Dynamic regulation of yeast glycolysis through

trehalose cycling
a probabilistic view of metabolic transitions

Johan H. van Heerden



Members of the Doctoral Examination Committee:

prof. dr. Hans V. Westerhoff

VU University, Amsterdam

prof. dr. Stefan Hohmann

University of Gothenburg

prof. dr. Barbara M. Bakker

University of Groningen

prof. dr. Frank J. Bruggeman

VU University, Amsterdam

dr. S. Aljoscha Wahl

Delft University of Technology
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1 Preface

Understanding how cells coordinate and dynamically regulate central metabolic activities is not only
of fundamental interest, but is of importance for our continued efforts to manipulate metabolism in
both biotechnological and medical settings. However, even for glycolysis, arguably one of the best
studied metabolic pathways, untangling the regulatory mechanisms that underlie metabolic

robustness still remains a major challenge.

This thesis attempts to advance this understanding, by explaining how the model eukaryote
Saccharomyces cerevisiae maintains robustness in glycolysis in response to sudden changes in
glucose supply. Specifically, focus is on the regulatory role of trehalose metabolism during such
transitions. We show how this pathway functions to significantly increase, but not guarantee, a cell’s
chances of transitioning to a viable high glycolytic flux state. Our findings reveal that metabolic
regulation can be highly dynamic, involving transient mechanisms that function to steer cells from
one metabolic state to another, and that cell-to-cell metabolic heterogeneity can have a significant

impact on such transitions.



Introduction

In most living organisms the activity of glycolysis lies at the heart of metabolism. This central
metabolic pathway consists of a core series of enzymes that transform sugar to pyruvate; often
glucose is used, but other sugars converge at different glycolytic intermediates (Fig. 1.1). The
biochemical transformations and their associated thermodynamic properties are conserved amongst
species [1] — with a reaction sequence possibly dating back to the pre-biotic world [2]. The
breakdown of sugar by glycolysis yields free-energy equivalents (ATP and NADH), and biosynthetic
precursors (e.g. for amino acids). In addition, precursors for metabolic stress protectants (e.g.
glycerol, and trehalose in yeast) and hormones (or other secondary products) are also directly

derived from the intermediates of this pathway (Fig. 1.1).

Insight into the function and regulation of glycolysis is not only of academic interest, but is of
significant importance to biotechnology and health. In the biotechnological setting, the
fermentation of sugars to ethanol or lactate represents one of the first human exploits of a
biological pathway. Today, the glycolytic process has become an indispensable tool of the food-
industry (e.g. alcoholic beverages, dairy and baking) and substantial research efforts are being
directed towards ways of utilizing this process for the production of biofuels [3-5]. In health,
glycolytic (dys)function has been established as a core feature of major diseases such as cancer [6, 7]
and diabetes [8], and recently also in many other disease areas, such as immunology [9, 10]. This has
led to a renaissance in research on metabolism that aims to unravel the mechanisms that underlie
such disease states. For both applications in biotechnology and health, the goal is to intervene and
manipulate the behaviour of the glycolytic pathway. This requires an understanding of how the
activities of constituent components are coordinated and regulated to provide robustness and

ensure metabolic homeostasis.

The autocatalytic design of glycolysis and its danger

Glycolysis generates four molecules of ATP per glucose molecule, but requires an initial investment
of two ATP molecules to activate this substrate when it enters the pathway. With ATP being both a
product and a substrate of the pathway, glycolysis displays what is termed an autocatalytic design
(Fig 1.2). Thermodynamic and theoretical considerations indicate that the organization of glycolysis
into an initial ATP-consuming part (‘upper glycolysis’), followed by ATP-producing steps (‘lower

glycolysis’) (Fig. 1.2) facilitates a high flux ([11] and references therein) at low enzyme costs [12].



However, this autocatalytic stoichiometry causes a trade-off between ‘robustness’ (the ability to
maintain a specific state or function in response to perturbations) and efficiency (obtaining maximal
performance with minimal enzyme cost and regulatory complexity) [13]. Under dynamic conditions,

this trade-off comes with major risk if sudden increases in flux are not managed properly [14].
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Figure 1.1: The glycolytic pathway. Shown is a schematic representation of the core structure of the glycolytic
pathway, consisting of a series of enzymatic steps that convert sugar (glucose, fructose, galactose etc.) to
pyruvate. Besides yielding energy equivalents, many important biosynthetic precursors and stress molecules are
derived from intermediates of this pathway (indicated by the grey dotted arrows). *Trehalose biosynthesis is

absent from vertebrates [15].



When excess glucose becomes available, its rapid phosphorylation results in the decrease of ATP
and inorganic phosphate (P;) as glycolysis is initiated. As a consequence of the autocatalytic
architecture, regulatory mechanisms are required to ensure that ATP consumption by upper
glycolysis does not outpace production by the lower part [14]; failure to do so results in the rapid
depletion of ATP and P;, and the accumulation of upper-glycolytic sugar phosphates [16, 17]; a state
that is incompatible with growth. The consequences of this failure have been extensively studied in
S. cerevisiae, where the trehalose pathway has been implicated as a key component of the

regulatory machinery that ensures robustness in response to a sudden increase in glucose supply.
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Figure 1.2: Autocatalytic design of glycolysis. Shown is a simplified schematic that illustrates the autocatalytic
organization of glycolysis, with initial ATP-dependent activation steps (upper glycolysis), followed by ATP-

producing reactions (lower glycolysis).

Glycolysis and the regulatory function of trehalose metabolism

In S. cerevisiae, trehalose is synthesized by an enzyme complex (Fig. 1.3), consisting of two catalytic
subunits, trehalose-6-phosphate synthase (Tpsl) and trehalose-6-phosphate phosphatase (Tps2),
and two regulatory subunits, trehalose synthase long chain (Tsl1) and trehalose phosphate synthase
(Tps3). Tpsl catalyses the first reaction in this pathway, generating trehalose 6-phosphate (T6P)
from glucose 6-phosphate (G6P) and uridine diphosphate glucose (UDP-GLU). Subsequently, T6P is

dephosphorylated by Tps2 to yield trehalose. The two regulatory subunits stabilise the complex [18]



and have been shown to contain allosteric binding [19] and phosphorylation sites [20, 21] that allow
the activities of the two catalytic subunits to be modified. Finally, intracellular trehalose can be
hydrolysed by the cytosolic neutral trehalases, Nthl and Nth2, to yield two molecules of glucose

[22].

It has been known for a long time that a working trehalose pathway is indispensable for the
proper functioning of glycolysis in S. cerevisiae (see [17] for an early account). Cells lacking Tps1, the
first enzyme in the trehalose pathway, are unable to grow on glucose or any other rapidly
fermentable sugars [17]. A sudden shift from glucose limiting conditions to excess glucose leads to
the hyper-accumulation of FBP concomitant with low ATP and P; levels; a metabolic profile that
suggests an imbalance in glycolytic fluxes where lower glycolysis is unable to keep up with upper
glycolysis. The appearance of this state has been linked to the autocatalytic design of the pathway
(see above) [14] and has been interpreted to result either from (i) unregulated influx of glucose, and
therefore unregulated consumption of ATP as glucose is phosphorylated, or (ii) insufficient
phosphate availability, which limits the reaction rate of Gapdh and consequently restricts flux

through the lower (ATP-generating) part of the pathway.
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Fig 1.3: Trehalose metabolism in S. cerevisiae. Trehalose is synthesized by a trehalose synthase enzyme
complex (grey square), which consists of two catalytic (Tpsl and Tps2, shown in blue) and two regulatory
subunits (Tsl1 and Tps3, shown in pink). A third reaction, catalysed by trehalase (Nth1l/ Nth2), hydrolyses

trehalose to yield two molecules of glucose, completing the pathway.



The trehalose pathway appears to be required to balance ATP-consumption and production with
phosphate homeostasis, when the upper-glycolytic flux suddenly increases. However, how the
trehalose pathway participates in this regulation has been challenging to determine and has been

the subject of active investigation for more than 30 years.

The regulatory mechanisms that have been ascribed to the trehalose pathway involve the
regulation of glycolytic flux, either by inhibition of the upper-part or by stimulation of the lower-part
[17]. To date, two mechanisms have dominated (Fig. 1.4): (1) regulation of glucose entry into the
pathway through the direct inhibition of Hexokinase (Hxk) -the first ATP consuming step- by the
intermediate trehalose 6-phosphate (T6P), or (2) enhancement of Glyceraldehyde 3-phosphate
dehydrogenase (Gapdh) activity -the first reaction in lower glycolysis- through supply of P;. However,
many paradoxical observations have indicated that neither of these mechanisms can fully explain
the metabolic deficits of tps1A mutants. A third mechanism, involving physical interactions between
the Tpsl protein and the hexokinases and/or glucose transporters [17, 23-26] has also been
proposed, but there has been no direct experimental evidence in support of this hypothesis.
However, a very recent study by Petitjean et al. [27] provides evidence that suggests that the Tpsl

protein could fulfil general functions not related to its catalytic activity.

GLU

ext GLUCOSE
transport \
Inhibition (1) 2ATP
G, T e 1
/_\ int (pper glycolysis
TREH ATP —>
@ P \ Hxk C FBP

‘ g ADP Stimulation 2p;
T;i @ G6P ®—> -

Tep Lower glycolysis
4ATP
Tps1
UDP-GLU

PYRUVATE
ubP

©

Figure 1.4: Regulatory functions proposed for the trehalose pathway. The trehalose pathway is thought to
regulate glycolytic flux either by (1) the inhibition of Hxk, and hence upper glycolysis, by T6P, or by (2) the

stimulation of lower glycolysis through the liberation of phosphate.

For insight into the dynamic regulation of glycolysis, the tps1A mutant provides an interesting case

study. While the exact regulatory mechanism of the trehalose pathway is uncertain, there is



substantial evidence for the origin of the metabolic imbalance. An overcapacity in upper glycolysis
has been shown to produce similar outcomes in pancreatic B-cells [28], where it was termed acute
glucose intolerance. The next section provides a brief summary of attempts to assign a metabolic
regulatory function to the trehalose cycle and highlights many of the interpretive difficulties

historically encountered and which we resolve in this thesis.

T6P as a competitive inhibitor of the hexokinase

Early experimental evidence linked the metabolic defects of tps1A mutants to a deficiency in
trehalose 6-phosphate (T6P) synthesis. T6P was shown to function in vitro as a competitive inhibitor
of the hexokinases (Hxkl and Hxk2), with respect to glucose [24]. The demonstration that a
reduction in hexokinase activity, by deletion of Hxk2, restores growth on glucose appears to
corroborate this interpretation [24]. The behaviour of trehalose 6-phosphate phosphatase (Tps2)
mutants [24] was also suggested to provide support for this mechanism. These cells (tps2A) are
unable to convert T6P to trehalose and consequently accumulate high levels of T6P. Furthermore,
deletion of the tps2 gene restores growth on glucose in cells expressing a mutant Tps1 allele (byp1-

3) with low and normally suboptimal T6P synthase activity levels.

These insights appear to paint a coherent picture of a “brake at the gate of glycolysis" [17].
However, the in vivo relevance of T6P-mediated inhibition as sole regulatory mechanism has been
questioned. In vitro experiments demonstrated that 1 mM of glucose was sufficient to completely
outcompete the inhibitory effect of 0.4 mM T6P [24], implying that the efficiency of inhibition will
quickly diminish following a glucose pulse. Hohmann and colleagues [24] re-measured the inhibition
constants (K;) of T6P for both Hxkl and Hxk2 and while they found higher values than initially
reported, 1 mM vs. 0.2 mM and 0.1 mM vs. 0.04 mM, respectively, it is clear that the potential for
T6P inhibition as an efficacious inhibitor of glucose influx will be limited to a narrow metabolic
range. Based on dynamic metabolite profiles [25, 26, 29] and the calculated T6P inhibition constants
(K;) of the two hexokinases [24, 30], the T6P-mediated inhibition of glucose phosphorylation is, if

anything, transient and only relevant immediately following a glucose pulse.

Although there is ample evidence that T6P-inhibits Hxk activity, two other studies [25, 31]
provide evidence that suggest that this inhibition cannot be the sole mechanism by which Tpsl

regulates glycolysis.



First, wild-type cells expressing only a T6P-insensitive form of Hxk2 from Saccharomyces pombe,
were shown to be capable of utilizing glucose without exhibiting the population-level metabolic
defects typically associated with the tps1A phenotype [25]. A second and complementary study [31]
similarly addressed the necessity and sufficiency of T6P-mediated inhibition of Hxk2, by evaluating
the consequences of native Hxk2 overexpression in the WT background. While no major growth
defects were reported (data not shown in [31]), metabolite measurements display a clear Hxk2
dose-dependent effect for both FBP and ATP pools. Overexpression resulted in FBP and ATP profiles
that initially resembled the pattern seen for tps1A, and eventually recovered to levels which were
intermediate between WT and tps14, i.e. FBP was higher than in WT, but lower than in tps1A and

vice versa for ATP.

These findings are difficult to interpret. On the one hand there is clear evidence for T6P-
mediated inhibition of Hxk as an important regulatory interaction, while on the other, direct
manipulations of Hxk activity levels suggests that this mechanism might be of less importance than

originally thought.

Trehalose metabolism functions as a phosphate recovery mechanism

An alternative mechanism focuses on the phosphate depletion phenotype exhibited by tpsiA
mutants. The rapid and sustained depletion of phosphate is thought to result in a flux bottleneck at
the level of the glyceraldehyde 3-phosphate dehydrogenase (Gapdh) reaction, as evidenced by
metabolite profiles; consequently manipulations that improve phosphate recovery should alleviate
this bottleneck [17]. Support for this hypothesis is provided by the observation that enhanced
glycerol production can restore growth of tps1A mutants on glucose (see [32] for overview). Within
this framework, an increase in the glycerol flux serves to facilitate recovery of NAD" and P;, both
substrates of the Gapdh reaction. From this it was inferred that trehalose synthesis provides a
means for cells to recover phosphate when needed. Looking at the stoichiometry of the trehalose
cycle, this suggestion is appealing, with 3 phosphate equivalents (2 during synthesis of UDP-GLU and
1 during dephosphorylation of T6P) liberated per trehalose molecule synthesized. Furthermore, the
differential phosphate-dependent regulation of catalytic and regulatory proteins within the
trehalose cycle [19, 18] suggests a capacity to integrate and respond to the phosphate status of the

cell.



However, the plausibility of a phosphate recovery role was critically questioned and has
generally been dismissed by most commentators as unlikely [17, 29, 33, 34]. The two most cited
arguments are: (1) The trehalose flux is expected to have a low flux capacity compared to glycolysis,
such that this capacity is insufficient to recover the necessary phosphate and (2) Tps2A mutants

show an improved viability while these mutants cannot recover phosphate from T6P.

Consolidating the regulatory function of trehalose metabolism

It is intriguing that more than thirty years of active research on this phenomenon has failed to
provide a satisfactory explanation for the regulatory role of trehalose metabolism [16, 23-26, 29,
35]. While previous efforts have generated lots of descriptive evidence, very few attempts have
been made to explore the consequences of trehalose metabolism deficiency at a systemic level,

using approaches involving theory and modelling.

The historical overview in the previous section serves to provide a contextualization of the
current work, by highlighting the most important, to date, experimental observations and attempts
at ascribing a metabolic regulatory role for the trehalose cycle. While there appears to be
compelling evidence for each of the proposed mechanisms, it is clear that none are able to fully
explain the deficits associated with tps1A. In the chapters that follow, we will show how a more
integrated and dynamic view of regulation by this system facilitates a re-interpretation of existing
data and hypotheses and, importantly, provides a single consolidated model that integrates

previously proposed functions into a coherent systemic mechanism.

This dissertation specifically set out to understand the regulatory role of trehalose metabolism
during glycolytic transitions as a case study for need to regulate metabolism under dynamic
conditions. We chose to study transitions from galactose to glucose in S. cerevisiae, as this afforded
us a large degree of historical reference and comparability. As such, one of the aims of this thesis
was to extend previous observations and explanations with modelling and theory, to derive more
informative experiments and ultimately provide a systemic account of the regulatory deficits
underlying the tpsiA mutant phenotype. In our efforts we made several other interesting
observations that have general implications for studies of metabolic regulation. We show that noise
in metabolism can lead to phenotypic heterogeneity and that regulatory interactions can be
transient and only relevant immediately following perturbations. This latter point has significant

implications for efforts that aim to assign regulatory functions to metabolic components in response



to dynamic conditions. The observation of phenotypic heterogeneity highlighted important pitfalls in
population level measurements. In line with other recently published studies [36, 37], we show that
lag phases can be explained by growing and non-growing subpopulations, with obvious implications

for the interpretation of population level metabolite measurements.

Structure and scope of this thesis

Rather than a series of related topics or studies, a single coherent summary is presented in Chapter
2, with Chapters 3 to 7 serving as appendices containing supporting materials, methodological

details and additional discussions.

In Chapter 2 we solve the long standing puzzle of a regulatory role for trehalose metabolism during
glycolytic transitions. We employ both modelling and experiments to demonstrate how yeast
glycolysis can operate in two modes, functional or detrimental to growth. We show how metabolic
regulation affects the probability to end up in either of these states and implicate cell-to-cell
metabolic variation as an important component of these probabilistic outcomes. Finally we describe
how the transient activation of the trehalose cycle is an essential part of S. cerevisiae’s regulatory
machinery that ensures robust startup of glycolysis. Additionally, an appendix details a reduced
model of glycolysis that is not presented as part of the body of this dissertation; it is included to
provide information that will assist the reader in interpreting a subset of results included in this

chapter.

Chapter 3 provides details on a kinetic model of glycolysis that was used to explore glycolytic
dynamics in response to activation by high glucose. Changes to and extensions of an existing model
of glycolysis are described and the updated model is compared to the original. We also describe

initial-condition dependent bistable behaviour for the updated model.

Chapter 4 describes the experimental identification and characterization of two subpopulations
(viable and non-viable) in a population of otherwise genetically identical cells. We identify two
distinct phenotypic states and show that after sugar transitions these states appear spontaneously
and reproducibly in any population of sufficient size. In addition, we show that these states arise as
a consequence of phenotypic plasticity and that their relative sizes can be manipulated by changes
in extracellular conditions. Using in vivo readouts of intracellular pH, we provide evidence that the

growth phenotypes correspond to distinct metabolic subpopulations.



Chapter 5 demonstrates how small continuously distributed variations in metabolic variables can
explain the appearance of two glycolytic subpopulations. Using a random sampling approach we find
that the successful initiation of glycolysis is determined by an interplay between components that
tend to reduce the flux through the upper (ATP consuming) part of glycolysis and those that enhance
the flux through lower (ATP producing) part. Importantly, these results show that while specific
regulatory mechanisms are required to ensure the proper startup of glycolysis, cell-to-cell variations

at a purely metabolic level can produce unexpected phenotypic outcomes.

Chapter 6 details the experimentally determined dynamic flux behaviour of the trehalose pathway,
following a glucose pulse. We use a B3¢ tracer enrichment approach, and show that sudden
perturbation with excess glucose leads to the transient activation of this pathway, with a significant
percentage of the glucose uptake flux channelled towards trehalose. We argue that this observed
behaviour is consistent with our model’s prediction that transient hydrolysis of ATP through futile

(trehalose) cycling would facilitate the proper initiation of glycolysis.

Finally, Chapter 7 provides concluding remarks and reflections. In addition, we return to previous
interpretation of the trehalose cycle’s regulatory role and show how insights from the current work

can account for many previously perplexing observations.






2 Lost in Transition: startup of glycolysis vyields
subpopulations of non-growing cells

Authors: Johan H. van Heerden, Meike T. Wortel, Frank J. Bruggeman, Joseph J. Heijnen, Yves J.M. Bollen, Robert Planqué,

Josephus Hulshof, Tom G. O’Toole, S. Aljoscha Wahl and Bas Teusink

Abstract:

Cells need to adapt to dynamic environments. Yeast that fail to cope with dynamic changes in the
abundance of glucose can undergo growth arrest. We show that this failure is caused by imbalanced
reactions in glycolysis, the essential pathway in energy metabolism in most organisms. The
imbalance arises largely from the fundamental design of glycolysis, making this state of glycolysis a
generic risk. Cells with unbalanced glycolysis co-existed with vital cells. Spontaneous, non-genetic
metabolic variability among individual cells determines which state is reached and consequently
which cells survive. Transient ATP hydrolysis through futile cycling reduces the probability of
reaching the imbalanced state. Our results reveal dynamic behavior of glycolysis and indicate that

cell fate can be determined by heterogeneity purely at the metabolic level.

This chapter was published as: van Heerden et al. LOST IN TRANSITION: startup of glycolysis yields

subpopulations of non-growing cells. Science, 343: (2014).



Introduction

Key properties of biological systems are adaptability and robustness - the ability to maintain the
physiological state in response to perturbations or dynamic conditions [38]. Cells use multilayered
regulation to respond adequately to changing environments or sudden perturbations. Failures in
regulation underlie cellular malfunctioning, loss of fitness, or disease. In recent years, there has
been a revived interest in metabolic processes as many diseases are associated with metabolic
aberrations, such as diabetes and cancer [39]. Glycolysis is the central pathway in energy
metabolism, which converts glucose to pyruvate with a net production of two adenosine 5'-
triphosphate (ATP) molecules per glucose molecule. However, this net formation of ATP in “lower
glycolysis” is preceded by an initial ATP investment at the first steps in the pathway (“upper
glycolysis”, Fig. 2.1). This sequence of enzymatic steps in glycolysis, which is adopted by many
organisms [12], implies a serious risk. If upper glycolysis outpaces lower glycolysis, a massive
accumulation of glycolytic intermediates can occur with much reduced ATP production [14]. This
phenotype is observed in pancreatic beta-cells overexpressing glucokinase (coined acute glucose
intolerance) [28], the enzyme that catalyzes the first step of glycolysis. Similarly, Saccharomyces
cerevisiae mutants defective in the biosynthesis of the disaccharide trehalose, that branches off
from glycolysis at the level of glucose-6-phosphate (Fig. 2.1), show accumulation of the glycolytic
intermediate fructose 1,6-bisphosphate (FBP) at low concentrations of ATP [40]. We call this
detrimental state of glycolysis an imbalanced state. We find that this imbalanced state is a risk also
for normal cells. Through detailed system-level analysis of yeast glycolysis, we explain how
phosphate dynamics is at the origin of the imbalance, and reveal how specific regulatory

mechanisms affect the probability for cells to get trapped in it.

S. cerevisiae mutants with a defect in trehalose 6-phosphate synthase (Tpsl), the first
committed step in trehalose biosynthesis (Fig. 2.1), exhibit the imbalanced-state phenotype and are
unable to grow on glucose [17]. The molecular mechanism underlying this imbalanced phenotype
has proven challenging to elucidate (see Chapter 1 for a summary). Trehalose 6-phoshate (T6P), the
product of Tps1, acts in vitro as a competitive inhibitor of the hexokinases (Hxk1l and Hxk2), with
respect to glucose [24]. This negative feedback loop was hypothesized to slow down the upper part
of glycolysis and restore the balance in wild-type cells [14], but T6P-insensitive hexokinase mutants
do grow on glucose [25]. An alternative hypothesis assumes a reduced activity of glyceraldehyde 3-
phosphate dehydrogenase (Gapdh) because of the low amounts of its substrate, cytosolic phosphate
(P;), in tps1A mutants. Accordingly, P; release should enhance Gapdh activity and restore balance. In

line with this hypothesis, enhanced glycerol production, which releases P;, restores growth of tpsiA



mutants on glucose [23]. Trehalose production from glucose 6-phosphate (G6P) also releases P; (Fig.

2.1); however, the capacity of trehalose synthesis was believed to be too low to provide enough P;

for the high flux of glycolysis [34].
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We used a computational approach to better understand the complex phenotype of tps14 mutants.
We adapted an existing kinetic model of glycolysis [41] by (i) introducing P; as an explicit variable in
the model (rather than as a fixed “commodity” metabolite); and (ii) allowing for the mobilization of
P; from vacuolar stores, based on in vivo NMR data that describe this behavior [40]. The latter was
necessary, as the net accumulation of phosphate-containing glycolytic intermediates that is
observed experimentally in the imbalanced state (Fig. 2.2B), is not possible without the import of P;

(see Chapter 3 for details).

Two glycolytic states co-exist

Simulations representing the tpslA-mutant resulted in dynamic metabolite profiles that were
qualitatively similar to experimentally observed profiles (Fig. 2.2), i.e. all metabolites were balanced,
except for the intermediates between the upper and lower parts of glycolysis (Fig. 2.2 and Chapter
3, Fig. 3.2). Known experimental rescue mechanisms for the tps1A-mutant, such as reduced activity
of hexokinase [24] or enhanced glycerol production [23] could be reproduced in silico (Chapter 5,

Fig. 5.1 and Appendix A, Fig. A.3).
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Figure 2.2. Glycolysis exhibits initial condition-dependent bistable behaviour. Depending on initial conditions,
the tps1A-like model can reach one of two stable states (A): A normal steady state (white area), or an imbalanced
state (grey area). The black circle indicates the initial values for P; and FBP used (Chapter 3, Table 3.2). (B)
Simulations of the imbalanced state are qualitatively similar to experimentally-observed profiles (data

reproduced from [21]).

Our tpsi1A-mutant model could reach another state, which resembled the wild-type steady state

with proper flux, high ATP and P; levels, and normal FBP levels. Whether this state was reached



depended on the initial concentrations of the metabolites, as shown for FBP and P; (Fig. 2.2A). Hence
two stable outcomes (states) co-existed in the model, a global steady state and the imbalanced
state: the latter is a non-typical stable state as some variables are not constant in time but rather
accumulate. Other systems with more than one stable state, as found in sporulation [42] or
differentiation [43], often result in phenotypically different subpopulations in an isogenic
population. We assessed experimentally whether we could find evidence for such subpopulations as
well, by asserting that only the functional glycolytic state would support growth. Based on serial-
dilution plating of wild-type and tps1A cultures on galactose and glucose (Chapter 4), we estimated
that approximately 1 in 10° - 10° tps1A cells grew on excess glucose (Fig. 2.3A). This small
subpopulation size is consistent with the very long lag phase we observed in glucose liquid cultures
(Fig. 2.3B). In the past, glucose-positive tps1A colonies were usually discarded as revertants or
rescue mutants [44]. However, when tps1A colonies were directly picked from glucose plates and
subjected to another transition via galactose to glucose, the original subpopulation structure with
less than 1 in 10° glucose-tolerant colonies was restored (Fig. 2.3C and Chapter 4, Fig. 4.2). This
argues against a genetic basis. We therefore conclude that there is a small subpopulation of glucose-

positive tps1A cells that arises from spontaneous phenotypic —as opposed to genetic- variability.

We re-examined the reported inhibitory effect of low concentrations of glucose on tps1A
mutant growth in the presence of excess galactose [35]. Plating experiments again showed that the
growth inhibition observed at the population level is in fact caused by a glucose-dependent increase
in the size of a subpopulation that was unable to grow (Chapter 4, Fig. 4.4A). A simple mathematical
model of population growth dynamics with different growing and non-growing subpopulation sizes

(Chapter 4) reproduced the experimental data [35] very well (Chapter 4, Fig. 4.4B).
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Figure 2.3. Small non-genetic glucose tolerant subpopulations appear in tps1A cultures. (A) Serial dilution
plating reproducibly shows glucose-tolerant subpopulations of between 1 in 10°-10" tps14 cells (n=3). (B) Growth
curves for wild-type and tps1A on glucose (GLU) and galactose (GAL): on GLU tps1A cells show extended lag
phase as a consequence of a large non-growing background. (C) Summary of the propagation scheme and a
representative result (see Chapter4, Fig. 4.2 for full scheme) show that glucose tolerance can be reset, as
populations derived from a glucose tolerant colony exhibit subpopulation structures similar to initial populations

derived from glycerol stocks.

Intracellular pH reveals two metabolic subpopulations

To visualize the two subpopulations, we made use of the observation that tps1A mutants, when

exposed to glucose, are unable to maintain pH homeostasis because they produce too little ATP

26



[40]. Hence, after glucose addition, the intracellular pH (pH;) of tps1A populations decreased by
more than 1 pH unit compared to that of wild-type cells (Fig. 2.4A).
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Figure 2.4. Intracellular pH reveals distinct metabolic subpopulations. (A) Population-level pH; responses show
the disruption of pH homeostasis of tps1A cells in response to 2 % glucose. Following a 2 % glucose or galactose
pulse, the pH; of WT and tps1A populations are shown in time. (B) Fluorescent microscopy shows that distinct
metabolic states can be visualized using pH; readouts. (C) Flow cytometery measurements based on pHluorin
signals, reveal the presence of distinct subpopulations in both WT (top graph) and tps1A populations (bottom
graph) following perturbations with glucose and galactose (black, pre-perturbation sample in wash buffer; blue,

2 % GAL; red, 2 % GLU; orange, 2 % GAL + 2.5mM GLU).

After confirming that different subpopulations could be distinguished on the basis of pH; signals (Fig.
2.4B) we used flow cytometry as a high-throughput approach to study the structure of both tps1A
and wild-type populations exposed to galactose and glucose. We found two subpopulations of tps1A
cells of sizes that agreed with the plating assays and growth lag phases (Fig. 2.4C). We also tested
wild-type cells, because analysis of the wild-type version of the model also showed two stable states
(Chapter 3, Fig. 3.4). Indeed, a subpopulation of wild-type cells with low pH appeared in cultures
exposed to glucose, but a similar response was observed for galactose (Fig. 2.4C). The size of the

subpopulation, about 7 %, was larger than the model suggested (Chapter 3, Fig. 3.4). These results



indicate that the imbalanced state is a general property of glycolysis that cannot be fully prevented

by regulatory mechanisms operative in wild-type cells.

Metabolic variability determines state of glycolysis

We tested in silico whether the observed phenotypic variability in the response to sugar addition
could be reproduced by introducing spontaneous variation in enzyme and initial metabolite
concentrations (see Chapter 5 for details). We sampled these concentrations from Gaussian
distributions with realistic coefficients of variation [45]. The mean of the initial metabolite
concentrations was based on metabolite data for wild-type cells grown on galactose [46], the sugar
on which we grew tps1A before glucose addition. We generated 10° tps1A-like models each with
unique initial conditions and simulated a galactose-to-glucose transition. Less than one in a
thousand models actually reached a functional steady state. Thus, heterogeneity in the amounts of
glycolytic enzymes and metabolites appears to cause some cells to survive glucose dynamics
whereas others do not. This is striking, as metabolism is often considered to operate in a
deterministic regime due to rather high concentrations of enzymes and intermediates. Phenotypic
variation by non-genetic variability is usually studied in genetic circuits that naturally operate at a

stochastic regime with low copy numbers for key components [47].

It is relevant to compare the above observations with frameworks such as fluctuation-induced
bistable switching [48, 49] which has previously been linked to the emergence of phenotypic
heterogeneity. In contrast to such stochastic-switching phenomena, the emergence of the two
distinct phenotypes (viable and non-viable) described here does not depend on the co-existence of
two qualitatively different physiological states prior to a glucose perturbation. Our interpretation of
the above data is that spontaneous, non-genetic variation between cells creates a continuous
probability distribution for metabolite concentrations and metabolic fluxes. Within the space of
these initial physiological states, a subspace exists that characterizes the cells that survive a sudden

glucose excess exposure (see Chapter 7, Fig. 7.7).

To assess which parameters and initial conditions most affect the probability to reach an
imbalanced or functional steady state, we performed a linear discriminant analysis over all our
model simulations (Chapter 5). A single discriminant accounted for 99 % of the differences in initial
conditions that lead to either the balanced or imbalanced states (Fig. 5.1A). This discriminant

identified parameters and initial metabolite concentrations that either tend to reduce the flux



through the upper part of glycolysis or enhance the flux through lower glycolysis (Fig. 2.5A). The
parameters related to the primary mechanisms known to rescue the tps1A mutant phenotype [33]

were all represented.

Size of subpopulations can be manipulated

We looked for ways to experimentally influence the size of the two subpopulations. Respiratory
inhibitors, in particular Antimycin A [32], have been shown to improve growth in the presence of
glucose. However, ethanol, the solvent of Antimycin A, produced pronounced decreases in the lag
phase (Fig. 2.5B), completely dominating the Antimycin A effect (Chapter 4, Fig. 4.3A). These results
were confirmed by plating assays (Chapter 4 Fig. 4.5A), and flow cytometry measurements of pH;
(Chapter 4, Fig. 4.6). We repeated the in silico random-sampling approach at different ethanol
concentrations and reproduced the positive effect of ethanol (Fig. 2.5C). The model showed that the
increase in ethanol concentration increased P; release through glycerol formation (Chapter 5, Fig.

5.1B) driven by an increased NADH/NAD ratio [50].

This model prediction was experimentally tested in tpsiA mutant cultures by addition of
formate. Although formate cannot be used as a carbon source by yeast, its conversion to CO, by
formate dehydrogenase [51] enhances NADH formation. Indeed, formate additions similarly
decreased the lag phase, implying a NADH-driven increase in glycerol production that subsequently
increases the proportion of tps1A cells in the population that could grow on glucose (Chapter 4, Fig.

4.3B).

Core model explains and generalizes dynamics

To generalize our findings and to provide a deeper understanding of the observed co-existence of
two stable states, we captured the essential features of the large model in a reduced model (see
Appendix A). This generalized core model only considers the concentrations of FBP, ATP and P; and
four reactions: a lumped upper glycolysis reaction (vygper), @ lumped lower part of glycolysis (Viower),
an ATP-demand reaction (varp), and a P; import or export reaction (vp) (Fig. 2.6). Detailed
mathematical analysis showed that such a generalized glycolytic pathway has two stable states

representing a functional steady state and an imbalanced state.
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Figure 2.5. Metabolic subpopulations are caused by small variation in metabolic variables, and their sizes can
be manipulated. (A) Linear discriminant analysis of randomly sampled initial conditions (metabolites and
Vmaxes) highlights the variables which most significantly affect the probability of reaching either the normal
steady state or the imbalanced state. (B) In liquid cultures, lag phases of tpslA cultures decreased with
increasing concentrations of ethanol (EtOH) in the medium. (C) The positive effect of ethanol as percentage of
viable cells (experimental data: red bars; Chapter 4, Fig. 4.5B) can be reproduced by a population of models with

initial conditions sampled from a Gaussian distribution as described in Chapter 5.



Figure 2.6 shows the system dynamics that lead to these two states: the difference between the
left and right panel is only the initial P; level (10.4 and 9.4 mM, respectively). How can the different
outcomes in these simulations be explained? At the start of the simulation (when glucose is added),
Vupper > Viower, and this difference causes the concentration of the intermediate FBP to increase (as
dFBP/dt = Vygper — Viower)- FOr a balanced steady state, vj,,er Needs to accelerate to equal the rate of
Vypper (NOte that this challenge becomes bigger if the activity of vy, is higher). P; is the phosphate
source for FBP and therefore FBP accumulation results in a drop in P; (Fig. 2.6). As both FBP and P;
are substrates of v|oyer the accumulation of FBP stimulates vjoyer, While the drop in P; tends to slow it
down: Which effect is dominant may determine the fate of the system. If P; is high initially, a drop in
P; will not affect viower and the FBP increase will dominate, resulting in the functional steady state
being reached (Fig. 2.6, left panel). Similarly, if P; is liberated quickly enough directly by
storage/uptake (vp) or indirectly by ATP hydrolysis (vare), P; will drop less quickly and the balanced
steady state can also be reached. If, however, P; is low at the onset of glucose addition, or P;
mobilization is too slow, or both, the decrease in P; will quickly become a limiting factor for v|oyer and
will dominate the stimulating effect of accumulating FBP. In this case, Vjower Will not accelerate
quickly enough to reach the rate of v, and the system will collapse to the imbalanced state (right

panel Fig. 2.6).

Once in this imbalanced state, continuous P; mobilization from uptake or storage paradoxically
maintains the imbalance. In this low P;, low ATP state, imported P; enhances the rate of vy, but
the concomitant production of ATP will increase v, two times more (due to the stoichiometric
coupling of ATP in glycolysis, Fig. 2.6B). Hence, the imbalance and thus FBP accumulation will only
get bigger with faster P; import as observed in the core model and the detailed model (Chapter 3,

Fig. 3.3).

Trehalose metabolism constitutes transient futile cycling

The core model predicted that enhanced P; mobilization through ATP hydrolysis by v could
enlarge the set of initial conditions that leads to a functional steady state, or could even result in the
disappearance of the imbalanced state altogether (Fig. A.3). This was confirmed in the detailed
model. We realized that, in yeast, the full trehalose cycle (Fig. 2.1) could act as a mechanism for ATP
hydrolysis through futile cycling. This cycling of trehalose should be able to remove the existence of
the imbalanced state or at least reduce the probability to reach it, providing a rationale why

trehalose metabolism affects glycolytic function.
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Figure 2.6. Generalized core model of glycolysis can reach two stable, co-existing, states. The left panel shows
the global steady state, the right panel the imbalanced state. The difference between panels is the initial P; level
(10.4 and 9.4, respectively). (A and B) Stoichiometry of the core model, with red arrows emphasizing the vacuolar
flow of P; from polyphosphates (polyP). The coupling between the upper and lower part of glycolysis through ATP
is emphasized by the red dashed line (B). (C and D) Metabolite levels for a simulation of the core model, resulting
in steady state (metabolite levels constant in time, C) or imbalance (FBP accumulation at very low P; and ATP
levels, D). (E and F) Characteristic rates that specify the states: the red dashed lines indicate the difference in rate
between upper and lower glycolysis (Vupper — Viower), Which is zero at steady state (E) and is positive at the
imbalanced state (F). The dashed blue lines represent the vacuolar import rate of P; (vp), which should be zero at
steady state. In Fig. 2.6F, the constant positive v indicates mobilization of P;, which sustains accumulation of FBP

(red dashed line) through the stoichiometric coupling of ATP.



To estimate the dynamic fluxes through the trehalose network upon a transition to glucose excess,
we used a dynamic [13C]—Iabeling approach (Chapter 6). Wild-type cells were grown in a glucose-
limited chemostat and treated with either 110 mM [12C]-glucose or uniformly labeled [U-BCG]-
glucose pulses. The time course of the concentrations and the average carbon labeling enrichments
for key intermediates are shown in Fig. 2.7A. For most metabolites up to full enrichment was
achieved very rapidly; in contrast, the large trehalose pool was enriched to only 14 % at the end of
the experiment. From these data the flux of glucose through the different glycolytic enzymes was
estimated based on a hybrid modeling approach [52]. The flux profiles indicated that: (i) fluxes
changed rapidly after a glucose pulse, at similar time scales as key metabolites, such as ATP (Fig.
2.7B), (ii) fluxes through Tps1 and Tps2 increased and subsequently decreased between 0 and 5 min
and (iii) at its maximum, as much as 28 % of the glucose taken up was branched into trehalose (Fig.

2.70).

The transient nature of the flux through the trehalose pathway is consistent with the existence
of two stable states in glycolysis, i.e. once the system has reached the viable steady state, the need
for excessive ATP hydrolysis through futile trehalose cycling has disappeared. Thus, we suggest that
trehalose cycling constitutes a transient futile cycle, large enough to push the system’s dynamics

into the functional steady state.

Different mechanisms contribute to robustness

Finally, we examined the contribution of various aspects of trehalose metabolism to establish proper
glycolytic functioning, through random sampling of initial conditions in the full kinetic model (Fig.
2.8). Whereas the combined trehalose cycling and negative (trehalose 6-phosphate mediated)
feedback on hexokinase resulted in 100 % viability in the wild-type version of the model, futile
cycling of trehalose alone resulted in a regular steady state in 76 % of the sampled cases. Removal of
G6P without P; release (only possible in silico) resulted in a functional state in 4 % of the cases. This
shows that phosphate recovery is the primary safety mechanism, with hexokinase inhibition also
contributing. The reported inhibition of trehalose synthesis by P; [19] reinforces this picture as low P;
concentrations will relieve inhibition and ensure P; mobilization. These results provide a strong basis
for the (re)interpretation of population-level phenotypes of various mutants in trehalose

metabolism and hexokinase (see Chapter 1 and Chapter 7).
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Figure 2.7. 3C tracer enrichment reveals highly dynamic flux distributions through the trehalose cycle. (A) A

selection of data (for complete dataset see Chapter 6), superimposed on the trehalose cycle. White boxes

contain metabolite data, with concentrations (p.mol.gDW'l) in blue and tracer enrichment (fraction) in red

(symbols represent measurements, lines represent model fits); x-axes show time in seconds. Grey boxes show

flux profiles (umol.gDW"l.s'l) of the indicated reactions in time (s). (B) ATP concentration profile show a response

time similar to that of flux channeling towards the trehalose pool via the Tps1 reaction. (C) Dynamic flux ratios of

Tpsl (v7) and Tps2 (v8) relative to Hxk (v1) show that up to 28 % of glucose is dynamically routed into trehalose

metabolism.
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Figure 2.8. Different aspects of trehalose metabolism contribute to the overall probability to reach the
functional steady state. Percentage of balanced steady states found with randomly-sampled initial conditions as

input for different features of the trehalose cycle.

Startup of glycolysis requires dynamic regulation

From our work a dynamic picture emerges where the organization of glycolysis in an ATP-investing
upper and ATP-producing lower part provides a major challenge for robust start-up upon activation.
After environmental changes (e.g. nutrition, hormone, drug etc.), proper steering through a dynamic
landscape consisting of undesired states requires specialized regulatory mechanisms. Our work
shows that phosphate dynamics are an essential determinant of the state that is reached. As existing
glycolytic models ignored P; dynamics, the co-existence of two states in glycolysis was not previously

discovered.

The core model demonstrated that mostly generic features of glycolysis give rise to this two
state outcome, in particular: (i) its stoichiometry in ATP consumption and production; and (ii) the
(universal) equilibrium constants of phosphofructokinase (large; allowing accumulation of FBP) and
Gapdh (small; requiring high P; levels to drive the reaction). In yeast, trehalose metabolism
apparently provides protection against the imbalanced state, albeit not 100 % failsafe based on flow
cytometry (Fig. 2.4C); the observed failure of wild-type (~7 %) could reflect a trade-off between
different aspects of the transition to high sugar, as a higher success rate will require tighter

regulation or higher futile cycling that will make startup slower or more costly, respectively.

Other systems, notably mammalian cell types, have adopted alternative mechanisms that may
function to prevent glycolytic imbalance. In human cell types, feedback inhibition of hexokinase or
glucokinase, either by the product glucose 6-phosphate (muscle) or a glucokinase-regulatory protein
(liver), are well-known regulatory mechanisms for glycolysis [53]. Pancreatic beta-cells seem to have

no protective mechanism, but have low glucokinase activity that would prevent the upper part of



glycolysis from being too fast. Upon overexpression of hexokinase, these cells exhibit a similar
metabolic imbalance to that observed in yeast tps1A mutants [28], providing relevance for this state

in mammalian metabolism.

Our findings have major implications for biotechnological applications and disease. In
biotechnology, poor mixing in large-scale fermenters causes dynamic conditions which —often in
combination with genetic manipulations— may create conditions in which individual cells behave
very different from the measured population average. In disease, cancer in particular, the regulation
of glycolysis has recently regained great interest due to the Warburg effect, characterized by an
enhanced glycolytic flux and lactate production [54]. Our work provides systems-level insight into
the dynamic regulation of glycolysis. As an example, feed-forward activation of pyruvate kinase (PK)
by FBP is impaired in the PKM2 splice variant that replaces the original PKM1 protein in many cancer
cells [55]. Such feed-forward activation of pyruvate kinase by FBP, observed from bacteria to man,
could act as an additional safety mechanism to prevent a metabolic imbalance in glycolysis: FBP
activation would help to accelerate the lower part of glycolysis if FBP starts to accumulate. Indeed in
all our models, removing the positive feedback on pyruvate kinase enhanced the probability to
reach imbalance. Intriguingly, PKM2 expression in tumors coincides with an alternative
phosphoglycerate mutase activity that instead of ATP produces P; from PEP [56]. Such an activity
would fit with the role of P; release to ensure robust functioning of glycolysis. Interfering with
protective mechanisms against the metabolic imbalance state in tumor cells, or perhaps, counter-
intuitively, enhancing glucose uptake rather than inhibiting it, may provide rationales for

sophisticated treatment strategies.



AppendiX A | Core model of glycolysis

We developed a core model to understand the main properties of the biochemically detailed kinetic
model. The core model also shows the co-existence of two states as the detailed model and explains
(1) why the lack of feedback on FBP is required for an imbalanced state, (2) how FBP can accumulate
while ATP and P; are at steady state, (3) the relationship between phosphate homeostasis and an
imbalanced state and (4) the disappearance of an imbalanced state upon enhanced activity of the
ATPase or glycerol branch. A schematic representation of the core model is depicted in Fig. A.1. The

corresponding differential equations are:

FBP = v, (ATP)-v, (ATP,FBP,P,)-v (FBP) (EA.1)
ATP = 72vl(ATP)+4v2(ATP,FBP,PI.)7V3(ATP) (EA.2)
P = 0—2v, (ATP,FBP,P, )+ 2vg (FBP)+v3 (ATP)+v4(R) (EA.3)

We made the dependencies of the reaction rates on the involved substrates and products explicit,
e.g. Vl(ATP) indicates that reaction 1 is sensitive to ATP (we will usually exclude the dependencies

below). Note that the synthesis reaction of FBP, implemented as a simplified kinetic description of
the glucose transporter and hexokinase, is insensitive to FBP, which mimics the situation of a tps1A
mutant strain where regulation of Hxk is absent and, moreover, phosphofructokinase (Pfk) is

kinetically insensitive to its product, FBP, in yeast [57].

Stable and attracting states

We are interested in showing that this system, given suitable kinetics, can reach two states; one of
the stable solutions is a normal steady state and the other corresponds to an imbalanced state, in
which FBP continuously accumulates while P; and ATP remain constant. The definition of a steady-

state or the equilibrium of a dynamical system is where all derivatives are equal to O (in this case



FBP=0,ATP=0 and,f;.:O)_ Equilibria can be attracting or repelling, which means that the system

evolves towards the equilibrium or away from it (in the figures attracting equilibria are shown as
closed dots while repelling equilibria are shown as open dots). The imbalanced state is technically

not a steady state or equilibrium, since FBP is continuously increasing and therefore F8p >0 .
However, the other metabolites are in steady state (ATP:O Gndlf;-ZO) and some of these

imbalanced states are attracting. ! The system can evolve towards these attracting imbalanced

states and therefore they are biologically relevant.

GLUCOSE

Figure A.1. Depiction of the core model of glycolysis, representing tps1A mutants. Underlined metabolites are
held fixed. Rates of reactions are denoted by a “v” with the reaction number as an index. polyP denotes
phosphate storage. The glycerol branch, shown in grey, is omitted from the analysis detailed in the main text and

Fig. A.2.

The normal steady-state

A steady state of the entire system, i.e. when FBP=0,ATP=0 andf5i:0, is only possible if v, =0,

because 2FBP+AfP+15i=V4(the sum 2FBP+ATP+P depicts the total phosphate content of the

system). The rate of phosphate exchange (v4 ) is 0, because the whole system does not consume or

! Moreover, mathematically a straightforward variable transformation ¢ -> FBP/(K+FBP) would result in =1 and do/dt = 0 when
FBP goes to infinity and all requirements for a true fixed point (or equilibrium point) would be met. Yet, in biology, it is FBP that
continuously accumulates.



produce phosphate, whereas in the imbalanced state phosphate is continuously mobilized with

vy #0. Since v, depends on P; only, v, =0 defines the steady-state concentration of P;, which we
denote by Py . Since v, =0implies a linear combination of differential equations is 0, the steady

state concentrations of FBP and ATP can be calculated from two more nullclines:

ATP = ~2v, (ATP)+4v, (ATP,FBP,PT)7V3 (atP)=0 (EA.4)
B =—2v, (ATP,FBP, Py )+ 2vg (FBP) +v3 (ATP)+v, (Pr ) =0 (EA.5)

These two equations allow for a graphical exploration of the steady states of the system in the

(ATP,FBP)-plane, which we shall illustrate below.

The imbalanced state

One of the curious features of the imbalanced state is that while ATP and P; attain a steady state

value, FBP accumulates. We will show with the core model how this is possible and that the
phosphate that accumulates as a component of FBP, leads to a relation between FBP (the FBP
accumulation rate) and vy in the imbalanced state. FBP accumulates in the imbalanced state
(denoted by rsp_, . ), therefore, since FBP is a substrate for reaction 2 and 5, the corresponding

enzymes will quickly become saturated with FBP and consequently become insensitive to its

concentration. If we write the resulting rate equations as vz(ATP,PI.) = vz(ATP,FBP% DO,PI.) and
VS,max = VS(FBP*) OO) , we obtain the following conditions for the imbalanced state:
FBP=vl(ATP)—vz(ATP,P,-)—VSImaX >0 (EA.6)

AfP:—Zvl(ATP)+4\72(ATP,PI.)—v3(ATP):O (EA.7)



p = —2\72(ATP,P,-)+2V5'maX +v3(ATP)+v4(P,-) =0 (EA.8)

This analysis demonstrates why the insensitivity of vy to FBP is a key feature of the imbalanced
state; if V4 would be sensitive to FBP this inhibition would prevent the accumulation of FBP ( F8p >0

would not hold), and a regular steady state would result. We can use these equations for a graphical
exploration of the imbalanced states in the (ATP, P;)-plane, which we shall illustrate below.

Furthermore, in the imbalanced state, we have:

—1/2AfP—1/2f5i=v1—\72—V5,maX—1/2v4=FBP—1/2V4=O (since ATP=F=0), and therefore

FBP=1/2V4. It is logical that the FBP accumulation occurs at half the rate at which phosphate is

released from the vacuole, because FBP contains two phosphate groups per molecule.

We can conclude from this section that in the imbalanced state ATP and P; can reach a steady
state while FBP accumulates with a rate equal to half the vacuolar export rate of phosphate, and this

can only occur when feedback inhibition on v, is lacking (as in yeast glycolysis). In our detailed

kinetic wild-type model inhibition on Pfk by FBP is still lacking, but T6P inhibition on Hxk serves to
slow down substrate supply for Pfk, making the imbalanced state in the wild-type less likely to occur

(Chapter 3, Fig. 3.4).

The importance of phosphate homeostasis

The above insights highlight an important feature of phosphate homeostasis which is central to the
imbalanced state. At the normal steady state, there is no net exchange of P; between cytosol and the
vacuole, whereas a key feature of the imbalanced state is the continued import of P; into the cytosol
from the vacuolar storage pool; a process which sustains the accumulation of FBP. Most models of
glycolysis do not include P; as a free variable, but rather completely ignore it or keep it fixed at a
measured value. In these cases, there is no moiety conservation of phosphate, because either
reactions are not phosphate-balanced or there is an infinite source of phosphate. Such models are
unlikely to show an imbalanced state, as the Gapdh reaction will have unlimited P;. Recent models
with P; as a free variable, such as in two lactic acid bacteria [58] or in muscle [59], do have a
conserved moiety of total phosphate; consequently, glycolytic imbalance can potentially occur, but

only if exchange of phosphate with either vacuolar storage or external environment is possible.



Without such exchanges, continuous accumulation of FBP cannot occur; imbalance in glycolysis

would result in a complete depletion of ATP and P;, and a stop in FBP accumulation.

A kinetic parameterization of a core model that displays imbalanced states or steady states

depending on initial conditions

In the previous section, we carried out an initial analysis of the core model in both a regular steady
state and an imbalanced state. In this section, we will present a kinetic parameterization of the core
model that will either end up in the imbalanced state or steady state depending on the initial

conditions. In Table A.1, the rate equations and the kinetic parameters are summarized.

In Fig. A.2, the dynamics of the core model are shown for two different sets of initial conditions
(specified in Table A.1). The phase plane plots (Fig. A.2, top panels) show the balanced and
imbalanced state as intersections of the graphs dP,/dt = 0 and dATP/dt = 0. Calculations for the
phase plane plots were facilitated by the use of a variable transformation, ¢ = FBP/(FBP + Ky, 16 rsp)
(where LG = lower glycolysis). This variable transformation ensured that all time derivatives of
internal metabolite concentrations were equal to zero in the balanced and imbalanced state — to
simplify numerical analysis — and that saturating FBP concentrations are defined by ¢ = 1. The phase
plane plots were constructed by solving the dP;/dt = 0 and dATP/dt = O for ¢ (using Mathematica
with the Solve function) for different concentrations of ATP. The flow diagrams were created by
calculating the time derivatives for P; and ATP for different concentrations of P; and ATP and

subsequently using the Mathematica function ListStreamPlot.

In one case (Fig. A.2B), the system evolves towards a regular steady state where all the
concentrations become constant. Note that phosphate becomes equal to the concentration in the
vacuole, which was set to 10 mM (Table A.1). In the second case (Fig. A.2A), only ATP and Pi reach a
steady state while FBP accumulates. Phosphate reaches a level below 10 mM, resulting in the net
export of phosphate from the vacuolar compartment, i.e. v,>0. In addition, the ATP level drops to a
lower value than that of the regular steady state, which is also in agreement with the experimental
data. The initial condition-dependent behavior, shown in Fig. A.2, illustrates the co-existence of two
stable states in the core model, as was found in the detailed model (Chapter 2, Fig. 2.2 and Chapter

3, Fig. 3.4).



Table A.1. Kinetic parameterizations of the core model of yeast tps mutants®

Rate equations
ATP
“ . V1= Vmax,l AT
Transporter +Hxk +Pfk ATP[1+ ]+K1
K, . ,a
1,i,a
(ap—ATP) P,
_ Ny FBP Ky, app K3,p
Lower glycolysis 27~ "'max,2 egp k. p
2f ATP >
I+—— | I+——
Ky, apP Kap
“ATPase” vy = k3ATP
“Vacuole phosphate export” Vg =ky(Pr—P)
| I branch V5=V, —=
“Glycerol branch” 5~ “max,5
FBP+Ks rgp
Kinetic parameters§
“Transporter +Hxk +Pfk” Vinax,1 =10Ky j 5 =3K; =01
“Lower glycolysis” Vinax,2 =10y ¢ =1Ky app=0.1K; , =2,ar =5
“ATPase” k3 =10
“Vacuole phosphate export” ky=0.3,P- =10
*
“Glycerol branch” Vmax,s =1 'Ks,f =1
Initial conditions
Regular steady state FBP =2,ATP =1,P, =10
Imbalanced state FBP =0.01,ATP=0,P, =0.01

SEven though this is a core model and not all parameters can be identified with real constants, all affinity constants and maximal
rate constants have been assigned realistic values. Units: concentrations are in mM (per liter cytosol) and time in minutes. *In

Chapter 2 and Fig. A.2 the model without the glycerol branch (i.e. |, 5=0 ) is used.
max,

Graphical exploration of the steady states

In the steady state we have the condition 2FBP+ATP+I5,. :v4(P,.):0 which implies /. =P, . Therefore

we can show the isoclines PI =0 and ATpP=0 inthe plane p =p- to determine the concentrations

of ATP and FBP in the steady state (Fig. A.2B). A similar analysis can be done for the imbalanced
state (Fig. A.2B). In the latter case, the concentration of FBP is set to infinity such that the rate

equations become saturated and are not dependent on FBP, as explained above. The steady state



concentrations for P; and ATP can then be determined from the P, =0 and ATp =0 nullclines (Fig.

A2A).
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Fig. A.2. Nullcline plots indicate states where the concentrations of FBP, ATP and/or P; are balanced. (A) In the

imbalanced state FBP is saturatingly high and therefore we can find the imbalanced states in the plane FBP =
infinity. (i) The intersection of the nullclines ATP =0 and F"I. = 0 show the imbalanced state where ATP and P;
are balanced. (ii) In this state P; mobilized from the vacuolar stores sustains the continued accumulation of FBP

(iii). (B) Steady states are found where the nullclines of ATP =0 and FBP = 0 intersect under the condition that

Pi =10.



The glycerol branch and the ATPase reaction are both rescue mechanisms in the core model

In the literature several mechanisms that lead to the “rescue” of the tpsiA mutant, i.e. the
disappearance of the metabolic imbalance, are described (summarised in Chapter 1). Here we
illustrate one well-described rescue mechanism (enhanced activity of the glycerol branch) and a
newly discovered one: increased ATPase activity. In Figure A.3, the response of the core model to
either an increase in ATPase activity (Fig. A.3A and B) or increased glycerol branch activity (Fig. A.3C

and D), at conditions that normally result in an imbalanced state, is shown.

Pi (mM)

ATP (mM) time (min)
C D
10 ;
_ 10 '."
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a 1)
; E 5 J = Ps
— 5 =0 F [
— AP =0 v
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Fig. A.3. Enhancement of ATPase or glycerol branch activity leads to disappearance of the metabolic
imbalance. (A) When ATP hydrolysis is increased (6 fold) the intersection of the nullclines at saturating FBP

disappears, consequently an imbalanced state no longer exists. Although not visible in (A), a steady state exists

with ATP :Pi =FBP =0. This steady state is shown as solid lines in (B), for initial values that would lead to an

imbalanced state when karpase is low (dashed lines). (C) and (D) Increasing the maximal activity of the glycerol

branch from 1 to 2 mmol.L". min ™ similarly removes the imbalanced state.
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INTRODUCTION

In the Chapter 1 we summarized the primary mechanistic interpretations of the trehalose cycle’s
role in the regulation of glycolysis. The summary highlighted several paradoxical results which has
made the regulatory function difficult to understand. In this thesis we used a kinetic model of
glycolysis to explore putative regulatory contributions in the context of the entire glycolytic
pathway, taking into account systemic properties which can be missed when looking at trehalose
pathway components in isolation.

This chapter provides details on the kinetic model of glycolysis that informed many of the
theoretical insights presented in this thesis. We started by updating an existing model, originally
published by Teusink et al. [41], modifying rate equations with parameter values that were recently
determined under in vivo-like conditions [60]. To explore the consequences of a defective trehalose
cycle, we defined a simplified representation of this pathway and included feedback inhibition on
Hxk. In addition, we defined phosphate as a free variable and included a non-cytoplasmic phosphate
sink.

We show that the model can reproduce the most relevant metabolic features of the tpsiA
phenotype (ATP and P; depletion, FBP accumulation and a low glycolytic flux). In addition, we
demonstrate the existence of initial condition-dependent bistable behaviour for both tps1A (TPS)
and WT formulations of the model. Depending on initial conditions, we find that the tpsl1A model
could also achieve normal glycolytic function, similar to the WT model, while the WT model could
end up in a tpslA-like state. As the metabolic phenotype of tps1A mutants is expected to be
incompatible with growth, we took this observation to suggest the possibility that two
physiologically distinct phenotypes, viable and non-viable, could appear in a population after a

sudden glucose challenge.



MODEL DETAILS

Method
The kinetic model was implemented and analysed using Mathematica 9.0 (Wolfram Research). Time
simulations were performed with the NDSolve function. A steady state is defined as a state,
characterized by the metabolite concentrations, where all time derivatives of internal metabolite
concentrations are equal to zero. Steady states were calculated by solving these equalities with the
FindRoot function, where metabolite concentrations after 250 simulation minutes, were used as
initial inputs.

The detailed kinetic model is available as a digital supplement in SBML (Systems Biology Markup
Language) format. In addition, an interactive Web application is provided at

www.falw.vu/~mworte/tpsmodel/ > and can be used to explore the effects of variations in several

parameters on the detailed kinetic model.

Mimicking T6P-mediated hexokinase inhibition

Firstly, we introduced a proxy for the inhibition of Hxk by T6P. Since most of the study deals with the
mutant case where this inhibition is actually absent, we only incorporated this feedback loop in a
coarse-grained fashion, to have a representation of wild type to benchmark against. Since T6P is not
explicitly defined in the model and the magnitude of change in the G6P pool is similar to that of T6P
dynamics [61], we used the G6P levels as a proxy to simulate the inhibition of Hxk by T6P (E3.1).
Several different values are reported for the T6P inhibition constant of Hxk [24]. We decided to use
the average of 0.04 mM and 0.1 mM (see [24] for details), i.e. 0.07 mM (Table S1). The rate

equation for Hxk becomes:

ATP-GLY; ADP-G6P

kGLUi keq,ka k

v
max,Hxk .
k APk

ATP’ GLUi

(E3.1)

VHxk =
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ADP  ATP GeP  GeP  GLy,
+k +1 p + +
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After the introduction of Hxk inhibition, the V., of the transporter (Table S3.1) was increased in

order to restore the flux to the originally published level. This adjustment is in agreement with the

2 At the time of writing, the Wolfram CDF player does not launch properly in Google’s Chrome browser. To use the application,
Mozilla Firefox or Microsoft Internet Explorer is recommended.



observation made by Teusink and colleagues, that the glucose transport rate was most likely
underestimated by the zero-trans influx assay employed [41]. Additionally, we improved the
trehalose and glycogen branches by making the fluxes dependent on the G6P concentration (defined
as k*G6P) (Table 3.1). Although our implementation of feedback on Hxk is a simplification of
trehalose branch mediated inhibition, it represents a design that is also compatible with other
glycolysis systems, such as in mammalian muscle and brain cells, were Hxk is directly and strongly

inhibited by G6P [62-65].

Introducing inorganic Phosphate as a free variable

Because phosphate dynamics is a key feature of the tpsliA-mutant’s phenotype, we included
phosphate (P;) as a free variable. P; exchange with the vacuole, which functions as an intracellular
store [40, 66], is modelled as a diffusion reaction with an equilibrium concentration of P; in the
cytosol of 10 mM, identical to the value originally fixed in the model (E3.2). This ensures that P;is a
dynamic variable, but reaches the original 10 mM at any global steady state. Since the phosphate
concentration (stored as polyphosphates) in the vacuole is expected to be much higher (up to 20 %
dry weight, see [67]) than the cytosolic concentrations, we did not model the vacuolar pool and kept
it as a fixed external metabolite. The rate constant (Kpnosex) (S€€ E3.2) for this equation directly
influences the rate of FBP accumulation in the TPS model (Fig. 3.2). Consequently, we chose the rate
constant such that the FBP accumulation was in agreement with data from Hohmann et al. [24] , in

the regime where the rate of accumulation was maximal (Table 3.1).

Vphosex = Kphosex Pt —F) (E3.2)

In addition, we adjusted the rate equation for Gapdh to include P; and assumed a K, of phosphate of

1 mM (E3.3).
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Introducing allosteric activation of Pyruvate kinase

The activation of Pyk by FBP has been shown be important in regulating lower glycolytic flux [68]
and since FBP potentially accumulates in the tpsl1A-mutant, we adjusted the Pyk rate equation
accordingly (E3.4). We retained the originally measured V, values from [41] and implemented the

other parameters as reported by [68] (Table 3.1).
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Increasing V., of Pyruvate decarboxylase

Lastly, we addressed the observation that pyruvate accumulation under certain conditions is caused
by an insufficient V,,,, of Pdc [41], which should be increased to reflect experimental measurements.
We therefore increased the V,,,, of Pdc 6.1 fold (Table 3.1), as originally suggested by Teusink et al.

[41], which did indeed resolve this behaviour.

Initial metabolite concentrations
The original model was used for predictions of steady state profiles. In this work we were interested
in the transient dynamics of the model and therefore we had to make some additional adjustments.
Prior to perturbation with a glucose pulse, ethanol will not be present or will be very low, and
consequently the ethanol concentration is set to 0 (in the original model, ethanol was fixed at 50
mM); this adjustment had a negligible influence on steady-state fluxes. For the simulations, we used
initial metabolite values from a study by Fendt et al. [46]. Specifically, we used metabolite data for S.
cerevisiae cells grown in batch cultures with excess galactose as carbon source, and sampled during
mid-logarithmic growth (Table 3.2); this condition closely resembles our own experimental setup
where cells were always pre-grown on galactose as sole carbon source (see Chapter 4).

Metabolite values were converted to mM (L cell volume’l) concentrations, using a cell volume of
2 ml per gram dry weight (gDW). This conversion factor is very similar to the value arrived at by van
Eunen et al. [60], and is calculated by assuming a single cell volume of 3 x 10 L (as in [60]) and a
single cell weight of 1.5 x 10" gDW.ceII’1 [69]. Missing metabolite values were calculated using the

published steady-state flux distribution map in [46] and the rate equations from our kinetic model.



The sum of AMP, ADP and ATP has also been adjusted to the measurements from [46] (see Table
3.2).

Table 3.1. Parameter adjustments made to the detailed kinetic model of Teusink et al. [41]

Parameters New Value Original Value Unit
——————
Vmax,Glt 198 97.264 mM min™
ki Gep, Hxk 0.07 mM
ktrehalose 2.32 min™
kglycogen 5.8 min™
Mpyk 4
Lo, pyk 60000
kap'pyk 0.19 0.14 mM
knpP,pyk 03 0.53 mM
kP, pyk 0.2 .y
knTp,Pyk 9.3 15 mM
Vimax,Pdc 1062.58 174.19 mM min™
Kphosex 0.1 min™
Pr 10 mm
AXP 3.1 4.1 m
EtOH 0 50 mm
GLU, 110 50 m




Table 3.2. Initial values used in the kinetic model based on [46]

Metabolite Initial value (mM)
]

GLY; 0.087

G6P 3.085

F6P 0.752

FBP 0.836

BPG 0.111

P3G 0.825

P2G 0.138

PEP 0.140

PYR 0.884

ACE 0.047

TRIO (DHAP+GAP) 0.518
NADH 0.044

Pi 10

ATP 2.06

ADP 0.870

AMP 0.165

*This value was not obtained from the Fendt and Sauer dataset [46], but corresponds to a steady state value reported by [70].

RESULTS

The new model largely reproduces and improves on the original model

The effect of the modifications introduced into the new model was evaluated by comparing the
steady-state metabolite concentrations and fluxes to the original [41] model (Fig. 3.1). In general
steady state profiles were very similar; the only clear exception was the steady state concentration
of PYR, which accumulated to high concentrations in the original model. With the changes
introduced here, PYR reached steady state levels that were more realistic and in line with

physiological values [46, 71].
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Figure 3.1. Steady-state metabolite levels of the metabolites for the original model [41] and our adapted
model with 110 mM extracellular glucose. The fluxes through upper glycolysis are 88 (2000 model) and 86 mM
min™ in the model presented here, with the fluxes through lower glycolysis at 138 and 133 mM min™ respectively
(see Chapter 2, Fig. 2.1 for glycolysis scheme). The difference in intracellular glucose is due to the increase of the
transporter V. and the compensation by G6P inhibition of Hxk, the decrease in PYR concentration is due to the
increased V. of pdc and the difference in the total of AMP, ADP and ATP is a due to adjustments according to

the Fendt and Sauer dataset [46] (Table 3.2). The levels of BPG are very low, but similar.

Simulating the tps1A phenotype

To mimic the tps1A mutant, we set the rate constant of the trehalose branch to 0, ensuring that the
mass balance definitions of P;, ATP and G6P to reflect this, and removed the feedback inhibition of
G6P on Hxk. Simulations of the tps1A mutant with this version (TPS) of our model showed canonical
metabolite profiles (Fig. 3.2A). While the fluxes within the higher and lower glycolysis modules
become equal, the fluxes around FBP and the triose phosphates (TRIO) are unbalanced (Fig. 3.2B),

causing the accumulation of FBP; we called this state an imbalanced state.

Rate of FBP accumulation in TPS model is proportional to P; inflow

A key feature of the tpsiA phenotype is the continued accumulation of FBP at low ATP and P;
concentrations. This behaviour indicates that cells are able to access alternative phosphate pools
either from the extracellular space or from vacuolar phosphate stores, but clearly at a rate that is
insufficient to support the glycolytic flux. Our choice to model the phosphate store as a “vacuolar
compartment” is motivated by previous experimental observations [23, 40] that reported phosphate
mobilization mainly from the vacuolar polyphosphate pool and not from the extracellular pool. The

introduction of a phosphate exchange reaction allowed us to reproduce experimentally observed



accumulation of FBP. We found that the rate of phosphate import determines the rate of FBP
accumulation. We used this observation to determine the rate constant for the exchange reaction
based on a qualitative match between FBP accumulation in our model and experimentally

determined FBP profiles (Fig 3.3).
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Figure 3.2. In silico phenotype of the tps1A mutant. Insets are profiles of wildtype model simulations. (A)
Metabolite profiles of simulations of the TPS model. The tps14 mutant phenotype is simulated by setting the flux
towards trehalose to 0, and eliminating the feedback on hexokinase. In the TPS model, FBP accumulates, while
ATP and P; are almost depleted. (B) Flux profiles of simulations of the TPS model around FBP and the triose
phosphates (GAP + DHAP). The production of FBP by Pfk, and the triose phosphates (TRIO) by Ald is higher than
the consumptions by Gapdh and G3pdh, causing a steady increase in FBP and the triose phosphates; this state is
called an imbalanced state. In the wildtype model (inset), the production and consumption fluxes are equal, and

the system reaches a normal steady state.
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Figure 3.3. FBP dynamics in the TPS model are dependent on the rate of phosphate exchange. Long (A) and
short (B) time simulations of FBP for different values of kpnosex (black lines). The coloured dots and lines show
previously published experimental measurements [21]. Eventually FBP accumulation slows down, presumably

because of polyphosphate depletion in the vacuoles [40] (A, blue and green lines).



Initial condition-dependent outcomes and basins of attraction

Exploration of the dynamical behaviour of this system revealed bistable behaviour. We found that in
both the TPS and WT variations of the model, two outcomes were possible. For the TPS model a
normal steady state, with no FBP accumulation, high ATP and P; levels and a high glycolytic flux,
could be achieved with the same parameter set under different initial conditions (Chapter 2, Figure
2.2A). The same behaviour was seen for the WT model, where specific initial conditions led to the
imbalanced state (Figure 3.4).

We found that initial phosphate concentrations had a significant impact on the outcome of
model simulations, with high values leading to steady state solutions in the TPS model and low
values leading to an imbalanced state in the WT model. We extended our evaluation by looking at
the combined effects of differences in initial FBP and P; concentrations on simulation outcomes.
Whether initial conditions result in a balanced (normal steady state) or imbalanced state is shown in
plots with basins of attraction (Figure 2.2A and Figure 3.4). The basins were calculated with time
simulations of 250 minutes. The condition for a balanced (regular) steady state was: FBP
concentration is not increasing in the last 10 % of the time simulation (using 7 significant digits) and
the concentration of P; is more than 0.5 mM. The latter criterion was defined to avoid classification
of a zero-flux state as a steady state (which would be the case if phosphate becomes 0); initial
conditions that did not fulfil these requirements were labelled as leading to the imbalanced state.
The borders of the basins were calculated by finding the initial concentration of P; on the separatrix
between the basins for the balanced and imbalanced state, for several initial concentrations of FBP.
From a predetermined interval of initial P; concentrations, where the extremes lead to different
states, the middle was classified as leading to a balanced or imbalanced state. This was repeated for
the half of the interval that has extremes which lead to different states, until the size of the interval
was less than 0.1 mM; the middle of this interval was then taken as the divider between the basins.

Initial condition values for variables other than those depicted in figures were taken from Table 3.2.

SUMMARY

Biological circuits capable of producing bistable behaviours have been associated with the
appearance of distinct phenotypic states, such as in the development and differentiation of many
eukaryotic cells [43, 72] or spore formation in some bacteria [42]. More recently, bistability in
metabolic signalling circuits have also been implicated in the appearance of distinct metabolic states
in populations of otherwise isogenic cells [36, 73]. In this regard, we wondered whether the
identified bistability produces to two phenotypically distinct subpopulations in an experimental

setting.



In Chapter 4, we describe the experimental methods used to explore the physiological consequences
of the identified bistability. We present evidence that two metabolic states indeed appear in both

wild-type and tps1A mutant populations of S. cerevisiae following glucose pulse perturbations.
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Figure 3.4. Basins of attraction in the wild type formulation of model with simple feedback of G6P on Hxk. The
basin is much smaller than in the TPS model (Chapter 2, Fig. 2.2). The bistability is not an artefact of a model
without feedback, but also occurs in a model with a simple feedback. Experimental data (Chapter 2, Fig. 2.4C)
suggests an underestimation of the in vivo size of the basin of attraction in WT cells; a discrepancy that is not

unexpected given the simplified approximation of the trehalose pathway in our model.
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INTRODUCTION

The kinetic model described in Chapter 3 exhibited initial-condition dependent behaviour, with two
possible outcomes at high extracellular glucose concentrations. A regular steady state, with
balanced fluxes and metabolite concentrations was found to co-exist with a second state
characterised by low ATP and P; concentrations and a low overall pathway flux; the second state
arise as a consequence of a flux imbalance between the upper- and lower-glycolytic parts. Our
analysis showed that a trehalose pathway is required to avert this imbalance, but this is not
guaranteed under all conditions. Furthermore, the metabolic features of the imbalanced state
suggested that it would be incompatible with growth. As many other bistable phenomena have been
shown to underlie the appearance of distinct phenotypic states, we wondered whether the two
metabolic states predicted by our model would also appear in S. cerevisiae populations challenged
with a sudden increase in glucose supply.

In this chapter we present experimental evidence demonstrating that two metabolic
subpopulations, viable and unviable, do indeed appear after glucose perturbations. We show that
without a functional trehalose cycle the majority of cells end up in the imbalanced state; this is the
primary fate of tps1A mutants. However, we also find that other factors can influence the fate of
cells and suggest a hypothetical framework that could consolidate our experimental findings with

the initial condition-dependent behaviour of the glycolysis model.



MATERIALS AND METHODS

Strains, media and growth conditions

S. cerevisiae strains based on the BY4743 background (MATa/a his3A1/his3A1 leu2A0/leu2A0
LYS2/lys2A0 met15A0/MET15 ura3A0/ura3A0) were used to characterize growth behaviour and
subpopulation dynamics (Table 4.1). The W303-1A background was used to evaluate the effects of
Hexokinase 2 (Hxk2) overexpression (Table 4.1). All growth experiments were performed at 30 °C
using a defined mineral medium (CBS) (see [60] for reference) with required amino acid
supplements, buffered to pH 5 (30 mM Sodium-Citrate/Citric Acid buffer) and supplemented with
either 2 % galactose (CBS-GAL) or 2 % glucose (CBS-GLU); where other compounds were added,
details are provided in the text. CBS plates were made by addition of 1 % agarose to the growth
medium. For all plating experiments, plates were incubated for 2-3 days at 30 °C. Medium lacking a

carbon source (CBS-C) was used as a wash and resuspension buffer throughout.

Strain constructions
All yeast transformations were performed according to [74]. The pYES-PACT1-pHluorin plasmid
described in [75] was kindly supplied by G. Smits. The plasmids for Hxk2 overexpression described in

[31] were kindly supplied by J. Thevelein.

Microtitre growth experiments

Growth behaviour in response to different carbon sources and various perturbing agents was
monitored using 96-well microtitre plates. All inoculums, unless stated otherwise, were derived
from single colony isolates. Glycerol stocks were streaked out onto YEP + 2 % galactose agar plates
(1 % Yeast Extract, 2 % Peptone, 2 % agar) and incubated at 30 °C. After 2-3 days, single colonies
were isolated directly from the plates and resuspended in CBS-C. Optical densities (ODgoy) Were
adjusted to be in the order of 0.1. Each suspension (biological replicate) was divided such that it
could be subjected to all permutations within a single experiment. Once carbon sources, and where
applicable other perturbing agents, were added, microtitre wells were filled with 300 pl of prepared
culture and growth was monitored as a change in optical density (OD) at 600 nm (ODgqy), using
either a SpectraMax Plus384 (Molecular Devices) or Multiskan Go (Thermo Fischer Scientific)
microplate spectrophotometer. All experiments were done with at least 2 biological replicates per
condition. All growth profiles are presented as the average of biological replicates, unless stated

otherwise.



Table 4.1. S. cerevisiae strains used in this work
Strain Genotype Source
——————————————————————————————————————

BY4743 (WT) MATa/a his3A1/his3A1 leu2A0/leu2A0 LYS2/lys2A0 EUROSCARF
met15A0/MET15 ura3A0/ura3A0

BY4743; Mat a/a; his3A1/his3A1; leu2A0/leu2A0;
tps1A lys2A0/LYS2; MET15/met15A0; ura3A0/ura3A0; EUROSCARF
YBR126c::kanMX4/YBR126c¢::kanMX4

MATa/a his3A1/his3A1 leu2A0/leu2A0 LYS2/lys2A0
WTpHI met15A0/MET15 ura3A0/ura3A0; pYES-PACT1- This study
pHluorin (URA3)

BY4743; MATa/a his3A1/his3A1 leu2A0/leu2A0
LYS2/lys2A0 met15A0/MET15 ura3A0/ura3A0; .
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Population level pHluorin measurements
Pre-cultures of pHluorin [75] expressing cells (see Table 4.1) were inoculated into CBS-GAL and
grown overnight to an ODgq of 0.8 - 1. Cells were collected by centrifugation, washed twice with ice
cold CBS-C and resuspended to an ODgy of approximately 1. Cell suspensions (200 ul) were
transferred to black polystyrene clear-bottom 96-well microtitre plates (Greiner Bio-One) and
pHluorin fluorescence emission was measured at 510 nm using an Omega Fluostar microtitre plate
spectrofluorometer (BMG LABTECH GmbH), with excitation bands of 10 nm centred around 390 and
470 nm, respectively. Glucose was added to a final concentration of 2 %, by automated injection.
Calibration curves were constructed exactly as described in [75]. Background fluorescence for a

WT culture not expressing pHluorin was measured in triplicate and subsequently subtracted from all



measurements. The background corrected ratio of emission intensity (Em510390e,/EM510470ex) Was

converted to pH by a function derived from the constructed calibration curve.

pHIluorin Micropscopy
Sample preparation and data acquisition
Tps1A cells were grown, harvested and washed as above, and kept on ice until the addition of
carbon sources. After addition of either 2 % glucose, 2 % galactose or 2 % galactose + 2 mM glucose,
cells were incubated on a shaker for 30 min at 30 °C, while microscope slides were prepared with 1
% agarose pads. Agarose was dissolved in CBS-C. Once set, 20 pl of cell culture was pipetted directly
onto the agarose and sealed with a cover slip and Valap (a mixture of equal amounts of vaseline,
lanolin and paraffin wax).

pHIluorin fluorescence images were collected on a Nikon Ti-E inverted microscope using a CFI
Plan Apochromat 60x oil-immersion objective (Nikon Instruments, Tokyo, Japan). pHluorin was
excited using either a 30 mW 405 nm diode laser or a 90 mW 488 nm diode laser from an Agilent
MLC400 laserbox (Agilent Technologies, USA). Both lasers were attenuated to 7 % of their maximal
power using an acousto-optical tunable filter. Emission light was selected using a 525 nm filter with
45 nm band width (Semrock, USA) and recorded on a cooled back-illuminated EmCCD-camera (iXon

DU897, Andor, UK) using exposure times of 100 ms and an EM Gain of 100 V.

Image processing and data analysis

Images were processed and analyzed using Imagel) version 1.45s [76]. General background
correction was applied by the built-in function, with a rolling ball radius of 50 pixels and smoothing
enabled. False-colour images were generated from the ratio of emission intensities resulting from
excitation at 405 and 488 nm (Em525.¢s5.,/EM525,455.,). These images allowed us to visually confirm
that distinct metabolic states, as predicted by our kinetic model (Chapter 2, Fig. 2.4), could be
distinguished.

pHluorin Flow Cytometry

Sample preparation

WT and tps1A cells were cultured, harvested and washed as before. Carbon sources (WT: 2 % GLU or
2 % GAL; tps1A: 2 % GLU, 2 % GAL or 2 % GAL + 2.5 mM GLU) were added approximately 45 min
prior to data acquisition. In addition, signals for cells suspended in CBS-C (unperturbed) were also

collected approximately 45 min after resuspension.



A second set of experiments were performed to evaluate whether the presence of ethanol leads
to the enrichment of the functional steady state fraction of the population when challenged with
glucose. Single colonies were picked directly from a galactose plates and resuspended in CBS-C.
Suspensions were perturbed as before with either 2 % GLU, 2 % GAL, 2 % GLU + 40 mM Ethanol
(EtOH) or 2 % GAL + 1 mM GLU. Samples not expressing pHluorin were always included to estimate

background fluorescence signals.

Data acquisition

Flow cytometry data were acquired on a CyAn ADP 9-Color flow cytometer (Beckman Coulter, Miami
Lakes, FL). pHluorin was excited by a 50 mW 405 nm laser and a 25 mW solid state 488 nm laser,
respectively, and emission was detected through a 530/40 nm filter. Laser voltages were set at the
minimum value that displayed the entire unperturbed WT population on a linearly scaled bivariate

plot. The acquisition limit was 10° events per sample.

Data analysis
Raw data files (.fcs) were processed and analysed using Matlab R2012b. Data were extracted from
FCS (flow cytometry standard) files using the fcsread.m function, available in the Matlab File

Exchange repository (http://www.mathworks.nl/matlabcentral/fileexchange/8430-flow-cytometry-

data-reader-and-visualization/content/fcsread.m). The channel-specific average background values

were calculated from samples not expressing pHluorin and subtracted from each individual data
point. Next, a general filter was applied to exclude data points with low signals. In the first set of
experiments (Chapter 2, Fig. 2.4C) this threshold was 25-times the channel-specific background
signal. For the second set of experiments (Fig. 4.6) this was 5-times the channel-specific background
signal. This difference is a consequence of lower overall signal (including background) in the second
set of experiments. The chosen thresholds resulted in an average of approximately 200 000 events
being retained for each sample, in both experiments. Fluorescence signals for each event were
calculated as the ratio of emission intensity resulting from excitation at 405 and 488 nm
(Em530405ex/EM530,55.4). Frequency data (bins = 101) for each sample were normalized to sample-

specific total post-filter events and expressed as percentages (Chapter 2, Fig. 2.4C and Fig. 4.6).



RESULTS

Identification and description of glucose tolerant tps1A subpopulations

Despite a robust phenotype, we found that a small fraction of cells within a tps1A population was
able to tolerate glucose and persist. Glycerol stocks were inoculated into CBS-GAL and grown to
ODggg 0.8 - 1. Cells were harvested by centrifugation, washed and resuspended in CBS-C. Ten-fold
serial dilutions were prepared and either spotted (50 ul) or streaked out (100 pl) onto CBS-GAL and
CBS-GLU plates.

Using CBS-GAL colony forming unit (CFU) frequencies as a viability reference, CFU counts on CBS-
GLU plates from 9 biological replicates and 4 independent experiments yielded a mean glucose-
tolerance frequency of 1 in 4524 cells with a standard deviation of 2540 (see Fig. 4.1A for a
representative result). Spotting of 10-fold serial dilutions confirmed tolerance frequencies to be in
the range of 1 in 10°-10" (Chapter 2, Fig. 2.3A). This behaviour manifested as a significantly extended
lag phases for tps1A cultures grown on glucose in liquid cultures (Chapter 2, Fig. 2.3B).

To confirm that these cells were indeed tps1A mutants and not the result of contamination,
single colonies were picked and the Tpsl locus (Accession number: YBR126C; see Table S4.2 for
primer sequences), which contains a Geneticin resistance (KanMX) cassette, was PCR amplified
(USB® FideliTag™ 2X PCR Master Mix, according to manufacturer's instructions). Results confirmed
the displacement of the Tpsl coding region by KanMX (Fig. 4.1B). In addition, tolerance to 200

ug.ml'1 G418 (Cayla-Invivogen, Fr) was confirmed in liquid cultures.

Table 4.2. Primer sequences used to confirm the genotype of WT and tps1A colony isolates.

Primer # Primer Name Sequence Description

1 Tps1l_ORF_Fwd 5'-GCCATGGACAAACTGCACTG-3' Upstream of Tps1 ORF

2 Tpsl_ORF_Rev 5'-CGTTATGCGGTGTGAACAGC-3' Downstream of Tps1 ORF

Specific for KanR coding

3 KanR_Int_fwd1 5'- CTTGACAGTCTTGACGTGCG-3'
sequence
Specific for KanR coding
4 KanR_Int_revl 5'-CGACCAGCATTCACATACGA-3'
sequence
Specific for KanR coding
5 KanR_Int_fwd2 5'-TCGTATGTGAATGCTGGTCG-3'

sequence




A second possibility, that these glucose tolerant colonies were revertants, i.e. consequence of
secondary mutations which rescue the phenotype, was excluded by evaluating the heritability of the
glucose-tolerance phenotype through propagation (Fig. 4.2 shows an overview of the scheme).
Cultures were inoculated from glycerol stocks (2x tps14, 1x WT) and pre-grown in CBS-GAL, and as
before, tps1A glucose tolerance frequencies on plates were calculated: tps1A replicate A (TA) = 1in
4827, tps1A replicate B (TB) = 1 in 5517. Next, we picked 4x tpsiA and 1x WT glucose-tolerant
colonies (i.e. from CBS-GLU plates), resuspended them in CBS-C and streaked out ten-fold dilutions
onto CBS-GAL plates. After 3 days at 30 °C, two colonies per original glucose-tolerant isolate were
picked and resuspended in CBS-C. Ten-fold dilutions were prepared and either spotted as 50 pl
suspensions or streaked out (100 ul) onto CBS-GAL and CBS-GLU plates. Results showed that 75 % (3
out of 4) of the original glucose-tolerant isolates again produced subpopulations with tolerance
frequencies similar to the glycerol stock derived populations (Chapter 2, Fig. 2.3C and Fig. 4.2),
arguing strongly for a non-genetic origin. All colonies retained tolerance to G418 (assessed by
growth in the presence of 200 ug.ml'1 G418). In the case where glucose tolerance is a consequence

of genetic changes (e.g. revertants) it will be transmitted to the progeny of glucose-tolerant isolates.
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Figure 4.1. Glucose tolerant tps1A colonies appear on plates. (A) Serial dilution plating shows that a small
fraction of individuals from a tps1A population is able to persist in the presence of 2 % glucose. Enumeration of
Colony Forming Units (CFUs) on Galactose vs. Glucose plates allow for the calculation of subpopulation sizes. (B)
Glucose tolerant tps1A colonies contain a KanR casette at the Tps1 locus, confirming the primary phenotype of
these cells. Lanes 1 & 5, Size ladder; Lanes 2 & 6, primers 1 & 2 (tps1 locus); Lanes 3 & 7, primers 3 &4 (KanR
specific); Lanes 4 & 8, primers 2 & 5 (KanR specific + tpsl locus). See Table 4.2 for definition of primer numbers

and associated sequences.



Noteworthy is the observation that 1 out of the original 4 isolates appeared to have acquired
tolerance at the genetic level (or some other heritable entity), as all the progeny derived from it no
longer exhibited significant glucose-sensitivity; this result is not completely unexpected as tpsiA
glucose tolerance was historically interpreted as the consequence of reversion [44]. Importantly,
and maybe surprisingly, our results demonstrate that glucose-tolerance emerges spontaneously and
in most cases exhibits reversibility, suggesting it is a consequence of phenotypic plasticity rather

than genetic mutation.
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Figure 4.2. Propagation demonstrates that tps14 glucose tolerance is non-genetic. Shown is the propagation
scheme used to assess the heritability of glucose tolerance. Only one of four glucose tolerant colonies (TA.2)
showed heritable tolerance. Tolerance for the remaining three colonies appears to be non-genetic in nature,

with similar subpopulation structures appearing after a single transition on galactose.

Environmental conditions affect glucose tolerances of tps1A populations

We hypothesized that the existence of glucose tolerant subpopulations reflects phenotypic
plasticity, which arises from the co-existence of two stable states in glycolysis (Chapter 3). In a
scenario where transition outcomes are dependent on initial conditions, one could expect that
alterations in environmental conditions might affect the size of such glucose tolerant

subpopulations, and hence of the lag phases in liquid culture.



Previous work has shown that the glucose sensitivity phenotype can indeed be reduced by
addition of respiratory inhibitors such as antimycin A [32] to the growth medium. Microtitre growth
monitoring confirmed that the addition of increasing concentrations of antimycin A (Table 4.3) did
indeed improve the growth of tpsiA cultures (Fig. 4.3A), reflected by a decrease in the lag phase.
However, inclusion of controls revealed that the observed effect could be ascribed mainly to

ethanol, the solvent (Table 4.3) in this case (Chapter 2, Fig. 2.5B).

Table 4.3. Overview of tps1A glucose tolerance improving medium additions

Effect on growth

Additive Solvent Final concentrations used tps1A WT

Increased
. Increased
WT: 1, 2 and 20 pg.ml-1 concentration i
R . 99 % i concentration
Antimycin A correlated with i o
Ethanol slightly inhibits
tps1A: 2,10, 20 pg.mi-1 decreased lag th
row
phase (Fig. 4.3A) &
Increased
concentration
Not correlated with No observable
Ethanol . 4.3 mM; 21.5 mM; 43 mM
applicable decreased lag effect
phase (main text
Fig. 2.5B)
Increased

concentration

Formic Acid dH20 4 mM; 10 mM correlated with
decreased lag

phase (Fig. 4.3B)

No observable
effect

This result was initially unexpected and surprising, but could be consolidated with improved growth
described for tps1A mutants with an enhanced glycerol flux [23]; ethanol has been demonstrated to
stimulate the glycerol-3-phosphate dehydrogenase flux through an increase in NADH availability
[50]. Interestingly, improved growth in the presence of antimycin A was originally shown to be a
consequence of an enhanced glycerol flux and inferred to be caused by increased NADH availability;
our results suggest, however, that it is the presence of low concentrations of ethanol rather than
antimycin A which underlies the effect. Our interpretations were further substantiated by the
substitution of ethanol (and antimycin A) by formic acid (FA, Table 4.3), which resulted in a similar

improvement of growth (Fig. 4.3B). Formic acid is oxidised by an endogenous formate



dehydrogenase to CO, and NADH [77] and inclusion of FA in the growth medium has been shown to

stimulate the formation of glycerol through enhanced NADH availability [77].
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Figure 4.3. Antimycin A and Formic acid additions lead to changes in lag phase duration. (A) Antimycin A (AA)
addition to glucose medium markedly reduces the observed lag phase of tps1A cultures, confirming increased
glucose tolerance frequencies, as was previously reported in literature [31]. Antimycin A appears to have a slight
inhibitory effect on WT cells, in the presence of glucose. Shown are the average growth profiles of 3 biological
replicates. (B) Addition of low concentrations of formic acid (FA) significantly reduces lag phases in the presence
of glucose, similar to ethanol (Chapter 2, Fig. 2.5B). This observation provides further evidence of a NADH-
mediated effect and suggests that the observed antimycin A effect is a consequence of small amounts of ethanol

(the solvent). FA had no effect on WT growth.

Growth dynamics of tps1A4 populations reflect subpopulation structures

The growth behaviour described above strongly indicates that changes in the viable fraction of a
population underlie growth dynamics, specifically the length of observed lag phases. To further
confirm this interpretation, we looked towards previous work, which showed a systematic inhibition

of tps1A growth by low concentrations of glucose in the presence of excess galactose [35]. Cultures



CHAPTER 4

pre-grown in CBS-Gal were harvested, washed and resuspended in CBS-C. Two-fold dilutions were
prepared and 50 ul cell suspensions were spotted onto CBS-Gal plates with increasing amounts of
glucose. The results confirmed that increasing amounts of glucose correlated with a systematic
reduction in the number of viable tps1A individuals (Fig. 4.4A). WT populations, on the other hand,
did not exhibit this behaviour. Additionally, plating experiments showed an approximately 100-fold
increase in tps1A viability when 40 mM ethanol was added to CBS-GLU plates (Fig. 4.5A), providing
evidence that the shorter lag phases observed in the presence of ethanol are a consequence of

improved viability.
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Figure 4.4. Subpopulation size displays glucose dose dependence and translates to differences in observed lag
phases. (A) Two-fold serial dilutions show that increasing concentrations of glucose lead to a systematic
reduction in the number of viable cells. These results highlight the existence of glucose tolerant and sensitive
cells within a tps1A population, even at low glucose concentrations. Shown here is a representative result. 50 pl
per dilution was spotted, with an undiluted ODgq of approximately 0.05. (B) A growth model demonstrates how
such a systematic reduction in the viable fraction of the population, in response to glucose, manifests as an

increase in the observed lag phase.
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To illustrate the effect of reduction in population viability on growth dynamics, we simulated the
growth of cultures with a fixed inoculum size, but decreasing fractions of viable individuals. We
employed a simple exponential growth model in the form X(t) = X, + Xvo.€™, with X, as the inoculum
size and Xvg as the number of growing (viable) cells. We took the growth rate (u) to be equal to the
growth rate measured for WT populations.

These results (Fig. 4.4B) reproduce the effect of population viability on the observed growth
dynamics and provide an explanation of previously described [35], but not understood, growth
behaviour. Importantly, these results confirm environment-dependent glucose sensitivity within
tps1A populations and provide direct evidence for a relationship between population substructures

and observed growth behaviours.
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Figure 4.5. Ethanol addition leads to an increase in tps14 glucose tolerance. (A) Addition of 40 mM EtOH to CBS-
GLU plates enhances glucose tolerance of tps1A populations with an approximately 100-fold increase in viability.
Shown are ten-fold dilutions of tps1A and WT suspensions spotted (50 ul) onto CBS-GAL (GAL), CBS-GLU (GLU)
and CBS-GLU + 40mM EtOH (GLU+E) plates. The experiment was repeated twice for tps1A suspensions, with
similar results. (B) Using the insights gained from our growth model, we can estimate the fraction of initially
viable individuals in the presence of different concentrations of ethanol. In the right panel we show experimental
data (with ethanol concentrations as indicated) and in the right panel we reproduce the ethanol-dependent

growth profiles, by simulating growth with different fractions of viable subpopulations at t = 0, as indicated.

Using these insights we were able to reproduce the observed growth profiles of tps1A cultures in
ethanol supplemented CBS-GLU, allowing us to calculate the approximate fractions of viable cells in
these populations (Fig. 4.5B). Importantly, the ability to reproduce tps1A growth profiles using
growth rates estimated from WT cultures (growing on glucose) also precludes the possibility that

improved growth is a consequence of a subpopulations solely utilizing ethanol.



Cytoplasmic pH distinguishes distinct metabolic subpopulations

Demonstration of different population structures in response to glucose concentration gradients
(Fig. 4.4A) led us to ask whether we could visualize and distinguish distinct metabolic
subpopulations. We looked towards intracellular pH (pH;) as global indicator of metabolic status. We
based our decision on the observations that (i) a relation between pH; and growth rate has been
shown [75, 78], suggesting that pH could provide a proxy for metabolic status and (ii) tps14 mutants,
when challenged with glucose, are unable to maintain pH homeostasis due to insufficient ATP levels
[40].

We first confirmed the previously described intracellular acidification of tpsiA cultures when
challenged with glucose [40]. Results showed a clear difference in the pH responses of tps14 and WT
cells following a glucose pulse (Chapter 2, 2.4A). After an initially similar response, tps1A cultures
display sustained acidification, and after 25 min exhibit a population level pH; of approximately 1.5
pH units below that of WT cultures. When grown on galactose (Chapter 2, 2.4A) the pH; of tps1A and
WT cultures is indistinguishable.

Having established that pH; clearly distinguished between tps1A populations challenged with
glucose and those growing on galactose, we employed fluorescence microscopy to firstly evaluate
whether distinct metabolic states could be visualized for individual cells. The collected images
confirmed that distinct metabolic states could be distinguished (see Chapter 2, Figure 2.4B for an
example).

Next, a high throughput flow cytometry approach was used to characterize population
structures under various conditions (Chapter 2, 2.4C and Fig. 4.6). The first set of experiments
evaluated both WT and tps14 population structures in response to 2 % Glucose, 2 % Galactose or a
combination of 2 % Galactose + 2.5 mM Glucose (tps1A only). Samples suspended only in wash
buffer were used to determine population structure prior to sugar perturbation. In both the WT and
tps1A populations a bimodal distribution was observed post-perturbation (Chapter 2, Fig. 2.4C),
indicating two subpopulations. Low 405 nm/ 488 nm ratios indicate a low pH and vice versa. For
tps1A suspensions exposed to glucose the majority of cells belonged to the low pH peak, confirming
this peak as diagnostic of the imbalanced metabolic state. In contrast, WT suspensions primarily
displayed a higher pH peak after glucose addition. However, approximately 7 % of WT cells failed to
recovery pH, with values corresponding to the imbalanced state.

A second set of experiments were performed to determine whether ethanol led to an
enrichment of the peak associated with the viable state (higher ratio peak); as expected from
microtitre growth (Fig. 4.5B) and plating experiments (Fig. 4.5A). As before, population distributions

were bimodal and the addition of 40 mM Ethanol to glucose perturbed cultures resulted in



enrichment of the higher ratio peak (Fig. 4.6). Due to differences in the pre-data acquisition
calibration of the flow cytometer, signal resolution was not optimal in the second set of
experiments. While the resolution was sufficient for the identification of two peaks, significant

overlap meant that relative peak sizes could not be reliably estimated.
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Figure 4.6. Flow cytometry acquired pHluorin emission ratio frequencies for tps1A cell suspensions. Shown are
normalized frequency distributions in response to different perturbations, as indicated (Materials and Methods
for details). The top left panel shows a population distribution prior to perturbation. Lower ratio values are
associated with lower pH/s and vice versa for higher ratios. Insets show that the peak associated with the
functional steady state (right peak) is visibly enriched when tps1A cells are perturbed with 2 % GLU in the
presence of 40 mM EtOH (compare GLU + EtOH vs. GLU; note that two independent experiments with EtOH are
shown). Lastly, addition of 1 mM of GLU in the presence of 2 % GAL (bottom right panel) leads to the appearance

of a large peak associated with the imbalanced state (left peak).

Tps1A cells remain viable for several hours following a glucose perturbation
Having shown that the growth behaviour exhibited by tps1A populations can be explained by a small
number of individuals that are able to persist and replicate after a glucose pulse perturbation,

another relevant question relates to the fate of the cells trapped in the imbalanced state. What are



the physiological consequences of the metabolic disturbances underlying the imbalanced state? At
low ATP and P; concentrations, a low glycolytic flux and a significantly lower cytoplasmic pH, do cells
remain viable, but are unable to replicate, or do they ultimately die? To answer these questions, we
assessed the ability of glucose-perturbed tpsl1A populations to resume growth on galactose after
increasing lengths of exposure to glucose. TpsiA cells were pre-grown in CBS-GAL and harvested
during mid-logarithmic growth. Cells were resuspended in CBS-C (to an OD of ~1) and perturbed
with 2 % glucose. Before glucose addition a sample was taken and dilution-plated to get an initial
CFU count (i.e. viability before glucose perturbation). At regular time intervals after the
perturbation, samples were taken, diluted by a factor 10° and plated onto CBS-GAL plates (note: a
10° dilution ensured that extracellular glucose became negligible when 100 pl samples were spread
out on plates). Additionally OD was measured at each sampled time point. Our results show that
cells remain viable for a significant period of time following a glucose pulse (Fig. 4.7).

The viable fraction, assessed by the ability to resume growth on galactose, was stable for around
7 h following a glucose pulse, after which a slow and steady reduction in viability is observed. This
behaviour is fully consistent with metabolic data, which show that cells remain metabolically active
(and thus not dead), for several hours following a pulse, evidenced by continued FBP accumulation
(see e.g. [21]), presumably until all intracellular phosphate stores are depleted [40].

While flow cytometry data clearly indicated that a fraction (~7 %) of WT cells also end up in the
imbalanced state (Chapter 2, Fig. 2.4C) we were unable to demonstrate their fate using the
approach outlined here. An important caveat is that it is easy to resolve growing cells against a
background of non-growing cells (as in the tps1A case), but the opposite scenario is much more
difficult with the resolution provided by this method. Based on the metabolic features of the
imbalanced state, we do, however, expect their fate to be the same as that of the imbalanced

fractions of tps1A populations, i.e. they will eventually lose viability.

Wild-type cells overexpressing hexokinase 2 display reduced viability

Simulations with the full kinetic model showed that WT cells can also become trapped in the
imbalanced state (Chapter 3, Fig. 3.4), but that the trehalose cycle functions to minimize the
probability of this state being reached. Analyses showed that an increase in Hxk2 activity, either by
reduction or removal of T6P-mediated inhibition (Chapter 2, Fig. 2.8) or by increasing the V., for
this reaction, increases the probability that the WT model will end up in the imbalanced state. As
discussed in Chapter 1, the effects of Hxk2 overexpression in WT cells had previously been
investigated [31]. However, with the insights generated in the current study, we used the strains

detailed in [31] to assess whether Hxk2 overexpression in WT impacts the viability of WT cells. Again



population level growth behaviour was monitored in a 96-well microtitre plate alongside CFU
counts, which provided a direct measure of viability. Experiments were repeated twice, with similar
results (Fig. 4.8).

We found that increased levels of Hxk2 resulted in (i) small but reproducible increases in lag
phases when cells are grown on glucose (Fig. 4.8A) and (ii) a reduction in the number of colony
forming units (CFUs) on glucose plates (Fig. 4.8B). However, overexpression of Hxk2 had an
unexpected effect on the galactose tolerance of cells, resulting, similarly, in a Hxk2 dose-dependent
reduction in CFUs when plated on galactose plates. In line with the methodology elsewhere in this
work we decided to normalize all glucose CFU counts to the within strain galactose CFU counts, in an
attempt to account for the more general effect that Hxk2 overexpression has on viability.
Importantly, we still found that increased Hxk2 levels leads to a reduction, albeit more modest than

before normalization, in population viability in the presence of glucose (Fig. 4.8C).
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Figure 4.7. Tps1A populations maintain viability several hours after a glucose pulse perturbation.
(A) Shown are the dilution-corrected CFU counts on CBS-GAL plates after a glucose pulse
perturbation for both tps1A and WT populations. The dashed black line indicates the predicted CFU
counts for the tps1A population, generated by an exponential growth equation. For the growth
model, we assumed an initial viable population (t=0) of 1 in 3000 individuals (derived from the
measured CFU counts) and a growth rate calculated for the tps1A curve between 30 h and 34 h. The
initial (t=0) CFU counts represent viability prior to glucose exposure. The experiment was repeated
twice for tps14, with 2 technical replicates included in the second run. A single experiment was
performed for WT. (B) Measured OD’s for time points displayed in (A). The dashed black line depicts
the predicted OD evolution of a tpslA population with the same parameters used for CFU
predictions. Note, that while OD-based growth was modeled with the same growth parameters, a
baseline equal to the initial OD x 99.97 % (i.e. at t = 0 only 1 in 3000 OD units represent the initial

growing population) is added to predicted values.
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Figure 4.8. Overexpression of Hxk2 leads to a reduction in WT viability. Shown are growth and CFU data for WT
and two Hxk2 overexpression strains [31]. (A) Growth on 2 % glucose is characterized by a small increase in the
lag phase. (B) CFU counts show a reduction in viability for Hxk2 overexpression strains relative to WT, on both 2
% glucose and 2 % galactose plates (n=11 per biological replicate and condition; R1 and R2 designate biological
replicates). (C) Normalizing GLU to GAL CFU counts still shows a Hxk2 dose-dependent reduction in viability.
Shown are strain-specific average and replicate GLU/GAL CFU ratios, all scaled relative to the WT average (set to

100 %).

These results indicate that overexpression of Hxk2 (a well-known global regulator of carbohydrate
metabolism [79]) has effects not confined to glucose metabolism only, making unambiguous
interpretations difficult. Even with this unexpected complication, we do, however, consider these
results to provide support for our own predictions and to be consistent with the metabolite profiles
shown in [31], which can be explained by a small increase in the imbalanced state fraction of the
population. As an aside, this result provides an important caution for the comparative strategies

often employed when interpreting genetically modified phenotypes.



SUMMARY

Motivated by the discovery that the initiation of glycolysis can lead to either a functional steady
state or a growth-incompatible imbalanced state (Chapter 3), we attempted to determine
experimentally whether two such states appear in real populations. We found that a small fraction
of tps1A cells was indeed able to persist in the presence of glucose and that this tolerance was non-
genetic in nature. This glucose tolerant subpopulation was highly reproducible in size, with
approximately 1 in 10° - 10 individuals able to survive glucose challenges. Population-level growth
profiles could be quantitatively consolidated with estimated subpopulation fractions. Furthermore,
we showed that the sizes of the viable and unviable fractions corresponded quantitatively with
metabolic subpopulations, using pH; readouts as a proxy for metabolic status. We also showed that
subpopulation sizes could be manipulated by addition of ethanol or formic acid addition to the
growth medium, or by directly altering Hxk2 expression levels. Whereas ethanol and formic acid
additions are interpreted to stimulate phosphate turnover and consequently alleviate a flux
bottleneck at Gapdh, Hxk2 overexpression will have the opposite effect, by increasing upper-
glycolytic activity.

Taken together these results provide strong evidence for the theoretically demonstrated
bistable behaviour of glycolysis and shows that the startup of glycolysis is not guaranteed, even
when all regulatory components are present.

In any population, individual cells are likely to differ from each other in their exact metabolic
state. The initial-condition dependent-behaviour of the glycolysis model can be consolidated with
our experimental findings, if one assumes that a population of cells is characterized by individuals
that all differ slightly in their exact metabolic state. Such differences are not a consequence of
genetic alterations, but arise through spontaneous fluctuations in metabolic intermediate and
enzyme concentrations.

In Chapter 5, we will provide further substantiation of this interpretation by simulating non-
genetic population heterogeneity through the random sampling of enzyme capacities (V.x) and

initial metabolite concentrations from continuous probability distributions.






5 Simulating spontaneous metabolic variation through
random sampling of initial conditions
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INTRODUCTION

In Chapter 4 we showed that a sudden increase in glucose supply leads to the spontaneous
appearance of two metabolically distinct states in a population of otherwise genetically identical S.
cerevisiage cells. Importantly, we showed that the sizes of these subpopulations could be
manipulated through variables that impact upper and lower-glycolytic flux capacities. These results,
combined with the initial condition-dependent bistable behaviour of the large kinetic model
(Chapter 3), were interpreted to suggest that cell-to-cell differences in key metabolic parameters
could explain the appearance of these subpopulations. However, our initial analyses demonstrated
this for large and probably physiologically unrealistic differences in initial P; and FBP concentrations
(Chapter 2, Fig. 2.2A and Chapter 3 Fig. 3.4). We hypothesized that such variations might be more
subtle in vivo, and that the appearance of two metabolically distinct subpopulations can be
explained by the combined effect of small continuously distributed variations in all metabolic
variables, rather than large fluctuations in one or two variables. In this chapter we use the kinetic
model, as detailed in Chapter 3, to explore this idea and evaluate the relationship between more
modest, but system wide, variations in initial conditions and the probability of obtaining a regular

steady state in the kinetic model.

METHODS

Simulating population heterogeneity
To simulate cell-to-cell metabolic heterogeneity, we took enzyme expression levels and metabolite

concentrations as two likely sources of inter-individual metabolic variation in a population. The
extent to which the levels of individual metabolite pools or glycolytic enzymes vary between
individual cells has not been described in great detail. For yeast, some efforts have been made to
quantify inter-individual noise in protein levels [45] and this was found to be significant even for
highly abundant proteins (such as metabolic enzymes) which showed coefficients of variation of > 10
%. Additionally, it was found that protein abundance variation typically followed a Gaussian
distribution [45]. Information on single-cell variation in metabolite levels, on the other hand, is very
scarce. Detection of metabolites at a single cell level is technically challenging and many of the
available techniques are not suitable for high-throughput parallel detection of multiple species [80].
However, recently Ibafiez et al. [81] provided some insight into cell-to-cell differences for several
glycolytic intermediates. Data was presented semi-quantitatively and no variation measures (e.g.
standard deviation or CV) were reported, but inter-individual differences in glycolytic metabolite

pools were clearly present.



Due to a lack of quantitative data for metabolite variability, and for practical purposes, we
assumed Gaussian distributions for both enzyme expression levels (represented by V., values) and
initial metabolite concentrations. Variance was set such that the probability of a sampled value
deviating more than 20 % from the reference value is less than 1 in 10%; this equals a coefficient of
variation (CV, i.e. a mean-normalized standard deviation) of 6.1 % (3.29 standard deviations = mean
+ 20 %, for Gaussian distributions).

We randomly drew more than 10° unique Vnax and initial metabolite concentration sets. To
additionally evaluate the effect of ethanol on the probability of reaching a steady state, we repeated
this sampling at varying ethanol concentrations: 0, 4.3, 10, 21.5, 30, 43, 50, 62.5, 75, 100, 200 and
500 mM.

The randomly drawn sets were then used as initial condition inputs for the kinetic model. For
each set, we performed a numerical time simulation for 250 minutes and evaluated the system to
check whether a regular or an imbalanced state was obtained. An imbalanced state was defined
when the final FBP concentration was higher than the concentration at 90 % of the evaluation time
(indicating long term accumulation). In addition, to score a viable state, P; concentration > 0.5 mM
was used to avoid incorrectly identifying zero flux states as vital steady states; a scenario which
would arise when no P; is available to drive FBP accumulation. Based on the evaluation outcome
each randomly drawn data set was categorized and saved.

Random sampling, time simulations and steady state evaluations were performed using

Mathematica 9.0 (Wolfram Research).

Linear Discriminant Analysis

Using the output from the random sample evaluations we explored the effect of initial conditions
and ethanol concentration on the probability of reaching a regular steady state, by means of linear
discriminant analysis (LDA, [82]). LDA seeks to find a linear combination of variables that can
optimally distinguish between independent sample classes and as such reveals meaningful
correlations between variables and class labels.

From the saved initial condition sets (see above), 5000 samples (sets) were randomly drawn, for
both imbalanced and regular steady state solutions, at each ethanol concentration. This yielded a
data set with 28 variables (14 initial metabolite and 14 V,,, values) and 24 independent classes (2
groups: imbalanced vs. steady state, at 12 different ethanol concentrations, see above). The
discriminant analysis was performed with the Ida function of the MASS package in the R (version

2.14.2) statistical environment [83]. All parametric assumptions (distribution normality,



homogeneity of variance, independence of observations) of the LDA method were confirmed to be

met.

RESULTS

Steady state evaluations of randomly sampled initial states

Approximately 1 in 10° of the randomly sampled initial condition sets produced steady state
solutions for the TPS model, similar to experimentally observed glucose tolerance frequencies for
tps1A populations (Chapter 4). The in vivo effect of ethanol was also reproduced well, with
increasing amounts of ethanol correlating with increased percentages of steady state solutions
(Chapter 2, Fig. 2.5C). While experimental results showed that a significant fraction of WT
populations ended up in an imbalanced (low pH) state, we did not find any imbalanced state
solutions from the randomly sampled initial condition sets for the WT model. This could be due to
the simplified approximation of the trehalose pathway in our wild-type model or conservative
estimates of cell-to-cell variability for metabolite and enzyme levels. We know from available
experimental data that the implemented variability in enzyme levels is conservative [45], but we
were uncertain as to the expected degree of variability for metabolite pools. Increasing the CV (to 15
%) did indeed result in small percentage (~2 %) of imbalanced state solutions for WT models (data

not shown).

Evaluation of variable contributions to steady state outcomes

The linear discriminant analysis revealed that 99 % of the achievable between-group separations
(inter-group differences) could be explained by the first linear discriminant, with the second
discriminant accounting for 0.4 % of the separation. The standardized variable loadings (Chapter 2,
Fig 2.5A and Table 5.1) clearly show that the variables with the largest loadings (the magnitude of
these coefficients indicates the relative contribution to the discriminant function) on the first two
discriminants represent a contrast between parameters and metabolites that are key in determining

upper- and lower-glycolytic flux capacities (Table 5.1).



Variable

Table 5.1. Variable loadings for the first two discriminant functions

LD1

LD2

GLUi -0.001 -0.031
P (energy status)’ 0.256 -0.080
G6P 0.156 -0.021

F6P 0.043 -0.004

FBP 0.086 -0.041

BPG 0.008 -0.044

P3G 0.047 -0.001

P2G 0.002 -0.010

PEP 0.012 0.061

PYR -0.001 -0.022

ACE 0.003 0.013

TRIO (DHAP+GAP) 0.026 -0.019
NADH 0.000 -0.006

P, 0.499 -0.158
ViaGlt -0.696 0.362
VimaxHxk -0.792 -0.300
VinaxPgi -0.286 0.159
VinaxPFk -0.356 0.134
VinaAld 0.095 0.092
VimaxG3pdh 0.157 0.734
VimaxGapdhy,g 0.446 0.256
VinaxGapdhre, -0.011 -0.027
VonaxPgK 0.025 -0.018




Table 5.1. Continue

Variable LD1 LD2
|

VinaxPgM 0.035 0.038

VmaxENO 0.131 -0.067

VimaxPYk 0.043 -0.040

VmaxPdc -0.001 -0.013

VimaxAdh -0.030 0.122

Shown in bold are the 5 largest loadings for the first discriminant and the largest loading on the second
discriminant. *P represents a summary term reflecting the high energy phosphate pool (ATP, ADP and AMP), see

[41] for explanation.

Evaluating group centroids® (Fig. 5.1A) clearly confirms that the first discriminant captures
differences between imbalanced-state and steady-state samples. Imbalanced-state samples
correlate with higher V,.Glt, VmaHxk, Vi,.Pfk values (indicating higher upper glycolytic flux
capacities) and reduced values for V,,,,Gapdh and P; (i.e. reduced lower glycolytic flux capacities)
while vital steady-state samples display converse correlations.

Interestingly, the 2nd discriminant appears to mainly reflect ethanol-dependent differences
between steady-state samples (Fig. 5.1A). When looking at the variable loadings for this
discriminant, V,,G3pdh stand out (Table 5.1). Combined, these data suggest that the increased
regular steady state frequencies associated with increased ethanol concentrations (Chapter 2, Fig.
2.5C) is correlated with G3pdh activity. In Chapter 4, we suggested that the mechanism by which
ethanol (and formate) addition improves growth of tps1A on glucose can be explained by the
stimulatory effect of excess NADH on the glycerol flux. Evaluation of steady states shows that higher
ethanol concentrations are indeed correlated with higher G3pdh rates and increased NADH
concentrations at steady state (Fig. 5.1B).

Figure 5.1C shows, in a simplified two parameter scenario, how different combinations of V.,
values of Hxk and G3pdh can lead to either steady state or imbalanced state outcomes. Steady-state
solutions can be achieved by e.g. an increase in the G3pdh V.., a decrease in the Hxk V., or a

combination of both. In addition, it is illustrated how the addition of ethanol enlarges the size of the

% A centroid refers to the class average of the discriminant function.



parameter space that results in a regular steady state solution, thereby increasing the probability

that a steady state can be reached.

SUMMARY
In Chapter 3, we illustrated how different combinations of initial P; or FBP concentrations lead to
bistable outcomes in our kinetic model. One caveat, however, was that fairly large changes were
required to produce the non-typical outcomes: imbalanced state for WT model and steady state for
TPS model.

Metabolism is considered relatively noise free due to high metabolite and enzyme levels. While
available experimental evidence demonstrates clearly that enzyme levels and metabolite
concentrations vary between individual cells, these differences are unlikely to be of the magnitude
seen for low copy number systems such as transcription cascades (protein abundance estimates
indicate CV values of between 10 and 20 % for glycolytic enzymes [45]). However, we showed how
small distributed changes across all metabolites and enzymes, a scenario likely for a population
consisting of millions of individuals, can explain the bistable outcomes observed, both in our model
and experimentally. In populations consisting of millions of individuals, metabolic outliers can
appear when deviations in key metabolic variables converge to generate qualitatively different
responses to an environmental perturbation. Importantly, these results provide a novel framework
that demonstrates how small amounts of metabolic noise can to lead phenotypic heterogeneity,
through complex interactions and interdependencies in metabolic networks; a model that is distinct
from other frameworks such as fluctuation induced bistable switching (FIBS), which has previously
been linked to the emergence of phenotypic heterogeneity (e.g. antibiotic resistance in E. coli) in

microbial populations [48].
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Figure 5.1. Linear discriminants separate sample classes and highlight class-determining variables. (A)
Centroids for each independent sample class, when plotted, highlight a clear separation between imbalanced-
state (blue circles) and steady-state samples (red circles), which is captured by the first linear discriminant (LD1).
The second discriminant (LD2) highlights ethanol-dependent differences between steady-state samples. Ethanol
concentrations are indicated next to each steady-state sample (and shown only for imbalanced-state samples
associated with the three highest ethanol concentrations). The inset shows the most important variable loadings
for the two discriminant axes (also see Fig. 3A, main text). (B) Randomly sampled data, shown as boxplots, that
lead to steady state solutions reveal an ethanol-dependent increase in the steady-state G3pdh rate (i.e. flux
towards glycerol) and NADH concentration. (C) Shown is the relationship between different combinations of
G3pdh and Hxk vmax values and the outcome of model simulations (steady state, green area or imbalanced
state, white area). The red dot indicates the values of these parameters in the model. The addition of ethanol
leads to a larger range of Hxk and G3pdh values that produce a regular steady state (right panel) — i.e. upon
random sampling of these two parameters, within a range 5x coefficient of variation (CV; + 30 %, indicated by the

dashed ellipse), we will see a higher percentage of regular steady states.
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INTRODUCTION

In the previous chapters we showed that the initial condition-dependent bistable behaviour exhibit
by the kinetic model of glycolysis manifests as two distinct phenotypic subpopulations in S.
cerevisiae cultures. In the absence of a trehalose pathway (tps14), most cells are unable to transition
to high glucose, but success could be significantly improved by stimulation of a flux towards glycerol.
Our kinetic models showed that an increase in ATP hydrolysis (futile cycling) produced a similar
result (Chapter 2) and we realized that the stoichiometry of the full trehalose pathway constitutes
such a futile cycle. With the cycling of glucose via trehalose, at the cost of ATP and simultaneous
recovery of P;, a large flux towards trehalose could serve to steer glycolysis towards the functional
steady state, or at least could significantly increase the probability to reach it.

Our core model (Chapter 2, Appendix A) showed how such a mechanism would function to
balance ATP-consumption and production with phosphate availability when the glucose influx
suddenly increases. However, the prevailing opinion is that compared to glycolysis, the flux capacity
of this pathway is not sufficient to have a significant effect [17, 33, 34, 84].

Due to the bistable dynamics of the system, we hypothesized that a high flux would only be
required temporarily; once the system has reached the regular steady state, the need for excessive
ATP hydrolysis (and consequential P; recovery) disappears.

To evaluate this hypothesis, we set out to estimate dynamic flux changes through the
trehalose pathway when glucose supply suddenly increases. Using a [*cl-enrichment strategy we
quantified both metabolite pool sizes and their labelling patterns over a period of approximately 5
minutes following a glucose pulse. An analytical method by Abate et al. [52] allowed us to estimate
dynamic flux profiles from the obtained data.

Our results strongly substantiate the hypothesis that trehalose cycling constitutes a
temporal futile cycle, which is large enough to guide the system towards the regular steady state

after a glucose pulse perturbation.

MATERIALS AND METHODS

Strain, Media and Reference cultivation

The haploid prototrophic Saccharomyces cerevisiae strain CEN.PK 113-7D [85] was cultured in an
aerobic glucose-limited chemostat using a low-salt defined medium [71] containing: 8.25g L

1glucose, 039¢g L ethanol and 0.05 g L™ silicone antifoaming agent (BDH, UK), yielding a steady-



state biomass concentration of 4.0 gpw Lt (DW, dry weight). Ethanol was added to suppress
spontaneous oscillations [86].

The continuous culture was performed in a 7.0 L bioreactor with 4.0 L working volume
(Applikon, Schiedam, the Netherlands) at a dilution rate of 0.1 h™. Temperature was set to 30 °C
and pH was kept constant at 5.0 by automated addition of 4.0 M KOH (aq). Air was sparged through
the culture at a rate of 2.0 L.min™ and stirring was set to 800 rpm. Steady-state conditions were
assumed when, after five volume changes, dissolved oxygen, off-gas composition and biomass
concentration were stable.

Biomass dry weight was measured, in triplicate, by filtering 5.0 ml broth samples through pre-
weighed and pre-dried 0.45 pum cellulose membranes (Supor®-450, Gelman Sciences, Ann Arbor, M,
USA). Next, the membranes were washed with 10.0 ml demineralized water and placed at 70 °C to

dry (24 hours), before being weighed.

Glucose pulse perturbations

Glucose pulse perturbations were performed by coupling a Bioscope reactor [86] to the chemostat
culture; this facilitated multiple sequential perturbations without disturbing the steady state
reference culture in the chemostat. The Bioscope flow was calibrated to a rate of 0.475 mL.min’l,
which allowed for a total sampling time of 5 min 37 s with samples after: -0s, 27 s,50s, 64 s, 89 s,
107 s, 1355, 163 s, 204 s, 272 s and 337 s. The culture was perturbed by the addition of 110 mM
glucose to the broth flow when entering the Bioscope (see Fig. 6.1 for an illustration of the
experimental setup). The sampling time was chosen based on a priori expectations of flux dynamics
through central carbon metabolism and represents a trade-off between resolving rapid and slow
enrichments of the various metabolite pools. Within our system, the main challenge was to ensure
that the tracer was sufficiently propagated to the large trehalose pool, whilst maintaining some
degree of resolution for the much smaller and rapidly labelled upper glycolytic metabolite pools.

12C

The experiments were performed in duplicate from the same chemostat culture for both a,
glucose perturbation (for concentration measurements) and a perturbation with uniformly labelled
3¢ (U-3c) glucose (for labelling enrichment measurements).

Sample extractions, processing and analysis were performed as in [71] and is briefly described

below.

Metabolite extraction and sample storage
Tubes with 100 % methanol (5 mL) were taken from the cryostat (-40 °C) and 1 mL of broth was

sampled directly into this quenching solution. The biomass is separated from the quenching solution



by centrifugation. To remove the broth supernatant an additional washing step is included. In case
of concentration measurements, B3¢ extract was added. The washed pellet is then extracted by the
addition of 5 ml of 75 % (v/v) boiling ethanol. Samples were immediately vortexed and placed in a
waterbath at 95 °C for 3 min and then returned to the cryostat. Ethanol was evaporated using a

RapidVap N2 (Labconco, US). The dried residues were stored at -80 °C until further processing.

Metabolite concentration and mass isotopomer quantifications

Mass isotopomer fractions as well as concentrations of glucose 6-phosphate (G6P), fructose 6-
phosphate (F6P), glucose 1-phosphate (G1P), fructose 1,6-bisphosphate (FBP), trehalose 6-
phosphate (T6P), uridine-diphospho-glucose (UDP-GLU), and 6-phosphogluconate (6PG) were
determined using anion- exchange liquid chromatography mass spectrometry (LC-MS) [71]. The
concentration of ATP was determined by ion-pair reverse-phase LC-MS [71]. Additionally, G6P, F6P,
FBP, T6P and Trehalose (TREH) were measured, as methoxime-trimethylsilyl derivatives, by gas
chromatography (GC)-MS. The intracellular concentrations were determined based on Isotope
dilution (ID)-MS [71]. Where applicable, metabolite values determined by more than one platform

were combined.
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Figure 6.1. Schematic illustration of the isotope labelling experimental setup used for glucose pulse

perturbations, sample collection and processing. See text for details.



Hybrid modelling approach

In a ‘classical’ kinetic modelling approach, the flux is a function derived from an enzyme mechanism
(e.g. Uni-uni). A flux (v ) is influenced by the concentrations ( C) of the substrate(s), products(s) and
inhibitors(s)/activator(s) and the enzyme-kinetic properties () (e.g. maximal activity, substrate

affinity). In general, v is a non-linear function of concentrations Cand parameters Q:

v(c,a) (E6.1)

However, it is often difficult, if not impossible, to accurately describe in vivo reaction mechanisms
due to the complex, or unknown, nature of allosteric regulations and other physicochemical
variables. Therefore, the reaction mechanism function (which requires several kinetic assumptions)
is replaced by an approximation of the result: the flux value in time. The flux is defined as a
continuous piece-wise affine (PWA) function with switch-times (time points between which linear

functions are used) and flux values at the switches. E.g. the uptake reaction rate v, can be described

by (three switches):

V. -V
v, At t<t
tl
Vie, Vi
vi(t)=qv,, +—2—(t-t,) t <t<t,
A (E6.2)
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This function has four parameters, ©; =(vyg,Vy1,V15,V13) .

With these flux functions, the balance equations for the concentrations and the labelling can be
formulated similarly to the kinetic modelling approaches. In the approach, the labelling enrichment
is simplified and represented as C-molar 3¢ enrichment. Thus, each metabolite has a concentration
and one *C enrichment fraction. The balances are derived from the defined stoichiometric network
(see Table 6.1 for overview). As an example, the F6P pool has an influx from G6P (Pgi, v2) and an
efflux towards FBP (Pfk, v3). The concentration change can be described by the respective in- and

out-fluxes:
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For the C-molar labelling enrichment ( Xrgp ), the labelling state of the substrate and the pool itself

has to be taken into account:

Xeep
Crop pm = XgepV2 ~ XrepV3 (E6.4)

Note that the concentration of the pool has an impact on the labelling enrichment dynamics — the

equation systems E6.3 and E6.4 have to be solved simultaneously.

The simplification of the labelling state to C-molar enrichment requires assumptions in the case of
bi-molecular reactions, e.g. the split of trehalose into two glucose moieties. Here, it is assumed, that
the labelling enrichment is equally distributed over the two glucose (in this case G6P as intracellular

glucose is not balanced) moieties:

dx,

G6P _ - -
‘G6Pgr  Glcext”1 7 XG6P"2 T *F6P 2bwd T ¥G6P 5 (E6.5)

~XGepV12 * 2X7RenYs * (XG1pVsbwd )

This is justified for the small observed metabolic network especially, when uniformly labelled

glucose is used and the C6 units stay intact within the considered reactions.

Network architectures

For the estimation of flux dynamics, two alternative networks were defined (see Table 6.1 for
stoichiometric definitions). The first represented a minimal network that included only measured
components. The second network was an extension of the first and included a glycogen cycle. The
latter was defined to evaluate the potential influence of glycogen cycling on the Bc-enrichment
dynamics of the UDP-GLU and G1P pools. Although the glycogen pool was not measured, cycling
between UDP-GLU and G1P, through this pool, was simulated by including a large (initially

unlabelled) glycogen sink (see Fig. 6.3 for a graphical illustration of these two architectures).



Estimation of fluxes

In short, each measurement (concentration as well as enrichment) .. , can be compared with the
it

model predicted value (result of the integration of E6.4, E6.5):

& = yéGP,tl - CGGP(eItl)

&= Véep,tl — Xgep(0,t1)

(E6.6)
c
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&= yTreh,tn - XTreh(e:tn)
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In a successful regression, the parameters 6 = (Ul.q)‘, UL, Uity Uity o Vg, o0 U, ) (as

defined in E6.2 for one flux) are estimated such, that the (random) deviation between prediction

T
and all measurements € = (81,....€j> is minimal:
b= argmeineT £t (E6.7)

To estimate the accuracy of the determined flux profiles, linearized error propagation of the

regression model in eqn. E6.6 was applied. The parameter covariance matrix is calculated by:

T —1
> :[ﬂ i dy ] E6.8)
"l @

The covariance matrix (zy ) represents the measurement accuracy of concentration as well as the

labelling measurements. The diagonal of the covariance matrix ( 2y ) contains the variances of the

estimated parameters.

The results are displayed in Fig. 6.2, and are based on the following assumptions: The
enrichment is measured with a standard deviation of 2 % (absolute deviation of each measurement
point). This value is based on previous repetitive experiments (~0.5 % technical deviation of
repetitive measurements) and measurements of natural labelled samples where the expected

distribution can be calculated.



Concentrations are measured with 5 % standard deviation — the absolute standard deviation is
estimated based on the average concentration. This assumption is based on the ID-MS protocol that
relies on isotope ratios (see references within [71]). Because of additional sample preparation steps,

the deviation is higher than for enrichment measurements.

Table 6.1. Description of metabolic reaction network used to estimate fluxes between upper-glycolytic and
trehalose pathway enzymes

Reaction Name

Catalysed transition

C-atom
transitions*

Glucose Feed (vO) Feed - Extracellular #ABCDEF -
glucose #ABCDEF
. Extracellular glucose #ABCDEF -
2 Glucose Transport / Hexokinase (v1) > G6P 4ABCDEF
>
S #ABCDEF
G>' Phosphoglucose isomerase (v2) G6P & - F6P &>
5 #ABCDEF
o
Y
2 Phosphofructokinase (v3) F6P - FBP #':E\EEEE?
Aldolase/Glycolysis Sink (v4) FBP -> External Sink #iigtc):;;?
#ABCDEF
Phosphoglucomutase (v5) G6P ¢ - G1P g
#ABCDEF
UDP glucose pyrophosphorylase (v6) G1P - UDP-GLU #ﬁigg‘;;?
#ABCDEF +
#abcdef
o Trehalose 6-phosphate synthase (v7); tpsl | G6P + UDP-GLU - T6P S
H #ABCDEFabcdef
® Trehalose 6-phosphate synthase (v7)
o
] (alternative, dependent only on G6P G6P - T6P #ﬁigggzs
2 fragment); tpsl
K=
o ) #ABCDEFabcdef
= Trehalose 6—phosp|t1ast§ phosphatase (v8); T6P STREH N
P #ABCDEFabcdef
Trehalose 6-phosphate phosphatase (v8)
(alternative, dependent only on G6P-derived T6P - TREH eI
. #ABCDEF
T6P enrichment); tps2
#ABCDEFabcdef
Trehalase (v9) TREH - G6P - #ABCDEF +
abcdef
. #ABCDEF -
Trehalase (v9) TREH - External Sink #ABCDEF




Table 6.1. Continue

Reaction Name Catalysed transition C-atom transitions*
L]
EO*'E Glycogen Synthase (v10) UDP-GLU -> Glycogen #A#ig[c);;?
% % Glycogen Phosphorylase (v11) Glycogen (sink) -> G1P #A#igggFE?
. Glucose 6-phosphate dehydrogenase (v12) G6P - 6PG #:2(8:2;;:
[-%
T Eommonate hydoss i | o bramaone | "ot

*Letters denote individual carbon atoms. Grey shaded rows indicate reactions which were included in the alternative network,
which were used for comparison to the results derived from the minimal network, represented by unshaded rows and presented
in the main text (also see Fig. S16). % The enrichment of the T6P pool (a disaccharide) can alternatively be estimated as the
enrichment of the G6P-derived fragment only. *Although the glycogen pool was not measured, cycling between UDP-GLU and
G1P, through this pool, was simulated by including a large glycogen sink. PPP, Pentose phosphate pathway.

The steady-state (pre-pulse) flux value, as well as the flux at the end of the experiment, is not
considered in the covariance calculation. Based on the measured data, the steady-state value is not
observable. For the last timepoint, most of the metabolites have already reached a steady-state (i.e.

unchanging) enrichment, hindering the observability of the last timepoint for the glycolytic flux.

RESULTS

We focused our analysis on an estimation of fluxes through the trehalose cycle and the upper-part
of glycolysis (see Fig. 6.3). Based on the acquired data, we defined a minimal network that included
concentration and **C-tracer enrichment data for G6P, F6P, FBP, UDP-GLU, T6P, TREH and 6PG, and
concentration data for G1P. The measurement of G1P enrichment is technically difficult — the
concentration of G1P is low and there is co-elution with Mannitol-1-phosphate. Flux profiles were
estimated using the PWA functions described above, with 4 defined switch times: 27 s, 45 s, 80 s and
150 s. Two additional points at 0 s and 340 s designate the start and the end of the flux estimation
time domain, respectively, resulting in dynamic profiles composed of five flux vectors.

In the first instance we used the minimal network (shown in black in Fig. 6.3) and applied
parameter estimation to find dynamic flux profiles that reproduce the measurements. We estimated
fluxes as net forward rates only (i.e. all backward rates were set to 0). The dynamic flux profiles (Fig.
6.4A) estimated from the minimal network architecture (Fig. 6.3) resulted in good fits for most of
the measured data (Fig. 6.4B). Importantly, the simulated labelling and concentration profiles
resembled many features of the measured profiles, indicating that the applied metabolic network

and modelling approach captures the most relevant mechanisms and dynamics of the in-vivo



metabolic activity. Two exceptions should, however, be pointed out. Both the UDP-GLU enrichment

and 6PG concentration simulations still deviated from the measured data.
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Figure 6.2. Correlation of estimated fluxes. Shown are the correlations for the minimal network (see text and
Fig. 6.3) at switch times s2 - s5 (27 s, 45 s, 80 s and 150 s). High correlations are observed for fluxes in a reaction
sequence, e.g. Hxk -> Pgi -> Pfk -> Ald as well as for consecutive switch times (e.g. Hxk(s2) and Hxk(s3) are
negatively correlated). The trehalose cycle fluxes (especially trehalase) are correlated with Hxk, Pgi and partly

also Pfk and Ald.

The discrepancy between the model-derived fit and the measured concentration data for the 6PG
pool is not unexpected and can readily be explained. In our network definition, 6PG is derived
directly from G6P as opposed to 6-phosphogluconolactone, an intermediate metabolite which we
could not measure. Furthermore, we decided to set the efflux rate out of the 6PG pool equal to the
influx rate (to reduce the amount of parameters) and consequently the concentration of 6PG
remains constant. Although the 6PG concentration does decrease slightly following the glucose
pulse, this change is negligible relative to the changes observed in the other larger metabolite pools.
In spite of these simplifications, the enrichment dynamics around this pool were sufficiently
captured (Fig. 6.4B). Additionally, the fraction of glycolytic flux channelled towards this pool (and
therefore towards the pentose phosphate pathway) stabilized at around 12 % (see Fig. 6.4A, flux

ratio of v12/v1), similar to previous flux values reported for this branch (referenced in [87]).
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Figure 6.3. Overview of the network architecture(s) used for the estimation of in vivo flux profiles. The minimal
network is drawn with black arrows; the extension including the glycogen cycle is indicated in grey (dotted).
Hexagons represent reactions, (with rates, pmol.gDW™.s™), and blacked framed white rectangles represent
metabolite pools (with concentrations, pmol.gDw™ and fractional enrichment). Dotted ovals indicate network
sinks (i.e. pools which are not balanced in the network). Shown are two flux routes towards the T6P pool, both
via v7. The black route is dependent on both the UDP-GLU and G6P pools, whereas the grey route is dependent

only on the G6P pool. See text for a detailed explanation.

The deviation between simulation and enrichment data for the UDP-GLU pool is slightly more
difficult to explain, but likely results from missing interactions between this pool and other
metabolite pools for which information is lacking. Within the minimal network, UDP-GLU is derived
from G1P, which in turn is derived from G6P. This linear propagation scheme, however, leads to an
overestimation of the rate at which enrichment of the UDP-GLU pool occurs, suggesting that an
influx of an additional unlabelled carbon source is required to delay the enrichment rate.

To this end, we introduced the glycogen pool (Fig. 6.3). Glycogen constitutes another large
intermediate storage carbohydrate pool [88], which acts as a sink for cycling between UDP-GLU and
G1P (UDP-GLU - Glycogen - G1P -> UDP-GLU). Introduction of these additional reactions
improved the overall fit of the UDP-GLU enrichment data, with very good approximations for data

points from 50s onwards; however, a discrepancy remained between the simulation and the 2nd



time point (27s), which we were unable to fully resolve (Fig. 6.4B). The dynamic flux profiles for this
network are shown in Fig. 6.4A.

Although there were some minor quantitative differences between the solutions offered by the
two network architectures, the qualitative differences (and the functional interpretations which
follow) were minimal. A comparison of the dynamic flux profile simulations for these two networks
(Fig. 6.4A), show only small differences for the trehalose cycle fluxes. This is of course not wholly
unexpected as an additional route for UDP-GLU was introduced by means of the large glycogen pool.
Cycling via this pool effectively reduces the rate of carbon enrichment propagation from the UDP-
GLU pool towards trehalose. Importantly, however, is that the time-dependent fraction of glycolytic
flux branched towards trehalose is functionally the same for both network variations, and accurately
captures the dynamics of concentration changes and label enrichment of the relevant metabolite
pools (Fig. 6.4B). We find that regardless of whether a glycogen cycle is included or not, the
percentage of glycolytic flux channelled towards the trehalose pool is significant, with dynamic
profiles being very similar. In the case of the minimal network (without a glycogen cycle), this
reaches a maximum of 28 %, while in the network including a glycogen cycle, the Tpsl flux

percentage peaks at 27 %.

In Chapter 2 the results obtained from the minimal network are presented, as the inclusion of a
glycogen flux, although improving the simulation of UDP-GLU enrichment, had no effect on the
functional behaviour of the network. In addition, the glycogen cycle extension introduces more
parameters and compared to the number of additional degrees of freedom, the improvement
appears small. Thus, given the lack of functional differences between the two network variations,
we were confident that the minimal network captured the most relevant mechanisms and dynamics

of the in-vivo metabolic activity.

SUMMARY

A core model of glycolysis (Chapter 2, Appendix A) showed how an increase in futile cycling activity
would function to steer glycolysis towards a balanced steady state. We wondered if the trehalose
cycle could fulfil this function, given that the stoichiometry of the full pathway is that of a futile
cycle. However, it was uncertain whether the flux capacity of the trehalose pathway would be
sufficient to have a regulatory impact on glycolysis. To answer this question, we used a Bc-tracer
enrichment strategy to estimate dynamic flux changes through upper-glycolysis and the trehalose

cycle, following a sudden increase in glucose.
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Figure. 6.4. Overview of dynamic flux profiles and resulting metabolite and label enrichment simulations. (A)
The time dependent flux profiles for the reactions included in the minimal network and the extension including
the glycogen cycle. Estimated standard deviation is indicated by a grey region. The green dots denote the switch
times of the piece-wise affine functions (see text above). (B) The metabolite and label enrichment simulations for
both networks are very similar and accurately capture measured metabolite (Red circles) and label enrichment
(Blue circles) data. Minimal network simulations are shown as solid lines: Red = label enrichment, Blue =
metabolite concentrations. The simulation result for the network including a glycogen cycle is shown by dotted
lines: Grey = label enrichment, Orange = metabolite concentrations.



The flux profiles of the reactions in our defined system (Fig. 6.3) show that all fluxes are highly
dynamic (Fig. 6.4). We find that after a glucose pulse as much as 28 % percent of the uptake flux is
channelled towards trehalose; a significant amount that could clearly impact both the overall
glycolytic flux and phosphate homeostasis.

By considering the dynamics of upper-glycolytic fluxes relative to those of the trehalose cycle, a
more nuanced interpretation of regulatory contributions by trehalose metabolism becomes
possible. Here, the temporal offset between Tpsl and Tps2 fluxes is particularly informative.
Following the glucose pulse, the Tps1 flux increases rapidly after 27 s (when G6P concentrations are
highest), until a maximum is reached at 80 s post-pulse. At this point the Tps2 flux starts increasing
rapidly, peaking at 150 s. These profiles indicate that the initial period following the pulse is
primarily characterized by the rapid accumulation of T6P (up to 80 s); as reflected by metabolite
profiles (Fig 6.4). When the Tps2 flux subsequently increases, T6P accumulation will slow down and
P;recovery will increase. From these results one can infer that the regulatory mechanism embedded
in the trehalose pathway probably involves the differential contribution of several processes.
Initially, accumulating T6P will serve to slow down the rate of glucose phosphorylation by Hxk,
thereby moderating the rapid consumption of ATP. Next, the flux bottleneck at Gapdh - which
results from P; accumulation in upper-glycolytic intermediates - can be reduced by
dephosphorylation of T6P. A third aspect of this cycling mechanism is the removal of G6P. Removal
of G6P will effectively translate to lower Pgi and Pfk rates (in the regime where these reactions are
not substrate saturated), further moderating ATP-consumption by upper-glycolysis.

To test the extent to which these aspects contribute to establishing a balance between upper
and lower-glycolytic fluxes, we returned to our detailed kinetic model (Chapter 3). We employed the
random sampling approach outlined in Chapter 5, and evaluated steady state outcomes when
trehalose cycle features are systematically omitted (Chapter 2, Fig. 2.8). While P; recovery was found
to be the primary mechanism, Hxk inhibition and G6P removal were additionally required to ensure
functional steady state outcomes. Together these results provide strong evidence for the
(re)interpretation of population level phenotypes of trehalose cycle mutants and rescue
mechanisms.

Finally, our results show activation of this pathway to be transient. That this temporary
activation can be of regulatory significance can only be understood when the dynamics of glycolysis
is considered. The bistable nature of glycolysis means that futile cycling will only be required
immediately following a flux increase. Once a new stable state is established, trehalose pathway
fluxes can be safely down-regulated; given the energetic consequences of futile cycles, this

regulatory model makes a lot of sense.



7/ General discussion and perspective




In natural environments, fluctuating conditions are part and parcel of the everyday life of a
microorganism. Changes in environmental variables such as temperature, water pressure and
nutrient availability all require some degree of physiological and biochemical adaptation, which
function to maintain the integrity and competitive fitness of a cell. Often these adaptations are
described by comparing differences between one adapted state and another. For this reason,
historical emphasis has been on gene and protein expression changes. While specific physiological
adaptations are ultimately achieved by rearrangements in metabolic pathways, these changes take
time to take effect, which limits their efficacy in response to sudden and unexpected environmental
changes. Under dynamic conditions, cells therefore also require mechanisms that can act

immediately to regulate metabolic fluxes.

As such, the main aim of this thesis was to advance an understanding of metabolic regulation
under dynamic conditions. For this we chose to look at the regulation of glycolysis in response to a
sudden increase in glucose availability. While this scenario has been extensively investigated, and
metabolite dynamics have been described by many studies [25, 61, 89-92], much less is known
about the regulatory mechanisms that coordinate metabolite and flux dynamics in response to

sudden changes in glucose availability.

As a case study for dynamic metabolic regulation, the S. cerevisiae tps1A mutant presented an
interesting candidate. This mutant is unable to cope with a sudden increase in glucose availability,
with its metabolic phenotype suggestive of a deficit in regulatory mechanisms that maintain an ATP
and inorganic phosphate balance, when glucose uptake suddenly increases. First described more
than 30 years ago, the mechanistic origin of this mutant’s phenotype have been difficult to pinpoint.
Various mechanisms have been proposed (summarised in Chapter 1), but to date, none could

sufficiently account for the metabolic phenotype.

My thesis reports a study of the mechanistic failure that underlies the tps1A phenotype, using a
combination of theory, modelling and experimentation. We discovered a novel metabolic
regulatory mechanism, involving a transient increase in futile cycling through the trehalose pathway.
Importantly, the picture that emerged from this work showed that regulatory events can be
transient and only relevant immediately following a perturbation. Furthermore, we showed that the
outcome of metabolic regulation can be understood as a probabilistic phenomenon; a scenario that

adds to current deterministic conceptions about metabolism and its regulation.

In this final chapter, | will briefly revisit some important outcomes, address some potential

caveats and elaborate on the consequences of certain findings. These discussion points serve to



highlight not only key insights, but also to emphasize some open ended questions that will require

future research to fully resolve.

As with any scientific study, the specific methods employed come with certain caveats that could
impact conclusions. While this is usually unavoidable, clearly identifying these will delineate the
relevance and extensibility of our findings. As a first discussion point, | will address the kinetic model

of glycolysis that served as a theoretical point of departure for much of the experimental work.

Model simplifications and parameterizations

Many of the insights presented in this thesis were derived from mathematical simulations of yeast
glycolysis and a consideration of some of its important simplifications and parameterizations is
required.

Several kinetic models of glycolysis are available and we opted to start with a model originally
published by Teusink et al [41]. This model included detailed kinetic descriptions of all glycolytic
reactions, but the recent determination of enzyme kinetics in an in vivo-like buffer [60] highlighted
the need to update some of the kinetic parameters, and include key allosteric interactions (Chapter
3). In addition, given the features of the system we were interested in, extensions of the model to

include a trehalose pathway and phosphate as a dynamic variable were required.

Simplifying the trehalose pathway

In deciding on an implementation of the trehalose pathway, we chose for a simplified approximation
(Chapter 2). We defined a flux towards trehalose using a simple mass-action reaction dependent on
G6P concentration; additionally the mass balances of ATP, P; and G6P were modified to include this
flux, and we implemented inhibition of Hxk by G6P, as a proxy for inhibition by T6P. Owing to the
fact that the first two reactions of the pathway are catalysed by a trehalose synthase enzyme-
complex (Chapter 1, Figure 1.3), consisting of the catalytic subunits Tpsl and Tps2, and two
regulatory subunits, Tps3 and Tsl1, formulation of a rate equation is not straightforward. While
some attempts have been made to characterize the kinetic properties of the two catalytic subunits
(Tpsl and Tps2), these have been found to be highly dependent on interactions with regulatory
subunits, which in turn are subject to several regulatory signals [18-20]. Our own attempts to
formulate a rate equation from existing kinetic characterizations, which could approximate

experimentally determined fluxes, were not successful. This failure was not completely unexpected



as it has been shown that almost all of the enzymes in the trehalose pathway are subject to
condition-specific post-translational phosphorylation [21], the impact of which is not fully
understood. In addition, all existing kinetic descriptions are derived from in vitro assays that were
performed in reaction buffers with little resemblance to in vivo (cytoplasmic) conditions.

Although details of the trehalose pathway have no bearing on the behaviour of our tps1A model,
it did impact our ability to quantitatively consolidate the WT version with experimental results. Here
the most obvious discrepancy between our simulations and experimental results is seen in the
frequency of imbalanced outcomes for the WT model. While we saw a good match between the
predicted and experimental frequencies of SS and imbalanced fractions for tps14, our WT model
appeared to overestimate the robustness of WT glycolysis. Flow cytometry results (Chapter 2, Fig.
2.4C) showed that approximately 7 % of WT cells end up in the imbalanced state, whereas the small
parameter variations included in our random sampling simulations (Chapter 5) produced no such
events. Exploration of initial condition-dependence in the WT model showed that very large
deviations from the reference state would be required to produce imbalanced outcomes. This
mismatch is not entirely surprising, as the kinetic characteristic of the trehalose synthase complex

are likely to have an important impact on its in vivo efficacy in WT cells.

While our model could not qualitatively reproduce the experimental behaviour of WT cells, it
contained sufficient detail to identify the existence of a bistability and gain insight into the factors
that determine robustness during a sudden increase in pathway flux. These insights allowed us to
make specific predictions that were tested experimentally. For example, our model predicted that
an increase in Hxk activity would result in a larger imbalanced fraction of cells, which was validated
by overexpression of Hxk in WT cells and (Chapter 4, Fig. 4.8); with hindsight, this is easily

understandable without the model.

Whereas the exact implementation of the trehalose cycle only relates to the WT model, the
definition of inorganic phosphate (P;) as a free variable turned out to be essential for a general

understanding of pathway dynamics.



Phosphate as a free variable
One of the key features of the tps1A phenotype is the rapid depletion of P; while FBP continues to
accumulate. Insufficient P; availability has been interpreted as a primary cause of the apparent
imbalance between upper- and lower-glycolytic fluxes, with a flux bottleneck resulting at the level of
Gapdh. Importantly, the sustained accumulation of FBP shows that P; must continue to enter the
system, but that this supply is somehow insufficient to restore a high flux through lower glycolysis.
To capture this behaviour we redefined phosphate as a free variable (Chapter 3) by including a non-
cytoplasmic pool that could be mobilized to support continued FBP accumulation. Here the
extracellular space and the vacuole were the two obvious candidates. NMR studies have
demonstrated that P; is predominantly mobilized from vacuoles, while extracellular P; is left largely
untouched [23, 40]. In line with this, we defined a vacuolar phosphate pool that allowed for
phosphate exchange, modelled as a simple diffusion reaction, with parameters set such that the rate
of FBP accumulation approximately matched available data [24]. With this addition, our model
reproduced the continued accumulation of FBP at low P; and ATP levels (Chapter 2, Figure 2.2).
Importantly, phosphate dynamics turned out to be an essential feature of the bistable behaviour
of glycolysis. While we showed that differences in initial phosphate concentration affected which
state the system would reach, in both the tps1A and WT models, it was the capacity to rapidly
liberate phosphate that contributed significantly to the robust startup of glycolysis; this was inferred

to be one of the functions of trehalose cycle.

Although the flux imbalance that results from insufficient phosphate availability is clearly
demonstrated by our model, it is not obvious why tps1A cells experience a phosphate limitation

when an abundance of phosphate is available in the extracellular space.

Phosphate limitation is a consequence of an import bottleneck, not availability

In our model, we found that a very high rate of phosphate mobilization, from the vacuolar pool, led
to the disappearance of the imbalanced state (Fig. 7.1). This can easily be understood by considering
the situation where phosphate concentration is fixed (equivalent to being mobilized infinitely fast).
In this instance phosphate concentrations do not change and never become limiting. Similarly, if the
rate of phosphate mobilization is much higher than the rate of consumption by glycolytic reactions,
changes in cytoplasmic concentrations will be minor and as such will approximate the situation
where phosphate is fixed. This finding suggested that a sudden large influx of P; would reduce the

need to liberate phosphate through ATP hydrolysis and should drive the system to a steady state.



We wondered whether this could be achieved experimentally by changing pre-culturing conditions,
such that the initial phosphate uptake capacity of cells is maximized prior to a glucose challenge.

We attempted to enhance initial phosphate uptake by pre-incubating cells under phosphate
starvation conditions. At extracellular phosphate concentrations < 100 uM the high affinity
transporter, PHO84, should be fully induced [93, 94]. Wykoff et al. [95] reported a fourfold increase
in uptake capacity when WT cells were pre-incubated under phosphate starvation conditions, with a
Vmax Of 19.4 nmol.0D ™ .min™ or 2.15 umol.gDW’l.s’1 (assuming 107 cells per mL [96] and a dry weight
of 15 pg [69] per cell). It is clear that, under these conditions, maximal uptake capacity should be
well in excess of the maximal flux measured through the trehalose cycle, which we estimated to be
0.17and 0.1 },lmol.gDW’l.s’1 for Tps1 and Tps2, respectively (Chapter 6). Unfortunately, our attempts
to enhance phosphate uptake by prior starvation, had no visible effect on the growth behaviour of
tps1A cultures.

Alternatively, overexpression of phosphate transporters could theoretically increase uptake
capacity. However, Luyten et al. [23] reported a failure to rescue the tps1A phenotype by phosphate
transporter overexpression. While it is clear that ample phosphate should be available, and uptake
capacities should theoretically be sufficient to meet demand by glycolysis, uptake from the medium
appears to be limited by some other physicochemical or regulatory constraint. Although we do not
have direct evidence for the cause of the apparent bottleneck in phosphate acquisition, the available
literature on phosphate transport mechanisms in S. cerevisiae provides sufficient information to
propose a hypothesis.

Phosphate transport into the cell is tightly coupled to H* translocation, and this process is
dependent on the maintenance of a proton gradient across the plasma membrane [97]. The
disruption of this proton gradient will impede phosphate uptake via the H'/PO,> transport system
[98]. Importantly, the plasma membrane H™-ATPase, PMAL, is responsible for the generation of the
proton gradient and the membrane potential that act as the driving force for phosphate uptake [98].
These features, when placed in the context of the pH homeostasis disturbances (Chapter 4) and an
absence of glucose-induced activation of the plasma membrane H™-ATPase [29, 40], provide a
reasonable, although admittedly speculative, hypothesis for the apparent lack of phosphate uptake
from the medium by tps14 mutants.

To further explore this hypothesis, overexpression of the K'/H™ antiporter system involving the
potassium transporters TRK1 and TRK2 could offer an alternative means to augment the
maintenance of pH homeostasis [99, 100] and membrane potential [101], and possibly relieve an

electrochemical bottleneck that might be impeding phosphate uptake from the medium.
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Figure 7.1. Sufficiently fast phosphate mobilization or acquisition eliminates the appearance of an imbalanced
state. Shown are the metabolite profiles of P;, ATP and FBP at three different rates of phosphate mobilization in

the tps1A-version of the large kinetic model.

The link between pH and growth phenotypes
Growth happens on much longer time scales than the metabolic processes for which we originally
predicted the bistable behaviour. Having clearly established the presence of a growing and non-
growing fraction in tpsiA populations, using plating assays and microtitre growth experiments
(Chapter 4), we exploited cytoplasmic pH (pH;) readouts as a means of linking growth outcomes to
the metabolic bistability.

In response to a glucose pulse, S. cerevisiae exhibits a rapid and transient drop in cytoplasmic pH
[75, 100, 102, 103]. Using a combination of hexose kinase deficient mutants and different
substrates, Ramos et al. [100] argued that this acidification is largely a consequence of the ATP-

driven phosphorylation of hexose sugars in the upper part of glycolysis. Following this initial



acidification, an efflux of H" results in alkalization and the restoration pH; [100]. This restoration is
dependent on the activation of the H*-ATPase (PMA1) proton pump [104, 105], an energetically
expensive process that requires ATP [106]. As such, the rapid and sustained depletion of ATP in the
imbalanced state will have a significant impact on the ability to drive proton extrusion to restore and

maintain pH;, as shown for tps1A4 in this thesis (Chapter 2, Fig 2.2) and previously [40].

Flow cytometry data revealed the glucose-induced appearance of two distinct pH
subpopulations, with frequencies corresponding to the viability counts of plating assays. From this
we inferred a correlation between pH outcomes and growth phenotypes. While the energetic
burden associated with a low pH; could already explain a significant reduction in growth capacity,
the pH-dependence of enzyme activities provides further substantiation for this inference. In this
regard, we used pH titrations to measure the enzyme activities for several available purified S.
cerevisiae glycolytic enzymes, using in vivo-like assays [60] (Appendix B). We found large decreases
in the activities of all enzymes as pH was lowered. Significantly, at a pH of 6, Gapdh showed a 93 %
loss in glycolytic activity (i.e. converting glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate),
relative to the reference at pH 6.94 (Fig. 7.2); no other enzymes tested displayed this degree of
sensitivity. This suggested that the lower glycolytic flux (and hence ATP-production capacity) will be
severely restricted in the low pH; subpopulation. Taken together, cells with low ATP and low pH; are
unlikely to recover from the imbalanced state if high glucose conditions persist. ATP is required to
restore pH, and without pH recovery Gapdh activity (and consequently ATP-generating capacity) will

be extremely low, resulting in a metabolic Catch-22.

The appearance of growing and non-growing subpopulations in response to nutrient transitions
has recently also been demonstrated for E. coli [36] and L. lactis [37]. However, a major difference
between our study and these relates to the capacity of the non-growing subpopulation to resume
growth when returned to pre-transition conditions. In contrast to the mentioned studies, the non-
growing fraction in our population appears to lose viability after a few hours (Chapter 4, Fig. 4.7).
Given the quantitative similarity between pH and CFU subpopulation sizes, combined with the
energetic burden a low pH poses, there is significant evidence for the interpretation that the low pH
subpopulation corresponds to a non-growing subpopulation that loses viability — so, a truly

maladapted state.
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Figure 7.2. Glycolytic Gapdh activity is highly sensitive to changes in pH. Relative to the reference at pH 6.94
(100 % activity), this enzyme displays 93 % activity loss at a pH of 6, resulting in a significant reduction in lower
glycolytic flux capacity. Blue circles are the average of three technical replicates, grey squares show data for

individual replicates. All data are normalized to the average activity at pH 6.94.

Consolidating population averages and single cell phenotypes: the problem of heterogeneity
When microbial populations transition from utilizing one carbon source to another, a period of
reduced growth, called a lag phase, is often seen. Monod originally described this phenomenon in
bacteria, and termed it diauxie [107]. For more than 70 years this ubiquitous phenomenon was
interpreted to reflect a period during which regulatory mechanisms effect metabolic adaptation to a
new carbon source. When population-level measurements are assumed to offer a faithful
approximation of the average cell, phenomena such as lag phases can be explained as a period
during which all cells exhibit reduced growth. However, the current work and several other recent
studies [36, 37, 108] show that microbial populations are typically characterized by significant cell-
to-cell heterogeneity; a finding that has important implications for the interpretation of mechanisms
underlying metabolic regulation and physiological adaptation.

For example, we found that the long lag phases observed for tps1A cultures could be explained
by the differentiation of the population into growing and non-growing subpopulations. Two other
recent studies also demonstrated that the lag phase behaviours seen for L. lactis [37] and E. coli [36]
cultures could be explained by the same phenomenon. Non-growing subpopulations appear when
fractions of individual cells fail to affect regulatory processes required for adaptation to a second

carbon source. In these cases growth rate estimates based on population-level measurements will



underestimate the growth rate of growing cells. In addition, distinct differences in subpopulation
phenotypes will likely result in the erroneous interpretations of any other population level

measurement, including the nature of mechanisms that regulate metabolism.

Why and how such metabolic subpopulations arise is a topic of active discussion, with different
possible explanations, including long-term evolutionary strategies (e.g. bet-hedging) or simple
failures in regulation (the current work) (see [36] for an overview of possible explanations). What is
clear, however, is that population-level measurements or a focus on phenotypic averages can

obscure potentially informative observations (Fig. 7.3).
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Figure 7.3: Population level measurements can be misleading. Shown is an illustration of how subpopulations
can obscure interpretation. In this example an experimental perturbation (indicated by the arrow in the left
panel) is applied to a population and a change in the concentration of some metabolite (X) and optical density is
followed. In both cases the consequences of the perturbation will likely be incorrectly interpreted if only the

average response is measured (also see Fig. 7.4).

The fact that a small fraction of tps1A cells are able to persist in the presence of glucose was not a
novel result, as previous studies provide evidence for this, with plating experiment sometimes
showing colonies appearing in the presence of glucose (see e.g. [35, 40]). It is striking, however, that
very few studies considered these “outlier” cells as potentially informative. In fact, glucose tolerant
tps1A colonies were discarded as revertants [44]. In this work we demonstrated how an emphasis
on such phenotypic outliers could in fact reveal novel aspects of the system being studied. By
identifying mechanisms that could act as surrogates for futile cycling through the trehalose pathway,

we gained new insights into the functional constraints acting on glycolysis.



Single-cell quantification of most phenotypic features, in a population of cells, will likely
generate a continuum of values that can best be described by a probability distribution. While
population level measurements could in many instances provide a good approximation of the
average phenotype, scenarios involving phenotypically distinct subpopulations (such as the one
described in this thesis) pose obvious problems. But perhaps a more subtle consequence of
phenotypic distributions is the capacity to consolidate theory with experimental observation.
“Outlier” phenotypes might exhibit features that can deviate significantly from theoretical
descriptions of metabolic pathway properties. Model parameterizations derived from population-
level experimental measurements will be constrained to the average state, not necessarily the
operationally optimal state (e.g. maximal flux state). As demonstrated in this work, sampling
potential parameter values from probability distributions can generate surprising results that would

have been missed if only “population” averages were used.

Re-interpreting the phenotypes of related mutants

In Chapter 1, we provided a brief summary of the many attempts to understand the regulatory
deficits of tps1A mutants. Many of these efforts involved genetic manipulations that targeted
components of the trehalose pathway or upper-glycolytic phosphorylation capacity, with results
often appearing ambiguous or inconclusive (Chapter 1). In this thesis we presented two major
findings that shine new light on previous phenotypic interpretations. The first relates to the
discovery of two subpopulations (Chapter 4), and the second to the demonstration that rather than
a single feature, several aspects of the trehalose pathway contribute to the robust startup of
glycolysis (Chapter 2, Fig. 2.8).

A pitfall of previous interpretations was the expectation of “all-or-nothing” outcomes. We show
here that glycolytic regulation can be viewed as a probabilistic process, with specific regulatory
mechanisms greatly increasing a cell’'s chances of coping with dynamic conditions, but not
guaranteeing it (also see [36, 37, 108]). We demonstrated that the dependence on or efficacy of
regulation by the trehalose pathway is dependent on many other variables. We showed for example
that the addition of ethanol or formic acid to the medium significantly reduced the need for
phosphate recovery through trehalose cycling. Similarly, within a framework of initial condition-
dependence and probabilistic regulatory outcomes, any manipulation that leads to an increase in

the regulatory burden should in turn increase the probability of failure.



This predicted effect of an increased regulatory burden was validated by overexpression of Hxk
in WT cells (as described in [31]), where we found a clear decrease in viability (Chapter 4, Fig. 4.8).
These results supported our model of regulation and suggested that one can interpret the
metabolite profiles presented in the original study in a more nuanced way, i.e. that these reflect
averages of heterogeneous populations consisting of different fractions of cells in the functional and
imbalanced states; where changes in the relative frequencies of each phenotypic state lead to
differences in population averages (Fig. 7.4 shows data that demonstrates this scenario). The
metabolite profiles reported in [31] appears compatible with this interpretation, where increased
Hxk2 expression resulted in metabolite profiles that were intermediate between WT and tps1A

profiles.

The behaviour of tps2A mutants has also been difficult to interpret. Lacking trehalose 6-
phosphatase activity, these cells cannot recover phosphate from T6P. However, when challenged
with glucose, these cells do not display the metabolic disturbances seen for tpsiA mutants; an
observation that is generally interpreted to contradict a P; recovery function of the trehalose
pathway. However, tps24 mutants differ in their metabolic behaviour from WT cells, providing clues
regarding their capacity to deal with a sudden increase in the glycolytic flux. Above all, with
constitutively high T6P concentrations (at least 15-times higher than WT) [24], and well above the K;
of the hexokinases [24], phosphorylation in these mutants will be maximally inhibited when

extracellular glucose suddenly increases.

There are several indirect metabolic indications that tps2A cells have much lower
phosphorylation activities than WT cells. In response to glucose, ATP decreases are significantly
reduced, while hexose phosphates accumulate to much lower levels when compared to WT cells.
Furthermore, these cells do not display the typical cytoplasmic acidification in response to glucose
addition [84]. With the degree and rate of glucose induced acidification dependent on
phosphorylation capacity [100], the pH response of tps24 mutant can be understood in light of a
significant reduction in glucose phosphorylation, which is a consequence of constitutively high T6P
concentrations. In WT cells, the need to recover phosphate through trehalose cycling comes from
the rapid consumption of ATP by Hxk (and Pfk), when the glycolytic flux suddenly increases. With
increased Hxk activity, the efficacy of this mechanism is reduced (see above). Similarly, by
decreasing the phosphorylation capacity, regulation by the trehalose pathway will become less
essential [24]. As such, the tps2A phenotype can be understood in this context. If Hxk activity is
constitutively lower (through e.g. high T6P levels), sudden flux increases will be of a much smaller

magnitude and the danger of a metabolic imbalance significantly reduced. A metabolic scenario



corresponding to the one proposed for tps2A is illustrated in Figure 7.5. By lowering the inhibition
constant (Kiggp) of Hxk by a factor of 10 in the WT model, initial G6P concentrations (recall that we
use G6P to approximate inhibition by T6P) lead to much higher initial inhibition and a significantly

lower startup flux, thereby reducing the need to recover P; through futile cycling.
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Figure 7.4. Population level measurements reflect proportions of functional (WT-like) and imbalanced (tps1A-
like) states, Shown are (A) pH; profiles and (B) growth curves, generated by mixing different proportions
(indicated as percentages) of WT and tps1A cells (using OD as a proxy for cell number). pH profiles and growth
curves were generated as described in Chapter 4. Cells were pre-grown on 2% GAL, harvested at an OD ~0.8,
washed and resuspended in CBS-C. Next, WT and tps1A suspensions were combined to different proportions and
pH; and growth was measured in response to 2% GLU. In earlier chapters we showed that the majority of WT
cells end up in the functional steady state, while the majority of tps1A4 cells end up in the imbalanced state. As
such, mixtures of WT and tps1A demonstrate directly how changes in the relative proportions of imbalanced

(tps14) and functional (WT) states translate to differences in population average measurements.



While the above argument provides an interpretation that can be understood when considering
metabolic regulatory nuances, there are also indications that tps2A cells might already be in a state
primed for glucose fermentation. Importantly, this would imply that these cells face a completely
different regulatory challenge. Walther et al. [84] reported that tps2A mutants display significantly
reduced growth rates when grown on non-fermentable sugars. In plants, T6P is known to be a key
signal for glucose-induced catabolite repression via an interaction with Snfl-related protein kinase
(SnRK1) [109, 110]. It was suggested that T6P could fulfil a similar role in S. cerevisiae, and that the
respiratory growth deficits of tps2A cells could be explained by partial catabolite repression [84].
Support for this interpretation comes from the observation that tps24 mutants grown on glycerol
show a significant reduction in fructose 1,6-bisphosphatase activity [24], a target of glucose
repression. This suggests that, besides the constitutive inhibition of Hxk, tps2A cells might already be

partially adapted for growth on glucose.
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Figure 7.5. High initial inhibition of Hxk can explain the tps2A phenotype. Shown is the consequence of a 10-
fold decrease in the G6P inhibition constant (Ki) of Hxk; leading to much higher initial inhibition of Hxk activity,
this scenario is similar to the one outlined for tps2A mutants. The blue and red lines show the Hxk flux profiles

for the original model (Ki = 0.07) and a modified version (Ki = 0.007), respectively. All other model parameters

were left unchanged.

The failure of WT cells imply a regulatory trade-off
The fact that approximately 7 % of wild-type cells also fail to cope with a sudden increase in glucose

indicates that the proper startup of glycolysis is not guaranteed, even when the necessary regulatory

components are available. How can this failure be understood? We speculate that the wild-type



failure reflects a trade-off between efficient startup and failsafe regulation. Although cells could
reduce the startup risk by always maintaining the trehalose cycle in a high state of activity, effecting
tighter control of glucose influx will likely come at a permanent cost of reduced ATP yield (due to
futile cycling) and glycolytic flux capacity [111]. From a population perspective a 7 % loss in viability
could be justified if the remaining 93 % survives without a permanent sacrifice in capacity.

It has been suggested that maximal growth rate under any one condition comes at the cost of
adaptability to different conditions [112]. New et al. [108] recently presented results that
demonstrate the existence of such a trade-off in S. cerevisiae when subjected to different carbon
source transitions. They found that populations of different wild strains of S. cerevisiae displayed
significant anti-correlations between maximal growth on glucose and the time required to resume
growth when switched to an alternative different carbon source (i.e. lag phase). All strains could be
characterised along a spectrum ranging from (i) specialists, which display maximal growth rates
when grown on glucose, but long lag phases when switched to a different carbon source, to (i)
generalists, which display short lag phases when switched to a new carbon source, but suboptimal
growth rates on glucose. Additionally, single cell analyses revealed a large degree of heterogeneity
in lag phases for any single population. Ultimately, it is concluded that being prepared for sudden
environmental changes is costly, due to the maintenance of cellular components that may only be
required when conditions change. Any reduction in this cost will yield benefits when conditions are
stable, but may lead to regulatory failures for some cells when they have to suddenly adapt to new
conditions. Regulatory trade-offs in metabolism may therefore be quite general and a limit to

evolution in dynamic environments.

In this regards it is interesting to note that galactose challenges also produced two
subpopulations. For both WT and tps1A populations, a fraction of 7 to 8 % ended up in the low pH
(imbalanced) state (Chapter 2, Fig. 2.4C). This finding is somewhat perplexing given the fact that
cells were pre-grown on galactose, and therefore presumably already adapted to this carbon source.
Although the data at hand does not permit a definitive explanation for this observation, a

comparison of glucose and galactose catabolism allow for some speculation.

Why does a galactose challenge lead to subpopulations?
A sudden increase in the glycolytic flux requires specific regulatory mechanisms to avoid an
imbalance between ATP consuming and producing steps as the pathway is initiated. Theoretically,

however, the potential for such an imbalance is not limited to glycolysis alone.



The danger of the metabolic imbalance in glycolysis is largely dependent on the initial rate of
ATP-consuming reactions when substrate uptake suddenly increases. The galactose utilization
pathway (Leloir-pathway) displays a very similar ATP-driven auto-catalytic architecture (Fig 7.6).
After galactose enters the cell, it is immediately phosphorylated by galactokinase (Gall) to produce
Galactose-1-phosphate (GAL1P). Through a series of additional reactions GAL1P is converted to
G6P, converging with glycolysis. While the trehalose pathway functions to balance ATP consumption
with production, no such mechanisms have been found for the Leloir-pathway. The absence of such
mechanisms suggests that sudden flux increases are unlikely to be of a magnitude that requires
specific regulation; unfortunately, high resolution dynamic flux data for the Leloir-pathway is
limited, but a study by Ostergaard and colleagues [113] is informative. They showed that a sudden
increase in galactose, leads to an immediate 2.5-fold increase in flux and a 2-fold decrease in ATP
concentrations, presumably as a result of Gall activity. While most cells can clearly deal with this
challenge (Chapter 2, Fig. 2.4C), it is quite possible that, in some cells, ATP consumption proceeds

too rapidly, resulting in the flux imbalances that lead to the imbalanced state.
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Figure 7.6. Galactose and Glucose metabolism converge at G6P. Shown is a schematic depiction of the reaction
sequences that lead from Glucose (GLU) or Galactose (GAL) to Glucose-6-phosphate (G6P). Hxt1l-7, Hexose
transporters; Glk, Glucokinase; Hxk1/2; hexokinase 1 and 2; Gal2; Galactose permease; Gall; Galactokinase;
Gal7; Galactose-1-phosphate uridyl transferase; Gal10, UDP-glucose 4-epimerase; Gal5, Phosphoglucomutase;

GAL1P, Galactose-1-phosphate; G1P, Glucose-1-phosphate.



In this thesis, and in the Ostergaard study [113] , cells were pre-grown on galactose. The Leloir-
pathway is subject to glucose repression and is induced in the presence of galactose. This prior
adaptation means that the Leloir-pathway would have been fully induced when (washed) cells were
challenged with a sudden increase in galactose. The higher the initial flux increases are in the ATP-
consuming steps of the pathway, the greater the risk of an ending up in the imbalanced state. As
such, prior growth on galactose could have had the unintended effect of sensitizing, rather than

protecting, cells against the potential dangers of a flux imbalance.

We chose to use galactose for comparability with previous experiments, but an alternative
carbon source would have been informative. In retrospect, the choice of galactose grown cultures as
a reference state meant that our plating experiments would not reveal the existence of a non-
growing WT subpopulation. With a similar fraction (7 — 8 %) of imbalanced cells appearing in
response to both glucose and galactose perturbations (Chapter 2, Fig. 2.4C), all population-level

viability estimates — which were normalized to galactose - obscured this phenomenon.

As we did not attempt to repeat experiments with an alternative carbon source, we are
unfortunately left with a hypothesis that will have to be validated by future studies. It would be
informative to evaluate pH; distributions of WT populations pre-grown on glucose followed by a
galactose perturbation. Cells pre-grown on glucose, exhibit delayed consumption of galactose when
suddenly challenged with excess amounts [114]. Although it has previously been shown that under
anaerobic conditions such transitions results in an energetic bottleneck that impede growth [114],
we expect that, if our hypothesis is correct, a reduction in galactose uptake capacities — under
aerobic conditions - should reduce the size of the low pH; subpopulation in response to a galactose

pulse.

Quantifying cell-to-cell metabolic variability
A change in the environment can impact individual cells differently, depending on their specific
physiological and metabolic states. In a typical microbial population, often consisting of millions of
individuals, minor variations in physiological parameters such as age and size, combine with
variability in gene expression and intracellular metabolite concentrations to generate unique states
for every single individual.

One of the central themes in this thesis is the idea that metabolic heterogeneity can drive
phenotypic diversification under dynamic condition. While phenotypic heterogeneity in populations

of otherwise isogenic cells is becoming an established phenomenon [36, 37, 48], cell-to-cell



variability is generally thought to result from stochastic fluctuations in gene expression. We showed,
in this work, that variation in metabolite concentrations could partly contribute to the metabolic
outcome of sudden glucose perturbations. While a statistical analysis (Chapter 5) showed that the
contribution from most metabolite pools was small in comparison to variations in enzyme
concentrations, variations in energy status (ATP) and P; concentration stood out as metabolites that
impacted the startup of glycolysis; with P; as one of the 5 largest overall contributors. While the
random sampling approach employed here demonstrated that glycolytic behaviour can be
determined by small distributed variations in components, one might wonder how realistic the
levels of variation included in our model are. How much evidence is there for cell-to-cell variation in

glycolytic enzymes and metabolites?

For central metabolic enzymes, cell-to-cell variability in glycolytic enzymes have been shown to
be similar, or even higher, than the variability included in our model [45]; for metabolites the picture
is less clear. Very few attempts have been made to quantitatively describe cell-to-cell variability in
central metabolic pools. This is largely due to the lack of available methods that allow for metabolite
guantification at this resolution. However, using a novel mass spectrometry approach, Ibafiez et al
[81], demonstrated significant cell-to-cell variability in glycolytic metabolite pools. One major

drawback of this approach is its destructive nature, making individual cell tracking impossible.

A potentially promising (and non-destructive) approach to dynamically quantify in vivo
metabolite concentrations, involves the use of genetically encoded Forster resonance energy
transfer (FRET) sensors (see [115] for an overview). These fluorescent sensors are constructed with
high specificity for a target metabolite, which upon binding leads to changes in FRET effeciency.
Relevant to the findings in this thesis, is the availability of such sensors for ATP and P; [116, 117].
With the theoretical demonstration that variations in the initial concentrations of these metabolites
impact regulatory outcomes, such sensors provide an obvious means to validate this hypothesis.
However, most fluorescent proteins (FPs) are sensitive to environmental factors, particularly low pH
[118]. This sensitivity presents a general challenge when signals from fluorescent reporter proteins
are interpreted, but becomes even more problematic in settings where pH and target metabolite
levels changes simultaneously (as in this thesis). While several studies have demonstrated the use of
FRET-based biosensors to track the in vivo dynamics of key metabolites, including ATP [117, 119],
inorganic phosphate (P;) [116] and Glucose [117], the confounding effect of pH dynamics has

unfortunately not been properly characterized.



In light of our findings, we attempted to implement an available FRET-based sensor for ATP
[117]. However, pilot measurements confirmed a significant pH-dependent bias (at fixed
concentrations of ATP) in population level measurements, with the signal primarily determined by
pH. This sensitivity would therefore obscure any inferences regarding cell-to-cell differences in
metabolite levels. Further optimization of such sensors will be required in order to reliably

implement them for the in vivo tracking of metabolite levels.

Without the reliable quantification of intracellular P; and ATP concentrations, the impact that
variations in these pools have on the outcome of glycolytic transitions remains theoretical. What is
needed is a direct demonstration of the dependence of glycolytic outcomes on initial ATP and P;
concentrations, following a glucose challenge. We hope that continuous efforts to improve the pH-
sensitivity of FPs will provide future studies with the means to validate this hypothesis, using either

fluorescent microscopy approaches or flow cytometry based sorting methods.

Intracellular pH variations can also contribute to metabolic outcomes
From the flow cytometry data (Chapter 2, Fig. 2.4C and Chapter 4, Fig. 4.7) it is evident that, initially,
populations displayed a continuum of pH states. While these states belonged to a single unimodal
distribution, it is conceivable that the states corresponding to the tails of the distribution could
exhibit quantitatively different glycolytic capacities due to pH-dependent effects on reaction rates
(see above and Appendix B). Although we did not include pH-dependence in our kinetic model, it is
likely that cell-to-cell variability in initial pH; could be another source of variation impacting
metabolic outcomes.

It would be informative to monitor growth and pH; using fluorescent microscopy in combination
with microfluidics for sudden sample perturbations. This should provide insight into whether pH;

differences at the time of glucose addition affects the probability of transition outcomes.

Spontaneous metabolic variation: a parsimonious explanation for the occurrence of glucose
tolerant tps1A subpopulations

In this thesis we interpreted the emergence of phenotypic subpopulations as a consequence of
metabolic heterogeneity within an isogenic population (Fig. 7.7 illustrates this hypothesis). This
scenario offered the simplest interpretation which explains both the physiological (growth)
behaviour of populations and the two-state outcome of kinetic model simulations. It is important to

emphasize that this outcome does not depend on the existence of a bistability in the model or



experimental populations prior to the addition of glucose; only upon perturbation with glucose a
bistability emerges in the model and a bimodal outcome (i.e. two subpopulations) is observed
experimentally; this has also been called “responsive diversification” [36].

In this respect, it is relevant to consider alternative frameworks such as fluctuation-induced
bistable switching (FIBS) [48], also referred to as stochastic switching. Stochastic switching has been
shown to explain the presence of antibiotic tolerant fractions of cells in bacterial populations (Type Il
persisters). The key difference between “responsive diversification” and FIBS is the fact that
phenotypic subpopulations are already present prior to a perturbation; this can be described as
“anticipatory diversification”, or bet-hedging. While FIBS would result in the same qualitative
outcome (i.e. distinct subpopulations), it is not required to explain our experimental data and would
be a more complicated hypothesis, as it requires bistability (i.e. two distinct physiological states)
under the initial conditions (i.e. during the pregrowth condition). Hence, in contrast to stochastic-
switching induced bistability phenomena, the emergence of two distinct phenotypes (viable and
non-viable) is not due to the prior co-existence of two qualitatively different physiological states, as

we did not observe bistability in either the model or experimentally prior to glucose addition.
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Figure 7.7: Metabolic heterogeneity can explain the emergence of phenotypic subpopulations. The illustration
shows how, depending e.g. on the initial concentrations of FBP and P; (left panel), the model representing wild-
type can end up in the imbalanced state (red area) or the steady state (white area). Heterogeneity in initial
conditions (depicted as the ellipse), results in subpopulations after the addition of glucose, as demonstrated by
the flow cytometry data (Chapter 2, Fig. 2.4C). The purple area represents the set of individuals that end up in
the imbalanced state (unviable) after glucose addition; the blue area indicates individuals that will end up in the

steady state (viable). The black dot (right panel) indicates the average initial state of the population.



Several recent microbial studies have shown or inferred the appearance of distinct subpopulations
following nutrient transitions [36, 37, 108]. This phenomenon may turn out to be quite ubiquitous
and part of a general survival strategy adopted by populations of microorganisms faced with
uncertain future conditions. Here we demonstrated how spontaneous metabolic variation can be
both a curse and blessing, leading, in some cases, to glycolytic imbalances in WT cells, while
potentially mitigating the consequences of a trehalose biosynthesis deficiency in tps1A individuals.
From an evolutionary perspective, non-genetic sources of phenotypic heterogeneity are
fascinating, having been demonstrated to be a potentially important adaptive mechanism that
enhances the long term fitness of populations [120, 121]. However, in biotechnological or clinical
settings this phenomenon can be undesirable, with heterogeneity potentially impacting culture
performance or treatment efficacies, respectively. As such, increasing insight into the origins and
consequence of non-genetic variability is of practical relevance for the both medical and

biotechnological endeavours.

In Conclusion

The two primary take home message of this thesis is that phenotypic variability can arise through
processes that do not operate under stochastic regimes, and that the dynamic regulation of
glycolysis can be understood as a probabilistic phenomenon. Spontaneously arising phenotypic
heterogeneity has potentially important implications for biotechnological applications [122], but
also for the biomedical field. The demonstrated role of phenotypic heterogeneity in e.g. antibiotic
resistance is particularly relevant for studies which aim to understand the susceptibility of
populations of cells to drug treatments [36, 48]. Insight into metabolic mechanisms that generate
phenotypic variability could help to inform intervention strategies for diseases with a central
metabolic component, such as cancer and diabetes. Antibiotic treatment regimens could also
benefit from such insights, as natural resistance by fractions of cells in E. coli populations have been
linked to non-genetic metabolic heterogeneity [36], where it was found that, depending on culturing
conditions, naturally occurring resistant subpopulations could be enhanced or reduced.

It is hoped that the work presented in this thesis has provided new insight into the principles of
metabolic regulation. The picture of the regulation of glycolysis that emerges from our work is multi-
levelled and dynamic and it was only through a combination of theoretical and experimental
approaches that the regulatory role of trehalose metabolism could be understood. From our
perspective, it will be interesting to see how ideas on metabolism and its regulation evolve to

account for transient regulatory phenomena and probabilistic outcomes.



AppendiX B | pH-dependence of enzyme activities

Employing the in vivo-like enzyme activity assays described by van Eunen et al. [60], we measured
the pH-dependent activities of several commercially available purified S. cerevisiae glycolytic
enzymes (Table B.2). pH was titrated by adjusting the ratios of buffer components as described in

Table B.1. Results are shown in Figures 7.2 and B.1.
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Figure B.1. Glycolytic enzymes display pH-dependent changes in activity. Shown are scaled activity profiles for
selected glycolytic enzymes that could be assayed in the glycolytic direction of operation. In addition, the pH-
dependent profile for Gapdh operating in the gluconeogenic direction is shown; operating in this direction pH-
sensitivity is significantly reduced compared to the glycolytic direction (see Fig. 7.2). All data points were scaled
(%) to the average activity at pH 6.94 (100 %). Blue circles show the average of three technical replicates; grey

squares show values for individual measurements.



Table B.1. Buffer composition of pH-dependent enzyme activity assays.

Buffer components

pH 1.1M K;HPO, 1.1M KH,PO, 1M NaH,PO, 1M Na,HPO, dH,0 CsHgKNO,.
(20 °C) (ml) (ml) (ml) (ml) (ml) H,0 (g)
5.99 0.15 9.85 3.90 0.10 86 14.94
6.11 0.86 9.14 3.44 0.56 86 14.94
6.24 1.47 8.53 3.07 0.93 86 14.94
6.46 2.44 7.56 2.53 1.47 86 14.94
6.67 3.79 6.21 1.89 211 86 14.94
6.94 5.37 4.63 1.28 2.72 86 14.94
7.24 6.85 3.15 0.81 3.19 86 14.94
7.48 8.00 2.00 0.49 3.51 86 14.94
7.64 8.80 1.20 0.29 371 86 14.94
7.80 9.30 0.70 0.16 3.84 86 14.94
7.96 9.60 0.40 0.09 3.91 86 14.94
Buffer concentrations (M) Assay concentrations (M)
(23'1' - K PO,> Na' K PO,> Na*
5.99 0.847 0.150 0.041 0.282 0.050 0.014
6.11 0.854 0.150 0.046 0.285 0.050 0.015
6.24 0.861 0.150 0.049 0.287 0.050 0.016
6.46 0.872 0.150 0.055 0.291 0.050 0.018
6.67 0.887 0.150 0.061 0.296 0.050 0.020
6.94 0.904 0.150 0.067 0.301 0.050 0.022
7.24 0.920 0.150 0.072 0.307 0.050 0.024
7.48 0.933 0.150 0.075 0.311 0.050 0.025
7.64 0.942 0.150 0.077 0.314 0.050 0.026
7.80 0.947 0.150 0.078 0.316 0.050 0.026
7.96 0.951 0.150 0.079 0.317 0.050 0.026




Table B.2. Summary of purified yeast enzymes tested for pH-dependent glycolytic activity.

Catalogue Assay concentration
Enzyme Name EC number Supplier
number (Units/ml)
Hexokinase 2.7.1.1 Roche 11426362001 0.25
Triosephosphate .
. 5.3.11 Sigma T2507 0.17
isomerase
Glyceraldehyde-3-
phosphate 1.2.1.12 Sigma G5537 0.2
dehydrogenase
Enolase 42.1.11 Sigma E6126 0.16
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