2

i,t) + I|ν+1|(σ2
i,t)
]
, (5.19)

with
∂ui,t

∂θmi,t
=

∂ui,t

∂σ2
i,t

∂σ2
i,t

∂θmi,t
= σ2

i,t · ∂ui,t

∂σ2
i,t
, for i = 1, 2.

B Tables and figures
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Figure 5.6: The figure shows discrete scatter plots of the bivariate tick price change series in April 2012.
The diameter of the circle represents the bivariate observation frequency in the data. We emphasize that
the panels only show the situation where both price change series have a trade at time t. The reported
value between parenthesis in the panel header is Pearson’s linear correlation between the series.
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Figure 5.7: The figure displays the number of simultaneous trades per half hour of the trading day as
well as the the number of trades if only series 1 or series 2 trade. The numbers are averaged over all 250
trading days of the year 2012. The panels show the six combinations of stocks under consideration. The
numbers on the x-axis represent the number of half hours in a trading day (13 in total).
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Summary

This dissertation contains four chapters on time varying parameter models. We summarize

the main findings of each chapter.

In Chapter 2 we presented a non-Gaussian state space model for the analysis and fore-

casting of football matches. The model is a novelty in the sports and statistics literature

because it takes a match result as a pairwise observation that is assumed to come from

a bivariate Poisson distribution with intensity coefficients for the number of goals scored

by the two teams and a dependence coefficient for measuring the correlation between the

two scores. The intensity coefficients are functions of the strengths of attack and defence

of the teams which evolve stochastically over time. Extensions of the model including

amendments for the over representation of draws in data sets, breaks in strengths of at-

tack and defence after summer and winter breaks, and a team-specific home advantage

were considered. Since the match results of the teams are analysed for all teams in the

competition, and over a period of several seasons, the resulting model is a high dimen-

sional panel time series. Due to promotion and relegation of teams the panel increased

with every season and has many missing values. We showed that football match results

from a high dimensional panel can be analysed effectively within a non-Gaussian state

space model. The statistical analysis is based on exact maximum likelihood and signal

extraction methods which rely on efficient Monte Carlo simulation techniques such as

importance sampling.

In Chapter 3 we modelled tick-by-tick discrete price changes for U.S. stocks listed on

the New York Stock Exchange by a dynamic modified Skellam distribution with a vari-

ance parameter that evolves stochastically over time. The price changes were expressed

in multiples of the tick size and are therefore in Z. The Skellam distribution is con-

gruent with the discrete price change data and we analysed the model with state space

and importance sampling methodology. The new model accounts for a stable importance

sampling estimation procedure, a good in-sample fit, an adequate diagnostic performance,

and an accurate out-of-sample forecasting performance in comparison to a number of rel-

evant benchmark models. We conclude that the new dynamic modified Skellam model

provides a flexible modelling framework that can be effectively employed to capture the

dynamics in high-frequency tick-by-tick data with many missing entries. Since the model
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produces intraday patterns of high-frequency volatility dynamics, it may provide an inter-

esting comparison with the usual stochastic volatility models that are typically associated

with the time varying variance in time series of daily continuously compounded rates of

returns.

In Chapter 4 we introduced a general dynamic model for Skellam distributed difference

in counts. Our version of the Skellam distribution has two intensity parameters that cor-

respond to the intensities of Poisson distributed counts. We opted for a likelihood-based

analysis of the model using importance sampling methods. In particular, we showed how

to estimate the parameters and states of the dynamic Skellam model using a bivariate

extension of the numerically accelerated importance sampling method of Koopman et al.

(2014). In the application, we modelled the difference between the number of goals scored

by the home and away team in a high dimensional unbalanced panel of football match

results. We also extended our benchmark model to a model that included regression

effects, heterogeneous dynamics in the panel, and extensions of the Skellam distribution

that assign different probability mass to zeros. A key example of the latter is the dynamic

zero inflated Skellam model. We conclude that the new dynamic Skellam model is robust

and computationally feasible for large unbalanced panels. Our flexible modelling frame-

work for time series may provide a useful benchmark for empirical applications based on

integer outcomes that can take both positive and negative values.

In Chapter 5 we continued the modelling of tick-by-tick discrete price changes and

extended our research to capture the intraday seasonal pattern of dependence between

discrete tick-size price changes of different stocks. We captured the intraday dynamic

features of dependence using an observation driven model-based copula approach with

discrete marginals. The complete dependence model is composed of dynamic Skellam

marginal distributions for the discrete price changes combined with a time varying copula

structure. We applied a range of bivariate copulas and the Gaussian copula fitted the

data best. For four liquid U.S. financial stocks we found that the dependence structure

varies over time during the trading day. There is a steep increase in dependence within

the first hour of trading, and a steep decrease within the last 15 minutes of trading.

We attribute these changes in dependence to the existence of more idiosyncratic risk

components in the discrete price changes during the opening and closing hours of trading,

in particular overnight firm-specific information accumulation when the market opens and

the unwinding of inventory positions when the market closes.
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