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Ivan Vujačić∗1 and Mathisca de Gunst1

1VU University Amsterdam

Abstract: The problem of parameter estimation for models defined by a system
of ordinary differential equations (ODEs) is considered. The most efficient way to
explore the parameter space is by using derivative information. Usual approaches
for obtaining the gradient in ODEs setting like solving sensitivity equations and
using finite difference formulas are computationally costly and not scalable to large
scale systems. In this paper we use simultaneous perturbation gradient approxima-
tion (SPGA), originally proposed in stochastic optimization literature, as a substi-
tute for the gradient in Metropolis adjusted Langevin algorithm (MALA). The ob-
tained algorithm, called Simultaneous Perturbation Gradient Approximation based
Metropolis Adjusted Langevin Markov chain Monte Carlo (SPGA MALA), requires
at most three integration of the ODE system per MCMC step, regardless of the
dimension of the system. This fixed computational costs makes SPGA MALA ap-
plicable to large scale systems. On the other hand, its efficiency is comparable to
that of MALA. We demonstrate its performance of via simulations.
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1 Introduction

Systems of ordinary differential equations (ODEs) are widely used in science and
engineering for the mathematical modelling of various dynamic processes. We
consider the system of the form{

x′(t) = f(x(t), t;θ), t ∈ [0, T ],
x(0) = ξ,

(1)

where x(t) = (x1(t), . . . , xd(t))
> ∈ Rd is a state vector, ξ in Ξ ⊂ Rd is the initial

condition, θ in Θ ⊂ Rp is a parameter and f is a known function. Given the
values of ξ and θ, we denote the solution of (1) by x(t;θ, ξ). Let us assume that
a process is modelled by the system (1) with ξ0 known and θ0 unknown. For

∗Corresponding author: i.vujacic@vu.nl
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simplicity, assume that we have noisy observations yi(tj), j = 1, . . . , n of all the
states xi(t;θ0, ξ0), i = 1, . . . , d at time points tj ∈ [0, T ], j = 1, . . . , n:

yi(tj) = xi(tj ;θ0, ξ0) + εi(tj), i = 1, . . . , d; j = 1, . . . , n,

where εi(tj) ∼ N (0, σ2
i ). The problem is to estimate θ0 from the data Y =

(yi(tj))ij . The methodology presented here can also be used if ξ0 is unknown and
some of the states are unobserved.

In this paper, we adopt Bayesian approach to inference. For some prior density
π of θ the posterior density is

p(θ|Y, ξ0,σ) ∝ π(θ)

d∏
j=1

N{Yj,·|X(θ, ξ0)j,·, σjIn},

where σ = (σ1, . . . , σd), X(θ, ξ0) = (xi(tj ;θ, ξ0))ij and In is an identity matrix of
order n. For exploring the parameter space there is an advantage in using gradient
information in MCMC and optimization methods [3, 4]; for concrete examples in
ODE estimation setting see [4, 6]. In the problem we consider, the gradient of the
log-likelihood can be obtained by solving sensitivity equations, which are of order
dp or via the finite difference formulas, which require solving the ODE system at
least p times. Both approaches are computationally costly and not scalable to large
scale systems.

In this paper, we avoid huge computational burden by using simultaneous per-
turbation stochastic approximation (SPGA), introduced by Spall [7]. To obtain
SPGA, the system of the form (1) need be solved at most 2 times, regardless of
the dimension of the system. By using SPGA instead of the gradient in Metropo-
lis adjusted Langevin Markov Chain Monte Carlo (MALA) we obtain a method,
which we call SPGA MALA, that can be used for large scale systems. Although
there is some loss in efficiency of SPGA MALA due to using an approximation of
the derivative this is outweighed by huge computational savings achieved.

The rest of the paper is organized as follows. In sections 2 and 3 reviews of
MALA and SPGA are provided, respectively. Section 4 introduces the proposed
method. In Section 5 we compare performance of MALA and SPGA MALA on
simulated data for various models.

2 Metropolis adjusted Langevin Markov chain Monte
Carlo (MALA)

For the probability density p(θ) let L(θ) = log{p(θ)} denote the log-density. The
MALA proposal [4, p.130] is

θ∗ = θk + ε2M∇θL(θk)/2 + ε
√

Mzk, (2)

where θk is the value at k-th step, z ∼ N (z|0, Ip), ε > 0 is the step size and M is
the weight matrix. The proposal density and acceptance probability are

q(θ∗|θk) = N (θ∗|µ(θk, ε), ε2M),
α = min{1, p(θ∗)q(θk|θ∗)/p(θk)q(θ∗|θk)}, (3)
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respectively, where µ(θk, ε) = θk + ε2M∇θL(θk)/2. The advantage of MALA over
random walk Metropolis algorithm is that it uses the gradient information which
leads to better exploration of the parameter space. Disadvantage is that it requires
selection of the weight matrix M. In [4], a fully automated algorithm is proposed
for this but it cannot be used in our setting because it requires derivatives. For
more details regarding MALA see [2, 4].

3 Simultaneous perturbation gradient approxima-
tion (SPGA)

In order to estimate partial derivatives via finite difference (FD) approximation the
parameter perturbations are performed along each coordinate separately. For ex-
ample, the estimate of the j-th partial derivative of L(θk) via the central difference
formula is

∂L(θk)

∂θj
≈ L(θk + hej)− L(θk − hej)

2h
,

where ej is the j-th unit vector and h is sufficiently small. This requires 2p eval-
uations of L. With simultaneous perturbation (SP), introduced by Spall [7], all
elements of θk are randomly perturbed together. The two sided simultaneous per-
turbation gradient approximation (SPGA) is

∇̂θL(θk) =
L(θk + h∆)− L(θk − h∆)

2h
(∆−1

1 ,∆−1
2 , . . . ,∆−1

p )>, (4)

where ∆ = (∆1,∆2, . . . ,∆p)
> is usually a random vector of independent Bernoulli

random variables that take values −1 and 1 with probability 0.5, although other
choices are possible. Two sided SPGA requires two evaluations of L regardless
of the dimension p. FD approximation is superior to SP approximation as an
estimator of the gradient. However, Spall [7] showed that when used in stochas-
tic optimization setting they achieve the same level of statistical accuracy for a
given number of iterations in terms of estimation of the optimum of the objective
function. In the next section, we follow the same idea but in the MCMC setting.

4 Simultaneous perturbation gradient approxima-
tion based Metropolis adjusted Langevin Markov
chain Monte Carlo (SPGA MALA)

SPGA MALA proposal is obtained by substituting the gradient in MALA proposal
(2) with its SPGA, defined in (4):

θ∗ = θk + ε2M∇̂θL(θk)/2 + ε
√

Mzk. (5)

In view of the MALA proposal density in (3), we require that the density of θ∗

given θk and ∆ is q(θ∗|θk,∆) = N (θ∗|µ̂(θk, ε,∆), ε2M), where µ̂(θk, ε,∆) = θk +

ε2M∇̂θL(θk)/2. Since ∆ can take 2p values with equal probability it follows that
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the density of θ∗ given θk is the mixture density q(θ∗|θk) = 1
2p

∑
∆ q(θ∗|θk,∆).

The proposal mechanism (5) with proposal density q and standard accepetance
probability α = min{1, p(θ∗)q(θk|θ∗)/p(θk)q(θ∗|θk)} defines a valid Markov chain;
it is simply Metropolis Hastings (MH) algorithm where the proposal is a mixture
density q. However, evaluating α is intractable for large p. Because of this, instead
of α we use

α∆ = min{1, p(θ∗)q(θk|θ∗,∆)/p(θk)q(θ∗|θk,∆)}.

In other words, instead of using q which involves calculation of each q(θ∗|θk,∆)
for 2p possible values of ∆, we use the acceptance ratio which involves calculation
of q(θ∗|θk,∆) only for the drawn value of ∆.
This algorithm defines a valid Markov chain since it can be viewed as Metropolis-
Hastings-Green(MHG) algorithm [2, p.41]. MHG algorithm allows state-dependent
mixing or random proposals [1], meaning that on each step the proposal distribution
need not be fixed but can belong to a countable family of proposal distributions.
In our case it is a finite family {q(θ∗|θk,∆) : ∆ = (∆1, . . . ,∆p),∆i ∈ {−1, 1}}.
Using the random proposal instead of the mixture proposal comes with a price. As
pointed out in the discussion section of the article [1], the random proposal method
is less efficient because it accepts fewer proposals. This reduces efficiency of SPGA
MALA. The second reason for reduced efficiency of SPGA MALA is that instead
of the gradient its approximation is used. However, it is clear that SPGA MALA
will be much faster than MALA for large scale systems.

5 Numerical results

In this section we compare the desribed algorithm to MALA on simulated data
generated from the following models.
Fitz Hugh Nagumo (FHN) example. Fitz-Hugh Nagumo system [4] models
the behaviour of spike potentials in the giant axon of squid neurons. It has the
form

x′1(t) = θ3{x1(t)− x1(t)3/3 + x2(t)},
x′2(t) = − 1

θ3
{x1(t)− θ1 + θ2x2(t)}.

We have used different notation than in [4], namely (x1, x2) for (V,R) and (θ1, θ2, θ3)
for (a, b, c). We set θ = (0.2, 0.2, 3) and ξ = (−1, 1).
α- pinene example. The following model describes the thermal isomerization of
α-pinene [8].

x′1(t) = −(θ1 + θ2)x1(t),
x′2(t) = θ1x1(t),
x′3(t) = θ2x1(t)− (θ3 + θ4)x3(t) + θ5x5(t),
x′4(t) = θ3x3(t),
x′5(t) = θ4x3(t)− θ5x5(t).

The values of the parameters that we used are θ = (0.1, 0.1, 0.3, 0.1, 0.3) and ξ =
(1, 0, 0, 0, 0).
Hockin model. In [5], a model of the extrinsic blood coagulation is developed
and consists of 34 differential equations and 42 rate constants. Due to lack of space
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we do not present the model but refer the reader to the aforementioned reference.
We fixed 32 parameters and estimated the remaining 10. The value of the selected
parameter was set to θ = (0.1, 0.4, 0.1, 0.32, 0.2, 1.05, 2.4, 6, 1.8, 8.2).

From each of the models presented above we generated 200 data points on the
interval [0, 20] and added Gaussian-distributed noise with standard deviation equal
to 0.5. In SPGA (see (4)) we set h = 10e−5 while the gradient in MALA is obtained
by solving sensitivity equations. Ideally, the tuning parameters in MALA should
be chosen in such a way that acceptance rate is between 40% and 70%. As it was
pointed out in Section 2, tuning of MALA is an issue. To simplify, for both MALA
and SPGA MALA we set M = Ip, ε = 0.0002p−1/3 in all the simulations. This
selection achieves the desired acceptance rate in FHN model and was used in [4].
For the other two models this is not the case. However, the most important thing
here is to compare the performance of these two methods for the same selection of
tuning parameters. For comparing sampling efficiency we followed approach used
in [4]. A single Markov chain was initialized on the true mode and 5000 posterior
samples were collected. The effective sample size (ESS) for each parameter was
calculated; the minimum of ESS was used to calculate the time per effectively
independent sample. For each method we ran 10 simulations, using the same data
set. The methods were implemented in the interpreted language MATLAB and all
computations were carried out on an Intel Core i5 computer with 1.3 GHz processor
speed and 4 GB of memory. The results of our simulations are presented in Table
5.

The results of FHN example demonstrate loss in efficiency of SPGA MALA with
respect to MALA; see Section 4 for the discussion. In α-pinene example MALA is
still faster even though the sensitivity equations are of order 25. This is because
the original system and the system of sensitivity equations are both linear. The ex-
ample of Hockin model show the advantage of SPGA MALA. Sensitivity equations
are of order 340 and this heavily affects the computatation time of MALA. On the
other hand, the computation time of SPGA MALA is much smaller compared to
that of MALA, making it much better in terms of the relative speed per effectively
independent sample.
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Model
Sampling
method

Time
(s)

Mean ESS
(θ)

Total time
/minimum
mean ESS

Relative
speed

d = 2
p = 3

(θ1, θ2, θ3)

FHN
MALA 363.6 145, 30, 109 12.12 3.4
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SPGA
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d = 34
p = 10

(θ1, θ2, θ3, θ4, θ5,
θ6, θ7, θ8, θ9, θ10)

Hockin
MALA 1.03e+04

5 6 8 7 7
7 6 5 6 8

2060 1

SPGA
MALA

180.5
7 6 8 8 7
6 6 5 4 7

45.13 45.65
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for different models with 5000 posterior samples.
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