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Chapter 1
Introduction

Software systems are becoming increasingly complex, growing both in code base
size and number of involved components. In effect, it becomes more challenging to
detect certain design errors before it is too late, and these manifest in financial or hu-
man life losses. Testing [69], or running the software under different input stimuli
in order to examine different possible behaviors and outputs, is a common form of
verification in the software engineering life-cycle. One essential shortcoming of test-
ing is that it is not exhaustive, i.e., cannot guarantee that all relevant behaviors have
been covered with the tests. In the famous words of Dijkstra [58], program testing
can be used to show the presence of bugs, but never to show their absence. This limitation
is exacerbated in concurrent systems, where the order of events from various com-
ponents is unpredictable and difficult to test or reproduce in a controlled manner.
Certain design errors in such complex systems (e.g., deadlocks, race-conditions) are
notoriously difficult to find purely by means of testing, simply because the number
of different possible scenarios is typically prohibitively large.

Formal methods [48] offer more rigorous means of system verification. They
should be considered a supplemental, rather than a replacement technique to test-
ing and other means of verification, which contribute to improved quality of the
system design and implementation. These mathematically-rooted techniques to
prove system correctness, or the absence of system errors, have been a topic of
research for several decades. A range of different approaches and supporting soft-
ware tools have emerged over time, including theorem proving [144; 143], static
analysis [173; 18; 54], and model checking [47], to name but a few. Despite the
ongoing research effort, they are still considered somewhat exotic and are often
met with resistance in many software industry circles. One of the major barriers
to the wide acceptance of formal methods is the learning curve: engineers and pro-
grammers typically lack the training to use them, while managers are not aware
of the context in which such methods should be applied, nor the potential benefits

1



2 CHAPTER 1. INTRODUCTION

of using them. An additional obstacle is the fact that their use typically amounts
to maintaining two separate model implementations: a formal one, amenable to
verification, and a “real” production one. On the other hand, proponents of formal
methods claim that their application can substantially improve the software quality
and reduce the costs and the risks of failure in the long run [36; 198; 86]. The reality
is most likely somewhere in the middle. What started out as manual labor-intensive
proof construction using axioms and inference rules, geared towards small sequen-
tial programs, has certainly moved far beyond merely adding program assertions to
perform runtime program checks. In contrast to three decades ago, academia today
is no longer just advocating verification with theoretical results; industry actually
applies it, though still rather selectively. The root cause behind this limited penetra-
tion of formal methods in the broader industry has itself been a topic of research
and debates [31; 146; 28].

One highly effective verification technique is model checking [47; 50; 156]. The
rising success of this field stems from the availability of actively-maintained mature
tools which automate the algorithmic procedure of determining whether an abstract
mathematical model representation of the system satisfies certain behavioral proper-
ties, or requirements. These model checking tools expect a model expressed in some
formal notation (such as a process algebra [17] or Petri Nets [160]), and a property
to be verified, typically expressed as a formula in temporal or modal logic [49; 85].
These logics contain temporal operators such as “next”, “eventually”, “always”, and
“until”, which allow for reasoning about behavior over time. Simply put, the entire
state space of the model is automatically generated while all possible scenarios are
exhaustively explored, making the technique equivalent to exhaustive model test-
ing. The state space is typically represented by a state-transition graph (specifically,
a Kripke Structure or a Labeled Transition System), a structure containing all reach-
able states (system snapshots containing values of all variables, including control
stacks) and transitions (actions that change the system state). As a result, if an af-
firmative answer is given concerning a model and a property specification, one can
be confident that the model does not contain problematic behavior with respect to
the specified property. A strong point of model checking tools is their capability to
produce counter-examples: traces leading to the situation that violates the checked
property. This way one can get a detailed understanding of the root cause of the
detected problem.

There are success stories [106; 111; 153; 193; 194; 18] of applying model check-
ing in industrial research labs, and plenty of communication protocols and safety-
critical modules have been put under scrutiny [104; 145; 77; 107; 16; 113; 30], unveil-
ing bugs undetected before. Tools for automating such analysis are well supported
and continuously improving (e.g., SPIN [108], NuSMV [44], mCRL2 [88], CADP [81],
LOTOS [187]), but there is still a need to close the gap by involving the end-users
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1as stakeholders, and not only the research community and the theoretical computer
science experts in the process. Further effort is required to reduce the barrier to
practical use of most such tools, as well as to integrate them into the typical devel-
opment environments and frameworks used in practical software engineering. This
dissertation describes research that aims to achieve that.

1.1 Context and Research Objectives

Having emphasized the need for slotting formal methods into common industrial
practice, we formulate our research goals through several research questions. First
and foremost, we want to check the feasibility of using formal methods in a specific
context. We are motivated by the distributed grid framework called DIRAC [186]
(Distributed Infrastructure with Remote Agent Control), developed and used by the
LHCb [1] community at the European Organization for Nuclear Research (CERN).
It belongs to a class of large-scale distributed systems, whose behavior is primarily
driven by data. We therefore focus on distributed object-oriented systems whose
behavior is highly data-dependent. Object-oriented engineering [78] is based on a
popular paradigm where a software system is composed as a collection of individ-
ual entities (called objects), each with a state and behavior, collaborating with one
another to achieve the system behavior. Distributed systems are by definition con-
current, and as such are great candidates to benefit from model checking. Unlike
hardware, communication protocols, or device drivers, distributed object-oriented
systems are typically less structured, asynchronous, have a data-driven behavior,
and this restricts and influences the choice of a formalism for modeling them. With
that in mind, we aim to address the following research questions.

Research Question 1: Is there a formalism suitable and rich enough for modeling and
addressing the design errors of realistic-scale distributed data-driven systems?

The existence of such a formalism is necessary, but not sufficient for adopting a
formal verification technique such as model checking. The benefits over using more
traditional and common quality assurance methods must be explicit and clear.

Research Question 2: What are the true advantages of using model checking in addi-
tion to testing, as part of the widespread software engineering life cycle, in the context of
realistic-scale distributed data-driven systems?

Constructing a formal model and formalizing the properties to be verified is a
time-consuming task, and can often be done only by formal methods experts who
are fluent in formal languages and temporal logics. Choosing the right level of ab-
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straction is far from trivial: keeping too many details about the real system will lead
to a state-space explosion, preventing the final verdict from the tool due to limited
resources, while leaving out essential behavior may potentially hide problems in
the real system or lead to false-negatives being reported. Model checking results
are not trustworthy if the model does not reflect the system behavior “accurately
enough.” Furthermore, interpreting the model checking traces back to the original
system behavior often requires the ingenuity of the experts who built the model.
While the extra costs (in time and manpower) of using formal methods may be ac-
ceptable in research environments or safety-critical systems, this is not always the
case in broader contexts and domains. Thus, before model checking can become a
widely adopted push-button technology in the broader computing industry, these
aspects must be automated as much as possible. This brings us to

Research Question 3: Is it possible to integrate model checking into the common soft-
ware development cycle of realistic-scale distributed data-driven systems, by automating the
aspects that require formal methods expertise, mentioned above?

We further refine the last question into more specific ones, to provide a framework
for the research objectives and thesis contributions:

• Research Question 3.1: Is it possible to automatically derive target formal behav-
ioral models, and if so, what is the appropriate source model abstraction level?
• Research Question 3.2: How can we derive formal descriptions of the desired

system properties, based on informal software requirements descriptions?
• Research Question 3.3: Can formal property descriptions and verification results

be presented in a way that is understandable and easy to interpret for non-experts
in formal methods?

Software implementations in high-level programming languages provide a de-
tailed view of the system behavior, but already contain too many implementation
language-specific details to serve as a footprint for deriving formal models which
can be efficiently checked. In addition, verifying implementations directly has
mostly shown impractical or impossible (with a few exceptions of verifying ANSI-C
[45; 109; 26] and restricted Java code [194; 53]). The limitation of such approaches is
that they are necessarily confined to one particular implementation language. Thus,
as already indicated, abstractions play a crucial role, but at the same time handcraft-
ing the transformations to more abstract models is risky and error prone. Instead,
we can utilize higher-level software models, frequently used as part of the software
design process and hence possibly already constructed. Such models are typically
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1described and documented using visual modeling languages, and play a key role in
the model-based design and development (MBD) approach, which aims to support
the communication and development cycle in designing systems. Currently the
most widespread general-purpose modeling language in software and systems en-
gineering is UML [90]. Over the past decade it has become a “de facto” standard for
modeling the static and dynamic aspects of software designs. Class diagrams show
the collection of classes that serve as footprints for the object-oriented implementa-
tion, while behavioral diagrams such as state machines and sequence diagrams are
used to model the dynamics of a system. The overall behavior of distributed object
oriented systems can be naturally seen as concurrent sequences of synchronous or
asynchronous interactions between components (objects), and sequence diagrams
capture exactly this aspect. The abstract syntax of UML is described in terms of the
UML metamodel [91], but the semantics [92] is largely defined in plain English. This
inevitably causes ambiguities in the interpretation of models, which also prevents
their automated analysis and verification.

1.2 Main Contributions

We summarize the contributions of this dissertation in the following statements:

• Our feasibility study of systematically abstracting and modeling subsystems
of the DIRAC framework indicates that the mCRL2 formalism [87] is suitable
to construct and verify such systems, since it supports the necessary concur-
rency, data description and data manipulation mechanisms. The mCRL2 pro-
cess algebra is accompanied by a toolset [88] for model simulation, state-space
generation, reduction, visualization, and verification of behavioral properties.
Using the toolset, we have discovered critical race conditions and livelocks
which were confirmed to occur in DIRAC’s implemented logic in production.

• We take sequence diagrams as a starting point for deriving formal models in
mCRL2. By attaching a formal, mathematical semantics to UML interactions,
we can provide their unambiguous interpretation, and use the advantages
of tool-supported automated verification. We introduce such a mapping to
facilitate the verification of UML designs with the mCRL2 toolset. The trans-
lation preserves the object-oriented aspects of the original model, enabling a
round-trip approach in which the verification counter-examples can also be vi-
sually presented as sequence diagrams. Through case studies of applying this
methodology to DIRAC components, we provide some empirical evidence on
the correctness and usefulness of the translation.

• Model checking application specific properties in mCRL2 requires the use of
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the µ-calculus [85] modal logic to formally express them. This logic is very
expressive, but having to manually write formulas puts an additional burden
on the software engineer to master yet another language. To bring the pro-
cess of correctly eliciting behavioral properties closer to software engineers,
we introduce a property assistant tool, as part of a UML-based front-end to
the mCRL2 model checking toolset. Based on a well-known property pat-
tern classification [67], which we extend with new patterns, the tool provides
assistance to non-experts in eliciting properties which capture the required
behavior in real-world settings.

• As a further external evaluation, we surveyed works that use µ-calculus to ex-
press system properties from different domains. Our purpose was to reassess
the usefulness of the pattern-based classification in event-based systems set-
tings, with a focus on the µ-calculus as a target formalism, as well as to get an
indication of how error-prone the manual elicitation of properties can be, even
when it has been thoroughly reviewed by formal methods researchers. This
survey strengthens the claim of Dwyer et al. [67] that very few patterns are
sufficient to express the majority of properties. One implication for users is
that it suffices to learn how to apply a small fragment of the pattern templates,
to capture the majority of properties. We conjecture that this in turn facilitates
faster and easier learning of the corresponding small fragment of the target
specification formalism.

1.3 Dissertation outline

The rest of this dissertation is organized as follows. In Chapter 2 we provide some
background information on DIRAC, the software framework for distributed com-
puting that we use in our case studies throughout the remaining chapters. Chap-
ter 3 tackles Research Question 1. We discuss the challenges of modeling large-
scale distributed systems such as DIRAC, in order to address concurrency issues
arising from the use of shared storage and inter-process communication. We es-
tablish some general guidelines on how to obtain a formal mCRL2 model from a
system implementation that is scarcely documented, formulate application-specific
properties, interpret the model checking results, as well as apply some pragmatic
means to tackle state space explosion. In Chapter 4 we first revisit the syntax and se-
mantic variation points of UML sequence diagrams, and explain how the approach
differs from the existing related body of work. Addressing Research Question 3.1,
and partly Research Question 3.3, we present a methodology for an automated
translation of UML designs comprising sequence diagrams into the mCRL2 process
algebra, which facilitates automated verification and intuitive graphical view and
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1understanding of the verification results. We demonstrate the applicability of the
approach with a case study on DIRAC’s core workload system functionality. To
make the process of correctly eliciting and formalizing behavioral properties with
µ-calculus accessible to non-experts, thereby addressing Research Question 3.2, in
Chapter 5 we introduce a property assistant tool PASS. Apart from automated for-
mula synthesis, in the elicitation process, the tool presents the user with a natural
language summary and a sequence diagram depicting the behavioral property, that
way partly addressing Research Question 3.3. In addition, for a certain class of
properties, it generates a monitor automaton for runtime verification, or lightweight
bug-hunting. A larger case study is provided to evaluate the usefulness of the tool.
We further survey existing research on µ-calculus properties specification, and pro-
vide some evidence on the usefulness of the property pattern classification, as well
as our extensions, in this context. Research Question 2 is addressed throughout the
case studies of Chapter 3, 4, and 5. Finally, we conclude in Chapter 6.

A significant part of the content of this dissertation is obtained from the follow-
ing scientific publications:

1. [165] Daniela Remenska, Tim A.C. Willemse, Kees Verstoep, Jeff Templon,
and Henri Bal. Using model checking to analyze the system behavior of the
LHC production grid. Future Generation Computer Systems, 29(8):2239––2251,
2013. doi: 10.1016/j.future.2013.06.004. (Chapter 3)

2. [166] Daniela Remenska, Jeff Templon, Tim A.C. Willemse, Philip Homburg,
Kees Verstoep, Adria Casajus, and Henri Bal. From UML to Process Algebra
and Back: An Automated Approach to Model-Checking Software Design Arti-
facts of Concurrent Systems. In NASA Formal Methods, volume 7871 of Lecture
Notes in Computer Science, pages 244––260. Springer Berlin Heidelberg, 2013.
doi: 10.1007/978-3-642-38088-4_17. (Chapter 4)

3. [167] Daniela Remenska, Tim A.C. Willemse, Jeff Templon, Kees Verstoep,
and Henri Bal. Property Specification Made Easy: Harnessing the Power of
Model Checking in UML Designs. In Formal Techniques for Distributed Objects,
Components, and Systems, volume 8461 of Lecture Notes in Computer Science,
pages 17––32. Springer Berlin Heidelberg, 2014. doi: 10.1007/978-3-662-43613-
4_2. (Chapter 5)

4. (submitted: Dec., 2014; under review) Daniela Remenska, Tim A.C. Willemse,
Kees Verstoep, Jeff Templon, and Henri Bal. Assisting Non-Experts in Prop-
erty Specification for Automated Formal Verification. In IEEE Transactions on
Software Engineering. (Chapter 5)
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Chapter 2
DIRAC: A Community Grid Solution

2.1 Introduction

The focus of this thesis is on integrating model checking into the common software
engineering cycle of realistic-scale distributed systems. The work was primarily
motivated by a real-world software called DIRAC (Distributed Infrastructure with
Remote Agent Control) [186; 185], developed and used by the LHCb [1] community
at the European Organization for Nuclear Research (CERN). DIRAC is relatively
well-engineered software, and its distributed and large-scale nature provides good
chances for any potential functional problems and inconsistencies to materialize
in real life. The case studies presented throughout the thesis are based on actual
DIRAC components, and in the following we introduce the main concepts necessary
to understand them. We restrict the thesis focus to addressing functional aspects
in distributed systems; in particular behaviors which can result in deadlocks, race
conditions, and other concurrency issues, driven by some of the ones indicated in
this chapter. DIRAC is not a real-time system with hard deadline constraints for
event completions, although its efficiency and scalability are of a great concern,
and are constantly improving. We therefore abstract from timing, probabilities and
other quantitative aspects which could be analyzed in another setting.

The Large Hadron Collider beauty (LHCb) experiment is one of the four large
experiments conducted on the Large Hadron Collider (LHC) accelerator. Immense
amounts of data are produced at the LHC accelerator, and subsequently processed
by physics groups and individuals worldwide. The sheer size of the experiment is
the motivation behind the adoption of the grid computing paradigm, to process the
data efficiently. The grid storage and computing resources for the LHCb experiment
are distributed across many national and local scientific institutes around the globe.
To cope with the complexity of processing the vast amount of data, a generic grid

9
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Figure 2.1: LHCb job execution rate by site 1

Figure 2.2: LHCb data transfers throughput 2

system - DIRAC, was designed and developed initially for the needs of the LHCb
community. It is a software framework for distributed computing, that forms a
layer between user communities and the heterogeneous distributed computing and

1 Source: LHCbDIRAC web portal https://lhcb-portal-dirac.cern.ch/DIRAC/
2 See footnote 1

https://lhcb-portal-dirac.cern.ch/DIRAC/


CHAPTER 2. DIRAC: A COMMUNITY GRID SOLUTION 11

C
ha

pt
er

2

storage resources, to allow for an integrated, optimal, and reliable usage of these
resources.

The development of DIRAC started in 2002 as a system for producing simulation
data that would serve to verify physics theory, aspects of the LHCb detector design,
as well as to optimize physics algorithms. It gradually evolved into an extensive
generic grid system for data and job management, based on a general-purpose
framework that can be reused by communities besides LHCb. Today, it covers
all major LHCb tasks starting with the raw data transfer from the experiment’s
detector to the grid storage, several steps of data processing, up to the final user
analysis. It uses a CPU power of over 200 kHS063 concurrently, and 20M file replicas
distributed over hundreds of grid sites, provided by the WLCG computing grid
[27]. The community of users has grown to several hundreds, loading the LHC grid
resources with over 50K simultaneously running jobs (Figure 2.1) and over 100K
jobs executed per day, during peak processing periods. More than 25PB of data
is stored and visible in the LHCb file catalog, with daily data transfers between
storage units reaching 3.5GB/s (Figure 2.2).

Python was chosen as the implementation language, since it enables rapid pro-
totyping and development of new features. DIRAC follows the Service Oriented
Architecture (SOA) paradigm, accompanied by a network of lightweight distributed
agents which animate the system. Its main components are depicted in Figure 2.3.

The services are passive components that react to requests from their clients, pos-
sibly soliciting other services in order to fulfill the requests. They run as permanent
processes deployed on a number of high-availability hosts, and store the dynamic

3HEP-SPEC06 benchmark: http://w3.hepix.org/benchmarks

Figure 2.3: DIRAC Architecture overview

http://w3.hepix.org/benchmarks
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Figure 2.4: LHCbDIRAC web portal

system state information in database repositories. The user interfaces, agents or
running jobs can act as clients placing the requests to DIRAC’s services.

Agents are active components that fulfill a limited number of specific system
functions. They run in different environments, depending on their mission. Some
are deployed close to the corresponding services, while others run on the grid
worker nodes. Examples of the latter are the so-called Pilot Agents, part of the
Workload Management System explained in the following section. All DIRAC
agents repeat the same logic in each iteration cycle: they monitor the service states,
and respond by initiating actions (like job submission or data transfer) which up-
date the states of various system entities. The logic of each individual agent is
kept relatively simple; the overall system complexity emerges from the cooperation
among them. Namely, these agents run concurrently, and communicate using the
services’ databases as a shared memory (blackboard paradigm [140]) for reading
and updating the states of various entities.

Resources are software abstractions of the underlying heterogeneous grid com-
puting and storage entities allocated to LHCb, providing a uniform interface for
access. The physical resources (disks, data archival tapes, CPUs) are controlled by
the grid site managers and made available through middleware services such as
gLite [126]. The DIRAC functionality is exposed to users and developers through
a rich set of command-line tools forming the DIRAC API, complemented by a Web
portal (Figure 2.4) for visually monitoring the system behavior and controlling the
ongoing tasks. Both the Web and command-line interfaces are based on secure sys-
tem access using X509 certificates.

At the time of writing, the most powerful DIRAC hardware configuration is the
one used by LHCb: it consists of about 20 servers located at CERN, hosting the
central DIRAC services, including 6 MySQL database servers. A small fraction of
the servers and databases are used for testing and certification purposes, and are
connected to the same pool of WLCG computing and storage resources. Several
other experiments are currently using DIRAC on an every day basis, with new user
groups (virtual organizations, or VOs) evaluating its functionality and performance
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before adopting it in production. Setups are also shared between smaller VOs which
do not have the manpower to maintain them on their own.

Although much effort is invested in making DIRAC reliable, entities occasionally
get into inconsistent states, leading to a loss of efficiency in both resource usage and
manpower. Debugging and fixing the root of such encountered behaviors becomes a
formidable mission due to multiple factors: the inherent parallelism present among
components deployed on different physical machines, the size of the implementa-
tion (∼150,000 lines of Python code), the distributed knowledge of different sub-
systems within the collaboration, and the limited manpower available. Depending
on the frequency of certain heavier data (re)processing campaigns throughout the
year, the occurrence of such inconsistencies can be up to several reported cases per
month. They can have a blocking effect on these grid activities, some of which are
with a strict deadline. However, locating and fixing the root cause of such a problem
sometimes has a lower priority within the collaboration, especially if it requires sub-
stantial time for a deeper analysis. Typically, if possible, a temporary alleviation is
done instead, like manipulating database records or restarting processes manually,
in order to quickly “unblock” production activities.

In the following, we focus on two related subsystems that are considered the
backbone of DIRAC. These are the ones where problematic state changes, which
are difficult to trace and correct, are frequently encountered. Understanding their
behavior is essential for interpreting the issues that were discovered during the
model analysis and verification.

2.2 Workload Management System

The main component of DIRAC is the Workload Management System (WMS), re-
sponsible for managing the workflow of jobs submitted to the grid. Taking into
account the heterogeneous, dynamic, and high-latency nature of the distributed
computing environment, a Pilot Job paradigm, illustrated in Figure 2.5, was chosen
as an efficient way to implement a pull scheduling mechanism. Pilot jobs are simply
resource reservation processes without an actual payload defined a priori. They are
submitted to the grid worker nodes with the aim of checking the sanity of the op-
erational environment just before pulling and executing the real physics processing
payload. This increases the job success rate, from the perspective of end users. Cen-
tralized Task Queues contain all the pending jobs, organized in groups according to
their requirements. This enables efficient application of job priorities, enforcing fair-
share policies and quotas, which are decided within the LHCb community, without
the need of any effort from the grid sites.

Originally, the DIRAC WMS submitted pilot jobs using the native gLite middle-
ware tools, but this method was shown to be suboptimal [147]. The gLite resource
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Figure 2.5: DIRAC Workload Management System [158]

brokers are centralized components, and as such they do not have the capacity and
flexibility to cope with the load of a community such as LHCb. Using multiple
resource brokers, rather than a single one, was not the solution: all brokers use the
same site state information and would always submit jobs to the most suitable one
globally, causing overloads to certain sites while underloading others very often.
In addition, the gLite information system was introducing a significant time lag in
propagating changes in site status information to the brokers. With the wide deploy-
ment of the CREAM (Computing Resource Execution And Management) [9] service
for job management operation at the Computing Element (CE) level, DIRAC’s WMS
switched to submitting pilot jobs directly to sites. By interrogating the status di-
rectly, the information propagation latency was greatly reduced, making the job
distribution across sites more balanced and the job turnaround faster.

The basic flowchart describing the evolution of a job’s states is depicted in Fig-
ure 2.6. After submission through the Job Manager (“Received”), the complete job
description is placed in the DIRAC job repository (the Job DB, see Figure 2.5). A
chain of optimizer agents checks whether the jobs are eligible for execution (“Check-
ing”), and prioritizes them in queues, utilizing the parameters information from the
Job DB. Although the grid storage resources are limited, it is essential to keep all
data collected throughout the experiment’s run. Tape backends provide a reliable
and cheap alternative for permanent data archival. In case a job needs to process
files already archived on tape, there is an additional workflow step in which the
Job Scheduling Agent (of the optimizers chain) passes the control to a specialized
Stager service (part of the Storage Management System elaborated in the following
section), and jobs acquire a “Staging” status. Once the optimization is completed,
the job is placed in a task queue (“Waiting”). Based on the complete list of pending
payloads, a specialized Task Queue Director agent submits pilots to the computing
resources via the available job submission middleware (historically the gLite cen-
tralized WMS service, nowadays the CREAM CE one at each site). After a Matcher
service pulls the most suitable payload for a pilot (“Matched”), a Job Wrapper ob-
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Figure 2.6: DIRAC Job state machine

ject is created on the worker node, responsible for retrieving the input sandbox,
performing software availability checks, and executing the actual payload on the
worker node (“Running”). Finally, a “Completed” job may have output data which
is necessary to upload to a permanent storage, and this step can succeed (“Done”)
or fail (“Failed”) for various reasons. The wrapper can catch any failure exit state
reported by the running physics applications. At the same time, a Watchdog process
is instantiated to monitor the behavior of the Job Wrapper and send heartbeat sig-
nals to the monitoring service. It can also take actions in case resources are soon to
be exhausted, the payload stalls, or a management command for killing the payload
is received. It should be noted that jobs also have a so-called Minor Status, which
is a more descriptive addition to the main job status, but also necessary for the
functionality of the optimizers part of the workflow.

The WMS has been a subject of evolution and improvement, as we will see in
Chapter 4. In particular, the chain of optimizer agents revealed certain weaknesses
during periods of intensive production activities. Their polling mechanism for dis-
covering new jobs to handle from the central database was not reactive enough.
Over the past few years, a more scalable event-driven solution has been in develop-
ment [157], and later eventually put in production. New DIRAC components, called
Executors, were designed to handle the incoming jobs in an event-driven manner, or-
ganized around a Dispatcher service responsible for pushing job processing work
to these Executors. This has shown to improve the reactiveness of the WMS when
under heavy load.
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2.3 Storage Management System

The DIRAC SMS provides the logic for pre-staging files from tape to a disk cache
frontend, before a job is able to process them. Smooth functioning of this system
is essential for production activities which involve reprocessing older data with
improved physics software and happen typically several times per year.

A simplified view of the system is shown in Figure 2.7. The workflow is ini-
tiated when the Job Scheduling Agent detects that a job is assigned to process files
only available on tape storage. It sends a request for staging (i.e., creating a disk
replica) to the Storage Manager Handler service with the list of files and a callback
method to be invoked when the request has been processed. This information is
stored by the service in the StorageManagement DB, and is subsequently processed
by a number of agents in an organized fashion. The Entity-Relationship model of
this database is shown in Figure 2.8. The relevant entities are Tasks, CacheReplicas,
and StageRequests, maintaining states observed and updated by the agents. Tasks
contain general information about every job requesting a service from the SMS,
while CacheReplicas records keep the details about every file (i.e., the storage where
it resides, the size, checksum, number of tasks that requested it). There is a many-
to-many relationship between these two entities, as multiple jobs can independently
request the same file(s) to be staged. Information about each request for staging a
file (the actual submission to the site, staging completion, and request expiration
timestamps) is stored in a StageRequests table.

Figure 2.9 illustrates the state machine4 of a single instance of the CacheReplicas
entity. The processing begins with the Requests Preparation Agent checking whether

4Note that the state machine depictions in this chapter are merely conceptual, and should not be
treated formally. They are not always properly reflected in the actual implementation.

Job State 

Update Handler

Figure 2.7: DIRAC Storage Management System
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Figure 2.8: Relationships between StorageManagement DB entities

all “New” replica entries are registered in a file catalog which contains file metadata
and allows for dataset querying. In case of problematic (or non-existent) catalog en-
tries, it can update their state to “Failed”. Non-problematic files are updated to a
“Waiting” state. The Stage Request Agent is responsible for placing the actual staging
requests for all “Waiting” entries, via a dedicated storage middleware that commu-
nicates with the tape backends. These requests are grouped by physical storage
destination prior to submission, and carry information about the requested (pin)
lifetime of the replicas to be cached. Using knowledge about the disk cache fron-
tend capacities at every physical grid location, certain replicas may be temporarily
updated to “Offline” (and picked up in some later iteration), if the total storage
space needed to stage all requested replicas exceeds those capacities. If certain
pathologies are discovered (i.e., lost, unavailable, or zero-sized files on tape), the
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Figure 2.9: CacheReplicas state machine
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agent will update the corresponding entries to “Failed”. Otherwise, they are pro-
moted to “StageSubmitted” after placing the actual staging requests. The agent
responsible for monitoring the status of submitted requests is the Stage Monitor
Agent. It achieves this by polling the storage middleware to see if the “StageSubmit-
ted” files are cached on disk. If this is the case, the replica entries are updated to
“Staged”. Various circumstances of tape or middleware misbehavior can also fail the
staging requests. The last one in the chain is the Request Finalization Agent. Those
tasks for which all associated replicas are “Staged”, or for which any replicas are
“Failed” (both considered final states), are cleared from the database, and callbacks
are performed to the WMS, which effectively wakes up the corresponding jobs, so
they can eventually run on the cached replicas. If there are no more tasks associated
to particular replicas, the respective CacheReplicas and StageRequests entries are also
removed by this agent. The pseudo-state “Deleted” is not part of the design, but
is added here for clarity and consistency with chapters 3 and 5, where we model-
check faulty behaviors of unintentional removal and referencing of (removed) tasks
and replicas. In practice, all instances of the relevant entities are created and deleted
dynamically.

The state machine of a Tasks entity instance closely follows the states of the repli-
cas associated to that task. In that sense, the state of the task is always promoted to
the “lowest common denominator” state of its associated replicas states, the order
being: [“Failed”, “New”, “Waiting”, “Offline”,“StageSubmitted”, “Staged”]. For in-
stance, if all but one replicas are “StageSubmitted”, and the remaining one is still
“Waiting”, the status of the corresponding task will be “Waiting”. However, if any
of its replicas are declared “Failed”, then the task is immediately declared “Failed”
as well. StageRequests instances have a simpler state machine, containing a subset
of the states and transitions of the CacheReplicas one. They are intentionally kept
as separate entities. The reasons for this are implementation-specific, and will be-
come more clear in the next chapter. Once a request for staging a file is submitted,
the newly created StageRequests entry immediately gets a “StageSubmitted” state.
The rest of the behavior also resembles the CacheReplicas one, as can be seen in
Figure 2.10.

At the time of writing, this subsystem was still in an evolutionary phase. In
multiple instances, tasks or replicas would become “stuck”, effectively blocking the
progress of jobs in the WMS. Tracing back the sequence of events which led to the
inconsistent states is non-trivial. To temporarily alleviate such problems, the status
of these entries would often be manually reset to the initial “New” state, so that
agents can re-process them from scratch. Occasionally, SQL error messages would
be reported from unsuccessful attempts of the SMS service to update the state of
non-existent table entries.
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Chapter 3
Formal Modeling and Analysis of
Distributed Systems

3.1 Introduction

In this chapter we deal with the question of how to formally model the behavior of
distributed object-oriented systems like DIRAC, so that formal analysis and model
checking can be done. For this, we first introduce a well-defined structure known
as a Labeled Transition System (LTS), which is a mathematical notation used to
model such system behavior. We use the process algebra of mCRL2, a language
for specifying LTSs in a concise manner, and the accompanied mCRL2 toolset, for
reasoning about them. To investigate the feasibility of using the mCRL2 formalism
for capturing the intended system behavior, necessary for model checking certain
properties of interest, we use two subsystems as case studies: the Workload Manage-
ment and the Storage Management System of DIRAC. We devise and apply rules
for control-flow and data abstractions, and perform analysis and model checking
on the resulting models. As we will see, this already helped to better understand
the behavior of these DIRAC subsystems, as well as detect race conditions which
were confirmed to occur in production.

3.2 Labeled Transition Systems
Distributed systems such as DIRAC have a behavior commonly represented as
an edge-labeled graph called a Labeled Transition System (LTS). The nodes in
the graph represent the states of the system, edges between nodes represent an
atomic state change and the edge labellings represent atomic events (or actions)
such as reading, sending and successful communications within the system. Behav-
iors of a distributed system are modeled by the sequence of edge labels obtained by

19
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Figure 3.1: Non-deterministic behavior of a vending
machine

Figure 3.2: Behavior involving
multi-actions

traversing along the edges of the graph. Multiple edges emanating from a single
node indicate that the state represented by the node may possibly evolve (non-
deterministically in case edge labels are identical) in different ways. The state space
is the set of states reachable through the transitions in the LTS. Such an LTS example
illustrating the behavior of a simple vending machine is shown in Figure 3.1. From
the initial state, denoted by an incoming arrow, it is not possible to know whether
there is one or multiple insertCoin actions before products are offered. 1

Figure 3.2 illustrates a different scenario. Two distinct actions send and read can
happen sequentially (send after read, or read after send) in an LTS, but they can
also happen at the same time (concurrently), in which case we write send|read and
call it a multi-action. In general, multi-actions represent a collection of actions that
occur truly at the same time. If an LTS has successfully terminating states, they are
indicated with a tick (

√
). A state is deadlocked if there is no outgoing transition

from it. Below we give a formal definition of a labeled transition system.

Definition 3.2.1. Labeled Transition System is a five-tuple A = (S, Act,−→, s0, T)
where

• S is a (possibly infinite) set of states
• Act is a set of actions, possibly containing multi-actions
• −→⊆ S× Act× S is a transition relation
• s0 ∈ S is the initial state
• T ⊆ S is the set of successfully terminating states

We commonly use the infix notation s a−→ s′ for (s, a, s′) ∈ −→, where a ∈ Act and

s, s′ ∈ S. A trace ρ ∈ Act∗ is a sequence s1
a1−→ s2

a2−→ s3
a3−→ · · · an−→ sn+1 for some

n ≥ 0, where (si, ai, si+1) ∈ −→. An empty trace is denoted by ϵ.

In practice, even mundane distributed systems can give rise to rather large LTSs.
When modeling systems, typically LTSs are not written explicitly as edge-labeled

1This vending machine can in fact take all your money without offering you a beverage. Such is life
sometimes.
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graphs, but a more concise, high-level mathematical formalism and notation is used,
such as a process algebra or a state machine description language. Given such a
high-level language for describing an LTS, there is a computation problem of gen-
erating this LTS. The number of behaviors represented by the LTS may even be
infinite. Even when the generation of the LTS with some software tool is effective,
it can be computationally expensive in terms of memory and computation time, as
the state space tends to grow exponentially with the number of concurrent process
descriptions in the modeled system. This can sometimes be overcome by minimiz-
ing the LTS, after it has been generated. Minimization is a (typically automated)
procedure for reducing the size of the LTS. Of course, the behaviors relevant to the
analysis should be preserved, but then we should be more specific on what are
the “relevant behaviors”. Depending on the criteria, there are different notions of
equivalence between LTSs defined in the literature, leading to different procedures
for preserving behaviors under LTS minimization. Many model checking tools have
efficient means of detecting whether two systems exhibit equivalent behaviors, and
can perform state space reduction with respect to a certain equivalence.

For instance, strong bisimulation preserves any potential deadlocks, as well as de-
cision moments (branching) of the original LTS, which other equivalences (e.g. trace
equivalence) do not. In fact, if two LTSs are equivalent under strong bisimulation,
they cannot be distinguished by any realistic form of observation, so they can be
considered equal. Consider the two LTSs in Figure 3.3, which are trace equivalent.
To give the intuitive argument why these two processes are different, the “The Lady,
or the Tiger” story by Frank Stocktonis is often used. An accused subject is put in a
public arena with two closed doors. His fate depends on the choice of the door he
opens. Behind one of the doors there is a hungry tiger, while the other conceals a
princess. To model such a behavior, the opening of the doors, as well as the result-
ing behaviors, are considered atomic actions. The correct model is shown on the
left side of the figure. It expresses that whether the accused will be confronted with
a tiger or with a lady, depends on the open_door action. The model on the right is
wrong, because after opening a door, the accused can still somehow choose his fate.
Under trace equivalence, these two models would be considered indistinguishable
(equivalent), as they produce the same traces, namely open_door · marry_princess

Figure 3.3: The lady, or the tiger?
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and open_door · confront_tiger. However, the behavior of both systems can be expe-
rienced to be different, as we will see in Chapter 5.

3.3 The mCRL2 Formalism

The language mCRL2 [87], which extends the algebra of communicating processes
(ACP) [24], can be understood as a language for specifying LTSs and reasoning
about them. In other words, the semantics associated with the mCRL2 syntax is
a Labeled Transition System. In this section we give an overview of mCRL2 that
allows for understanding of the modeling approach and the examples we provide
in the following sections, but we do not treat mCRL2 (in particular, the formal
semantics) in depth. The fragment of the mCRL2 process algebra we are concerned
with in this thesis is given by the following BNF grammar:

p ::= a(d1, . . . , dn) | τ | δ | p + p | p.p | p||p |

∑
d:D

p | c→ p ⋄ p | ΓC(p) | ∇V(p)

The basic building blocks of the language are actions that can carry data parame-
ters, representing atomic events such as read and send(4). The actions terminate
successfully. A special constant action silent step (τ) is defined, for denoting internal
unobservable behavior. Deadlock (δ) is a special process which cannot perform any
action, in particular it does not terminate successfully. Although not very common,
it can be used to explicitly force inaction in a process behavior. Processes, repre-
senting LTSs, can be composed using operators such as sequential composition and
alternative composition to obtain new processes. If processes p and q represent
some system, their alternative composition, denoted p + q, represents the system
that behaves as p when the first action executed comes from p, and it behaves as
process q otherwise; this models a non-deterministic choice between behaviors. In
terms of the underlying LTS model, this may be understood as the operation that

Figure 3.4: Alternative and sequential process composition
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Figure 3.5: Parallel process composition.
Left: p || q. Middle: Γ{a|c→e, b|d→ f }(p || q). Right: ∇{e, f }(Γ{a|c→e, b|d→ f }(p || q))

constructs a new LTS from the LTSs of p and q by creating a new top node that
inherits all edges from the top nodes of the LTSs of p and q (Figure 3.4). Sequential
composition simply allows to “glue” the behavior of two processes. That is, p · q
behaves just as process p, and, upon successful termination, it continues to behave
as process q. In the underlying LTS models, this essentially creates a new graph
that merges the top node of q’s LTS with the nodes marked as terminal in p’s LTS.
Two processes p and q can be put in parallel using the operator ||, i.e. p || q de-
notes parallel process composition. The actions in these two parallel processes can
happen independently of each other. In other words, an action from process p can
happen before, after, or at the same time with an action from q (Figure 3.5 left).

Concurrent processes can interact by enforcing synchronous communication
upon certain actions. If actions a and c are intended to happen at the same time (as
two ends of a synchronous communication, for instance), rather than as single iso-
lated actions in arbitrary order, this should be specified using the mCRL2 operator
comm (Γ) in the following manner: Γ{a|c →e}. In practice this means that actions a
and c can be observed as a single (multi-)action e, when they happen at the same
time (Figure 3.5 middle). All occurrences of a|c will be replaced by e, provided that
the data parameters that these two actions may carry, match. The silent step τ can
synchronize with any action, i.e., τ|a = a. To explicitly allow those multi-actions
from a set V that we want to see as a result of communications within a process p,
while implicitly blocking all other actions, the operator ∇V(p) is used (Figure 3.5
right).

Actions can carry data values, allowing one to model inter-process communi-
cation, exchange of data, and data-based (deterministic) decisions. Examples of
actions parametrized with data are read(1.5), send([1, 3]) , and setAlarm(true, 2).
Processes can be parametrized by data parameters and values, too. This way, the
process behavior can be influenced by the values such parameters carry; mCRL2 of-
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fers two operators for this. First, given a process description p(d) in which a variable
d can occur, ∑d:D p(d) describes the process which allows for a non-deterministic
choice p(d) for any value d from a certain domain D. The ∑-operator can best
be understood as a generalization of the binary choice (+) operator. This opera-
tor is mostly used to model the reading of certain data values passed by another
process via synchronous communication. Second, the if-then-else constructs of the
form b → p ⋄ q can be used to describe the process that behaves as process p if the
Boolean expression b holds and as process q otherwise.

Apart from describing processes, mCRL2 has a data language part that facili-
tates describing realistic systems where data influences the system behavior. In the
following, we do not give a full exposition of the data language possibilities, only
illustrate some of the relevant ones for understanding the rest of the thesis. The
data language has built-in support for standard data types such as Booleans (Bool),
and integer (Int), natural (Nat), positive (Pos), and real (Real) numbers, and infinite
lists (List(_)), sets (Set(_)) and bags (Bag(_)) over arbitrary data types. In addition,
mCRL2 provides various ways in which users can define their own custom data
types and operations on these. Using the keyword sort one can define one’s own
enumerated data types and reason about them. For instance, an enumerated type
Semaphore with elements red, yellow, and green can be defined as follows:

sort Semaphore = struct red | yellow | green;
Furthermore, auxiliary functions over data types can be declared using the keyword
map. For example, the next and isBroken functions can be defined as follows:

map next: Semaphore→ Semaphore;
map isBroken : Semaphore× Street→ Bool;

The isBroken function takes two arguments (of sorts Semaphore and Street) and yields
an element of Boolean type. To further define how these functions operate, equa-
tions can be used with the keywords eqn and var:

var sem: Semaphore;
str: Street;

eqn next(red) = green;
next(green) = yellow;
next(yellow) = red;
(next(sem)==sem)→ isBroken(sem,str) = true;
¬(next(sem)==sem)→ isBroken(sem,str) = false;

The last equation line defines one of the rules on how the isBroken function should
evaluate, with the following meaning: when the isBroken function is applied to
data values of the variables sem and str, it should result in a Boolean value false if
applying the function next on the data value of sem results in a value different from
the original one of sem.

Such features as those of the mCRL2 language outlined above, are indispensable
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for modeling distributed and concurrent systems. A more elaborate description of
mCRL2 and its features can be found in [57]. Our choice for using the mCRL2
language to model DIRAC’s behavior is motivated by its rich set of abstract data
types as first-class citizens, as well as its powerful, actively maintained toolset for
analyzing, simulating, and visualizing specifications, as we will see.

3.4 From DIRAC to mCRL2

Any formal analysis uses a simplified description of the real system. Even in the
best possible scenario, where the target implementation language and the model-
ing notation are close, it is practically impossible to avoid the use of abstraction to
create a simplified model. Software implementations are large and often contain
many details that are irrelevant for the intended analysis. In that sense, a model
is an abstraction from reality, where certain implementation details are ignored.
Abstraction aims at reducing the program’s state space in order to overcome the
resource limitations [148] encountered during model checking. Furthermore, spec-
ification languages describe what is being done, abstracting away from the details
of how things are done. Then, the ultimate question, nicely summarized by David
Parnas [146], is: how do we establish correspondence between model and code?

High-level structural design documents are a good starting point, but insuffi-
cient for building a model that is amenable to analysis of useful behavioral proper-
ties. Behavioral properties describe some (un)desired aspects of the system behavior.
For instance, it is generally desired that the system is free from deadlocks, or that
every locking operation is eventually followed by an unlocking one. In absence of
more detailed up-to-date behavioral designs, we based our SMS and WMS formal
models on the source code and discussions with developers. A popular abstraction
technique for identifying code subsets that potentially affect particular variables of
interest (slicing criteria) is program slicing [101], broadly applied to static and dy-
namic program analysis. It reduces the behavior of a program by removing control
statements and data structures deemed irrelevant for the criteria. In the context
of building a formal model for the purpose of automatic verification of properties,
code slicing can help to focus on parts of the implementation which are relevant for
the final analysis, i.e., the intended properties to be checked. If the abstract model
is checked and found to be in conformance with the property, one can be sure that
the behavior of the original program satisfies this property too. In other words, the
obtained abstraction is sound with respect to that property.

To the best of our knowledge, the only practical applications of automated code
slicing have so far been limited to a few languages, namely on C/C++ and Java
programs ([3; 2; 53]). Research has not yet matured on the topic of code slicing for
dynamic languages, such as Python. Therefore, we performed the program slicing
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manually, relying on the Eclipse IDE for reverse-engineering and dependency analy-
sis of the subsystems. Given the recurrent invalid state transitions of entities within
DIRAC, we considered the possible race conditions caused by multiple agents up-
dating the service states to be the target of our analysis. We limited the scope to the
analysis of the following DIRAC entities: Tasks (SMS), CacheReplicas (SMS) and Jobs
(WMS). These are the starting points that determine our slicing criteria.

Depending on whether the abstracted underlying LTS is smaller or larger with
respect to the original system, there are two general abstraction approaches: over-
abstraction and under-abstraction. These can be used in conjunction with code
slicing, or when we do not know upfront all the properties we wish to check. Over-
abstractions contain more behavior than the original system. This can be achieved,
for example, by removing data from certain deterministic branching points in the
real system, and introducing non-determinism instead. This reduces the number of
states, or the size of the state vector, but increases the number of possible transitions,
and hence the number of behaviors. For example, in the simple vending machine
in Figure 3.6 (left) which accepts 50 cents and allows one to choose coffee or tea,
we can disregard this beverage choice and model both branches as equally possible.
Even more, we can sometimes get our beverage without paying enough money
for it, as can be seen in Figure 3.6 (middle). Not all properties are preserved by
over-abstracting the behavior. For instance, the over-abstracted model can become
deadlock-free because of the non-determinism and the extra behavior introduced,
even though the original one exhibits deadlock. Nevertheless, such abstractions can
be useful for safety properties, which state that something bad never happens. If
there are no model checking errors of a safety property in the over-abstraction, one
can be certain that there is no problematic behavior with respect to that property,
in the original system. On the other hand, the discovered errors can be spurious

Figure 3.6: Left: Control flow graph of a simple vending machine.
Middle: Over-abstraction. Right: Under-abstraction
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(false-positives), i.e., they might not correspond to real errors in the system.
The opposite holds for under-abstractions: they contain less behavior than the

original system. This is typically a result of abstracting multiple branches into a
single step, in effect merging multiple actions leading to different states of the un-
derlying LTS, into a single one. Thus, for safety properties, if there is an error
reported in the under-abstraction, this error corresponds to a real error in the orig-
inal system. On the other hand, the absence of errors in the original system is not
guaranteed. Liveness properties require that something good eventually happens.
While a violation of safety properties can be detected by a finite sequence of transi-
tion steps in the model, a violation of liveness properties can only be detected by an
infinite execution trace, practically containing a loop which prevents the property
from becoming true (i.e., reaching a state in which it holds). If such a loop is present
in the under-abstraction, then the reported error is real. Figure 3.6 (right) depicts
one way of applying under-abstractions to the vending machine example.

In the following, we use the SMS subsystem as a case study for outlining the es-
tablished modeling and abstraction guidelines. These guidelines, or rules of thumb,
can be applied in a similar manner to other DIRAC subsystems.

3.4.1 Control-Flow Abstractions

Within the mCRL2 toolset, the keyword proc is used for defining a named process
behavior (called a process variable). This allows for specifying recursive processes by
referring to process variables within the definition of a process, effectively defining
LTSs that have iterative behavior, i.e., loops. As already explained, all agents repeat
their implemented logic in iterations: first they read some entries of interest from
the service database, then they process the read data, and finally they may write
back or update entries, based on decisions from the processing step. Due to this
repetitive logic, they can be naturally modeled as recursive processes. Each process
represents a distinct agent, specifying its expected behavior when interacting with
the service database. Take as an example the code snippet in Listing 3.1, from the
Request Preparation Agent implementation. Although much of the code is omitted
for clarity, the necessary parts for illustrating the basic idea are kept. The first high-
lighted statement is the selection of all "New” CacheReplicas entries. What follows
is retrieval of their metadata from a Logical File Catalog (LFC), external to this
subsystem. Subsequently, list and dictionary manipulations are done to group the
retrieved data depending on the outcome. Two lists of replica IDs are built before
the last step: one for the problematic catalog entries, and one for the successful san-
ity checks. Finally, the last two highlighted code segments update the states of the
corresponding CacheReplicas to "Failed” and “Waiting” respectively (see Figure 2.9).
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Listing 3.1: RequestPreparationAgent.py code excerpt

def prepareNewReplicas( self ):
.. res = self.getNewReplicas() .. .

if not res[’Value’]:
gLogger.info(’There were no New replicas found’)
return res

[...]
# Obtain the replicas from the FileCatalog
res = self._getFileReplicas(fileSizes.keys())
if not res[’OK’]:

return res
failed.update( res[’Value’][’Failed’] )
terminal = res[’Value’][’ZeroReplicas’]
fileReplicas = res[’Value’][’Replicas’]
[...]
replicaMetadata = []
for lfn, requestedSEs in replicas.items():

lfnReplicas = fileReplicas[lfn]
for requestedSE, replicaID in requestedSEs.items():

if not requestedSE in lfnReplicas.keys():
terminalReplicaIDs[replicaID] = "LFN not registered at requested SE"
replicas[lfn].pop(requestedSE)

else:
replicaMetadata.append((replicaID, lfnReplicas[requestedSE], fileSizes[lfn]))

# Update the states of the files in the database
if terminalReplicaIDs:

gLogger.info(’%s replicas are terminally failed.’ % len(terminalReplicaIDs))
.. res = self.stagerClient.updateReplicaFailure(terminalReplicaIDs) .. .

if replicaMetadata:
gLogger.info(’%s replica metadata to be updated.’ % len(replicaMetadata))
# Sets the Status=’Waiting’ of CacheReplicas records
#that are OK with catalogue checks

.. res = self.stagerClient.updateReplicaInformation(replicaMetadata) .. .
return S_OK()

The logging statements, although critical for operational matters, will not affect
the entries’ states, and can be ignored (sliced away). Furthermore, instead of trac-
ing back and modeling all variables on which the two final lists depend, we can
use non-determinism (and effectively over-abstract) in this particular case. This is
because it is not known upfront which branch execution will follow for a particu-
lar replica, as it depends on external behavior (i.e., the interactions of the system
with its environment). By stubbing out the communication with the LFC and most
of the local variable manipulations that follow, and replacing them with a non-
deterministic choice between the two ultimate state updates, we can include both
possibilities in the model behavior. Of course, depending on the context and the
kind of properties we wish to verify, some variable values should not be ignored,
in which case determinism can be added using the if-then-else mCRL2 statement for
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Figure 3.7: CacheReplicas table description

branching behavior. All relevant selection and update statements are translated into
actions parametrized with data. In the following section we will explain how the
data is communicated between processes using action synchronization. First, we
describe the data abstractions applied.

3.4.2 Data Abstractions

Data abstraction reduces the domains of the variables or objects of the original
system into some small abstract domains. The CacheReplicas entity contains more
information besides the textual status of a file. Every database entry has a unique
identifier, descriptive data such as the storage where it resides, its full path, check-
sum, timestamps, etc., as can be seen from the table description in Figure 3.7. In
principle, to make model checking efficient and tractable, it should be performed
on finite models, where the domains of all variables are bounded. Since we are only
interested in state transitions in terms of changes to the Status field, we can collapse
most of this descriptive data, and represent this entity as a user-defined sort (type) in
mCRL2:

sort CacheReplicas = struct Start | New |
Waiting | StageSubmitted |

Staged | Failed | Deleted ;

This defines an enumerated data type with all possible status values, as taken from
the CacheReplicas state machine 2(Figure 2.9). The Tasks entity can be modeled in
the same manner. Lists of these sorts can be easily modeled in mCRL2 as List(Tasks)
and List(CacheReplicas). To define the many-to-many relationship between Tasks and
CacheReplicas, we join these data elements in a tuple:

2The missing “Offline” state was added long after this analysis was performed on a model based on
the original implementation.
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sort Tuple = struct p(t:Nat, cr:Nat, link:Bool);
The first two elements are the list positions of the Tasks and CacheReplicas entries,
while the last one indicates whether a relation between them exists at a given mo-
ment of the system execution.

In reality agents operate on lists of IDs corresponding to the database entries
keys, so functions for mapping items of type List(CacheReplicas) and List(Tasks) to a
list of identifiers (i.e., element positions within a list, modeled by natural numbers)
List(Nat) are necessary. One such functional data mapping used in the model is the
tasks2ids function, which, given an existing list of Tasks and a specific Tasks status
value, returns the list positions (beginning at zero) matching the value. For example:

tasks2ids([Staged, New, Staged, Failed], Staged)→ [0, 2]

The arrow “→” here represents the result of applying the function tasks2ids. The
mCRL2 definition of this function is given below.

map tasks2ids : List(Tasks)× Tasks→ List(Nat);
map tasks2ids’ : List(Tasks)× Tasks×Nat→ List(Nat);
var t, l: List(Tasks);

s, a: Tasks;
n: Nat;

eqn tasks2ids(t,s) = tasks2ids’(t, s, 0);
tasks2ids’([], s, n) = [];
(a == s)→ tasks2ids’(a ▷ l, s, n) = n ▷ tasks2ids’(l, s, n + 1);
¬(a == s)→ tasks2ids’(a ▷ l, s, n) = tasks2ids’(l, s, n + 1);

Another example is the ids2cacheReplicas function, defined in a similar manner,
which can be used to update certain CacheReplicas list positions with a new status
value, in the following way:

ids2cacheReplicas([0, 1],[Waiting, Staged, New], Failed)→ [Failed, Failed, New]

The function will update the first two positions of the original list to a value “Failed”.
These mappings provide a natural way of modeling the actual database manipula-
tions.

The mCRL2 language does not support global variables (or a similar construct).
Therefore, the shared database is modeled as a data wrapper process that maintains
the list of data entries as a parameter in its local memory ((d:List(CacheReplicas))).
This recursive process continuously listens and responds to requests from other
processes (agents), calling itself again after each such selection or update action, as
illustrated below.

proc CacheReplicaMem(d:List(CacheReplicas))=
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∑t:CacheReplicas RPAgent_selectCacheReplicas_rcv(cacheReplicas2ids(d, t), t)
.CacheReplicaMem(d)

+

∑l:List(Nat), t:CacheReplicasRPAgent _prepareNewReplicas_rcv(l, t)
.CacheReplicaMem(ids2cacheReplicas(l, d, t))

+ ...

+

∑l:List(Nat), t:CacheReplicas RFAgent_removeReplicas_rcv(l, t)
.CacheReplicaMem(ids2cacheReplicas(l, d, t));

The information exchange is arranged by synchronizing the respective matching
actions ⟨Agent⟩_⟨action⟩_snd and ⟨Agent⟩_⟨action⟩_rcv of the processes that are en-
forced to communicate. The summation operator allows the process to accept any
value of the CacheReplicas and List(Nat) sorts passed via matching actions by the
agents. To ensure that such synchronous communication between the data wrapper
process and the agents is possible, the mCRL2 allow (∇) and comm (Γ) constructs
are used in the initialization part of the model specification:
∇{RPAgent_selectCacheReplicas, RPAgent_prepareNewReplicas,...

..., RFAgent_removeReplicas}
(Γ{RPAgent_selectCacheReplicas_snd|RPAgent_selectCacheReplicas_rcv

→RPAgent_selectCacheReplicas,

RPAgent_prepareNewReplicas_snd|RPAgent_prepareNewReplicas_rcv
→RPAgent_prepareNewReplicas,...,

RFAgent_removeReplicas_snd|RFAgent_removeReplicas_rcv
→RFAgent_removeReplicas})

This allows only those multi-actions that are a result of successful communications
between agents and the data wrapper process, to occur. To complete the picture,
we give an outline of the model for the Request Preparation Agent process:

RPAgent= ∑cacheReplicas:List(Nat) RPAgent_selectCacheReplicas_snd(cacheReplicas, New).

(

(cacheReplicas,[])→ (RPAgent_prepareNewReplicas_snd(cacheReplicas ,Failed).

∑tasks:List(Nat) RPAgent_selectTaskReplicas_snd(tasks, cacheReplicas).

((tasks,[])→RPAgent_prepareNewReplicasT_snd(tasks, tFailed) ⋄ τ)

+

RPAgent_prepareNewReplicas_snd(cacheReplicas, Waiting)

)
⋄ τ)

.RPAgent;
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The translated process is a sequence of different actions for communicating with
the CacheReplicasMem process. These include obtaining and modifying the data that
this process maintains. The agent first selects all the CacheReplicas with a status
“New”. If the selected list is non-empty, the entries are either updated to “Failed”
along with their respective Tasks, or alternatively updated to a status “Waiting”.
Since the DIRAC services are merely front-ends for interactions with the database,
they essentially act as wrappers around it. We already model the storage as a front-
end wrapper process maintaining the database entities in memory, so there is no
need to model services explicitly. Finally, the model is put together as a parallel
composition of all communicating processes, in the init part of the specification.

init RPAgent || SRAgent || ... || CacheReplicaMem([]);

To protect them from growing (possibly) infinitely, the lists of Tasks and CacheRepli-
cas are initialized and filled only once (using hard-coded values), inside a process
modeled following the setRequest method implementation (see Figure 2.7). Al-
though the WMS model is larger, it is constructed using similar abstraction rules of
thumb. The complete models are available at [4].

3.5 Analysis and Issues

The operation of a model checker closely resembles graph traversal. Typically,
model checkers examine all reachable states and execution paths in a systematic
and fully automated manner, to check if a certain property holds. In case of viola-
tion of the examined property, a counter-example can often be provided as a precise
trace in the model, showing which interleavings of actions of the components led to
the violation. After the model is written, the state space can be explicitly generated
and stored. The state-space generation times and the resulting numbers of states for
the two models are presented in Table 3.1. State space generation with the mCRL2
toolset (release July 2011) was carried out on a 64bit Intel Core™2 Duo (1.6GHz)
machine with 2GB RAM. This can be a time consuming process, depending on the
number of parallel processes, as well as the size of the data domain in the model.

System Components States mCRL2
LoC

Python
LoC

Generation
time

SMS 4 agents 18,417 432 2,560 <10 sec.
WMS 10 agents 160,148,696 663 15,042 ∼12 hr.

Table 3.1: mCRL2 models statistics 3

3Here we limited the input to one task and two staging files in the SMS, and one job in the WMS.
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In this particular case, even though the communication between the agents and the
shared databases is mostly synchronous, there is non-determinism present due to
quantification (sum) over the data domains, at many points in both models. The
data domain of the WMS is relatively big, and this makes the state space generation
rather involved.

3.5.1 Simulation and debugging

Apart from verification, the mCRL2 toolset has a rich set of tools for analysis of
the modeled system. The XSim simulator allows to replay scenarios and inspect in
detail the current state and all possible transitions in the model, for every execution
step. Modeling errors are not uncommon, especially in the first (draft) versions of
the model, and XSim provides the necessary feedback, acting as a debugger. This
process was already valuable for understanding the system and identifying inter-
esting behaviors that were later included in the requirements. We want to stress
that this is especially useful when building models of existing implementations,
where at first glance it is not very clear which (un)desired properties need to be
formulated and automatically probed, before they actually surface in the real sys-
tem. One such problematic behavior was recently reported in DIRAC’s production
(Figure 3.8a), where a job had transited between two different terminating states,
“Failed” and “Done”. Replaying the behavior with XSim revealed the exact same
trace in the WMS model (Figure 3.8b). This was a result of several circumstances
which are difficult to reproduce in the running production and certification setups.
The JobWrapper process was continuously trying to access a file already migrated to

(a): Logging info of a DIRAC job (b): XSim simulator trace

Figure 3.8: Invalid job state transitions
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tape. Meanwhile, the Stalled Job Agent responsible for monitoring the pilot declared
the job as “Stalled”, and ultimately as non-responsive (“Failed”), since its child pro-
cess was busy with data access attempt for a long time. However, once data access
succeeded, the JobWrapper finally started executing the actual payload and reported
a “Running” status. The JobWrapper assumes that nothing has happened to the
status of a job once it brings it to a “Running” state, and only reports a different
MinorStatus value afterwards. The logic is such because it is naturally expected that
this process has exclusive control over the rest of the job workflow, once it starts
running. Fixing such a problem without compromising efficiency is not trivial.

3.5.2 Visualization

Reasonably small LTSs can be easily visualized with the interactive GUI tools, as
the tools employ smart clustering techniques to reduce the complexity of the im-
age. For instance, the SMS model, with around 18000 states, was visualized with
DiaGraphica. Figure 3.9 shows a projection (clustering) of the state space on the
CacheReplicas memory process, when a single job and one file to stage is given as in-
put in the model, which resulted in only 6 interesting states4 for this process alone.
The graph’s nodes contain sets of individual states from the state space, having the
same value for the projected state vector element, in this case the list of CacheRepli-
cas. The edges are bundles of transitions connecting these states, with the thickness
being proportional to the number of bundled transitions. The transition direction is
interpreted clockwise. The clustering allowed us to see precisely which chain of ac-
tions by the concurrent agents advanced the state of the CacheReplicas entity. In fact,
in the modeling phase we discovered the first problematic SMS behavior, blocking
the progress of staging Tasks (and as a result the progress of jobs). The origin of the

4Each state is actually a list with a single element - the status value; for clarity, the list notation and
the self-loops are omitted from the figure.

Figure 3.9: CacheReplicaMem process visualization with DiaGraphica
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Figure 3.10: State-space visualisation of the SMS with ltsview

deadlock had been a trivial human logic flaw introduced in coding. At a particu-
lar circumstance, when a “New” task enters the system and all associated replicas
are already “Staged” (possibly by other jobs requiring the same input files), its sta-
tus would immediately be promoted to a wrongly-named (non-existent by design)
status “Done”. Such tasks would never be picked up by SMS and called-back to
the appropriate job, since the agent responsible for this final step would only look
for “Staged” tasks in its implementation. A proper state machine implementation
instead of hardcoding states in SQL queries can prevent such bugs.

The ltsview tool can be used for a more sophisticated way of visualizing model
state spaces in 3D. It also employs clustering of states based on structural properties,
but serves to further explore symmetry in the behavior of the system and discover
unexpected visual anomalies. The state space of the SMS model is partly visualized
in Figure 3.10. The behavior starts at the top of the cluster and proceeds downwards.
Branching points indicate alternatives in the behavior of the system. It is possible
to mark and color different regions based on values of the state vectors, as well as
transitions based on their labels. The particular figure shows a suspicious transition
between “Failed” and “Staged” tasks presented by distinct coloring of the regions.
One can also interactively simulate the behavior while keeping track of the previous
state, the current state, and the possible immediate transitions.
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3.5.3 Model checking

The default requirement specification language in the mCRL2 toolset is the modal
µ-calculus [85], extended with regular expressions and data. We only introduce µ-
calculus informally in this section, and come back with a more detailed syntax and
semantics description in Chapter 5. For our current purposes, the regular expres-
sions suffice. These typically allow for specifying that certain behaviors must be
absent or present, and if-then scenarios. Regular expressions are constructed using
constants true and false and the modalities “[]” and “⟨⟩”. The constants true and
false have their usual meaning: true holds in every state, while false does not hold in
any state of the model. The modalities are used for expressing necessity (“[]”) and
possibly (“⟨⟩”) statements in a formula. Necessity means that the formula should
hold for every behavior within the brackets, while possibly means that there exists
a behavior where the formula is satisfied. The behaviors inside the modalities can
be specified concisely using action formulas. These can be constructed using actions
and the operations “||” for union and “!” for the set complement; the action formula
true represents the set of all actions. Any action or action formula can be turned into
a set of behaviors using the “∗” operator, which is used for expressing cardinality,
meaning that actions can occur any number of times; the “.” operator allows for
concatenating behaviors. The last two operators give rise to so-called regular formu-
las in µ-calculus. For example, ⟨a∗⟩true expresses that any sequence of a actions is
possible. To express that it should not be possible to do two consecutive lock actions,
without an unlock action in between, the formula [true∗. lock. (! unlock)∗. lock] false
is used.

In mCRL2, the model checking problem is often converted to an equation sys-
tem solving problem. Such Parametrized Boolean Equation Systems (PBES) can be
manipulated and solved on the fly with the toolset, thereby answering the encoded
model checking problem. It is worth noting that, even though the generated coun-
terexamples may be somewhat cryptic and difficult to interpret for novices, given
that they are shown as trees of PBES variables instantiations, these PBES variables
often closely match the data parameters of the original process specifications.

Typical expressions commonly found in practical property specifications with
µ-calculus are of the form “[A] false”, which holds when a system has no behaviors
matching A, and “[A]⟨B⟩true”, which holds if a system has a behavior matching
B whenever a behavior matching A has occurred. Using the gained understand-
ing of the system behavior, as well as the reported and anticipated problems, we
formulated several requirements for the model checker to systematically probe. In
the formulas below, state(__) is an action added to the model to expose states of
the entities of interest, augmented as an always-enabled action in the data wrapper
process. It should be noted that adding such an action may affect the validity of
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certain properties, as the resulting state space will contain a self-loop with the tran-
sition state(__) enabled in every state. For example, it will obviously mask potential
deadlocks which may exist the original model, since the augmented one can always
make progress at least through these self-loops. However, the properties below are
preserved under this model augmentation.

1. Each task in a terminating state (“Failed” or “Staged”) is eventually removed
from the system.

[true∗. (state([tStaged]) || state([tFailed])). (!(state([tDeleted])))∗]

⟨(!(state([tDeleted]))∗. (state([tDeleted]))⟩true

2. A deleted task will never be referenced for transition to any other state.

[true∗. state([tDeleted]). true∗.(state([tNew]) || state([tStageSubmitted])

|| state([tStaged]) || state([tFailed]))] false

3. Once a job has been killed, it cannot resurrect and start running.

[true∗. state([jobstatus(Killed, MarkedForTermination)]). true∗

. state([jobstatus(Running, JobInitialization)])] false

Both requirements 1 and 2 were found to be violated, as can be seen from the
traces (Figure 3.11). The race conditions manifest themselves in a few subtle inter-
actions between the SMS storage and the agents. In both cases, at step 4 the Stage
Request Agent issues prestage requests and as a result the CacheReplicas entries
(second element of the State column) are updated to “StageSubmitted”. Between
the moment that this agent has selected the corresponding Task to update to the
same state, to the point where the update is done (last step in both traces), other
agents may have monitored these replica records and updated them to a new state,
along with the associated Task. In practice, the manifestation of such race condi-
tions depends on the speed of the agents propagating the state changes between
the selection and update done by the Stage Request Agent. Such cases are never-
theless encountered in reality, when this agent has large lists of records to process.
This results in a deadlock situation, as the particular Task will have no further state
updates made by other agents, since from their perspective its state update propa-
gation is finished. The traces helped to identify the root cause of the problem, and
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in both cases, the solution was to improve the implementation such that the Tasks
state machine adheres to the original design intentions. In such case, a “Failed”
state is a final status and cannot be promoted to a different one.

Model checking and debugging with explicit state space generation was not a
viable option for the WMS, due to its size (13 concurrent processes giving rise to a
state space of over 150 million states). We therefore resorted to using the LTSmin
symbolic reachability tool [29] and the symbolic equation system solver built on top
of LTSmin’s equation system explorer [116]. LTSmin can also be used as a backend
for state space exploration and verification of models written in mCRL2. These
tools can reduce the verification times significantly, taking less than 20 seconds
for exploring the WMS model (release ltsmin-1.7). They rely on the use of clever
data structures such as BDDs [38] for concisely representing the underlying LTS or
equation system that is being explored.

The symbolic equation system explorer and solver effectively solves the model
checking problems for our requirements. However, in case of violations of the re-
quirements, the symbolic verification tools currently do not provide useful counter-
examples. In order to understand the violations, we employed a different trick. We
used the symbolic state space exploration tool’s option for tracking the occurrence
of a certain (specified) action and reporting a trace if such an action is encountered
during exploration. For this purpose, we extended the specification with a monitor-

Figure 3.11: Violation of requirements 1 (top) and 2 (bottom)
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Figure 3.12: Monitor automaton for requirement 3

ing process which fires an error action if requirement 3 is violated. This monitoring
process is set to run in parallel with the original model, and observes the relevant
actions and state changes that the system itself takes. In other words, it accepts
exactly those executions that violate the property. As such, it serves as a mecha-
nism for runtime verification, or lightweight bug-hunting. A generic monitoring
process for checking µ-calculus properties with regular expressions of the form:

[true∗. state(s1). true∗. state(s2)] false

is shown below.

proc Monitor(s1,s2:List(Job),b:Bool)=

τ.Monitor(s1,s2,b)

+ (!b → (∑s:List(Job) .(s==s1) → (monitor(s).Monitor(s1,s2,true))

⋄ (monitor(s).Monitor(s1,s2,b)))

⋄ (∑s:List(Job) .(s==s2) → (monitor(s).error(s1,s2))

⋄ (monitor(s).Monitor(s1,s2,b))

);

The automaton of the concrete monitor instance which accepts requirement 3
trace is shown in Figure 3.12. Whenever the observed system changes the state of a

Figure 3.13: "Zombie" job starts running after being killed
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Figure 3.14: Race condition involving the stager callback no longer occurs

job to “Killed”, the automaton also changes its state to s1 by enforcing synchronous
communication between the respective actions monitor(_) and state(_). The silent
step (τ) can be executed as a result of any non-relevant system state change from
the perspective of the automaton. As soon as the system changes the state of the
job further to “Running”, the automaton makes a transition in a similar fashion,
after which point the action error is executed, and can be detected by the LTSmin
tool. If such a full cycle is accepted by the automaton, the temporal property is
indeed violated. Using this technique, a counter-example (Figure 3.13) showed that,
when staging was involved in the workflow of a job, the callback from the SMS
was not properly handled. It awakened the job immediately to a “Checking” (and
eventually “Running”) state even if it had been manually “Killed” (using DIRAC’s
command line API) by production managers meanwhile. Such “zombie” jobs were
discovered in the system on several occasions, and with the model at hand it was
easy to replay the behavior and localize the problem.

The implementation was fixed to properly guard the callback against this partic-
ular case. The changes were also reflected back to the mCRL2 model [4]. Figure 3.14
shows that the stager callback no longer affects the job state if it has been changed
from its original “Staging” one in the meantime. The state space of the fixed model
amounts to 157,048,664 states, the reduction being a result of removing the incorrect
behavior. However, we must note that model checking still discovered traces where
the property is violated, even without the stager being involved. The current archi-
tecture does not permit an easy workaround for this problem. Protecting shared
memory access using traditional locking techniques does not scale well. At the
time of writing, there was an ongoing effort in redesigning DIRAC’s job workflow,
to accommodate a task dispatcher that would take care of persisting the state of the
tasks to the storage backend, and distributing them among so called “executors”.
This should replace the old agent components’ polling architecture, and reduce the
load they place on the storage, in addition to eliminating race conditions. We will
come back to DIRAC’s Executor Framework in Chapter 4.
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3.6 Discussion and Evaluation of the Approach

The author of this dissertation had no previous experience with process algebras,
before embarking on the quest of formal modeling with mCRL2. Although it is
difficult to estimate the total effort, combined with other research activities, both
subsystems were modeled incrementally and the problems were found within a
few months; this is including the time it took to analyze and understand the origi-
nal implementation being modeled. None of the bugs discovered with this formal
approach were localized and fixed by DIRAC developers within this timespan, al-
though the manifestation of the faulty behaviors was already evident before the
subsystems were modeled. Analysis of this kind is typically performed after a
problem has already surfaced in the real system, as a means to understand the
events which led to it and test for possible solutions. We managed to come across
an actual bug at the same time it was observed in practice, which increased our
confidence in the soundness of the model. As a positive side effect of having the
formal models at hand, the author gained a much greater insight into the emergent
behavior of these subsystems, in a manner impossible for distributed systems, if
based solely on running the implementation and analyzing logging traces. Concur-
rency bugs are often a result of unanticipated interleaving of events, and there is
almost no control over their temporal ordering while the distributed DIRAC agents
and services are autonomously running. With the simulation tool we had a full
control over stepping through the possible executions, at a pace which allowed to
understand the dynamics, while having the full execution history trace at a glance.
Some of the more challenging aspects were:

• Making the mind-switch to the process algebra world, starting from a high-
level object-oriented implementation, where a process execution viewpoint is
not so obvious, but rather the focus is on the behavioral interface that the
objects provide, and the communication between them. Once the initial resis-
tance was overcome, it turned out that mCRL2 is indeed intuitive and natural
enough to express these aspects.

• Interpreting the mCRL2 counter-examples that are shown as trees of PBES
variables instantiations. This requires some experience and ingenuity, as they
cannot be directly fed into the simulator for replaying the behavior. As a rule
of thumb, using the monitor approach whenever possible, in order to turn the
model checking problem into a reachability (of an error action) one, provides
much more user-friendly traces.

• Choosing the right abstraction level: in the choice of which implementation
details to discard, we were guided by the existing reported problems. How-
ever, if problems of a different nature are to be checked, this may require some
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modifications in the models. Furthermore, due to the use of non-determinism
(over-abstraction) in both models, model checking requirements 2 and 3 pro-
duced false-positives. The decision of discarding such counter-examples must
be made in consultation with the original implementation.

• Deciding which properties to be checked: while we formulated only a few
basic properties based on the reported problems within the collaboration, we
conjecture that many other unexpected and undesired behaviors still exist,
and it is only a matter of time before they surface in the running system.

• Using the right combination of switches available in the tools to make the
analysis more efficient when the resources for performing model checking are
scarce. Consulting mCRL2 experts helped tremendously with this.

• The models can quickly become outdated, and keeping them in sync requires
a continuous effort. DIRAC evolves on a daily basis, whether it concerns small
bug patches, or more involved developments, releases are made weekly.

• Dealing with state space explosion: as a rule of thumb, when the state space
generation grows suspiciously large without prospects of completing within a
reasonable time, it is worth looking into data structures (like lists) potentially
growing without bounds, processes not being set to correctly synchronize and
communicate on actions like intended to (asynchronous behavior can increase
the exploration time significantly). Isolating problems by incrementally hid-
ing parts of the behavior (with the available mCRL2 mechanism for this) in
order to localize the bottlenecks, showed to be a useful strategy. Modular or
compositional verification [23] is a powerful abstraction technique that allows
to concentrate on the relevant components for the specific property we wish
to check, abstracting from irrelevant ones. However, for modular verification
to be effective in reducing the state space, the system properties must be de-
composable into properties over the individual components, which is often
far from trivial to achieve.

• Loosening the tension between applying formal methods to an existing large
system and getting the detected problems resolved: some of the discovered
bugs are not easily fixed, for instance, due to performance impacts or archi-
tectural restrictions. It seems like efficiency considerations in a distributed
system design have a higher precedence than correctness ones. An inefficient
system can be unusable, whereas a buggy program can still be used (granted,
with some frustration). When the system architecture is already in large part
established and implemented, the resistance of applying bug fixes which may
impact the architecture, tends to be more pronounced. This resistance de-
pends on several factors: on one hand, the estimated effort needed to adapt
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the design, the number of people who have the time, knowledge, and the will
to estimate and implement the change, and on the other hand, the expected
nuisance it will cause to operations. Over time these factors change, espe-
cially in small dynamic teams like the one behind the development of DIRAC.
If the formal model (rather than the implementation) would be the first one
affected by the modification, the number of new problems introduced should
decrease quicker over the lifetime of the system, since problems are caught
earlier. Deeper understanding of the cause of a misbehaving system, rather
than just the symptom, leads to different conclusions about the necessary sys-
tem "patch". On the other hand, formal methods do not (yet) propose a direct
solution to the problems that they can discover.

3.7 Related Work

The application of model checking in communication protocols [104; 16; 145], safety-
critical software [194; 111; 138], driver design [18; 30], among others, has demon-
strated the maturity and potential of tools for automating such formal analysis.
Case studies in the domain of high-performance distributed computing, and in par-
ticular concurrent/MPI-based program design, have surfaced as well [178; 139; 176],
mostly relying on the MPI extension of the popular model checker SPIN [177].
The input language of SPIN is a state-based, imperative one. Specifications are
described as concurrent communicating state machines (processes), based on Dijk-
stra’s guarded commands notation with “goto” statements. Compared to mCRL2,
SPIN has more limited language capabilities when it comes to describing custom
data types. Furthermore, reasoning in terms of state machines, with a focus on how
each individual object may possibly jump through its states, rather than in terms of
scenarios and actions, had shown to be less natural for systems like DIRAC, in our
initial modeling attempts with SPIN.

To overcome the problem of state space explosion, several variants to explicit
model checking have gained popularity. Runtime verification [52; 103] aims to in-
crease confidence in the correctness, but does not make claims for absence of defects
in a system. The target program is instrumented manually, or automatically by scan-
ning function calls and variable assignments, in order to capture and emit relevant
events which are then monitored by a special component during execution. This
component resembles our monitoring process automaton used to cope with state
space explosion during model checking of DIRAC’s WMS system. While runtime
verification is useful for capturing incorrect behavior of the system implementation,
code instrumentation may not always be a feasible option, considering the increase
of memory consumption. Furthermore, runtime monitor instrumentation becomes
very challenging for distributed systems, where there is no global clock for reference
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and ordering of events.

Similar to this lightweight form of verification is static program analysis [173].
Rather than code instrumentation and execution, the objective of static program
analysis is to determine runtime properties of systems at compilation time. A spe-
cial analyzer targeted for the implementation language maintains information on
the control flow and function call graphs of the software. Approximation is used by
such tools in practice, in order to improve scalability. The obvious advantage of this
approach is that it works directly on the implementation. However, most static anal-
ysis tools aim at discovering more general and low-level implementation bugs, such
as uninitialized variables, null pointer references, zero division, or out of bound ar-
ray indices. It is almost impossible for a general static analysis tool to figure out the
exact high-level intent of the implementation code taken as input. Because of the
heavy approximation they use, static analysis tools are quite fast and applicable to
large software projects, but result in many false negatives reported. An additional
drawback is their practical availability for languages other than C and Java. Both
runtime verification and static analysis can be seen as additions to traditional model
checking, rather than alternatives. Some progress has been made in the direction
of combining the approaches [194; 30; 34]. For instance, Java PathFinder [194] relies
on static analysis to reduce the state space, before systematically exploring it by
executing the abstracted program. In [34] static analysis and model checking also
operate in a feedback loop.

Static analysis is, in a sense, an extreme form of automated deductive verifica-
tion. In its original form, deductive verification technology allowed for the use of
logics such as Floyd-Hoare logic [105] for showing the correctness of a software or
hardware system by constructing proofs thereof, based on mathematical descrip-
tions of the behavior of the system. These days, the proofs involved are often
discharged using a mechanical or an automated theorem prover. Moreover, more
advanced logics such as Separation Logic [168] are used. Deductive verification is
applied quite successfully on software [149; 118] and hardware [10], but the effort
required for conducting the verification can be prohibiting, and can compare poorly
to model checking.

Instead of constructing a model of the system from scratch, a technique called
process (or workflow) mining [8] can be used. It is a method of automatically dis-
tilling a process or software specification from a set of structured traces collected
from real system executions. The mined specifications are typically expressed in
a form of graphical formalisms such as Message Sequence Charts or Petri-Nets.
Given that the analysis of program execution traces is still the most prevalent de-
bugging technique for distributed systems, and DIRAC’s components produce im-
mense amounts of execution logs anyhow, it seems like an attractive alternative for
mining models. There is a vast amount of work in this area [188; 132; 195; 189; 12]. A
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common assumption in process mining is that the events in each trace are totally or-
dered, which for concurrent systems does not always hold. To cope with this, most
approaches require that the thread IDs or process IDs are recorded in the traces as
well. Observing this as a realistic obstacle for obtaining an accurate model, Lou et
al. in [132] propose an algorithm for constructing models from traces of concurrent
systems by expressing events as partially ordered. Their algorithm identifies depen-
dency relationships between pairs of events in interleaved traces. Another common
assumption is a direct result of the underlying techniques used for constructing
the models, namely data mining and machine learning. These techniques consider
“erroneous activities” or activities that were not logged in the appropriate order for
some reason, as noise, and disregard trace sequences with no statistical significance.
As a result, a design flaw can be mistaken for a noise, or not captured at all if a
particular execution path has a low probability of occurrence. A notable exception
in this direction is [190], where the emphasis is not only on process discovery, but
also on verification: desired or undesired properties can be expressed with Linear
Temporal Logic (LTL), and verified against the traces.

While relying solely on process mining as a technique for extracting a formal
model may not be the way to go, inferring a “fuzzy” model from the frequent inter-
action traces, rather than manual code analysis could be a helpful initial step. Nev-
ertheless, the graphical models obtained must be translated into a process algebra
formalism accepted by an actual toolset, if system correctness is to be established.

3.8 Conclusions

In this chapter we have applied a formal approach for modeling and analyzing
CERN’s DIRAC grid system. We used two subsystems as case studies: the Work-
load Management and the Storage Management System (Chapter 2), which are the
driving force of DIRAC for production workflows. By creating an abstract model,
simulating, visualizing, and model checking it with the mCRL2 toolset, we were
able to gain insight into the system behavior and detect critical race conditions
which were confirmed to occur in the real system. Referring back to Research
Question 1, this provides a strong evidence to positively conclude that mCRL2 is
suitable and rich enough for modeling and addressing design errors of realistic-
scale distributed data-driven systems, such as DIRAC. Furthermore, addressing Re-
search Question 2, the advantages of using model checking in this context become
apparent. Despite the continuous DIRAC development for over a decade, some of
these problems were notoriously difficult to discover and trace. Testing of concur-
rent systems and reproducing error traces is often challenging because of the lack
of control that the tester has over the execution of the concurrent processes. With
the model at hand, replaying the traces and localizing the problems became much
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more straightforward.
Writing a sound formal model based solely on the existing implementation and

scarce descriptive documentation is challenging. The code-base and the number
of grid components engaged in providing DIRAC’s functionality outnumber many
existing model checking use cases. The choice of Python as implementation plat-
form has led to the prevailing usage and manipulation of dynamic structures such
as lists and dictionaries, challenging the transition to an abstract formal represen-
tation. We believe that the combination of code slicing and the abstraction rules
of thumb presented in this chapter can be helpful for modeling such data-driven
concurrent systems like DIRAC, where many of the problems arise from sharing
data among processes.

The investment in writing an abstract model in a formal language pays off pro-
portionally to the size (number of components) of the distributed system. This
holds especially for grid systems where a large number of concurrent components
of a similar kind deliver the overall system functionality. However, deriving a for-
mal model should start with a behavioral specification at a higher abstraction level
altogether. Furthermore, this derivation should ideally be automated, to avoid mod-
eling mistakes and to systematically keep the formal specification in sync with the
continuous system changes.
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Chapter 4
Model-Transformation Methodology

4.1 Introduction
As the complexity of modern software systems increases, a major challenge is faced
in maintaining their quality and functional correctness. Early discovery of design
errors which could potentially lead to deadlocks, race-conditions and other flaws
later on in the development phase, is of a paramount importance, as was already
indicated in Chapter 3. A common practice in software engineering is to provide de-
signs or models used for communicating and validating the system requirements,
before the system implementation, testing, and deployment phase begins. The Unified
Modeling Language (UML) [90] has become the lingua franca of software engineer-
ing, in particular for the domain of object-oriented systems. Over time, several
mature CASE (Computer Aided Software Engineering) tools have already adopted
UML as the industry-standard visual modeling language for describing software
systems. However, the expressiveness of UML sometimes gives rise to detailed
models, where emergent behaviors that are not expected by the designers, still
manifest. The language of UML is defined by its abstract syntax, its concrete syntax
and its semantics. The abstract syntax is described by the UML metamodel [91].
It defines all the valid modeling elements, their attributes and relationships. Their
graphical representation, as used when visually modeling systems in practice, com-
prises the concrete UML syntax. Although useful, the semantics is given in terms of
natural English language explanations, which sometimes results in confusion and
ambiguities.

To remove these ambiguities, as well as bridge the gap between industry-adopted
methodologies based on UML software designs and the formal analysis and veri-
fication tools, many approaches have been proposed for automated extraction of
the necessary analysis models from the UML artifacts. For instance, Petri Nets
[65; 25; 200], Layered Queuing Networks [151] and stochastic process algebras

47
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[183; 184] are used for functional or performance analysis of dynamic UML models
augmented with quantitative performance annotations (such as resource demands,
timing and probabilities of different execution steps). Model checking for certain
properties of the system is often done via translation into process algebra [95; 115].
Automatic synthesis of functional test cases from UML models is possible as well
[19; 152]. Model-to-model transformations can also be done within the UML do-
main itself, for the purpose of model optimization or refactoring [196], or between
a UML model and a target formalized programming language subset, using graph
transformations [117; 71], to show that the UML behavior coincides with that of the
corresponding program.

A UML model of a system is typically a combination of multiple views. De-
vising an automated model transformation methodology requires that behavioral
views of the system be available. The static views of a system (such as Class and
Deployment UML diagrams) are rarely sufficient to extract the necessary informa-
tion for constructing a target model for performing meaningful behavioral analysis.
Activity, Sequence, and State Machine diagrams are among the most commonly
used behavioral ones for this purpose.

State Machines (SM) represent the reaction of individual objects to external stim-
uli. They are suitable for describing specific parts of systems, such as a critical
control component, but are rarely used as the sole paradigm for developing large
distributed object-oriented systems. Software designers almost never create a fully-
formed object a-priori and in isolation, with all the behavior that the object will ever
need. Typically, state machines are more heavily used in domains like embedded
systems, which are control-oriented, rather than data-oriented.

Activity Diagrams (AD), with semantics based on Petri Nets, describe the sys-
tem at a higher level of abstraction, where objects and message exchanges are not
captured, but rather, inter-process control flow is depicted. They represent work-
flows of activities and actions, with support for choice and concurrency, and are
commonly used for business process modeling.

Sequence Diagrams (SD) provide the most fine-grained runtime view of the sys-
tem. They model a set of interacting objects by means of message-exchanges over
time. These diagrams contain information about the control flow during the inter-
action, capture conditions and iterations, as well as intra-process concurrency. With
the introduction of UML 2.x rich set of features such as combined fragments, SDs
have become popular for expressing scenarios because of their clear and intuitive
visual layout and close correspondence with actual programming code-like struc-
tures.

Most of the proposed transformation approaches up to date target only one
particular type of behavioral diagram, mostly AD or SM diagrams [130; 66; 183; 115;
39]. When it comes to interactions (SDs) or targeting multiple diagram types, the
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existing approaches mostly deal with UML 1.x semantics [184; 171; 159; 61; 154; 172],
largely limiting the expressiveness by not taking into account all elements which
allow designers to describe complex traces in a compact manner. Furthermore, they
mostly deal with communication structures only, focusing on the order and types of
messages, and abstract away from custom data types (beyond simple Boolean and
integer types) exchanged in these communications, which are not easily expressible
in some of the formalisms. Finally, with the exception of [99], there is generally no
feedback on the results of the formal analysis, back into the UML domain.

Our interest is obtaining a formal model in the process algebra mCRL2, taking
a UML model as starting point. Due to the true-concurrency nature (multi-actions)
of mCRL2, we can faithfully express the partial-order semantics and the concurrent
behavior of interactions. This is important in distributed systems, where the repre-
sentation of concurrency by an interleaving interpretation ignores true concurrency
resulting from the asynchronous behaviors that may exist. The proposed approach
in this chapter is based on the UML 2.x semantics, and makes use of both sequence
and activity diagrams, combined with the static class structure of the system, to
automatically derive the target formal model. We rely on the textual XMI model
representation to devise the model transformation procedure. XMI [90] is an XML-
based vendor-independent format for metadata exchange between compliant UML
tools. Based on the approach, we have developed a prototype tool that can take
a UML model in XMI representation as input, and construct the mCRL2 model.
Our methodology allows traces from the model checking tool to be conveniently
displayed back in any UML tool. We have further applied the toolset to DIRAC’s
Executor Framework [157]. Prior to applying the toolset, we produced the dynamic
UML views by reverse-engineering the existing code, in consultation with the main
developer.

The remainder of this chapter is organized as follows. We start with a brief
introduction to the syntax and the informal semantics of sequence and activity dia-
grams in Section 4.2. Based on these behavioral UML diagrams, in Section 4.3 we
present an automated transformation methodology for deriving formal models in
mCRL2. Here we discuss the semantic choices we made with respect to some am-
biguous points in the semantics as described by the OMG. In Section 4.4 we demon-
strate the applicability of the transformation on the newly developed components
of the DIRAC WMS module. As we will see, model checking the generated mCRL2
model effectively discovered the root cause of a problem that had been detected
during testing of these components, providing some confidence in the correctness
and usefulness of the methodology. In Section 4.5 we reflect on the efficiency of the
methodology, and our experience on the consequences of using it, and we conclude
in Section 4.6.
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4.2 Modeling Interactions in UML

To translate a system composed of different diagrams into a formal model, we chose
sequence diagrams as a driving behavioral description type, and we take the neces-
sary additional information about inter-process concurrency from activity diagrams.
Our choice is motivated by the fact that SDs provide the richest set of constructs
for low-level behavior expression, and as such have a close correspondence with
actual code. Additional information from ADs is necessary for deriving the actual
(OS level) processes, relevant for concurrent and distributed systems. Such details
cannot be captured with SDs, as we will see.

4.2.1 Sequence Diagrams

Sequence diagrams model the interaction among a set of participants, with em-
phasis on the sequence of messages exchanged over time. The participants are
class instances (objects) shown as rectangular boxes, with the vertical lines falling
from them known as Lifelines (Figure 4.1). Each Message sent between the lifelines
defines a specific act of communication, synchronous or asynchronous. The start
and end events of the directed edge representing a message are called MessageEnds,
and are marked with a so called MessageOccurrenceSpecification element of the UML
metamodel. Synchronous messages are drawn with a filled arrow-head, while asyn-
chronous ones have an open arrow-head. In Figure 4.1 (left) the message remoteCall
is asynchronous, so objC continues with execution immediately after the call, not
waiting for a completion and reply from objD. Reply messages are drawn with
dashed lines. All message types can carry arguments.

Messages are sent between objects with the aim of invoking specific behavior,
known as ExecutionSpecification, and visualized as a thin rectangle on the receiver’s
lifeline. Thus, execution specifications illustrate when the invoked method is exe-
cuted on a particular object. Execution specifications can be nested/overlapping,
as a result of a callback message, or an object invoking its own method, an exam-

Figure 4.1: Sequence diagrams notation
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ple of both situations shown in Figure 4.1 (right). In this example, the client object
sends a request for message1 execution on the server side, after which the execution
is blocked until it receives a reply from that method call. However, this does not
stop other potential objects from invoking any method of the client and server inter-
faces. This possibility of overlapping (possibly concurrent) method executions on
the lifeline on a single object plays an important role in our transformation method-
ology choices, as we will see shortly. For one, it implies that objects should not be
treated as sequential processes, an approach taken often when translating sequence
diagrams to process algebra models. Furthermore, with such approaches, in the
presence of combined fragments with guards, a local condition evaluation of an
object (lifeline) must be visible to all communicating processes in the formal model
(using global variables).

Combined Fragments

Basic sequence diagrams capture finite interaction sequences without any branching
points. In this “linear view” of time, each moment in the interaction has one possi-
ble future. To support branching-time behavior, where each moment has multiple
possible futures (either as a result of decision moments, or concurrency), combined
fragments were introduced in UML 2.x. They add more expressiveness to SDs by
means of constructs capturing complex control flows in a compact manner, thus
overcoming many limitations present in UML 1.x [90]. The specification supports
different fragment types, such as alt, opt, loop, break, par. They are visualized as
rectangles with a keyword indicating the type. Combined fragments consist of one
or more InteractionOperands. Depending on the type of the fragment, InteractionCon-
straints can guard each of the interaction operands. The guards values determine
which fragment’s operand(s) will be executed at runtime. Combined fragments can
be nested with an arbitrary nesting depth, to capture complex workflows. Figure 4.2
shows how some of them can be used.

The alt fragment indicates an alternative between two or more choices. All
operands must have an explicit or implicit guard expression that evaluates to true
or false. If an operand has no guard, an implicit true is implied. If none of the
operands’ guards evaluates to true, none of the operands are executed and the
remainder of the enclosing fragment is executed. If multiple operands evaluate
to true, one is chosen non-deterministically. In the given example, this fragment
has two operands, only one of which is chosen depending on which of the guards
evaluates to true. In this case, if intValue > 0, objE sends the message message2,
otherwise if intValue < 0, it calls its innerMethod. The opt fragment is semantically
equivalent to an alt fragment where there is only one interaction operand, and the
second one is empty.
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Figure 4.2: Combined Fragments examples

The loop fragment models repetitive interactions. The guard may include lower
and upper limits on the number of iterations, as well as a Boolean expression. In
practice, however, either of these conditions is used, but rarely both in combination.
The semantics is such that, after the minimum number of iterations have executed
and the Boolean expression is false, the loop will terminate. In the example of Fig-
ure 4.2, the loop will be executed 6 times, but only if the Boolean guard intValue > 5
evaluates to true. This semantics is ambiguous, so there is room for interpretation,
as we will point out in more detail in Section 4.3.2.

The par fragment (Figure 4.3 left) models parallel execution of the behaviors in
its operands. Its intention is to show intra-process parallelism, i.e., separate threads
of execution within a scenario. The operands can be interleaved in any way, as long
as the ordering imposed by each operand is preserved. There is implicit synchro-
nization on two events: all operands are started when the fragment is entered, and
are stopped when the fragment is exited, before the rest of the scenario (if any) can
continue.

The break fragment (Figure 4.3 right) captures an exit point, in the sense that the
behavior inside the operand is performed instead of the remainder of the enclosing
fragment, when the guard evaluates to true. When the guard of the operand is
false, the behavior inside it is ignored, and the execution continues in the rest of the
enclosing fragment. The break combined fragment is much like the break keyword
in programming languages like C++ or Java.
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Figure 4.3: Example of par (left) and break (right) fragments

Figure 4.4: Formal and actual gates in InteractionUse

All fragment types described above have equivalent constructs in most (object-
oriented) programming languages. Another useful enhancement is the Interac-
tionUse fragment. For expressing complex scenarios, one can include a reference
to another SD, which is semantically equivalent to including the behavior of the
called diagram in situ in the calling one. This promotes reuse of already defined
sequence diagrams. To facilitate such behavioral constructs, model elements called
Gates are used. The referenced diagram has FormalGates placed on its boundaries,
allowing messages to come to, or from its environment. A matching set of Actu-
alGates are placed on the InteractionUse box, as shown in Figure 4.4. In that sense,
Gates are MessageEnds which connect the Messages inside and outside the referenced
diagram, and are added to the UML metamodel to satisfy the syntactic constraint
that messages must have two message ends.
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Runtime Semantics

Unlike the syntax, the SD semantics is scattered through the UML specification pro-
vided by the OMG (Object Management Group), and defined by means of natural
English language. The most important points can be summarized as follows: an
object sends a message as a result of earlier behavior invocations on its interface,
and is the object’s reaction to these receptions. Message and execution completion
are considered local concepts. For a message m sent from object o1 to object o2,
the sender’s view of that message completion is the sending, the receiver’s view
of the message completion is its reception, while other objects have no knowledge
of m. Thus, the only synchronization points between the objects are the message
exchanges.

The semantics of an SD is described in terms of a pair of valid and invalid traces.
A trace is a sequence of events, or OccurrenceSpecifications. The orders of events
in an SD are defined using partial order semantics. This effectively means that the
events are only subjects to the following constraints: a send event for a message
always occurs before the receive event; and all event occurrences on a particular
lifeline are totally ordered. However, there is no further order restriction imposed
on unrelated events appearing on different lifelines. All valid traces produced from
a diagram must satisfy these order constraints. This semantics does not impose a total
ordering of the messages in a given SD.

4.2.2 Activity Diagrams

As already stated, we use ADs to extract concurrency information necessary for
deriving OS-level processes in a distributed system setup. Although the notion of
concurrency is present in some form in SDs, the par fragment only indicates that the
implementation can execute any interleaving of the operands’ behaviors, without
mandating that the implementation be concurrent or distributed. In a concurrent
or distributed setup, each of the SDs could be parts of multiple processes that must
be initialized by the system environment at some point, and this is where elements
of ADs come into play. We give here only a limited subset of the concrete syntax
necessary for our transformation methodology.

An example of a workflow modeled with this diagram type is illustrated in Fig-
ure 4.5. Activity diagrams consist of Action, Activity, and Control nodes, connected
by Control Flow edges, with each diagram having one distinguished Initial Node. The
control flow nodes have their intuitive meaning as in traditional flow charts, namely
to depict concurrent flows (Fork), their eventual join or synchronization (Join), and
decision points (Decision). While there are various action types, we are primarily
interested in the CallBehaviorAction, which invokes a referenced behavior directly.
Since SDs are also classified as behavior, we use this action type to provide the link
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Figure 4.5: Activity diagram example

between SDs and the concurrent system setup described in an AD. An alternative
way to model the same overview of control flow is by using Interaction Overview
Diagrams, though these are less frequently used in practice. They are essentially
simplified versions of ADs, where each individual activity is pictured as a frame
that can contain a nested interaction diagram. The rest of the notation elements
are the same as those of ADs, namely initial, final, decision, merge, fork, and join
nodes. The transformation described in this chapter can be easily extended to take
these into account as an alternative to ADs.

In the given example, three process instances are initiated with the ClientScenario
SD, concurrently with an instance of ServerScenario or SimpleServerScenario (depend-
ing on the guards). Since UML 2.x, the token-flow (Petri Net-like) semantics has
been applied to ADs, where the rules for control and object flow are defined by
using tokens. A token corresponds to an executing thread. The weight on the edge
calling ClientScenario defines the number of tokens that can flow when the edge is
traversed. Multiple SDs can be chained in a sequence or set to run concurrently in
a similar manner, allowing more complex workflows to be described.

4.3 Transformation Methodology

4.3.1 The Object-Process Problem

Before describing the transformation methodology, we outline the rationale behind
the choices we made, and how they differ from previous approaches that deal with
SDs as behavioral description diagrams of a system. The approaches of which we
are aware [154; 131; 184; 201], and which use a process algebra formalism for a
target model, translate each lifeline (hence, each object) into a sequential process1.
However, this implies that an object behaves intrinsically sequentially, which is not
always the case. The object’s individual behavioral capabilities are exposed via its
methods. In other words, an object is a component with multiple access points.
In a concurrent setting, multiple threads of a process (or even multiple processes
sharing an object, if the implementation language permits this) could be invoking

1The only exception made to this rule is when dealing with the par fragment.
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Figure 4.6: Sequence diagram with alternative control flow

methods of the same object, thus, that object could be executing multiple behaviors
at the same time. In that sense, behaviors that are requested/offered at the same
time should not be excluded.

Consider the simple SD in Figure 4.6. Even if we assume that the scenario is
executed by a single OS process, treating each object as a sequential process is prob-
lematic. In the example, after invocation of message1, object a needs to know the
choice that object b has made (modeled with the alt fragment), while this choice is
based on local conditions that only b is aware of. Therefore, a cannot know whether
its method message4 will be invoked by object c, before a return from message1 is
received on the same lifeline. Consequently, a single process representation of the
lifeline a should not control the reception of message4 and execution of the associ-
ated behavior. Some approaches attempt to deal with this by making all involved
processes aware of each others’ local decisions (using global variables), but this
quickly becomes cumbersome and prone to errors, given how complex UML 2.x
SDs can be made by nesting combined fragments. Furthermore, such global ex-
plicit synchronization of several lifelines is not appropriate for distributed systems,
where a guard should only be evaluated by one lifeline.

We wish to preserve the OO paradigm in the transformation to a formal model.
In this paradigm, unless an object is active, it does not control the invocation of
its methods; it only responds by executing the associated behavior. An OS process
is then essentially a chain of method invocations on objects. To achieve this, we
associate an mCRL2 process description with each class method. A description (be
it an actual program code or a UML model) of a class method should not differ
across objects that are instances of that class. Of course, at runtime objects execute
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only some of the multiple possible traces captured by that description, based on
variable values. In our methodology, each such mCRL2 process instance carries
data parameters that encode the class, object, and OS process instance to which the
exhibited method behavior belongs at runtime. As an important consequence of
this choice, we preserve information on objects, classes and method calls in the mCRL2
model, which makes it easy to reverse model checking counter-example traces back
into the UML domain.

4.3.2 Design Choices in the Semantics of Sequence Diagrams

The semantics given in the UML specification provides the basic ideas of how se-
quence diagrams should be interpreted. Besides its ambiguity, the specification is
also incomplete, i.e., it uses so called semantic variation points, such that part of the
semantics is left underspecified, the purpose of this being to allow adapting UML to
diverse domains. This flexibility has resulted in a proliferation of alternative formal
semantics attached to SDs, and the authors of [141] attempted to provide a synthetic
view of the main points of variation and the explicitly or implicitly adopted choices.
They selected 13 representative approaches which contain both pioneering works
influencing most of the later work, as well as less popular ones which concentrate
on some very specific issues. They categorized the semantic choices based on the
most common points of concern recurring throughout the surveyed papers.

We briefly outline some of the main semantic choices we adopted and the syn-
tactic constraints they imply, and in that way we position our work in the context of
this thorough classification. We provide operational semantics of SDs, implemented
in the mCRL2 process algebra, for the purpose of automated model checking of be-
havioral correctness. Other approaches range from denotational, trace based, Büchi
automata, graph-transformation based, and Petri Nets semantics, depending on the
purpose and interest for using SDs.

Only a small number of approaches handle Gates and InteractionUse explicitly,
or consider a system design consisting of multiple (related) SDs. Our proposed ap-
proach takes both of these aspects into consideration. Furthermore, a non-negligible
subset of the proposed semantics handle only synchronous messages, while we take
into account asynchronous communication, where the sender of the message can
proceed immediately without waiting for a return value.

As far as the trace representation goes, the commonly taken approach is using
m1_send.m1_receive.m2_send.m2_receive or !m1.?m1.!m2.?m2, to denote a sequence
of events for the sending and receiving of messages. However, as already mentioned
in the previous section, in concurrent settings this formal semantics must be more
explicit, for cases where several lifelines in an SD are sending the same message to a
target one. It should therefore be specified which lifeline (object) sends or receives
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the message. Only four of the surveyed approaches [102; 119; 89; 174] represent
events of a trace with tuples containing such information. We encode the class,
object, and OS process instance to which the exhibited method behavior belongs at
runtime, including the data parameters passed along in the message call/reply.

Combined fragments provide a lot of flexibility for modeling programming
language-like constructs, but at the same time complicate the understanding of
their intended semantics. The semantics of the loop fragment is ambiguous with
respect to the termination condition, when the guard is expressed as a combination
of iteration bounds and a Boolean guard. This ambiguity is a result of two contra-
dictory statements in the UML specification, making it unclear what happens if the
condition evaluates to false before the minimum number of iterations have executed.
The semantics does not specify at which moment the boolean condition evaluation
starts to matter for the loop termination. We treat only the cases where either the
iteration bound or the Boolean guard is specified, but not both. According to the
UML specification, if several operands within an alt fragment evaluate to true, one
of them is chosen non-deterministically. Some approaches try to reduce this non-
determinism, by evaluating the operands from top to bottom and choosing the first
operand evaluating to true. We leave the flexibility of non-deterministic choices in
case of multiple true guards. It is also not well defined which lifeline should eval-
uate the guard and make the choice between the operands of this fragment. Some
approaches treat the entering and exiting of fragments as explicit events, and as a
consequence all involved lifelines synchronize before entering a choice (making the
choice a global one). In contrast, in our methodology the guard is evaluated locally
by the lifeline where the first message within the operand is communicated, but the
semantics ensures that all involved lifelines execute the same operand. This choice
is in line with the STAIRS [102] and the Kster-Filipe [122] surveyed approaches.

With respect to the manner of processing SDs to obtain formal semantics, there
seem to be two prevailing approaches. The first category analyze the diagram as
a whole, and label the graphical locations of all relevant events, before computing
their relative ordering constraints. The second category parse the diagram and
decompose it. This is how our approach works. We construct an abstract syntax
tree from all the elements of an SD, and then build the formal model by recursively
unfolding the fragments and combining them based on the rules defined for each
operator of a combined fragment.

The biggest confusion arises around the usage of the conformance-related op-
erators. The semantics defined in our approach assumes that all behavior is ex-
plicitly modeled in the diagrams, so we do not take into account the consider and
ignore fragments (more information about their confusing semantics can be found
in the UML infrastructure document [92]). Furthermore, we have not encountered
implementation-language counterparts in object-oriented distributed software. We
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try to stay pragmatic, and avoid constructs which are scarcely used in practice,
while they challenge and complicate the semantics unnecessarily.

The assert and negate fragments alter the way a trace can be classified as valid or
invalid, and should be considered as truth modalities, rather than basic behavioral
operators, as we shall explain in Chapter 5, where we treat the specification of
invalid behavior. The definition of validity or invalidity of behavior depends on the
properties that are checked on the model. As such, these two fragments are not
covered in the translation presented in this chapter.

4.3.3 Mapping UML to mCRL2

Figure 4.7 gives an overview of our approach and implemented toolset. Both the
source (UML) and the target (mCRL2) models adhere to their respective metamod-
els. Although any UML modeling tool with XMI export/import capabilities can
be used, we chose IBM’s Rational environment because of the excellent support for
SDs and consistency preservation across multiple views of the same model. For
parsing and manipulation of the XMI representations we use Eclipse’s MDT-UML2
plugin, which implements the UML 2.x metamodel, and provides a Java applica-
tion programming interface (API) for accessing the “metaobjects” of any imported
UML diagrams, and applying further transformations to their in-memory represen-
tation. The transformation rules define how to generate a model that conforms to a
particular metamodel, from a model that conforms to another metamodel.

To achieve the basic idea of mapping each method along a lifeline into an mCRL2
process description, we process the visually-ordered events along every lifeline in-
dividually, thus decomposing the lifeline into individual ExecutionSpecifications. We
take into account both synchronous and asynchronous messages, so there are es-

Figure 4.7: Automated verification of UML models
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Figure 4.8: Identifying event types along lifelines: m0–m4 are messages invoking particular
method behaviors (ExecutionSpecifications), each message being identified by two events;
proc_1–proc_6 are identifiers of the corresponding mCRL2 process descriptions.

Figure 4.9: Selected elements of the Interactions metamodel
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sentially 6 different types of message events (shown in Figure 4.8) that we con-
sider: (1) SendEvent_synchCall; (2) SendEvent_reply; (3) ReceiveEvent_synchCall; (4) Re-
ceiveEvent_reply; (5) ReceiveEvent_asynchCall; and (6) SendEvent_asynchCall. In UML
metamodel terms, each of these events corresponds to MessageOccurrenceSpecifica-
tions, and refers to one of the two ends of each Message. To understand the relations
between these model elements, we use a simplified class diagram of the Interactions
metamodel in Figure 4.9. An Interaction (a sequence diagram) essentially encloses
Messages, Lifelines and an ordered list of InteractionFragments. Each Message is ac-
companied by a pair of MessageOccurrenceSpecifications, and has a reference to the
lifelines at which the message is sent and received. Both the MessageOccurrenceSpec-
ification and CombinedFragment elements are specializations of InteractionFragment.
We exploit these relationships in our algorithm for matching and transforming into
an mCRL2 model. The main algorithm steps are given in continuation.

All fragments of an Interaction are processed sequentially, and depending on
their type, different mapping rules are applied. In case of MessageOccurrenceSpeci-
fications, each event type is treated separately. In case of a CombinedFragment, each
InteractionOperand’s nested fragments are treated by applying the same procedure
recursively. Two in-memory stacks are kept for the currently “ready” and the “busy”
methods on each lifeline, for cases of overlapping invocations. Busy methods are
waiting (blocked) for a reply from another method execution that they have invoked,
while ready processes are active, but not blocked. At the beginning, the message,
arguments, class, and object corresponding to the handling event are retrieved from
the current fragment object:

1: procedure processFragments(fragments← interaction.getFragments())
2: for each fragment in fragments do
3: if fragment.type = MessageOccurrenceSpecification then
4: message← fragment.getMessage()
5: arguments← message.getArguments()
6: event← fragment.getEvent()
7: objName,className← fragment.getCovered.getObjectAndClass()
8: theReadyStack← readyProcessesPerLifeline.get(objName)
9: theBusyStack← busyProcessesPerLifeline.get(objName)

The below pseudocode handles the case of SendEvent_synchCall observed on a
lifeline. For invocation to be possible, the object representing that lifeline must al-
ready be active in some method, at the same time not being blocked and awaiting
for a return from a method call. We obtain that “ready” method (or mCRL2 process)
from a stack, on line 12. In addition, this is the only valid UML case where it is pos-
sible for a SendEvent_synchCall to be the first event inside a CombinedFragment. The
different fragment types are handled by associating a corresponding mCRL2 struc-
ture in the mCRL2 process (lines 16-30). The details of how each type of fragment is
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mapped to an mCRL2 structure will be explained after the algorithm walk-through,
where also invocations (line 32) added to each process will be discussed.

10: switch event do
11: case SendEvent_synchCall : ▷ Case (1)
12: mcrl2Process← theReadyStack.pop()
13: if insideInteractionOperand & firstEvent then
14: operator← getCombinedFragmentOperand()
15: guard← getCombinedFragmentOperandGuard()
16: if operator = ”alt” then
17: mcrl2Process.addAltFragment(guard)
18: else if operator = ”opt” then
19: mcrl2Process.addOptFragment(guard)
20: else if operator = ”break” then
21: mcrl2Process.addBreakFragment(guard)
22: else if operator = ”par” then
23: mcrl2Process.addParFragment(guard)
24: else if operator = ”loop” then
25: loopProcess← newLoopProcess()
26: mcrl2Process.addCallToLoopProcess(loopProcess)
27: theReadyStack.push(mcrl2Process)
28: loopProcess.addCondition(guard)
29: mcrl2Process← loopProcess
30: end if
31: end if
32: mcrl2Process.addInvocation(

”synch_call_send(id, className, objName, message, args)”)
33: theBusyStack.push(mcrl2Process)

Once a method sends a reply (SendEvent_reply), that mCRL2 process description
is finished. The process is removed from the appropriate “ready” stack, as it no
longer exhibits behavior after this point:

34: case SendEvent_reply : ▷ Case (2)
35: mcrl2Process← theReadyStack.pop()
36: mcrl2Process.setProcessed()
37: mcrl2Process.addInvocation(”

synch_reply_send(id, className, objName, message, args)”)

The event of receiving a synchronous call on a lifeline indicates a method invo-
cation. Unless the mCRL2 process corresponding to this method has already been
fully constructed (“processed”), a new one is created. Finally the process is pushed
to the “ready” stack, since this method is now active (executing), but not blocked:



CHAPTER 4. MODEL TRANSFORMATION METHODOLOGY 63

C
ha

pt
er

4

38: case ReceiveEvent_synchCall : ▷ Case (3)
39: findProcess← findProcess(className, message)
40: if findProcess = null then
41: findProcess← newProcess(className, message)
42: end if
43: if ¬findProcess.isProcessed then
44: findProcess.addInvocation(

”synch_call_receive(id, className, objName, message, args)”)
45: end if
46: theReadyStack.push(findProcess)

To get an intuition on how the algorithm proceeds further, we treat Cases 4, 5,
and 6 along with a graphical notation (Figure 4.10), rather than an algorithmic ex-
position. Upon reception of a reply from a method call (Case (4)), the one initiating
it is no longer blocked, so the corresponding mCRL2 process is removed from the
“busy” stack and added to the “ready” one. Handling of Case (5) is analogous to
Case (3), except that a different kind of invocation is added to the mCRL2 process.
Finally, handling Case (6) is also analogous to Case (1), with the important differ-
ence being that the active method invoking this asynchronous call on another object
will not be blocked after the call. This is why the process is not removed from the
“ready” stack nor pushed to the busy one.

Figure 4.10: Handling Case 4(left), Case 5(middle) and Case 6(right)

All operands that belong to a CombinedFragment are processed in turn, recur-
sively handling all fragments (possibly also nested CombinedFragments) contained
in them, by calling processFragments again:

47: else if fragment.type = CombinedFragment then
48: processCombinedFragment(fragment)
49: end if
50: end for
51: end procedure
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1: procedure processCombinedFragment(fragment)
2: operands← fragment.getOperands()
3: for each operand in operands do
4: processFragments(operand.getFragments()) ▷ handle recursively
5: end for
6: end procedure

This concludes the basic algorithm for transformation of SDs of arbitrary com-
plexity into mCRL2 process descriptions. When the algorithm is applied to the
example in Figure 4.8 it results in 6 different process definitions. Although omitted
from the transformation rules described so far, Gates are merely specializations of
MessageEnds (Figure 4.9) and are treated in a completely analogous manner. Care is
taken to pass the actual parameters’ values to the referenced SD.

Profiles are a standard way to extend UML for expressing concepts not included
in the official metamodel, or for refining semantic variation points. In short, UML
profiles consist of stereotypes that can be applied to any UML model elements, like
classes, associations, or messages. The control flow is influenced by the data ar-
guments carried in the communication exchanges between objects, and they are
typically modeled as entity elements. These are special classes with an «entity»
stereotype applied to them. This stereotype is commonly used to model patterns
like the Model View Controller one [197], but can be applied in general to model any
long-lived, passive element that is responsible for holding some meaningful chunk
of data, exposed and modified through getter/setter methods. We identify such
entities using this stereotype mechanism, and automatically construct the recursive
“memory” processes within the mCRL2 specification, which carry all data values
(class attributes) as parameters, in a manner that was outlined in Section 3.4.2. Most
of the primitive data types used have a direct mapping into mCRL2 types. Lists
of data elements can be constructed where the class attributes have a multiplicity
larger than 1. Strings are handled using mCRL2’s abstract data type capabilities.
This holds also for all class and object names encountered in the transformation, as
we will show through an example. Due to their simplicity, we will not explain the
transformation rules for the activity diagrams constructs used in the transformation;
rather, we will demonstrate them on an example.

The different invocation types added to the mCRL2 processes in the course of the
transformation (e.g., line 32, 37, 44) are mCRL2 actions. They carry all parameters
necessary for exchange of data between processes, and are used for synchronizing
the processes on the corresponding send/receive events. The actions synch_call_send
and synch_call_receive represent two ends of a synchronous message exchanged be-
tween two processes. Similarly, synch_reply_send and synch_reply_receive correspond
to a reply message, while asynch_call_send and asynch_call_receive represent an asyn-
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Figure 4.11: Application of the SD transformation rules

chronous call. By applying the mCRL2 communication (Γ) and allow (∇) operator
in the following manner:

∇{synch_call, synch_reply, asynch_call}
Γ{synch_call_send|synch_call_receive →synch_call, synch_reply_send|synch_reply_receive

→synch_reply, asynch_call_send|asynch_call_receive →asynch_call}

communication is enforced between processes as a result of the multi-action syn-
chronization at the corresponding events.

Figure 4.11 demonstrates the transformation rules on a simple example. Classes,
objects, method names and string values are represented by enumerated data types
(struct). Replies are distinguished from their respective method calls, as they may
also carry parameters. The mCRL2 summation (sum) operator is used for bind-
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Figure 4.12: Translation of the opt combined fragment

Figure 4.13: Translation of the break combined fragment

ing parameter identifiers to actual values when two processes communicate. This
example illustrates how the alt fragment is translated into mCRL2 guarded (con-
ditional) non-deterministic choices. To avoid deadlocks, and permit the process to
continue in case none of the guards evaluates to true, the internal unobservable (τ)
action is added as a last “artificial” choice, with the negation of the disjunction of
all other guards as a condition. Note that the introduction of this internal step is de-
liberate, in order to match the mCRL2 if-then-else operator with UML’s alt fragment
semantics, and as such, should not mask proper deadlocks. The mCRL2 transla-
tion matches the UML semantics, in the sense that, if multiple guards evaluate to
true, one will be chosen non-deterministically, whereas, if none evaluates to true,
the internal step will be taken, followed by the rest of the scenario in the enclosing
fragment. If there is an operand guarded with an explicit “else” condition, that
interaction operand’s behavior is modeled, instead of the internal step.

The translation of the opt and break fragments uses the conditional operator in
a very similar manner. If the guard of an opt combined fragment evaluates to false,
the internal action is executed, followed by the rest of the scenario (Figure 4.12). If
the guard of a break fragment evaluates to true, the actions inside the fragment are
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Figure 4.14: Translation of the loop combined fragment

Figure 4.15: Application of AD transformation rules for system-level concurrency setup

executed, and the execution in the continuation of the enclosing fragment is ignored
(Figure 4.13). In a par fragment, all communications inside each operand are set to
run in parallel with the “||” mCRL2 operator. The loop fragment has a special
treatment. It is translated into a recursive process referenced by the mCRL2 process
representing the method active at the moment of entering the loop (Figure 4.14).

Finally, Figure 4.15 shows how simple system-level concurrency can be expressed
in an activity diagram, and how it is translated into an mCRL2 specification. ADs
have a similar transformation process, namely: decision nodes are translated into
mCRL2 conditions, fork/join nodes are translated using the mCRL2 parallel operator,
while sequential flow is translated using the mCRL2 sequential composition operator.
Weights on the control flow edges indicate how many instances of each sequence di-
agram should be created. In the given example, depending on the condition, three
concurrent OS process instances are started with the Seq2 SD, or alternatively one
instance of Seq1 and Seq2 in parallel. The id:Nat parameter that each mCRL2 pro-
cess carries is used to bind it to an OS process in the system setup. It should be
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noted that the current mCRL2 implementation does not allow the use of “||” unless
it is at the topmost level, gluing components together (in the init section). This
current technical limitation of the tool can be bypassed by adjusting the transforma-
tion with explicit fork_send (and join_send, if the AD uses Join nodes) actions in the
systemInit process, which synchronize with fork_receive and join_receive action coun-
terparts in the parallel processes, while shifting the parallel processes composition
to the topmost init section of the mCRL2 model specification.

Validating the Transformation

The current UML specification uses a combination of semi-formal diagrams, a con-
straints language, and natural language descriptions. While there has been a sub-
stantial effort [37; 127; 64] on formalization, there is still no official mathematically-
formalized semantics definition. In this context, formal correctness proofs to sup-
port the validity of the transformation approach are not possible. To assess the
correctness of our proposed semantics, we used the mCRL2 simulation and visu-
alization tools on simple diagrams in isolation, in order to get confidence before
applying the transformation methodology on more complex ones gradually. This
informal validation was based on the compositional nature of UML and of mCRL2;
we closely examined how the basic UML constructs’ behavior is reflected in the for-
mal model, with a special focus on combined fragments. Furthermore, to facilitate
the transformation, we have constructed a UML metamodel [162] of the mCRL2
language syntax. The fact that we were able to reliably explain complicated bugs
observed in practice, provided additional confidence.

4.4 Case Study: DIRAC’s Executor Framework

As already explained in Chapter 2, the DIRAC framework was built around three
main component types: agents, services, and databases. Agents continuously loop
and request certain database entities’ states, and react to them by triggering some
actions according to their implemented logic. If there are no actions to be executed,
agents typically sleep for some configurable amount of time before running the
next loop. While this mechanism is effective in most situations, where agents are
deployed remote to the centralized DIRAC services and databases, there are cer-
tain drawbacks for agents which are running centrally. In particular, the chain of
optimizer agents, responsible for sanity checks of jobs before they run on the grid,
suffered from poor responsiveness under heavy load, due to this polling mechanism.
Namely, the response time of each optimizer agent depends on the sleeping time
between each loop cycle. On the other hand, reducing the sleeping time increases
the load on the databases whose entities are being requested.
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In order to improve the response time without adding extra load to central ser-
vices and databases, new components called Executors had been developed. They
register to a central ExecutorDispatcher component, and wait for new tasks to be dis-
patched to them, instead of looping and polling continuously. Again, each Executor
is responsible for a different step in the handling of tasks (such as resolving the in-
put data for a job). The ExecutorDispatcher takes care of persisting the state of the
tasks and distributing them amongst all the Executors, based on the requirements
of each task. It maintains a queue of tasks waiting to be processed, and other inter-
nal data structures to keep track of the distribution of tasks among the Executors.
During testing, certain problems have manifested in this new framework: occasion-
ally, tasks submitted in the system would not get dispatched, despite the fact that
their responsible Executors were idle at the moment. The root cause of this problem
could not be identified by testing with different workload scenarios, nor by analysis
of the generated logs.

We used our toolset to generate an mCRL2 model, based on UML models that
we reverse-engineered from the Executor Framework implementation. Formulas
expressed in µ-calculus are again necessary to reason about the correctness of the
generated model behavior. Its action-based expressions are a good match for our
transformation methodology: actions correspond to message exchanges, which al-
ready contain the information on the sender/receiver class and object of a particular
message. As will be demonstrated, we utilize this for expressing counter-example
traces as sequence diagrams. The above-mentioned Executors problem can be for-
mulated as the following safety property in µ-calculus:

[true∗. synch_call(1, ExecutorQueues,_queues, pushTask(JobPath, taskId, false))

. true∗. (!synch_call(1, ExecutorQueues,_queues ,popTask([JobPath])))∗

. synch_reply(1, ExecutorDispatcher,_eDispatch,_sendTaskToExecutor_return(OK, 0))] false

meaning that a task pushed in the queue must be processed, i.e., removed from
the queue before the ExecutorDispatcher declares that there are no more tasks for
processing.

Explicit model checking was not feasible in this case due to the model size (50
concurrent processes), so we resorted to using a manually-constructed standard
monitoring process, set to run in parallel with the original model and observe the
relevant actions that the system itself takes, firing an error action in case the prop-
erty is violated (see Section 3.5.3 for the basic idea). This technique, combined with
a depth-first traversal choice in the mCRL2 tool, effectively discovered a trace violat-
ing the property within minutes. The counter-example (Figure 4.16) is a rather long
trace (available at [162]), and traverses a large fraction of the SDs (27 in total), but the
bug was localized in a single SD, covering the behavior of the ExecutorDispatcher
component. It is worth mentioning that a breadth-bounded traversal [182] (also
known as a highway-search) produced a shorter counter-example trace, however,
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Figure 4.16: SD trace showing a case of no-progress of tasks scheduling

the flaw was still relatively “deep” (144 steps), and the tool took significantly longer
(~50 min.) to locate it. We only present the most important part for understanding
the cause.

Whenever a task has been processed by some of the Executors, the ExecutorDis-
patcher is notified (taskProcessed(eId,taskId)). To further dispatch the task to another
Executor, this task is removed from the ExecutorDispatcher’s internal memory of
processing tasks, followed by retrieval of the next responsible Executor. In case it
was actually processed by the last Executor in the chain, the dispatcher attempts to
retrieve its last Executor (getExecutorOfTask(taskId)), so that more tasks can be dis-
patched by this (now free) Executor. However, this information is already removed,
as can be seen from the figure. As a result, the opt fragment (shown only for clarity,
not generated by the toolset) will not be executed, and no further tasks waiting for
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this particular Executor will be dispatched from the queue. That would leave the
Executor idle for an unpredictable amount of time, until another event (arrival of a
new task to the ExecutorDispatcher) triggers filling it again. The bug was reported
and fixed. The figure also demonstrates how the trace is translated back in the UML
domain, to facilitate debugging the actual problem. A trace is essentially a subset
of the behavioral model, and converting it to a sequence diagram can also be seen
as a model transformation. The process is relatively simple, since each action of the
trace already contains the information necessary to rebuild the message exchange
in the sequence diagram. Counter-example traces tend to be lengthy sometimes,
making them less suitable for visual representation. A simple post-processing al-
gorithm was implemented, to reduce them before conversion to the UML domain.
We keep a configurable number n of leading message exchanges before, and a num-
ber m of trailing ones after those matching the actions that are part of the property
specification, discarding the rest. This simple approach does not always guarantee
that all the crucial trace information for understanding the root cause is kept, but a
more involved heuristic was out of the scope for this work.

4.5 Discussion and Evaluation of the Approach

While the case study in the previous section provides evidence that the transfor-
mation is effective, in this section we reflect on the efficiency of the methodology,
and our experience on the consequences of using it. In contrast to the manual for-
mal modeling we did in Chapter 3, in the process of creating UML models we had
much smoother communication and feedback from the DIRAC engineer responsi-
ble for developing the Executors Framework. The sequence diagrams were intuitive
enough for both parties to convey and mutually agree on the intended behavior in
a more straightforward visual manner. Besides being used to obtain a formal spec-
ification for model checking purposes, these graphical notations remain as useful
documentation artifact for other engineers who wish to understand the dynamics
of the module without having to analyze the implementation.

Furthermore, engineers did not have to inspect the produced formal model, in
order to interpret and understand the counter-example. All the necessary informa-
tion (classes, objects, messages, as well as the data they carry) is available in the SD
representation of the counter-example, making it easy to trace the problem at the
level of the Python code. The flexibility of the UML modeling environment made it
easier and more efficient to make modifications and re-check the generated formal
model. A current technical limitation of the transformation toolset is the necessity
to verify the output model outside of the Eclipse environment. Ideally, mCRL2
should be interfaced with Eclipse, in order to run the model checking transparently
within the UML modeling environment.
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4.6 Conclusions

In this chapter we tackle Research Questions 3.1 and (partly) 3.2. Starting with the
assumption that UML is used in common software engineering practice, we have
presented an automated transformation methodology for verification of UML mod-
els, based on UML sequence and activity diagrams, preserving the object-oriented
view of the system in the transformation to a formal mCRL2 model. In our ex-
perience, sequence diagrams are the most commonly used graphical notations for
specifying the dynamics of a system in terms of interactions between objects over
time. Both the input and the output (potential counter-examples) of our imple-
mented toolchain are expressed in UML.

Our proposed approach is based on the UML 2.x semantics, and we outline the
semantic choices we made with respect to some ambiguous points in the semantics
defined by the OMG. This way we position our work in the context of a well-known
classification, and we compare our approach with the existing ones. We cover more
of the UML 2.x sequence diagrams constructs than most of the surveyed papers in
the classification, in particular the combined fragments, as well as asynchronous
communication. Defining the formal semantics of sequence diagrams merely in
terms of pairs of valid and invalid traces (trace semantics), like the UML standard
prescribes, would not allow us to faithfully keep information about decision mo-
ments (see Section 3.2 for the possible effects of this). With our transformation,
branching points are visible in the semantics model.

We have further applied our toolset to a component of the DIRAC grid system,
and discovered a logical flaw leading to no-progress. Although providing a formal
correctness proof of the transformation is impossible, given that there is no official
formal UML semantics on sequence diagrams, the fact that we were able to reliably
explain this flaw, provides some confidence in the correctness and usefulness of the
methodology. The case study in this chapter strengthens the evidence on the advan-
tages of model checking that were already mentioned in Chapter 3, in answer to Re-
search Question 2. While the mCRL2 toolset can automatically discover deadlocks
and search for specific events, for the purpose of discovering the particular problem
encountered in DIRAC, it was necessary to formulate the application-specific prop-
erty in µ-calculus. This still requires some degree of maturity with the language,
and should be made more accessible to software engineers.
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Chapter 5
Assisting Non-Experts in Property
Specification

5.1 Introduction

Bridging the gap between industry-adopted methodologies based on UML soft-
ware designs and the aforementioned tools and languages, in Chapter 4 we devised
a methodology for automatically verifying UML models comprising sequence and
activity diagrams. Our prototype uses the mCRL2 language and toolset as a black
box, without users having to leave the UML domain. While the mCRL2 toolset can
automatically discover deadlocks and search for specific events, its model checking
facilities require users to formalize their application-specific properties in a data-
enriched extension of the modal µ-calculus. A downside is that it is not very ac-
cessible and requires a high degree of mathematical maturity. As already simpler
languages such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)
are not widespread in industry, the µ-calculus is unlikely to be easily embraced by
it. In fact, most requirements are written in natural language, and often contain
ambiguities which make it difficult even for experienced practitioners to capture
them accurately in any temporal logic. There are subtle but crucial details which
are often overlooked and need to be carefully considered in order to distill the right
formula. In an attempt to ease the use of temporal logic, a pattern-based classifi-
cation was developed in [67] for capturing requirements and generating input to
model checking tools. The authors observed that almost all (> 500) properties they
surveyed can be mapped into one of several property patterns. Each pattern is a
high-level, formalism-independent abstraction and captures a commonly occurring
requirement. Their hierarchical taxonomy is based on the idea that each pattern
has a scope, which defines the extent of program execution over which the pattern

73
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must hold, and a behavior, which describes the intent of the pattern. The pattern
system identifies 5 scopes and 11 behavior variations that can be combined to create
55 different property templates. Examples of scopes are: globally, and after an event
or state occurs; examples of behavior classification are: absence (an event or state
should never occur during an execution) and response (an event or state must be
followed by another event or state).

Although the patterns website contains a collection of mappings for different
target formalisms such as LTL and CTL, in practice practitioners have to fully un-
derstand the classification before they can select and apply the appropriate pattern.
To mitigate this problem, several conversational tools [51; 120; 142] have been pro-
posed for elucidating properties, based on the patterns. These tools guide users in
selecting the appropriate pattern and optionally produce a formula in some target
temporal logic. Alternative approaches [15; 128; 179; 129; 121; 20] tackle the property
specification problem by proposing new graphical notations for specifying proper-
ties. As far as we have been able to trace, all approaches deal with state-based logics.
Such logics conceptually do not match the typical event-based UML sequence di-
agrams, in which events represent method calls or asynchronous communication
between distributed components. A notable exception is [136], where an extension
of the alternation-free µ-calculus with action-based CTL-like formulas and regular
expressions is introduced and implemented within the CADP toolbox [81], allowing
the description of safety, liveness, and fairness properties via predefined templates.
However, no graphical notations or elicitation tool support is provided in choosing
the right template for a particular property.

The contribution of our work in this chapter is a simplification of the process of
specifying functional requirements for event-based systems. Like the model, prop-
erty specifications need to be understandable and accessible to non-experts, and at
the same time mathematically precise to enable automated analysis. We introduce
PASS, a Property ASSistant tool that facilitates deriving system properties. Based
on natural language, PASS guides users through the elicitation process by asking
questions, and providing a set of alternative answers to choose from, narrowing
down the scope of the questions to those relevant in the context of the previously
provided answers in each subsequent step. Our starting point was the pattern sys-
tem [67] and the µ-calculus mappings [134] provided by the CADP team, which we
extended with over 150 property templates. The pattern templates instantiated with
PASS have three notations: a natural language summary, a µ-calculus formula and
a UML sequence diagram depicting desired behaviors. The natural language sum-
mary is still readable for non-experts, while the µ-calculus formula can be given as
input to the mCRL2 toolset for model checking. Sequence diagrams provide an in-
tuitive level of abstraction for visualizing requirements, by observing the sequence
of method calls that should occur in a particular order at runtime. We utilized
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mCRL2’s rich data extensions of the µ-calculus to express data-dependent proper-
ties. Lastly, for a fragment of our properties we automatically generate monitors,
which can be used for property-driven on-the-fly verification using the standard
exploration facilities of mCRL2. Our monitors are essentially sequence diagrams,
acting as observers of message exchanges.

We deliberately chose to develop PASS as an Eclipse plug-in, as our strong mo-
tivation was to stay within an existing UML development environment, rather than
use an external helper tool for this. This increases the tool’s accessibility by allow-
ing software engineers to remain focused in the realm of UML designs. In addition,
a tight connection between elements of the design and instances of the property
template is kept, such that, if the design is changed, these changes can be easily
propagated in the property template placeholders. To this end, we use the standard
MDT-UML2 [181] Eclipse modeling API.

We further surveyed 25 published works that use µ-calculus to express system
properties from different domains, for two purposes: to reassess the usefulness
of the pattern-based classification in event-based systems, with a focus on the µ-
calculus as a target formalism, and to indicate how error-prone the manual elic-
itation of properties can be, even when it has been thoroughly reviewed. This
survey strengthens the claim of Dwyer et al. [67] that very few scopes and patterns
are sufficient to express the majority of properties. From a total of 178 properties
encountered in the publications, around 70% could be fitted within the standard
Property Specification Patterns (PSP) classification. If our extensions are taken into
account, the coverage is improved by 10%. The results also illustrate that subtle mis-
takes can creep into complex formulas and potentially hide problems in the studied
system model. We encountered 6 publications with wrong (or suboptimal) property
formalizations, where “wrong” means “not conveying the intention of the written
natural language requirement”.

The remainder of this chapter is organized as follows. Section 5.2 briefly in-
troduces the basic Property Specification Patterns classification. In Section 5.3 we
discuss related approaches, and outline their advantages and shortcomings. We
describe our approach in Section 5.4, with focus on the pattern extensions. In Sec-
tion 5.5 we apply PASS on case studies of two DIRAC subsystems, namely the SMS
and WMS introduced in Chapter 2. In Section 5.6 we report our findings on a large
body of published work where properties in µ-calculus have been manually written,
and we conclude in Section 5.7.

5.2 Background: Property Specification Patterns

The PSP classification taxonomy [67] was developed as a result of a large survey
of formal property specifications, having recognized that they can be organized
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(a): Scopes

Behavior Property Patterns

Occurrence Order

Absence

Universality

Existence

Bounded 

Existence

Precedence

Response

Precedence

Chain variants

Response

Chain variants

(b): Behaviors

Figure 5.1: Property Specification Patterns classification

into several categories, based on two orthogonal concepts: their scope and behavior.
The patterns are general and can be applied to events or states, depending on the
formalism used for specification. In this work we are concerned with event-based
systems. The available scope intervals for a property are shown in Figure 5.1a. They
can have a beginning, an ending delimiter, or both. In the figure, the horizontal lines
represent the model execution timeline during which events occur. The vertical lines
labeled with Q and R denote events that mark the beginning and ending of a scope
respectively. If a property should hold throughout the entire system execution,
then there are no delimiters (globally). The before-R scope restriction means that
the behavior must hold before the first occurrence of R. Similarly, after-Q requires
that the behavior must hold from the first occurrence of Q onwards. Between-Q-and-
R is a combination of the former two, i.e., the behavior must hold from the first
occurrence of Q until the first subsequent occurrence of R. If the occurrence of R is
optional, in the sense that, if R never happens, the behavior must hold until the end
of the run, then the appropriate scope is after-Q-until-R.

The taxonomy organizes the behavior patterns (Figure 5.1b) in two main cate-
gories: occurrence and order. Occurrence patterns are concerned with a single event,
and are briefly described as follows. Absence: an event must never occur in the
system execution; universality: an event must always occur in the system execution;
existence: an event must eventually occur; bounded existence: an event can occur at
most k times in the system execution. Order patterns express properties where the
relative ordering of multiple events is important. The two basic ones, precedence
and response, are very common in concurrent systems specifications. The chain vari-
ants can be considered as generalizations of these, where the precedence/response
relationship consists of sequences of more than two events. Precedence is used to
specify that the occurrence of one event is necessarily preceded by an occurrence of
another event. Response describes a cause-effect relationship: an occurrence of one
event must be followed by an occurrence of another.

The available formalism-specific pattern mappings [67] smoothen the use of tem-
poral logic for novices, but choosing the right template to capture a certain property
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is not always straightforward. For example, consider the following requirement:
A component (C2) must eventually be started after the component (C1) it depends on, is

started.
It can be instantiated as an existence pattern with an after-Q scope, or as a response
pattern with a globally scope. Although both patterns describe related behavior,
they are not equivalent. In the first case, the property is already satisfied if after
the first start of C1, C2 is started once, and never again. On the other hand, the
second property is satisfied if and only if every start of C1 is followed by a start of
C2. The right choice also depends on the domain knowledge (for example, whether
components can be started/stopped multiple times).

5.3 Related Work

PROPEL [51] is a tool that guides users in selecting the appropriate template from
the patterns classification. PROPEL adds new patterns covering subtle aspects not
addressed by the patterns classification of [67] (such as considering the effect of mul-
tiple occurrences of a cause in a response pattern); at the same time it omits other
important ones from the standard classification, such as the universality, bounded
existence and the chain patterns. The resulting templates are represented using “dis-
ciplined natural language” and visual finite state automata, rather than temporal
logic expressions. This limits the possibilities of automated verification. A strong
point of PROPEL is the interactive question tree representation that helps the user
clarify the intention of the property. In particular, the hierarchical questionnare
structure supports isolation of concerns, and covers refinements of the original PSP
classification, many of which we shall implement in the context of µ-calculus and
UML models, with some modifications and additions. Similar to PROPEL, the tools
SPIDER [120] and Prospec [142] extend the original patterns but add compositional-
ity. SPIDER is no longer maintained nor available; the latest version of Prospec that
we found and tested (Figure 5.2 left) produces formulas in Future Interval Logic
(FIL), not LTL as stated in [142]. While FIL is similar to LTL, it is not as widely
used in formal verification tools. Furthermore, some of the LTL temporal operators
(until (U), next (X)) are not available in FIL, limiting its expressiveness. On the
other hand, FIL supports search patterns and interval specifications, and there is a
translation [63] from a subset of FIL to LTL.

Approaches that use a graphical notation for specifying properties come closest
to the realm of modeling the system behavior. In [128], formulas are represented as
acyclic graphs of states and temporal operators as nodes. Technically, the underly-
ing LTL formalism is hidden from the user, but the notation still closely resembles
the formalism. As such, it is not very accessible. Another tool, called the TimeLine
Editor [179] permits formalizing specific requirements using timeline diagrams. For
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Figure 5.2: Left: Prospec tool; right: CHARMY PSC graphical notation

instance, response formulas are depicted in timeline diagrams by specifying tempo-
ral relations among events and constraints. These diagrams are then automatically
converted into Büchi automata [82], amenable to model checking with SPIN. Unfor-
tunately the TimeLine Editor is no longer available. The CHARMY approach [15]
presents a scenario-based visual language called Property Sequence Charts (PSC).
Properties in this language are relations on a set of exchanged system messages.
The language borrows concepts from UML 2.x sequence diagrams and the tool uses
SPIN as a backend for model checking the generated Büchi automata. The PSC no-
tation uses textual restrictions for past and future events, placed as circles directly
on message arrows (Figure 5.2 right). A drawback of PSC is that it does not support
asynchronous communication, which is omnipresent in concurrent systems. Fur-
thermore, CHARMY is a standalone framework for architectural descriptions, not
inter-operable with UML tools. As such, its use in industrial contexts is limited. An-
other interesting early approach based on the idea of property patterns is described
in [114], for the domain of business process modeling. Studying a large number
of business cases and identifying the most frequently asked questions has led to 4
categories of patterns. Once instantiated with a graphical tool support, each pat-
tern is translated to LTL and SPIN is used for model checking a business process
model representation in PROMELA (the language used by SPIN). Having many
similarities, these patterns can in fact be seen as a subset of the PSP system [67].

Among the UML-based tools are HUGO/RT [119] and vUML [129]. HUGO/RT
is a tool for model checking UML 2.x interactions against a model composed of
message-exchanging state machines. The interactions represent the desired prop-
erties, and are translated together with the system model into Büchi automata for
model checking with SPIN. The version we tested supports no asynchronous mes-
sages nor combined fragments. vUML [129] is, like HUGO/RT, essentially a tool
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for automating verifications of UML state machines. Properties must be specified
in terms of undesired scenarios. The verification is based on the ability to reach
error states. This is inconvenient, as users must specify these manually. In addi-
tion, not all properties can be captured in this way. Live Sequence Charts (LSC) are
also used [59; 121; 20] as a graphical formalism for expressing behavioral proper-
ties. They can distinguish between possible (cold) and mandatory (hot) behaviors.
For both, Büchi automata and LTL formulas are generated automatically from the
diagrams. UML 2.x sequence diagrams borrow many concepts from LSC, by in-
troducing the assert and negate fragments for capturing mandatory and forbidden
behavior. However, LSCs lack many UML features. Inspired by Message Sequence
Charts, in [14] a visual language called Event Sequence Charts with Quantitative
Constraints (ESC-QC) is presented for specification of requirements in the domain
of embedded systems. ESC-QC specifications can be translated into Simulink/State-
flow monitors and used for run-time verification of safety properties.

Resembling an OO programming language, UML’s declarative Object Constraint
Language (OCL) is also considered for formal specification purposes. Its original
purpose is to specify invariants on classes, and pre- and post conditions on oper-
ations. However, constraints quickly become quite dense and cryptic, and editing
them manually is error-prone. Another problem is the extent to which designers
are familiar with this language. Finally, OCL is by itself incapable of reasoning
about temporal behavior. There are several temporal extensions of OCL. In [202]
temporal modifiers @pre and @next are introduced for specifying past and future
state-oriented constraints. In [75], a real-time constraint extension of OCL is pro-
posed for models described by UML state machines; it claims to be able to describe
all the existing patterns in these OCL expressions. To simplify constraint definitions
with OCL, [7] proposes to use specification patterns for which OCL constraints can
be generated automatically. The behavioral specification of software components
refers to interface specifications, which are not really dynamic views. In effect, this
work does not really introduce means to specify temporal properties. An extension
of OCL with µ-calculus is proposed in [32], with the aim to combine the temporal
features of µ-calculus with the static expressiveness of OCL. The resulting logic, ob-
servational µ-calculus, is rather expressive. Nevertheless, as the authors remark, it
is unrealistic to expect that UML designers would be interested in becoming profi-
cient in the logic, so they suggest using templates with a designer-friendly syntax,
which can then be translated into formal expressions. They demonstrate the idea
on one such after/eventually template, which actually corresponds to the response
pattern of the PSP classification. This is an interesting work in the context of a pos-
sible/future UML verification tool. However, the task of actually verifying a UML
model with such an extended µ-calculus logic, is not tackled.

Finally, in the area of constructing specifications from natural language require-
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ments, a recent ambitious work presented in [76] attempts to combine the advan-
tages of model- and natural language-based requirements engineering. It proposes
a methodology for bidirectional translation between model-based requirements and
controlled natural language (CNL) expressions with a restricted vocabulary. In par-
ticular, requirement patterns expressed in CNL can be transformed into SysML
internal block diagrams and sequence diagrams, and vice versa. Although useful
for property specification, this approach does not yet provide artifacts amenable
for automatic analysis and formal verification. A similar, very early work in the
area of Natural Language Processing as a means to assist in the formalization of
behavioral requirements is [72]. A prototype assistant tool NL2ACTL is presented,
which aims to recognize informal behavioral requirements and translate them into
the branching time temporal logic ACTL [60] (an action-based CTL flavor). Their
grammar can recognize and deal with certain ambiguities, by interacting with the
user and asking for the missing information, before generating the formula.

5.4 PASS: An Implementation and Extension of PSP

It has already been recognized that the process of “patterning“ the natural language
requirements is still challenging. Case studies [155; 74] have indicated some diffi-
culties in introducing the PSP system in its current form in the industrial process.
There is a need for softening the learning curve, preferably by accompanying the
patterns with support material, such as graphical representations and examples. To
describe our proposal to a correct and straightforward property elucidation, we out-
line the motivations behind the choices we made, and how they differ from existing
related approaches.

While we follow on the idea of using a guiding questionnaire to incrementally
refine various aspects of a requirement, we find the resulting artifacts (LTL formu-
las or graphical representations of finite state machines) from using the available
tools not yet suitable for practical application in our context. For one, the prac-
titioner must manually define the events to be associated with the placeholders
when instantiating the template. To avoid potential errors, as well as reduce the
effort of specifying, we want to ideally stay in the same IDE used for modeling the
system, and only use existing events that represent valid communication between
components.

5.4.1 µ-calculus and the PSP system

Most approaches cover the (state-based) LTL mappings and extensions of the pat-
tern system. Event-based temporal logics have not received much attention. Even
though the original pattern system does not cover µ-calculus, such mappings for the
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regular alternation-free µ-calculus [134] have been developed by the CADP team,
but their effectiveness has not been established. These are adequate for action-
or event-based systems, making them a good match for visual scenarios, where
communication between components is depicted. LTL is interpreted over Kripke
structures, where the states are labeled with elementary propositions that hold in
each state, while µ-calculus is interpreted over Labeled Transition Systems (LTS), in
which the transitions are labeled with actions that cause the state changes. Even
though both are complementary representations of the more general finite state
automata, conversions between them are not practical, as they usually lead to a
significant state space increase. For example, the fact that a lock has been acquired
or released can be naturally expressed by actions. Since state-based temporal logics
lack this mechanism, an alternative is to introduce a variable to indicate the status of
the lock, i.e., expose the state information. For such properties, LTS representations
are more intuitive, and easier to query using event-based logics. LTS structures
provide the formal operational semantics for behaviors typically described with
process algebras, such as mCRL2.

Brief Introduction to µ-calculus

As already stated, the language used by the mCRL2 toolset for model checking spe-
cific properties is an extension of the modal µ-calculus. We informally introduced
µ-calculus in Chapter 4; for the purpose of property elicitation we now provide
a more complete description of its syntax and semantics. This formalism stands
out from most modal and temporal logic formalisms with respect to its expressive
power. Temporal logics like LTL, CTL and CTL* all have succinct translations [55]
into the first-order µ-calculus (propositional µ-calculus extended with data), wit-
nessing its generality. This expressiveness comes at a cost: very complex formulas
with no intuitive and apparent interpretation can be coined. The syntax of mCRL2’s
modal µ-calculus formulas we are concerned with in this chapter is defined by the
following grammar1:

ϕ ::= b | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀d:D.ϕ | ∃d:D.ϕ |
[R]ϕ | ⟨R⟩ϕ | µZ. ϕ(Z) | νZ. ϕ(Z) | Z

R ::= α | R · R | R∗ | R+

α ::= b | a(d1, . . . , dn) | ¬α | α ∩ α | α ∪ α |∩
d:D.α | ∪ d:D.α

Each µ-calculus formula is either valid or invalid at a state of a Labeled Transi-
tion System. Action formulas α describe sets of (multi-)actions; these sets are built

1Here the operators are shown in rich text format. The formulas in previous chapters were written in
plain (ASCII) format, as used by the toolset. For a mapping between these notations, please refer to [84].
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up from the empty set of actions (in case the Boolean expression b evaluates to
false), the set of all possible actions (in case b evaluates to true), individual actions
a(d1, . . . , dn), action complementation ¬α, and finite and possibly infinite intersec-
tion ∩ and union ∪ of actions. The action formula

∪
d:D.α(d) represents the union

of all sets of actions obtained by replacing every free variable d with concrete values
from the domain D. The modal operators take regular expressions R for describing
words of actions, built up from individual actions described by an action formula
α, word concatenation R · R and (arbitrary) iteration of words R∗ (zero or more
repetitions of R) and R+ (one or more repetitions of R). Properties are expressed by
state formulas ϕ, which contain Boolean data terms b that evaluate to true or false
and which can contain data variables, the standard logical connectives and (∧), or
(∨), as well as the derived logical implication (ϕ⇒ ψ, a shorthand for ¬ϕ∨ ψ, where
ϕ does not contain a recursion variable Z), the modal operators must ([_]_) and may
(⟨_⟩_), and the least and greatest fixpoint operators µ and ν. In addition to these,
mCRL2’s extensions add universal and existential quantifiers ∀ and ∃. A state of an
LTS (described by an mCRL2 process) satisfies ⟨R⟩ϕ iff from that state, there is at
least one transition sequence matching R, leading to a state satisfying ϕ; [R]ϕ is sat-
isfied by a state iff all transition sequences matching R starting in that state lead to
states satisfying ϕ. For instance, [¬(∪ n:Nat. read(n + n))] false states that a process
should not execute any actions other than read actions with even-valued natural
numbers. Note that [a]ϕ is trivially satisfied in states with no “a”-transitions.

Combining these modalities, the least (µX. ϕ(X)) and greatest (νX. ϕ(X)) fix-
points permit reasoning about finite and infinite runs of a system in a recursion-like
manner. For example, we can read µX. ϕ ∨ ⟨α⟩X as: X is the smallest set of states
such that a state is in X iff ϕ holds in that state or there is an α-successor in X. On
the other hand, νX. ϕ ∧ [α]X is the largest set of states such that a state is in X iff ϕ

holds in that state and all of its α-successors are in X, too.
A Labeled Transition System A = (S, Act,−→, s0, T) satisfies a µ-calculus for-

mula ϕ iff its initial state s0 satisfies ϕ.

Pattern Mappings for µ-calculus

To get an impression of the µ-calculus pattern mappings [134], we illustrate some
commonly used templates. Basic safety properties are generally expressed using
the box (must) modality containing regular formulas. For example, the precedence
pattern with a global scope is characterized in the following way:

[(¬S)∗. P] false

To specify that a memory cleanup must occur before the program shutdown, the
generic event placeholders S and P should be substituted with the actual events:

[(¬clean_memory)∗. program_shutdown] false
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The formula states that the process should never exhibit a behavior in which a pro-
gram_shutdown event is preceded by an arbitrary number of events, none of which
matches clean_memory. An after-Q scope restriction of the same pattern has the
following template:

[(¬Q)∗. Q. (¬S)∗. P] false

The regular expression has been modified to consume all events up to the point of
the occurrence of Q.

Liveness2 properties typically make use of the diamond (may) modality and
fixed point operators. For instance, the response pattern with a global scope is ex-
pressed as follows:

[true∗. P] µX.⟨true⟩true ∧ [¬S]X

The template can be instantiated to state that after every send event, all execution
sequences will eventually lead to the receive event:

[true∗. send] µX.⟨true⟩true ∧ [¬receive]X

An after-Q scope restriction of the same pattern has the following template:
[(¬Q)∗. Q. true∗. P] µX.⟨true⟩true ∧ [¬S]X

Linear Time vs. Branching Time

Theoreticians as well as practitioners of temporal logic as a language for specifying
properties, are mainly divided in two groups: those who advocate linear time, and
those who advocate branching time logics. If we consider Linear Temporal Logic
(LTL) and Computation Tree Logic (CTL) as the most widely accepted representa-
tives of both categories, the comparison is not a definite one with a clear winner.
With respect to their expressive power and model checking complexity, there are
sound arguments in favor of both sides [124; 70; 192; 191], and their relationship
has been studied extensively [133; 46]. Their differences stem from the way (dis-
crete) time is interpreted along the unfolding of the model state space. LTL formu-
las express properties that are interpreted along each single execution (or run). In
other words, the formula satisfiability is checked along every run without the pos-
sibility of switching to another run during the traversal. On the other hand, CTL
formulas express properties that are interpreted on computation trees, rather than
linear runs. This notion of branching time means that at any given state during the
exploration, when facing a branch, all (or only one, CTL has universal and existen-
tial quantification operators) different possible futures are unfolded and explored
to check satisfiability.

2Properties that require that “something good eventually happens”. The existence and response pat-
terns are an example. Contrary to these, safety properties require that “something bad never happens.”
All non-trivial functional properties can be classified as safety, liveness, or a mix of these two [11].
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Table 5.1: After-Q vs. After-Last-Q scope variations for different behavior patterns

Behavior After-Q After-Last-Q

Absence [(¬Q)∗. Q. true∗. P] false [true∗. Q. (¬Q)∗]

(([true∗. Q] false)⇒[true∗. P] false)

Existence [(¬Q)∗. Q]

µX.(⟨true⟩true∧[¬P]X)

[true∗. Q. (¬Q)∗](([true∗. Q] false)

⇒µX.(⟨true⟩true∧[¬P]X))

Precedence [(¬Q)∗. Q. (¬P)∗. S] false [true∗. Q. (¬Q)∗]

((true∗. Q] false)⇒[(¬P)∗. S] false)

Response [(¬Q)∗. Q. true∗. P]

µX.(⟨true⟩true∧[¬S]X)

[true∗. Q. (¬Q)∗](([true∗. Q] false)

⇒[true∗. P]µX.(⟨true⟩true∧[¬S]X))

5.4.2 Pattern Extensions for µ-calculus

The PSP authors recognized that variations of the proposed scopes and behaviors
may be necessary in certain cases, and provided basic notes on how to modify the
specifications for some of them. To improve expressiveness without users having to
manually tailor their formulas, we have incorporated several pattern extensions in
PASS, which were also absent from the µ-calculus mappings [134] of the Figure 5.1
PSP classification, provided by CADP. For instance, as [51] points out, by default
the scopes are interpreted with respect to the first occurrence of the beginning scope
delimiter. Subsequent occurrences of that event are ignored until the occurrence of
the end-delimiter closes the interval. Consider the following property:

After the last bid, the product is paid by the winner.
Online auction systems typically receive bids from multiple customers, but only the
last one matters, before the auction closes. In such case, there should be an option
where the beginning of the scope is essentially reset with every new occurrence
of the event Q. We provided a scope variation after-last-Q and a similar option for
the between-Q-and-R scope. While it is not expected that non-experts should be
willing or able to understand the potentially complex formulas, Table 5.1 illustrates
how this scope was adapted for some of the behaviors. Furthermore, the original
taxonomy does not clarify how to treat a behavior combined with a before-R scope
restriction, if the event R does not happen until the end of the system execution. For
such a case, the default semantics provided in [134] are that the specified behavior
is not required to hold, i.e., the property is trivially (vacuously) satisfied, unless
the end-event R is seen. A variation (after-Q-until-R) was only provided for the
between-Q-and-R scope. Consider the following property:

Every request will eventually be followed by a response, until the socket is disconnected.
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Since there may exist runs in the model in which the socket is never disconnected,
the response pattern behavior (“Every request will eventually be followed by a response”)
must hold until either the socket is disconnected, or until the end of the run if the
socket is never disconnected. We kept the default semantics and provided an option
to select an until-R scope variation, which is semantically equivalent to after-True-
until-R. The added scope variations are shown in Figure 5.3a.

Given that communication among components proceeds via actions (or events)
which can represent synchronous or asynchronous communication, a property spec-
ification can be defined over sequences of actions that carry data. Fortunately, the
mCRL2 µ-calculus is rich enough to express both state and action formulas, and pro-
vides means for quantification over data, which many formalisms lack. With our
approach, a practitioner can use a wildcard “*” to express that the property should
be evaluated for all values that message parameters can carry. This allows us to use
patterns which would otherwise make sense only for state-based formalisms. For
example, in its original form, the universality behavior pattern describes a portion of
the system’s execution which contains only states/events that have a desired prop-
erty. In event-based systems this would directly translate to “an event must always
occur in the system execution”, which is not a very useful property for a system to
exhibit, since it means that there is only one possible event always taking place.
Even though this pattern is provided as such in [134], a more practical alternative
is checking if an event always carries the same data value, so we refined it in this
context. For comparison, the provided pattern template for a global scope is:

[true∗.¬P] false

which means that at most event P can happen at any moment, while:
[true∗] ∀d :D.(d , d1)⇒ [P(d)] false

means that the event P can only carry a data value d1. Related to this pattern,
an interesting and realistic property is to ask if some event is always possible (or
enabled), rather than always taken. For example, “it should always be possible to exit a
program”. For this purpose, we have added the always-enabled pattern. For example:

[(¬initialize)∗. initialize. (¬exit)∗]⟨exit⟩true

means that at any point after initialization, the exit event is enabled. As Leslie
Lamport points out in [125], such "possibility" properties are argued as less inter-
esting compared to knowing that the system will never produce a wrong answer
(safety) and that it eventually will produce an answer (liveness). However, if in a
formal model of a nuclear power plant it were impossible to require a shutdown
from any reachable state, then the model would be wrong. Even if it seems un-
necessary to check that a user can always hit the "shutdown" button, because, after
all, the specification is about the nuclear power plant, not the user (in real life the
user can obviously always hit the button), we should realize that we are reasoning
about a formal model of both the user and the power plant. Hence, verifying such
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Figure 5.3: Pattern Extensions incorporated in PASS

properties can provide important sanity checks on the specification.

Models usually abstract away from the underlying OS scheduling policy, con-
taining no information on how often a process is executed, or how the next process
to be executed is chosen; the scheduler is treated non-deterministically. The effect
of this choice is that there can be traces in the LTS representation of the model that
do not correspond to realistic scenarios, for example, runs in which a single pro-
cess gets all execution time, while other processes starve. If a process never gets
a chance to run, it usually cannot reach its goal. Unless the scheduler is explicitly
modeled, we often want to disregard such unrealistic loops, since they may lead to
false-negatives: unrealistic counter-examples when model checking liveness prop-
erties. This is in particular relevant for the liveness category of properties, which
require that something good eventually happens. To disregard such behavior, we
have added fairness variants of the existence and response patterns, which rely on
the assumption that in reality each process of the system is given a fair chance to
execute. It is important to note that fairness is not a property to be verified, but
rather, a constraint or an assumption that can be expressed in temporal logic. Such
a property will be evaluated only along fair paths (with respect to the action/state
captured by the property). The action-based formulation of fairness in the context
of the modal µ-calculus extended with data has already been mentioned in the early
work of [83]. Specifically, an example formula is presented to express that "every
datum d0 which is inserted in a queue by an action r(d0) will be eventually deliv-
ered by an action s(d0), taking into account only the execution paths that are fair
w.r.t. the action s(d0), i.e., those paths which cannot infinitely often enable s(d0)

without infinitely often executing it." This is in fact the basis for the response under
fairness pattern and its scope variations.

Inspired by [51], further variants of the precedence and response patterns have also
been added to PASS. For example, consider the following property:

Every request for the resource is eventually acknowledged. Also, a request must eventu-
ally arrive in a correctly functioning system.
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Figure 5.4: Branching versus
linear time Logic

Figure 5.5: Branching time logic can
capture possibility properties

There is an additional constraint to this response property, namely, that the cause
event must take place. This can also be seen simply as a conjunction of two proper-
ties which should hold simultaneously, but for convenience reasons it was added as
a separate pattern. Taking into account a similar consideration, a precedence variant
is added. All behavior extensions are shown in Figure 5.3b. Adding 4 scope and 6
behavior variations have led to more than 150 ((5+4)∗(11+6)) new unique patterns
to be chosen from [164].

Given that the pattern system is necessarily abstract, and there are mappings
(or implementations) in temporal logics with different expressive powers, a natural
question arises: are there patterns that cannot be expressed if we had chosen an-
other logic (such as LTL or CTL), or patterns that, when formulated in a different
logic, yield formulas with different meanings? For example, both Kripke structures
in Figure 5.4 have the same runs from the perspective of LTL, so every LTL formula
will have the same truth value in both. A CTL formula, however, can make the dis-
tinction. For example, a property saying a must happen, and immediately afterwards, b
may happen and c may happen will be true for the left structure, but false for the one
on the right, when specified with CTL. On the other hand, a pure branching time
logic like CTL is not expressive enough for capturing the fairness pattern extensions.
A more powerful logic like CTL∗ [70] or modal µ-calculus is necessary. LTL can ex-
press fairness constraints; however, possibility properties (our always-enabled pattern
extension) cannot be formulated, while they can in CTL. For example, let P denote
the predicate “transition p is executed” (similar for Q); then every subtree of the un-
folding Kripke structure in Figure 5.5 satisfies the property P is always possible, but
LTL cannot capture this, because it is only looking at linear paths, not computation
trees. In conclusion, linear and branching temporal logic are incomparable. Even
within each world, there are logic variations which add expressive power at the
cost of computational complexity of the verification3. The modal µ-calculus, while

3CTL model checking has a (theoretical) polynomial complexity with respect to the size of the spec-
ification, while LTL model checking is exponential. However, many experimental results show that in
practice, for certain categories of systems and formulas, the relative merits of CTL are lost. We omit
further discussion on the topic.
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considered less intuitive compared to the more commonly used ones (like LTL and
CTL), is able to capture certain property patterns which either LTL or CTL cannot.

5.4.3 Sequence Diagrams for Visual Property Specification

In our experience, visual scenarios are often the most suitable and commonly used
means to understand the dynamics of a system where a multitude of communi-
cating components deliver the intended behavior. We believe that such a visual
depiction of scenarios, more than finite state machines, improves the practitioner’s
understanding of requirements as well. This is why we chose sequence diagrams
as a property specification artifact too. A controlled experiment study [6] has also
concluded that the presence of sequence diagrams significantly improves the com-
prehension of the modeled functional requirements.

There are also two conformance-related combined fragments that we mentioned
in Chapter 4: assert and negate. Their use in practice is limited, because their seman-
tics described in the UML 2.x specification [92] are somewhat vague and confusing.
By default, sequence diagrams without the use of these two operators only reflect
possible behavior, while assert and negate alter the way a trace can be classified as
valid or invalid. The potential problems with the UML 2.x assertion and negation
are explained in [100]. In summary, the specification aims at depicting required and
forbidden behaviors. However, as [100] points out, stating that “the sequences of
the operand of the assertion are the only valid continuations. All other continua-
tions result in an invalid trace” suggests that the invalid set of traces for an assert
fragment is its complement, i.e., the set of all other possible traces. Conversely, the
standard also declares that the invalid set of traces are associated only with the use
of a negate fragment, which is contradictory with the previous statement. These two
operators should be considered as truth modalities, and we assign the following se-
mantics: negate is considered a set-complement operator for the event captured by
the fragment, while assert specifies that an event must occur. For the reasons de-
scribed above, we disallow nesting between these two fragments. We find that this
does not limit the expressiveness of property specifications in practice.

Most of the invented notations used by existing scenario approaches can fit well
in UML 2.x sequence diagrams. By creating a simple UML profile, we used the
stereotypes mechanism to apply the restrictions on the usage of negate and assert,
as well as to distinguish events representing pattern scope interval bounds from
regular ones. As an example, Figure 5.6 depicts the precedence chain pattern (with
a between-Q-and-R scope), with the stereotypes applied to messages Q and R. The
pattern expresses that event P must precede the chain of events S, T, always when
the system execution is in the scope between events Q and R. Notice that we do
not have to specify additional textual restrictions on past and future events, nor
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Figure 5.6: UML2 Sequence Diagram with applied stereotypes

transform the scenario in a negative form by introducing an error message. They
are automatically reflected in the µ-calculus formula, as long as there is a distinction
between interval-marking messages, regular, mandatory, and forbidden ones.

5.4.4 Transforming a µ-calculus Formula Into a Monitor Process

In mCRL2, verification of µ-calculus formulas is conducted using tooling that oper-
ates on systems of fixpoint equations over first-order logic expressions. This some-
times requires too much overhead to serve as a basis for lightweight bug-hunting,
as it can be difficult to interpret the counter-examples that are obtained from these
equation systems in terms of the original mCRL2 process. Observers, or monitors
(à la Büchi) defined in the mCRL2 model itself, can sometimes be used to turn
the model checking problem into a reachability one. A general model checking
mechanism used with tools like SPIN is to construct a Büchi automaton for an LTL
formula, which accepts exactly those executions that violate the property. A prod-
uct of the model state space (typically a Kripke structure) and the Büchi automaton
is then composed, and checked for emptiness [62]. Although syntactically Büchi is
similar to the finite-state monitor for which we aim, the difference lies in the accep-
tance conditions: a monitor accepts only finite runs of the system, while Büchi can
trap infinite executions through detection of cycles, but potentially needs the entire
state space generated in the process. Runtime verification does not store the entire
state space of a model, so it cannot detect such cycles. In addition, to expose state
information, the transitions in Figure 5.7 are labeled with elementary propositions
that hold in the target states, rather than actions (notice the ∧ operator, it does not
refer to two actions occurring simultaneously). As such, we cannot directly use and
adapt the existing tools and algorithms for constructing Büchi automata, within our
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Figure 5.7: A Büchi automaton
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Figure 5.8: Transforming a µ-calculus formula into a
monitor

approach.

Not every property can be monitored at runtime when only a finite run has been
observed so far. Monitorable properties are those for which a violation occurs along
a finite execution, since these monitors have a limited “memory”. This problem
has been studied [21], and it is known that the class of monitorable properties is
strictly larger than that of safety properties. In particular, the definition of liveness
requires that any finite system execution must be extendable to an infinite one that
satisfies the property. However, by defining an end-scope of a property, we can
also assert violations to existence and response patterns, which are typically in the
liveness category. Such a runtime monitor can also assert universality, absence and
precedence patterns with or without scope combinations. We found that we are able
to construct a monitor for about 50% of the property patterns covered by PASS.

We translate a core fragment of the µ-calculus to mCRL2 processes which can
subsequently serve as observer processes for monitorable properties. The idea be-
hind the translation is that any violation of a property of the form ∀d:D.[R(d)]b(d),
where b is a simple Boolean expression, is due to the existence of a sequence of the
form R(d) for some d of type D. A monitor can then be obtained by converting the
regular expression R to an mCRL2 process which represents the non-deterministic
finite automaton accepting that regular expression (see [110]). Without loss of gen-
erality, we restrict to the following µ-calculus grammar for the class of monitorable
properties:

ϕ ::= b | ∀d : D.ϕ1 | ϕ1 ∧ ϕ2 | [R]ϕ | [R∗]ϕ
R1, R2 ::= α | R1 · R2 | R1 + R2
α1, α2 ::= b | a(e) | ¬α | α1 ∩ α2 | α1 ∪ α2 | ∃d : D.α
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The translation proceeds as follows. The function TrS takes two arguments (a for-
mula and a list of typed variables) and produces a process. It is defined inductively
as follows:

TrSl(b) = (¬b→ error) (1)
TrSl(∀d : D.ϕ1) = ∑ d : D.TrSl ++[d:D](ϕ1) (2)

TrSl(ϕ1 ∧ ϕ2) = TrSl(ϕ1) + TrSl(ϕ2) (3)
TrSl([R]ϕ) = TrRl(R) · TrSl(ϕ) (4)
TrSl([R

∗]ϕ) = TrSl(ϕ) + X(l) · TrSl(ϕ)
where X(l) = TrRl(R) · X(l) + TrRl(R) is a fresh recursive process (5)

where TrR takes a regular expression (and a list of typed variables) and produces a
process or a condition:

TrRl(α) =
⊕

a∈Act
(∑ da : Da. Condl(a(da), α)→ a(da)) (6)

TrRl(R1 · R2) = TrRl(R1) · TrRl(R2) (7)
TrRl(R1 + R2) = TrRl(R1) + TrRl(R2) (8)

where
⊕

is a finite summation over all action names a ∈ Act of the mCRL2 process,
and where Cond takes an action and an action formula and produces a condition
that describes when the action is among the set of actions described by the action
formula α:

Condl(a(da), b) = b (9)

Condl(a(da), a′(e)) =

{
da = e if a = a’
false otherwise

(10)

Condl(a(da),¬α1) = ¬Condl(a(da), α1) (11)
Condl(a(da), α1 ∩ α2) = Condl(a(da), α1) ∧ Condl(a(da), α2) (12)
Condl(a(da), α1 ∪ α2) = Condl(a(da), α1) ∨ Condl(a(da), α2) (13)
Condl(a(da), ∃d : D.α1) = ∃d : D.Condl(a(da), α1) (14)

In Appendix A.1 we formally define the syntactic elements of mCRL2 and the associ-
ated semantics. We also provide the formal semantics of modal µ-calculus formulas.
By providing such mapping of the syntactic constructs to a mathematical domain,
we have the necessary grounds to prove the monitor construction correctness. We
formulate the following lemmas informally at this point, in order to make them
more accessible to readers; more formal definitions, as well as proofs can be found
in Appendix A.2:

Lemma 1. A (multi-)action a(d) belongs to the set of actions described by α iff
Condl(a(v), α) holds for a variable v having value d.
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Lemma 2. A path (or a word) ρ is accepted by the regular expression characterized
by R iff the constructed process TrRl(R) can terminate successfully after performing
the sequence of actions in ρ.

Lemma 3. A path ρ is accepted by the regular expression characterized by R+ iff
the constructed recursive process X(l) = TrRl(R) · X(l) + TrRl(R) can terminate
successfully after performing the sequence of actions in ρ.

Lemma 4. A process P violates the formula ϕ iff the synchronous parallel com-
position of processes P and TrSl(ϕ) can reach a state in which the action error is
enabled.

Using the above translation, our tool automatically constructs such a monitor which
is placed in parallel with the system model, to perform runtime verification. Clearly,
in the “worst” case, if the model is correct with respect to the property, all relevant
model states will be traversed. In practice however, refutation can often be found
quickly after a limited exploration.

5.4.5 A Walk-Through Example

To demonstrate how a µ-calculus formula is encoded in an mCRL2 monitor process
in practice, we use one of the simpler patterns as a walk-through example: the exis-
tence behavior with a between-Q-and-R scope. The formula with generic placeholders
P, Q, and R, is: [true∗. Q. (¬(P ∪ R))∗. R] false
A step-by-step translation applied on a model with general actions action_1, ac-
tion_2,. . . , action_n, is given below. For clarity, the identifiers of the constructed
processes are kept descriptive, they correspond to (segments of) the formulas being
translated between quotes. The translation rules, shown next to each process, are
applied recursively until all monitor processes have been resolved. As an initial
step, the formula is converted in an equivalent form, more suitable for conversion4:

proc Monitor = Mon_“[true∗][Q][(¬(P ∪ R))∗][R] false”;

proc Mon_“[true∗][Q][(¬(P ∪ R))∗][R] false” =

Mon_“[Q][(¬(P ∪ R))∗][R] false”+
Mon_“X1”· Mon_“[Q][(¬(P ∪ R))∗][R] false”; . . . rule(5)

proc Mon_“X1” = Mon_“true”·Mon_“X1” + Mon_“true”; . . . rule(5)

proc Mon_“true” = ∑n(true) → action_n ; . . . rule(6), (9)

4Observing the identity [R1 · R2]ϕ = [R1][R2]ϕ = [R1]ϕ1, where ϕ1 = [R2]ϕ
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proc Mon_“[Q][(¬(P ∪ R))∗][R] false” =

Mon_“Q”· Mon_“[(¬(P ∪ R))∗][R] false”; . . . rule(4)

proc Mon_“Q” = ∑n(action_n == Q) → action_n ; . . . rule(6), (10)

proc Mon_“[(¬(P ∪ R))∗][R] false” =

Mon_“[R] false”+ Mon_“X2”· Mon_“[R] false”; . . . rule(5)

proc Mon_“X2” =

Mon_“(¬(P ∪ R))”· Mon_“X2” + Mon_“(¬(P ∪ R))”; . . . rule(5)

proc Mon_“(¬(P ∪ R))” = . . . rule(6), (11), (13)

∑n(¬((action_n == P) ∨ (action_n == R))) → action_n ;

proc Mon_“[R] false” = Mon_“R”· Mon_“false”; . . . rule(4)

proc Mon_“R” = ∑n(action_n == R) → action_n ; . . . rule(6), (10)

proc Mon_“false” = error; . . . rule(1)

The resulting state space of the monitoring processes is visually depicted in Fig-
ure 5.8. Intuitively, the monitor process will step through those exact actions that
the original system takes. If a sequence of steps refuting the formula is completed,
the monitor will execute the “error” action as a last step, indicating that a counter-
example trace has been found. More examples of monitors along with references to
the applied transformation rules in each step, can be found at [163].

5.4.6 PASS Integration in the Eclipse Platform

We chose to stay in IBM’s RSA environment which we used for the model transfor-
mation methodology presented in Chapter 4. One of the advantages is that RSA
is built on top of Eclipse and the GMF (Graphical Modeling Framework), mak-
ing it relatively easy to extend the functionality. PASS is developed as an Eclipse
plug-in (Figure 5.9), using a lightweight UML profile for the stereotypes defined in
Section 5.4.3. The Eclipse MDT-UML2 plug-in provides an EMF-based Java imple-
mentation of the UML 2.x metamodel for Eclipse. Our plug-in uses it for gathering
information about the workspace UML model being verified, as well as for gen-
erating the sequence diagram representation of a property. Being developed as a
conversational tool (a wizard), it relies on the JFace and SWT toolkits for the UI im-
plementation (views/dialogs). ANTLR provides the necessary lexical analyzer and



94 CHAPTER 5. ASSISTING NON-EXPERTS IN PROPERTY SPECIFICATION

Figure 5.9: PASS integration in Eclipse

parser generation from the µ-calculus grammar, needed for the monitor synthesis.
Using the monitor, the counter-example will be provided at the UML level.

5.5 PASS by Example: Revisiting DIRAC

We demonstrate the applicability of PASS for eliciting properties by revisiting the
SMS and WMS modules of DIRAC. We created a UML model of the SMS, together
with the communication interfacing the WMS. One of the problems originally dis-
covered with model checking (Section 3.5.3) was the fact that the callback from the
SMS was not always properly handled by the WMS. If a job had been manually
“Killed” by production managers while it was waiting on a staging request to com-
plete, and the callback from the SMS arrived only later, it would awaken the job
and cause it to eventually start running. Such “zombie” jobs were discovered in
the system on several occasions, and a simple fix was implemented (mid. 2011)
in the WMS to properly guard the callback against this particular case. Reflecting
this change in the implementation and the model, it was confirmed that the SMS
callback no longer affected the job state if the original “Staging” one had changed
to some other status in the meantime. However, another problem appeared later
in production. Jobs would remain in a “Staging” state without progress, and any
staging request information was apparently already gone from the SMS, making it
difficult to investigate the root cause based solely on logging traces analysis. To
capture the underlying problem formally for the purpose of model checking, we es-
tablished the following informal property statement: any job requesting staging must
eventually make progress (the job must be called-back properly) before the corresponding
task is removed from the SMS.
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Figure 5.10: Eliciting the scope for a property with PASS

5.5.1 PASS: The Property ASSistant

To cope with the ambiguity of system requirements, PASS guides the practitioner
through a series of questions to distinguish the types of scope and behavior as
a relation between multiple events. By answering these questions, one is led to
consider some subtle aspects of the property, which are typically overlooked when
manually specifying the requirement in temporal logic. Having recognized the
last part of the property (i.e., “before the corresponding task is removed from the SMS”)
as a scope restriction, we need to choose the appropriate answers from the scope
question tree (shown in Figure 5.10). With respect to the last question, since the
behavior of the SMS agents is cyclic (should not terminate in practice), and we
expect that the event of task removal happens, according to the original problem
description, the second answer is chosen. A hint with an additional explanation is
also displayed in a popup box next to the selected answer, to clarify its meaning.
The actual communication event can be selected by double-clicking the end-event
placeholder. This presents the user with a pop-up window with a list of all the
message exchanges in the model, so the appropriate one can be chosen, in this case
the removeTasks message.

To elicit the behavior part of the property (“any job requesting staging must even-
tually make progress, i.e., the job must be called-back properly”), some clarification is
needed. There are two possible outcomes of staging: it can either succeed, in which
case the job is called back with “Done”, or fail, in which case the job is called back
with a “Failed” status. Therefore, we need to break down the property elicitation
in two separate cases, both of which should hold. We treat them separately, and
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Figure 5.11: Eliciting the behavior for a property with PASS

only elaborate the former case. The Behavior Question Tree part of the wizard is
shown in Figure 5.11. While scope elicitation typically involves identifying words
like “before”, “after”, “until”, and “between”, the relevant behavior actions are de-
cided by focusing on the verbs in the informal property description. In this case, the
two events are (1) setting the job in a “Staging” state, and (2) issuing a successful
callback to the job. The selected answers reflect the fact that these two events have a
causal relationship, and not every job requires staging. At the end of the question-
naire, the user is presented with a natural language summary (Figure 5.12) of the
requested property, which can be reviewed before making the final decision. A µ-
calculus formula pertaining to the property is presented, along with the possibility
to assign concrete parameter values that the messages carry. The input to our model
is reduced to the minimum that retains the behavioral characteristics, so a single job
with one requested file was considered sufficient for this property. In addition, a
sequence diagram (Figure 5.13) and a monitor process in mCRL2 are generated, to
be used in the final model checking phase. The case with failed staging is elicited
in an analogous manner.

Model checking the property on the model augmented with the generated mon-
itor revealed a counter-example trace where it does not hold. To understand why,
the sequence diagram in Figure 5.14 shows the fix originally applied (the break frag-
ment). Some communication details are omitted and messages are enumerated for
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Figure 5.12: Summary of the elicited property with PASS

StorageManageme...JobStateUpdateHand...RequestFinalizationA...JobStateJobScheduling

assert
updateJobFromStager ( 1, "Done" )

«before»

removeTasks ( 1 )

setStatus ( 1, "Staging" )setStatus ( 1, "Staging" )

updateJobFromStager ( 1, "Done" )

«before»

removeTasks ( 1 )

Figure 5.13: A sequence diagram visualizing the elicited SMS property

clarity. Partial temporal ordering between these messages is assumed, as imposed
by the UML semantics. This implies that in practice the sequence of events involv-
ing the RequestFinalizationAgent (beginning with message 7:updateJobFromStager) can
happen before 4:setJobStatus(jobID,“Staging”) takes place. In particular, when the
staging request is processed very quickly by the SMS (e.g., if all files are already
cached when the request arrives), the callback from the agent may arrive before the
job is set to a “Staging” state, and as a consequence, will be ignored because of the
applied fix. Such unfortunate jobs will remain in a “Staging” state forever, due to
the fact that the request had been processed from the viewpoint of the SMS, and
the staging task associated with it has been removed (11:removeTasks(jobID)).

Another issue with the SMS was the occasional MySQL error present in the logs,
caused by a foreign key constraint violation (log excerpts shown in Figure 5.15).
Using knowledge about the database organization, the only way for this foreign
constraint violation to manifest is if information referenced by the StageRequests
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JobStateUpdateHandler:WMSRequestFinalizationAgent:SMS JobState:WMSStorageManagerHandler:SMSJobScheduling:WMS

alt

[stagingStatus == "Done" ]

[stagingStatus == "Failed" ]

break

[ jobStatus != "Staging" ]

2: setStatus ( )

2: setStatus ( )

8: getJobAttributes ( jobID, "Status" )

4: setStatus ( jobID, "Staging" )

10: updateJobFromStager ( )

2: setRequest ( listFiles, updateJobFromStager, jobID )

5: setStatus ( )

1: setStatus ( jobID, "Checking" )

7: updateJobFromStager ( jobID, stagingStatus )

1: __requestStaging (  )

6: __requestStaging (  )

9: getJobAttributes ( ) : jobStatus

3: setRequest ( )

1: setStatus ( jobID, "Failed" )

1: __requestStaging (  )

6: __requestStaging (  )

2: setRequest ( listFiles, updateJobFromStager, jobID )

3: setRequest ( )

4: setStatus ( jobID, "Staging" )

5: setStatus ( )

7: updateJobFromStager ( jobID, stagingStatus )

10: updateJobFromStager ( )

8: getJobAttributes ( jobID, "Status" )

9: getJobAttributes ( ) : jobStatus

1: setStatus ( jobID, "Checking" )

2: setStatus ( )

1: setStatus ( jobID, "Failed" )

2: setStatus ( )

11: removeTasks ( jobID )11: removeTasks ( jobID )

12: removeTasks (  )12: removeTasks (  )

Figure 5.14: Fix applied for the problem with “zombie” jobs

Figure 5.15: MySQL errors in the SMS logs

entry was removed from the CacheReplicas table prior to submitting a staging re-
quest. This, in turn, happens after the task associated with this replica is called
back and removed. Thus, it was already assumed that the task had somehow been
removed along with the replica information, before a staging request was submit-
ted. However, the circumstances for such behavior were unclear. In principle, there
should not be any staging requests for a task, once it has been called back to the corresponding
job. We can elicit this property with PASS in a similar manner as previously, using
the removeTasks message as an after-Q beginning scope delimiter. The only event
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Agent

Process Pool

pending queue

results queue

task

def run(self):

...

  while true:

    try:

      task = pendingQueue.get()

    except pendingQueue.Empty:

      idleLoopCount++

      if idleLoopCount==10:

        return

      continue

    ...

    task.process()

    resultsQueue.put(task)

Figure 5.16: DIRAC ProcessPool

of interest for the behavior part of the property is the insertStageRequest call, which
should be absent for this particular task. Checking the resulting model augmented
with the generated monitor did not reveal any misbehavior. However, changing the
UML model simply by extending the input to a single job, but requesting two files
rather than one, already exposed the problem. The counter-example indicated a
typical race condition. Failing to stage one file (for whatever reason) will already
fail the whole task and eventually trigger the Request Finalization Agent to callback
the corresponding job and clear the task information. On the other hand, just before
this happens, the Stage Request Agent can select the other waiting file eligible for
staging. After submitting the actual staging request, the attempt to add informa-
tion about it in the database will result in a MySQL error, as the task along with
the related replica information has been meanwhile removed. Although this is not
a major impediment for operations, the number of staging requests accounted for
is in effect smaller than the number of submitted ones.

5.5.2 PASSWebStart: The Alternative

While not our primary goal, a standalone Java Web Start version of the tool was
also developed, for deriving properties for mCRL2 models created manually and
independently of any UML environment. In this context, rather than generating
a sequence diagram, for monitorable properties we used Graphviz [79] (already
included in most Linux distributions) to provide a visual representation of the state
space of the generated monitor. The mCRL2 toolset provides means for converting
the state space of a process into DOT, a simple graph description language used as
input format by Graphviz. PASSWebStart [161] has the same look and feel as PASS,
except that it does not depend on the Eclipse Modeling Framework, but only on
the mCRL2 grammar for parsing the input model and obtaining the set of all action
names (often called its alphabet) defined in it.
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5.5.3 The DIRAC ProcessPool

We applied the PASSWebStart tool for eliciting a number of properties on a DIRAC
core utility module: the ProcessPool. As the name suggests, the ProcessPool is a
piece of logic that maintains a pool of concurrently running worker processes to han-
dle a queue of tasks, resembling a producers/consumers paradigm. Agents can
use the ProcessPool to fill the queue with tasks to be executed, while the worker
processes execute these tasks. For example, it is used by a special agent responsible
for handling requests for asynchronous operations such as uploading log files from
jobs, registering files in a catalog, or removing files from storage. Figure. 5.16 is a
simplified illustration of the ProcessPool dynamics, controlled by three configura-
tion parameters: minimum and maximum number of workers that can be alive at
any given moment, and a maximum number of queued tasks in the pending queue.
The number of active workers is automatically increased and decreased depending
on the current load, of course not exceeding the minimum/maximum limits. New
workers are only created when the pending queue is not empty, and there are no
free existing workers to process the queued tasks. This elacticity is achieved in a
separate background (daemon) thread of the ProcessPool. This background thread
is also responsible for picking up the results from the results queue and issuing call-
backs to the agent. An attempt to add a task to a full pending queue will result
in a blocked execution, until a task is dequeued by some worker process instance,
which subsequently executes the actual task.

The main thread of every worker process executes an “infinite” while-loop, read-
ing a task from the pending queue, executing it, and pushing back the result to the
results queue. A worker can self-destroy after a certain amount of idling: on every
attempt to read from an empty queue, the idle-loop counter is increased, and if
this counter reaches a value of 10, the process returns from its run() method. Since
the queues are shared among concurrent processes, a locking mechanism is put in
place to prevent race conditions and data corruption.

Occasionally, the agent using the ProcessPool would become stuck, not showing
any progress, so a formal model was created manually to investigate the reasons.
The only clues about the possible root cause suggested a pattern where this would
happen immediately upon an attempt to enqueue a task, preceded by a certain pe-
riod of agent idleness without any new incoming requests. To capture some aspects
crucial for the correct functioning of the ProcessPool, the following properties were
formulated and elicited with the tool:

1. The system is free of deadlocks.

2. If a task is pushed in the pending queue, it will eventually end up in the
results queue.
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Table 5.2: Formulas obtained with PASSWebStart

Property µ-calculus formula

PR1 [true∗]⟨true⟩true

PR2 [true∗.pendingQueuePut(task(1, false, LogUpload))]µX.⟨true⟩true

∧ [¬ resultsQueuePut(task(1, true, LogUpload))]X

PR3 [(¬ pendingQueuePut(task(1, false, LogUpload)))∗.

pendingQueuePut(task(1, false, LogUpload)).

(¬ resultsQueuePut(task(1, true, LogUpload)))∗.

resultsQueuePut(task(1, true, LogUpload)).

(¬ resultsQueuePut(task(1, true, LogUpload)))∗.

resultsQueuePut(task(1, true, LogUpload))] false

PR4 [true∗] [prListLock_release. (¬ prListLock_acquire)∗]

[∀arg1:Task.pendingQueuePut(arg1)] false

PR5 [true∗] µX.⟨true⟩true ∧ [¬prListLock_acquire]X

PR6 [true∗. prListLock_acquire. (¬ prListLock_release)∗]

⟨true∗. prListLock_release⟩true

PR7 [true∗.prListLock_acquire. (¬ prListLock_release)∗.

prListLock_acquire] false

3. If a task is pushed in the pending queue, it will end up at most once in the
results queue.

4. Between releasing a lock and acquiring it again, the pending queue should
not be filled.

5. Always, acquiring a lock will eventually be possible.

6. On all fair runs, every acquired lock will eventually be released.

7. A critical section can only be accessed by one process at a time.

For an impression of their complexity, even for these relatively simple properties,
the derived formulas are listed in Table 5.2.

Faced with state-space explosion on a typical desktop configuration, for verifi-
cation purposes we resorted to using a more powerful Intel(R) Xeon(R) @2.27GHz
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machine with 70GB RAM. Model checking exposed a deadlock, and quite expect-
edly, the liveness properties were also refuted. Table 5.3 shows the results and the
resource usage for each property. Not all properties are amenable to using the moni-
tor mechanism, and (save for the deadlock search) verification times span about two
days in such cases where a formula must be used directly. Notably, model checking
the 3rd and 4th property leads to a quicker answer, but requires significantly more
memory when using a monitor. This effectively means that the synchronous paral-
lel composition of the original model with the monitor yields a larger state space in
these cases, which must be fully explored when the property holds, i.e., the search
for the error action is unsuccessful. The 70GB of memory were unfortunately not
sufficient for verifying the last property by using a monitor.

The deadlock trace exposes a very specific interplay between the components. In
a situation with a single idle worker and no tasks in the pending queue, the worker
would eventually give up polling the empty queue and return from its main run()
method. Between these two atomic steps (the last increase of the idleLoopCount
counter and executing a return), it is perfectly possible for any number of other ac-
tions to take place, in an untimed process algebra model. For instance, the pending
queue can be filled completely. To see how this is possible, the situation is shown
in Figure 5.17. The agent will continue sending requests (tasks) to the ProcessPool,
and these will be queued without creating new workers, since there is already one
which is still accounted as idle. Once the queue becomes full and the lock is ac-
quired by the ProcessPool, the last attempt to enqueue a task will be a blocking
one, until space is freed in the queue. Unfortunately, the only idle worker who can
dequeue a task has already decided to self-destruct. Before attempting to create
new workers in the pool, the background thread checks the current number of idle
workers and the size of the pending queue. However, there is a lock around this
check, to serialize access to the list of workers maintained by the ProcessPool. On
the other hand, this same lock is already held by the ProcessPool in the last queue-

Table 5.3: Model checking results for the ProcessPool properties

Monitor Formula Property

Wallclock Memory Wallclock Memory holds?

PR1 Not monitorable 1m9s 136MB No

PR2 Not monitorable 3169m44s 13.1GB No

PR3 606m45s 55.4GB 3904m3s 8.1GB Yes

PR4 924m47s 55.4GB 2705m18s 8.1GB Yes

PR5 Not monitorable 3875m40s 21GB No

PR6 Not monitorable 3139m46s 13.1GB No

PR7 – – 1670m31s 5GB Yes
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component action state

Worker1

ProcessPool

ProcessPool

idleLoopCounter=10

pendingQueue.put(t1)

lock.release()

spawnWorkingProcess()

pendingQueue.empty()

...t1 W1

pendingQueue workers lock

...t1 W1

pendingQueue workers lock

...t1 W1

pendingQueue workers lock

ProcessPool             . . . ...t1 t2 tm W1

pendingQueue workers lock

...t1 t2 tm

pendingQueue workers lock

return

ProcessPool ...t1 t2 tm

pendingQueue workers lock

pendingQueue.put(tm+1)

Worker1

daemon 

process

acquired

...t1 t2 tm

pendingQueue workers lock

acquired

daemon 

process
...t1 t2 tm

pendingQueue workers lock

acquired

deadlock

ProcessPool lock.acquire() ...t1 W1

pendingQueue workers lock

free

acquired

free

acquired

lock.acquire()
daemon 

process
...t1 t2 tm

pendingQueue workers lock

acquired

Figure 5.17: ProcessPool deadlock trace

ing attempt. In effect, the attempt of the background thread to get the number of
idle workers (and eventually decide to create new ones if necessary) produces a
deadlock, as it can no longer acquire the lock.

One may argue that chronologically this is unlikely to happen in reality. Such
a scenario becomes more plausible when considering the low-level Python library
implementation of the multiprocessing.Process class, which is used for subclassing
the worker. Upon returning from its main execution method run(), the background
machinery takes some steps to cleanup the execution context and update the sta-
tus of the object, to reflect the process termination. Furthermore, the queues are
instances of multiprocessing.Queue, whose .empty() method is unreliable in a multi-
threading environment, as it takes some time for the buffers to be flushed from the
underlying pipe into the queues. This method is used by the background thread
for making decisions based on the number of tasks in the pending queue.
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5.6 Property Specifications with µ-calculus: A Survey of Pub-
lished Works

As a form of external validation of the PSP classification (and our extension thereof)
applicability, we examined 25 published works5 that use the event-based µ-calculus
as a target formalism to express system properties from various domains. Most
of them were taken from the CADP and mCRL2 case studies archives, both avail-
able online [112; 68]. Our main objective was to reassess the usefulness of the PSP
classification in the context of µ-calculus and event-based systems, by fitting each
property in a specific pattern. In absence of the original models for many of the
publications, the “patterning” was done manually, consulting only the information
available in them. After identifying the pattern that should be applied, the formula
was compared with the original one used for the property. A secondary objective
was to get an indication of how error-prone the manual formalization of proper-
ties can be in practice, even when experienced users are involved. Verifying the
properties on the actual models was beyond the scope of this work.

5.6.1 Is the PSP Classification Useful?

Not all requirements could be fit in the classification. We classify a requirement as
“patternizable” if its semantics can be captured by some pattern from our extended
pattern classification. The majority of requirements could be fit into exactly one
pattern. However, for some requirements, a conjunction of two patterns was neces-
sary to capture the semantics of the original requirement description. In such cases,
individually checking that they all hold is equivalent to using the µ-calculus logical
connective and (∧) to obtain a composite formula. We still consider such require-
ments as patternizable. Furthermore, in some cases it was necessary to reformulate
the given requirement description (without loss of meaning) in a way that captures
the same semantics, but makes the pattern-fitting more obvious. Consider the fol-
lowing property from [135], where a drilling unit’s behavior is verified. The unit
consists of a turning table (rotating clockwise) that transports metallic products to
a drilling and a testing slot, in a streamlined fashion, one by one:

After the input of a product and a rotation of the table, the main controller cannot
command a drilling before the clamp has been blocked.
At first glance, classifying it as an absence behavior (“cannot command a drilling”)
with a between-Q-and-R scope will not capture the precise semantics, because the
beginning scope delimiter has only one event placeholder, while the requirement
has two successive events (“After the input of a product and a rotation of the table”).
With a slight reformulation:

5The list of publications is available at http://remenska.github.io
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After the input of a product and a rotation of the table, the clamp must be blocked before
the main controller can command a drilling.
This is in fact a response chain behavior pattern with a before-R scope. Indeed, the
formula used in [135] corresponds to this exact pattern.

The results from the survey are shown in Table 5.4. From a total of 178 property
descriptions encountered in the publications, around 70% could be fitted within the
standard PSP classification. If our extensions are taken into account, the coverage
is improved by about 10%. Among the 142 patternizable properties, there were 15
for which a conjunction of two patterns was necessary. The properties that could
not be captured by any patterns were usually such that a disjunction (set) of events
must be considered instead of a single event, within a pattern placeholder. This is a
current limitation of PASS, but enhancing the patterns in this direction is feasible.

The distribution of the patterns is shown in Figure 5.18. An immediate observa-
tion, consistent with surveys focusing on state-based systems, is that a rather small

Table 5.4: Survey results: property specifications with µ-calculus

Patternizable?

No Yes (PSP) Yes (Extensions) Total
36 (≈ 20%) 126 (≈ 70%) 142 (≈ 80%) 178
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number of patterns are sufficient to express the majority of requirements. In fact,
about 50% of the properties can be expressed with two patterns: absence and prece-
dence, which indicates that safety properties are the most common, if the focus is
not on a particular domain. Evidently, the most useful extensions are with respect
to the fairness assumptions (both for existence and response), encountered in 12 prop-
erties. It may be interesting to note that out of the 5 response chain properties, 4
were present in a single publication. The chain patterns are typically reported as
the least used, due to their complexity. The universality pattern was never used,
which is coherent with our observation that this pattern, in its original form, is not
really interesting for event-based systems. However, we found that the alternative
we provided (always-enabled) was used once. The results also indicate that the global
scope is favored, comprising about 50% of the used scopes. We suspect that this
is mostly due to the fact that safety properties typically must hold throughout the
entire system execution. Only one of our scope extensions, until-R, was captured in
3 publications or 5 properties in total.

5.6.2 Is Manual Formalization of Properties Error-Prone?

We encountered several publications with wrong (or suboptimal) property formal-
izations, where “wrong” means “not conveying the intention of the written natural
language requirement”. In the following we focus on these publications, discuss
each problematic formula in more depth, and provide the correct one. Where nec-
essary, we copy verbatim the informal requirement description, to avoid misinter-
pretation. We want to clearly state, however, that we intend no criticism on the
publication authors. These findings should only serve as an indication that writing
correct formulas is a demanding task, and should be supported by some guidance,
to avoid errors.

Verification of an Automated Parking Garage

In [137] the requirements of an automated parking garage model are verified by
extending the specification with error actions which are fired when a requirement
is violated. In that sense the approach resembles the monitor construction we pre-
sented in Section 5.4.4. Manually implementing such specification extensions can
be tedious, impractical for large models, and often error-prone, since the behavior
of the original model is altered in the process of augmenting the specification. Fur-
thermore, as already pointed out, not every type of property can be verified in this
manner.
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Analysis of a Fair Non-Repudiation Protocol

In [40] the authors design and verify a fair non-repudiation protocol. Repudiation
is the denial of a previously uttered statement. Non-repudiation should guarantee
that if an agent P sends a message m to agent Q, then P cannot deny having sent
the message and Q cannot deny having received it. Fairness is a necessary property
for communication protocols, and expresses that when the protocol session has ter-
minated, then Q has received m and evidence of origin if and only if P has received
evidence of reception. The research contribution is based on the idea of avoiding
the use of session labels for identifying individual session runs while still achieving
fairness, among other properties. An agent P performs the action initP(k, m) when
it engages in a protocol session, terminateP(k, m) when the session is over from P’s
point of view, and evidenceP(k, m) when it receives an evidence of reception of a
message m encrypted with key k. We examine the fairness property, stated and
formalized as follows:

Fairness (for P) means that if Q gets its evidence, then so shall P. This property says
that P does not terminate in an unfair state for P. But since P will eventually terminate
(verified with another property), P will indeed terminate in a fair state.

[(¬evidenceQ(k, m))∗. evidenceP(k, m). (¬evidenceQ(k, m))∗. terminateP(k, m)] false

This formula will refute a trace in which P gets evidence before the session termi-
nates, which is not the intention. The actions evidenceP and evidenceQ should be
swapped, as the property should describe “fairness for P”, while Q plays the role
of receiver (and a possible intruder). Thus, the correct formula should be:

[(¬evidenceP(k, m))∗. evidenceQ(k, m). (¬evidenceP(k, m))∗. terminateP(k, m)] false

meaning that any behavior in which Q gets evidence while P does not, before the
session is over from P’s point of view (terminateP), should not be allowed.

Verification of a Self-Configuration Protocol for Distributed Applications in the Cloud

The task of automatically configuring distributed applications in the cloud is tackled
in [170]. The paper focuses on a self-configuration protocol that is able to configure
a distributed application whose interconnected software components are deployed
and running on (possibly) different VMs, without any centralized server. To verify
that the components’ initialization dependencies are respected, i.e., a component
cannot be started before the components it depends on, the following example is
provided:

[true∗. startcomp_C1. true∗. startcomp_C2] f alse

If a component C1 is connected through a mandatory client interface to a component C2, we
generate the property above meaning that we will never find a sequence where C1 is started
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before C2.
Based on the given property description, this is an absence behavior pattern (C1
should not be started) with an until-R or a before-R scope, depending on whether it
is assumed that all components should eventually be started. If we do not rely on
such an assumption, an until-R scope should be used:

[(¬startcomp_C2)∗. startcomp_C1] false

The original formula will not refute a run (it will miss a property violation) in which
the component C2 is never started. The requirement that all components are eventu-
ally started is captured with a separate property in the publication. Coincidentally,
their verification results report a bug6 which does not ensure that all components in-
volved in the architecture are eventually started. This bug is hidden in the wrongly
specified formula.

Verification of a Dynamic Online Auction

Simulation and formal verification in the domain of business processes and com-
merce activities has been addressed in [42]. A dynamic online auction system has
been formally modeled and subsequently checked for correctness. The focus is on
a typical auction protocol, where, once the bidding is open, the duration is fixed,
and only one or no winner is chosen at the end. If interested in a particular auction,
a buying agent must subscribe to the auctioneer agent, in order to receive a call for
proposal. The protocol is modeled with a single auction, and a sale of one item
by one seller to n buyers who submit their bids to the auctioneer. A buying agent
can request to be removed from the auction by canceling the subscription. In the
following, we list the incorrectly specified properties, and provide the correct ones.
The auctioneer can not accept a subscription after the auction ends. This property is
formalized as:

⟨true∗. auctionFailure ∪ auctionSuccess. true∗. acceptSubscribe⟩true

The formula seems to capture exactly the opposite, namely, that an auction failure
or auction success can eventually be followed by an agent subscription. Even if we
assume that this is an unintentional error, and the whole formula was intended as
a negation, i.e., specified as:

¬(⟨true∗. auctionFailure ∪ auctionSuccess. true∗. acceptSubscribe⟩true)

it is formalized in a sub-optimal way for model checking. The correct specification
is a conjunction of two absence patterns with an after-Q scope:

[(¬auctionFailure)∗. auctionFailure. true∗.acceptSubscribe] f alse
and

6From the paper, it is not clear which exact property was violated.
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[(¬auctionSuccess)∗. auctionSuccess. true∗. acceptSubscribe] f alse

which should both hold individually. A very similar observation can be made about
the following property: An unsubscribed buyer can not receive a call for proposal. This
property is expressed as:

¬(⟨true∗. acceptCancelSub_buyer. true∗. callForProposal_buyer⟩true)

Moreover, it is stated that the auction specification supports the subscription and
unsubscription of a buyer at any time during the auction. It is not clear whether
this can be done multiple times, but if this is the case, the formula above will also
mistakenly refute a behavior where after cancellation, a buyer decides to subscribe
again. The property hereunder should formalize the requirement that after a sub-
scription, a buyer can receive a call for proposal:

⟨true∗. subscribe_buyer. true∗. callForProposal_buyer⟩true

Instead, the formula specifies that there exists a certain running scenario in which
a subscribed buyer will receive a call for proposal. It does not guarantee that a
subscribed buyer will eventually receive a call for proposal. Besides, the formula
will falsely accept a scenario where a subscribed buyer decides to unsubscribe and
then receives a call for proposal, as a valid one. Based on this brief description
from the paper, it is rather difficult to elicit the correct property behavior without
additional information on the meaning of “can receive a call for proposal”. If the
intent is that a subscribed buyer should be able to receive a call for proposal at any
point after subscription, then the correct formula (always-enabled behavior, after-Q
scope) should be:

[(¬subscribe_buyer)∗. subscribe_buyer. (¬callForProposal_buyer)∗]
⟨callForProposal_buyer⟩true

If instead, the intent is that a subscribed buyer should eventually be able to receive
a call for proposal, then the property (existence under fairness behavior, after-Q scope)
is slightly more relaxed:

[(¬subscribe_buyer)∗. subscribe_buyer. (¬callForProposal_buyer)∗]
⟨true∗. callForProposal_buyer⟩true

Verifying Erlang/OTP Components in µCRL

A model that supports the translation of the Open Telecom Platform finite state
machine (FSM) implementation from Erlang to µCRL, a predecessor of mCRL2,
is developed in [96]. The approach is experimentally evaluated on two small ex-
ample case studies, a door with code lock system and a coffee machine, both
translated into µCRL models. Subsequently properties are defined and formal-
ized in the µ-calculus, and checked for correctness with CADP. Although prop-
erty formalization and verification was probably not the primary objective of the
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approach, we nevertheless report on the mistakes we encountered there. The ac-
tual translation is quite involved and makes extensive use of µCRL custom data
types. Stacks are defined in µCRL with push and pop operations for manipulat-
ing the current state and data of the modeled FSM. These are encoded in a tuple
of the form tuple(state, tuplenil(state_data)) and saved on the stack. Synchronous
communication is modeled by synchronizing the action pair send_command and
receive_command into a new action cmd. The given coffee machine example has
three states: selection, payment and removal. Selection allows the user to choose
the drink, payment displays the price of the selected one and requires payment.
After sufficient coins have been paid, the machine goes to a state remove where
the drink is prepared and change is returned. The following (self-describing) ac-
tions are defined in the µCRL specification: display_price, pay_coin, return_coin and
remove_cup. The derived model is checked against the property:

[cmd(tuple(selection, tuple(cappuccino, tuplenil(5))))∗.
cmd(tuple(pay, tuplenil(5)))∗.(¬remove_cup)∗]⟨true∗. remove_cup⟩true

stating that, when cappuccino is selected and after £5 has been paid, the drink will be
prepared. To better understand the problem with this formula, this is its generic
form with placeholders:

[Q∗. P∗. (¬S)∗]⟨true∗. S⟩true

Based on the description, it should be a response pattern with an after-Q scope.
Namely, after the cappuccino is selected, if the correct amount is paid, then the
drink will eventually be prepared. The pattern template that captures it (under
fairness assumption) is:

[(¬Q)∗. Q. true∗. P. (¬S)∗]⟨true∗. S⟩true

Besides the fact that the original formula is wrong, its more problematic aspect is
that an action such as display_price, which displays the price for a selected drink,
is not taken into account even though it should be (the coffee machine FSM also
indicates this). In other words, it assumes that nothing should happen between Q
(cappuccino selection) and P (payment). The correct one takes this into account via
the true∗ regular expression which can capture any action. Since a sequence with-
out display_action in-between will not happen in practice, the original formula will
be trivially (vacuously) satisfied, i.e., potential problems will be hidden, because
the pre-condition (cappuccino selection followed immediately by payment) is never
manifested in the model behavior.

The FSM of the simple door with a code lock system consists of two states, locked
and open, initially set to locked, and a system code for opening the door. An external
action provides a password which is evaluated, and depending on the outcome, the
door is either open or a warning message is given and the door remains locked. One
of the properties is formulated as:
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⟨true∗. cmd(abb).
(pop_calls(tuple(s_locked, tuplenil(tuplenil(abc)))))∗. warning_message⟩true

with the intended requirement that when an incorrect password “abb” is received and
the current state is s_locked, the action warning_message will be fairly performed. This
formula does not convey the intention, it merely means that there is some behavior
in which, after providing an incorrect password, the door will be locked and a
warning message will be displayed immediately afterwards. It does not give any
guarantees with respect to the “will be fairly performed” part of the requirement,
rather, it means that it “may be performed”. Taking into account that this is a
response pattern (under fairness assumption), the correct formulation should be:

[(¬cmd(abb))∗. cmd(abb).
pop_calls(tuple(s_locked, tuplenil(tuplenil(abc)))). (¬warning_message)]

⟨true∗. warning_message⟩true

expressing that after an incorrect password is received, a locked door will be fol-
lowed by a warning message.

Continuing the same line of research, in [97] the authors present a more involved
case study, this time verifying an Erlang telecommunication system with a client-
server architecture. It consists of a database server that maintains clients’ data, and
a number of functional servers (FS) that process the clients’ requests. Each FS has a
certain capacity defined as the maximum number of clients that can be connected
simultaneously. Clients can communicate with any FS and perform typical opera-
tions such as calling. Upon disconnecting, the FS removes the client from its user
list and releases the line. A number of properties are verified with CADP on an
example system with two clients (m_1 and m_2) and a server (svr_1). For example,
the property when m_1 is connected to svr_1 and m_2 requests to svr_1, svr_1 will reply
m_2 with busy is formalized as:

⟨true∗. client_info(m_1, connected, svr_1)∗.
cmd(m_2, connecting)∗. client_info(m_2, busy, svr_1)⟩true

With a similar culprit as in previous cases, this simply states that there are certain
scenarios in which this behavior holds, it does not refute other possibly-incorrect
ones. The correct formula can be obtained as a response pattern (an attempt of
connecting should be followed by a busy reply) with an after-Q scope (after m_1 is
connected to svr_1). In another experiment with two servers, the following property
is checked:

⟨true∗. cmd(m_2, connecting)∗.
client_info(m_2, busy, svr_1)∗. cmd(m_2, connecting)∗.

client_info(m_2, connected, svr_2)⟩true

stating that when m_2 requests to connect to svr_1 and receives the reply of busy, it will
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request to connect to svr_2 and its request will be accepted by svr_2. The formula is
wrong for the same reason as the previous case. The correct one should convey
that, after receiving a busy signal, the client will (rather than may) request to connect
to the second server, and this request will be accepted. This response behavior with
an after-Q scope should be instantiated as:

[(¬client_info(m_2, busy, svr_1))∗. client_info(m_2, busy, svr_1).
true∗. cmd(m_2, connecting)] µX.⟨true⟩true ∧ [¬client_info(m_2, connected, svr_2)]X

By putting under scrutiny this subset of existing research on formalizing proper-
ties, it becomes evident that shortcomings and flaws are almost unavoidable due to
the complexity of the task. Observing these wrong formalizations, our conclusion
is that typical mistakes include vacuously satisfied formulas, where an assumption
(such as: two actions happen in immediate succession) is hidden in the property
formulation. This is dangerous, as it may lead to the false conclusion that there are
no problems in the underlying model, if the assumed property antecedent is false.
Furthermore, using the modal operator may (⟨_⟩) where must ([_]) was intended,
seems to be a recurring issue. This possibly stems from the more intuitive “linear
view” on the notion of time, such as that used with LTL. In this view, time is treated
as if each moment has a unique possible future, and formulas are interpreted over
the behavior of each single program run. On the other hand, µ-calculus treats each
moment in time as having multiple possible futures (branching time), thus inter-
preting the behavior over computation trees rather than linear structures. This is
considered less intuitive. For example, the µ-calculus formula:

[true∗.request.(¬response)∗]⟨true∗.response⟩true

is true in a computation tree if and only if in all its computations, every state
in which a request action has been taken, branches to at least one computation in
which response eventually happens. In contrast:

⟨true∗.request.(¬response)∗.true∗.response⟩true

is already true if some state in which request happens, leads to at least one com-
putation in which response eventually happens. In other words, it expresses that a
process can do a request followed by response, rather than, as the former formula
expresses, every request will be followed7 by response. In most practical situations,
the former behavior is desired. Although the goal of this survey was not to evalu-
ate PASS directly, we conjecture that for most of the formulas the tool could have
helped to avoid these common pitfalls.

7fairly, i.e., if not infinitely avoided.
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5.7 Conclusions

To facilitate automated formal analysis and verification of concurrent systems, prop-
erty specifications, in addition to models, need to be understandable and accessible
to non-experts, while at the same time mathematically precise. For this reason we
introduced PASS, a Property ASSistant that brings the process of correctly speci-
fying functional properties closer to software engineers. Reusing ideas from [51],
through a series of questions, the practitioner is guided to consider subtle aspects
about a property which are often overlooked. Motivated by the wish to keep soft-
ware engineers in the realm of their existing UML environment, rather than use an
external helper tool, PASS was developed as an Eclipse plug-in, thus maintaining
a strong relationship between the model elements and the property template ones.
Our approach to specifying properties is based on the pattern system [67] and the
µ-calculus mappings [134] provided by the CADP team, which we extended with
over 150 pattern variations, deemed useful for model checking tools that work with
the event-based modal µ-calculus.

Besides offering a natural language summary of the elicited property, a µ-calculus
formula and a UML sequence diagram are provided, depicting the desired behavior.
In addition, for a subclass of monitorable properties, PASS automatically generates
monitors to be used for (potentially) more efficient property-driven runtime verifi-
cation, also possible with the symbolic reachability tool LTSmin. We believe that
automating the property specification process, while keeping practitioners in their
familiar environment, should lead to more active adoption of methods for formal
analysis of designs. We demonstrated the applicability of PASS for eliciting prop-
erties in real-world settings, by examining some misbehaving DIRAC subsystems.
However, a thorough validation experiment with user tests should be conducted
as part of a future work, to provide a more conclusive evidence on the potential
effectiveness of PASS.

To reassess the usefulness of the pattern-based classification in event-based sys-
tems, we surveyed 25 published works that use µ-calculus to express system prop-
erties from different domains. In the context of the 178 properties encountered
in the survey, our pattern extensions improve the standard patterns classification
coverage by 10%. We observed a distribution of patterns which is consistent with
surveys focusing on state-based systems. The results also indicate that subtle mis-
takes can easily be made in complex requirements formalization, potentially hiding
behavioral problems in the models under verification.
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Chapter 6
Conclusions

Experience is what you get when you didn’t get what you wanted.

Randy Pausch

As software systems grow in size and complexity, it becomes more challenging
to ensure that they behave correctly. This is especially true for distributed sys-
tems, where a multitude of components are running concurrently and rather au-
tonomously (communicating and coordinating their actions at certain points in their
execution), making it difficult to anticipate all the possible behaviors emerging in
the system as a whole. Certain design errors, such as deadlocks and race-conditions,
can often go unnoticed when testing is the only form of verification employed in
the common software engineering life-cycle. Even when these problems have man-
ifested and are detected in a running software, revealing the root cause and repro-
ducing the behavior can be time consuming (and even impossible), given the lack of
control the engineer has over the execution of the concurrent components, as well
as the number of possible scenarios that could have produced the problem. This
is especially pronounced for large-scale distributed systems such as the Worldwide
LHC Computing Grid (WLCG [5]).

Formal verification methods offer more rigorous means of determining whether
a system satisfies certain behavioral requirements, and one highly effective verifica-
tion technique is model checking. Model checking is a mathematically-rooted algo-
rithmic procedure, nowadays automated by many actively-maintained and mature
tools. There are plenty of case studies of applying model checking in academia [30;
16; 180; 104; 145], and to a certain extent in industrial labs [18; 73; 13], revealing
critical bugs undetected before. The drawback, however, is the necessity to be pro-
ficient in formal language notations such as process algebras and temporal logics,
essential for describing a model of the system and the behavioral requirements to
be verified by these tools. In effect, the application of model checking seems to be
mostly focused on hardware, communication protocols, device drivers, and safety-
critical components, which are typically well structured, deterministic, or with a
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relatively small code-base. There are some success stories of applying model check-
ing in other domains, and at a larger-scale [41; 193; 111], but such practice is far less
frequent, to the best of our knowledge.

In the remainder of this chapter we summarize the thesis results, followed by
a discussion on the assumptions and limitations, and finally we suggest possible
future work directions.

6.1 Thesis summary
Inspired by the complexity of the DIRAC software (partly elaborated in Chapter 2),
the main question addressed in this thesis is how to integrate model checking into the
common software development cycle of realistic-scale, distributed, data-driven software, by
automating the aspects that require formal methods expertise.

Prior to answering this question, we first had to select a formalism suitable and
powerful enough for modeling and addressing design errors that are common for
such software. In Chapter 3 we studied the feasibility of using the mCRL2 language
for this purpose, by systematically abstracting the source code and modeling the
behavior of two DIRAC subsystems. The case studies indicated that mCRL2 has the
necessary concurrency, data abstraction and manipulation mechanisms to faithfully
model the subsystems. Furthermore, the mCRL2 toolset offered the analysis tools
needed to discover critical race conditions and livelocks, which were confirmed
to occur in DIRAC. By simulating, visualizing, and model checking the resulting
models with the mCRL2 toolset, we were also able to gain a better insight into
the system behavior, and replaying the counter-example traces helped in localizing
the detected problems. Taking into account that each release of DIRAC undergoes
testing and certification, before running in production, the advantages of using
model checking become apparent. Although some of the faulty behaviors already
manifested in production before the subsystems were formally modeled, they were
not localized within the timespan of the modeling & verification we performed.

Manually constructing a formal model based on analysis of a software imple-
mentation can be time consuming. In addition to the greater risk of making mod-
eling mistakes, in order to be useful, the formal model must be kept up to date
with the continuous software updates. Software implementations contain too many
language-specific details to serve as footprints for deriving formal models. It is a
common practice in software engineering to provide higher-level visual designs for
communicating and validating the requirements, before the implementation and
testing takes place. UML is generally accepted as a visual modeling language for
this purpose, supported by several widely adopted CASE tools. However, due to the
lack of a formal semantics definition, it is not directly usable for formal verification
methods such as model checking. There are numerous works on formalizing dif-
ferent structural and behavioral UML diagram types in the literature. In Chapter 4
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we presented a transformation approach for automatically deriving mCRL2 formal
models, based on UML sequence and activity diagrams. We discussed the seman-
tic choices we made with respect to some ambiguities in the (official) semi-formal
semantics, and compared our approach with the existing ones, in the context of a
well-known classification. The transformation preserves the object-oriented struc-
ture of the system, facilitating a straightforward round-trip approach in which the
verification counter-examples can also be visually presented as sequence diagrams.
To provide some empirical evidence and confidence in the correctness of the trans-
lation, we applied the tool-supported approach on DIRAC’s new workload system
functionality. We discovered the root cause of a logical flaw leading to no-progress,
which was observed earlier in the testing phase of this functionality.

To be amenable to automated model checking, behavioral properties must be
expressed as formulas in temporal logic. The mCRL2 toolset requires the use of the
modal µ-calculus for this; a very expressive logic, but not very intuitive nor acces-
sible, compared to simpler logics like LTL and CTL. Behavioral requirements for
software are typically expressed in natural language, and as such can be subjects to
different interpretations. In the context of the main research question, to bring the
process of correctly eliciting behavioral properties closer to software engineers, in
Chapter 5 we introduced a property assistant tool - PASS, as part of a UML-based
front-end to the mCRL2 toolset. Based on a well-known property pattern classifi-
cation from Dwyer et al. [67], which we extended with new pattern variations for
the event-based modal µ-calculus, the tool provides assistance to non-experts in
eliciting properties which capture the required behavior precisely and unambigu-
ously. Besides a µ-calculus formula, the tool outputs a natural language summary,
and a UML sequence diagram depicting the property. In addition, for a subclass
of monitorable properties, PASS automatically generates monitors to be used for
(potentially) more efficient property-driven runtime verification. We demonstrated
the usage of PASS on DIRAC’s behavior.

Dwyer et al.’s property pattern classification is based on a large literature survey
of how specification formalisms are used in practise. Since we did not encounter
any µ-calculus formulas in their collection repository, we were curious whether its
usage differs significantly from other formalisms. We surveyed 25 published works
that use µ-calculus to express system properties from different domains. From the
178 properties in the survey, our pattern extensions improve the standard patterns
classification coverage by 10%. The modal µ-calculus, while considered less intu-
itive compared to the more commonly used ones (like LTL and CTL), is able to
capture certain property patterns which either LTL or CTL cannot. We observed a
distribution of patterns which is rather consistent with similar surveys focusing on
other formalisms. The results also indicate that subtle mistakes can easily be made
when constructing temporal logic formulas manually.



118 CHAPTER 6. CONCLUSIONS

6.2 Limitations and Future Directions

To claim that the work in this thesis has fully succeeded in the quest for a definite
closure of the gap between software engineering and model checking, would be
disingenuous. One will almost always have had more research ideas, than one
could manage to carry out. In the following, we briefly re-iterate assumptions we
made, discuss some of the limitations, and suggest possible future work directions.

Relying on UML designs as a source for building formal behavioral models
imposes certain limitations. Large-scale software nowadays almost unavoidably
re-uses existing software components, usually as external libraries. DIRAC is no
exception to this. The usage of external libraries in UML is reflected only in struc-
tural diagrams (Component diagrams, in particular). This means that we need to
make certain assumptions when abstracting the behavior at the boundaries of the
modeled system. This assumed behavior at the boundaries can be included in se-
quence diagrams by mimicking the functionality provided by the external libraries,
and wrong assumptions can lead to incorrect models, obviously. The assumptions
must be carefully reviewed when a property violation occurs, which involves the
usage of such an external library.

Incomplete models are common in the early phases of the software engineer-
ing life-cycle, when they are often defined at a higher level of abstraction, with
refinements taking place later. The model transformation approach described in
Chapter 4 assumes that all behavior about the system is present in the UML design.
This requirement can be seen as too strict, depending on the precise meaning of
“incomplete”. For instance, while some behavior (like method calls, or entire com-
ponents) may be left unspecified, a loop combined fragment with a missing Boolean
condition to specify the loop termination, is not permitted. Process algebra models,
like the ones written in mCRL2, are closed, meaning that the behavior which is not
modeled, is assumed not to happen. Leaving out behavior unspecified is generally
permitted, but then there is a risk that design errors are hidden in the abstraction.
Underspecified modeled behavior is in most cases not permitted, although there
are certain defaults which the transformation assumes, in absence of information
(e.g., if the multiplicity of a method argument is not specified, it is assumed to be
1). Verification of partial and incomplete models is still an open research topic. For
example, multi-valued model checking [98] could be useful for analyzing models
that contain uncertainty or inconsistency. In [33], a method called model-based in-
tegration and testing was developed, which allows to integrate formal (executable)
models of system components that are not yet physically realized, with available re-
alizations of other components. Models should exist before their implementations.
Coupling them with the already-available component realizations via an appropri-
ate infrastructure enables earlier detection and prevention of problems, compared
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to real system testing and integration. The potential of the proposed method is
demonstrated by its application to the development of a part of a realistic industrial
system, namely the ASML wafer scanner.

The assumption that UML models, and in particular sequence diagrams, are al-
ways available for a software, may also not hold. Such is the case with DIRAC, for
example. Reverse engineering sequence diagrams has been the focus of research for
a while now [35; 22; 169; 94]. However, tool-supported approaches we came across
are scarce, restricted to Java, and based on collecting traces of program execution.
The trace data is then translated into sequence diagrams, using higher-level anal-
ysis to synthesize loops, alternative and parallel operator fragments. Recovering
sequence diagrams from program execution traces has practical limitations. While
it may be more useful for web applications, large-scale software which is highly
data-driven will almost certainly result in incomplete, and even incorrect models.
Nevertheless, they could serve as a starting point. It would be interesting to further
investigate the feasibility of using such an approach on a software like DIRAC, on
the longer run. Perhaps a tighter integration of static (code) and dynamic (execu-
tion) analysis will deliver better results in future research.

Given that the approach in Chapter 4 transforms each UML class method into
a separate mCRL2 process definition, and the transformation preserves most of
the object-oriented information, process proliferation is likely to happen for larger
UML models, leading to a state space explosion. In the Executor Framework case
study of Section 4.4 there are as many as 50 processes, with a generated model of
over 2k lines of mCRL2 code, and already generating the entire state space becomes
problematic at this scale. Using the generated monitor for a given property, when
possible, in order to turn the model checking problem into a reachability one, is one
way to tackle the problem. The mCRL2 and LTSmin toolsets have multiple different
model exploration and minimization strategies which can be employed, however,
there is no “winning” combination which works with the same efficiency for dif-
ferent models. This still requires a certain level of ingenuity, if options beyond the
default ones are to be used. These toolsets constantly evolve and improve and are
able to handle large models. Nevertheless, state space explosion can be a serious im-
pediment. Our approach can be improved with some optimizations. For example,
nested private method calls within a class can be “flattened” into a single mCRL2
process; similarly, if a particular sequence of method calls always happens in the
same order, they can be “merged” into a single mCRL2 process. At the time of
writing, the multi-core [123] LTSmin backend was the only available tool exploiting
parallel algorithms for model checking mCRL2 models. However, applying it to the
Executor Framework and the SMS did not bring any obvious benefits compared to
sequential exploration. There could be various reasons for this. The amount of par-
allelism in our models may not be sufficient for the multi-core algorithms to really
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scale. The size of the data domain in the models is probably the dominant resource
consumer, incurring significant memory overheads, which cannot be avoided in the
multi-core setting either.

In general, if a property violation is found, a counter-example trace is visualized
as a sequence diagram. However, a practical limitation of the counter-example
visualization surfaces when checking liveness properties using the symbolic PBES
tools from mCRL2. As already stated earlier, a violation of liveness properties can
only be detected by an infinite execution trace, and visualizing the “cryptic” trees
of PBES variables instantiations that the tools produce in such case, is not tackled
in this thesis. These tools do not (yet) provide feedback in terms of some counter-
example in case the property fails to hold. A potential solution to this problem has
been recently addressed in [56].

The criticism that a more systematic evaluation of the PASS tool presented in
Chapter 5 is needed, is clearly pertinent. The main reason is a practical one of
timing constraints: performing such evaluation would require setting up controlled
experiments and involving more users over a longer time span.

We have shown that the approach taken in this thesis can be useful, but this
work is far from a complete push-button solution to the problem of making model
checking a common and largely automated software engineering practise. We hope,
however, that the results presented here will inspire further research into the field,
until the gap between these two disciplines is finally closed.

As one possible direction for future work, it would be interesting to explore
beyond discovery of behavioral problems, in particular in the area of performance
assessment of models. The SPT/MARTE [93] UML profiles provide support for
annotating sequence diagrams with quantitative information such as time, through-
put, and resource usage. Although this type of analysis is a primary concern for
the domain of real-time and embedded systems, valuable insight can also be gained
about communication costs, delays, and various bottlenecks in distributed systems.
Using these profiles in the context of formal verification has been a popular area
of research [175; 150; 43; 199] for some time. Adding this kind of information to
traditional process algebra models means getting in the domain of stochastic pro-
cess algebra. Random variables with exponential distribution are typically associ-
ated with the designated events, to express system transitions with duration, which
could be estimates of processing time or communication overhead. We do not nec-
essarily have to use another formalism for enhancing the models with stochastic
information. The CADP toolset for analysis of stochastic models is well integrated
with mCRL2 for this purpose. CADP can explore and manipulate mCRL2 specifi-
cations via an interface for a common LTS format representation [80] which both
tools understand. However, in such case, the state space explosion problem will
obviously become even more pronounced.



Samenvatting (Summary in Dutch)

Doordat software voortdurend groeit in grootte en complexiteit is het een steeds
grotere uitdaging om er voor te zorgen dat het zich correct gedraagt. Dit geldt
vooral voor gedistribueerde systemen waar een veelheid aan componenten gelijkti-
jdig draaien. Hierdoor is het moeilijk om al het mogelijke gedrag van het systeem
als geheel te anticiperen. Sommige ontwerpfouten, zoals impasses en race-condities,
blijven vaak onopgemerkt als het testen van software de enige vorm van controle is
tijdens de ontwerpcyclus van software. Zelfs als fouten ontdekt worden tijdens het
draaien van software dan is het vaak tijdrovend (of zelfs onmogelijk) om de uitein-
delijke oorzaak te achterhalen doordat de programmeur nauwelijks invloed heeft
op de uitvoering van onderdelen die gelijktijdig draaien en door de hoeveelheid
mogelijke scenario’s die het probleem veroorzaakt kunnen hebben. Dit geldt vooral
voor grootschalig gedistribueerde systemen zoals het Worldwide Large Hadron Col-
lider Computing Grid (Wereldwijd Grote Hadronen-Botser Computernetwerk).

Formele verificatie methoden bieden grondiger manieren om te bepalen of een
systeem voldoet aan bepaalde vereisten met betrekking tot gedrag. Een erg ef-
fectieve verificatie techniek is modelchecken. Modelchecken is een op wiskunde
gebaseerd algoritmische procedure die tegenwoordig automatisch gedaan wordt
door vele actief onderhouden en uitontwikkelde gereedschappen. Een nadeel is
echter dat het nodig is om bedreven te zijn in formele-taalnotaties zoals procesal-
gebra en temporele logica die onontbeerlijk zijn voor zowel de beschrijving van het
model van het systeem en de eisen aan het gedrag die door deze gereedschappen
getoetst moeten worden.

In dit proefschrift beantwoorden we de vraag hoe modelchecken geïntegreerd
kan worden in de gebruikelijke ontwikkelingscyclus van distribueerde, datagedreven
software met een realistische grootte, met het automatiseren van die aspecten die
gespecialiseerde kennis van formele methoden vereisen. Voor dit doel kozen we een
formalisme dat krachtig genoeg is om ontwerpfouten die regelmatig voorkomen in
dergelijke software’s te modelleren en aan te pakken. De aanleiding is DIRAC, een
raamwerk voor gedistribueerde “grid” software dat wordt ontwikkeld en gebruikt
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door de fysicagemeenschap van de Europese organisatie voor deeltjesfysica (CERN).
We onderzoeken of het mogelijk is om de mCRL2 taal te gebruiken door van twee
deelsystemen van DIRAC systematisch de broncode te abstraheren en het gedrag
te modelleren. De studies geven aan dat mCRL2 de nodige mechanismen heeft om
van de deelsystemen de gelijktijdigheid, data-abstractie en manipulatie getrouw te
modelleren. Door simulatie, visualisatie en toetsing van de resulterende modellen
met de mCRL2 gereedschapskist werd het voor ons mogelijk om een beter inzicht
te krijgen in het gedrag van het systeem. Het afspelen van tegenvoorbeelden hielp
in het lokaliseren van de opgemerkte problemen. Hoewel een deel van het foutieve
gedrag al in de praktijk naar voren was gekomen voordat de deelsystemen formeel
gemodelleerd waren, was het nog niet gelokaliseerd binnen de tijdspanne waarin
we de modellering en verificatie uitgevoerd hebben.

Het met de hand construeren van een formeel model voor een concrete soft-
ware kan tijdrovend zijn. Daarbij is er het risico om fouten te maken. Bovendien,
moet het model bijgewerkt blijven bij voortdurende veranderingen aan software,
om nuttig te zijn. Programma’s bevatten te veel taalspecifieke details om als uit-
gangspunt te dienen voor het afleiden van modellen. Bij software engineering wor-
den hoogniveau visuele ontwerpen gemaakt voor overleg over en het valideren
van vereisten voordat de uitwerking en het testen plaats vinden. Universal Mod-
eling Language (UML, universele modelleringstaal) wordt algemeen geaccepteerd
als een visuele modelleertaal voor dit doel. We presenteren een aanpak voor het
automatisch afleiden van een mCRL2 formeel model door de transformatie van
UML sequentie- en activiteitsdiagrammen. We bespreken de keuzes op het ge-
bied van semantiek die we gemaakt hebben waar het gaat om ambiguïteiten in
officiële halfformele UML-semantiek en we vergelijken onze aanpak met een al
bestaande aanpak binnen het kader van een bekende classificatie. De transformatie
bewaart de object georiëneerde structuur van het systeem en maakt het eenvoudig
om tegenvoorbeelden van verificatie visueel te presenteren als sequentiediagram-
men. Om wat praktijk ervaring en vertrouwen te wekken in de juistheid van de
transformaties passen we de gereedschapondersteunde aanpak toe op het nieuwe
werkbelastingsysteem van DIRAC. We ontdekken de uiteindelijke oorzaak van een
logische fout die er voor zorgt dat er geen vooruitgang meer geboekt wordt. Een
fout die eerder tijdens testfase van deze functie waargenomen is.

In modelchecken moeten eigenschappen van gedrag uitgedrukt worden als for-
mules in temporele logica. De mCRL2 gereedschapskist vereist het gebruik van
modale µ-calculus voor dit doel; een erg expressieve logica, maar niet erg intuïtief
of toegankelijk. Vereisten voor gedrag van software worden normaal gesproken
uitgedrukt in natuurlijk taal en zijn als zodanig op meerdere manieren uit te leggen.
In het kader van de centrale onderzoeksvraag, het correct uitdrukken van gedrag-
seigenschappen dichter bij programmeurs te brengen, voegen we een eigenscha-
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passistent met de naam PASS toe aan de op UML gebaseerde frontend van de
mCRL2 gereedschappen. Dit gereedschap assisteert leken in het naar voren halen
van eigenschappen die het vereiste gedrag precies en niet-ambigu uitdrukken. Het
is gebaseerd op een bekende classificatie van patronen van eigenschappen die we
uitgebreid hebben met nieuwe patroonvariaties voor de event-based modale µ-
calculus. Naast de µ-calculus formules biedt het gereedschap een samenvatting in
natuurlijke taal en een UML sequentiediagram dat de eigenschap afbeeldt. Verder
genereert PASS automatisch voor een deel van de eigenschappen observatiestruc-
turen die (potentieel) gebruikt kunnen worden voor de efficiëntere eigenschapge-
dreven verificatie tijdens de uitvoering. We demonstreren het gebruik van PASS
met betrekking tot het gedrag van DIRAC.

De classificatie van eigenschappatronen is gebaseerd op een groot literatuuron-
derzoek naar het gebruik van specificatieformalismen in de praktijk. Aangezien
we geen µ-calculus formules aantroffen in de verzameling waren we benieuwd of
het gebruik significant afwijkt van dat van andere formalismen. We hebben 25
gepubliceerde werken in kaart gebracht die µ-calculus gebruiken om eigenschap-
pen uit te drukken van systemen uit verschillende domeinen. Ten opzichte van de
178 eigenschappen uit het literatuuronderzoek bieden onze extra patronen een 10%
extra dekking van de geclassificeerde patronen. De modale µ-calculus, die als min-
der intuïtief beschouwd wordt dan meer algemene logica’s (zoals LTL - Lineaire
Temporele Logica, en CTL - Computationele Boom Logica), is in staat sommige
patronen van eigenschappen te omvatten waartoe LTL en CTL afzonderlijk niet in
staat zijn. We hebben een verdeling van de patronen waargenomen die behoorlijk
consistent is met vergelijkbare onderzoeken naar andere formalismen. De resultaten
geven ook aan dat het eenvoudig is om subtiele fouten te maken bij het handmatig
samenstellen van temporele logicaformules.

Als een mogelijke toekomstige richting zou het interessant zijn om dit werk uit
te breiden buiten het ontdekken van gedragsproblemen, in het bijzonder op het
gebied van het inschatten van prestaties aan de hand van UML modellen. Hoewel
dit type analyse van primair belang is voor “real-time”- en embedded systemen
kunnen ook waardevolle inzichten verkregen worden over de communicatiekosten,
vertragingen en verschillende flessenhalzen in gedistribueerde systemen.
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A.1 Definitions

Structural Operational Semantics (SOS) is a means to define the operational seman-
tics, i.e., the actions that the process, described by a piece of syntax, can perform.
The SOS for the mCRL2 process algebra is represented by a Labeled Transition
System (LTS). The behavior of the LTS is defined in terms of the behavior of its
parts inductively, defining the valid transitions of a piece of syntax, in terms of the
transitions of its components (structure).

In this section we formally define the syntactic elements of mCRL2 and the asso-
ciated semantics in SOS. We also provide the formal semantics of modal µ-calculus
formulas. By providing such mapping of the syntactic constructs to a mathematical
domain, we have the necessary grounds to prove the monitor construction correct-
ness. We restrict ourselves to the untimed fragment of the mCRL2 language, as
used throughout the thesis. Readers interested in the full syntax and semantics of
mCRL2 (including the timed fragment), can refer to [84].

For the following definitions, we assume that processes are interpreted in the
presence of a data model (D-model), providing an interpretation (or valuation) σ

for assigning values to variables. The valuation maps all variables x : D (where D
is a sort) into a corresponding semantical domain MD, i.e., σ(x) ∈ MD. In the
presence of a D-model, we assume that for each element e ∈ MD, the syntactic
notation for e is te. In this D-model, MB is a set with two elements of Boolean
sort, denoted by true and false such that true,false holds. We write σ[d/x] for a
valuation with function update that maps all variables according to σ except for x.
This variable is mapped to the value d. We write σ[di/xi]1≤i≤n for the valuation
that maps all variables according to σ except that it maps each variable xi to di. The
interpretation function extends trivially to data expressions. For example, σ(true) =
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true and σ( f alse) = false for every valuation σ, i.e., the elements represent the truth
values true and false.

In Chapter 3 we introduced the syntax of the mCRL2 language and we sketched
how it is used to describe process behavior. We now re-iterate the syntax and give
more formal definitions of action declarations, syntactic multi-actions, and process
expressions.

Definition A.1.1 (Action declaration). An action declaration is an expression of the
form a : D1 × · · · × Dn where n ≥ 0, and for all 0 ≤ i ≤ n, Di are sorts.
An action with action label a and data expressions d1, . . . dn is denoted as a(d1, . . . dn).
Note that data parameters in the syntactic (multi-)actions are data expressions and
that the data parameters in the semantic (multi-)actions are values. The set of action
labels is shared among the syntactic and semantic (multi-)actions.

Definition A.1.2 (Syntactic multi-actions). Let A be a set of action labels. A syntac-
tic multi-action is a collection of actions that are specified to occur at the same time
instant. They have the following BNF:

α ::= τ | a(d1, . . . , an) | α|β

Here, τ represents the empty multi-action, the term a ∈ A is an action label and
(d1, . . . dn) is a vector of data expressions of sorts (D1, . . . , Dn) respectively, while
α|β are syntactic multi-actions.

Definition A.1.3 (Process expression). Process expressions are expressions with the
following BNF syntax:

p ::= α | p + p | p · p | δ | c→ p | c→ p ⋄ p | ∑
v:D

p | p∥p | p|p |

ΓC(p) | ∇V(p) | ∂B(p) | ρR(p) | τI(p) |

X | X() | X(d1, . . . , dn) | X(v1 = d1, . . . , vn = dn)

Here, α is a multi-action, c is a Boolean data expression, v, v1, . . . , vn are variables,
D is a sort, C is a set of communications, V is a set of multi-action labels, I and B
are sets of action labels, R is a set of renamings, X is a process name and d1, . . . , dn
are data expressions.

Definition A.1.4 (Process equation). A process equation is an expression of the form
X(d1 : D1, . . . , dn : Dn) = p where n ≥ 0, and di are variables of sorts Di, and p is
a process expression.

Definition A.1.5 (Process specification). A process specification is a five tuple PS =

(D, AD, PE, p,X ) where:
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• D is a data specification

• AD is a set of action declarations

• PE is a set of process equations

• p is a closed process expression (i.e., one without free data variables), called
the initial process

• X is a set of global variables.

For simplicity, we also omit the formal definitions (available in [84]) on well-
typed process specifications, and assume that all their underlying components are
well-typed as well, i.e., the syntactic constructs defined here guarantee that they
have semantics. The semantics of a process is defined using operational (inference)
rules, which use several notations on semantical multi-actions. We define these
below.

Definition A.1.6 (Semantics of multi-actions). In the presence of a D-model, we
inductively define the semantical interpretation [[·]]σ of a multi-action α for any data
valuation σ as follows:

• [[τ]]σ = τ

• [[a(t1, . . . , tn)]]
σ = a([[t1]]

σ, · · · , [[tn]]
σ)

• [[α|β]]σ = [[α]]σ|[[β]]σ

In other words, a semantical multi-action is the interpretation of a syntactic multi-
action, in which the vector of data expressions (t1, . . . , tn) are interpreted under a
data valuation σ. Here | at the right-hand side is a new operator on semantical
multi-actions. We also use τ for the semantical empty multi-action, but use ω and
ω for semantical multi-actions in general.

Definition A.1.7. Let ω be a semantical multi-action. We use the following notations
for the SOS rules defined in Table A.5:

• ω{} is the set of all actions occurring in ω. In particular a{} = {a}, (α|β){} =
α{} ∪ β{} and τ{} = ∅.

• Let R be a set of renamings. R • ω is the semantical multi-action where the
labels have been renamed according to R. More precisely: R • a(d1, . . . , dn) =
b(d1, . . . , dn) if a → b ∈ R. Otherwise the result is just a(d1, . . . , dn). One
particular renaming operator we use is ηI(ω), which renames all action labels
in I to the (visible) internal action int. Furthermore, we use θI(ω) which
removes all actions with labels that occur in I.
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• We use ω for the multi-action ω where all data parameters are removed. In
particular, a(t1, . . . , tn) = a.

• Communication is defined using γC. It says that a communication within dif-
ferent actions in a multi-action takes place, exactly when this communication
occurs in C and the arguments of these actions have the same data arguments.
By defining γC1

∪
C2

(ω) = γC1
(γC2

(ω)) we can apply each renaming on its
own:
γ{a1|...|an→b}(ω) =

b(
−→
d )|γ{a1|...|an→b}(ω) if actions ai(

−→
d ) occur in ω for all 1 ≤ i ≤ n

α otherwise.

where ω = ω \ (a1(
−→
d )| . . . |an(

−→
d )), i.e., the multi-action ω from which the

actions ai(
−→
d ) are removed.

Definition A.1.8 (Semantics of a process). Let PS = (D, AD, PE, p,X ) be a process
specification. We use a substitution ξ mapping the variables in X to closed data
expressions. For the definition of the substitution function ξ as well as closed data
and process expressions, please refer to [84].
We define the semantics of PS as a labeled transition system A = (S, Act,−→, s0, T)
as follows:

• The states S are closed process expressions p′ with syntax given in Def. A.1.3.
In addition, there is one special termination state, denoted by

√
.

• The transitions are inductively defined by the operational rules in Tables A.1,

A.2, A.3, A.4, A.5, and A.6. The transition relation is denoted by p′ ω−→ p′′

or p′ ω−→
√

.

• The set Act of labels contains the semantical multi-actions.

• The initial state s0 is ξ(p).

• The set of successfully terminating states T contains only
√

,i.e., T = {
√
}.

Given a labeled transition system that forms the semantics of a process expres-
sion, we can define in which states a modal µ-calculus formula holds. To do so,
we first define the semantics of an action formula, a regular formula, and finally, a
modal µ-calculus formula.
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Definition A.1.9 (Semantics of action formulas). Let A = (S, Act,−→, s0, T) be a
labeled transition system where Act consists of all semantical (multi-)actions. For
the syntax of action formulas α, given by the following grammar:

α1, α2 ::= b | α(e) | ¬α | α1 ∩ α2 | α1 ∪ α2 | ∃d : D.α

we define the semantics, denoted [[α]]σ, where σ is a valuation, as a set of semantical
(multi-)actions given inductively by:

[[b]]σ =

{
Act if σ(b) = true,

∅ otherwise.

[[α(e)]]σ = {α([[e]]σ)}
[[¬(α)]]σ = Act \ [[α]]σ

[[α1 ∩ α2]]
σ = [[α1]]

σ ∩ [[α2]]
σ

[[α1 ∪ α2]]
σ = [[α1]]

σ ∪ [[α2]]
σ

[[∃d : D.α]]σ =
∪

x∈MD

[[α]]σ[x/d]

Here [[e]]σ denotes the semantics of the data expression e in an environment σ.
Note that the occurrence of [[b]]σ on the left-hand side denotes the action formula
semantics (i.e., a set of actions), while the right-hand side σ(b) denotes the Boolean
expression’s semantics, i.e., true or false.

We further define the semantics of regular formulas. A regular formula R allows
the use of regular expressions over action formulas.

Definition A.1.10 (Semantics of regular formulas). Let A = (S, Act,−→, s0, T) be
a labeled transition system where Act consists of all semantical (multi-)actions. For
the syntax of regular formulas R, given by the following grammar:

R ::= α | R · R | R + R

we inductively define the semantics, denoted ||R||σ ⊆ Act∗, where σ is a valuation,
as a word over the alphabet Act:

||α||σ = [[α]]σ

||R1 · R2||σ = ||R1||σ ◦ ||R2||σ
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||R1 + R2||σ = ||R1||σ ∪ ||R2||σ

In the semantic interpretation ||R||, the operators ◦ and ∪ denote the concatenation
and union operations on sets. The α regular formula characterizes single-action
words a such that a ∈ [[α]].

Definition A.1.11 (Semantics of modal µ-calculus formulas).

Let A = (S, Act,−→, s0, T) be a labeled transition system where Act consists of all
semantical (multi-)actions. We consider only a fragment of the modal µ-calculus for-
mulas syntax necessary for the monitor construction proof, given by the following
grammar:

ϕ ::= b | ¬ϕ | ϕ ∧ ϕ | ∀d : D.ϕ | [R]ϕ

We define the semantics of a modal µ-calculus formula ϕ, denoted [[ϕ]]σ,ρ, where σ

is a valuation, and ρ is a logical variable valuation, as a set of states of the labeled
transition system where ϕ is valid, by:

[[b]]σ,ρ =

{
S if σ(b) = true,

∅ otherwise.

[[¬ϕ]]σ,ρ = S \ [[ϕ]]σ,ρ

[[ϕ1 ∧ ϕ2]]
σ,ρ = [[ϕ1]]

σ,ρ ∩ [[ϕ2]]
σ,ρ

[[∀d : D.ϕ]]σ,ρ =
∩

x∈MD

[[ϕ]]σ[x/d],ρ

[[[R]ϕ]]σ,ρ = {s ∈ S | ∀s′ ∈ S, α ∈ ||R||σ : s α−→ s′ ∧ α ∈ ||R||σ ⇒ s′ ∈ [[ϕ]]σ,ρ}

Here [[e]]σ denotes the semantics of the data expression e in an environment σ. We
say that a formula ϕ holds in A iff s0 ∈ [[ϕ]]σ,ρ for any σ, ρ and [[·]]. Note that we omit
the definition of the semantics of the fixpoint operators µ and ν, and the diamond
modality ⟨_⟩, as they are not necessary for proving the monitor correctness.
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A.2 Proof of the Monitor Construction Correctness

Lemma 1. Let η be an arbitrary valuation function for data variables, and let tη be a
substitution defined as tη(v) = td iff η(v) = d for d ∈ MD. For all action formulas
α that do not contain variable v, and all lists l, we have that the action a(d) ∈ [[α]]η

iff [[Condl(a(v), α) tη [v := td]]] holds.

Proof. We use structural induction on the structure of the action formula α. Let η

be arbitrary.

• Case α ≡ b. Then, by Def. A.1.9: Semantics of action formulas [[b]]η = Act if
η(b) holds and [[b]]η = ∅ otherwise. We distinguish two cases.

1. Case η(b) holds. Then (Def. A.1.9: Semantics of action formulas)
[[b]]η = Act. Clearly, for all values d ∈ MD for which

[[Condl(a(d), b) tη [v := td]]] holds, we have a(d) ∈ Act. For the reverse,
let a(d) ∈ Act. We show that then [[Condl(a(v), b) tη [v := td]]] holds.

We have [[Condl(a(v), b) tη [v := td]]] = (monitor definition) = [[b tη [v :=
td]]] = [[b]]η = η(b), which holds, by assumption.

2. Case η(b) does not hold. Then (Def. A.1.9: Semantics of action formulas)
[[b]]η = ∅. We must show that then [[Condl(a(v), b) tη [v := td]]] does not
hold for all a(d). Let a(d) ∈ Act be arbitrary.

We have [[Condl(a(v), b) tη [v := td]]] = (monitor definition) =[[b tη [v :=
td]]] = [[b]]η = η(b), which does not hold, by assumption.

• Case α ≡ a′(e). Then, by Def. A.1.9: Semantics of action formulas [[a′(e)]]η =

{a′([[e]]η)} = {a′(η(e))}. Let a(d) be arbitrary. We distinguish two cases.

1. Case a = a′. Then we have [[Condl(a(v), a′(e)) tη [v := td]]] = (monitor
definition) [[v = e tη [v := td]]] = [[true tη [v := td]]] iff d = η(e), which
holds iff a(d) ∈ {a′(η(e))}.

2. Case a , a′. Then we have [[Condl(a(v), a′(e)) tη [v := td]]] = (monitor
definition) = [[ f alse tη [v := td]]] which does not hold. But we also do not
have a(d) ∈ {a′(η(e))} in that case.

Induction hypothesis: For any valuation η, it holds that a(d) ∈ [[α]]η iff

[[Condl(a(v), α) tη [v := td]]] holds.

• Case α ≡ ¬α1, and our statement holds by induction for α1. By defini-
tion, we have a(d) ∈ [[α]]η iff a(d) ∈ [[¬α1]]

η iff (Def. A.1.9: Semantics of
action formulas) a(d) ∈ Act \ [[α1]]

η iff (set theory) ¬(a(d) ∈ [[α1]]
η) iff (in-

ductive hypothesis) ¬[[Condl(a(v), α1) tη [v := td]]] iff (monitor construction)
[[Condl(a(v),¬α1) tη [v := td]]] iff [[Condl(a(v), α) tη [v := td]]].
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• Case α ≡ α1 ∧ α2, and our statement holds by induction for α1 and α2. By
definition, we have a(d) ∈ [[α]]η iff a(d) ∈ [[α1 ∧ α2]]

η iff (Def. A.1.9: Se-
mantics of action formulas) a(d) ∈ [[α1]]

η ∩ [[α2]]
η iff (set theory) a(d) ∈

[[α1]]
η ∧ a(d) ∈ [[α2]]

η iff (inductive hypothesis) [[Condl(a(v), α1) tη [v := td]]]
∧ [[Condl(a(v), α2) tη [v := td]]] holds iff (monitor construction)

[[Condl(a(v), α1 ∧ α2) tη [v := td]]] holds iff [[Condl(a(v), α) tη [v := td]]].

• Case α ≡ ∃d′ : D.α1, and our statement holds by induction for all η and α1.
By definition, we have a(d) ∈ [[α]]η iff a(d) ∈ [[∃d′ : D.α1]]

η iff (Def. A.1.9: Se-

mantics of action formulas) a(d) ∈ ∪
d′∈D[[α1]]

η[d′/v′] iff (set theory) a(d) ∈

[[α1]]
η[d′/v′] for some d′ ∈ D iff (inductive hypothesis)

[[Condl(a(v), α1) tη [v := td]]]
η[d′/v′] holds for some d′ ∈ D iff

∃d′ : D.[[Condl(a(d), α1) tη [v := td]]] iff (monitor construction)

[[Condl(a(v), ∃d′ : D.α1) tη [v := td]]] iff [[Condl(a(v), α) tη [v := td]]].

□

Lemma 2. Let η be an arbitrary valuation function for data variables, and let tη be a
substitution defined as tη(v) = td iff η(v) = d for d ∈ MD. For all regular formulas

R, we have that the path ρ ∈ [[R]]η iff TrRl(R) tη
ρ
−→
√

.

Proof. We use a structural induction on the structure of the regular formula R. Let
η be arbitrary.

• Case R ≡ α. By Lemma 1, we have a(d) ∈ [[α]]η iff [[Condl(a(v), α) tη [v := td]]]
holds, iff (Def. A.1.8: Semantics of a process)

[[
⊕

a∈Act ∑ v : D. Condl(a(v), α) → a(v)]]η
a(d)
−−−→

√
iff (monitor construction)

TrRl(α) tη
a(d)
−−−→

√

Induction hypothesis: For any valuation η, it holds that ρ ∈ [[R]]η iff

TrRl(R) tη
ρ
−→
√

.

• Case R ≡ R1 · R2, and we have, by our inductive hypothesis, that the state-
ment holds for R1 and R2. Observe that we have ρ ∈ [[R]]η iff ρ ∈ [[R1 ·R2]]

η iff
(Def. A.1.10: Semantics of regular formulas) ∃ρ1, ρ2 such that ρ = ρ1 · ρ2 and
ρ1 ∈ [[R1]]

η , ρ2 ∈ [[R2]]
η iff (inductive hypothesis) ∃ρ1, ρ2 such that ρ = ρ1 · ρ2

and TrRl(R1) tη
ρ1−→
√

and TrRl(R2) tη
ρ2−→
√

iff (Def. A.1.8:Semantics of a

process) TrRl(R1) tη
ρ1−→ TrRl(R2) tη

ρ2−→
√

iff

TrRl(R1) tη · TrRl(R2) tη
ρ1·ρ2−−−→

√
iff (TrRl(R1) · TrRl(R2)) tη

ρ1·ρ2−−−→
√



APPENDIX A 133

iff (monitor construction) TrRl(R1 · R2) tη
ρ1·ρ2−−−→

√
iff TrRl(R) tη

ρ
−→
√

.

• Case R ≡ R1 + R2, and we have, by our inductive hypothesis, that the state-
ment holds for R1 and R2. Observe that we have ρ ∈ [[R]]η iff ρ ∈ [[R1 + R2]]

η

iff (Def. A.1.10: Semantics of regular formulas) ρ ∈ [[R1]]
η ∪ [[R2]]

η iff (set

theory) ρ ∈ [[R1]]
η or ρ ∈ [[R2]]

η iff (inductive hypothesis) TrRl(R1) tη
ρ
−→
√

or TrRl(R2) tη
ρ
−→
√

iff (Def. A.1.8: Semantics of a process)

(TrRl(R1) + TrRl(R2)) tη
ρ
−→
√

iff (monitor construction)

TrRl(R1 + R2) tη
ρ
−→
√

iff TrRl(R) tη
ρ
−→
√

.

□

Lemma 3. Let η an arbitrary valuation function, and let tη be a substitution defined
as tη(v) = td iff η(v) = d for d ∈ MD. For all regular formulas R, we have that the

path ρ ∈ [[R+]]η iff X(l) tη
ρ
−→
√

, where X(l) = TrRl(R) · X(l) + TrRl(R).

Proof. We use structural induction on the number of segments in ρ. Let η, R be
arbitrary. We use the equality R+ = R · R+ + R.

ρ ∈ [[R+]]η iff (Def. A.1.10: Semantics of regular formulas) ρ ∈ [[R · R+]]η ∪
[[R]]η . Then the base case follows directly from Lemma 2.
Induction hypothesis: Assume that the lemma holds for ρ, i.e., ρ ∈ [[R+]]η iff

X(l) tη
ρ
−→
√

.
Let ρ′ = ρ′′ · ρ. We reason as follows: ρ′ ∈ [[R+]]η iff ρ′ ∈ [[R · R+]]η ∪ [[R]]η iff

(Lemma 2) TrRl(R) tη
ρ′
−→
√

or ρ′ ∈ [[R ·R+]]η iff (Def. A.1.10: Semantics of regular

formulas) TrRl(R) tη
ρ′
−→
√

or ∃ρ′′, ρ such that ρ′ = ρ′′ · ρ and ρ′′ ∈ [[R]]η , ρ ∈

[[R+]]η iff (inductive hypothesis, Lemma 2) TrRl(R) tη
ρ′
−→
√

or TrRl(R) tη
ρ′′
−−→

√
and X(l)

ρ
−→
√

iff (Def. A.1.8: Semantics of a process) TrRl(R) tη
ρ′
−→
√

or

TrRl(R) tη
ρ′′
−−→ X(l) tη

ρ
−→
√

iff TrRl(R) tη
ρ′
−→
√

or TrRl(R) tη · X(l) tη
ρ′′·ρ
−−−→

√
iff TrRl(R) tη

ρ′
−→
√

or (TrRl(R) · X(l)) tη
ρ′′·ρ
−−−→

√
iff TrRl(R) tη

ρ′
−→
√

or

(TrRl(R) · X(l)) tη
ρ′
−→
√

iff (TrRl(R) + TrRl(R) · X(l)) tη
ρ′
−→
√

iff

X(l) tη
ρ′
−→
√

□

Lemma 4. For all modal µ-calculus formulas ϕ, all valuation functions η, substi-
tutions tη , and all processes P, we have [[P]] < [[ϕ]]η iff there exists σ such that

(P||sTrSl(ϕ)) tη
σ−→ error, where ||s is the lock-step synchronization between two

processes, synchronizing on all actions except for error, i.e.,:
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P||sTrSl(ϕ) = ∇{error, action1_ f ound,..., actionn_ f ound}
(Γ{action1|action1_monitor→ action1_ f ound,

...,

actionn|actionn_monitor→ actionn_ f ound}
(P||TrSl(ϕ)))

Proof. We again use an induction on the structure of ϕ.

• Case ϕ ≡ b. Then [[P]] < [[ϕ]]η iff [[P]] < [[b]]η.

Let [[P]] < [[b]]η. This implies that η(b) must not hold (because otherwise, by
Def. A.1.11: Semantics of modal µ-calculus formulas we have [[b]]η = S). But
then [[¬b]]η holds. We then have from Lemma 1 and 2 that [[¬b → error]]η =

error, from which the required statement follows immediately.

• Case ϕ ≡ ϕ1 ∧ ϕ2, and assume that the property holds for all processes P and
valuation functions η, substitutions tη , and µ-calculus formulas ϕ1, ϕ2. Then

we must prove that [[P]] < [[ϕ]]η iff (P||sTrSl(ϕ)) tη
σ−→ error for some σ. We

reason as follows.

[[P]] < [[ϕ]]η iff [[P]] < [[ϕ1∧ϕ2]]
η iff (Def. A.1.11: Semantics of modal µ-calculus

formulas) [[P]] < [[ϕ1]]
η ∩ [[ϕ2]]

η iff (set theory) ¬([[P]] ∈ [[ϕ1]]
η ∩ [[ϕ2]]

η) iff
¬([[P]] ∈ [[ϕ1]]

η ∧ [[P]] ∈ [[ϕ2]]
η) iff ¬([[P]] ∈ [[ϕ1]]

η) ∨ ¬([[P]] ∈ [[ϕ2]]
η) iff [[P]] <

[[ϕ1]]η or [[P]] < [[ϕ2]]η iff (inductive hypothesis) there exist σ, σ′ for which

(P||sTrSl(ϕ1)) tη
σ−→ error or (P||sTrSl(ϕ2)) tη

σ′−→ error iff (Def.A.1.8: Seman-
tics of a process)

(P||s(TrSl(ϕ1) + TrSl(ϕ2))) tη
σ′′−−→ error for some σ′′, iff (monitor construc-

tion) (P||sTrSl(ϕ1 ∧ ϕ2)) tη
σ′′−−→ error.

• Case ϕ ≡ ∀d : D.ϕ1, and assume that the property holds for all processes P,
and η, tη , and ϕ1. Then we must prove that [[P]] < [[ϕ]]η iff (P||sTrSl(ϕ)) tη

σ−→
error for some σ. We reason as follows.

[[P]] < [[ϕ]]η iff [[P]] < [[∀d : D.ϕ1]]η iff (Def. A.1.11: Semantics of modal µ-
calculus formulas) [[P]] <

∩
d∈D[[ϕ1]]

η[d/v] iff (set theory) for some d ∈ D,

[[P]] < [[ϕ1]]
η[d/v], iff (inductive hypothesis) for some d ∈ D, valuation function

η, substitution tη , and for some σ, (P||sTrSl(ϕ1)) tη
σ−→ error iff (Def. A.1.8: Se-

mantics of a process) (P||s ∑ d : D.TrSl(ϕ1)) tη
σ−→ error iff (monitor construc-

tion) (P||sTrSl(∀d : D.ϕ1)) tη
σ−→ error.
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• Case ϕ ≡ [R]ϕ1 and assume that the property holds for all processes P, and η,
tη , and ϕ1. Then we must prove that [[P]] < [[ϕ]]η iff (P||sTrSl(ϕ)) tη

σ−→ error
for some σ. We reason as follows.

[[P]] < [[ϕ]]η iff [[P]] < [[[R]ϕ1]]η iff (Def. A.1.11: Semantics of modal µ-calculus

formulas) [[P]]
ρ
−→ [[P′]] for some ρ ∈ [[R]]η, for which [[P′]] < [[ϕ1]]η iff

(Lemma 2), [[P]]
ρ
−→ [[P′]] for TrRl(R) tη

ρ
−→
√

for which [[P′]] < [[ϕ1]]η iff

(inductive hypothesis) [[P]]
ρ
−→ [[P′]] for TrRl(R) tη

ρ
−→
√

for which

(P′ ||sTrSl(ϕ1)) tη
σ−→ error for some σ iff (Def. A.1.8: Semantics of a process)

(P||sTrRl(R) · TrSl(ϕ1)) tη
ρ·σ
−−→ error for some σ, ρ iff (monitor construction)

(P||sTrSl([R]ϕ1)) tη
σ′−→ error for some σ′.

• Case ϕ ≡ [R∗]ϕ1 and assume that the property holds for all processes P, and
η, tη , and ϕ1. Then we must prove that [[P]] < [[ϕ]]η iff (P||sTrSl(ϕ)) tη

σ−→ error
for some σ. We use the equality R∗ = R+ + ϵ, where ϵ represents an empty
path (no transition). We reason as follows.

[[P]] < [[ϕ]]η iff [[P]] < [[[R∗]ϕ1]]
η iff (Def. A.1.11: Semantics of modal µ-calculus

formulas) [[P]]
ρ
−→ [[P′]] for some ρ ∈ [[R∗]]η , for which [[P′]] < [[ϕ1]]

η iff [[P]]
ρ
−→

[[P′]] for ρ ∈ [[R+]]η or ρ = ϵ, and for which [[P′]] < [[ϕ1]]
η iff (Lemma 3)

[[P]]
ρ
−→ [[P′]] for X(l) tη

ρ
−→
√

, or for ρ = ϵ for which [[P′]] < [[ϕ1]]
η iff

(inductive hypothesis) [[P]]
ρ
−→ [[P′]] for X(l) tη

ρ
−→
√

or ρ = ϵ for which

(P′||sTrSl(ϕ1)) tη
σ−→ error for some σ iff (Def. A.1.8: Semantics of a process)

(P||s(TrSl(ϕ1) + X(l) · TrSl(ϕ1))) tη
ρ·σ
−−→ error for some σ, ρ iff (monitor con-

struction) (P||sTrSl([R
∗]ϕ1)) tη

σ′−→ error for some σ′.

□
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α
[[α]]
−→
√

p ω−→
√

p + q ω−→
√

p ω−→ p′

p + q ω−→ p′

q ω−→
√

p + q ω−→
√

q ω−→ q′

p + q ω−→ q′

p ω−→
√

p · q ω−→ q

p ω−→ p′

p · q ω−→ p′ · q

p ω−→
√

c→ p ω−→
√ [[c]] =true

p ω−→ p′

c→ p ω−→ p′
[[c]] =true

p ω−→
√

c→ p ⋄ q ω−→
√ [[c]] =true

p ω−→ p′

c→ p ⋄ q ω−→ p′
[[c]] =true

q ω−→
√

c→ p ⋄ q ω−→
√ [[c]] =false

q ω−→ q′

c→ p ⋄ q ω−→ q′
[[c]] =false

Table A.1: Structural Operational Semantics for the basic operators

p[te/d] ω−→
√

∑d:D p ω−→
√ e ∈ MD

p[te/d] ω−→ p′

∑d:D p ω−→ p′
e ∈ MD

Table A.2: Structural Operational Semantics for the sum operator
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p ω−→
√

p∥q ω−→ q

p ω−→ p′

p∥q ω−→ p′∥q

q ω−→
√

p∥q ω−→ p

q ω−→ q′

p∥q ω−→ p∥q′

p ω−→
√

, q ω−→ q′

p∥q
ω|ω
−→ q′

p ω−→ p′, q ω−→
√

p∥q
ω|ω
−→ p′

p ω−→
√

, q ω−→
√

p∥q
ω|ω
−→
√

p ω−→ p′, q ω−→ q′

p∥q
ω|ω
−→ p′∥q′

Table A.3: Structural Operational Semantics for the parallel operator

p ω−→
√

p T q ω−→ q

p ω−→ p′

p T q ω−→ p′∥q

p ω−→
√

, q ω−→ q′

p|q
ω|ω
−→ q′

p ω−→ p′, q ω−→
√

p|q
ω|ω
−→ p′

p ω−→
√

, q ω−→
√

p|q
ω|ω
−→
√

p ω−→ p′, q ω−→ q′

p|q
ω|ω
−→ p′∥q′

Table A.4: Structural Operational Semantics for the auxiliary parallel operators
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p ω−→
√

∇V(p) ω−→
√ ω ∈V ∪ {τ}

p ω−→ p′

∇V(p) ω−→ ∇V(p′)
ω ∈V ∪ {τ}

p ω−→
√

∂B(p) ω−→
√ ω{} ∩ B = ∅

p ω−→ p′

∂B(p) ω−→ ∂B(p′)
ω{} ∩ B = ∅

p ω−→
√

ρR(p) R•ω−→
√

p ω−→ p′

ρR(p) R•ω−→ ρR(p′)

p ω−→
√

ΓC(p)
γC(ω)
−→

√
p ω−→ p′

ΓC(p)
γC(ω)
−→ ΓC(p′)

p ω−→
√

τI(p)
θI (ω)
−→

√
p ω−→ p′

τI(p)
θI (ω)
−→ τI(p′)

Table A.5: Structural Operational Semantics for the auxiliary operators

q[t1/d1, . . . , tn/dn]
ω−→
√

X(t1, . . . , tn)
ω−→
√

q[t1/d1, . . . , tn/dn]
ω−→ q′

X(t1, . . . , tn)
ω−→ q′

where X(d1 : D1, . . . , dn : Dn) = q ∈ PE

q[u1/d1, . . . , un/dn]
ω−→
√

X(d′1 = t1, . . . , d′m = tm)
ω−→
√

q[u1/d1, . . . , un/dn]
ω−→ q′

X(d′1 = t1, . . . , d′m = tm)
ω−→ q′

where X(d1 : D1, . . . , dn : Dn) = q ∈ PE and

ui =

{
ξ(tj) if di = d′j for some 1 ≤ j ≤ m,

ξ(di) otherwise.

Table A.6: Structural Operational Semantics for recursion
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