
978-3-901882-70-8 c©2015 IFIP

A User Perspective on Energy Profiling Tools in
Large Scale Computing Environments

Fahimeh Alizadeh Moghaddam
SNE and S2 groups

University of Amsterdam and VU University Amsterdam
Amsterdam, The Netherlands

Email: f.alizadehmoghaddam@uva.nl

Thomas Geenen
SURFsara

Amsterdam, The Netherlands
Email: thomas.geenen@SURFsara.nl

Patricia Lago
Software and Services group (S2)

VU University Amsterdam
Amsterdam, The Netherlands

Email: p.lago@vu.nl

Paola Grosso
System and Network Engineering group (SNE)

University of Amsterdam
Amsterdam, The Netherlands

Email: p.grosso@uva.nl

Abstract—The growth of power consumption in ICT infras-
tructures emphasizes the importance of monitoring their usage
and finding available room for improvement. Users can choose
among several existing tools to determine the energy profile
of a running application in order to provide more sustainable
software. We conducted a field study in the SURFsara data
center and we experimented with the tools available, assessing
them in light of their informative power. We derived some
recommendations for ICT users and infrastructure operators that
highlight the relation between the intended use of the profile and
the easiness of running a specific tool. We categorize users in two
types: the generic user, who is interested in summary statistical
results on power measurements and the software developer that
intends to delve in the code details in order to reprogram
the application more efficiently. We concluded that SLURM
and Score-P are suitable for both types of users when their
requirements are thoroughly studied and taken into account.

I. INTRODUCTION

ICT infrastructures are being used more extensively every
day because of their wide range of applicability. Consequently,
efficiency of power consumption and energy management in
these environments is important. Large scale computing envi-
ronments and data centers as one of the major parts of the ICT
technologies play a remarkable role in energy consumption.
As DatacenterDynamics 2012 Global Census [1] indicates, the
power consumption of data centers globally has been 38GW
and has a significant impact on environmental and economical
resources.

In order to make ICT infrastructure and data centers
more energy efficient, an important step is to profile the
power consumption of running applications. Energy profiling
of software is in fact becoming a major focus area in the wider
field of “green” ICT. The knowledge of power behavior of the
hardware components can lead to a more efficient selection of
ICT architectures; similarly knowledge of the power behavior
of software can lead to revision of code to better exploit the
underlying hardware characteristics.

Recently, a number of profiling tools have been introduced
that are able to monitor the energy consumption of running

software applications. These tools vary in terms of accuracy,
sampling rate and overhead. Processing measurements will
also exhibit varying degrees of post-processing, visualization
and interpretation feedback. Given this plethora it is not always
clear from the start for users (from cloud providers to end
users) what to use, and under which circumstances. As we
will show in this article the choice for a tool will depend on
the final purpose for the energy information retrieved. We can
distinguish between two types of users that are categorized
based on their requirements:

• The generic user that is interested in summary results,
with the goal of profiling ICT resources and running
applications and determining their footprint;

• The software developer who uses the footprint informa-
tion to improve the running code in terms of energy
efficiency.

We assess the usability of a profiling tool based on a set of
initial user requirements identified out of experience:

• Expertise level: It refers to the level of knowledge of the
infrastructure, and the software/hardware interactions that
a user has.

• Documentation provided: We consider that all users
work with the profiling tools for the first time. It is
therefore important that they get enough information from
the tool providers.

• Access to support team: Sometimes users face problems
to get the tool working and they need a point of contact,
e.g. tools mailing lists.

• Easiness to export data: Some users need to transfer
their data to other tools to process them.

• Accuracy of provided information: The accuracy re-
quirement should take into account errors that will occur
in collecting and reporting the data.

The main goal of the research we present here is to
evaluate, from an end user perspective, the usability of a
series of commonly available monitoring tools. Namely we
are interested in answers to the questions:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/43409546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Under which circumstances should a user choose for an
energy profiling tool?

What will be the consequences in terms of accuracy and
overhead of this choice?

We focus on the profiling tools provided by SURFsara, the
Dutch national supercomputer center that supports computing-
based research from scientists all over the Netherlands. We
assume that SURFsara offering in terms of energy profiling
tools is a representative example for a generic cloud-based
environment, and as such our conclusions are of general
applicability.

II. MEASUREMENT MECHANISMS

If we consider the Intel Sandy Bridge and Haswell archi-
tectures used at SURFsara we can distinguish between two
different methods of energy information:

• Collecting data from CPU and DRAM
◦ Running Average Power Limit (RAPL);
◦ Performance Application Programming Interface

(PAPI).
• Collecting data from other components (including CPU)

◦ Baseboard Management Controller (BMC);
◦ Intelligent Platform Management Interface (IPMI).

RAPL - Running Average Power Limit - sensors provide
energy consumption information on Intel Sandy Bridge ar-
chitectures. RAPL is not an analog power meter, but it uses
a software power model running on a helper controller. The
energy is estimated using hardware performance counters tem-
perature, leakage models and I/O models. Values are exposed
to users via model-specific register (MSR). Several types of
readings are reported by RAPL on the level of socket but not
on the level of individual core:

• PACKAGE ENERGY: total usage by entire package;
• PP0 ENERGY: sum of energy of all cores and caches (not

each core individually);
• PP1 ENERGY: on original Sandy Bridge this includes the

on-chip Intel GPU;
• UNCORE ENERGY: the energy usage of uncores;
• DRAM ENERGY: DRAM energy usage.

The division of readings helps fine-grained analysis on
different domains. Depending on client (Desktop) or server
platforms, some readings might not be supported:

Client(Desktop)Platform : PACKAGE = PP0 + PP1

ServerP latformPACKAGE = PP0 + UNCORE

Recently RAPL has been included in the PAPI library [2]. It
has become possible to access the RAPL counter using the
across-platform PAPI [3]. PAPI is platform independent and
is able to collect energy data through external and internal
measurements. RAPL is considered as an internal measurement
mechanism through PAPI, which does not need additional
changes to the hardware.

IPMI provides a set of standardized interfaces to monitor
computer systems. For energy measurements the IPMI relies
on on-board BMC specification. The sensors of the BMC

measure a wider range of variables in comparison to RAPL
counters such as temperature, fan, voltage and hardware er-
rors.

III. RELATED WORK

Extensive work exists on RAPL. The Intel documentation
indicates that energy readings are updated roughly every mil-
lisecond (1 kHz). Rotem et al. [4] performed an extensive study
on the energy capability of Intel processors and showed that the
RAPL results match actual hardware. In further investigation,
such as [5] it has been noticed that there are small deviations
under different types of loads.

SLURM has been introduced in 2003 [6], without the
support of energy measurement plugins. Recently energy ac-
counting per job through SLURM has been added. Georgiou
et al. [7] represents an evaluation on both available energy
measurement plugins (RAPL and IPMI) in this tool. Also
[8] provides a literature study on two fundamental power
management techniques in HPC environments: Metrics and
Profiling. They do not focus on specific tools from a user
perspective.

In [9], Score-P is described as a performance measurement
infrastructure. Furthermore, they make evaluations among
some performance analysis and optimization tools specific for
parallel applications. However, experiments do not include
power measurements.

The original contribution of our work compared to the
research presented above is that we specifically focus on data
processing tools from usability point of view.

IV. AVAILABLE TOOLS

There is a set of data processing tools available at SURF-
sara, which use data collection mechanisms as a basis and
provide visualizations and functionality analysis.

• SLURM (Simple Linux Utility for Resource Manage-
ment) is an open-source RJMS (Resource and Job Man-
agement System)1. SLURM schedules incoming job sub-
missions and put them in a queue until a compute node
is available. The data collected from different sensors are
stored in files. The user can choose between HDF5 or
CSV output file formats. While output files can be merged
easily they cannot be accessed during runtime. HDF5
file, a hierarchical file format, structures the data in two
formats: Time Series to show the power consumption of
a node based on 1 second intervals, and Totals to show
the summary statistical information.
SLURM is able to use both RAPL and IPMI plugins
to collect energy measurements but currently does not
allow making use of both at the same time for each
individual node. At SURFsara, SLURM is used as the
main scheduler and as such collects data on all the
scheduled jobs.

• Score-P and CUBE Score-P2 provides an instrumentation
framework for applications, in which users are able to
utilize PAPI in order to profile power measurements. The

1https://computing.llnl.gov/linux/slurm/slurm.html
2http://www.vi-hps.org/projects/score-p/

profiled data can be visualized afterwards by some inter-
faces. At SURFsara, CUBE is used as the visualization
analysis tool. CUBE Uniform Behavioural Encoding is a
program used to create an intuitive GUI for data. CUBE
utilizes Scalasca (Scalable performance analysis of large
scale applications), which in turn utilizes the Score-P
library. The tool can be used to find opportunities for
improving the energy efficiency of an application. For
each run of the application, Score-P collects the statistical
data in the CUBE4 file format. CUBE tool displays three
hierarchical browsers: Metric, Program and System. The
Metric browser identifies the summary results for all the
measured metric variables. The Program browser allows
the user to see how the metric values (for example power
consumption) map to what part of the application. Finally
the System browser concentrates on machines, nodes,
processes and threads involved in the application run. One
of the key functionality in CUBE is usage of colors to
create heat maps of selected sets of data.

V. INFRASTRUCTURE SETUP

To perform our experiments we run the HPC Challenge
benchmark in the SURFsara infrastructure because it tests
multiple aspects of a computing system.

a) HPC Challenge benchmark: 3 consists of a set of
7 tests for HPC environments to stress out different parts of
the system. The main purpose is to measure the performance
of HPC systems in realistic scenarios. The tests included in
HPCC are:

• HPL: It is a portable implementation of High Perfor-
mance Linpack Benchmark. This test stresses the floating-
point performance and accuracy of solving a linear system
of equations. This extremely computational heavy test
will give insight to the behavior of the CPU under peak
load.

• DGEMM: It measures the floating-point performance of
matrix multiplication.

• FFT: It stresses the floating-point performance of com-
puting Discrete Fourier Transform with different com-
plexities.

• Latency/Bandwidth: It focuses on latency and band-
width measurements of simultaneous communication pat-
terns.

• PTRANS: It concentrates on parallel processes where
pairs of processors communicate simultaneously.

• RandomAccess: It stresses the performance of integer
random updates of memory.

• STREAM: It measures memory bandwidth of the system.

Some of the tests are run in up to 3 variants: Single,
Star and MPI. In the single version, the test is run on a
single process. More than one process runs the identical single
process in the star version. In the MPI version, processes
cooperate to execute the test by contributing to part of it.

b) SURFsara infrastructure: As mentioned before, we
use the infrastructure established at SURFsara to conduct our
research. Cartesius4 is a clustered symmetric multiprocessing

3http://icl.cs.utk.edu/hpcc/
4https://SURFsara.nl/systems/cartesius

system built by Bull and deployed as supercomputer in the
infrastructure. There are different types of nodes built into
the Cartesius system: thin, fat and GPU, which are meant for
different functionalities.

We use HPCC subtests to collect power measurements data
for further analysis. We choose GPU nodes at SURFsara to
run our experiments, as power measurements are currently
available on this type of nodes. SLURM is the main scheduler
there that receives all the job submissions. However, it is
possible to profile power consumption using other tools as
such Score-P.

VI. RESULTS

We run a series of experiments with the purpose of com-
paring accuracy and usability of the various tools:

A. Experiment 1: baseline experiment collecting data directly
via PAPI/RAPL

We use the rapl_plot application to read RAPL sensors
directly. Using this application we can set the sample rate in
microseconds. We examine the results with four sample rates:
every 1, 10, 100 and 1000 milliseconds. Figure 1 shows the
wattage of HPL test of the HPCC benchmark over time. As
the sample rate decreases, higher number of details is missing
from the plots. For example in the bottom plot there is an
instant peak between 1 and 2 seconds of runtime while it is
completely missed in the top plot with the lowest sample rate.
Changing the sample rate does not have a known influence
on the power measurements, as this essentially depends on
the application behavior itself. However, there is around 3,5%
increase in run time duration with higher sample rates.

10

20

30

40

50

60

70

PACKAGE_ENERGY_PACKAGE0.1000000

10

20

30

40

50

60

70

PACKAGE_ENERGY_PACKAGE0.100000

10

20

30

40

50

60

70

PACKAGE_ENERGY_PACKAGE0.10000

0 1 2 3 4 5 6 7 8 9
time (s)

10

20

30

40

50

60

70

p
o
w
e
r
(w
) PACKAGE_ENERGY_PACKAGE0.1000

Fig. 1. Power measurements by rapl_plot with increasing sample rates from
every 1 seconds (top plot) to every 1 milliseconds (bottom plot)

B. Experiment 2: direct submission via the SLURM scheduling
system

SLURM is able to collect energy data from two plugins:
RAPL and BMC. In this work to make a sound compari-
son between these tools, we run our experiments only with
RAPL configuration. SLURM logs the energy profiling data
and information on spent time, wattage and selected node
in a hierarchical structure. The output HDF5 file contains
energy data for intervals of 1 second. We take the results
from the rapl_plot application as our baseline to evaluate the
accuracy of SLURM data. It should be noted that sample

rate of the rapl_plot application is set as 1 second as well.
As for rapl_plot, we get several output files from the RAPL
sensors: DRAM, PACKAGE, PP0 and UNCORE (See fig.
2). Since sensors are collecting measurements from different
components, there are variations in ups and downs of different
lines. In case of the HPCC benchmark, the instant changes of
different lines happen symmetrically based on the starting time
and stopping time of included subtests.

0 20 40 60 80 100 120 140 160
time (s)

0

20

40

60

80

100

120

140

p
o
w
e
r
(w
)

UNCORE

PP0

PACKAGE

DRAM

Fig. 2. Power measurements collected by different rapl_plot sensors: DRAM,
PACKAGE, PP0 and UNCORE

Figure 3 shows the aggregation of the rapl_plot sensors
data (PACKAGE ENERGY PACKAGE + DRAM ENERGY
PACKAGE) and SLURM data. As it displays, two measure-
ments are almost identical in x-axis (runtime) and y-axis
(wattage). The overhead added to the values reported by
SLURM is more on some small delays for reporting the sudden
changes in power consumption.

0 20 40 60 80 100 120 140 160

time (s)

0

20

40

60

80

100

120

140

160

p
o
w
e
r
(w

)

rapl_plot

SLURM

Fig. 3. Power measurements from SLURM and the rapl_plot sensors

C. Experiment 3: benchmark run with Score-P

We compiled the HPCC benchmark application with Score-
P, which will provide us with energy measurements. Unlike
SLURM, Score-P does not read the sensors with a specific
sample rate. Energy consumption information and other vari-
ables are collected twice per function: one time at entry and
once at exit. Consequently, Score-P does not provide time
series that can inform us on the behavior of applications during
run time. The granularity of data collected by Score-P is
dependent on the function calls in the program.

However, the cumulative values of energy consumption are
collected and calculated with a sample rate of 1000 times a
second. Therefore, to compare Score-P values with rapl_plot,
we choose the same sampling rate for rapl_plot as well.

In order to compare the reported summary results by
CUBE, the graphical user interface provided along with Score-
P, with the rapl_plot results, we have to start the rapl_plot
application at the same time we start the HPCC benchmark.

TABLE I. ACCURACY OF SCORE-P TOOL IN DIFFERENT TEST RUNS

Test Power Consumption Overhead
1 HPL 6%

2 DGEMM Single 22.6%
Star 47.3%

3 FFT
MPI 13.2%

Single 31.7%
Star 28.9%

4 LatencyBandwidth 34.9%
5 PTRANS 29.5%

6 RandomAccess
MPI 1.7%

Single 24.4%
Star 50.9%

7 RandomAccess_LCG
MPI 1.9%

Single 21.8%
Star 46.1%

8 STREAM Single -23.3%
Star 49.2%

Table I displays the accuracy of the Score-P measurements in
terms of the overhead in different test runs.

The following formula shows how the overhead is mea-
sured in table I, where x shows the total power consumption
calculated from the rapl_plot results and y shows the summary
result reported by Score-P: Overhead(%) = (y− x) ∗ 100/x.
The total power consumption from the rapl_plot data is
calculated by: TotalPower(w) = (

∑
wi) ∗ ∆t/T , where

wi represents the periodically read values from sensors. ∆t
represents the sample rate and T shows the total run time.

As seen in the table, the power measurements overhead
of Score-P varies from 1.7% to 50.9%. Just in one case we
observed a smaller power consumption than in rapl_plot, i.e.
for the STREAM subtest with Single version (-23.3%). In
essence the Score-P results have different level of accuracy,
reflected in the different values of overhead, and this accuracy
is application-dependent.

Still it is possible to benefit from the results. Using CUBE
one can retrieve the power consumption for individual sensors
and for each function call, which is not possible in SLURM.

VII. DISCUSSION

According to our findings, the results reported by SLURM
are very close to the aggregated rapl_plot data. Therefore,
SLURM is very suitable for discovering the trend of power
consumption of an application. To give more informative
feedback to the user, additional visualization tools can be used
as add-ons to SLURM; these tools will produce plots based on
the output files. A generic user, who is interested in the total
power consumption, can benefit from the SLURM output data
that is presented in the Totals subtree of the HDF5 file. This is
helpful when the user is concerned about the power consumed
by the various resources in the infrastructure, and not in the
behavior of the different application components. A software
developer, who is more concerned about the application itself,
can make use of Time Series provided by SLURM. Still, it is
not possible to see fine-grained information on each sensor.

Score-P introduces varying amounts of overhead to the
summary results, which makes the reported data inaccurate.
It is possible to create filter files (scorep.filter) in Score-P that
contain filtering rules in order to reduce the overhead. Using
filter functions Score-P stops instrumenting some parts of the
code to restrict the amount of generated data.

TABLE II. EVALUATION OF SLURM AND SCORE-P FOR DIFFERENT TYPES OF USERS WITH RESPECT TO THEIR REQUIREMENTS

Type of the User Expertise
level

Documentation
provided

Access to sup-
port team

Easiness to
export data

Accuracy of pro-
vided information

Description

SLURM

generic user 7 3 3 7 3 The user can benefit from the summary information
provided by SLURM although the reported information
is very coarse-grained.

software developer 3 3 3 3 3 The user gets fine-grained information from time series
collected from the RAPL sensors.

Score-P

generic user 7 7 3 7 7 Summary results are provided to the user. The summary
information by this tool is more fine-grained than
the summary information by SLURM as it shows the
collected data of the RAPL sensors separately.

software developer 3 7 3 7 7 The user can get energy related information for differ-
ent parts of the application.

However, it is possible to get fine-grained information on
which parts of the application contributed how much using
CUBE. For the generic user, the expectations are not met
because the provided summary results contain errors. On the
other hand CUBE fulfills the software developer requirements.
Because CUBE displays the contribution of each function call
in total power consumption using colors and exact numbers
and the software developer, who cares about the behavior of
power consumption in the application, benefits from it. Also it
is possible to see the collected information from each sensor
individually.

Table II summarizes pros and cons of the two investigated
profiling tools in cloud-based environments and how the re-
quirements are met for different types of users. Our results
show that Score-P does not provide enough accuracy while
SLURM output can be considered as precise enough. On the
other hand, the reported data from the two profiling tools can
be taken into account to find patterns in the power consumption
of applications over time or per function call which is of
interest of the software developer. In terms of documents and
tutorials provided to users, SLURM outperforms Score-P.

VIII. CONCLUSION

We studied two power profiling tools for large scale com-
puting environments from different perspectives. We ran exten-
sive experiments using the HPCC benchmark in the SURFsara
infrastructure in order to classify these tools according to
the initial users requirements. Both SLURM and Score-P as
our target profiling tools are able to make use of RAPL for
collecting power consumption data. Furthermore, we collected
power measurements directly from the PAPI libraries using the
rapl_plot application as our baseline.

Although our findings show that both tools introduce some
varying inaccuracy on the reported data compared to rapl_plot,
the power measurements are provided to the users in a more
structured way. Given that RAPL does not measure power
consumption of the entire node, the collected data cannot be
considered equivalent to the data provided by external sensors.
On the other hand, both tools provide a satisfying precision
level of collected data in terms of sensitivity in changes of
power consumption over time or per function call.

We provided a thorough assessment of the tools with
respect to the user requirements. It is our conclusion that both
SLURM and Score-P can be used by different types of users,
as long as their shortcomings and advantages are carefully

evaluated against the user expectation. As future work, we aim
to examine to what extent these profiling tools can be used in
order to introduce improvements in running applications.

ACKNOWLEDGMENT

This work has been sponsored by the European Fund for
Regional Development under project MRA Cluster Green Soft-
ware and by the RAAK/MKB-project “Greening the Cloud".

REFERENCES

[1] A. Venkatraman, “Global census shows datacentre power demand grew
63% in 2012,” October 2012, [Online; accessed 2-July-2014].

[2] V. Weaver, D. Terpstra, H. McCraw, M. Johnson, K. Kasichayanula,
J. Ralph, J. Nelson, P. Mucci, T. Mohan, and S. Moore, “Papi 5:
Measuring power, energy, and the cloud,” in Performance Analysis of
Systems and Software (ISPASS), 2013 IEEE International Symposium
on, April 2013, pp. 124–125.

[3] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with papi,”
in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, Sept 2012, pp. 262–268.

[4] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann,
“Power-management architecture of the intel microarchitecture code-
named sandy bridge,” Micro, IEEE, vol. 32, no. 2, pp. 20–27, March
2012.

[5] D. Hackenberg, T. Ilsche, R. Schone, D. Molka, M. Schmidt, and
W. Nagel, “Power measurement techniques on standard compute nodes:
A quantitative comparison,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on, April 2013,
pp. 194–204.

[6] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing. Springer, 2003, pp. 44–60.

[7] Y. Georgiou, T. Cadeau, D. Glesser, D. Auble, M. Jette, and M. Hautreux,
“Energy accounting and control with slurm resource and job management
system,” in Distributed Computing and Networking. Springer, 2014, pp.
96–118.

[8] Y. Liu and H. Zhu, “A survey of the research on power management
techniques for high-performance systems,” Software: Practice and Ex-
perience, vol. 40, no. 11, pp. 943–964, 2010.

[9] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, et al., “Score-p:
a joint performance measurement run-time infrastructure for periscope,
scalasca, tau, and vampir,” in Tools for High Performance Computing
2011. Springer, 2012, pp. 79–91.

