
Transforming Process Models to Problem Frames

Stephan Faßbender∗ and Banu Aysolmaz+

∗ paluno - The Ruhr Institute for Software Technology, stephan.fassbender@paluno.uni-due.de
+Dept. of Computer Science, VU University, Amsterdam, The Netherlands, b.aysolmaz@vu.nl

Abstract. An increase of process awareness within organizations and advances
in IT systems led to a development of process-aware information systems (PAIS)
in many organizations. UPROM is developed as a unified BPM methodology to
conduct business process and user requirements analysis for PAIS in an integrated
way. However, due to the purpose, granularity and form of UPROM artifacts, one
cannot analyze the software requirements in detail with (semi-)formal methods
for properties such as completeness, compliance and quality. In contrast, Problem
Frames modeled using the UML4PF tool can be used for such analysis. But using
the Problem Frames notation and corresponding methods alone does not cover a
direct support for building a PAIS. Hence, in this work we propose to integrate
UPROM and UML4PF using model transformation. We use eCompany, a project
which is part of an e-government program, as running example.

Keywords: Requirements engineering, Transformation, UPROM, Problem Frames

1 Introduction

With the rise of process awareness and IT systems, more and more organizations de-
velop process-aware information systems (PAIS) to automate their processes [19]. Busi-
ness process modeling (BPM) is the key instrument to analyze, design and identify the
user requirements of a PAIS [16, 20]. However, process functions need to be further an-
alyzed for their behavior, data usage and operations during PAIS execution to identify
user requirements in the business domain [7, 16, 17, 20]. Moreover, those requirements
need to be represented in a structured form so that they can be systematically exploited
for detailed requirements analysis and software development.

UPROM is developed as a unified BPM methodology to conduct business process
and user requirements analysis for PAIS in an integrated way [5]. Process models of
UPROM are then used to automatically generate artifacts for PAIS development [7].
To provide a seamless link between business process analysis and software develop-
ment, methods to systematically utilize business process knowledge for PAIS develop-
ment are necessary. UPROM already provides structured representation of process and
requirements knowledge in business domain in the form of models. However, due to
their purpose, granularity and form, we cannot analyze them with formal methods for
properties, such as completeness and compliance. Moreover, the treatment of software
qualities in a structured way is neglected in UPROM right now as qualities are only
added as textual notes or high level goal. Hence, UPROM focuses on the functionality
right now. To improve this situation, we need to refine these models in such a form that
they can be used in the subsequent phases, specifically detailed software requirements
analysis, and can be (semi-)formally analyzed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/43409495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The Problem Frames method based on the Problem Frames notation, as introduced
by Jackson [15], decomposes the overall problem of building the system-to-be into
small sub-problems. Using the Problem Frames approach to define software require-
ments provides various benefits. First of all it allows a thorough analysis and rigid
definition of requirements [14]. Moreover, Problem Frames models have a semi-formal
structure, which allows an (semi - automated) analysis of different qualities, such as, for
example, privacy [9], security [13], and compliance with laws and standards [11, 8], and
an (semi - automated) interaction analysis for functional [3] as well as quality [1] re-
quirements. Additionally, several topics such as aspect-orientation [12], variability [2],
and requirements reconciliation and optimization [1] can be treated if necessary. Last
but not least, Problem Frame models allow a seamless transition to the architecture and
design phase [4]. Moreover, the overall system-to-be is decomposed using the require-
ments, which makes the usage of problem diagrams scalable even for large systems,
because the complexity of single problem diagrams is independent of the system size.

The UML4PF tool which facilitates the modeling in the Problem Frames notation
is used for all the aforementioned analysis. Typically, problem frame models are de-
veloped from scratch for each software project. This requires a considerable amount of
effort and makes it difficult to establish the trace links between problem diagrams and
business processes. Such a traceability is the key to ensure the completeness of software
requirements from a business perspective, specifically when developing a PAIS.

In this paper, we propose a method to utilize business process and user requirements
models of UPROM to create Problem Frame models. As a result, the Problem Frame
models are directly based on process models, which ensures that the Problem Frame
model covers the user requirements of the business domain. In this way, process knowl-
edge elicited in the business domain is systematically transferred to subsequent phases
of software development and the definition of process aware requirements is ensured.
The integration of Problem Frames and UPROM also lowers the obstacles of using
Problem Frames within a company. First of all, it relates a notation which is already
well known with Problem Frames. Second, the transformation lowers the effort of us-
ing Problem Frames and assures that information which is already available in the form
of process descriptions can be actually reused. Therefore, this integration enables a de-
tailed requirements analysis using semi-formal Problem Frame models, but at the same
time lowers the obstacles and effort to be taken for using the Problem Frame notation.

In the following section (Sec. 2) we introduce the background on UPROM and Prob-
lem Frames, which is necessary to comprehend the rest of the paper. Next, we introduce
our case study in Sec. 4. Then, we describe our method (Sec. 3), which consists of two
phases. In Sec. 4 we show the results of applying our method to our case study. In the
last section (Sec. 6), we conclude our paper and present the future work.

2 Background

UPROM is a unified BPM methodology to conduct business process and user require-
ments analysis in an integrated way. Event-driven process chain diagram (EPC) is the
core of UPROM notation for business process analysis. To conduct user requirement
analysis, the functions in EPC diagrams to be automated by a PAIS are identified. If the
function is to be (semi-) automated, a functional analysis diagram (FAD) is created as

3

a sub-diagram. An FAD is used to analyze the requirements by identifying the respon-
sibilities, related entities, operations on entities, and constraints applicable during the
execution of the related function.

An FAD includes elements of the types function, entity, cluster, application, orga-
nizational elements (position, organizational unit, external person), and constraint. An
example FAD is shown in Fig. 4. The function element, which is the same element
as in the EPC diagram, is in the center of the FAD. Organizational elements are con-
nected to the function named with the involvement types of “carries out”, “approves”,
“supports”, “contributes to”, “must be informed on completion“. In this way, the re-
sponsibilities to conduct the function in PAIS are identified. Entities or clusters which
are required for or during the execution of the function, are connected to the function.
The operations executed on these entities are defined by the connection name. The pos-
sible operations are uses, views, creates, changes, reads, deletes, and lists. Each entity
is also connected to the application on which it resides. If there are further constraints
that restrict how the system operates, they are modeled as constraints and connected to
the related application. During the development of FADs, conceptual level entity def-
initions are discovered. The general aggregation and generalization relations between
those entities are modeled in Entity Relationship (ER) diagrams.

The UPROM tool is developed to support the method. By using the tool, one can
automatically generate textual user requirements, functional size estimation and process
documentation from the EPCs and FADs developed.

Fig. 1. Problem Frame Model Building

Problem Frames The
objective of requirements
engineering is to construct a
machine (i.e., system-to-be)
that controls the behavior of
the environment (in which it
is integrated) in accordance
with the requirements. For
this purpose, Jackson pro-
poses to use the so called
problem frame notation and
approach [15]. The first step towards understanding and defining the problem to be
solved by the machine is to understand the context of the machine. The context of the
machine is given by the environment in which the problem to be solved is located,
and in which the machine will be integrated to solve the problem. The environment is
defined by means of domains and interfaces between these domains and the machine.
Note that we use a UML-based adaption of problem frames, which is implemented as
a specific UML profile for problem frames (UML4PF) as proposed by Hatebur and
Heisel [14]. Hence, the graphical representation differs from the original representa-
tion proposed by Jackson [15], but the semantics remain the same. To be able to an-
notate problem diagrams with quality requirements, we extended the problem frames
notation [4]. This enables us to complement functional requirements with quality re-
quirements. Jackson distinguishes the domain types machine (Class with the stereotype
�machine�) which is the thing to be built, biddable domains (Classes with the

4

stereotype �biddableDomain�) that are usually people, causal domains (Classes
with the stereotype �causalDomain�) that comply with some physical laws or
the specification is known, and lexical domains (Stereotype �lexicalDomain�)
which represent data. In the Problem Frames notation, interfaces connect domains and
they contain shared phenomena. Shared phenomena may, for example, be events, op-
eration calls or messages. They are observable by at least two domains, but controlled
by only one domain, as indicated by “!”. In Fig. 1 the notation BM !C1 (between the
machine domain BuldingMachine and the causal domain Sensor) means that the phe-
nomena C1 are controlled by the machine BuildingMachine. All other domains which
are connected by the interface the phenomenon is part of can observe it. In our case,
BM !C1 is observed by the domain Sensor. The information about the machine and its
environment is modeled in a so called context diagram. An example is given in Fig. 3.

Problem frames are a means to describe and classify software development prob-
lems. A problem frame is a kind of pattern representing a class of software problems. It
is described by a frame diagram, which consists of domains, interfaces between them,
and a requirement. Fig. 1 shows the problem frame for a model building variant. This
variant contains the machine BuildingMachine which is the software or system which
shall later fulfill the described requirement Model Building. The causal domain Sensor
represents information about the real world from which the model is built. The lexical
domain Model1 provides the information necessary for the model building. The lexical
domain Model2 shall then reflect the result of the model building.

Requirements analysis with problem frames provides decomposition of the overall
problem into sub-problems, which are represented by problem diagrams. A problem
diagram is an instance of a problem frame. When we state a requirement we want to
change something in the environment of the machine. Therefore, each requirement talks
about and constrains at least one domain. Thus, these domains have to be influenced
or changed to fulfill the requirement. For example, the domain Model 2 (Class Model
2 with stereotype �lexicalDomain�) is constrained by the requirement Model
Building (Class Model Building with stereotype �requirement�) as shown in
Fig. 1 (Dependency with stereotype �constrains� between class Model Build-
ing and class Model2). A requirement may also refer to several other domains in the
environment of the machine which provide necessary information for fulfilling the re-
quirement. The requirement Model Building refers to the domains Sensor (Class Sensor
with stereotype �causalDomain�) and Model1 (Class Model 1 with stereotype
�lexicalDomain�) (Dependency with stereotype �refersTo� between class
Model Building and classes Model1 and Sensor).

3 Method
The method to transform a UPROM model into a Problem Frames model consists of
two phases. First, the EPC process model is turned into a context diagram. Then, each
FAD bound to a function in the EPC is turned into one or more problem diagram(s).

Create a Context Diagram from an EPC An EPC, which describes the business
process which shall be supported by the system-to-be, is transformed into one or more
context diagrams through a series of steps which are described in the following. The
expected output is an initial Problem Frame Model which includes machines, causal
domains, biddable domains, lexical domains, phenomena and context diagrams.

5

Create Machines: In the first step we investigate the applications in the EPC. If this
application is to be developed, we add a machine to our problem frame model. Decision
rules for separating machines and external applications are described in [5].

Aggregate Machines: In many cases there are several applications to be developed,
thus several machines, as part of an EPC. Now, we aggregate those to one aggregated
machine. It might happen that there are several independent systems-to-be and therefore
several aggregated machines. For each of them, we create a separate context diagram.

Create Causal Domains: For those applications which are not to be developed,
we add causal domains to the context diagram(s). We will refer to such applications as
external or existing applications.

Create Biddable Domains: In this step, we consider elements which are of the
types position, group, organizational unit or external person. Those elements have in
common that their behavior is not predictable and they can be influenced only to some
extent. Hence, we turn them into biddable domains and add them to the diagram(s).

Create Lexical Domains: In this step, we transform the EPC elements that repre-
sent information (document, list, log or files) to lexical domains. We then check if ERDs
contain any information to aggregate them. If so, we add this joined element as lexical
domain and create a mapping diagram for relation between that and its parts. We add all
lexical domains which are not part of another lexical domain to the context diagrams.

Create phenomena: Only those functions that are connected to an application to
be developed are used to create phenomena. Phenomena do not exist on their own but
in relation to domains which control and observe them. Hence, we also have to take
into account the elements of the EPC connected to the functions. We distinguish four
different cases for transformation depending on the type of elements connected to the
functions. Table 1 shows a transformation table for one of the cases1. The first part of
the table defines the input required for the transformation. The first mandatory input
is part of the EPC which defines elements and relations that have to be present in the
EPC at hand to enable the transformation. Note that some elements can be exchanged:
e.g. the actor can be modeled in different ways. The Questions part defines the ques-
tions to determine the correct option for transformation and is optional. The second
main part defines the output. The output can differ as there are different options for the
transformation. An option is described by the answers given (�X stands for the answer
yes, �� stands for the answer no, and �? stands for no answer or an indifferent answer).
Underneath, the resulting output is given in the UML4PF notation. In case of a fully
automated transformation, the default option is used, rather than expecting answers to
the questions. Note that the complete transformation covers a combination of the four
cases and different options. Hence, some phenomena might be created several times. In
case a phenomenon already exists, it is not created a second time.

Create Problem Diagrams The input for the process of creating problem diagrams
are the FADs developed in the business analysis phase. For each FAD we create a prob-
lem diagram including the according requirement. For each application which does not
already exist and is part of the corresponding FAD, we add a new machine to the prob-
lem diagram. Each machine created this way has to be mapped to the corresponding

1 All transformation tables can be found in a technical report available under
http://www.uml4pf.org/publications/TR20150306 UPROM2UML4PF.pdf

6

Case 1: Application, Function, Position | Group | Organizational Unit | External Person
Input

Part of the EPC

Questions (for semi-automated transformation)
(1) Can the Actor1 trigger the Activity1? 2
(1.1) Gets the Actor1 a response by the Application when he/she triggers the Activity1? 2
(2) Can the Application trigger the Activity1? 2
(2.1) Gets the Application a response by the Actor1 when it triggers the Activity1? 2

Output
Option 2 (1�X 1.1�X 2�� 2.1��): External Trigger with Response

(Default) Option 5 (1�X/ �? 1.1�X/ �? 2�X/ �? 2.1�X/ �?): Multi-Trigger with Response

Table 1. (Context Diagram)Create Phenomena: Case 1 (Option 2 and 5 out of 5 Options)

machine that is part of the context diagram or to one of the already known sub-machines
which were aggregated to the machine in the context diagram.

For all entities in the FAD, we add a lexical domain to the problem diagram. If
we add a not already known lexical domain this way, we search for a mapping of the
corresponding entity to existing entities in the ERDs. If we find such a mapping, we
also model the mapping in the problem frame model. In case we cannot find such a
mapping, we have to create one or we have to add the new lexical domain to the related
context diagram. In the same manner we add a biddable domain for each position,
group, organizational unit, internal person, or external person and map these biddable
domains whenever necessary. We also add causal domains for the existing applications
and map them if necessary.

Up to this point we added machines and domains using the entities in FAD. Next,
we need to add the connections (associations), phenomena and dependencies between
them. We distinguish five cases with different options for transformation. An example
transformation table for problem diagrams is given in (Table 2)1. In case of a fully
automated transformation, always the default option is used, while for semi-automated
transformation answers to the questions is used to identify the transformation option.
Note that the involvement types of the actors, if present, might indicate certain answers
to the questions. Another aspect is that the transformation might not generate valid or
complete problem diagrams in the first place. This has to be corrected in a later step.

After adding the phenomena, we also create a textual description of the require-
ment. Frequently, textual requirements are needed in PAIS projects for domain expert
reviews, contract preparation and project management purposes. In UPROM, textual
requirement sentences are generated automatically using FADs [6]. These textual re-
quirements might contain more information than represented by the transformed prob-
lem diagram. Hence, they are of use for further refinements of the problem diagrams.

After creating and adding the textual requirement to the problem diagram for the
FAD at hand, the transformation itself is finished. Now the resulting problem diagram
needs to be analyzed further. First, we have to adjust the problem diagram to be valid.
As mentioned, the combination of different transformation options might not result in

7

Case 1: Application and operations create, update, delete
Input

Questions (for semi-automated transformation)
(1) Can the Actor1 trigger the operation create | update | delete on Information for Activity1? 2
(1.1) Gets the Actor1 a response by the Application when he/she triggers the operation create | update | delete on Information for the Activity1? 2
(2) Can the Application trigger the operation create | update | delete on Information for Activity1? 2
(2.1) Gets the Actor1 a notification by the Application when it triggers the operation create | update | delete on Information for Activity1? 2

Output
Option 4 (1�X 1.1�X 2�� 2.1��): Operations create, update, delete with external trigger by actor and response

Table 2. (Problem Diagram) Create Phenomena: Case 1 (Option 4 out of 5 Options)

a valid problem diagram. For example, it can happen that a requirement only refers
to domains but no domain is constrained. Such invalid problem diagrams point out
missing information, which we now have to add. Even if valid, the problem diagrams
which are created from FAD tend to be rather big. The reason is that a business activity
might combine different system functions. Hence, it might be possible to decompose a
problem diagram into smaller sub-diagrams. Note that the last two steps can only be
applied if doing a semi-automated transformation.

As the information about desired quality requirements is only modeled in an un-
structured and high level way in UPROM, the information about quality requirements
is missing up to this point. But as the functionality as described by the UPROM mod-
els is now turned into a Problem Frames model, for example, the UML4PF extension
PresSuRE can be used to turn a high level goal (such as “System shall be secure”) into
related security requirements. In the same manner all other UML4PF extensions can be
used to add quality requirements, as the extensions only require a detailed model of the
functionality and some high level quality goals such as performance, compliance, and
so forth.

4 Application
In this section, we briefly introduce our case study. Afterward, the application of our
method for creating a context diagram and problem diagrams is explained on our case.

Case Study The Company Central Registration project (eCompany) was initiated as
part of an e-government program to develop an online workflow management system to
automate life cycle processes of companies such as such as citizen application for com-
pany establishment, management of new establishments and updates by officers. The
initial phase of the project included the analysis of business processes and user require-
ments and preparation of the technical contract. In this phase, three analysts from the

8

integrator, three from the subcontractor and two domain experts cooperated. UPROM
was used for process and requirements analysis. 15 EPCs and 82 FADs were created.
363 generated textual requirement statements were used in the technical contract.

A part of the process for establishing a company is shown in Fig. 2. The FAD for the
last function Define company name of this EPC is shown in Fig. 4. The Company Estab-
lishment Applicant carries out this function. To accomplish the function, the Company
Establishment Application has to create the company name and the name alternatives
ensured not to match the list of existing company names, and the name control fee,
which is calculated based on the number of name alternatives identified by the com-
pany establishment applicant. The company establishment application sends (creates)
the name control fee to an external application called finance office web service. To
identify the later payment it uses the application number. In the end, the company es-
tablishment application changes the application status. Restrictions on the function to
be considered during its execution, which cannot be expressed directly in the FAD, are
attached as constraint elements in dark green.

Create Context Diagram In the following, we will explain how to create the con-
text diagram for our case as shown in Fig. 3. In the first step, we create the machines.
The EPC contains two applications we need to consider: The Company Establishment
Application and the Company Establishment Approval application. We aggregate the
machines found to the eCompanyApplication machine. Next, we create the causal do-
mains. In case of the EPC alone we do not have to model a causal domain as the external
applications, such as Finance Office Web Service, only relate to external processes. For
the causal domains we also have to consider the FAD related to the functions in the
EPC at hand. The external application finance office web service is also part of the
FADs for the functions “Define company name” and “Control original docs”. Hence,
we add the causal domain FinanceOfficeWebService to our context diagram. Next, we
create the biddable domains. According to the EPC, we create the biddable domains
CompanyRegistrar and CompanyEstablishmentApplicant.

Afterward, we also create the lexical domains LandRegister, StatementOfEstablish-
ment, LetterOfWarranty, ForeignIdentityCard, and CompanyStatute. As described in
Sec. 3, we also examine the ERD and create according mapping diagrams.

Last, we create the phenomena. We exemplify the creation of phenomena using
the function “Define company name”. We conduct a semi-automated transformation.
Table 3 shows the transformation case for the function which matches the first case.
The function is triggered by the company establishment applicant who gets a response,
while the company establishment application remains passive. Note that in the resulting
output the company establishment application is replaced by the eCompanyApplication,
which aggregates the different applications which have to be developed to support the
EPC at hand. The function “Define company name” matches also further cases which
are not shown for sake of brevity but explained in the technical report2. The resulting
complete context diagram is shown in Fig. 3.

Create Problem Diagrams The FAD which we use to exemplify the creation of a
problem diagram is the one bound to the function “Define company name” as shown
in Fig. 4. We create a problem diagram for the FAD which contains the requirement

2 http://www.uml4pf.org/publications/TR20150306 UPROM2UML4PF.pdf

9

2. Süreç adı: EstablishCompany

Model tipi: EPC

Süreç adresi: eCompany/01-EstablishCompany

4

Fig. 2. Part of the EPC for the process “Establish Company”

Case 1: Application, Function, External Person
Input

Part of the EPC

Questions (for semi-automated transformation)
(1) Can the Company Establishment Applicant trigger the Define company name? �X
(1.1) Gets the Company Establishment Applicant a response by the Company Establishment Application when he/she triggers

the Define company name?
�X

(2) Can the Company Establishment Application trigger the Define company name? ��
(2.1) Gets the Company Establishment Application a response by the Company Establishment Applicant when it triggers the

Define company name?
��

Output
Option 2 (1�X 1.1�X 2�� 2.1��): External Trigger with Response

Table 3. (Context Diagram) Create Phenomena: Case 1 for “Define company name”

Fig. 3. Context Diagram for the eCompany System

10

Fig. 4. FAD for the activity “Define company name”

Fig. 5. Problem Diagram for “Define company name”

“Requirement For Define Company Name”. We add the application ApplicationDe-
fineCompanyName as machine domain to the problem diagram. This machine we cre-
ated is mapped to the CompanyEstablishmentApplication machine which itself is mapped
to the eCompanyAppSlication machine in the context diagram. We add the lexical do-
mains Application Status, Name Control Fee, Application No, Company Name and
Company Name Alternatives to the problem diagram as the corresponding entities are
part of the FAD at hand. The biddable domain CompanyEstablishmentApplicant is also
added to the problem diagram. Last, we add a causal domain for the external applica-
tion Finance Office Web Service.

Up to this point, we prepared the elements of a problem diagram reflecting an FAD.
Next, we need to add the connections (associations), phenomena and dependencies be-
tween them. Will will only discuss the transformation for the creation of the company
name by the Company Establishment Applicant using the Company Establishment Ap-
plication in detail. The creation is triggered by the company establishment applicant

11

who gets a response by the company establishment application. Hence, we use op-
tion 4 of case 1 for the transformation (see Table 2). We get the phenomena for trig-
gering the company name creation and the according response between the biddable
domain CompanyEstablishmentApplicant and the machine ApplicationDefineCompa-
nyName. Furthermore, we get the phenomena for the actual creation of the company
name between the machine and the lexical domain Company Name. The Requirement
For Define Company Name constrains the company name, and refers to and constrains
the company establishment applicant. The FAD “Define company name” matches also
six further cases and options which are not shown for the sake of brevity but are ex-
plained in the technical report2. After adding the phenomena, we also create a textual
description of the requirement. The resulting problem diagram is shown in Fig. 5.

Next, we would have to adjust the problem diagram to be valid. Moreover, as the
problem diagram is quite big, we might decompose a problem diagram into smaller
sub-diagrams. Those two steps are currently under research.

5 Related Work
BPM is frequently used for requirements analysis of PAISs. However, process models
are not expressive enough for requirements engineering [16]. Yet, there exist a few stud-
ies that integrate process and requirements modeling [6] or derive requirements from
process models [17]. Examples are goal modeling approaches utilized in early phases
[18] and data-centric approaches [20]. The only study integrating problem frames and
process modeling is tne by Cox et al., who link process models to problem frames
via Role-Activity Diagrams [10]. However, this study does not systematically handle
derivation of requirements from process models.

6 Conclusion
In this paper we have presented a method to integrate the UPROM method with the
Problem Frames method via a transformation approach. The motivation is the need to
systematically transfer process knowledge to software requirements analysis and further
phases. Currently, the business and requirements analysis phases are quite separated,
which makes it hard to ensure that a system developed is really able to support the
business processes. The integration of UPROM and UML4PF ensures conformance
to business processes and enables the use of all the methods offered by UML4PF for
various analysis and the seamless transition to following software engineering phases.

Our contributions in this paper are: 1) A guided method for creating a context dia-
gram and problem diagrams based on process models is presented. 2) This method lays
the foundation for tool support enabling the (semi-) automated transformation from pro-
cess to Problem Frame models. 3) In case of semi-automated transformation, additional
information is elicited that enriches the Problem Frame diagrams in a lightweight way.
4) The generated problem diagrams are suitable for further analysis, such as complete-
ness and quality. 5) Tracing from business processes to software development artifacts
is enabled. 6) The obstacles and effort for using Problem Frames may be lowered.

Currently, we are finishing the development of a tool which supports the (semi-) au-
tomated transformations3 and we are preparing a validation within an ongoing project.

3 The tool and used models are available under http://www.uml4pf.org/ext-uprom/index.html.

12

The aim of the validation will be to explore if the generated documentation is useful
and usable in real-life settings and if the tool supports the application of the method.

References
1. A. Alebrahim, C. Choppy, S. Faßbender, and M. Heisel. Optimizing functional and quality

requirements according to stakeholders’ goals. In System Quality and Software Architecture
(SQSA), pages 75–120. Elsevier, 2014.

2. A. Alebrahim, S. Faßbender, M. Filipczyk, M. Goedicke, M. Heisel, and M. Konersmann.
Towards a computer-aided problem-oriented variability requirements engineering method.
In ASDENCA workshop - CAiSE 2014, Proceedings, pages 136–147. Springer, 2014.

3. A. Alebrahim, S. Faßbender, M. Heisel, and R. Meis. Problem-based requirements interac-
tion analysis. In REFSQ’2014 Proceedings, pages 200–215. Springer, 2014.

4. A. Alebrahim, D. Hatebur, and M. Heisel. Towards systematic integration of quality require-
ments into software architecture. In Proc. ECSA’11, pages 17–25. Springer, 2011.

5. B. Aysolmaz. UPROM: A Unified Business Process Modeling Methodology. Phd, Middle
East Technical University, 2014.

6. B. Aysolmaz and O. Demirörs. Deriving User Requirements from Business Process Models
for Automation: A Case Study. In REBPM Workshop, 2014, pages 19–28. IEEE, 2014.

7. B. Aysolmaz and O. Demirörs. Modeling Business Processes to Generate Artifacts for Soft-
ware Development : A Methodology. In MISE workshop, 2014, Hydarabad, India, 2014.

8. K. Beckers, I. Côté, S. Faßbender, M. Heisel, and S. Hofbauer. A pattern-based method for
establishing a cloud-specific information security management system. RE Journal, 2013.

9. K. Beckers, S. Faßbender, M. Heisel, and R. Meis. A problem-based approach for computer
aided privacy threat identification. In APF ’12, pages 1–16. Springer, 2013.

10. K. Cox, K. T. Phalp, S. J. Bleistein, and J. M. Verner. Deriving requirements from process
models via the problem frames approach. Information and Software Technology, 47(5):319–
337, 2005.

11. S. Faßbender and M. Heisel. A computer aided process from problems to laws in require-
ments engineering. In Software Technologies, pages 215–234. Springer, 2014.

12. S. Faßbender, M. Heisel, and R. Meis. Aspect-oriented requirements engineering with prob-
lem frames. In ICSOFT-PT 2014, Proceedings, 2014.

13. S. Faßbender, M. Heisel, and R. Meis. Functional requirements under security pressure. In
ICSOFT-PT 2014, Proceedings, 2014.

14. D. Hatebur and M. Heisel. Making pattern- and model-based software development more
rigorous. In Proceddings ICFEM’11, pages 253–269. Springer, 2010.

15. M. Jackson. Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

16. C. Monsalve, A. April, and A. Abran. On the expressiveness of business process modeling
notations for software requirements elicitation. In IECON 2012, pages 3132–3137, 2012.

17. J. Nicolás and A. Toval. On the generation of requirements specifications from software
engineering models: A systematic literature review. Information and Software Technology,
51(9):1291–1307, 2009.

18. A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen, M. Weiss, and A. J. Forster.
Toward an Integrated User Requirements Notation Framework and Tool for Business Process
Management. In e-Technologies, 2008 International MCETECH Conference on, 2008.

19. J. Sinur and J. B. Hill. Magic Quadrant for Business Process Management Suites. 2010.
20. J. Vara, M. Fortuna, J. Sánchez, C. Werner, and M. Borges. A Requirements Engineering Ap-

proach for Data Modelling of Process-Aware Information Systems. In Business Information
Systems SE - 12, pages 133–144. Springer, 2009.

