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Chapter 1
Introduction



Preface
Radiotherapy is an effective treatment of cancer, although it contributes to late toxicity in 

surrounding normal (non-cancer) tissue. Nearly half of all thoracic and chest wall cancer 

patients receive radiotherapy alone or in combination with chemotherapy or specific tyrosine 

kinase receptor inhibitors. Much work has been done to improve early detection, treatment 

schedules and techniques, which increased the life expectancy of cancer survivors. Yet, 

increased life expectancy also augmented the number of late toxicity events in surrounding 

normal tissue. Little is known about the underlying mechanisms and the contribution of 

microvascular damage to late cardiac toxicity after radiotherapy alone or in combination with 

chemotherapy or tyrosine kinase receptor inhibitors. In this thesis, we therefore investigated 

the molecular players and pathways involved in radiation induced cardiovascular damage in 

order to be able to improve existing therapies and to apply new strategies for intervention.

Chapter 1

- 10 -



1.1 �Understanding radiation-induced cardiovascular 
damage and strategies for intervention

F.A. Stewart, I. Seemann, S. Hoving, N.S. Russell

Clinical Oncology October 2013

Abstract
There is a clear association between therapeutic doses of thoracic irradiation and increased risk 

of cardiovascular disease (CVD) in cancer survivors, although these effects may take decades 

to become symptomatic. Long-term survivors of Hodgkin lymphoma and childhood cancers 

have 2 to >7-fold increased risks for late cardiac deaths after total tumor doses of 30-40 Gy, 

given in 2-Gy fractions, where large volumes of heart were included in the field. Increased 

cardiac mortality is also seen in women irradiated for breast cancer. Breast doses are generally 

40-50 Gy in 2-Gy fractions but only a small part of the heart is included in the treatment fields 

and mean heart doses rarely exceeded 10-15 Gy, even with older techniques. The relative 

risks (RR) of cardiac mortality (1.1-1.4) are consequently lower than for Hodgkin lymphoma 

survivors. Some epidemiological studies show increased risks of cardiac death after accidental 

or environmental total body exposures to much lower radiation doses. The mechanisms 

whereby these cardiac effects occur are not fully understood and it is likely that different 

mechanisms are involved after high therapeutic doses to the heart, or part of the heart, than 

after low total body exposures. It is also likely that these various mechanisms result in different 

cardiac pathologies, e.g. coronary artery atherosclerosis leading to myocardial infarct, versus 

microvascular damage and fibrosis leading to congestive heart failure. Experimental studies 

can help to unravel some of these mechanisms and may identify suitable strategies for 

managing or inhibiting CVD. In this overview, the main epidemiological and clinical evidence 

for radiation-induced CVD is summarized. Experimental data shedding light on some of the 

underlying pathologies and possible targets for intervention is also discussed. 
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Introduction
Cancer patients who received therapeutic doses (30-50 Gy in 2 Gy fractions) of thoracic 

radiotherapy prior 2000 have increased risk of cardiac mortality at >10 years after treatment. 

Modern radiotherapy techniques reduce the average and maximum dose to the heart, but 

techniques such as IMRT (intensity modulated radiotherapy) can be associated with total body 

exposures of 2-3 Gy. There is epidemiological evidence that such doses may also increase the 

risk of cardiovascular damage. Although there are still many unanswered questions, it is clear 

that radiation can induce a wide spectrum of cardiac and vascular pathologies, which may 

have different underlying mechanisms (1-6). 

This overview aims to summarize the most important epidemiological studies contributing to 

our understanding of the relationship between radiation dose and risk of cardiac morbidity. 

We then review the experimental data that has provided information on pathological changes 

in the irradiated heart and possible mechanisms of damage. Finally, we examine the evidence 

(so far rather limited) for pharmacological inhibition of radiation-induced cardiovascular 

disease (CVD).

Cardiac damage after therapeutic radiotherapy to cancer patients			 

Hodgkin lymphoma patients treated with older radiotherapy techniques (including the entire 

heart and aortic arch in the irradiation fields) have a risk of late cardiac mortality 2 to >7-fold 

greater than the general population (7-10). For example, significantly increased standardized 

incidence ratios (SIR) of myocardial infarct (2.4, 95% CI 1.1-5.2), angina (4.9, 2.0-12.0), 

valve disease (7.0, 2.6-18.5) and congestive heart failure (7.4, 1.8-30.0) were observed in 

>1,400 patients treated for Hodgkinlymphoma, with a median follow-up of >18 years (8). 

This study also demonstrated that the risk was significantly greater for patients irradiated at 

young age (SIR for myocardial infarction 2.6 for irradiation at age 36 to 40, compared with 

5.4 for those irradiated at age <20 years), and that the use of anthracycline chemotherapy 

further increased the risk of congestive heart failure and valve disease. Prospective screening 

studies have identified cardiovascular abnormalities, such as diastolic dysfunction, valvular 

and conduction defects, in a high percentage of asymptomatic Hodgkinlymphoma survivors 

(7, 11). This indicates that occult radiation-induced cardiac damage is very common in this 

patient population, which could lead to cardiac mortality at a later stage.

Two recent publications demonstrated a relationship between cardiovascular morbidity or 

mortality and cardiac dose in long-term survivors of various childhood cancers (12, 13). In 
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the Tukenova study, the relative risk (RR) cardiovascular death due to radiotherapy was 5.0 

(CI 1.2-21.4). Risk was significantly correlated with total mean heart dose: RR 25.1 for doses 

of >15 Gy, RR 12.5 for 5-14.9 Gy, no significant increased risk for doses <5 Gy. Mulrooney 

reported on the long-term cardiac outcomes of >14,000 survivors of childhood cancer. 

Cardiac doses of 15-35 Gy significantly increased the hazard rate (HR) of congestive heart 

failure (2.2, 1.4-3.5), myocardial infarction (2.4, 1.2-4.9), pericardial disease (2.2, 1.3-3.9) 

and valve abnormalities (3.3, 2.1-5.1), with respect to non-irradiated cancer survivors. Doses 

>35 Gy were associated with even higher HR and doses <5 Gy were not associated with 

significantly increased risks.

Increased cardiac morbidity and mortality are well documented after post-operative irradiation 

for breast cancer (1, 3, 14-16). For these patients the breast is irradiated to about 50 Gy in 

2 Gy fractions, although only a small part of the heart is exposed to high doses and dose 

distributions vary considerably depending on tumor location and radiotherapy technique 

used. Mean cardiac doses and doses to specific heart structures were estimated for breast 

cancer patients treated with common radiotherapy techniques up to the early 1990s (17). 

These calculations showed that total doses averaged over the whole heart were 3-17 Gy for 

women with left-sided breast cancer and irradiation of the internal mammary chain, with 

even higher doses to the left anterior descending coronary artery (LADCA). In a population of 

>4000 10-year survivors of breast cancer treated in the Netherlands between 1970 and 1986, 

radiation to the internal mammary chain was associated with significantly increased risk of 

cardiovascular disease (estimated mean heart dose 6-15 Gy), while for breast irradiation alone 

no increased risk was observed (estimated mean heart dose <7 Gy) (18). Modern radiotherapy, 

especially with deep inspiration breath hold techniques, can reduce the mean dose to the 

heart to <2 Gy, even for left-sided breast cancer, although parts of the LADCA may still be 

exposed to >20 Gy (19). 

The Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) carried out meta-analyses 

of mortality from randomized trials of radiotherapy versus no radiotherapy (20). This study 

showed a significant excess of CVD in women who received radiotherapy (RR 1.27; SE 0.07). 

A preliminary analysis of updated EBCTCG data demonstrated that the RR of cardiac death 

was related to the estimated mean cardiac dose, increasing by 3% per Gy (3). The risk for 

cardiac death was greater for women with left-sided cancer (mean cardiac doses 12 Gy, RR 

1.44) than right-sided cancer (mean cardiac dose 5 Gy, RR 1.18). This analysis also showed 
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that the RR increased with time from irradiation. 

A recent study analyzed the incidence of heart disease in 35,000 women treated with 

radiotherapy for breast cancer in Denmark and Sweden from 1976-2006 (21). Radiation-

related risk was studied by comparing women with left-sided and right-sided tumor’s, with 

estimated mean total heart doses of 6.3 Gy and 2.7 Gy, respectively. Cardiac mortality was not 

significantly influenced by tumour laterality, but left versus right incidence ratios were raised 

for acute myocardial infarction (1.22, CI 1.06-1.42), angina (1.25, 1.05-1.49), pericarditis 

(1.61, 1.06-2.43) and valvular heart disease (1.54, 1.11-2.13). Darby and colleagues have 

just published a population based case-control study of >2000 women irradiated for breast 

cancer in Sweden and Denmark between 1958 and 2001, for whom individual doses to the 

heart were estimated from radiotherapy charts (22). This analysis showed that the rate of 

major coronary events increased linearly with mean dose to the heart, by 7.4% per Gy (CI 

2.9-14.5). 

Although it takes more than 10 years for clinical cardiac failure to develop after irradiation, 

several studies using functional imaging have shown myocardial perfusion changes at ≥6 

months after irradiation for breast cancer (22-24). Perfusion defects followed the radiotherapy 

field rather than bifurcations of the major coronary arteries and the incidence of perfusion 

defects was related to the volume of the left ventricle included in the field (23). A relationship 

between these perfusion defects and subsequent clinical heart disease may be expected but 

has not yet been demonstrated.

Cardiac damage after total body exposures <2.5 Gy				  

With advances in modern radiotherapy techniques, the volume of critical normal tissues 

exposed to high doses is considerably reduced. However, techniques such as IMRT can result 

in total body exposures of 2-3 Gy over the entire treatment (25). It is therefore relevant to 

examine the evidence for radiation-induced CVD after such doses. The life span study of 

A-bomb survivors provides convincing evidence for increased risks after total body exposures 

< 2.5 Gy (26-28). In the latest analysis the excess relative risk (ERR) for all heart disease 

was 14% per Gy (CI 6-23%), although analysis restricted to doses < 0.5 Gy did not show 

significantly elevated risks (27). Analysis of risk according to type of heart disease showed that 

ischemic heart disease and myocardial infarct were not significantly associated with radiation, 

whereas hypertensive heart failure, rheumatic heart disease and congestive heart failure were 
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all significantly associated with radiation (ERR/Gy 37%, 88% and 22%, respectively). In other 

words, cardiac diseases caused by coronary atherosclerosis (angina and myocardial infarct) 

were not increased by low doses of radiation, whereas cardiac diseases associated with 

capillary perfusion defects, inflammation and fibrosis (congestive heart failure and rheumatic 

heart disease) were increased. 

In addition to direct cardiac effects, there is likely to be a contribution of systemic effects 

(non-targeted) after total body exposure. Clinical laboratory data from the adult health study 

(a subset of the A-bomb survivors) demonstrated significant increases in serum cholesterol, 

blood pressure, inflammatory markers (c-reactive protein, IL6, TNFα), as well as impairment of 

cell-mediated immunity (29-31). Recent evidence has also suggested an association between 

renal failure and radiation dose in the A-bomb survivors (32). These systemic effects could 

have contributed to the increased cardiac damage seen after total body exposures of low 

doses in A-bomb survivors, and they may also play a role in cancer patients treated with IMRT.

There are other epidemiological studies of circulatory disease in relation to radiation dose after 

medical, occupational or environmental total body exposures < 2.5 Gy (3, 33-39). A meta-

analysis of these studies suggested an aggregate ERR of 0.08 per Gy (95% CI 0.05- 0.11) (36), 

and a follow-up meta-analysis reported ERR per Gy of 0.10 (0.04-0.15) for ischemic heart 

disease and 0.12 (0.01-0.25) for non-ischemic heart disease (34). 

Experimental evidence for radiation-induced atherosclerosis		

Atherosclerosis is an important factor in cardiac diseases such as myocardial infarction. 

Damage or senescence of endothelial cells lining the major arteries is pivotal in the initiation 

of atherosclerosis (83). Damaged endothelial cells have increased capacity for monocyte 

attachment (via inflammatory molecules E-selectin, VCAM1 and ICAM1) and recruitment into 

the intima (via MCP-1). After trans-migration, monocytes take up low-density lipoprotein 

(LDL), forming aggregates of lipid laden macrophages (the early atherosclerotic lesion). 

Endothelial cells are sensitive to radiation and doses ≥2 Gy induce expression of inflammatory 

adhesion molecules and promotes leukocyte adhesion (12, 13, 23, 78). Radiation also triggers 

cells into senescence via damage to telomeres (84). 

Radiation combined with excess LDL initiates and enhances atherosclerotic development 

(85-87). Inflammation and oxidative damage play a role in this process, which can be 

inhibited by over-expression of superoxide dismutase (88). Radiation doses of 2-8 Gy to 
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hypercholesterolemic animals increase the number and size of atherosclerotic lesions in major 

arteries and predispose to the formation of macrophage rich, unstable plaque with thrombotic 

features, rather than stable collagenous plaque (88-94). Such lesions are more likely to 

rupture and cause a fatal heart attack. After local irradiation of the thorax or neck regions, no 

systemic changes in inflammatory markers or increased cholesterol levels occur (92, 95). This 

contrasts with the situation after total body exposures, where elevated inflammatory markers 

(72) and cholesterol (74, 95, 96) are seen, even after low doses.

In contrast to inflammatory responses after high doses, doses <1 Gy decrease leukocyte 

adhesion to endothelial cells via decreased liberation of E-selectin (97) and stimulated release 

of TGF-β (98). One study has also demonstrated that whole body doses <0.5 Gy actually 

decreased the number and size of atherosclerotic lesions in hypercholesterolemic mice (96).

These experimental studies suggest that radiation-induced atherosclerosis plays a role in 

the increased risk for myocardial infarct after high therapeutic doses of radiotherapy to the 

thorax, especially where the LADCA is within the high dose region. However, it seems unlikely 

that radiation-induced atherosclerosis is responsible for the cardiac mortalities seen after low 

dose total body exposures.

Experimental evidence for microvascular damage and fibrosis after cardiac irradiation

Radiation injury to the myocardium is primarily caused by damage to the microvasculature, 

leading to inflammatory and thrombotic changes, capillary loss, focal ischemia and interstitial 

fibrosis (12, 13, 50). These pathological changes can cause congestive heart failure.

The earliest morphological changes are lymphocyte adhesion and extravasation from 

irradiated capillaries. This is followed by loss of alkaline phosphatase in capillary endothelial 

cells, thrombi formation and obstruction of microvessels, vascular leakage and decreased 

capillary density (11, 99-102). Loss of alkaline phosphatase is a particularly sensitive marker of 

endothelial cell damage that occurs after doses of ≥2 Gy to the mouse heart (102). Although 

the remaining capillary endothelial cells may respond to damage by transient increase in 

proliferation (103), this is inadequate to maintain proper microvascular function. Recent 

studies have shown that endothelial cells isolated from irradiated mouse hearts have reduced 

ability to respond to angiogenic stimuli, and that this impairment is progressive in time (104). 

Reduction in the number of patent capillaries eventually leads to ischemia, myocardial cell 

death and fibrosis. 

Myocardial degeneration coincides with the first signs of decreased cardiac function in rats. 
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However, further decreases in function do not occur until shortly before the onset of fatal 

congestive heart failure, despite increasing degeneration of myocardial mass (101). This is 

probably explained by compensatory mechanisms masking the extent of functional damage. 

Gene expression profiles of irradiated mouse hearts suggest that genes involved in survival 

pathways (heat shock proteins and metalloproteinases) are activated in parallel with the 

inflammatory pathways. At later times, especially after higher doses, the expression profile 

switched to a fibrotic one, with many genes involved in heart failure over-expressed (89).

Experimental studies indicate that radiation injury to the capillary network is an important 

contributor to myocardial degeneration and heart failure after irradiation. This is supported by 

clinical studies that demonstrate regional perfusion defects in non-symptomatic breast cancer 

patients at ≥6 months after radiotherapy (65-67). 

Damage to other cardiac structures

After high doses to the heart (≥36 Gy fractionated), acute pericarditis (protein rich exudate 

in the pericardial sac) is the first clinical sign of damage 3-6 months after irradiation (57, 64, 

65). This can progress to fibrin deposition and chronic constrictive pericarditis. Similar changes 

are seen in mouse models of cardiac irradiation. For example, single doses of 2-16 Gy led to 

edematous thickening of the pericardium, with inflammatory cell deposits and hemorrhage 

after 16 Gy (61). Pericarditis used to be common after thoracic radiotherapy, but modern 

techniques restrict the heart dose and pericarditis is now rarely seen (5). 

Radiation-induced fibrosis can be a consequential effect of the inflammatory response 

discussed above. There is experimental evidence that mast cells mediate collagen deposition 

in irradiated rat hearts (66). Radiation also precipitates senescent changes in fibroblasts at 

doses as low as 1 Gy (67, 68). Senescent fibroblasts are metabolically active and produce 

excessive collagen, leading to fibrosis (67, 69). In the heart, fibrosis causes functional 

disturbances by impairing myocardial relaxation (70), which may also contribute to cardiac 

rhythm disturbances.  

Radiation-induced senescence and collagen production in post-mitotic fibroblasts are 

mediated by increased levels of TGF-β and downstream Smad proteins (71, 72). One report 

has described a correlation between TGF-β1 single nucleotide polymorphism and incidence 

of CVD after irradiation for breast cancer. The T/T polymorphism was associated with hazard 

ratios of 1.79 (0.99–3.26) compared to the C/C + C/T genotype, (73). Radiation-induced 

cardiac fibrosis has also been shown to be mediated by Smad and Rho/ROCK signaling (74).

Calcific valve disease is an important late complication of therapeutic radiation (75), 
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characterized by fibrotic thickening and macroscopic deposits of calcium phosphate that 

disturb the structure and function of the valve. Radiation induces osteogenic transformation 

and an increased production of osteogenic enzymes and cytokines by aortic valve interstitial 

cells (76). 

Systemic effects								      

After low-dose environmental or occupational exposures, or even after therapeutic 

radiotherapy with IMRT, one has to consider the effects of whole body exposure and how 

this may impact on CVD.  For example, microvascular damage to the kidney or atherosclerosis 

of the renal artery could lead to reno-vascular hypertension, further increasing the risk of 

atherosclerosis, and heart failure. Myocardial infarction may also have a worse prognosis if 

the microvasculature of the myocardium is already damaged. Microvascular damage in the 

lungs has been demonstrated, even in shielded areas, after thoracic irradiation; this can lead 

to pulmonary hypertension and put additional strain on the heart (77). Chronic low grade 

inflammatory reactions and cellular senescence caused by radiation may also accelerate the 

progression of cardiovascular disease.

Possible targets and strategies for intervention

As outlined above, radiation is an independent risk factor for induction and progression of 

atherosclerosis, including in mid-sized coronary arteries (47). Controlling other known risk 

factors, such as smoking, arterial hypertension, obesity and diabetes, is therefore especially 

important in irradiated cancer survivors. Radiation predisposes to the development of 

inflammatory, thrombotic lesions (48-50, 78), therefore the use of anti-inflammatory and 

anti-thrombotic drugs could have potential for combating radiation-induced coronary artery 

disease. Unfortunately, in the few experimental models where this approach has been tested, it 

has not proved effective. Anti-inflammatory nitric oxide releasing aspirin and, to a lesser extent, 

aspirin were able to inhibit or stabilize age-related atherosclerosis in hypercholesterolemic 

mice (79-82), but they had no effect on radiation-induced atherosclerosis (79). Similarly, 

the anti-platelet drug clopidogrel inhibited atherosclerosis in balloon injured arteries of 

hypercholesterolemic rabbits (83, 84), but not radiation-induced atherosclerosis (84, 85). This 

suggests that the anti-inflammatory properties of drugs used in these studies were insufficient 

to overcome the strong inflammatory phenotype of the irradiated lesions.

Rather more success has been reported with the use of anti-oxidant strategies. Anti-oxidant 

diets fed to hypercholesterolemic rabbits inhibited atherosclerosis after balloon injury and 
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irradiation. The macrophage and oxidized LDL content of the lesions was also reduced in 

both irradiated and control arteries (86). Peroxisome proliferator-activated receptor (PPAR)-γ 

activation upregulates anti-oxidants and this has been shown to inhibit both cholesterol-

mediated and radiation-induced atherosclerosis in animal models (87, 88). 

Microvascular damage is induced by modest radiation doses ≤2Gy and this can lead to 

perfusion defects, diffuse ischemia and myocardial fibrosis, resulting in congestive heart 

failure. Stabilizing endothelial function and inhibition of fibrosis therefore have potential 

for inhibition of radiation-induced cardiac damage. Statins are good candidates for such 

intervention since they exert a wide range of anti-inflammatory, anti-thrombotic and anti-

fibrotic effects (in addition to their cholesterol lowering properties). Statins improve vascular 

status (decrease coagulation and vasoconstriction) via upregulation of thrombomodulin and 

increased bioavailability of nitric oxide (89, 90), as well as inhibiting fibrotic pathways via 

inhibition of small G-proteins Rho and Rac (91).  One experimental study showed that statins 

and a Rho/ROCK inhibitor (Y-27632) were able to reduce pulmonary and cardiac fibrosis after 

thoracic irradiation (74).

Stem cell technology to stimulate recovery in damaged tissue is a rapidly expanding field of 

research. Vascular progenitor cells, including bone marrow derived cells (BMDC) migrate to 

sites of ischemic damage in the heart and participate in tissue regeneration (92, 93). Preclinical 

studies have shown that BMDC transplantation improves microvascularity and cardiac function 

after acute myocardial infarct and chronic cardiac fibrosis (94, 95). This technology may also 

have potential for treating radiation-induced CVD, although this has not yet been tested.

Pentoxifylline (PTX) inhibits fibroblast proliferation and intracellular signaling in response to 

TGF-β and CTGF. Two experimental studies have shown that combined PTX and vitamin E 

(anti-oxidant) have some beneficial effects on radiation-induced myocardial fibrosis and left 

ventricular function (96, 97). The subsequent withdrawal of drugs was, however, associated 

with a rebound effect and development of fibrosis. Similar approaches have been used 

in clinical trials for inhibition of fibrosis in breast cancer patients (98, 99) but there is no 

information on clinical benefits regarding cardiac damage.

The rennin-angiotensin system plays a key role in regulation of hemodynamics in the circulatory 

system. In a rat model of radiation heart disease, the ACE inhibitor captopril was able to 

reduce myocardial fibrosis and capillary loss, but this did not prevent functional damage (100). 

There is no clinical evidence of a beneficial effect of ACE inhibitors on radiation-induced 

cardiotoxicity, although there are indications of a beneficial effect after chemotherapy. In a 

randomized trial including women treated with high dose chemotherapy, enalapril prevented 
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the development of late cardiotoxicity in a selected group of high risk patients (101).

Conclusions

Although modern radiotherapy protocols have led to a reduction in radiation exposure of non-

target cardiovascular structures, radiation-induced CVD will remain a relevant issue for cancer 

survivors. Firstly, cohorts of patients treated in previous decades remain at risk for radiation 

induced CVD in the future. Secondly, the use of techniques such as IMRT, while reducing the 

volume of normal tissue exposed to high doses, actually expose large body volumes to doses 

of 1-3 Gy. Thirdly, adjuvant cardiotoxic drugs used in cancer treatment may compound CVD 

risks for patients treated with current techniques. There is now solid epidemiological evidence 

for increased risk of CVD in cancer patients exposed to total fractionated cardiac doses >5 

Gy. There is also solid evidence for increased risk after total body exposures >1 Gy, with 

suggestive evidence for increased risks at lower doses. 

Experimental evidence shows that doses >2 Gy, in combination with elevated cholesterol 

levels, initiates atherosclerosis and predisposes to an inflammatory plaque phenotype. This is 

a likely mechanism for radiation-induced coronary artery disease, especially where the LADCA 

is included in the high dose field. There is no evidence for radiation-induced atherosclerosis at 

doses <2Gy. After lower doses, microvascular damage is the underlying cause of subsequent 

myocardial ischemia, perfusion defects and fibrosis. These pathologies can eventually lead 

to congestive heart failure. After total body exposure to low doses, systemic effects, such as 

elevated cholesterol, persistent low grade inflammation, renal damage and hypertension, are 

likely to contribute to the increased cardiovascular risk.
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1.2 General introduction

Radiotherapy and normal tissue damage

The German Wilhelm Conrad Roentgen presented X-rays as therapy against cancer. This 

soon became a standard treatment for different sorts of cancers worldwide, e.g. for Hodgkin  

lymphoma. However, early radiotherapy treatment schedules for Hodgkin  lymphoma patients 

often included a large volume of heart tissue, which resulted in significant delayed toxicity. 

Modern radiotherapy techniques have improved, especially dose sculpting techniques, which 

allow the physician to irradiate the tumor more precisely and to spare more surrounding 

normal tissue and decrease the overall dose to the heart. 

Figure 1 Changes in types of treatment plans and radiotherapy (RT) fields for Hodgkinlymphoma patients over 

time. (A) Mantle and upper abdomen field with the heart, carotid arteries, left breast and part of the lung in 

the field of radiation. (B) Mantle field; typical RT fields that were used with high radiation doses (36-45 Gy). (C) 

Contemporary involved-field RT (IFRT) treats only initially involved lymph node regions with a lower prescribed 

radiation dose compared to (A) and (B) and includes less normal tissue in the field of radiation. (D) Involved-node 

RT (INRT) allows further reduction in normal tissue dose. Light green illustrates the irradiated field. The true heart 

position (red) is shown. (Adapted from Hogsdon et al. (102))
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However, although new techniques have the advantage of reducing the volume of normal 

tissue exposed to high dose irradiation, critical areas of the heart such as the left anterior 

descending coronary artery may still be exposed to substantial irradiation doses (17, 19, 103).  

Thus, it has been the long-term follow-up studies of Hodgkin  lymphoma patients treated 

with mantle field radiotherapy, which indicated that the heart is a radiosensitive tissue. 

The sensitivity to radiation has been shown to cause pericarditis, cardiomyopathy, valvular 

disorders, coronary artery disease, chronic impairment of myocardial function, myocardial 

fibrosis and sudden death, although most of these disorders are only manifest many years 

after radiotherapy (2, 104-107). In vivo models revealed focal degeneration and necrosis of 

the myocardium that was primarily caused by damage to the microvasculature (64). Moreover, 

it has been shown that long before radiation-induced myocardial injury is manifest, decrease 

in microvasculature density becomes measureable (5, 6, 59, 104). 

For clinical purpose but also to some extent for research purpose, it is important to make 

distinction between early and late side-effects.

Early side-effects of radiotherapy become apparent days after treatment in tissue with high 

proliferative activity, whereas late side-effects appear months to many years later (108). The 

primary early effect of radiotherapy on normal tissue is the sterilization of the proliferating cells. 

Thus, the early effects of radiotherapy are based on impairment of cell production in the face 

of ongoing cell loss (109). This leads eventually to progressive cell depletion, supplemented 

by either direct or indirect inflammatory changes. In rapidly proliferating tissues, like oral or 

intestinal mucosa, the surviving stem cells are able to repopulate the tissue, providing that cell 

depletion was not too severe. Late side-effects, however, seem to be more complex and are 

often irreversible and progressive. 

Tissue proliferation and response to radiation has been defined in terms of tissue organization 

models: H-type (hierarchical-type) and F-type (flexible-type) (110). H-type tissues are rapid 

turnover tissues comprising stem cells, which are not functional themselves but from which 

intermediate “transit cells” are produced, which in turn proliferate to produce functional, 

post-mitotic “mature cells”.  Proliferating stem cells can restore the tissue integrity and 

structure after radiation and are maintained by self-replication.  Stem cells are radiosensitive 

and reduction of the stem cell compartment results in an overall decline of cell production, 

which leads to hypoplasia (111). The heart is, however, an F-type tissue, which comprises 

many types of functional cells that rarely undergo proliferation, although some cell types are 

capable of proliferation if the occasion requires it (109). Clinical manifestation of damage in 

slow turnover F-type tissues is delayed, as there is no early critical depletion of post-mitotic 
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functional cells. When damaged cells eventually attempt mitosis they die and the ensuing cell 

loss stimulates a compensatory proliferation response in other damaged cells, thus creating 

a wave of mitotic death and accelerating further cell loss and loss of organ function (111). 

Although cell loss after irradiation in an F-type tissue may be delayed for many months, early 

inflammatory and thrombotic changes do take place (112).

One well-known cardiac late side effect induced by radiation is fibrosis. Radiation-induced 

fibrosis, defined by excessive fibroblast proliferation, myofibroblast differentiation and 

overproduction of extracellular matrix, is probably the most extensively studied late side effect 

due to its importance in clinical radiotherapy (2, 3, 5, 67, 69). Cardiac fibrosis is manifest 

in reduced tissue flexibility, reduced strength or restricted motions resulting in functional 

impairment (113). In the early phase of fibrogenesis, proinflammatory cytokines, interleukins 

and growth factors are upregulated in the irradiated tissue (5, 6, 41, 113). One of the most 

important inflammatory cytokines in the development of fibrosis is transforming growth factor 

β1 (TGF-β1) (114). It is defined as the master switch in the fibrotic program and is involved in 

proliferation and differentiation of cells; inhibition of endothelial proliferation; regulation of 

extracellular matrix component deposition, stimulation of myofibroblast differentiation and 

induct of type I collagen production (115). Radiation can activate TGF-β1 and, by binding 

to transmembrane receptors, activate the TGF-β1 signaling (116-118). Radiation-induced 

fibrosis is different to normal wound healing where a complex balance exists between pro-

fibrotic proteins, such as TGF-β1 and its downstream effector connective tissue growth factor 

(CTGF), counterbalanced by anti-fibrotic proteins e.g. tumor-necrosis factor-α (TNF-α). In the 

final remodeling phase of normal wound healing, new capillaries are formed and collagen 

degradation takes place (119). Unlike normal wound healing, radiation-induced fibrosis 

demonstrates continuously production of TGF-β1 and lacks the balance between pro-fibrotic 

proteins and anti-fibrotic proteins. Thus, radiation-induced fibrosis is progressive over the 

years and can lead to organ failure.

they die and the ensuing cell loss stimulates a compensatory proliferation response in other 

damaged cells, thus creating a wave of mitotic death and accelerating further cell loss and 

loss of organ function (111). Although cell loss after irradiation in an F-type tissue may be 

delayed for many months, early inflammatory and thrombotic changes do take place (112).

One well-known cardiac late side effect induced by radiation is fibrosis. Radiation-induced 

fibrosis, defined by excessive fibroblast proliferation, myofibroblast differentiation and 

overproduction of extracellular matrix, is probably the most extensively studied late side effect 



Introduction

- 25 -

1
due to its importance in clinical radiotherapy (2, 3, 5, 67, 69). Cardiac fibrosis is manifest 

in reduced tissue flexibility, reduced strength or restricted motions resulting in functional 

impairment (113). In the early phase of fibrogenesis, proinflammatory cytokines, interleukins 

and growth factors are upregulated in the irradiated tissue (5, 6, 41, 113). One of the most 

important inflammatory cytokines in the development of fibrosis is transforming growth factor 

β1 (TGF-β1) (114). It is defined as the master switch in the fibrotic program and is involved in 

proliferation and differentiation of cells; inhibition of endothelial proliferation; regulation of 

extracellular matrix component deposition, stimulation of myofibroblast differentiation and 

induct of type I collagen production (115). Radiation can activate TGF-β1 and, by binding 

to transmembrane receptors, activate the TGF-β1 signaling (116-118). Radiation-induced 

fibrosis is different to normal wound healing where a complex balance exists between pro-

fibrotic proteins, such as TGF-β1 and its downstream effector connective tissue growth factor 

(CTGF), counterbalanced by anti-fibrotic proteins e.g. tumor-necrosis factor-α (TNF-α). In the 

final remodeling phase of normal wound healing, new capillaries are formed and collagen 

degradation takes place (119). Unlike normal wound healing, radiation-induced fibrosis 

demonstrates continuous production of TGF-β1 and lacks the balance between pro-fibrotic 

proteins and anti-fibrotic proteins. Thus, radiation-induced fibrosis is progressive over the 

years and can lead to organ failure.

Endoglin

Endoglin is a co-receptor for TGF-β1. It is expressed at low levels in resting endothelial cells 

but highly expressed in proliferating vascular endothelial cells during embryogenesis and in 

inflamed tissue and healing wounds (120, 121). TGF-β1, however, is a multifunctional cytokine 

that evokes cellular responses via specific type I and II receptors and their downstream nuclear 

effectors, called Smads. In endothelial cells, TGF-β1 activates two type I receptor pathways, 

activin receptor-like kinase 5 (ALK5) -inducing Smad2/3 phosphorylation and activin receptor-

like kinase 1 (ALK1) -promoting Smad1/5 phosphorylation (122). Activation of ALK5 inhibits 

cell proliferation and migration, whereas activation of ALK1 stimulates processes associated 

with angiogenesis (123, 124). Moreover, endoglin has been shown to be a crucial component 

for ALK1 signaling, thus stimulating endothelial cell proliferation, while in the absence of 

endoglin, ALK5 signaling is stimulated leading to inhibition of endothelial cell proliferation 

(124). Endoglin therefore plays an important role in the balance of ALK1 and ALK5 signaling 

that regulated vascular maintenance and repair (125). In vivo studies revealed the importance 

of endoglin when mice deficient in endoglin died in mid-gestation due defective angiogenesis 
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Figure 2 TGF-b signaling mediated by TGFR-1 and ALK1. TGF-b signaling is complex and consists of stimu-

lated angiogenesis through ALK1, SMAD1 and SMAD5 but blocking angiogenesis through ALK5, SMAD 2 and 

SMAD3. Endoglin shifts binding of TGF-b  to ALK1 and thus stimulating endothelial cell proliferation. Mutation 

(yellow stars) in ENG or ALK1 develop HHT. (Adapted from Lafyatis et al. 36)

(127). Moreover, most mice carrying a single copy of the endoglin gene develop clinical signs 

of hereditary hemorrhagic telangiectasia (HHT) phenotype, with extensive dilated and weak-

walled vessels (127, 128). HHT is an autosomal-dominant disorder in humans, with a mu-

tation in ENG or ACVRL1 gene (coding for endoglin and ALK1) characterized by frequent 

episodes of epistaxis, telangiectases, and multiorgan vascular dysplasia (129). 		

This phenotype is similar to radiation-induced microvascular damage, which raises the ques-

tion of whether endoglin may also play a crucial role in radiation-induced cardiac injury. 

Chemotherapy and Her-inhibitors

Thoracic cancer patients often receive anthracycline chemotherapy combined with radiotherapy. 

For breast cancer patients this may be given as adjuvant therapy post mastectomy or 

lumpectomy. One of the most effective anthracyclines in anti-cancer treatment is doxorubicin, 

a drug that is also known to increase the risk of cardiac toxicity. Cancer survivors treated with 

both doxorubicin and radiotherapy have a higher risk of heart failure than those treated by 

either therapy alone (130).

Doxorubicin induces cell killing by targeting topoisomerase II and DNA to inhibit replication 

and by creating iron-mediated free oxygen radicals that damage the DNA. The most cited 

and accepted mechanism is the formation of reactive oxygen species (ROS), which leads to 
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oxidative stress and causes lethal injury to the cardiac myocytes (131-133). Cardiac myocytes 

are postreplicative and thus unable to regenerate, therefore cell loss eventually leads to 

myocardial damage. Endothelial cells, however, have the ability to maintain cardiomyocyte 

metabolism and survival by activating prosurvival signaling pathways e.g. by releasing 

neuregulin-1β (134). Neuregulin-1β binds to epidermal growth factor receptor 4 (ErbB4) 

and leads to heterodimerization with ErbB2 or homodimerization with ErbB4 and therefore 

stimulates the intracellular signal transduction pathways (Figure 3) (135).

Figure 3 Prosurvival pathways in cardiomyocytes. Neuregulin-1 released by endothelial cells can bind to ErbB4 

and activates intracellular signal transduction pathways. Adapted from Odiete et al. (46)

Approximately 20-30% of breast cancers show a highly aggressive subtype, characterized 

by ErbB2 overexpression. This type of breast cancer shows resistance to chemotherapy and 

radiotherapy, and is therefore associated with poor clinical outcome and higher risk for 

recurrence (137, 138). Therapeutic ErbB2-inhibitor agents have a clinical benefit in ErbB2-

overexpressing breast cancers. One promising small molecule inhibitor is lapatinib, which 

reversibly inhibits the tyrosine kinase activities of ErbB1 and ErbB2 at equal potency. Lapatinib 
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blocks the signal transduction to Ras/Raf MAPKs and the PI3K/Akt pathway, which leads 

to increased apoptosis and decreased cellular proliferation (139). However, questions arise 

whether blocking of ErbB2, and thus blocking cardiomyocyte pro-survival pathways, would 

lead to an additional cardiac damage when combined with chemotherapy or radiotherapy. 
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1.3 Aim and outlines of the thesis
The underlying mechanisms of late cardiac damage, and the contribution of the cardiac 

microvasculature to cardiovascular disease are still poorly understood.

We therefore set up different experimental approaches that will be discussed in detail in the 

following chapters of this thesis.

Chapter 2:  Our first aim was to develop a mouse model for characterization of the severity 

and rate of progression of cardiac damage after irradiation. This chapter describes the 

sequence of events in the irradiated mouse heart after low, intermediate and high (2, 8, 16 

Gy) single doses. The histological and functional effects were investigated at early (20 weeks) 

and late (40 and 60 weeks) time points. 

Chapter 3: Wild type mice have very low levels of low density lipoprotein (LDL) and are 

extremely resistant to the development of atherosclerosis. Cardiac damage identified after 

irradiation of wild type mice therefore does not include any component of atherosclerosis. 

ApoE-/- mice, however, have elevated cholesterol levels, develop spontaneous atherosclerosis 

with age and can be used to mimic the human situation. To investigate whether the presence 

of elevated cholesterol would influence the development of radiation induced damage, ApoE-/- 

mouse hearts were irradiated with single low, intermediate and high doses (2, 8, 16 Gy).Thus, 

this results shown in this chapter may allow us to evaluate the contribution of atherosclerosis 

(macrovascular damage) in the pathology of radiation induced cardiac damage.

Chapter 4: In Her2-positive breast cancer patients inhibition of epidermal growth factor 

receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The 

risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known 

about increased risk when combined with ErbB2 inhibition. We designed an experimental 

set-up that mimicked clinical treatment protocols by administrating lapatinib together with 

radiation or anthracycline, or delayed until 20 weeks. These results allow us to evaluate the 

impact on cardiac structure and function of inhibition ErbB2 signaling during thoracic cancer 

treatment. 

Chapter 5: Endoglin is highly expressed in damaged endothelial cells and may therefore play 

a crucial role in cell proliferation and revascularization. To examine the role of endoglin in 

radiation-induced cardiac damage and repair, thus revascularization, we exposed endoglin 

deficient mice (Eng +/-) to cardiac irradiation with a single dose of 8 or 16 Gy. 

Chapter 6: A better understanding of the underlying mechanisms of radiation-induced 

cardiac damage allows for the development of intervention strategies. Since inflammatory 

and fibrotic events are dominant features in radiation induced heart damage, we hypothesize 
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that thalidomide might prevent or reduce this damage. To address this hypothesis, we fed 

thalidomide containing chow to irradiated and unirradiated mice and measured histological 

and functional cardiac effects at 40 weeks after treatment. 

Chapter 7: It has been described in animal models of ischemia that in vitro differentiated 

endothelial cells transplanted after ischemic injury lead to improved perfusion and prevent 

organ (cardiac) damage. In this study we investigated whether radiation induced cardiovascular 

damage can be diminished by revascularization of Bone-marrow derived endothelial cells 

(BM-EPCs) and whether endoglin plays a role in this process. BM-EPCs from either endoglin 

haplo-insufficient (Eng+/-) or endoglin proficient (Eng+/+) mice were transplanted into wild 

type mice after irradiation with 16 Gy. 
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Abstract
Background: Radiotherapy of thoracic and chest wall tumors increases the long-term risk of 

cardiotoxicity, but the underlying mechanisms are unclear.

Materials and Methods: Single doses of 2-16 Gy were delivered to the hearts of mice and 

damage was evaluated at 20, 40 and 60 weeks, relative to age-matched controls. Single 

photon emission computed tomography (SPECT/CT) and ultrasound were used to measure 

cardiac geometry and function, which was related to histo-morphology and microvascular 

damage. 

Results: Gated SPECT/CT and ultrasound demonstrated decreases in end diastolic and systolic 

volumes, while the ejection fraction was increased at 20 and 40 weeks after 2-16 Gy. Cardiac 

blood volume was decreased at 20 and 60 weeks after irradiation. Histological examination 

revealed inflammatory changes at 20 and 40 weeks after 8-16 Gy. Microvascular density in 

the left ventricle was decreased at 40 and 60 weeks after 8-16 Gy, with functional damage to 

remaining microvasculature manifest as decreased alkaline phosphatase (2-16 Gy), increased 

von Willebrand Factor and albumin leakage from vessels (8-16 Gy), and amyloidosis (16 Gy). 

16 Gy lead to sudden death at 30-40 weeks in 38% of mice.

Conclusions: Irradiation with 2 to 8 Gy induced modest changes in murine cardiac function 

within 20 weeks but this did not deteriorate further, despite progressive structural and 

microvascular damage. This indicates that heart function can compensate for significant 

structural damage, although higher doses, eventually lead to sudden death.
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Introduction 
Radiation-induced heart disease (RIHD) can be a severe late side effect in cancer patients 

irradiated to their thorax (1). This has relevance for long-term survivors of cancer (2). Cancers 

with a good long-term prognosis that are treated with thoracic irradiation include childhood 

cancers, breast cancer and Hodgkin lymphoma. RIHD was first described in the 1960’s, after 

mantle field radiotherapy for Hodgkin lymphoma (3). Since then treatment options and 

techniques, especially the development of dose-sculpting radiation techniques, have improved 

and the relative 5-year survival rates for childhood cancer, including Hodgkin lymphoma, 

have increased from 30% in 1960 to 79% in 2010 (4). However, longer survival in Hodgkin 

lymphoma patients is associated with increased risks (relative to age-matched unirradiated 

populations) of late cardiac morbidity and mortality; from 2% after 5 years to 23% after 20 

years (5). Epidemiological studies also demonstrate increased risks for cardiac mortality and 

morbidity for breast cancer patients that received radiotherapy (2,6). Although the relative 

risk is lower than for Hodgkin lymphoma patients, the large number of women irradiated 

for breast cancer makes this a significant health problem. For both patient groups, the risk of 

RIHD becomes significant 10 years after treatment and increases with time (6,7). 

RIHD includes a wide spectrum of cardiac pathologies, like pericarditis, cardiomyopathy, 

valvular disorders, myocardial fibrosis, coronary artery disease, conduction abnormalities and 

sudden death (8-10). In the early stages, before the onset of functional impairment, some 

experimental studies have shown evidence of inflammation in the myocardium, endothelial 

cell damage and decreased myocardial capillary density (11-13). Regional cardiac perfusion 

defects have also been identified in non-symptomatic breast cancer patients from 6 months 

after radiotherapy (14,15). This suggests that early microvascular damage may precede severe 

cardiac functional impairment. 

The risk of RIHD is now well recognized but the underlying mechanisms of its initiation and 

progression, and the roles played by microvascular damage, fibrosis and atherosclerosis 

remain unclear. In this study, local cardiac irradiation of mice was used, with different doses 

and prolonged follow-up, to shed light on the dose dependence of the severity, latency and 

rate of progression of structural and functional cardiovascular damage. This is the first study 

that characterizes in detail both the functional and structural cardiac damages after local 

heart irradiation in mice. 
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Materials and Methods
Mice and irradiation procedure

Male C57BL/6J mice aged 8-12 weeks (from Charles River Laboratories, France) were randomly 

allocated to different treatment groups and housed in a temperature-controlled room with 

12 hour light-dark cycle. Standard mouse chow and water were provided ad libitum. During 

irradiation or sham treatment (0 Gy) mice were held unanaesthetized in a prone position, in 

restraining jigs with the thorax fixed using adjustable hinges. Single doses of 2, 8 or 16 Gy 

were given to the heart using 250 kV X rays, operating at 12 mA and filtered with 0.6 mm 

of copper. The dose rate was 0.94 Gy/min. The field size (10.6 x 15.0 mm) and position was 

determined in pilot studies using mammograms to visualize the hearts of mice of the same 

sex and weight. In order to ensure that the whole heart was irradiated in all mice, up to 30% 

of the lung volume was included in the field. The rest of the body was shielded with a 3 mm 

thick lead plate.

Separate cohorts of animals were irradiated for functional imaging and harvesting of hearts for 

analyses at 20, 40 and 60 weeks after irradiation. Each dose and time point typically comprised 

10 to 15 mice (n=165 in total). Age-matched controls (sham irradiated) were always included 

and these provide the appropriate comparison for irradiated groups at that time point.

Experiments were in agreement with the Dutch law on animal experiments and welfare, 

and in line with the international Guide for the Care and Use of Laboratory Animals (Eighth 

edition).

SPECT/CT

Single photon emission computed tomography (SPECT) acquisitions were made with the 

dedicated small-animal NanoSPECT/CT (Bioscan Europe, Ltd., Paris, France). Animals were 

anesthetized with Hypnorm (Fentanyl 0.26 mg/kg/Fluanisone 8.33 mg/kg, VetaPharma, Ltd., 

Leeds, UK) and Dormicum (Midazolam, 4.17 mg/kg, Roche, Woerden, the Netherlands) via 

intraperitoneal (i.p.) injection (1:2:1 Hypnorm:H2O:Dormicum; 120 µl/mouse), placed on 

the animal bed in the prone position and scanned in the tail-first direction. Human Serum 

Albumin (HSA) (Vasculosis, IBA Molecular, Gif-sur-Yvette, France) was labeled with 1-1.5 ml 
99mTc-pertechnetate. The radiotracer (150 µl) was injected intravenously (i.v.), at a total activity 

of about 50 MBq per mouse. X-ray topogram and SPECT acquisition were initiated directly 

after tracer administration. A total body scan was used to calculate the ratio between the 

total radioactivity (MBq) in the mouse and in the heart, and hence calculate the blood volume 

of the heart chambers.
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Gated SPECT/CT

Three-lead electrodes (3M red Dot 2282E, 3M, St.Paul, USA) were attached to both hind paws 

and right front paw of the mouse and connected to the integrated electrocardiography (ECG) 

monitor to measure heart rate (HR). ECG-gated data were recorded in 8 time-bins per cardiac 

cycle. The tracer tetrofosmin (Myoview, GE-healthcare, Hoevelaken, the Netherlands) was 

labeled with 99mTc-pertechnetate according to the manufacturer’s protocol. The radiotracer (150 

μl) was injected i.v. with a total activity of about 65 MBq per mouse. Acquisitions were started 

one hour after tracer incubation. Once a stable HR was established, a short X-ray topogram was 

made to set the field of view (FOV) and so focus on the thorax to reduce scan time. After the 

FOV was set, gated SPECT acquisition was started using a quadruple-head gamma camera high 

precision gantry, equipped with 4 pyramid collimators and 9 pinhole apertures (diameter 1.2 

mm). The axial FOV was 16 mm. A 20% window centered on the 140 keV photoelectric peak 

of 99mTc was used to acquire 20 projections with uniform angular sampling over a 360o radius 

into a 128 x 128 matrix. ECG-gated data were recorded in 8 time-bins per cardiac cycle, with 

an accepted frame time of 180 seconds. HiSPECT NG software (InVivoScope, Bioscan) was used 

to perform iterative reconstruction into 3D-datasets. Quantitative analysis of the reconstructed 

datasets was performed on a clinical e.soft (syngo-based) workstation (Siemens Medical 

Solutions, Siemens AG, Erlangen, Germany), using algorithms to automatically reconstruct a 

count based 3D model of the dimensions of the left ventricular (LV) end diastolic and systolic 

volumes (EDV, ESV), as well as the thickness of the LV wall in diastole and systole. The ejection 

fraction (EF) was calculated based on the difference between EDV and ESV divided by EDV. 

2D- ultrasound

Mice were lightly sedated with 2% isoflurane (Forane, Abbott, Hoofddorp, the Netherlands). 

Echocardiography images were acquired using a Vevo 770 system (VisualSonics, Toronto, 

Canada). Images were obtained using a 30 MHz transducer with a focal depth range of 13 

mm. Acquisitions were made in B-mode in the long-axis view as well as in the short view, at 

the papillary muscle level, at a frame rate of about 90 MHz. Measurements of LV dimensions 

were obtained by visual determination in three respective cardiac cycles in long-axis mode. 

Calculations were based on the measurement of left ventricular length and left ventricular 

surface area during diastole and systole and the EF was calculated as described above.

Tissue preparation

At termination of the experiment, the heart was perfused via the aortic arch (retro-grade), 
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under lethal sodium pentobarbital anesthesia (18 mg i.p per mouse), with PBS (frozen 

sections) or PBS followed by 1% paraformaldehyde (paraffin sections). The heart was then 

quickly excised before freezing on dry ice or immersion in 1% paraformaldehyde. 

Histology

Cross-sections were cut at the level of the mid-horizontal plane from fixed paraffin-embedded 

tissues (3 µm) or frozen tissues (7 µm).

Paraffin sections: Transverse sections were stained with hematoxylin and eosin (H&E) to 

measure the epicardial and myocardial thickness. To determine the extent of inflammation, 

sections were immuno-labeled with anti-CD45 antibody (1:5000, Becton&Dickinson, Franklin 

lakes, USA). Perls’-staining was performed to investigate the presence of iron-containing 

macrophages, indicative of previous hemorrhage. Based on a Sirius red staining, interstitial 

collagen was determined in the subendocardium and myocardium of the LV. Double staining 

for laminin (1:600) and collagen IV (1:2000, both kindly provided by Dr. J Cleutjens, Maastricht 

University, the Netherlands) was used to measure the cross-sectional area of cardiomyocytes. 

To investigate vascular leakage, paraffin sections were stained for albumin (1:2500, Abcam, 

Cambridge, USA) and myocardial deposition was determined. A Congo red staining was 

used to detect amyloid deposits in the myocardium. Within one time group all sections were 

processed identically, at the same time with precisely the same incubation times for the 

primary and secondary antibody and diaminobenzidine (DAB) solution (Sigma, Zwijndrecht, 

the Netherlands). Therefore, all differences between the treatments are ultimately due to DAB 

identification of the relevant protein.

Photographs of the LV wall (excluding the septum) were taken using a 5x objective (Leica 

DFC320) and 12 measurements per heart were performed to measure the epicardial and 

myocardial thickness. The number of CD45-positive cells per section was counted separately 

in the epicard and myocard to determine the extent of inflammation. Perls’ stained sections 

were examined for evidence of iron-containing macrophages and this was recorded as positive 

or negative for each section. Interstitial collagen was quantified in five randomly selected areas 

of the subendocardium and myocardium of the LV (40x objective) and results are expressed 

as percentage tissue positive for Sirius red relative to myocardial area. Photographs of laminin 

as percentage tissue positive for Sirius red relative to myocardial area. Photographs of laminin 

and collagen IV stained sections were taken using a 20x objective and approximately 200 

subendocardial myocytes were measured per heart. Cardiac amyloidosis was diagnosed by 

the apple-green birefringence of extracellular deposited amyloid fibrils, when stained with 
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Congo red dye and viewed under polarized light. Morphometric parameters were analyzed 

using a computerized morphometry system (Leica Qwin V3, Leica, Rijswijk, the Netherlands).

Frozen sections: An anti-CD31 antibody (1:50, Becton&Dickinson) was used to visualize 

cardiac vasculature of the central part of the heart. To quantify the percentage of perfused 

microvessels, FITC-lectin (Fluorescein labeled Lycopersicon Esculentum (Tomato) Lectin (LEL, 

TL), Vector, Burlingame, USA) (100 µl) was injected i.v. 5 minutes before a lethal injection of 

sodium pentobarbital. Frozen sections were then stained for CD31 (1:50, Becton&Dickinson) 

using a fluorescent secondary antibody labeled with Alexa Fluor 594 (Invitrogen, Breda, the 

Netherlands). To visualize tissue hypoxia, mice were injected i.v. with 10nM of the hypoxic 

cell marker and 2-nitroimidazole agent EF5 (a kind gift from Dr. C Koch, Department of 

Radiation Oncology, University of Pennsylvania, USA) 2 hours prior to humane killing, and 

hearts were stained according to published protocols (www.hypoxia-imaging.org). To check 

the immunohistochemical procedure, tumor tissue was included as positive hypoxic control; 

this showed significant areas of EF5 positivity.

To determine functional changes in the microvasculature a histochemical staining with 

Naphtol AS-MX / DMF and fast Blue BB salt was performed to detect endothelial cell alkaline 

phosphatase. Sections were also reacted with antibodies against von Willebrand Factor (vWF) 

(1:4000, Abcam) or thrombomodulin (TM) (1:200, American Diagnostica, Stamford, USA), 

as markers of thrombotic changes, and vascular cell adhesion molecule 1 (VCAM-1) (1:200, 

Becton&Dickinson), as a marker for vascular inflammation. Within one time group all sections 

were processed identically, at the same time with precisely the same incubation times for the 

primary and secondary antibody and DAB solution. 

For quantification of microvessels, five random fields (40x objective) from transverse sections of 

the subendocardium were photographed with a CCD 2 - Color Microscope system, including 

a Zeiss AxioCam color camera (Axiocam HRc, Zeiss, Göttingen, Germany) and a computerized 

morphometry system (Leica Qwin V3) was used to quantify the microvascular density (MVD). 

Vessels beneath a size of 1.5 or above 200 µm2 were automatically excluded from the 

measurements. Photographs of CD31/FITC-lectin were taken with a confocal microscope 

(Leica) and analyzed using Image J computer analysis program, to determine the percentage 

of microvessels that were perfused. Photographs of whole sections stained for ALP, vWF and 

TM were taken with an Aperio scanner (Scanscope-XT, Aperio technologies, Vista, USA) using 

40x objective. Analyses of the percentage myocardium, excluding endocardium, positive for 

each marker were done with a computerized morphometry system (Leica Qwin V3). VCAM-1-

stained sections were semi-quantitatively analyzed (without knowledge of treatment group) 
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according to the criteria: no, mild, or strong expression.

Statistics

Data are expressed as mean ± SEM. Irradiated and control groups were compared using non-

parametric Mann-Whitney U-tests or Fisher’s exact test (table 2, supplemental table 1 and 

figure 5). Group differences were considered statistically significant at p<0.05. 

Results
Mouse survival and weight

There were very few unscheduled deaths after 2-8 Gy cardiac irradiation, although heart/

body weight ratios of irradiated mice were 12-13% lower than in age-matched controls at 

40 weeks and body weights were reduced by 6-13% at 60 weeks (Table 1). After 16 Gy, 

38% of mice died or had to be humanely killed between 30 and 40 weeks. Because of these 

unscheduled deaths, all remaining animals in the 16 Gy group were killed at 40 weeks. 

Table 1 Body and organ weights of mice at sacrifice

Treatment Body weight (g) Heart weight (g) Lung weight (g) Heart/body weight (g)

20 weeks

	 0 Gy 30.6 ± 0.7 ND ND ND

	 2 Gy 32.4 ± 0.4 0.21 ± 0.007 ND 6.4 ± 0.2

	 8 Gy 31.9 ± 0.7 0.19 ± 0.005 ND 5.9 ± 0.2

	 16 Gy 29.4 ± 0.6 ND ND ND

40 weeks

	 0 Gy 32.8 ± 0.6 0.19 ± 0.005 0.18 ± 0.003 6.0 ± 0.1

	 2 Gy 35.2* ± 0.4 0.18 ± 0.005 0.17* ± 0.003 5.2* ± 0.1

	 8 Gy 34.0 ± 0.5 0.18 ± 0.005 0.17* ± 0.002 5.3* ± 0.1

	 16 Gy 32.7 ± 0.5 0.18* ± 0.004 0.19 ± 0.005 5.4* ± 0.1

60 weeks

	 0 Gy 38.9 ± 0.7 0.20 ± 0.007 0.18 ± 0.005 5.2 ± 0.2

	 2 Gy 36.7* ± 0.8 0.21 ± 0.006 0.19 ± 0.006 5.8* ± 0.2

	 8 Gy 34.0* ± 0.8 0.20 ± 0.007 0.19 ± 0.007 5.9 ± 0.3

	 16 Gy ND ND ND ND

* �Indicates significant differences between irradiated and age-matched control groups. 

(p<0.05; Mann-Whitney U-test), ND = not determined.
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Non-invasive cardiac imaging

SPECT/CT and ultrasound were used to examine whether irradiation influenced cardiac 

function; these imaging experiments were performed in separate groups of mice. Static 

SPECT/CT images (99mTc-HSA) indicated a significant reduction (18-25%) in total cardiac blood 

volume at 20 weeks after 2-16 Gy compared to age-matched controls. There was no further 

reduction in mean cardiac blood volume for remaining mice tested at 40 weeks and no 

significant differences were observed between irradiated and control groups at this time. By 

60 weeks, cardiac blood volumes were again significantly lower after 2-8 Gy than in control 

animals (21-36%) (Figure 1A). 

Gated SPECT/CT images (99mTc-Myoview) showed radiation-induced decreases in EDV (10-

25%) and ESV (16-39%) and increases in EF (6-20%) at 20 weeks after 2-16 Gy (Figure 1 

B-D). At 40 weeks, EDV and ESV were still similarly decreased, concomitant with a significant 

increase in EF (20%) after 8 Gy (Figure 1 B-D). 

Figure 1 Cardiac blood volume (A) or EDV, ESV and EF (B) at 20 weeks (•), 40 weeks ( ) or 60 weeks ( )  

after irradiation or sham treatment. Values represent mean ± SEM (9-18 mice in each irradiated group),  

*p<0.05 compared to age-matched controls.
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99mTc-Myoview gated SPECT/CT scans also showed increases in both anterior and posterior 

wall thickening (systole versus diastole) at 20 weeks after 16 Gy and in the posterior wall at 

40 weeks after 8 Gy (Figure 2).

 

Figure 2 Mean LV wall thickening at anterior (solid bars) and posterior (hatched bars) positions 20 and 40 

weeks after irradiation (mean ± SEM). Values represent mean ± SEM (9-18 mice in each irradiated group),  

*p<0.05 compared to age-matched controls.

 

Ultrasound measurements showed similar decreases in EDV (20%) and ESV (33%) to those 

measured by gated SPECT, and an increase in EF (28%) at 20 weeks after 16 Gy. However, 

at 40 weeks irradiated and control groups were not significantly different when measured by 

ultrasound (Supplemental Figure 1).

Inflammatory and fibrotic changes in irradiated hearts

The epicardium and myocardium of irradiated and age-matched control mice were examined 

for evidence of inflammatory and fibrotic changes. At 20 weeks, high doses (8-16 Gy) 

resulted in increased epicardial thickness (Figure 3A), associated with the presence of CD45-

positive inflammatory cells (Figure 3B) and iron-containing macrophages (Table 2), indicative 

of previous hemorrhage. At 40 weeks, epicardial thickening was seen after 2-16 Gy, but 

increased numbers of CD45-positive inflammatory cells (per section) were only found after 

16 Gy (Figure 3A, 3B). Iron-containing macrophages were still present in the epicardium of all 

hearts after 8 to 16 Gy (Table 2). At 60 weeks, there was no evidence of increased epicardial 

thickening or inflammation after 2 to 8 Gy (Figure 3 A, B) and the incidence of hearts with 

iron-containing macrophages was reduced compared to 40 weeks. 

The number of CD45-positive inflammatory cells (per section) in the myocardium increased 
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significantly at 40 weeks after 16 Gy, but not at earlier times or lower doses (Figure 3C). Iron-

containing macrophages were found in the myocardium of all these hearts, as well as at 20 

weeks after 8-16 Gy (Table 2). The amount of interstitial collagen in the LV myocardium was 

significantly increased at 40 weeks after 8 to 16 Gy and 60 weeks after 2 to 8 Gy, although 

this was never more than 2-5% of the tissue area (Figure 3D). Analysis of the mean size of 

individual myocytes showed transient increased size (indicative of swelling) at 20 weeks after 

16 Gy, followed by reduced myocyte cell size in irradiated hearts at later times after all doses 

(Supplemental Figure 2).

Figure 3 Inflammatory and fibrotic changes at 20 weeks (•), 40 weeks ( ) or 60 weeks ( ) after irradiation  

or sham treatment. Values represent mean ± SEM (with at least 4-7 mice in each irradiated group),  

*p<0.05 compared to age-matched controls. (A) Epicardial thickness and H&E photographs illustrate  

extensive fibrous thickening (arrow) after irradiation. (B) Quantification and photographs (16 Gy, 20 weeks)  

of CD45+ cells per section in the epicardium and (C) myocardium. (D) Percentage interstitial collagen content of 

irradiated heart sections, relative to age-matched controls.
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Table 2 Perl’s staining at 20 - 60 weeks after irradiation demonstrates increased incidence of iron-containing 

macrophages in the epicardium and myocardium. 

Epicard Myocard

20 weeks 

	 0 Gy 0/4 0/4

	 2 Gy 0/5 0/5

	 8 Gy 9/9* 9/9*

	 16 Gy 10/10* 10/10*

40 weeks 

	 0 Gy 0/8 4/8

	 2 Gy 2/8 7/8

	 8 Gy 8/8* 7/8

	 16 Gy 14/14* 14/14*

60 weeks 

	 0 Gy 0/5 2/5

	 2 Gy 2/7 5/7

	 8 Gy 3/5 2/5

	 16 Gy ND ND

* Indicates significant differences between irradiated and age-matched control groups. 

(p<0.05; Mann-Whitney U-test), ND = not determined.

 

Microvascular density (MVD) and vascular function in irradiated hearts

Doses of 2 to 8 Gy led to a transient increase (16-24%) in MVD at 20 weeks after 2-8 Gy, 

relative to age-matched controls. At 40 weeks MVD was comparable between controls and 

2-8 Gy, but there was a significant decrease after 16 Gy (26%). By 60 weeks MVD was 

significantly decreased after 8 Gy (23%), indicative of progressive loss of microvessels in a 

dose and time dependent way (Figure 4A). However, the loss of microvascular density did 

not lead to marked impairment of perfusion or tissue hypoxia. In 40-week age-matched 

controls, 87% of microvessels were functionally perfused (positive for CD31 and FITC-lectin), 

compared with 84% at 40 weeks after 16 Gy. There was a total absence of severe hypoxia 

in both control and irradiated hearts, since all sections were completely negative for EF5 

staining, whereas positive control samples of mouse tumor sections (processed together with 

the heart sections) demonstrated clear areas of EF5 staining. 

To further investigate functional changes in the microvasculature, the amount of endothelial 

cell ALP was quantified (Figure 4B). At 20 weeks after irradiation with 8-16 Gy, there was a 

significant decrease (30-44%) in percentage tissue stained for ALP, relative to age-matched 
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controls. By 40 weeks, the 2 Gy dose group also had significantly less ALP expression, 

indicative of further progression of endothelial damage in small blood vessel. At 60 weeks 

the ALP expression in irradiated groups (2 and 8 Gy) was 50% of the mean control value, but 

these differences were borderline significant (p=0.05).

Analysis of the pro-thrombotic endothelial marker vWF showed significant increases at 20 

weeks after 8-16 Gy and 40 weeks after 16 Gy (Figure 4C). By 60 weeks no differences 

between groups were observed. Semi-quantitative analysis of VCAM-1 expression in 

endothelial cells showed significant increases at 20 weeks after 2 and 16 Gy and 40 weeks 

after 8 Gy (Supplemental data Table 1). There were no significant changes in the amount 

of thrombomodulin expression at 20 to 60 weeks after irradiation, relative to age-matched 

controls (data not shown). 

Figure 4 Microvascular alterations at 20 weeks (•), 40 weeks ( ) or 60 weeks ( ) after irradiation  

or sham treatment. (Mean ± SEM with at least 4-7 mice in almost all groups). * p<0.05 compared to age-

matched controls. (A) MVD per unit area expresses as percentage of age-matched control values. (B) ALP posi-

tive tissue areas as % of age-matched unirradiated controls. (C) vWF positive tissue areas as % of age-matched 

controls. 

To investigate whether these structural and functional changes in the microvasculature were 

associated with vascular leakage, we stained for albumin deposition in the myocardium. At 

40 weeks, half of the hearts irradiated with 2 Gy and almost all hearts irradiated with 8-16 Gy 
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showed albumin in the myocardium (Figure 5). Only one age-matched control heart showed 

mild albumin deposition in controls. After 16 Gy, myocardial albumin was extensive in 5 of 11 

hearts and all these animals also had diffuse amyloidosis, which was confirmed with a Congo 

red staining (Figure 5B, 5C). Of the remaining 6 animals from this group, 5 animals showed 

mild albumin deposition and all these animals also had focal amyloidosis (Figure 5A). 

Figure 5 Evidence for blood vessel leakage after irradiation. (A) H&E staining showing amyloid deposition (ar-

rows). (B) Amyloidosis was confirmed by Congo-Red staining and (C) yellow-green birefringence by  

polarizing microscopy at 40 weeks after 16 Gy. Incidence of hearts showing increased expression of plasma 

protein albumin outside blood vessels. * p<0.05 compared to age-matched controls. # Hearts showing  

strong albumin protein deposition also had diffuse amyloidosis. ND = not determined

  

Discussion
This study demonstrated that irradiation affects cardiac structure and microvascular function 

in a dose and time-dependent manner, with substantial damage after intermediate and high 

dose irradiation (8-16 Gy) and minor alterations after lower doses (2 Gy). Moreover, high 

doses induced changes at earlier time points and these effects progressed in time. 

The transient increase in MVD at 20 weeks after 2 and 8 Gy was presumably due to stimulated 
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proliferation in response to damage, whereas proliferation after 16 Gy was counterbalanced 

by endothelial cell loss. The decreased MVD at 40-60 weeks after high doses confirms earlier 

studies in irradiated rat hearts (16). However, this did not lead to a marked loss of vascular 

perfusion and no severe hypoxia was detected. 

Despite the lack of hypoxia, progressive microvasculature damage was indicated by the vascular 

leakage, decreased amount of endothelial cell ALP and increased vWF in irradiated hearts. 

ALP is abundantly present in healthy cardiac microvasculature whereas loss of ALP is indicative 

of endothelial cell damage (16). In our studies, ALP expression was significantly reduced at 

20 weeks after high doses (8-16 Gy) and after 2-16 Gy at later times. Increased deposition 

of vWF in irradiated rat hearts has been previously described as an indicator of thrombotic 

endothelial cell damage (17). In our studies, increases in vWF deposition were limited to 

hearts that received high doses irradiation (8-16 Gy), with the largest increase at later times 

after the highest dose. Myocardial deposition of albumin (indicative of vascular leakage) was 

seen in almost all hearts examined at 40 weeks after 8-16 Gy, and this was strongly correlated 

with amyloidosis. All of the hearts exhibiting strong extracellular albumin deposition at 40 

weeks after 16 Gy also had diffuse amyloidosis and those with mild albumin deposition had 

focal amyloidosis. Amyloidosis is caused by extracellular deposition of insoluble, abnormal 

fibrils, derived from aggregation of misfolded proteins. A prominent clinical feature of cardiac 

amyloidosis is heart failure (18). The presence of amyloidosis may therefore have contributed 

to the sudden death seen in 38% of mice between 30 and 40 weeks after 16 Gy.

Changes in cardiac function after irradiation were modest and non-progressive, despite the 

progressive deterioration of microvascular structure and function. This suggests that in mice 

the myocardium can compensate for structural degeneration to some extent. However, 16 

Gy lead to sudden death at 30-40 weeks in a significant proportion of mice. It was only 

possible to autopsy a few of these mice so the exact cause of death remained unclear. The 

cardiac function at 20 weeks, for those mice that subsequently died, was comparable to mice 

which completed 40 weeks follow up after 16 Gy (Supplemental Figure 3). There was also 

no indication of arrhythmia at 20 weeks in these mice. However, neither cardiac function 

nor histological analyses were done between 20 weeks and sudden death of these mice, 

therefore it remains possible that they subsequently developed conduction defects leading 

to arrhythmia and sudden cardiac death (19). We suspect that amyloidosis may be involved 

in the sudden deaths seen after 16 Gy, since 4 of 7 mice that died immediately after their 

40 week imaging procedure did have diffuse amyloidosis. These sudden deaths imply that 

compensatory mechanisms seen after low to intermediate doses (2-8 Gy), especially at earlier 
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times, can not maintain cardiac function after high dose irradiation. 

There is some evidence from in vitro studies that cardiomyocytes can react to stress signals 

directly by initiating an inflammatory response (20). This response leads to the presence of 

macrophages, which can interact with cardiac myocytes and lead to decreased myocyte 

contractility, both in vitro and in vivo, resulting in a decrease in systolic and diastolic filling 

(21). We also observed this effect in our mouse model after irradiation. Decreased myocyte 

cell area and increased collagen deposition after irradiation may also have contributed to 

impaired myocardial contractility (22). Sarcoplasmic reticulum Ca2+ ATPase (SERCA) has been 

described as a compensatory mechanism in failing human myocardium, by maintaining 

relaxation and contraction of cardiomyocytes. However, this remains speculative and further 

investigations are necessary to understand compensatory mechanisms in the damaged heart 

(20). 

In conclusion, these studies demonstrated decreases in both systolic and diastolic volumes and 

increased ejection fractions at 20-40 weeks after irradiation. The presence of inflammatory 

cells and iron-containing macrophages within the thickened epicardium suggests this could be 

due to constrictive pericarditis. This constrictive remodeling of the heart could also lead to loss 

of normal blood filling and emptying during diastole and systole. However, the overall cardiac 

function remained within normal physiological limits, which suggests that compensatory 

mechanisms can initially maintain cardiac function after irradiation, despite deteriorating 

underlying morphology and vascular function. Ultimately, however, this compensatory 

mechanism fails, leading to sudden death.
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Supplemental data

Supplemental Figure 1 Ultrasound measurements (mean ± SEM) of EDV, ESV and EF for control and 16 Gy 

mice at 20 and 40 weeks. Numbers of mice indicated in the bars. *p<0.05 compared to age-matched controls.
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Supplemental Figure 2 Myocardial alterations 20-60 weeks after irradiation (mean ± SEM with  

numbers of mice per group indicated). *p<0.05 compared to age-matched controls. (A) LV wall thickness.  

(B) Mean myocardial cell area. 

Supplemental Figure 3 Non-invasive imaging for measurement of cardiac function in unirradiated  

and age-matched irradiated groups at 20 weeks after treatment, including 16 Gy treated mice that sudden-

ly died between 30-40 weeks. (A) SPECT/CT, using 99mTc-HSA measurements of mean cardiac blood volume  

(% total) ± SEM. (B) Gated SPECT/CT measurements with 99mTc-Myoview. Values represent mean ± SEM, 

numbers of mice indicated in the bars. *p<0.05 compared to age-matched controls. (all) representing total 

amount mice of group 0 Gy and 16 Gy. (completed) representing amount of mice that completed 40 weeks  

follow up (not completed) representing amount of mice that died before 40 weeks. 
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Supplemental table 1 Incidence of hearts with VCAM-1expression in the myocardium

mild expression strong expression any expression

20 weeks

	 0 Gy 0/4 0/4 0/4

	 2 Gy 3/4 1/4  4/4*

	 8 Gy 2/4 0/4 2/4

	 16 Gy 1/4 3/4  4/4*

40 weeks

	 0 Gy 2/10 0/10 2/10

	 2 Gy 3/7 0/7 3/7

	 8 Gy 5/10 4/10  9/10*

	 16 Gy 7/14 1/14 8/14

60 weeks

	 0 Gy 7/7 0/7 7/7

	 2 Gy 2/5 3/5 5/5

	 8 Gy 2/4 2/4 4/4

	 16 Gy ND ND ND

* p<0.05 compared to age-matched controls



- 62 -

Chapter 2

Reference List
1.	 McGale P, Darby SC, Hall P et al. Incidence of heart disease in 35,000 women treated with 

radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167-175.

2.	 Gyenes G, Rutqvist LE, Liedberg A and Fornander T. Long-term cardiac morbidity and mortality in a 

randomized trial of pre- and postoperative radiation therapy versus surgery alone in primary breast 

cancer. Radiother Oncol. 1998;48:185-190.

3.	 Cohn KE, Stewart JR, Fajardo LF and Hancock EW. Heart disease following radiation. Medicine 

(Baltimore). 1967;46:281-298.

4.	 Armstrong GT, Stovall M and Robison LL. Long-term effects of radiation exposure among adult 

survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res. 

2010;174:840-850.

5.	 Galper SL, Yu JB, Mauch PM et al. Clinically significant cardiac disease in patients with Hodgkin 

lymphoma treated with mediastinal irradiation. Blood. 2011;117:412-418.

6.	 Darby SC, Cutter DJ, Boerma M et al. Radiation-related heart disease: current knowledge and future 

prospects. Int J Radiat Oncol Biol Phys. 2010;76:656-665.

7.	 Aleman BM, van den Belt-Dusebout AW, Klokman WJ, Van’t Veer MB, Bartelink H and van Leeuwen 

FE. Long-term cause-specific mortality of patients treated for Hodgkin disease. J Clin Oncol. 

2003;21:3431-3439.

8.	 Adams MJ, Hardenbergh PH, Constine LS and Lipshultz SE. Radiation-associated cardiovascular 

disease. Crit Rev Oncol Hematol. 2003;45:55-75.

9.	 Yusuf SW, Sami S and Daher IN. Radiation-induced heart disease: a clinical update. Cardiol Res Pract. 

2011;2011:317659.

10.	 Andratschke N, Maurer J, Molls M, Trott KR. Late radiation-induced heart disease after radiotherapy. 

Clinical importance, radiobiological mechanisms and strategies of prevention. Radiother Oncol. 

2011;100:160-166.

11.	 Fajardo LF, Stewart JR. Capillary injury preceding radiation-induced myocardial fibrosis. Radiology. 

1971;101:429-433.

12.	 Lauk S, Kiszel Z, Buschmann J and Trott KR. Radiation-induced heart disease in rats. Int J Radiat 

Oncol Biol Phys. 1985;11:801-808.

13.	 Schultz-Hector S, Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence 

compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys. 2007;67:10-18.

14.	 Marks LB, Yu X, Prosnitz RG et al. The incidence and functional consequences of RT-

associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005;63:214-223. 



Irradiation induced modest changes in murine cardiac function despite progressive structural damage 

- 63 -

2

15.	 Seddon B, Cook A, Gothard L et al. Detection of defects in myocardial perfusion imaging in patients 

with early breast cancer treated with radiotherapy. Radiother Oncol. 2002;64:53-63.

16.	 Schultz-Hector S, Balz K. Radiation-induced loss of endothelial alkaline phosphatase activity and 

development of myocardial degeneration. An ultrastructural study. Lab Invest. 1994;71:252-260.

17.	 Boerma M, Kruse JJ, van Loenen M et al. Increased deposition of von Willebrand factor in the rat 

heart after local ionizing irradiation. Strahlenther Onkol. 2004;180:109-116.

18.	 McCarthy RE, III, Kasper EK. A review of the amyloidoses that infiltrate the heart. Clin Cardiol. 

1998;21:547-552.

19.	 Heidenreich PA, Kapoor JR. Radiation induced heart disease: systemic disorders in heart disease. 

Heart. 2009;95:252-258.

20.	 Boyd JH, Kan B, Roberts H, Wang Y and Walley KR. S100A8 and S100A9 mediate endotoxin-

induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res. 

2008;102:1239-1246.

21.	 Simms MG, Walley KR. Activated macrophages decrease rat cardiac myocyte contractility: importance 

of ICAM-1-dependent adhesion. Am J Physiol. 1999;277:H253-H260.

22.	 Kruse JJ, Zurcher C, Strootman EG et al. Structural changes in the auricles of the rat heart after local 

ionizing irradiation. Radiother Oncol. 2001;58:303-311.





Chapter 3
Local heart irradiation of  

ApoE-/- mice induces microvascular and 
endocardial damage and accelerates  

coronary atherosclerosis
 

K.Gabriels1, S.Hoving1, I.Seemann, N. L. Visser,M. J. Gijbels, J.F. Pol,M.J. 
Daemen, F. A. Stewart2, S. Heeneman2

 

1Authors contributed equally (performing experiments and analyses) 
2Authors contributed equally (designing and supervision of the study)

Radiotherapy and Oncology december 2012



- 66 -

Chapter 3

Abstract
Background: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of 

radiation-induced heart disease, such as a myocardial infarction. Cancer patients commonly 

have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal 

of this study is to define the interaction of irradiation with such cardiovascular risk factors in 

radiation-induced damage to the heart and coronary arteries.

Materials and Methods: Hypercholesterolemic and atherosclerosis-prone ApoE-/- mice 

received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological 

changes, microvascular damage and functional alterations were assessed after 20 and 40 

weeks.

Results: Inflammatory cells were significantly increased in the left ventricular myocardium 

at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-

up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase 

activity (2-16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of 

endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam 

cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks.

Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, 

gated SPECT and ultrasound measurements showed only minor changes in functional cardiac 

parameters at 20 weeks.

Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced 

an inflammatory response, microvascular and endocardial damage, and accelerated the 

development of coronary atherosclerosis. Despite these pronounced effects, cardiac function 

of ApoE-/- mice was maintained.
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Introduction
Improvements in cancer therapy and earlier detection and diagnosis have lead to increasing 

numbers of cancer survivors. Unfortunately, this also means that more patients are at risk of 

developing treatment-related late tissue damage and mortality. Thoracic radiotherapy, given 

to Hodgkin lymphoma and breast cancer patients, is widely recognized as an independent 

long-term risk factor for developing heart diseases.(1-4) The pathological consequences of 

radiation-induced heart disease following therapeutic irradiation are pericarditis, myocardial 

fibrosis, coronary artery disease, valvular disorders and conduction abnormalities.(5-7)

In a previous study (8), the dose and time dependence of structural and functional cardiovascular 

damage after thoracic irradiation were investigated in C57BL/6J mice. Inflammation, especially in 

the epicardium, and micro-vascular endothelial damage leading to vascular leakage progressed 

with dose (2-16 Gy) and time (20-60 weeks follow-up). However, only modest and non-

progressive changes in cardiac function, detected by gated SPECT, were observed in mice surviving 

cardiac irradiation of 2 and 8 Gy. These data indicated that the heart was able to compensate 

for the structural damage. Nevertheless, 16 Gy irradiation led to excessive protein leakage in the 

myocardium and 38% of mice failed to maintain cardiac function at 40 weeks follow-up. 

C57BL/6J mice have extremely low plasma levels of cholesterol, especially low-density 

lipoproteins, and they are resistant to the development of atherosclerosis.(9) Cardiac damage 

identified after irradiation in such models therefore does not include any component of 

macrovascular damage as a result of accelerated atherosclerosis.

The effect of irradiation on the development of atherosclerosis has been studied in 

apolipoproteinE-/- (ApoE-/-) mice, which have elevated cholesterol levels and do develop age-

related atherosclerosis. After local carotid artery irradiation with a single dose of 14 Gy or 

fractionated doses (20 x 2 Gy), an accelerated development of inflammatory atherosclerotic 

plaques was observed.(9, 10) Hu et al.(11) described the distribution of atherosclerotic 

lesions in the coronary arteries of 60 week old ApoE-/- mice and found relatively few lesions 

(approximately 4 lesions per heart) after the second level of branching of the coronary arteries, 

that developed independently from valvular lesions. However, the effect of irradiation on this 

coronary lesion development is not known.

The aim of this study is to investigate the effect of local thoracic irradiation of 

hypercholesterolemic ApoE-/- mice on cardiac structure and function, and to compare this 

with previous results of irradiated wild-type C57BL/6J mice in the absence of atherosclerosis 

(8). This should allow us to evaluate the contribution of macrovascular (atherosclerosis) and 

microvascular changes in the pathology of radiation-induced cardiac damage.
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Materials and methods
Mice and irradiation procedure

Male ApoE-/- mice (C57BL/6J background), aged 10-12 weeks (bred at The Netherlands 

Cancer Institute), were housed in a temperature-controlled room with 12 h light-dark cycle 

and received standardized mouse chow (3.7% fat, RMI (E) SQC, SDS, London, UK) and water 

ad libitum.

Irradiation procedure was performed as described previously (8). Mice were randomly allocated 

to receive single doses of 2, 8 or 16 Gy locally to the heart (irradiation field of 10.6 x 15.0 mm, 

including 30% lung volume) at a dose rate of 0.94 Gy/min using 250 kV X-rays, operating at 

12 mA and filtered with 0.6 mm of copper, or sham-treatment (0 Gy) as a control. Mice were 

sacrificed 20 or 40 weeks after irradiation, and hearts and lungs were collected.

Experiments were in agreement with the Dutch law on animal experiments and welfare, 

and in line with the international Guide for the Care and Use of Laboratory Animals (eighth 

edition).

Tissue preparation and histology

The heart was perfused via the aortic arch (retro-grade) with phosphate-buffered saline (PBS) 

(frozen sections) or PBS followed by 1% paraformaldehyde (paraffin sections), under lethal 

sodium pentobarbital anesthesia (18 mg i.p. per mouse). Immediately after perfusion, the 

heart was excised, divided into three parts (base, mid and apex) and frozen on dry ice or 

immersed in 1% paraformaldehyde. Cross-sections were cut at the level of the mid-horizontal 

plane of the heart from fixed paraffin-embedded tissues (3 µm) or frozen tissues (7 µm).

Paraffin sections

Sections were immuno-labeled with anti-CD45 antibody (1:5000, Becton&Dickinson, Franklin 

lakes, USA) or anti-CD3 antibody (1:200, Dako, Carpinteria, USA) to determine the extent 

of leukocyte and T-cell infiltration, respectively. The absolute number of CD45-positive 

leukocytes per section was counted in the left ventricular (LV) myocardium. The number 

of CD3-positive T cells was counted per LV myocardial area (8 random 40x photographs). 

Interstitial collagen was quantified in 5 randomly selected areas of the LV myocardium based 

on a Sirius Red staining and results were expressed as percentage tissue positive for Sirius 

Red, excluding perivascular collagen, relative to myocardial area. To determine if there was a 

pre-mortem bleeding, a Perls’ staining was performed to detect iron. Macrophages store iron 
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by metabolizing hemoglobin from engulfed red blood cells. An albumin staining (1:2500, 

Abcam, Cambridge, USA) was performed to determine myocardial deposition as a measure 

of vascular leakage and a Congo Red staining was used as previously described8 to detect 

amyloid deposits in the myocardium. 

To investigate coronary atherosclerotic plaque development, transverse sections of the 

complete mid-part of the heart were cut, stained every 57 µm with hematoxylin and eosin 

(H&E) and analyzed for the presence and number of coronary lesions. An average of 20 slides 

per heart was analyzed. Results are expressed as number of coronary lesions per mouse and 

mean values per group are shown. Percentage necrotic core of the coronary lesions was 

determined by dividing the necrotic core area by total plaque area.

Frozen sections

Sections were stained with H&E to measure the myocardial thickness. Photographs of the 

LV wall were taken using a 5x objective and 12 measurements per heart were performed. 

To detect alterations in the number of macrophages after irradiation, frozen sections were 

stained with anti-F4/80 antibody (1:300, AbD Serotec, Dusseldorf, Germany) and counted per 

LV myocardial area (8 random 40x photographs). 

An anti-CD31 antibody (1:50, Becton&Dickinson, Franklin lakes, USA) was used to visualize 

cardiac vasculature of the mid part of the heart and to quantify microvascular density (MVD). 

Five random areas (40x photographs) from transverse sections of the subendocardium 

were photographed with a CCD 2 - Color Microscope system, including a Zeiss AxioCam 

color camera (Axiocam HRc, Zeiss, Göttingen, Germany). Vessels beneath a size of 1.5 or 

above 200 µm2 were automatically excluded from the measurements, to ensure that only 

microvasculature was counted. To determine functional changes in the microvasculature, a 

histochemical staining with Naphtol AS MX/DMF and fast Blue BB salt was performed to 

detect endothelial cell alkaline phosphatase (ALP) activity. Sections were also stained with 

an antibody against von Willebrand Factor (vWF) (1:4000, Abcam, Cambridge, USA) as a 

thrombotic marker. Photographs of whole sections stained for ALP and vWF were taken with 

an Aperio scanner (Scanscope-XT, Aperio technologies, Vista, USA) using a 40x objective. 

Analyses of the percentage myocardium positive for each marker were performed in 23 and 

30 mice at 20 and 40 weeks FU respectively.

Morphometric parameters were analyzed using a computerized morphometry system (Leica 

Qwin V3, Leica, Rijswijk, The Netherlands).
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Gene expression profiling and pathway analysis

Total RNA was isolated from frozen sections (30 slides of 30 µm) of the mid part of the 

heart of 17 mice at 20 weeks FU (5, 4 and 8 for respectively 0, 2 and 16 Gy) and 21 mice at 

40 weeks FU (6, 7 and 8 for respectively 0, 2 and 16 Gy) using Trizol® Reagent (Invitrogen 

Corporation, Carlsbad, USA) according to the manufacturer’s protocol. The quantity of total 

RNA was measured using a spectrophotometer (NanoDrop, Thermo scientific, Wilmington, 

USA) followed by a quality check measured by Agilent 2100 Bioanalyzer with the RNA Integrity 

Number (RIN) (Agilent technologies, Santa Clara, USA). Samples with a RIN above 7 were 

used for DNAse treatment and amplified (350 ng per sample) using Illumina Totalprep RNA 

Amplification kit (Ambion, Grand Island, USA). Hybridization of aRNA to Illumina Expression 

Bead Chips Mouse Whole Genome (WG-6 vs. 2.0) and subsequent washing, blocking and 

detecting were performed according to the manufacturer’s protocol (Illumina, San Diego, 

USA). Samples were scanned on the IlluminaR BeadArray™ 500GX Reader using IlluminaR 

Bead-Scan image data acquisition software (version 2.3.0.13). MouseWG-6 vs. 2.0 BeadChip 

contains the full set of MouseRef-8 BeadChip probes with additional 11.603 probes from 

RIKEN FANTOM2, NCBI REfSeq as well from the MEEBO database.

Before analyzing, the database was normalized using the robust spline normalization method 

within the microarray facility of The Netherlands Cancer Institute.(12) Log2 ratio between 

expression of genes from control mice and expression of genes from irradiated mice was 

calculated using Excel version 2003, as well as the sum of the expression of genes from both, 

control and irradiated mice. According to the sum of both expressions, genes with sums 

below 6 were discarded. The threshold for standard deviation (SD) was set to 3 and mean ± 

nSD was calculated to identify genes that are above expression 6 and above threshold 3 of 

SD. These gene numbers were further analyzed in Ingenuity Pathway Analysis (IPA) version 

September 2011 core analysis. IPA calculates a significant score for each associated network. 

This score indicates the likelihood that the assembly of a set of focus genes in a network could 

be explained by random chance alone. A score of 2 indicates a 1 in 100 chance that the focus 

genes are together in a network due to random chance. Therefore, networks with scores of 

2 or higher have at least a 99% confidence of not being generated by random chance alone.

Gated single photon emission computed tomography (gSPECT)

The tracer tetrofosmin (Myoview, GE-healthcare, Hoevelaken, The Netherlands) was labeled 

with 99mTc-pertechnetate according to the manufacturer’s protocol and injected i.v. (150 

µl) with a total activity of 70 MBq per mouse. Three lead electrodes (3M red Dot 2282E, 
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3M, St. Paul, USA) were attached to both hind paws and right front paw of the mouse 

and connected to the integrated electrocardiography (ECG) monitor to measure heart rate 

(HR). Acquisitions were started 1 h after injection of the tracer as described previously (8). 

HiSPECT NG software (InVivoScope, Bioscan) was used to perform iterative reconstruction 

into 3D datasets. Quantitative analysis of the reconstructed datasets was performed on a 

clinical e.soft (syngo-based) workstation (Siemens Medical Solutions, Siemens AG, Erlangen, 

Germany), using algorithms to automatically reconstruct a count based 3D model of the 

dimensions of the LV end diastolic and systolic volumes (EDV, ESV). The ejection fraction (EF) 

was calculated based on the difference between EDV and ESV divided by EDV.

2D-Ultrasound

Mice were sedated with 2% isoflurane (Forane, Abbott, Hoofddorp, The Netherlands). 

Echocardiography images were acquired using a Vevo 770 system (VisualSonics, Toronto, 

USA) using a 30 MHz transducer with a focal depth range of 13 mm. Acquisitions were made 

in B-mode long-axis, as well as short-axis view, at the papillary muscle level as described 

previously8. Calculations were based on the measurement of LV length and surface area 

during diastole and systole and the EF was calculated as described above.

Statistics

Except where otherwise stated, data are expressed as mean ± SEM. Irradiated and control 

groups were compared using nonparametric Mann-Whitney U-test. Statistical analysis on 

data presented in tables was performed using Fisher’s exact test. Group differences were 

considered statistically significant at P<0.05.

Results
Mouse weight

Local heart irradiation with 16 Gy induced a significant increase in heart, lung and heart/

body weight at 40 weeks follow-up (FU), compared to age-matched controls (Supplemental 

Table I). No significant differences were observed after lower doses or at 20 weeks after 16 

Gy. Histological examination of lung tissue did not reveal any abnormalities after irradiation. 

Premature deaths were 7% and 20% of total mice (killed before the planned 20 and 40 weeks 

sacrifice time respectively). This was due to non-radiation induced causes such as elephant 

teeth, fighting or a tumor that developed spontaneously outside the irradiation field.
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Increased inflammation after 8 and 16 Gy irradiation

There were no significant differences in LV wall thickness, as measured from histological 

sections, at 20 or 40 weeks after irradiation (data not shown). The number of CD45-positive 

leukocytes was not increased at 20 weeks after irradiation, but at 40 weeks after 8 and 16 

Gy there was a significant increased influx of leukocytes in the myocardium (Figure 1A). The 

number of CD3-positive T cells in the myocardium of ApoE-/- mice was significantly increased 

at both 20 and 40 weeks after 8 and 16 Gy, compared to unirradiated mice (Figure 1B), while 

F4/80-positive macrophages showed no differences between irradiated hearts and controls 

(data not shown). The amount of interstitial collagen increased significantly at 20 and 40 

weeks after 8 and 16 Gy, although not more than 2% of tissue area was affected (Figure 2).

Figure 1 Inflammatory changes in the LV myocardium at 20 and 40 weeks after irradiation. (A) Number  

of CD45-positive leukocytes in the myocardium per section. (B) Quantification of CD3-positive T cells per  

myocardial area (40x objective). Bars represent mean ± SEM with numbers of mice indicated per group (the total 

number of mice analyzed per irradiation and FU group can differ between different stainings due to bad quality 

of the tissue during staining procedure). Analysis of CD3-positive T cells at 20 weeks after 2 Gy was only possible 

on 2 mice, therefore values are presented in the bar. *p<0.05 compared to age-matched controls.
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Figure 2 Fibrotic changes in the LV myocardium at 20 and 40 weeks after irradiation. Percentage interstitial 

collagen per tissue area. Bars represent mean ± SEM with numbers of mice indicated per group. Collagen 

measurements at 20 weeks after 2 Gy were only possible on 2 mice, therefore values are presented in the bars. 

*p<0.05 compared to age-matched controls.

Endothelial damage of microvasculature after irradiation

At 20 and 40 weeks after 8 and 16 Gy, there was a significant decrease in MVD compared 

to control mice (Figure 3A). In addition to the loss of capillaries, the remaining vessels had 

signs of endothelial damage, as indicated by a significant decrease in ALP activity at 20 and 

40 weeks (2-16 Gy) (Figure 3B) and increased expression of the thrombotic marker vWF after 

16 Gy (Figure 3C).

Perls’ staining was performed to analyze the presence of iron in the myocardium, which is 

an indication of a previous hemorrhage. Iron-containing macrophages were observed in the 

myocardium of almost all 8 and 16 Gy irradiated hearts at 20 and 40 weeks (Table 1).

Analysis of myocardial albumin deposition, as an indication of vascular leakage, showed the 

presence of albumin in almost all hearts irradiated with 8 or 16 Gy at 40 weeks FU, but not 

at 20 weeks (Table 1), while amyloid deposits were not detected.

Irradiation increased the number of coronary lesions and caused endocardial damage

Irradiation with 16 Gy significantly increased the number of coronary atherosclerotic lesions in 

the mid part of the heart at 20 weeks FU (Figure 4A and B). There was also a trend for increased 

numbers of lesions at 40 weeks after 8 or 16 Gy, but this difference was no longer significant 

due to an increased number of age-related coronary lesions in unirradiated mice. Analysis of 

the necrotic core of the coronary plaques at 20 and 40 weeks FU revealed an increased level 

of necrosis after irradiation (an average of 33.7% and 39.7% of plaque area was necrotic 

atrespectively 20 and 40 weeks after 16 Gy, compared to 0% and 1.8% after 0 Gy).
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Figure 3 Microvascular alterations at 20 and 40 weeks after irradiation. (A) MVD per area expressed as  

percentage of 0 Gy values. (B) ALP-positive and (C) vWF-positive tissue per myocardial area expressed as  

percentage of age-matched controls. Number of mice included for analysis was 6, 5, 4 and 8, and 8, 7, 8  

and 7 at respectively 20 and 40 weeks after 0, 2, 8 and 16 Gy. Values represent mean ± SEM.  

*p<0.05 compared to age-matched controls.

Table 1 Incidence of mice showing iron (Fe)-containing macrophages (Perl’s staining) and albumin protein 

deposition in the myocardium at 20 and 40 weeks after irradiation.

Treatment Fe-containing macrophages Albumin deposition

20 weeks FU

	 0 Gy 3/14 0/14

	 2 Gy 0/3 0/3

	 8 Gy 5/5* 0/5

	 16 Gy 20/21* 0/21

40 weeks FU

	 0 Gy 1/7 1/7

	 2 Gy 1/7 2/7

	 8 Gy 6/6* 4/6

	 16 Gy 5/7 6/7

*p<0.05 compared to age-matched controls.
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The endocardium of the 16 Gy irradiated mice showed the appearance of foam cell 

accumulations, as well as erythrocyte accumulations, at 20 weeks FU (Figure 4C), which was 

not observed after 0, 2 or 8 Gy (Table 2). At 40 weeks after 8 and 16 Gy increased endocardial 

collagen deposition (Table 2, Figure 4D) and fibrin deposits (confirmed by Martius Scarlet Blue 

staining), suggesting endocardial protein leakage (Table 2, Figure 4E and F), were observed.

Low-dose irradiation induced survival pathways, while high dose induced fibrotic pathways

In order to identify genes and pathways potentially involved in the cardiac response to 

irradiation, microarray and pathway analyses were performed using the software program 

IPA (a full list of gene expression levels after cardiac irradiation of ApoE-/- mice can be 

found at http://www. ebi.ac.uk/arrayexpress). Radiation significantly regulated 111 (2 Gy) 

and 169 (16 Gy) genes at 20 weeks, and 116 (2 Gy) and 158 (16 Gy) genes at 40 weeks. 

Supplemental Figures I-IV show gene interaction networks of these radiation-regulated genes. 

Known ingenuity functional and/or canonical pathway analysis (Supplemental Table II) was 

used to identify overrepresentation of radiation-correlated genes within known functional 

assignments (such as inflammatory response) and to generate hypotheses.

The most significant pathway for 2 Gy at 20 weeks (Supplemental Figure I) was involved 

in cellular growth and proliferation. Matrix metalloproteinase 2 (MMP2) was identified as 

a central molecule. Furthermore, genes within this pathway were also involved in the first 

canonical pathway ‘circadian rhythm’ (nervous system) and in maintenance of blood pressure 

and heart beat (aryl hydrocarbon receptor nuclear translocator like, ARNTL). Irradiation with 

16 Gy at 20 weeks (Supplemental Figure II) resulted in a significant regulation in cell-to-cell 

signaling and interaction pathway, with tissue inhibitor of metalloproteinase 1 (TIMP1) and 

heme oxygenase 1 (HMOX1) as central genes; both genes were significantly upregulated. 

Moreover, the classical and alternative pathway of the complement system was negatively 

regulated after 16 Gy. This operates within the cell-to-cell signaling and interaction pathway 

and was the first canonical pathway. Inflammatory response and inflammatory disease 

were also among the top biological functions altered after high-dose irradiation, including 

significant upregulation of Angiopoietin 2 (ANGPT2).

At 40 weeks after 2 Gy (Supplemental Figure III), cellular development associated network 

was significantly regulated. This includes cyclin dependent kinase inhibitor 1A (CDKN1A) and 

a number of heat shock genes, with heat shock protein 70 (Hsp70) as central molecule. P13K/

Akt signaling was the prominent canonical pathway. Irradiation with 16 Gy (Supplemental 

Figure IV) resulted in significant regulation in cell movement pathway at 40 weeks. The most 

pronounced molecules within this pathway are fibronectin-1 and collagen, indicating tissue 
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Figure 4 (A) Number of coronary atherosclerotic lesions examined in the mid-part of the heart at 20 and 

40 weeks after irradiation. Bars represent mean ± SEM with numbers of mice indicated per group. *P<0.05 

compared to age-matched controls. (B) Representative H&E photograph of a coronary atherosclerotic le-

sion, showing necrosis (arrows) after 16 Gy. (C) Representative H&E of subendocardial foam cell (arrows) and  

erythrocyte (arrowheads) accumulation observed at 20 weeks after 16 Gy. (D) Sirius Red photograph showing 

endocardial fibrosis (arrow) at 40 weeks after 16 Gy irradiation. (E) shows endocardial fibrin deposition on H&E-

stained section (arrow), confirmed by Martius Scarlet Blue staining (F). Photographs are taken with 20x objective.

Table 2 Incidence of hearts showing endocardial damage with foam cell accumulation at 20 weeks, and pro-

tein leakage and collagen deposition at 40 weeks after irradiation.

	

*p<0.05 compared to age-matched controls.

Treatment      Foam cell accumulation      Protein leakage      Collagen deposition

							          Mild	     Strong

20 weeks FU	     

0 Gy		               0/10                                    0/10                       0/10           0/10

2 Gy                                      0/3                                      0/3                          0/3            0/3

8 Gy                                      0/5                                      0/5                          0/5            0/5

16 Gy                                    7/12*                                  1/12                        1/12          1/12

40 weeks FU

0 Gy                                       0/7                                      0/7                           5/7           2/7 

2 Gy                                       0/7                                      0/7                           6/7           1/7

8 Gy                                       0/6                                      2/6                           0/5           5/5

16 Gy                                     0/7                                      6/7*                         2/6           4/6
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injury. Moreover, fibrosis was the most upregulated canonical pathway including, connective 

tissue growth factor (CTGF), endothelin 1 (EDN1), fibronectin 1 (FN1) and platelet-derived 

growth factor (PDGF). Once again, inflammatory response and inflammatory disease were 

also among the top biological functions altered at 40 weeks after high-dose irradiation.

Modest changes in cardiac function after irradiation

Ultrasound measurements showed significant decreases in EDV and ESV, and an increase in 

EF at 20 weeks after 16 Gy (Supplemental Figure V). Gated-SPECT (99mTc-Myoview) showed 

similar radiation-induced decreases in EDV and ESV. However, these parameters are all within 

normal ranges and are not indicative of severe cardiac dysfunction.

Discussion
In this study the effect of local cardiac irradiation on heart structure and function, and the 

development of coronary atherosclerotic lesions, was investigated in hypercholesterolemic 

ApoE-/- mice. Compared to previously examined C57BL/6J mice (8), which do not develop 

atherosclerosis, radiation-induced inflammatory changes in the myocardium of ApoE-/- mice 

were similar, although the baseline level of inflammation in ApoE-/- mice was higher, as expected 

(13). Pathway analyses also indicated a stimulated inflammatory response at 20 and 40 weeks 

after 16 Gy. This included upregulation of ANGPT2, which is increased in endothelial cells after 

tissue injury and stimulates an aggressive fibrotic response.(14) Furthermore, 16 Gy regulated 

cell-to-cell signaling and interaction pathway of which TIMP1 is a central gene. TIMP1 levels 

are correlated with myocardial hypertrophy, fibrosis and diastolic dysfunction.(15) Moreover, 

the complement system pathway was negatively regulated after 16 Gy, whereas activation of 

the pathway results in beneficial effects in immune defense.(16) In contrast, 2 Gy triggered a 

survival response, presumably in an attempt to stimulate recovery, by regulating the pathway 

of cellular growth and proliferation (20 weeks) and cellular development (40 weeks). Hsp and 

MMP2 are known to be involved in these pathways and play a crucial role in cardiomyocyte 

protection.(17, 18) Hsp70 can protect from stress-induced injury by inhibiting Fas-mediated 

apoptosis. Another central molecule of the cellular development pathway is CDKN1A, which 

is known to play a role in stress response and repair of DNA damage.(19) 

On the other hand, high-dose irradiation induced fibrotic pathways. Diffuse interstitial fibrosis 

is one of the morphological hallmarks of radiation-induced myocardial injury.(20, 21) An 

increase in interstitial collagen content with dose was found in the myocardium of ApoE-/-  

mice at 20 and 40 weeks after irradiation, which was not observed until 40 weeks after 



- 78 -

Chapter 3

irradiation of C57BL/6J mice (8). Microarray pathway analysis also showed highly upregulated 

collagen pathway in ApoE-/- mice after 16 Gy, which was not observed in C57BL/6J mice (data 

shown at http://www.ebi.ac.uk/arrayexpress). This could eventually lead to a more serious 

increase in cardiac fibrosis at later time-points.

In previous studies (9, 10), we investigated the effect of local irradiation on the progression of 

atherosclerosis in the carotid arteries of ApoE-/- mice and observed an accelerated development 

of inflammatory plaques. In addition, the present study shows an accelerated development, 

independently from valvular lesions, of atherosclerotic lesions in the coronary arteries after 

radiotherapy. High-dose irradiation significantly increased the number of coronary lesions at 

20 weeks FU (in mice aged 30 weeks), while age-related atherosclerosis in these coronary 

arteries is mostly observed at 60 weeks of age in ApoE-/- mice.(11) In addition, the coronary 

lesions in irradiated hearts contained much larger necrotic cores, indicative of a more advanced 

phenotype.

Radiation has been shown to increase the permeability of endothelial cells by induction 

of inflammatory and thrombotic pathways (22, 23), including increased production and 

release of vWF. The increase in vWF deposition in the irradiated heart observed in this study 

is also indicative of thrombotic endothelial cell damage.(21) This could increase vascular 

permeability and, combined with hypercholesterolemia, lead to lipid accumulation, thus 

stimulating atherogenesis. Furthermore, at 20 weeks 16 Gy irradiation regulated genes that 

are associated with severe and persistent endothelial damage, but prevent intravascular 

thrombosis (e.g. HMOX124). Irradiated ApoE-/- hearts also showed microvascular damage, 

indicated by a loss of microvessels and a decreased activity of endothelial ALP in the remaining 

vessels. Decreased ALP activity was already observed at 20 weeks after 2 Gy in ApoE-/- mice, 

whereas there was no decrease in MVD after this dose. Decreases in ALP were only found 

after higher doses in C57BL/6J mice (8), suggesting that hypercholesterolemia accelerated the 

response. An increase in the presence of iron-containing macrophages, as a sign of vascular 

damage and bleeding, was found in the myocardium of irradiated mice and was associated 

with an increased deposition of albumin at 40 weeks after high-dose irradiation. These results 

indicate that ApoE-/- mice are susceptible to both macrovascular and microvascular damage. In 

addition, high-dose irradiation caused an increased permeability of the endocardium, leading 

to leakage of fibrin at 40 weeks.

Irradiation of ApoE-/- mice modestly affected cardiac function at 20 weeks FU, similar to 

C57BL/6J mice (8). However, 16 Gy lead to sudden death of C57BL/6J mice before 40 weeks 

FU, while ApoE-/- mice survived until 40 weeks after local high-dose irradiation. The high 
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mortality rate observed in C57BL/6J mice was probably due to the prominent deposition of 

amyloid in the myocardium caused by vascular leakage, leading to the inability to compensate 

for the structural damage and to maintain cardiac function. Since ApoE itself is one of the 

components of amyloid (25), irradiated ApoE-/- mice showed no signs of cardiac amyloidosis, 

although there was evidence of vascular leakage. The fact that we did not observe a decreased 

survival in the irradiated ApoE-/- mice, despite more pronounced microvascular damage and a 

similar reduction in cardiac function, suggests that the amyloid deposits played a detrimental 

role in cardiac integrity and led to the high mortality rate of the irradiated C57BL/6J mice.

In C57BL/6J mice, inflammatory changes were mainly observed in the epicardium (8), 

while ApoE-/- mice showed endocardial damage with foam cell accumulations at 20 weeks 

after 16 Gy and collagen deposits at 40 weeks. Endocardial foam cell accumulation was 

previously described in diabetes, hyperlipidemic diseases and congenital diseases, whereby 

the endocardium is subjected to atherosclerotic events similar to those in lesion-prone sites 

such as aortic valves and bifurcations of large arteries.(26, 27) It is possible that, 20 weeks 

after irradiation, the underlying damaged inflammatory myocardium attracted macrophages 

to the endocardium, which transform into foam cells in the presence of hyperlipidemia.

In conclusion, the combination of irradiation and hypercholesterolemia led to an early and 

pronounced inflammatory response and microvascular leakage in the hearts of ApoE-/-  

mice. In addition, the progression of atherosclerosis in the coronary arteries was clearly 

accelerated after high-dose local irradiation of the heart, combined with foam cell deposits 

in the endocardium. Despite these pronounced effects on cardiac structure and increased 

development of coronary atherosclerosis, the mice were able to maintain cardiac function up 

to 40 weeks after irradiation.
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Supplemental data

Supplemental Table I Body and organ weights of mice at sacrifice. 

treatment  Body weight (g)  Heart weight (g)  Lung weight (g)  Heart/body weight% 

20 weeks FU	     

0 Gy                      32.3 + 0.6             0.21 + 0.006            0.17 + 0.003                  6.7 + 0.2

2 Gy                      32.5 + 0.3             0.20 + 0.005            0.17 + 0.003                  6.0 + 0.1

8 Gy                      32.1 + 0.9             0.22 + 0.013            0.17 + 0.006                  6.7 + 0.4

16 Gy                    30.9 + 0.5             0.21 + 0.007            0.17 + 0.002                  6.7 + 0.02

40 weeks FU

0 Gy                       33.2 + 0.8             0.20 + 0.006            0.17 + 0.004                   6.0 + 0.1

2 Gy                       32.5 + 1.0             0.21 + 0.009            0.17 + 0.004                   6.3 + 0.3

8 Gy                       34.5 + 1.1             0.21 + 0.005            0.18 + 0.004                   6.1 + 0.2

16 Gy                     34.1 + 0.8             0.23 + 0.006            0.21 + 0.011*                 6.9 + 0.2*                 	

 

 Values represent mean ± SEM. * p<0.05 compared to age-matched controls.

Supplemental Table II Top first pathway and significant canonical pathways (limited to three) analyzed in 

Ingenuity Pathway Analysis (IPA) at 20 and 40 weeks after 2 and 16 Gy. IPA score represents the likelihood (de-

creases with a score >2) that the set of focus genes in a pathway could be explained by random chance alone. 

	         Pathway  		         IPA score  	               Canonical pathway	

20 weeks FU									       
2 Gy	 Cellular growth andproliferation	  49                      1. Ciracadian rhythm signaling	
16 Gy       Cell - to - cell signaling and interaction     45                      1. Complement system		
                                                                                                           2. Fibrosis   			 
			                                                              3. Acute phase response signaling

40 weeks FU

2 Gy        Cellular development		    46                      ND			 
10 Gy      Cellular movement                                     35                      1. Fibrosis

                              

ND means not detected.



Local heart irradiation of ApoE-/- mice induces microvascular and endocardial damage

- 81 -

3

Supplemental Figure I Gene interaction network of 2  Gy irradiation-correlated genes at 20  weeks,  

generated using IPA. Genes are represented as nodes. Solid lines represent a direct relationship and dashed lines 

represent an indirect relationship. Node color represents the correlation of expression level with irradiation and 

color intensity indicates the degree of correlation (red means a positive correlation, while green means a nega-

tive correlation).

Supplemental Figure II Gene interaction network of 16 Gy irradiation-correlated genes at 20 weeks, gen-

erated using IPA. Genes are represented as nodes. Solid lines represent a direct relationship and dashed lines 

represent an indirect relationship. Node color represents the correlation of expression level with irradiation and 

color intensity indicates the degree of correlation (red means a positive correlation, while green means a nega-

tive correlation).
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Supplemental Figure III Gene interaction network of 2 Gy irradiation-correlated genes at 40 weeks, gen-

erated using IPA. Genes are represented as nodes. Solid lines represent a direct relationship and dashed lines 

represent an indirect relationship. Node color represents the correlation of expression level with irradiation and 

color intensity indicates the degree of correlation (red means a positive correlation, while green means a nega-

tive correlation).

Supplemental Figure IV Gene interaction network of 16 Gy irradiation-correlated genes at 40 weeks, 

generated using IPA. Genes are represented as nodes. Solid lines represent a direct relationship and dashed 

lines represent an indirect relationship. Node color represents the correlation of expression level with irradiation 

and color intensity indicates the degree of correlation (red means a positive correlation, while green means a 

negative correlation).
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Supplemental Figure V Ultrasound and myoview (gated SPECT/CT) measurements of (A) EDV, (B) ESV and 

(C) EF for control and 16 Gy irradiated mice at 20 weeks FU. Bars represent mean ± SEM. *p<0.05 compared 

to age-matched controls.
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Abstract
Background: Inhibition of ErbB2-signaling in Her2-positive breast cancer patients is 

regularly combined with chemotherapy and radiotherapy. The risk of cardiactoxicity after 

anthracyclines and radiotherapy is recognized, but little is known about increased risk when 

these treatments are combined with ErbB2 inhibition. This study investigated whether ErbB2 

inhibition increased radiation or anthracycline induced toxicity.

Materials and Methods: In an in vitro study, human cardiomyocytes were treated with 

irradiation or doxorubicin, alone or in combination with trastuzumab, and evaluated for cell 

survival and growth. Groups of mice received 0 or 14 Gy to the heart, alone or in combination 

with lapatinib, or 3x4 mg/kg doxorubicin alone or in combination with lapatinib. Mice were 

evaluated 40 weeks after treatment for cardiac damage. Changes in cardiac function (99mTc-

myoview gated SPECT) were related to histomorphology and microvascular damage.

Results: Radiation or doxorubicin-induced cardiomyocyte toxicity (in vitro) were not 

exacerbated by trastuzumab. Cardiac irradiation of mice decreased microvascular density 

and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase 

expression and increased von Willebrand factor), but these changes were not exacerbated by 

lapatinib. Inflammatory responses in the irradiated epicardium (CD45+ and F4/80+ cells) were 

significantly reduced in combination with lapatinib. Irradiation, doxorubicin and lapatinib each 

induced cardiac fibrosis but this was not further enhanced when treatments were combined. 

At the ultrastructural level, both lapatinib and doxorubicin induced mitochondrial damage, 

which was enhanced in combined treatments. Lapatinib alone also induced mild changes in 

cardiac function but this was not enhanced in the combined treatments. 

Conclusion: Trastuzumab did not enhance direct radiation or anthracycline toxicity of 

cardiomyocytes in vitro. Lapatinib did not enhance the risk of radiation or anthracycline-

induced cardiac toxicity in mice up to 40 weeks after treatment, but mitochondrial damage 

was more severe after doxorubicin combined with lapatinib. 
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Introduction
Cardiovascular damage has been reported as a long-term toxicity in breast cancer survivors 

previously treated with radiotherapy (RT) and anthracycline chemotherapy (CT) (1). Prospective 

functional imaging studies show that ~40 % of left-sided breast cancer patients treated with 

RT develop asymptomatic cardiac perfusion defects within 2 years and about 16 % eventually 

develop wall-motion abnormalities (2–4). Yearly, 1.5 million new breast cancer patients are 

diagnosed worldwide who will undergo RT, CT, surgery, and/or adjuvant hormonal therapy. 

Approximately 15–20 % of breast cancers show a highly aggressive subtype, characterized 

by epidermal growth factor receptor 2 (ErbB2) overexpression. Such cancers are fast-growing, 

highly invasive, resistant to CT and RT and are therefore associated with higher risk for 

recurrence (5, 6). Epidermal growth factor receptor 1 (ErbB1) is also expressed in several 

human tumors, including breast cancer, and makes significant contributions to invasion and 

growth of tumors (7).

The established role of ErbB1 and ErbB2 in breast cancer makes them attractive therapeutic 

targets. Trastuzumab, a humanized anti-ErbB2 monoclonal antibody, is the most prominent, 

first-line agent for ErbB2 (HER2)- overexpressing metastatic breast cancer (8). Clinical studies 

using trastuzumab confirmed the benefits of inhibiting ErbB2 signaling, including inhibition 

of p27Kip1, activation of PTEN tumor suppressor gene and induction of G1 cell cycle arrest 

(9). Adjuvant treatment with trastuzumab for operable breast cancer improves overall survival 

rate in Her2-positive breast cancer patients by ~30 % and reduces the risk of recurrence 

by ~50 % (10,11). However, heart failure occurs in 1.7–4.1 % of patients treated with 

trastuzumab and cardiac toxicity lead to discontinuation of the adjuvant treatment in 19 % 

of the patients (10–12).

ErbB2 is an orphan receptor that has no ligand binding site but dimerizes with other ligand-

bound EGRF receptors (HER3, HER4). One of the most common ligands of the EGFR pathway 

in the heart is neuregulin-1. Targeting both ErbB1 and ErbB2 is hypothesized to have superior 

therapeutic effects relative to single-agent treatment. Dual inhibitor lapatinib (GW572016) 

is a small molecule, reversible inhibitor of the tyrosine kinase activities of ErbB1 and ErbB2 

at equal potency. Lapatinib works by blocking the signaling transduction to Ras/Raf MAPKs 

and the PI3K/Akt pathway, which leads to increased apoptosis and decreased cellular 

proliferation. Perez and colleagues reviewed 44 studies in which lapatinib (as monotherapy 

or in combination with previously given anthracyclines or trastuzumab) induced low levels of 

cardiac toxicity, as detected by reversible decreased left ventricle ejection fraction (LVEF) (13).

The mechanisms whereby cardiac toxicity occurs after ErbB2 inhibition is not fully understood,
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since non- malignant cells do not over-express ErbB2. However, ErbB2 signaling and the ligand 

Neuregulin-1 are known to play a crucial role in survival and growth of cardiac myocytes (14, 

15). Moreover, a recent study demonstrated that irradiation inhibited ErbB2 signaling in rat 

hearts until the onset of fibrosis after 10 weeks. As fibrosis progressed, ErbB2 and the EGFR 

ligand neuregulin were significantly upregulated, presumably as an attempt to regenerate the 

myocardium (16). This raises the question whether delayed inhibition of ErbB2 after CT or RT 

could lead to increased cardiac toxicity.

Little is known about the long-term cardiac outcome of lapatinib in combination with 

anthracycline CT or irradiation. In this study, we first investigated whether blocking of ErbB2 

enhanced the toxicity of radiation- or doxorubicin (Dox)-treated cardiomyocytes in vitro. We 

subsequently investigated the influence of combined ErbB1/2 inhibition in mice treated with 

cardiac irradiation or systemic Dox. For these studies lapatinib was given for 20 weeks in 

the chow, either at the time of irradiation or Dox (direct), or delayed until 20 weeks after 

irradiation or Dox. This was designed to mimic clinical treatment protocols and to investigate 

the influence of lapatinib on the short- and long- term damage repair process following 

irradiation or anthracyclines. Structural and functional changes were monitored at 40 weeks 

after treatment to determine whether ErbB1/2 inhibition caused increased cardiac damage or 

inhibited recovery after radiation or anthracycline treatment.

As far as we are aware, this is the first study that characterizes in detail long-term cardiac 

toxicity after lapatinib in combination with irradiation or Dox.

Materials and Methods
Cell culture conditions and treatment

Human cardiac myocytes (HCM) from Promocell (Heidelberg, Germany) were cultured 

in DMEM (Gibco®, Invitrogen) supplemented with 10 % fetal calf serum, 1 % penicillin, 

and 1 % streptomycin at 37 °C with 5 % CO2. The HCM express markers of early stage 

differentiation such as GATA-4 and sarcomeric alpha-actin and act more like progenitor cells 

with capacity for proliferation. For irradiation experiments, cells were seeded in 96-well plates 

(1,000 per well) and irradiated with 0, 2.5, 5, or 10 Gy (137Cs irradiation, with a dose rate 

of 0.66 Gy/min) before exposure to 0, 0.1, 1, or 10 µg/ml trastuzumab (Roche, from the 

Netherlands Cancer Institute pharmacy) for 14 or 21 days. Cells were then washed (39 with 

PBS) to remove drugs and evaluated for cell viability. For Dox experiments, 4,000 cells per 

well were seeded and treated with 0, 0.0025, 0.025, 0.25, 2.5, 25, and 250 µg/ml Dox 
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(Doxorubicin hydrochloride 2 mg/ml PCH, from the Netherlands Cancer Institute pharmacy) 

and trastuzumab (0–10 µg/ml) for 3 days, washed and evaluated for cell viability directly or 

re-incubated with trastuzumab until evaluation at 14 days. Cell viability was detected by cell 

counting kit-8 (CCK-8, Sigma, Zwijndrecht, the Netherlands) following the manufacturer’s 

protocol. 

Mice and treatments groups

Male C57BL/6 mice, aged 8–12 weeks (Charles River Laboratories, France) were randomly 

allocated to receive 0 Gy or 14 Gy to the heart, or 4 mg/kg Dox intraperitoneal (i.p.) weekly 

for 3 weeks. Separate cohorts of animals were included for irradiation or anthracycline 

combined with lapatinib, as well as age-matched controls. Lapatinib (from the Netherlands 

Cancer Institute pharmacy) was mixed with standard mouse chow to a final concentration of 

0.48 g/kg. Assuming consumption of 5 g chow/mouse/day, this is equivalent to 100 mg/kg/

day. A pilot study with 100 mg/kg/day given in chow or by oral gavages resulted in the same 

plasma concentration (mean 946 ng/ml and 909 ng/ml lapatinib after chow diet and oral 

gavages). Lapatinib diet was either started 7 days before irradiation or Dox (direct schedule) 

to achieve steady state plasma levels, or delayed until 20 weeks after treatment (Figure 1).  

Figure 1 Schedule overview. Schematic representation of schedules for lapatinib given for 20 weeks  

in the chow, starting at the time of irradiation or doxorubicin (direct), or starting 20 weeks after irradiation  

or doxorubicin (delayed).



- 92 -

Chapter 4

Irradiation was with 250 kV X-rays, operating at 12 mA and filtered with 0.6-mm Copper. 

The dose rate was 0.94 Gy/min, with a field size of 10.6 9 15 mm (including the whole heart 

and up to 30 % lung volume); the rest of the mouse was shielded with lead. For irradiation, 

unanesthetized mice were immobilized in a prone position in acrylic perspex jigs. Each 

treatment group comprised 10 –15 mice (n = 125 in total). Experiments were in agreement 

with the Dutch law on animal experiments and welfare, and in line with the international 

Guide for the Care and Use of Laboratory Animals (Eighth edition).

Tissue preparation for histology

At termination of the experiment, the heart was perfused via the aortic arch (retro-grade), 

under lethal sodium pentobarbital anesthesia (18 mg per mouse, i.p.), with PBS (frozen 

sections) or PBS followed by 1 % paraformaldehyde (paraffin sections). The heart was then 

quickly excised before freezing on dry ice or immersion in 1 % paraformaldehyde.

Cross-sections were cut at the level of the mid-horizontal plane from fixed paraffin-embedded 

tissues (4 µm) or frozen tissues (7 µm).

Frozen sections

An anti-CD31 antibody (1:50, Becton&Dickinson) was used to visualize cardiac vasculature. 

To determine functional changes in the microvasculature, a histochemical staining with 

Naphtol AS-MX/DMF and fast Blue BB salt was performed to detect endothelial cell alkaline 

phosphatase. Sections were also reacted with antibodies against von Willebrand Factor (vWF) 

(1:4000, Abcam, Cam- bridge, USA) as a marker of thrombotic changes. All sections were 

processed identically, with precisely the same incubation times for the primary and secondary 

antibody and diaminobenzidine (DAB) solution (Sigma, Zwijndrecht, the Netherlands).

For quantification of microvascular changes, five random fields (40x objective) of the heart 

were photographed with a CCD 2 Color Microscope system, including a Zeiss Axio- Cam 

color camera (Axiocam HRc, Zeiss, Göttingen, Germany). A computerized morphometry 

system (Leica Qwin V3, Leica, Rijswijk, the Netherlands) was used to quantify the MVD of 

CD31 positive structures. Vessels <1.5 or >200 µm2 were automatically excluded from the 

measurements. Photographs of whole sections stained for ALP and vWF were taken with an 

Aperio scanner (Scanscope-XT, Aperio technologies, Vista, USA) using 40x objective. Analyses 

of the percentage myocardium, excluding endocardium, positive for each marker were done 

with a computerized morphometry system (Leica Qwin V3). 
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Paraffin sections

To determine the extent of inflammation, sections were immuno-labeled with anti-CD45 

antibody (1:400, Becton & Dickinson, Franklin lakes, USA). To detect alterations in the number 

of macrophages sections were stained with anti-F4/80 (1:300, AbD Serotec, Düsseldorf, 

Germany) and counted per left ventricle (LV) myocardial area.

All sections were processed identically; therefore, differences between the treatments are 

due to DAB identification of the relevant protein. Interstitial collagen was determined in the 

myocardium based on Sirius red staining.

Photographs of the LV wall, excluding the septum, were taken using a 40x objective 

(Leica DFC320). Interstitial collagen was quantified in five randomly selected areas of the 

subendocardium and myocardium of the LV (40x objective) and results were expressed as 

percentage tissue positive for Sirius red relative to myocardial area. The number of CD45+ cells 

per section was counted separately in the epicard and myocard to determine the extent of 

inflammation. Morphometric parameters were analyzed using a computerized morphometry 

system (Leica Qwin V3). Transverse sections were stained with hematoxylin and eosin (H&E) to 

check for alterations in the myocardium and blood vessels. A semi-quantitative scoring system 

was used, whereby for the blood vessels 1 indicates one mild/severe morphological event 

(degeneration of the coronary arterioles, dilation of capillaries in myocardium accompanied by 

edema in stroma or clotting-like materials in coronary vessels), 2 indicates two morphological 

events, and 3 indicates >2 severe morphological events. For the myocardium, a score of 1 

indicated atrophy, 2 indicated degeneration or hypertrophy, and 3 indicated more than two 

events.

Electron microscopy (EM)

Tissues were fixed in Karnovsky’s fixative, followed by 1 % osmiumtetroxide in 0.1 M 

cacodylate-buffer. After washing, pellets were stained with Ultrastain 1 (Leica, Vienna, 

Austria), followed by ethanol dehydration. Finally the cells were embedded in a mixture of 

DDSA/NMA/ Embed-812 (EMS, Hatfield, U.S.A), sectioned and stained with Ultrastain 2 

(Leica, Vienna, Austria) and analyzed with a CM10 electron microscope (FEI, Eindhoven, the 

Netherlands).

Gated SPECT/CT

Gated single photon emission computed tomography (gSPECT) acquisitions were made with a 

small-animal NanoSPECT/CT (Bioscan Europe, Ltd., Paris, France). Animals were anesthetized 
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with Hypnorm (Fentanyl 0.26 mg/kg/Fluanisone 8.33 mg/kg, VetaPharma, Ltd., Leeds, UK) 

and Dormicum (Midazolam, 4.17 mg/kg, Roche, Woerden, the Netherlands) via i.p. injection 

(1:2:1 Hypnorm:H2O:Dormicum; 120 µl/mouse). Myoview (GE- healthcare, Hoevelaken, 

the Netherlands) was labeled with 1–1.5 ml 99mTc-pertechnetate. For detailed information 

see Seemann et al. (17). Quantitative analysis of the reconstructed datasets was performed 

on a clinical e.soft (syngo-based) workstation (Siemens Medical Solutions, Siemens AG, 

Erlangen, Germany), using algorithms to automatically reconstruct a count based 3D model 

of the dimensions of the left ventricular (LV) end-diastolic and systolic volumes (EDV, ESV). 

Subsequently, a LV time volume curve and its first derivative were generated. The ejection 

fraction (EF) was calculated based on the difference between EDV and ESV divided by EDV 

and peak filling rate (PFR) (EDV/s) was calculated from the Fourier-fitted curves.

Statistics

Data are expressed as mean ± SEM and groups were compared using non-parametric Mann–

Whitney exact U-tests. Group differences were considered statistically significant at p<0.05. 

Statistical analyses were performed using SPSS version 20.

Results
HER2 inhibition did not decrease myocyte cell viability in vitro

Exposure of human cardiomyocytes for 3 days to Dox induced a dose-dependent decrease in 

cell viability. However, combination of Dox with trastuzumab did not further decrease myocyte 

cell viability (Figure 2A). When Dox was removed after 3 days and cells were evaluated at 14 

days after treatment, cell proliferation was not affected by the presence of trastuzumab. Prior 

exposure to (0.025 µg/ml Dox inhibited cardiomyocyte growth, but this was independent of 

trastuzumab exposure (Figure 2B).

Cardiomyocyte cell viability decreased after radiation doses of 2.5–10 Gy, when assessed at 14 

or 21 days after treatment, but there was no further decrease in cell viability in combination 

with trastuzumab (Figure 2C, D).
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Figure 2 Cardiomyocyte viability after ErbB2 inhibition. Fig A/B: Human cardiomyocytes were treated with 

doxorubicin (0–250 µg/ml) and trastuzumab (0–10 µg/ml) for 3 days. Cells were then washed (3x with PBS) to 

remove drugs and evaluated for cell viability directly (2A) or re-incubated with trastuzumab only until evalua-

tion at 14 days (2b). Each symbol represents the mean (±SEM) of three experiments and results are expressed 

as percentage cell survival. Figure C/D: Human cardiomyocytes were irradiated (0, 2.5, 5, or 10 Gy) and then 

exposed to trastuzumab (0–10 µg/ml) for 14 days (C) or 21 days (D) before evaluation of cell viability. Each 

symbol represents the mean (±SEM) of three experiments and results are expressed as percentage cell survival.

Mouse survival and weight

Irradiation with 14 Gy alone caused no premature deaths and few deaths occurred in 

combination with direct (7 %) or delayed lapatinib (12 %). Heart and body weights were 

slightly lower after irradiation (Figure 3A and Table S1). There were more unscheduled deaths 

after treatment with Dox (27 %), especially when combined with lapatinib (36 and 33 % 

deaths for direct and delayed lapatinib) (Figure 3B; Table S2). Since the group analyses were 

done on material from surviving animals only, this probably represents an underestimate of 

the total toxic effects of Dox. Both heart and body weights were also lower after Dox alone 

or in combination with lapatinib compared to age-matched control.
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Figure 3 Kaplan-Meier estimated of overall survival shown for mice treated with lapatinib alone or in combina-

tion with radiation or doxorubicin. Survival data are shown for mice treated with radiation (A) or doxorubicin 

(B) alone or in combination with direct or delayed with lapatinib. Treatment groups were compared with age-

matched controls. *Indicates significant differences between treated mice and age-matched control groups (p 

<0.05; Mann– Whitney U-test). 

Radiation-induced microvascular damage

MVD decreased significantly after 14 Gy radiation alone but the decline was not further 

enhanced by combination with either direct or delayed lapatinib treatment (Figure 4A). There 

were no changes in MVD after Dox treatment alone or in combination with lapatinib (data 

not shown). Radiation-induced changes in MVD were accompanied by endothelial damage, 

as shown by a marked decrease in ALP activity (Figure 4B) and an increased expression of 

the thrombotic endothelial marker vWF after irradiation alone (Figure 4C). None of these 

endothelial changes were more severe after combined treatments with lapatinib then after 

irradiation alone (Figure 4B, C). Endothelial damage (ALP) or thrombotic changes in the 

microvascular (vWF) were not detected in Dox-treated mice (data not shown).

Irradiation 
A 

Anthracyclines 
B 
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figure 4 Microvascular alterations after ErbB2 inhibition alone or in combination with irradiation. (A) MVD per 

unit area expressed as number of microvessels per mm2. (B) ALP positive tissue areas as % of total tissue. (C) 

vWF positive tissue areas as % of total tissue *p<0.05 compared to age-matched untreated controls. Each value 

represents the mean (±SEM) for minimal five mice per group. Ctrl control; Lap lapatinib; IR irradiation; IR+lap 

irradiation combined with lapatinib. 

Radiation-induced inflammation

Irradiation alone led to a significant increase in CD45+ cells and F4/80+ cells in the epicardium 

(Figure 5) but not in the myocardium (data not shown). Strikingly, direct or delayed lapatinib 

decreased CD45+ and F4/80+ cells in the irradiated epicardium, compared to irradiation 

alone (Figure 5A, B). There were no significant inflammatory responses seen in Dox-treated 

mice (data not shown).
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Figure 5 (left) Inflammatory changes after ErbB2 inhibition alone or in combination with irradiation.  

(A) Quantification of CD45+cells (B) and of F4/80+cells per section in the epicardium. Each value represents  

the mean (±SEM) for minimal five mice per group. *p<0.05 compared to age-matched untreated controls. n.d. 

not determined. Ctrl control; Lap lapatinib; IR irradiation; IR+lap irradiation combined with lapatinib.

 

Figure 6 (right) Fibrotic changes after ErbB2 inhibition alone or in combination with irradiation or  

doxorubicin. (A) Collagen per unit area expressed as percentage of total tissue for animals treated with  

irradiation. (B) Collagen per unit area expressed as percentage of total tissue for animals treated with  

doxorubicin *p<0.05 compared to age-matched untreated controls. Each value represents the mean  

(±SEM) for minimal five mice per group. n.d. not determined. Ctrl control; Lap lapatinib; DOX doxorubicin; 

DOX+Lap doxorubicin combined with lapatinib; IR irradiation; IR+lap irradiation combined with lapatinib.

Irradiation- and doxorubicin-induced cardiac fibrosis

Cardiac fibrosis was significantly increased by irradiation or lapatinib alone, when administrated 

directly (Figure 6A). Lapatinib (either direct or delayed) did not further enhance the fibrosis 

induced by irradiation. There was also a significant increase in cardiac fibrosis after Dox alone, 

but this was not further enhanced by either direct or delayed lapatinib (Figure 6B).
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Structural and morphological alterations

H&E stained sections were semi-quantitatively analyzed for changes in the myocardium and 

blood vessels. There were only minor changes in the vasculature after irradiation alone or in 

combination with direct lapatinib. However, when delayed lapatinib was given to irradiated 

mice there was a trend for increased myocardial and blood vessel damage, including dilation 

of capillaries, degeneration of coronary arteries, degeneration of the myocardium, and 

hypertrophy of the myocardium (Figure 7). No severe changes were detected in Dox-treated 

mice that survived until 40 weeks. Examination of prematurely sacrificed, sick animals did 

demonstrate damage but this group comprised only a few mice, sacrificed at various times 

after treatment, so no semi- quantitative analysis was done. 

Figure 7 Histological changes in the myocardium and blood vessels at 40 weeks after treatment with irradia-

tion or doxorubicin alone or in combination with lapatinib. H&E sections of the heart of mice that survived 

treatment with irradiation alone or in combination with lapatinib. Blood vessel and myocardium were scored for 

cardiac events at 40 weeks after treatment. Each symbol represents the score of one mouse (minimal five mice 

per group). (A) Age-matched control heart. (B) Dilated capillaries (open arrow) and edema in the stroma (dark 

arrow) of an irradiated heart. (C) Hyaline-like degeneration of the coronary arterioles (open arrows). (D) Atrophy 

of the myocardium (small, misshapen myocytes, and separated from each other, open arrows). (E) Degeneration 

of the myocardium. (F) Focal fibrosis (open arrows) and degeneration of endocardium 
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Electron microscopy (EM) analysis indicated small changes in myocyte morphology, like local 

vacuolization, after Dox or lapatinib treatment alone. Changes were enhanced when Dox was 

combined with lapatinib, either direct or delayed. Focal damage was seen with degenerative 

changes in the mitochondria, cloudy- swollen phenotype and disorganized, disrupted 

Z-bands in some cardiomyocytes, but normal looking mitochondria and Z-bands in adjacent 

cells (Figure 8).

Figure 8 Mitochondrial changes in the myocardium after ErbB2 inhibition. Electron microscopic images of 

the myocardium of mice treated with lapatinib alone or in combination with doxorubicin at 40 weeks after 

treatment. (A) Age-matched control (n = 3); cardiomyocytes show organized sarcomeres characterized by par-

allel myofilaments anchored to Z bands and mitochondria were perfectly aligned and packed. (B) Doxorubicin 

treatment alone (n = 3); myofilament arranged regularly and mitochondria were aligned with focal vacuoliza-

tion (arrow). (C) Lapatinib treatment alone (n = 3); focal damage per cardiomyocyte. Mitochondrial volume 

increased, mitochondrial cristae were fuzzy and had a cloudy swollen phenotype (arrow). (D) Direct lapatinib 

set up combined with doxorubicin (n = 3); (E) delayed lapatinib set up combined with doxorubicin (n = 3); 

disorganized mitochondria, mitochondrial cristae were fuzzy and had a cloudy swollen phenotype (arrow), 

increased volume of mitochondria. MI mitochondria; MF myofibril; Z z-bands; Dic Discus interculatis 

Lapatinib decreased left ventricle function

Cardiac function tests, determined by gated SPECT/CT, showed increases in ESV after lapatinib 

alone (34 and 16 % increase for direct and delayed schedules) (Figure 9). Similar increases 

in EDV were seen (11 and 9 % for direct and delayed schedules) (data not shown). This 

resulted in decreased EF (22 and 9 % decreases after direct and delayed lapatinib) (Figure 9). 

PFR, maximum down slope of left-ventricular volume, also showed significant decrease after 

lapatinib treatment (20 and 21 % after direct and delayed lapatinib) (Figure 9). Neither 14 Gy 

nor 3x4 mg/kg Dox induced significant changes in cardiac function, either given alone or in 

combination with lapatinib.
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Figure 9 Cardiac function (EF, ESV, and PFR) measured by gated SPECT at 40 weeks after treatment with 

irradiation or doxorubicin alone or in combination with lapatinib or sham treatment. Values represent mean 

± SEM (8–14 mice in each treatment group), *p<0.05 compared to age-matched untreated controls. Ctrl 

control; Lap lapatinib; DOX doxorubicin; DOX+Lap doxorubicin combined with lapatinib; IR irradiation; IR+lap 

irradiation combined with lapatinib

Discussion
In this study, we investigated the effect of direct and delayed inhibition of EGFR signaling 

combined with irradiation or Dox on cardiomyocyte survival, morphological damage, and 

heart function. We demonstrated that inhibiting ErbB2 in combination with irradiation or 

anthracyclines did not further decrease myocyte cell viability in vitro. Combined inhibition 

of ErbB1 and ErbB2 also did not enhance radiation or Dox induced cardiac damage in mice. 

Indeed, the radiation-induced inflammatory responses were inhibited by lapatinib. 
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Inhibition of ErbB2 in HER2-overexpressing breast cancers became a standard (adjuvant) 

treatment as it results in improvement of outcome (18). Often this is combined with 

anthracycline CT (19). In addition, most patients receive adjuvant RT, either after breast 

conserving surgery or mastectomy (20). Previous studies have shown an increase in cardiac 

events after combining RT with anthracyclines, such as decline in LVEF or congestive heart 

failure (11, 13, 21). Long term follow up studies with ErbB2 inhibiting agents combined with 

these modalities are ongoing to determine both efficacy and safety, especially with regard to 

cardiac toxicity (ALTTO study; BIG 2-06/N063D).

EGFR signaling, including ligand NRG-1, plays an important role in adult cardiomyocyte 

survival, since it activates the pro-survival PI3K/pathway and stimulates cardiomyocyte 

maintenance and function (22). Previous studies in our lab, demonstrated the ability of the 

mouse heart to compensate functionally for significant structural damage after previous 

irradiation (17). Compensatory mechanisms and pro-survial pathways might play a role in 

maintaining cardiomyocyte function in a damaged heart, at least until the extent of damage 

overwhelms the potential for stimulated survival. Sridharan et al. (16) recently demonstrated 

upregulation of ErbB signaling in the irradiated rat heart in parallel with developing cardiac 

fibrosis, leading to the suggestion that ErbB signaling and pro- survival pathways are activated 

in an attempt to regenerate the myocardium. Moreover, inactivation of ErbB4 in ventricular 

muscle cells led to a severe dilated cardiomyopathy, demonstrating the important role of ErbB 

signaling in the myocardium (23).

			 

This raises the question of whether inhibition of these pathways could impair attempts of 

the damaged heart to regenerate. Similar to the findings of Sridharan et al. (16), we found 

increased expression of both ErbB2 and ErbB4 in mouse hearts at 40 weeks after irradiation, 

in parallel with developing fibrosis. However, this upregulation was not inhibited in the 

presence of lapatinib. Our data also do not indicate cardiac dysfunction after radiation alone 

or in combination with lapatinib, in contrast to the mild but significant changes in cardiac 

function after lapatinib alone (Figure 9). These data are consistent with the important role of 

ErbB signaling to maintain myocardium functionality and imply that that this compensatory 

mechanisms initiated by irradiation still operate in the presence of lapatinib.

Treatment of adult human cardiomyocytes, which have low expression of HER2, with 

trastuzumab, did not alter cell viability, nor did it enhance toxicity induced by either 

radiation or Dox (Figure 2). This is consistent with the knowledge that anthracyclines cause 

acute irreversible damage to the cardiomyocytes through generation of free radicals and 
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cardiomyocyte apoptosis (24), whereas trastuzumab-induced cardiac toxicity is dose-

dependent and largely reversible (25). The doses of trastuzumab we used were sufficient to 

cause significant reduction in viability in HER2-overexpressing tumor cells (data not shown), 

but the cardiomyocytes were less sensitive to ErbB2 inhibition. Some studies, using HER2-

overexpressing breast cancer cells, have shown that inhibition of PI3K -pathway may be 

bypassed by lateral activation of other members of the HER family (Her3) (26, 27). This raises 

the possibility, that activation of this compensatory feedback loop could thereby stimulate 

survival of cardiomyocytes.

Our in vitro results contrast somewhat with a recently published study by Hasinoff et al., 

in which pretreatment of isolated neonatal rat cardiac myocytes with HER1/HER2 inhibitor 

lapatinib potentiated doxorubicin-induced myocyte damage, assessed by LDH release and 

disrupted sarcomeres, although there was no enhancement of doxorubicin-induced apoptosis. 

A major difference between our study and that of Hasinoff is that they used neonatal 

cardiomyocytes and neuregulin is essential for the developing heart, which probably increases 

cardiomyocyte sensitivity to ErbB2 inhibition. In our study, we investigated the effects of 

trastuzumab (ErbB2 inhibitor) on adult cardiomyocyte survival after Dox or irradiation. We 

did not look at changes in cardiomyocyte function or morphology in vitro. However, our EM 

study from In vivo experiments would suggest enhanced cardiomyocyte damage from the 

combination of lapatinib and Dox, consistent with the data of Hasinoff.

Our findings suggest that trastuzumab or lapatinib induced cardiac toxicity acts by different 

mechanisms than anthracyclines or radiation. This raises the possibility that the cardiac toxicity 

seen in clinical studies where ErbB2 inhibition is combined with anthracyclines could be due 

to indirect effects, for example endothelial cell dysfunction and loss, with secondary damage 

to the cardiomyocytes.

We have previously shown (17) that local cardiac irradiation induces microvascular loss and 

damage. The current study shows that irradiation-induced endothelial dysfunction and loss 

was not further enhanced by lapatinib, either when given at the time of irradiation (direct) 

or delayed for 20 weeks. Mechanisms of radiation-induced cardiac toxicity include activation 

of TGFb and production of chemokines and pro-inflammatory cytokines, which are largely 

independent of the PI3K-pathway determining cardiomyocyte survival. However, the MAPK 

pathway has been implicated in regulation of permeability in endothelial cells (28), something 

we found to be increased by irradiation. These observations are consistent with the concept 

that mechanisms of radiation-induced cardiac damage do not involve ErbB signaling.

Slow turnover tissues, like the myocardium, have a low proliferative capacity and a small 
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stem-cell component, and therefore have a limited ability to repair damage. Radiation-

induced cardiac toxicity is initiated by an acute inflammatory response, which progresses to 

fibrosis without proper tissue regeneration (29). We found that the inflammatory response 

initially activated by irradiation was decreased by lapatinib. We can speculate that, since the 

MAPK pathway mediates myocardial pro-inflammatory cytokine production, inhibiting MAPK 

pathway with lapatinib may decrease the pro-inflammatory cytokine production (30, 31). 

However, we have no data to support this hypothesis.

A further consequence of irradiation is the development of fibrosis. Similar to previous 

studies, our study showed increased cardiac fibrosis after irradiation or Dox alone. However, 

this was not further enhanced by lapatinib. On the other hand, 20 weeks of lapatinib alone 

in the direct set up induced fibrosis in mice sacrificed at 40 weeks. This is in contrast to no 

increase in fibrosis when lapatinib was delayed until 20 weeks and continued until sacrifice 

at 40 weeks. This might be explained by the delayed fibrotic response of the myocardium, 

which required time to develop after cessation of the lapatinib. We did not evaluate mice at 

later follow-up times than 40 weeks.

Changes in the microvasculature after Dox alone or with lapatinib were not seen. Nevertheless, 

fibrosis and degenerated cardiomyocytes (EM study) and 27–36 % animal lethality, as well as 

decreased cell viability in vitro, do indicate doxorubicin-induced damage to the myocardium 

via cardiomyocytes. Although anthracyclines induce acute damage, clinical symptoms are 

mostly detectable months or years after treatment (32). Therefore, besides acute myocardial 

damage, late and indirect microvascular damage may occur at later times.

We conclude that ErbB2 inhibition did not enhance direct radiation or anthracyclines toxicity of 

cardiomyocytes in vitro. Radiation-induced microvascular damage was not further enhanced 

by ErbB2 inhibition and the inflammatory response was decreased. Myocardial damage was 

induced by anthracyclines but not further enhanced by ErbB2 inhibition. Treatment of mice 

with the ErbB 1/2- blocking agent lapatinib did not further enhance the risk of radiation or 

anthracycline-induced cardiac toxicity up to 40 weeks after treatment.
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  Table S1 Body and organ weights of mice at sacrifice.

Treatment Body weight (g) Heart weight (g) Heart/body weight (g)

Control 35.53 + 1.8 0.19 + 0.02 5.64 + 0.7

IR 33.83 + 2.2* 0.17 + 0.01* 5.05 + 0.5

IR + direct lapatinib 34.7 + 1.0 0.19 + 0.02 5.13 + 0.4

IR + delayed lapatinib 34.9 + 2.6 0.18 + 0.01 5.15 + 0.5

Direct lapatinib 33.8 + 3.0 0.18 + 0.02 5.39 + 0.8

Delayed lapatinib 35.9 + 2.0 0.2 + 0.04 5.7 + 1.5

  * indicates significant differences between irradiated and age-matched control groups (p>0.05; Mann-Whitney    

  U-test).

  Table S2 Body and organ weights of mice at sacrifice.

Treatment Body weight (g) Heart weight (g) Heart/body weight (g)

Control 35.53 + 1.8 0.19 + 0.02 5.64 + 0.7

DOX 31.2 + 2.5* 0.17 + 0.01* 5.4 + 0.3

DOX + direct lapatinib 30.7 + 1.9* 0.16 + 0.01* 5.3 + 0.3

DOX + delayed lapatinib 29.3 + 1.7* 0.16 + 0.01* 5.7 + 0.5

Direct lapatinib 33.8 + 3.0 0.18 + 0.02 5.39 + 0.8

Delayed lapatinib 35.9 + 2.0 0.2 + 0.04 5.7 + 1.5

  * indicates significant differences between irradiated and age-matched control groups (p<0.05; Mann-Whitney 

  U-test).
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Abstract
Background: It is now widely recognized that radiotherapy of thoracic and chest wall tumors 

increases the long-term risk of cardiovascular damage although the underlying mechanisms 

are not fully elucidated. There is increasing evidence that microvascular damage is involved. 

Endoglin, an accessory receptor for TGF-β1, is highly expressed in damaged endothelial cells 

and may play a crucial role in cell proliferation and revascularization of damaged heart tissue. 

We have therefore specifically examined the role of endoglin in microvascular damage and 

repair in the irradiated heart. 

Materials and Methods: A single dose of 16 Gy was delivered to the heart of adult Eng+/+ 

or Eng+/- mice and damage was evaluated at 4, 20 and 40 weeks, relative to age-matched 

controls. Gated single photon emission computed tomography (gSPECT) was used to measure 

cardiac geometry and function, and related to histo-morphology, microvascular damage 

(detected using immuno- and enzyme-histochemistry) and gene expression (detected by 

microarray and real time PCR).

Results: Genes categorized according to known inflammatory and immunological related 

disease were less prominently regulated in irradiated Eng+/- mice compared to Eng+/+ 

littermates. Fibrosis related genes, TGF-β1, ALK 5 and PDGF, were only upregulated in Eng+/+ 

mice during the early phase of radiation-induced cardiac damage (4 weeks). In addition, only 

the Eng+/+ mice showed significant upregulation of collagen deposition in the early fibrotic 

phase (20 weeks) after irradiation. Despite these differences in gene expression, there was 

no reduction in inflammatory invasion (CD45+cells) of irradiated Eng+/- hearts. Microvascular 

damage (microvascular density, alkaline phosphatase and von-Willebrand-Factor expression) 

was also similar in both strains. 

Conclusion: Eng+/- mice displayed impaired early inflammatory and fibrotic responses to high 

dose irradiation compared to Eng+/+ littermates. This did not result in significant differences 

in microvascular damage or cardiac function between the strains. 
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Introduction
Nearly 5 million long-term cancer survivors were registered in 2007 in the United States alone 

and at least half of these patients underwent radiotherapy as part of their cancer treatment. 

Although radiotherapy is an effective cancer treatment, it can contribute to late toxicity 

in surrounded normal tissue. Much work has been done to reduce the risk of late normal 

tissue toxicity induced by radiotherapy over the last decade, including modified fractionation 

schedules and conformal image-guided-radiotherapy (IGRT). Moreover, knowledge about 

the molecular mechanisms underlying the development of normal tissue toxicity after 

radiotherapy is increasing and this should eventually help in designing methods to prevent 

or treat normal tissue toxicity. Nevertheless, little is known of the underlying molecular 

mechanism of radiation-induced cardiac toxicity in thoracic cancer patients.

We and others (1,2,3) previously demonstrated that high dose cardiac irradiation induces 

microvascular damage and capillary loss, eventually leading to fibrosis. Radiation-induced fibrosis, 

defined by excessive fibroblast proliferation, myofibroblast differentiation and overproduction 

of extracellular matrix, is predominantly induced by activated Transforming Growth Factor-β1 

(TGF-β1) (4). TGF-β1 has been defined as the master switch in the fibrotic program and it 

acts on at least three different biological activities: regulation and inhibition of cell growth; 

immunosuppressive activities; and regulation of extracellular matrix component deposition (5). 

Numerous studies have shown correlations between increased severity in radiation-induced 

normal tissue toxicity and TGF-β1 signal activation (6,7,8). For regulation of endothelial function 

by TGF-β1, signaling of type I receptors ALK1 and ALK5 are the most important. Regulated (R-)

Smads, phosphorylated by type I receptors, form heteromeric complexes and these accumulate 

in the nucleus where they regulate the transcription of specific target genes (9). Endoglin, a co-

receptor for TGF-β1, is highly expressed in proliferating endothelial cells and plays a crucial role in 

angiogenesis. Since endoglin has no kinase domain itself, it promotes TGF-β1 signaling through 

ALK1 receptor to promote cell proliferation and migration (10,11,12). Mice that are deficient 

in endoglin die in mid-gestation due to vascular and cardiovascular defects. Moreover, mice 

carrying a single copy of the endoglin gene show a tendency to develop hereditary hemorrhagic 

telangiectasia (HHT) phenotype as they age, with extensive dilated and weak-walled vessels 

(13,14). Disease prevalence depends on the genetic background of the mice (7% in C57Bl/6 

and 72% in Ola mice age 1 year). This phenotype is similar to radiation-induced microvascular 

damage, which raises the question of whether endoglin may also play a crucial role in radiation-

induced cardiac injury. To explore this, we used a model of radiation-induced cardiac injury in 

Eng+/- mice and compared this to damage in wild type littermates. 
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Materials and Methods 
Mice and irradiation procedure

Eng+/- C57BL/6 mice were originally obtained from H. Arthur (Institute of Human genetics, 

International Centre for Life, Newcastle upon Tyne, UK) and subsequently bred in the 

Netherlands Cancer Institute. Male Eng+/+ mice and Eng+/- littermates aged 8-12 weeks were 

randomly allocated (after genotyping by PCR) to receive 16 Gy or 0 Gy to the heart. Mice 

were housed in a temperature-controlled room with 12 hour light-dark cycle. Standard mouse 

chow and water were provided ad libitum. Irradiation was performed with 250kV X-rays, 

operating at 12 mA and filtered with 0.6mm Copper. The dose rate was 0.94 Gy/min with 

a field size of 10.6x 15mm (including up to 30% lung volume) and the rest of the mouse 

was shielded with lead. Unanesthetized mice were immobilized in a prone position in acrylic 

perspex jigs. Separate cohorts of animals were included for analyses at 4, 20 and 40 weeks 

after irradiation, with age-matched controls (sham irradiated with 0 Gy). Each cohort typically 

comprised 10 to 15 mice (n=130 in total). This study was in agreement with the Dutch law 

on animal experiments and welfare by which the Animal Experiments Committee (AEC) of 

the Netherlands Cancer Institute has evaluated the set-up of the experiments and has given 

a positive recommendation (Permit number: 08008-1990) and in line with the international 

Guide for the Care and Use of Laboratory Animals (Eighth edition). No severe suffering was 

anticipated in this study. If mice appeared distressed, or lost >15% body weight, they were 

humanely sacrificed before the planned follow-up time. At termination of the experiment, 

mice were humanely sacrificed under lethal sodium pentobarbital anesthesia (18 mg per 

mouse, i.p). 

Gene expression profiling and pathway analysis

Total RNA was isolated from frozen sections (30 sections of 30 µm per mouse and 4-7 mice per 

group) of the mid part of the heart using Trizol® Reagent (Invitrogen Corporation, Carlsbad, 

USA), according to the manufacturer’s protocol. The quantity of total RNA was measured 

using a spectrophotometer (NanoDrop, Thermo scientific, Wilmington, USA) followed by a 

quality check measured by a Agilent 2100 Bioanalyzer with the RNA Integrity Number (RIN) 

(Agilent technologies, Santa Clara, USA). Samples with a RIN above 7 were used for DNAse 

treatment and amplified (350 ng per sample) using Illumina Totalprep RNA Amplification 

kit (Ambion, Grand Island, USA). Before hybridization, individual RNA was pooled for each 

treatment group. Hybridization of aRNA to Illumina Expression Bead Chips Mouse Whole 

Genome (WG-6 vs. 2.0) and subsequent washing, blocking and detecting were performed 
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according to the manufacturer’s protocol (Illumina, San Diego, USA). Samples were scanned 

on the IlluminaR BeadArray™ 500GX Reader using IlluminaR BeadScan image data acquisition 

software (version 2.3.0.13). MouseWG-6 vs. 2.0 BeadChip contains the full set of MouseRef-8 

BeadChip probes with additional 11.603 probes from RIKEN FANTOM2, NCBI REfSeq as well 

from the MEEBO database.

Before analyzing, the database was normalized using robust spline normalization method 

within the microarray facility of the Netherlands Cancer Institute. Log2 ratio between 

expression of genes from control mice and expression of genes from irradiated mice were 

calculated using Excel version 2003, as well as the sum of the expression of genes from both, 

control and irradiated mice. According to the sum of both expressions, genes with sums 

below 6 were discarded. The threshold for standard deviation (SD) was set to 3 and mean ± 

nSD was calculated to identify genes that are above expression 6 and above threshold 3 of 

SD. These genes were further analyzed in Ingenuity Pathway Analysis (IPA) version September 

2011 core analysis. IPA calculates a significant score for each associated network. This score 

indicates the likelihood that the assembly of a set of focus genes in a network could be 

explained by random chance alone. Networks with scores of 2 or higher have at least a 99% 

confidence of not being generated by random chance alone. For individual gene expression 

profiling, RNAs of each treatment group were individually transversely transcribed into cDNA. 

Expression of genes of interest was detected by qPCR with SYBR Green (Applied Biosystems, 

Carlsbad, USA). Changes in gene expression were analyzed with the comparative ∆Ct method 

and corrected for the expression of the housekeeping gene GAPDH. Primers used to detect 

changes in gene expression are listed in the Supplemental Table 1. 

Tissue preparation for histology

At termination of the experiment, the heart was perfused via the aortic arch (retro-grade), 

under lethal sodium pentobarbital anesthesia (18 mg per mouse, i.p), with PBS (frozen 

sections) or PBS followed by 1% paraformaldehyde (paraffin sections). The heart was then 

quickly excised before freezing on dry ice or immersion in 1% paraformaldehyde. 

Cross-sections were cut at the level of the mid-horizontal plane of the heart from fixed 

paraffin-embedded tissues (4 µm) or frozen tissues (7 µm).

Paraffin sections: Transverse sections were stained with hematoxylin and eosin (H&E) to 

measure the epicardial and myocardial thickness. To determine the extent of inflammation, 

sections were immuno-labeled with anti-CD45 antibody (1:400, Becton&Dickinson, Franklin 

lakes, USA). Perls’-staining was performed as indicator of previous hemorrhage. Based 



- 116 -

Chapter 5

on a Sirius red staining, interstitial collagen was determined in the subendocardium and 

myocardium of the left ventricle (LV). Within one follow-up time all sections were processed 

identically, at the same time with precisely the same incubation times for the primary and 

secondary antibody and diamminobenzidine (DAB) solution (Sigma, Zwijndrecht, the 

Netherlands). Therefore, all differences between the treatments are ultimately due to DAB 

identification of the relevant protein.

Photographs of the LV wall, excluding the septum, were taken using a 5x objective (Leica 

DFC320) and 12 measurements per heart were performed for the epicardial and myocardial 

thickness. The number of CD45+ cells per section was counted separately in the epicard and 

myocard to determine the extent of inflammation. Perls’ stained sections were examined 

for evidence of iron-containing macrophages and this was recorded as positive or negative 

for each section. Interstitial collagen was quantified in five randomly selected areas of the 

subendocardium and myocardium of the LV (40x objective) and results were expressed as 

percentage tissue positive for Sirius red relative to myocardial area. Morphometric parameters 

were analyzed using a computerized morphometry system (Leica Qwin V3, Leica, Rijswijk, the 

Netherlands).

Frozen sections: An anti-CD31 antibody (1:50, Becton&Dickinson) was used to visualize 

cardiac vasculature of the central part of the heart. To determine functional changes in the 

microvasculature, a histochemical staining with Naphtol AS-MX / DMF and fast Blue BB salt 

was performed to detect endothelial cell alkaline phosphatase. Sections were also reacted 

with antibodies against von Willebrand Factor (vWF) (1:4000, Abcam, Cambridge, USA) as a 

marker of thrombotic changes. Within one time group all sections were processed identically, 

at the same time with precisely the same incubation times for the primary and secondary 

antibody and DAB solution. A double staining was performed to visualize the vasculature 

(anti-CD31) and the pericytes coverage (anti-NG2, 1:200, Chemicon, Temecula, CA). Primary 

antibodies were visualized with Alexa Fluor (AF) 633 (1:100, Invitrogen, Carlsbad, CA) and 

AF568 (1:250, Invitrogen). 

For quantification of microvessels, five random fields (40x objective) from transverse sections 

of the subendocardium were photographed with a CCD 2 - Color Microscope system, 

including a Zeiss AxioCam color camera (Axiocam HRc, Zeiss, Göttingen, Germany), and a 

computerized morphometry system (Leica Qwin V3) was used to quantify the microvascular 

density (MVD). Vessels beneath a size of 1.5 or above 200 µm2 were automatically excluded 

from the measurements. Photographs of whole sections stained for ALP and vWF were taken 

with an Aperio scanner (Scanscope-XT, Aperio technologies, Vista, USA) using 40x objective. 
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Analyses of the percentage myocardium, excluding endocardium, positive for each marker 

were done with a computerized morphometry system (Leica Qwin V3). Photographs of 

the fluorescent stainings were performed on a Leica SP5 system microscope (Leitz Wetzlar, 

Heidelberg, Germany); they were collected individually in the blue and red channels and 

merged thereafter. An average of 5 photographs were taken around the left ventricle and the 

pericyte coverage of microvessels was determined by counting NG2+/CD31+ vessels using a 

Image J computer analysis program. 

Gated SPECT/CT

Gated single photon emission computed tomography (gSPECT) acquisitions were made with 

the dedicated small-animal NanoSPECT/CT (Bioscan Europe, Ltd., Paris, France). Animals were 

anesthetized with Hypnorm (Fentanyl 0.26 mg/kg/Fluanisone 8.33 mg/kg, VetaPharma, Ltd., 

Leeds, UK) and Dormicum (Midazolam, 4.17 mg/kg, Roche, Woerden, the Netherlands) via 

intraperitoneal (i.p.) injection (1:2:1 Hypnorm:H2O:Dormicum; 120 µl/mouse). Serum Albumin 

(HSA) (Vasculosis, IBA Molecular, Gif-sur-Yvette, France) was labeled with 1-1.5 ml 99mTc-

pertechnetate. The radiotracer (150 µl) was injected intravenously (i.v.), with a total activity of 

about 50 MBq per mouse. Three-lead electrodes (3M red Dot 2282E, 3M, St.Paul, USA) were 

attached to both hind paws and right front paw of the mouse, placed on the animal bed in 

the prone position and connected to the integrated electrocardiography (ECG) monitor to 

measure heart rate (HR). Once a stable HR was established, a short X-ray topogram was made 

to set the field of view (FOV) and so focus on the thorax to reduce scan time. After the FOV 

was set, gated SPECT acquisition was started using a quadruple-head gamma camera high 

precision gantry, equipped with 4 pyramid collimators and 9 pinhole apertures (diameter 1.2 

mm). The axial FOV was 16 mm. A 20% window centered on the 140 keV photoelectric peak 

of 99mTc was used to acquire 20 projections with uniform angular sampling over a 360o radius 

into a 128 x 128 matrix Human X-ray topogram and SPECT acquisition were initiated directly 

after tracer administration. ECG-gated data were recorded in 8 time-bins per cardiac cycle. 

HiSPECT NG software (InVivoScope, Bioscan) was used to perform iterative reconstruction 

into 3D-datasets. Quantitative analysis of the reconstructed datasets was performed on a 

clinical e.soft (syngo-based) workstation (Siemens Medical Solutions, Siemens AG, Erlangen, 

Germany), using algorithms to automatically reconstruct a count based 3D model of the 

dimensions of the left ventricular (LV) end diastolic and systolic volumes (EDV, ESV). The 

ejection fraction (EF) was calculated based on the difference between EDV and ESV divided 

by EDV. 
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Statistics

Data are expressed as mean ± SEM and groups were compared using non-parametric Mann–

Whitney exact U-tests. Group differences were considered statistically significant at p<0.05. 

Statistical analyses were performed using SPSS version 20. 

Results
Mouse health

There were no significant differences between groups in mean body weight or health, 

based on genotype or treatment or time-point (Table S2), except a small decrease in heart/

bodyweight ratio in irradiated Eng+/- mice after 20 weeks compared to age-matched controls. 

There was no obvious telangiectasia in external organs (ears, paws) of unirradiated Eng+/- 

mice at termination of the experiment (maximum follow-up 40 weeks, mice aged 1 year). 

Impaired inflammatory response in irradiated hearts of Eng+/- mice at 4 weeks

In order to identify genes and pathways potentially involved in the cardiac response to 

irradiation in Eng+/- mice versus Eng+/+ mice, microarray and pathway analyses were performed 

using the software program IPA (a full list of gene expression levels after cardiac irradiation of 

Eng+/- and Eng+/+ mice can be found at http://www.ebi.ac.uk/arrayexpress). Known ingenuity 

functional and/or canonical pathway analysis was used to identify over-representation of 

radiation-correlated genes within known functional assignments (such as inflammatory 

response) and to generate hypotheses. 

The most significantly altered network for Eng+/+ mice at 4 weeks after 16 Gy was classed as 

“behavior/ nervous system development and function”. Immune response regulating genes 

interferon regulatory factor 7 (IRF7) and chemokine (C-X-C motif) ligand 10 (CXCL10) were 

identified as central molecules and were significantly upregulated within this top network 

(Figure 1A). “Inflammatory response” and “immunological disease” were the top functional 

pathways significantly regulated 4 weeks after cardiac irradiation of Eng+/+ mice. This 

included 47 of the 115 molecules in these analyses (Table 1). The top upregulated genes were 

sarcolipin (SLN), myosin light chain 7 (MYL7) and myosin light chain 4 (MYL4), all of which 

are involvedin maintaining cardiac contractility and function. Heat shock protein 70 (HSP70), 

involved in cardiomyocyte protection, was one of the top significantly down regulated genes 

(Table 2). In contrast, the most significantly altered network for Eng+/- mice at 4 weeks after 

16 Gy was classed as “hematological system development and function”. Cell proliferation 

and cell death-regulating gene E2 transcription factor was the central molecule within this 
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top network (Figure 1B). 

Inflammatory responses and immunological disease were much less prominent in Eng+/- mice 

than Eng+/+ mice at 4 weeks after 16 Gy (Figure 2). Other upregulated functional pathways 

in Eng+/- mice were “cell-to-cell signaling” and “cell death related pathways” (Table 1). These 

pathways include significant downregulation of genes related to binding of connective tissue 

cells and fibroblasts and significant upregulation of genes related to apoptosis of endothelial 

cells. Interestingly, cardiac function maintaining genes and cardiomyocyte protective genes 

(SLN, MYL7, MYL4, and HSP70) were oppositely regulated in these two mouse strains (Table 2)

Figure 1 Graphical representation of the top networks of differentially regulated genes (4 weeks).  

Each network symbolizes the biological functions and/or diseases that were most significantly regulated  4 

weeks after cardiac irradiation of Eng +/+ mice (n=5) (A) and Eng +/- mice (n=4) (B). The genes marked in  

red represent the upregulated genes and in green the downregulated genes. The solid arrows represent  

direct interactions and the dotted arrows indirect interactions. Genes circled in dark blue represents central  

molecules and the light blue lines indicate interaction with other genes. 
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Figure 2 Comparison of top 5 functional pathways from Eng+/+ (dark blue) and Eng+/- (light blue), generated by 

IPA analysis. Bars indicate top networks expressed and y-axis displays the – (log) significance. Taller bars are more 

significant than shorter bars. P-value display Benjamini-Hochberg multiple testing correction. 
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Table 1 Representation of the top network and functional pathways using IPA approach.

Eng+/+ 16 Gy Eng+/- 16 Gy Eng+/+ 16 Gy Eng+/- 16 Gy

Network Network Functional pathway Functional pathway

4 weeks Nervous system 
development and 
function (51) 

Hematological 
system development 
and function (36)

1. �Inflammatory 
response

2. �Immunological 
disease

1. �Cell-to-cell signaling 
and interaction

2. Cell death

20 weeks Inflammatory 
response (49)

Inflammatory 
response (40)

1. �Inflammatory 
response

2. �Cell-to-cell 
signaling and 
interaction

1. Cancer
2. �Cardiovascular 

system development 
and function

40 weeks Lipid metabolism, 
Molecular 
transport (49)

Cellular  
movement (36)

1. Cancer
2. Genetic disorder

1. Tissue development
2. �Antigen 

presentation

Top networks for 4, 20 and 40 weeks after 16 Gy irradiation of Eng+/+ and Eng+/- mice. Numbers in brackets 

represent the network score, which is explained in material and methods. The first two functional pathways for 

4, 20 and 40 weeks after 16 Gy irradiation of Eng+/+ and Eng+/- mice are also shown. 

The most significantly altered network for Eng+/+ mice at 20 weeks after 16 Gy was 

inflammatory response (Figure 2). Acute phase-regulated receptor and signal-inducing 

macrophage protein CD163 (downregulated) was one of many central molecules within this 

network (Figure 3A). As at 4 weeks, Eng+/+ mice still showed significant upregulation in 

inflammatory response, with 55/142 genes in this functional pathway analysis (Table 1). Both 

complement immune system related gene (CFD) and carbonic anhydrase III (CA3), which 

are related to cardiac myocyte damage, were significantly upregulated top genes (Table 2). 

Analysis of Eng+/- hearts at 20 weeks after 16 Gy also indicated inflammatory response as 

the top network. However, the score of this network was lower than in Eng+/+ mice (Figure 

2) and inflammation did not emerge as one of the top functional pathways (Table 1). Central 

molecules within this network were interferon regulatory factor 7 (IRF7), beta-2-microglobulin 

(B2M) and CHEMOKINE complex (Figure 3B). Top upregulated genes indicated endothelial 

disorder (endothelial cell-specific molecule 1 (ESM1)) (Table 2). 
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Figure 3 Graphical representation of the top network of differentially regulated genes (20 weeks).  

Each network symbolizes the biological functions and/or diseases that were most significantly regulated 20 

weeks after cardiac irradiation of Eng +/+ mice (n=4-5) (A) and Eng +/- mice (n=5) (B). The genes marked in red 

represent the upregulated genes and in green the downregulated genes. The solid arrows represent direct inter-

actions and the dotted arrows indirect interactions. Genes circled in dark blue represents central molecules and 

the light blue lines direct interaction with other genes.

The most significantly altered network for Eng+/+ mice at 40 weeks after 16 Gy was “lipid 

metabolism and molecular transport”, with cardiomyocyte protective gene HSP70 as the 

central molecule (Figure 4A). HSP70 was also one of the top downregulated genes, indicating 

a lack of cardiomyocyte protection (Table 2). “Neurological disorder” and “cardiovascular 

disease” were two of the top functional pathways (Figure 2), both containing adrenergic, 

beta-1, receptor (ADRB1). ADRB1, which stimulates smooth muscle contraction and promotes 

increased contractility and heart rate, was significantly upregulated (Table 1). Inflammatory 

esponse was no longer detected at 40 weeks after irradiation. Top network for Eng+/- mice 

at 40 weeks after 16 Gy was “cellular movement”. Two central molecules were involved 

within this network; myosin light chain (MLC) and chemokine (C-X-C motif) ligand 12 

(CXCL12), and both were significantly upregulated (Figure 4B). Furthermore, many cardiac 

contractile stimulating genes were involved in this network (MYL7, MYL4, MYH6, tensin-1, 

titin and myosin). Again, the top upregulated genes were involved in cardiac contractility 

(SLN, MYL7) (Table 2). Inflammatory response and immunological disease were not within the 

top functional pathways at 40 weeks after 16 Gy but neurological disease, muscle disorder 

and cardiovascular disease were (Figure 2). Neurological disease and muscle disorder were 
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more pronounced in Eng+/+ mice than to Eng+/- mice. Cardiovascular disease was equally 

upregulated within both strains (Figure 2). 

Figure 4 Graphical representation of the top network of differentially regulated genes (40 weeks). 

Each network symbolizes the biological functions and/or diseases that were most significantly regulated 40 

weeks after cardiac irradiation of Eng +/+ mice (n=4-5) (A) and Eng +/- mice (n=4-7) (B). The genes marked in 

red represent the upregulated genes and in green the downregulated genes. The solid arrows represent direct 

interactions and the dotted arrows indirect interactions. Genes circled in dark blue represents central molecules 

and the light blue lines direct interaction with other genes. 

Table 2 Representation of differently regulated genes after 16 Gy irradiation using IPA approach..

Eng+/+ 16 Gy Eng+/- 16 Gy Eng+/+ 16 Gy Eng+/- 16 Gy

Top upregulated 
genes

Top upregulated 
genes

Top downregulated 
genes

Top downregulated 
genes

4 weeks SLN	 (6.2) GDF15	 (4.7) C1orf51	 (-3.0) Hamp/Hamp2	(-4.9)

MYL7	 (5.6) Hsp70	 (3.4) PER2	 (-2.3) CA3	 (-3.3)

MYL4	 (4.8) MKI67	 (3.2) CA4	 (-2.2) TGFbRIII	 (-3.3)

GDF15	 (4.4) PBK	 (3.1) Hsp70	 (-1.9) Kcnip2	 (-3.3)

Hamp/Hamp2	(4.3) IRF7	 (3.1) COQ10B	 (-1.8) MYL7	 (-3.2)

20 weeks CA3	 (4.8)
CFD	 (4.7)
HP	 (3.4)
Hamp/Hamp2	(3.3)
IRF7	 (3.2)

IGHA	 (3.7)
GDF15	 (3.5)
ESM1	 (2.9)
HIST1H2AB	 (2.7)
PACSIN1	 (2.6)

CHTOP	 (-2.1)
CXCL14	 (-2.1)
Klra4	 (-2.1)
ADH1C	 (-2.0)
ALDOB	 (-1.9)

CDO1	 (-3.5)
Klra4	 (-3.3)
Klk1b1	 (-3.3)
INMT	 (-3.2)
GUCY	 (-2.9)
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40 weeks ESM1	 (3.9)
SRGN	 (3.5)
HPRT1	 (3.3)
HOXB7	 (3.2)
C1orf52	 (3.2)

SLN	 (6.2)
MYL7	 (5.7)
CLASP1	 (4.3)
DKK3	 (3.9)
SORBS1	 (3.9)

Hsp70	 (-4.3)
CXCL14	 (-3.3)
ADH1C	 (-3.0)
TDRD3	 (-2.8)
CPXM1	 (-2.8)

CCL21	 (-5.0)
INMT	 (-4.3)
Mup1	 (-4.3)
ADH1C	 (-4.2)
Ifitm1	 (-3.7)

The top 5 upregulated and downregulated genes per genotype are shown after 16 Gy at4 weeks, 20 weeks and 

40 weeks. Numbers in brackets show Log2 ratio of sham treated mice versus 16 Gy irradiated mice. 

Pro-fibrotic genes upregulated in Eng+/+ mice only at 4 weeks

Unirradiated Eng+/- mice had reduced endoglin mRNA expression compared to Eng+/+ mice, 

as expected (Figure 5, top panels). Immunohistochemistry analysis confirmed that endoglin 

protein levels in hearts of Eng+/- mice were also approximately half that of Eng+/+ mice (data 

not shown). By 40 weeks after irradiation, the mRNA levels of endoglin were decreased to 

< 50% of control values in both strains, although this did not reach statistical significance. 

Figure 5 Expression of genes involved in TGFβ pathway measured by RT PCR.  Each bar represents the average 

expression per group ± SEM. Values of sham-treated animals were set to 1. The graph show the fold-change in 

gene expression in irradiated mice relative to respective controls at 4  (n=4-5), 20 (n=4-5), and 40 (n=4-7) weeks 

after 16 Gy irradiation. 
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TGF-β1 was significant increased by 4 weeks after irradiation in Eng+/+ mice and in both strains

at 20 weeks and 40 weeks (not significant) after irradiation. Irradiation did not alter the 

mRNA expression of fibrogenesis activator ALK5 in Eng+/- mice but there was a non-significant 

increase in ALK5 in Eng+/+ mice at 4 weeks followed by significant decreased at 40 weeks 

after irradiation. PDGF showed a trend to increase in Eng+/+ mice at early times (4 weeks), 

with increases in both strains at later times (Figure 5). Profibrotic CTGF and PAI-1 were not 

altered significantly by radiation in either strain at 4, 20 or 40 weeks after irradiation (data 

not shown). 

Microvascular damage in Eng+/+ and Eng+/- mice

After demonstrating significant differences between Eng+/+ mice and Eng+/- mice in 

Figure 6 Inflammatory and fibrotic changes at 4, 20 and 40 weeks after irradiation or sham treatment.  

(A) Quantification of CD45+ cells per section in the myocardium and (B) epicardium. (C) Percentage interstitial 

collagen content of irradiated heart sections, relative to age-matched unirradiated controls. Values represent 

mean ± SEM with 3-6 mice in the 4 weeks group, 4-5 mice in the 20 weeks group and 5-7 in the 40 weeks 

group, *p<0.05 compared to age-matched unirradiated controls. 
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inflammatory, fibrogenic and survival pathway signaling in response to cardiac irradiation, we 

investigated this in more detail with respect to tissue morphology and function.

Epicardial thickness and myocardial thickness were not altered at any time-point after 

irradiation in either strain (data not shown). Irradiation led to a transient increase in CD45+ 

cells in the myocardium of both strains at 4 weeks and in the epicardium at 20 and 40 weeks. 

However, there were no differences in the inflammatory response noted between strains at 

the tissue level (Figure 6 A-B). Iron-containing macrophages, as an indicator of hemorrhage, 

were significantly increased in both myocardium and epicardium at 20 and 40 weeks after 

irradiation in both strains (data not shown). Collagen deposition in the myocardium was 

increased at 20 weeks after irradiation in Eng+/+ mice only, with no significant changes at 40 

weeks in either strain (Figure 6 C). 

Figure 7 Microvascular alterations at 4, 20 or 40 weeks after irradiation or sham treatment. (A) MVD per unit 

area expressed as percentage of age-matched unirradiated control values. (B) ALP positive tissue areas as % of 

age-matched unirradiated controls. (C) vWF positive tissue areas as % of age-matched unirradiated controls. 

Values represents mean ± SEM with 4-5 mice in the 4 and 20 weeks group and 4-7 mice in the 40 weeks 

group,*p< 0.05 compared to age-matched unirradiated controls. 
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Microvascular density (MVD) decreased significantly at 4 weeks after irradiation in Eng+/- 

mice and in both strains 40 weeks after irradiation (Figure 7 A). This was accompanied by 

endothelial damage, as shown by a marked decrease in ALP activity at 4, 20 and 40 weeks 

after irradiation, and increased expression of the thrombotic endothelial marker vWF (not 

significant) at 40 weeks in both strains (Figure 7 B-C). 

Microvascular stability, assessed by pericyte coverage, was decreased in irradiated mice at 40 

weeks (not significant) but there were no differences between strains (Figure 8).

Since Eng+/- mice are known to be susceptible to microvascular defects as they age (13,14), 

we also compared the microvascular density and functionality (pericyte coverage, ALP and 

vWF expression) in unirradiated Eng+/- and Eng+/+ mice at 40 weeks follow-up. There were no 

significant differences in any of these parameters between the strains (Figures 7, 8). 

Normalized cardiac function in Eng+/- mice at 40 weeks

Cardiac function, evaluated by gated SPECT (99mTc-HSA) showed modest decreases in EDV 

and ESV at 20 weeks after irradiation of Eng+/- mice only. SV decreased in both strains with 

no changes in EF (Figure 9). Almost all cardiac function parameters had normalized to control 

levels at 40 weeks after irradiation.

Figure 8 Pericyte coverage altered at 40 weeks after irradiation. Confocal imaging showing the effects of 

radiation on pericyte coverage (marked in red) on endothelial cells of the cardiac microvasculature (marked in 

blue). Graph displaying NG2/CD31 ratio as % of each individual treatment group and genotype. Values repre-

sents mean ± SEM with 4-5 mice in the 4 and 20 weeks group and 4-7 mice in the 40 weeks group,*p< 0.05 

compared to age-matched, unirradiated controls.
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Figure 9 EDV, ESV, EF and SV measured by gated SPECT at 20 weeks or 40 weeks after irradiation or sham 

treatment. Values represent mean ± SEM (7-14 mice in each irradiated group), *p<0.05 compared to age-

matched, unirradiated controls. 
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Discussion
Microvascular damage has been identified as a contributing factor in developing heart failure 

after high dose ionizing radiation (1,15,16,17). Endothelial cells are highly sensitive to radiation 

and aberrant signaling by damaged cells affects the pathological progression of radiation-induced 

tissue damage (18,19,20). Endoglin is a co-receptor for TGF-β1; it is essential for angiogenesis 

and predominantly expressed in activated vascular endothelial cells (10,11,12,13,14,21,22). In 

vivo studies have demonstrated that a mutation or deficit in endoglin causes microvascular 

damage. Mice deficient in endoglin develop vascular and cardiovascular damage, leading to 

death of Eng-/- embryos or to the HHT phenotype in Eng+/- mice, including endothelial cell 

degeneration, defects in endothelial junctions and incomplete smooth muscle cell coating of the 

vessel (13,14,21,22). Several studies have shown that endoglin is upregulated in an inflammatory 

environment and plays a role in lymphocyte trafficking and migration. Furthermore, endoglin 

haplo-insufficient mice have been shown to have a reduced inflammatory response and limited 

cardiac fibrosis after inflammatory stimuli (23,24). 

In this study gene expression analysis of irradiated hearts demonstrated a decreased 

inflammatory response in Eng+/- mice compared to Eng+/+ mice. This was particularly evident 

during the early phase of radiation-induced normal tissue damage (4 weeks after 16 Gy). 

Genes involved in both inflammatory response and immunological related disease were less 

prominently regulated by radiation in Eng+/- mice than in Eng+/+ mice. Similar results were 

previously obtained by Scharpfenecker et al. (25) in irradiated kidneys of Eng+/+ mice and 

Eng+/- mice. In these studies the reduced endoglin levels in Eng+/- mice were associated with 

both reduced expression of inflammatory cytokines (Ccr2, IL1b, IL6) and reduced inflammatory 

infiltration (CD45+ cells) in irradiated kidney (26). In our study the reduced inflammatory 

response indicated from gene expression analysis was not reflected in reduced inflammatory 

infiltration in irradiated heart tissue. 

Radiation-induced cardiac inflammation often precedes a late fibrotic response. In our study, 

fibrosis related genes TGF-β1, and to a lesser extent ALK5 and PDGF, were only upregulated in 

Eng+/+ mice during the early phase of radiation induced cardiac damage (4 weeks). Moreover, 

at 20 weeks after irradiation, immunohistochemical analysis showed significant collagen 

deposition in Eng+/+ mice only and not in Eng+/- mice. Again, this is consistent with previous 

studies, in which endoglin haplo-insufficiency reduced fibrosis in irradiated kidneys and in a 

model of ischemic heart damage (23,26).

With increased follow-up, our results indicated a shift away from the inflammatory response, 

although profibrotic genes TGF-β1 and PDGF were upregulated in both strains at 20 and 40 
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weeks follow up. This suggests that endoglin haplo-insufficiency only limits inflammation and 

fibrosis in the early phase of radiation-induced cardiac damage. 

We had previously demonstrated that cardiac irradiation of wildtype C57BL/6 mice induced 

endothelial cell damage (3). Since endoglin is a co-receptor of TGF-β1, and plays an important 

role in vascular morphogenesis, endothelial cell function and differentiation of pericytes and 

smooth muscle cells, one might expect increased endothelial cell damage and loosening of 

endothelial-pericyte interaction after irradiation in endoglin haplo-insufficient mice (13,14,27). 

Our results did indicate an early reduction of MVD in irradiated hearts of Eng+/- mice but 

functional damage in remaining vessels, ALP, vWF expression and pericyte coverage, was not 

greater in Eng+/- than Eng+/+ mice. 

Changes in cardiac function were modest and non-progressive but significant decreases in 

ESV and EDV were seen at 20 weeks in endoglin haplo-insufficient mice and decreased SV 

in both strains. Upregulation in genes involved in cardiac contractility (top network 16 Gy 40 

weeks) in irradiated Eng+/- hearts may have contributed to a normalization of cardiac function 

at 40 weeks after irradiation. 

In summary, high dose radiation induced endothelial cell damage in cardiac microvasculature, 

which progressed in time. This microvascular tissue damage was independent of endoglin 

expression levels. However, our data do demonstrate that endoglin haplo-insufficiency limited 

the early inflammatory response and fibrosis in our radiation-induced mouse model of cardiac 

damage. Another model of acute pressure overload heart failure (23) showed that reduced 

endoglin expression had a more pronounced effect on cardiac outcome, with attenuated 

fibrosis preserved left ventricular function and improved survival. However, radiation-induced 

heart damage does not result in acute or severe hypoxia but stimulates progressive endothelial 

dysfunction and capillary loss and leads to a delayed myocardial damage without severe hypoxia. 

The underlying mechanisms precipitating myocardial fibrosis and heart failure are therefore 

different and the importance of endoglin in these different pathologies probably varies.
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Abstract
Purpose: Radiotherapy to the thorax increases the risk of radiation-induced heart disease. 

We and others have shown that local irradiation to the murine heart results in inflammatory 

and fibrotic responses and decreased microvascular density. In the present study we tested 

whether thalidomide is able to inhibit radiation-induced heart disease.

Materials and Methods: Single doses of 16 Gy or 0 Gy (sham treatment) were delivered 

to the hearts of mice. At 16 weeks after irradiation the mice were allocated to receive a 

thalidomide-containing chow (100 mg/kg body weight/day) or control chow till the end of 

the experiment. At 40 weeks after irradiation, functional imaging was performed and the 

hearts were examined for histological damage. 

Results: Irradiation led to an increase in epicardial thickness and infiltrating inflammatory cells 

in the epicardium as well as an increase in interstitial collagen content. The microvasculature 

had a decreased alkaline phosphatase activity and reduced pericyte coverage. Thalidomide 

had no protective role in any of these processes. There were no differences in heart function 

measured between the treatment groups.

Conclusions: Although others have shown protective effects of thalidomide in disease 

models involving inflammation, fibrosis and blood vessel maturation, thalidomide was not 

able to reduce radiation-induced heart damage.
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Introduction
Radiotherapy to the thorax is performed widely for the treatment of breast cancer and 

Hodgkin lymphoma. However, these patients with a good long-term prognosis are at risk 

of developing treatment-related late normal tissue damage. Epidemiological studies have 

demonstrated increased risk for cardiac mortality and morbidity, which becomes significant 

5-10 years after treatment and increases with time (1-4). The pathological consequences 

of radiation-induced heart disease are pericarditis, myocardial fibrosis, coronary artery 

disease, valvular disorders and conduction abnormalities (2, 5, 6). Regional cardiac perfusion 

defects have also been shown in breast cancer patients from 6 months after radiotherapy 

(7, 8) and preclinical studies have demonstrated considerable damage to endothelial cells 

after irradiation, including decreased microvessel density, increased epicardial thickness, the 

presence of inflammatory cells in epicardium and myocardium and fibrosis (9-14).

Thalidomide (-α-(N-phtalidimido) glutarimide was initially used as a sedative and anti-emetic 

drug for morning sickness. The drug was withdrawn from the market in 1961 when it became 

clear that the intake of thalidomide during pregnancy could lead to severe deformities in the 

embryo. Thalidomide is recently re-emerging as a treatment for inflammatory disease and 

cancers, including cutaneous lupus, Crohn’s disease, rheumatoid arthritis, multiple myeloma 

and graft-versus-host disease, because of its anti-inflammatory and anti-angiogenic effects 

(15). Thalidomide inhibits the production of TNF-α (tumor necrosis factor-alpha), which 

regulates inflammatory cascades and inhibits the expression of vascular endothelial growth 

factor (VEGF) and interleukin-6 (IL-6), which play a role in angiogenesis (16-19). Recent 

studies also showed evidence of anti-fibrotic activity in various fibrosis-related diseases 

such as lung fibrosis (20, 21) and remodeling after myocardial infarction (22). Furthermore, 

thalidomide was found to induce vessel maturation by stimulating mural cell coverage and 

thereby rescuing vessel wall defects (23). 

Since inflammatory and fibrotic events are dominant features in radiation-induced heart 

disease, we hypothesized that thalidomide might prevent or ameliorate radiation-induced 

heart disease. Therefore, we treated irradiated and unirradiated C57BL/6J mice with 

thalidomide-containing chow and compared cardiac damage with mice treated with control 

chow.
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Materials and Methods
Experimental design and irradiation procedure

Endoglin heterozygous (Eng+/-) mice on a C57BL/6J background were obtained from H. 

Arthur, Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, UK. 

These mice were crossed with C57BL/6J mice (from Charles River laboratories, France) and 

bred in isolator cages at the breeding facility of the Netherlands Cancer Institute. The Eng+/+ 

wildtype offspring were used for the present studies and Eng+/- littermates were used in a 

parallel study.  Standard mouse chow and water were provided ad libitum. At the age of 

9-11 weeks, male mice were randomly allocated to different treatment groups and housed 

in a temperature-controlled room with 12 h light-dark cycle. Thirty mice received a single 

dose of 16 Gy to the heart using 250 kV X-rays, operating at 12 mA and filtered with 0.6 

mm copper. The dose rate was 0.94 Gy/min and the irradiation field was 10.6 x 15.0 mm 

(including up to 30% lung volume). The rest of the body was shielded with a 3 mm thick lead 

plate. Twenty mice received sham irradiation. At 16 weeks after irradiation, half of the mice 

in both the 0 and 16 Gy groups received thalidomide containing chow (0.6667 g thalidomide 

per kg chow), until 1 week before sacrifice. The other half of the mice received control chow. 

Assuming the mice in our study consumed 4.5 g of feed per day (as measured in previous 

pilot studies), we estimated that the average 30 g mouse consumed 100 mg/kg body weight/

day of thalidomide. The dose of thalidomide was based on published studies in mice and 

rats (22-24) and the start of drug administration was chosen to coincide with the onset 

of progressive vascular damage (14). At 40 weeks after irradiation, functional imaging was 

performed using gated Single-Photon Emission Computed Tomography (gated SPECT) and 

the mice were sacrificed to collect the heart. Experiments were in agreement with the Dutch 

law on animal experiments and welfare, and in line with the international Guide for the Care 

and Use of Laboratory Animals (Eighth edition).

Gated SPECT

The tracer tetrofosmin (Myoview, GE-healthcare, Hoevelaken, The Netherlands) was labeled 

with 99mTc-pertechnetate according to the manufacturer’s protocol and injected i.v. (150 μl) 

with a total activity of approximately 70 MBq per mouse. Three silver/silver-chloride coated 

plastic electrodes (3M red Dot 2282E; 3M, St. Paul, MN, USA) were attached to both hind 

paws and right front paw of the mouse and connected to the integrated electrocardiography 

(ECG) monitor to measure heart rate (HR). Acquisitions were started 1 h after injection of the 

tracer as described previously (14). HiSPECT NG software (InVivoScope, Bioscan) was used to 
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perform iterative reconstruction into 3D-datasets. Quantitative analysis of the reconstructed 

datasets was performed on a clinical e.soft (syngo-based) workstation (Siemens Medical 

Solutions, Siemens AG, Erlangen, Germany), using algorithms to automatically reconstruct 

a count based 3D model of the dimensions of the left ventricle (LV) end diastolic and systolic 

volumes (EDV, ESV). The ejection fraction (EF) was calculated based on the difference between 

EDV and ESV divided by EDV.

Tissue handling and histology

Mice were anaesthetized with a lethal dose of sodium pentobarbital (18 mg i.p. per mouse). 

The heart was perfused via the aortic arch (retro-grade) with PBS (phosphate buffered saline) 

for frozen sections or PBS followed by 1% paraformaldehyde for paraffin sections. The 

heart and lungs were then quickly excised before freezing on dry ice or immersion in 1% 

paraformaldehyde. Cross sections of the heart were cut at the level of the mid-horizontal plane 

from fixed paraffin-embedded tissue (4 µm) or frozen sections (7 µm). Photographs were taken 

with a CCD 2 Color Microscope system, including a Zeiss AxioCam color camera (Axiocam 

HRc, Zeiss, Göttingen, Germany) or Aperio scanner (Scanscope-XT, Aperio technologies, 

Vista, USA) using a 40x objective. All analyses were performed in the left ventricle (LV) using 

a computerized morphometry system (Leica Qwin V3, Leica, The Netherlands).

Paraffin sections

Paraffin sections were stained with hematoxylin and eosin (H&E) to measure epicardial and 

myocardial thickness. Photographs of the LV wall (excluding the septum) were taken using a 

5x objective and 12 measurements per heart were performed to measure the epicardial and 

myocardial thickness. 

To determine the extent of inflammation, sections were stained with an anti-CD45 antibody 

(1:400, Becton & Dickinson, Franklin lakes, NJ, USA) to detect leukocytes. The total numbers 

of CD45+ cells in the epicardium were counted and in the LV myocardium five random 

photographs (40x objective) were analyzed. To quantify the number of macrophages, sections 

were stained with an anti-F4/80 antibody (1:400, Serotec, Kidlington, UK) and the numbers 

of macrophages were counted in the epicardium and LV myocardium (five random 40x 

photographs).

Perl’s-staining was performed to investigate the presence of iron-containing macrophages 

(indicative of previous hemorrhage) and this was recorded in as positive or negative in 

epicardium and LV myocardium separately. 
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Interstitial collagen was quantified in five randomly selected areas of the LV myocardium (40x 

objective) based on a Sirius Red staining and the results were expressed as percentage tissue 

positive for Sirius Red, excluding perivascular collagen, relative to myocardial area.

Frozen sections

An anti-CD31 antibody (1:50, Becton & Dickinson) was used to visualize cardiac vasculature 

of the heart and to quantify microvascular density (MVD). Five random areas (40x objective) 

from the myocardium were photographed and analyzed. Vessels smaller than 1.5 or larger 

than 200 μm2 were automatically excluded from the measurements, to ensure that only 

microvasculature was counted. To determine functional changes in the microvasculature, 

histochemical staining with Naphtol ASMX/DMF and fast Blue BB was performed to detect 

endothelial cell alkaline phosphatase (ALP) activity.

Sections were also stained using antibodies against von Willebrand Factor (vWF) (1:4000, 

Abcam), as a marker of thrombotic changes and vascular cell adhesion molecule 1 (VCAM-1)

(1:200, Becton & Dickinson), as a marker of vascular inflammation.

Photographs of whole sections stained for ALP and vWF were taken with an Aperio scanner 

and analyses of the percentage myocardium positive for each marker were done with a 

computerized morphometry system (Leica Qwin V3). VCAM-1-stained sections were semi-

quantitatively analyzed (without knowledge of treatment group) according to the criteria: No, 

mild, or strong expression.

All sections were processed identically, at the same time with precisely the same incubation 

times for the primary and secondary antibody and diammino benzidine (DAB) solution 

(Sigma, Zwijndrecht, The Netherlands). Therefore, all differences between the treatments are 

ultimately due to DAB identification of the relevant protein.

A double staining was performed to visualize the vasculature and the pericytes covering the 

vessels. The primary antibodies used were CD31 (1:50, Becton & Dickinson) and NG2 (1:200, 

Chemicon, Temecula, CA, USA) and the primary antibodies were visualized with Alexa Fluor 

(AF) 633 (1:100, Invitrogen, Carlsbad, CA, USA) and AF568 (1:250, Invitrogen). 

To visualize α-smooth muscle actin (αSMA) positive cells around blood vessels, a double 

staining was performed using the primary antibodies CD31 (1:50, Becton & Dickinson) and 

αSMA-Cy3 (1: 200, Sigma). The primary antibody CD31 was visualized with AF633 (1:100, 

Invitrogen).

Photographs of the fluorescent stainings were taken with a confocal microscope (Leica). An 

average of five photographs were taken around the left ventricle and the pericyte coverage 
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of microvessels was determined by counting NG2+/CD31+ vessels using an ImageJ computer 

analysis program. 

Statistics

Data are expressed as mean ± SEM and groups were compared using non-parametric 

Mann–Whitney U tests or Fisher’s exact test. Group differences were considered statistically 

significant at p<0.05. Statistical analyses were performed using SPSS version 20. 

Results

Mouse survival and weight

The irradiated mice fed with control chow gained 7% less body weight than unirradiated mice 

on control chow and lungs of irradiated mice fed with control chow were 11% heavier than 

lungs of unirradiated mice treated with control chow, while there was no effect of irradiation 

on heart weight. Treatment with thalidomide had no effect on body, heart or lung weight 

in unirradiated or irradiated mice compared with mice treated with control chow (Table 1).

In total only six irradiated mice died during the experiment, two of which received thalidomide-

containing chow. 

Heart function

Gated-SPECT (99mTc-Myoview) was used to examine whether irradiation and/or thalidomide 

influenced cardiac function. There were no differences in end diastolic (EDV) and end systolic 

volume (ESV), ejection fraction (EF) and stroke volume (SV) between the treatment groups 

(data not shown).

Inflammation and fibrosis

Irradiation of the heart resulted in an increased epicardial thickness (Figure 1A), associated 

with the presence of CD45+ inflammatory cells (Figure 1B), F4/80+ macrophages (Figure 1C) 

and iron-containing macrophages (Table 2), indicative of previous hemorrhage. This irradiation 

effect was seen in mice treated with control chow and thalidomide-containing chow, with 

no differences between these two groups (Figure 1A, B and C). No differences were seen in 

inflammatory cells in the myocardium between the treatment groups (data not shown). The 

amount of interstitial collagen increased significantly after irradiation, but treatment with 

thalidomide did not result in a reduction of interstitial collagen (Figure 1D). 
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Figure 1 Inflammatory and fibrotic changes in hearts of unirradiated and irradiated mice treated with control 

chow or thalidomide-containing chow. (A) Epicardial thickness, (B) Number of CD45+ cells per section in the 

epicardium, (C) Number of F4/80+ cells per section in the epicardium, (D) Percentage interstitial collagen in the 

left ventricle. Values represent mean ± SEM (with 4-7 mice in each treatment group). *p<0.05 compared with 

unirradiated mice treated with the same chow.

Table 2 Incidence of mice showing iron-containing macrophages (Perl’s staining) in epicardium and  

myocardium of unirradiated and irradiated mice treated with control or thalidomide-containing chow.

Treatment Epicardium Myocardium

0 Gy 
control chow 

1/5 5/5

0 Gy 
thalidomide chow 

1/5 4/5

16 Gy 
control chow 

7/7 * 6/7

16 Gy 
thalidomide chow 

6/7 * 6/7

*p<0.05 compared to unirradiated mice with the same chow. 

Microvascular density (MVD) and vascular function

Thalidomide did not significantly influence the number of microvessels in irradiated or 

unirradiated hearts (data not shown). Irradiation resulted in a non-significant decrease in 

MVD in animals fed control chow (7%) or thalidomide (23%). However, these decreases 

were smaller than the significant decreases (26-28%) seen in previous studies (8, 11). Despite 
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the lack of significant effect on microvascular density, the microvessels were damaged 

by irradiation as shown by the significant decrease in alkaline phosphatase (ALP) activity. 

However, thalidomide was not able to restore the ALP activity (Figure 2A). We saw an increased 

expression of the thrombotic marker vWF after irradiation, but once again thalidomide was 

not able to prevent this increase (Figure 2B).

Semi-quantitative analysis of VCAM-1 expression in endothelial cells of the left ventricle did 

not show an increased expression after irradiation and thalidomide had also no effect on the 

VCAM-1 expression (data not shown).

Although no differences were seen in the number of blood vessels after irradiation, clear 

differences were seen in the number of pericytes (identified by NG2 staining) around blood 

vessels (Figure 3A). In unirradiated hearts the pericytes were equally distributed over the 

myocardial tissue (Figure 3B), while in all irradiated hearts areas were seen with blood vessels 

but without pericytes (Figure 3C). Quantification confirmed a significant reduction in pericyte 

coverage in irradiated mice compared with unirradiated mice, but there were no differences 

between mice treated with thalidomide or control chow (Figure 3A). 

αSMA staining was performed to investigate whether irradiation had an effect on the smooth 

muscle cell distribution, a (Figure 3D). Only the larger vessels were positive for αSMA and no 

differences were seen in the number of αSMA positive blood vessels between irradiated and 

unirradiated mice and between control and thalidomide chow treated mice (data not shown).

Figure 2 Microvascular alterations in hearts of unirradiated and irradiated mice treated with control chow or 

thalidomide-containing chow. (A) ALP-positive tissue per myocardial area, (B) vWF-positive tissue per myocardial 

area. Values represent mean ± SEM (with 4-7 mice in each treatment group). *p<0.05 compared with unirradi-

ated mice treated with the same chow.
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Figure 3 Pericyte and αSMA coverage of blood vessels in unirradiated and irradiated mice treated with control 

chow or thalidomide-containing chow. In unirradiated mice, most blood vessels were covered with pericytes, 

while in irradiated mice areas were present with blood vessels lacking pericytes. (A) Quantification of the per-

centage of pericyte-positive (NG2) blood vessels (CD31 positive). Values represent mean ± SEM (with 4-7 mice 

in each treatment group). *p<0.05 compared with unirradiated mice treated with the same chow. Representa-

tive pictures of pericyte positive (NG2, green) blood vessels (CD31, red) are shown of an unirradiated mouse 

(B) and an irradiated mouse (C) treated with thalidomide. (D) Representative pictures are shown of αSMA posi-

tive (green) blood vessels (red) of an unirradiated mouse treated with thalidomide. No differences were seen 

in αSMA staining between irradiated and unirradiated mice and between mice treated with thalidomide and 

control chow.
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Discussion
We have previously shown that irradiation affects cardiac structure and microvascular function 

(11, 14). In the present study we confirmed that irradiation induced inflammation and fibrosis, 

and compromised microvascular function. Next, we tested whether thalidomide was able to 

affect these processes and thereby prevent radiation-induced heart disease, but no protective 

effect of thalidomide was seen in our mouse model. 

Thalidomide has been shown to have anti-inflammatory properties and is currently used in 

the treatment of diseases like cutaneous lupus, Crohn’s disease, rheumatoid arthritis, multiple 

myeloma and graft-versus-host disease (15). Several studies suggest that thalidomide may 

inhibit the production of inflammatory cytokines such as TNF-α, IL-1β and IL-6, as well as 

enhance levels of anti-inflammatory cytokine IL-10 (17, 25). TNF-α has been shown to be 

elevated in patients with advanced heart failure. However, clinical studies analyzing the effect 

of thalidomide on plasma levels of TNF-α have shown discrepant results, demonstrating 

increased (26) or decreased plasma levels (27). 

Irradiation has been shown to up-regulate expression of several inflammatory cytokines and 

chemokines, including TNFα and IL1β, which has been associated with damage to both 

irradiated lung and brain (28, 29). We therefore hypothesized that thalidomide may be 

beneficial in radiation-induced heart disease, as inflammatory processes play an important 

role. We did not investigate the expression of specific inflammatory cytokines in this study, 

but thalidomide was not able to reduce the inflammatory cell recruitment (CD45+ and 

F4/80+ cells) into the irradiated heart. We also saw no decrease in VCAM-1 expression 

after thalidomide treatment in irradiated mice. This is in contrast with a study of Kim and 

colleagues, who found a significant decrease in VCAM-1 and ICAM-1 expression in rats with 

diabetic cardiomyopathy treated with thalidomide (100 mg/kg/day) compared with placebo 

treated rats (24).

Recent studies also showed evidence of anti-fibrotic activity of thalidomide in various fibrosis-

related diseases such as lung fibrosis. IL-6 and TGF-β1 play important roles in pulmonary 

fibrosis and reduced levels were found after thalidomide treatment leading to reduced 

collagen deposition (20, 21). Kim et al. showed reduced collagen levels in thalidomide 

treated rats suffering from diabetic cardiomyopathy (24) and thalidomide also attenuated 

the development of fibrosis during post-infarction myocardial remodeling in a rat model, 

although no effect on cardiac function was seen (22). Radiation is a known trigger of fibrosis 

in different organs, like lung, intestine and heart (9, 12, 30). In the present study an increase 

in collagen deposition was found in irradiated hearts, but thalidomide did not reduce this 
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fibrotic effect.

Irradiation to the heart causes damage to cardiac capillaries as is seen in a reduced microvascular 

density (11, 14). Several studies have also shown a reduced alkaline phosphatase activity 

and increased vWF in remaining capillaries of irradiated heart and this seems to precede the 

development of myocardial degeneration (9, 14, 31). Our study confirms these changes in 

irradiated cardiac microvasculature, but there was no protective effect of thalidomide. This 

is in contrast with a rat model of acute radiation proctitis, where thalidomide was able to 

attenuate the number of capillaries expressing vWF (32).

Perivascular cells, especially pericytes, contribute to blood vessel stability and maturation 

and help with the regulation of microvascular blood flow (33). Lebrin et al. showed, in 

an experimental mouse model of hereditary hemorrhagic telangiectasia, that thalidomide 

stimulated pericyte coverage and thereby rescued vessel wall defects (23). Thalidomide could 

therefore have a protective effect against microvascular damage, despite its known anti-

angiogenic properties. In the present study we saw a decrease in pericyte coverage after 

irradiation, but thalidomide was not able to rescue this pericyte loss. 

Although protective effects of thalidomide have been demonstrated in several disease models 

involving inflammation, fibrosis and blood vessel maturation, the drug was not effective in 

reducing radiation-induced heart damage. The dose of thalidomide used in our study was 

comparable with other studies, although the duration of our experiments was much longer 

(20, 22, 24). Previous experimental studies gave the drug by oral gavage over periods of 2 

months. We incorporated the drug in the chow, fed to the mice for 24 weeks, leading to 

more sustained drug levels in the blood. From previous studies we know that incorporating 

drugs in the chow is a safe and reliable way of giving a drug for several months (34, 35). The 

timing of starting drug treatment could a point of discussion. We chose to start thalidomide 

treatment from week 16, which is when cardiac damage starts to appear. However, we can 

not exclude that earlier treatment may have been more effective. Since thalidomide is used as 

an anti-cancer drug, it is not expected that thalidomide would negatively interfere with the 

radiotherapy itself.

In conclusion, we have shown that local irradiation to the heart induced an inflammatory, 

fibrotic response and microvascular damage and these effects could not be circumvented by 

thalidomide treatment. There are still patients at risk for developing radiation-induced heart 

disease and development of effective intervention strategies is needed. This study does not 

support the use of thalidomide to counteract radiation-induced cardiac damage, therefore 

alternative strategies need to be sought.
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Abstract
Background: Radiotherapy is commonly used to treat breast and thoracic cancers but it also 

causes delayed microvascular damage and increases the risk of cardiac mortality. Endothelial 

cell proliferation and revascularization are crucial to restore microvasculature damage and 

maintain function of the irradiated heart. We have therefore examined the potential of bone 

marrow-derived endothelial progenitor cells (BM-derived EPCs) for restoration of radiation-

induced microvascular damage.

Materials and Methods: 16 Gy was delivered to the heart of adult C57BL/6 mice. Mice were 

injected with BM-derived EPCs, obtained from Eng+/+ or Eng+/- mice, 16 weeks and 28 weeks 

after irradiation. Morphological damage was evaluated at 40 weeks in transplanted mice, 

relative to radiation only and age-matched controls. 

Results: Cardiac irradiation decreased microvascular density and increased endothelial 

damage in surviving capillaries (decrease alkaline phosphatase expression and increased von 

Willebrand factor). Microvascular damage was not diminished by treatment with BM-derived 

EPCs. However, BM-derived EPCs from both Eng+/+ and Eng+/- mice diminished radiation-

induced collagen deposition. 

Conclusion: Treatment with BM-derived EPCs did not restore radiation-induced microvascular 

damage but it did inhibit fibrosis. Endoglin deficiency did not impair this process.
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Introduction
Radiotherapy is commonly used for treatment of thoracic and chest wall tumors. Although 

radiotherapy is effective against the cancer, it is also known to induce delayed damage in 

surrounded normal tissue, including cardiac damage (1-4). Nowadays, the volume of the 

heart exposed to radiation is kept as low as possible but for most left sided breast cancer 

patients the heart still receives a treatment dose of 1 to 5 Gy and this can eventually lead to 

ischemic heart disease (2,5-8).

Preclinical studies have demonstrated the involvement of radiation-induced microvascular 

damage in the development of cardiac injury. Radiation leads to endothelial cell loss, which 

results in a decrease in microvascular density. Radiation also activates thrombotic and 

inflammatory reactions in the remaining vessels and induces the development of fibrosis in the 

myocardium (9-12). Perfusion defects, measured with single photon emission computerized 

tomography (SPECT), have been identified in asymptomatic breast cancer patients 6 to 18 

months after radiotherapy. The incidence of perfusion defects is much higher for patients 

with left sided cancer (71%), where radiation dose to the heart is higher, than for right 

sided cancer (17%) (13,14). Abnormalities in myocardial perfusion could eventually lead to 

symptomatic cardiac damage, although this has not been directly shown (14). Studies are 

ongoing to investigate strategies to overcome microvascular damage after irradiation and 

prevent delayed cardiac failure. 

The development of new blood vessels, originating from precursor cells that differentiate into 

endothelial cells, is called vasculogenesis. Vasculogenesis is one of two processes, in addition 

to angiogenesis, by which new blood vessels are formed and which has been shown to be 

essential in tissue repair and remodeling during acute and chronic ischemic tissue damage 

(15-18). Vasculogenesis differs from angiogenesis, where preexisting and fully differentiated 

endothelial cells (ECs) respond to angiogenic growth factors (vascular endothelial growth 

factor (VEGF), fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2)) and 

form new blood vessels form pre-existing blood vessels. In animal models of ischemia, 

in vitro differentiated endothelial progenitor cells are incorporated into sites of active 

neovasculogenesis in ischemic tissue, leading to improved perfusion when transplanted 

after the induction of ischemia (19). Takahashi and colleagues demonstrated that circulating 

endothelial progenitor cells are also mobilized, as an endogenous response to tissue ischemia 

or exogenously in response to cytokine therapy, and thereby contribute to neovascularization 

of ischemic tissues (16). Further, myocardial infarct model has demonstrated the ability 

of EPCs to incorporate into blood vessels as a reparatory respons to tissue ischemia (20). 
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Therapeutic neovasculogenesis is therefore a promising approach for treatment of ischemic 

cardiac damage, which could improve cardiac function by stimulating the formation of new 

vessels in regions of perfusion defects. 

Several studies have confirmed the benefit of BM-derived EPCs to restore tissue vascularization 

after ischemia in the myocardium and other organs (15-19), although these approaches have 

not been tested after radiation injury.

Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder with a mutation in the 

transforming growth factor-beta (TGFbeta) signaling pathway. Patients suffer from dilated 

blood vessels, characterized by telangiectasis and epistaxis (21,22). HHT type 1 has a mutation 

in endoglin, an accessory TGFbeta receptor. Endoglin is highly expressed in proliferating 

endothelial cells and plays a crucial role in angiogenesis. Mice that are deficient in endoglin 

die in mid-gestation due to vascular and cardiovascular defects. Moreover, mice carrying a 

single copy of the endoglin gene show a tendency to develop HHT phenotype as they age 

(23,24). A previous study demonstrated that the recruitment of mononuclear cells (MNCs), 

which have the ability to stimulate myofibroblast proliferation and stimulate angiogenesis to 

sites of induced myocardial infarction, is impaired when using HHT1-derived MNCs compared 

to healthy MNCs (25,26).

In our study we investigate whether radiation-induced microvascular damage can be 

diminished by revascularization of BM-derived EPCs and whether endoglin plays a role in this 

process.

Materials and Methods
Mice and treatments groups

Eng+/- C57BL/6 mice were originally obtained from H. Arthur (Institute of Human Genetics, 

International Centre for Life, Newcastle upon Tyne, UK) and subsequently bred in the 

Netherlands Cancer Institute. Male Eng+/+ mice age 8-12 weeks were randomly allocated 

(after genotyping by PCR) to receive 16 Gy or 0 Gy to the heart. Mice were housed in a 

temperature-controlled room with 12 hour light-dark cycle. Standard mouse chow and water 

were provided ad libitum. Irradiation was performed with 250 kV X-rays, operating at 12 mA 

and filtered with 0.6 mm Copper. The dose rate was 0.94 Gy/min with a field size of 10.6 x 

15 mm (including the whole heart and up to 30% lung volume) and the rest of the mouse 

was shielded with lead. Mice were immobilized without anesthetics, in a prone position in 

acrylic perspex jigs. Four cohorts of animals were included for analyses at 40 weeks after 
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treatment: age-matched controls (sham irradiated with 0 Gy and no transplantations), 16 Gy 

irradiation alone, 16 Gy followed by transplantation with bone marrow-derived endothelial 

like progenitor cells (BM-derived EPCs) from either Eng+/+ or Eng+/- mice (Figure 1). Animals 

in the transplantation cohorts were injected i.v., at 16 and 28 weeks after irradiation, with 

BM-derived EPCs from male Eng+/+ mice or Eng+/- littermates age 8 -12 weeks (106 cells per 

mouse per transplantation). Time points were chosen based on a previous study, where early 

microvascular damaged was detected by 20 weeks after cardiac irradiation with progression 

in time (11). A separate group of Eng+/+ mice age 8-12 weeks were injected with CellTracker 

Orange –labeled Eng+/+ BM-EPCs (n=10) or CellTracker Orange-labeled Eng+/- BM-EPCs (n=10) 

16 or 28 weeks after 16 Gy irradiation (106 cells per mouse per transplantation). 

Each cohort typically comprised 10 to 15 mice (n=55 in total). This study was in agreement 

with the Dutch law on animal experiments and welfare, whereby the Animal Experiments 

Committee of the Netherlands Cancer Institute has evaluated the set-up of the experiments 

and has given a positive recommendation, in line with the international Guide for the Care 

and Use of Laboratory Animals (Eighth edition). No severe suffering was anticipated in this 

study. If mice appeared distressed, or lost >15% body weight, they were humanely sacrificed 

before the planned follow-up time. At termination of the experiment, mice were humanely 

sacrificed under lethal sodium pentobarbital anesthesia (18 mg per mouse, i.p). 

Figure 1 Schedule overview.	  

Schematic representation of Eng +/+ or Eng +/- BM-derived EPCs transplantation at both 16 weeks and 28 weeks 

after 16 Gy heart irradiation. 

BM-derived EPCs isolation

Donor male Eng+/+ mice or Eng+/- littermates age 8-12 weeks were killed with an overdose 

of CO2. Femurs, tibias and illia were surgically dissected, and the adhering tissues were 

completely removed. Both ends of the bones were excised, and bone marrow cells (BMCs) 

were harvested by flushing with Endothelial Cell Growth Medium2 (EGM-2), supplemented 

with fetal calf serum (0.02 ml/ml), VEGF (0.5 ng/ml), basic fibroblast growth factor, epidermal 

growth factor, insulin-like growth factor-1, ascorbic acid, heparin, hydrocortisone and 
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antibiotics, using a 25-gauge needle (Promocell, Huissen, the Netherlands). The BMCs were 

gently re-suspended with an 25-gauge needle in EGM-2 medium before culturing on 1% 

gelatine coated petridishes (Sigma G9391, bovine skin) at 5% CO2 at 37°C. Adherent cells 

were gently washed with PBS at day 3 to remove unattached cells and fresh EGM-2 was 

added. This procedure was repeated every 2 days until day 14, at which time the BM-derived 

EPCs were identified by typical endothelial cell (EC) morphology. Petridishes were washed 

once with PBS and 1 ml trypsin/EDTA (Promocell) was added. The released cells were counted 

in a CASY Model TT system (Roche, Almere, the Netherlands) and then re-suspended at 106 

cells in 100 µl of PBS for transplantation. 

BM-derived EPCs localization

Before injection, cells were washed with PBS and incubated with a fluorescent cell 

viability marker, CellTracker Orange CMTMR (5-(and-6)-(((4-Chloromethyl)Benzoyl)Amino)

Tetramethylrhodamine) (Invitrogen, Breda, the Netherlands) for 30 minutes at 37°C. Incubation 

was at a concentration of 10 µM, which has previously been shown to have no effect on 

cellular differentiation, migration or proliferation (27). After a second washing step with PBS, 

cells were trypsinized and CellTracker Orange–labelled BM-EPCs (106 cells per mouse) were 

injected i.v.. Mice were humanely sacrificed under lethal sodium pentobarbital anesthesia (18 

mg per mouse, i.p) 3 days after injection of labeled CellTracker Orange BM-EPCs. 

BM-derived EPCs characterization

Typical endothelial cell morphology was identified by cobblestone-like appearance (CCD - 

B/W Microscope system with a motorized Zeiss AxioObserver Z1 camera, Zeiss, Sliedrecht, 

the Netherlands). 

In vitro tube formation assay

Phenol red-free Matrigel (Becton&Dickinson, Franklin lakes, USA) was added to a pre-chilled 

24-well plate. The Matrigel was then solidified by incubation at 37°C for 1 hour. The BM-

derived EPCs (200.000 cells/well) were suspended in 500 µl serum-free EGM-2 medium and 

seeded into each well. The formation of the tube-like network was photographed (CCD - Live 

Cell Microscope system with a Zeiss AxioCam Black and White camera (AxiocamMRm)), with 

temperature controlled live cell chamber (Zeiss, Sliedrecht, the Netherlands), every 20 minutes 

for 20 hours after seeding. Image processing was performed using Zeiss ZEN software (Zeiss).
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Immunofluorescence staining

Cells were incubated overnight at 4ºC with 2.5 µg/ml acetylated & Dil-labeled low-density 

lipoprotein (Dil-ac-LDL, Harbor Bio-Products, Heerhugowaard, the Netherlands) and fixed 

with 4% paraformaldehyde (PFA) before washing with PBS. For detection of lectin binding, 

cells were fixed in 4% PFA before incubation with Ulexeuropaeus agglutinin (UEA-1, Sigma, 

Zwijndrecht, the Netherlands) at 1:100 dilution overnight at 4°C. For immunostaining for anti-

CD31, the cells were fixed with Zn-fix+0.1%TritonX-100 before being blocked with 3% BSA in 

TBS+0.1%Tween-20. Cells were incubated with primary antibody in block solution at 1:1000 

dilution overnight at 4°C. Cells were washed with TBS/T before application of goat anti-rat 

alexafluor 568 secondary antibody (Invitrogen, Breda, the Netherlands) at 1:100 dilution.

Cells were further imaged to confirm incorporation of Dil-ac-LDL, binding of UEA-1 and 

staining for CD31 with CCD - B/W Microscope system with a motorized Zeiss AxioObserver 

Z1 camera (Zeiss). No fluorescence was observed when cells or tissues were stained with 

secondary antibody only (no primary antibody; negative control).

No differences in expression of specific endothelial markers were observed between BM-

derived EPCs originated from Eng+/- and Eng+/+. 

Tissue preparation for histology

At termination of the experiment, the heart was perfused via the aortic arch (retro-grade), 

under lethal sodium pentobarbital anesthesia (18 mg per mouse, i.p), with PBS (frozen 

sections) or PBS followed by 1% paraformaldehyde (paraffin sections). The heart was then 

quickly excised before freezing on dry ice or immersion in 1% paraformaldehyde. 

Cross-sections were cut at the level of the mid-horizontal plane of the heart from fixed 

paraffin-embedded tissues (4 µm) or frozen tissues (7 µm). Frozen cross-sections for BM-EPCs 

localization were cut in 14 µm thickness.

Frozen sections: An anti-CD31 antibody (1:50, Becton&Dickinson) was used to visualize cardiac 

vasculature. To determine functional changes in the microvasculature, a histochemical staining 

with Naphtol AS-MX / DMF and fast Blue BB salt was performed to detect endothelial cell 

alkaline phosphatase (ALP). Sections were also incubated with antibodies against von Willebrand 

Factor (vWF) (1:4000, Abcam, Cambridge, USA), as a marker of thrombotic changes. Within 

one time group all sections were processed identically, at the same time, with precisely the same 

incubation times for the primary and secondary antibody and DAB solution. 

For quantification of microvascular changes, five random fields (40x objective) from transverse 

sections cut at the mid-horizontal plane of the heart were photographed with a CCD 2 - Color 
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Microscope system, including a Zeiss AxioCam color camera (AxiocamHRc, Zeiss, Göttingen, 

Germany). A computerized morphometry system (Leica Qwin V3) was used to quantify the 

microvascular density (MVD) of CD31 positive structures. Vessels beneath a size of 1.5 or 

above 200 µm2 were automatically excluded from the measurements. Photographs of whole 

sections stained for ALP and vWF were taken with an Aperio scanner (Scanscope-XT, Aperio 

technologies, Vista, USA) using 40x objective. Analyses of the percentage myocardium, 

excluding endocardium, positive for each marker were done with a computerized morphometry 

system (Leica Qwin V3, Leica, Rijswijk, the Netherlands). 

Paraffin sections: Interstitial collagen was determined in the myocardium based on Sirius red 

staining. Photographs of the LV wall, excluding the septum, were taken using a 40x objective 

(Leica DFC320). Interstitial collagen was quantified in five randomly selected areas of the 

subendocardium and myocardium of the LV (40x objective) and results were expressed as 

percentage tissue positive for Sirius red relative to myocardial area. Morphometric parameters 

were analyzed using a computerized morphometry system (Leica Qwin V3, Leica, Rijswijk, the 

Netherlands).

Statistics

Data are expressed as mean ± SEM and groups were compared using non-parametric Mann–

Whitney exact U-tests. Group differences were considered statistically significant at p<0.05. 

Statistical analyses were performed using SPSS version 20. 

Results
BM-derived EPCs characterization

After 10-14 days in culture BM-derived EPCs from both Eng+/+ and Eng+/- mice exhibited 

cobblestone morphology (Figure 2A). The endothelial phenotype was further confirmed by a 

Matrigel tube formation assay (Figure 2B-C). As shown in Figure 2B, BM-derived EPCs form 

vascular tube-like structures on Matrigel, although the network formation of Eng+/- BM-

derived EPCs was delayed compared to Eng+/+BM-derived EPCs, and tube formation was less 

tight and organized (Figure 2B-C).

The BM-derived EPCs were then further examined for expression of endothelial cell markers 

using immunohistochemistry. Both Eng+/+ and Eng+/- BM-derived EPCs expressed endothelial 

markers CD31 and bound to UEA-1 and took up Dil-ac-LDL(Figure 2D-F). 
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Figure 2 EPC characteristics by EPC culture assay and immunohistochemistry (A) Morphological fea-

tures of confluent EPCs; EPCs after 14 days in culture demonstrating distinct flat, spread out, cobblestone 

morphology. (B) EPCs plated on Matrigel; EPCs originated from Eng+/+ mice (C) and Eng+/- mice show ini-

tial capillary tube formation after 6 hours in Matrigel. (D) DiI-acLDL uptake in red and (E) binding of UEA-

1 in EPCs (green) were analyzed by fluorescent microscope Nearly all adherent cells bound UEA and inter-

nalized Ac-DiI-LDL. Original magnification 63. (F) Immunohistochemical staining with the endothelial  

marker CD31 (in red). Staining was analyzed by fluorescent microscopy. Original magnification 40x.

BM-derived EPCs localization

Analysis of frozen sections from mice transplanted with CellTracker Orange-labeled BM-EPCs 

revealed only a few BM-EPCs in the myocardium (data not shown). There were no differences 

between BM-EPCs transplantation of cells originated from either Eng+/- or Eng+/+ mice. 

Radiation-induced microvascular damage

Microvascular density (MVD) decreased significantly after 16 Gy irradiation alone and the 

decline was not restored by treatment with BM-derived EPCs from either Eng+/+ mice or 

Eng+/- mice (Figure 3A). Radiation-induced changes in MVD were accompanied by endothelial 

damage, as shown by a marked decrease in ALP activity (Figure3B) and an increased expression 

of the thrombotic endothelial marker vWF after irradiation alone (Figure 3C). Changes in ALP 

activity were not restored by treatment with BM-derived EPCs from Eng+/+ mice or from 

Eng+/- mice (Figure 3B). Similarly, the treatment with BM-derived EPCs did not reduce the 

radiation-induced expression of vWF (Figure 3C).
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Figure 3 Microvascular alterations after irradiation alone or treatment with BM-derived EPCs 

(A) MVD per unit area expressed as number of microvessels per mm2. (B) ALP positive tissue area as % of total 

tissue. (C) vWF positive tissue area as % of total tissue *p<0.05 compared to age-matched untreated (or do you 

mean sham treated) controls. Each bar represents the mean (± SEM) for at least 5 mice per group. 

BM-derived EPCs inhibit the development of radiation-induced cardiac fibrosis

Cardiac fibrosis, established from the extent of collagen staining, was significantly increased 

after irradiation (Figure 4). BM-derived EPCs treatment (either derived from Eng+/+ or Eng+/- 

mice) inhibited the fibrosis induced by irradiation. Strikingly, BM-derived EPCs from Eng+/- 

mice were more effective in inhibition of collagen deposition than BM-derived EPCs from 

Eng+/+ mice (Figure 4). 
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Figure 4 Fibrotic changes after irradiation alone or treatment with BM-derived EPCs Collagen positive tissue 

area as % of total tissue for animals treated with irradiation alone or with BM-derived EPCs *p< 0.05 compared 

to age-matched untreated (or do you mean sham treated) controls. Each bar represents the mean (± SEM) for 

minimal 5 mice per group.

Discussion
In this study we investigated whether endothelial progenitor cells, derived from bone marrow 

of Eng+/+ or Eng+/- mice, can contribute to repair of radiation-induced microvascular injury. 

Our results indicate that microvascular damage was not improved by this approach but the 

development of radiation-induced fibrosis was inhibited by transplantation of BM-derived 

EPCs.

We demonstrated in a previous study that irradiation leads to microvascular damage, which 

progresses continuously over time, although cardiac function remained within normal 

ranges until sudden death of the mice. We hypothesized that compensatory mechanisms 

operate to maintain cardiac function until the extent of underlying damage overwhelmed 

these mechanisms (11). If severe microvascular damage could be prevented, this might 

avoid the subsequent cardiac failure. Previous studies using models of surgically induced 

ischemia to show BM-derived EPCs can stimulate neovascularization that eventually leads 

to revvascularization of ischemic tissue (16,19,20). However, in our radiation model, 

damage occurs slowly and progressively, resulting in diffuse microvascular damage without 

the induction of strong ischemic foci. This might explain why no significant stimulation of 

revascularization took place and transplanted BM-derived EPCs were not able to reverse the 

progressive radiation-induced microvascular damage. Neither microvascular density nor ALP 

or vWF changes were influenced by BM-derived EPCs transplantation. On the other hand, 

transplantation of BM-derived EPCs decreased collagen deposition in the myocardium, thus 

reducing fibrosis development after irradiation. Cheng and colleagues investigated whether 

EPC transplantation enhanced cardiac function in a diabetic cardiomyopathy model. They 
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found, that EPCs reduced the expression of type I collagen, Bax, caspase-3 and p67phox, while 

increasing the expression of Bcl-2 and manganese superoxide dismutase (MnSOD), thereby 

improving cardiac function. They suggested that this was due to inhibition of cardiomyocyte 

apoptosis by EPCs transplantation (28). This might explain why we saw a decrease in collagen 

deposition after BM-derived EPC transplantation. We suspect, based on previous studies, that 

endoglin does not directly influence cardiomyocyte survival. Therefore it is not surprising that 

BM-derived EPCs from Eng+/- mice were at least as competent as Eng+/+ cells at inhibition of 

collagen deposition.

Clinical studies have recently announced the safety of BM-EPCs transplantation, but their 

efficacy varies widely. This might be the result of uncertainties regarding the best method 

of administration, timing of administration or cell type utilized. In our pre-clinical studies, 

we might not have chosen the ideal timing of administration of BM-derived EPCs to restore 

radiation-induced microvascular damage, or the number of cells may have been insufficient. 

In our study we cultured the mononuclear fraction in a manner that usually results in EPCs 

(29,30) and our characterization tests indicated an endothelial-like phenotype. However, we 

cannot be certain that the cultured cells were true EPCs. 

We conclude that radiation-induced endothelial cell damage and cell loss was not restored 

by transplantation of BM-derived EPCs. However, transplantation did reduce the amount of 

radiation-induced cardiac fibrosis. Endoglin deficiency in transplanted cells did not impair 

their ability to reduce fibrosis. 
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The purpose of this thesis was to investigate the molecular players and pathways of late 

cardiac damage in cancer patients treated with radiotherapy and anthracycline chemotherapy. 

A better understanding of these mechanisms, and the role of the microvasculature in this 

process, should allow us to develop suitable intervention strategies.

Therefore, we first determined the dose and time dependency of the cardiac structural and 

microvascular dysfunction after single dose cardiac irradiation in wild-type mice (chapter 

2). We next compared these findings to those from the same set up in time and dose, but 

using ApoE-/- mice. This hypercholesterolemic model develops spontaneous atherosclerosis 

with aging (unlike wild type mice) and therefore mimics the effects of a western-type diet, 

which most citizens in the developed countries have chosen (chapter 3). We have also 

taken into account that many breast cancer patients receive anthracycline chemotherapy 

in addition to radiotherapy and, in some cases of HER overexpressed breast cancer, HER-

inhibitors, like lapatinib. We investigated whether the additional chemotherapy treatment 

increased the existing radio-induced cardiac damage (chapter 4). To further understand the 

role of endothelial cell damage in radiation-induced cardiac damage, we focused on a specific 

gene (endoglin) that plays an important role in proliferating endothelial cells. Endothelial 

cells are highly sensitive to radiation and persistent damage after radiotherapy may inhibit 

restoration of organ function (chapter 5). Finally we explored two possible intervention 

strategies: treatment with thalidomide and bone marrow derived endothelial cells. While 

thalidomide acts as an anti-inflammatory agent and could further prevent organ failure by 

inhibiting tissue fibrosis, bone marrow derived endothelial cells may be able to restore cardiac 

microvasculature and therefore restore organ function (chapter 6 & 7). 

Dose and time dependency of structural and functional cardiac damage

It is widely recognized that thoracic radiotherapy increases the risk of late cardiac damage, 

but little is known about the details of the pathogenesis of this damage. 

We demonstrated in chapter 2, 3 and 5 that local irradiation affects cardiac structure and 

microvascular function in a dose and time-dependent manner; with substantial damage 

after intermediate and high dose irradiation (8 and 16 Gy) and minor alterations after lower 

doses (2 Gy). Moreover, high doses induced changes at earlier time points and these effects 

progressed in time. 

Endothelial injury and loss has been described as an early event in radiation-induced damage, 

associated with a pro-inflammatory, pro-thrombotic anti-fibrinolytic phenotype (1, 2). We 

found decreased amounts of endothelial cell ALP and increased vWF in irradiated hearts. ALP 
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is abundantly present in healthy cardiac microvasculature whereas loss of ALP is indicative of 

endothelial cell damage (3). ALP expression was significantly reduced at 20 weeks after doses 

of 8 or 16 Gy and after 2, 8 or 16 Gy at later time points. Increased deposition of vWF in 

irradiated rat hearts has been previously described as an indicator of thrombotic endothelial 

cell damage (4). In our studies, increases in vWF deposition were limited to hearts that received 

8 or 16 Gy, with the largest increase at later times after the highest dose. Endothelial loss was 

measured after 16 Gy at 20 weeks and at 40–60 weeks after lower doses, which confirms 

earlier studies with rat hearts (3). However, this did not lead to a marked loss of vascular 

perfusion and no severe hypoxia was detected. A transient increase in MVD at 20 weeks after 

2 and 8 Gy (chapter 2) was measured, presumably due to stimulated proliferation in response 

to damage, although this was insufficient to stimulate a granulomatous response (5). 

Endothelial injury at 40 weeks after 8 and 16 Gy finally led to blood vessel rapture, indicated 

by strong extracellular albumin deposition. Albumin binds to amyloid-beta in blood plasma 

and may be the reason why albumin deposition correlates with myocardial amyloid deposition 

(6). A prominent clinical feature of cardiac amyloidosis is heart failure (7). The presence of 

amyloidosis (chapter 2) may therefore have contributed to the sudden death seen in 38% 

of mice between 30 and 40 weeks after 16 Gy. The amount of interstitial collagen in the 

myocardium indicated the development of fibrosis and this was significantly increased at 

40 weeks after 8 to 16 Gy and 60 weeks after 2 to 8 Gy, although this was never more 

than 2-5% of the tissue area (chapter 2). Cardiac function remained largely unchanged 

despite the progressive deterioration of microvascular structure and function. The unchanged 

cardiac function, combined with progressive structural and functional microvascular damage 

and the sudden deaths of mice, without proceeding loss of cardiac function, suggest that 

compensatory mechanisms maintain cardiomyocyte function until a certain threshold of 

damage is exceeded. Regardless of the initial nature of the events that cause cardiac damage, 

the cardiac pathology remains asymptomatic in the early stages due to compensatory 

mechanisms. The compensatory mechanism starts off with a decline in pumping capacity 

as illustrated by decreases in ESV and EDV, and activates the adrenergic nervous system, 

the renin angiotensin system, the cytokine system, and the IGF-1 receptor/PI3K/Akt signaling 

pathway. However, eventually the damaged hearts become overtly symptomatic and heart 

failure ensues (8-10). 

Combining high-dose irradiation with hypercholesterolemia in ApoE-/- mice accelerated the 

development of coronary atherosclerosis (chapter 3). The number of coronary atherosclerotic 

lesions in the mid part of the heart at 20 weeks after irradiation was increased and the 
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endocardium of the 16 Gy irradiated mice showed the appearance of foam cell accumulations 

at 20 weeks after irradiation, as well as erythrocyte accumulations, which was not observed 

after 0, 2 or 8 Gy. However, radiation-induced microvascular endothelial cell injury, as 

described in detail earlier, was not enhanced by hypercholesterolemia, although the baseline 

level of inflammation in unirradiated hearts was higher. Micro array analysis confirmed the 

early and pronounced onset of inflammatory response in this hypercholesterolemia model. 

The important role of ApoE in initiating immune/ inflammatory action has been well studied 

by Tenger et al. and explains the higher baseline level and pronounced inflammatory reaction 

in ApoE-/- mice. Despite the observed blood vessel leakage in ApoE-/- irradiated hearts, we 

could not detect any amyloid deposition. This can be explained by the fact that ApoE is a 

component of amyloidosis and a lack of ApoE therefore prevents its formation (11). 

We have confirmed that endothelial cells are highly sensitive to radiation and aberrant 

signaling by damaged cells affects the pathological progression of radiation induced tissue 

damage, which has been described in earlier studies (12-14). Endoglin is co-receptor for 

TGF-β1 that is essential for angiogenesis and predominantly expressed in activated vascular 

endothelial cells (15-20). 

In chapter 5 we investigated whether dose- and time dependent cardiac damage after 

irradiation is influenced by endoglin, which may play a crucial role in endothelial cell 

proliferation and revascularization of damaged heart tissue. For these studies we used Eng+/- 

and Eng+/+ mice to investigate the influence of endoglin in radiation-induced cardiac damage. 

Gene expression analysis demonstrated a decreased inflammatory response in Eng+/- mice 

compared to Eng+/+ mice. Further, fibrosis related genes were only upregulated in Eng+/+ mice 

during the early phase of radiation induced cardiac damage (4 weeks), consistent with the 

finding that collagen deposition in the myocardium was increased at 20 weeks after irradiation 

in Eng+/+ mice only. Our observations are consistent with studies showing that endoglin is 

involved in inflammation, by playing a role in leucocyte adhesion and transmigration, as well 

as in reduced expression of inflammatory cytokines and reduced inflammatory infiltration (21, 

22). No differences in inflammatory response or fibrotic response were detected between 

the strains at later time points. This suggests that endoglin haplo-insufficiency only limits 

inflammation and fibrosis in the early phase of radiation-induced cardiac damage. Further, 

endothelial damage in cardiac microvasculature was independent of endoglin expression.
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Possible additional damage to cardiac microvasculature and cardiomyocyte when 

inhibiting EGFR signaling?

Breast cancer can be divided into two subtypes: Her2-positive and Her2-negative. Her2-positive 

breast cancers are prone to be highly aggressive, fast growing, highly invasive, resistant to CT 

and RT and characterized by epidermal growth factor receptor 2 (ErbB2) overexpression. Thus, 

Her2-inhibition became a common additional treatment in these breast cancers. Treatment of 

Her2-inhibitors in combination with adjuvant chemotherapy showed a reduction in the risk 

of relapse and death by 50% and 30% respectively (23-25). But the hallmark side effect of 

treatment with Her2-inhibitors is cardiac toxicity. Little is known about the detailed mechanism 

of cardiac toxicity after Her2-inhibitor treatment. However, ErbB2 signaling and the ligand 

Neuregulin-1 are known to play a crucial role in survival and growth of cardiac myocytes (26, 

27). Moreover, a recent study demonstrated that irradiation inhibited ErbB2 signaling in rat 

hearts until the onset of fibrosis after 10 weeks. As fibrosis progressed, ErbB2 and the EGFR 

ligand neuregulin were significantly upregulated, presumably as an attempt to regenerate the 

myocardium (28). This raises the question whether delayed inhibition of ErbB2 after CT or 

RT could lead to increased cardiac toxicity. Therefore, in chapter 4 we mimicked the clinical 

treatment schedule by either giving 20 weeks of the Her2-inhibitor lapatinib, directly with RT 

or CT or delayed until 20 weeks after RT or CT. 

As described in detail in chapter 2, 3 and 4, RT induces dose- and time depended cardiac 

microvasculature damage without direct effect on the cardiomyoyctes. None of these 

endothelial changes were more severe after combined treatments with lapatinib than after 

irradiation alone. However, clinical findings still remain controversial. The NCCTG Phase III 

Trial N9831 found that concurrent adjuvant RT and Her2-inhibitor trastuzumab for early-

stage BC was not associated with increased acute cardiac adverse events at a median follow-

up of 3.7 years (29). However, a prospective study of 106 patients treated by concurrent 

trastuzumab-radiotherapy for non-metastatic BC does show increased cardiac events (left 

ventricular systolic dysfunction) although these were characterized as tolerated, reversible 

and mild and occurred in 6 patsients with preexisting risk factors like diabetes and age (30). 

In a clinical study where a total of 499 consecutive HER2-positive women were treated with 

adjuvant trastuzumab administrated sequentially after RT and followed for 1 year, cardiac 

dysfunction occurred but again this was described as mild and asymptomatic in the majority 

of patients (31). However, most of these studies are missing long follow up or even missing a 

control group with Her2-inhibitor without radiotherapy and included patients with risk factors 

like smoking, diabetes, age, and hypertension. 
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Moreover, we found in chapter 4, that direct or delayed lapatinib decreased CD45+ and 

F4/80+ cells in the irradiated epicardium, compared to irradiation alone. Indicating, that 

blocking PI3K/Akt/mTOR signaling pathway decreases inflammatory response in normal 

tissue. Kinases play a crucial role in expression and activation of inflammatory mediators. 

PI3/Akt pathway can function either as a positive or negative regulator of TLR signaling. 

(32). In a rat model it was shown that selective inhibition of PI3K/Akt/mTOR signaling 

pathway regulated macrophage autophagy and markedly affected atherosclerotic plaque 

inflammation, burden and vulnerability. These molecular and cellular effects translated into 

a successful prevention of plaque disruption, even in the presence of endothelial injury, 

hyperlipidemia and pharmacological triggering (33). Further, in a study with ovalbumin (OVA)-

induced asthmatic mice, blocking the PI3K/Akt signaling pathway attenuated the early stages 

of airway remodeling induced by OVA, by regulating the abnormal process of epithelial-

mesenchymal transition (34). 

Our data do not indicate cardiac dysfunction after radiation alone or in combination with 

lapatinib, in contrast to the mild but significant changes in cardiac function after lapatinib 

alone. These data are consistent with the important role of ErbB signaling to maintain 

myocardium functionality and imply that that this compensatory mechanisms initiated by 

irradiation still operate in the presence of lapatinib. Compensatory mechanisms and pro-

survival pathways might play a role in maintaining cardiomyocyte function in a damaged 

heart, at least until the extent of damage overwhelms the potential for stimulated survival. 

Sridharan et al. recently demonstrated upregulation of ErbB signaling in the irradiated rat 

heart in parallel with developing cardiac fibrosis, leading to the suggestion that ErbB signaling 

and pro-survival pathways are activated in an attempt to regenerate the myocardium 

(28). Moreover, inactivation of ErbB4 in ventricular muscle cells led to a severe dilated 

cardiomyopathy, demonstrating the important role of ErbB signaling in the myocardium (35).

Kaplan-Meier estimates of overall survival in our studies indicated more unscheduled deaths of 

mice after treatment with Dox (27%), especially when combined with lapatinib (36 and 33 % 

deaths for direct and delayed lapatinib) compared to treatment with radiation alone (0%) or 

in combination with direct lapatinib (7%) and delayed lapatinib (12%) (chapter 4). Since the 

group analyses of morphological changes were done on material from surviving animals only, 

our results probably represents an underestimate of the total toxic effects of Dox. Changes 

in the microvasculature after Dox alone or with lapatinib were not seen. Nevertheless, 

fibrosis and degenerated cardiomyocytes (EM study) and 27–36% animal lethality, as well as 

decreased cell viability in vitro, do indicate doxorubicin-induced damage to the myocardium 
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via cardiomyocytes. Although anthracyclines induce acute damage, clinical symptoms are 

mostly detectable months or years after treatment (36). Therefore, besides acute myocardial 

damage, delayed and indirect microvascular damage may occur at later times.

Although our studies have shed some light on the mechanisms of development of radiation-

induced cardiac damage, alone or in combination with anthracyclines or Her2-inhibitors, 

there are many unresolved questions that should be addressed in future studies.

How to overcome radiation-induced cardiac damage

Thalidomide is recently re-emerging as a treatment for inflammatory disease and cancers, 

including cutaneous lupus, Crohn’s disease, rheumatoid arthritis, multiple myeloma and 

graft-versus-host disease, because of its anti-inflammatory and anti-angiogenic effects (37). 

Thalidomide inhibits the production of TNF-α (tumor necrosis factor-alpha), which regulates 

inflammatory cascades and inhibits the expression of vascular endothelial growth factor 

(VEGF) and interleukin-6 (IL-6), which play a role in angiogenesis (38-41). 

Recent studies also showed evidence of anti-fibrotic activity in various fibrosis-related diseases 

such as lung fibrosis (42, 43) and remodeling after myocardial infarction (44). Furthermore, 

thalidomide was found to induce vessel maturation by stimulating mural cell coverage and 

thereby rescuing vessel wall defects (45).

In our previous studies (chapter 2, 3, 4 and 5) we have shown that local heart irradiation 

leads to cardiac damage by activating inflammatory response, which eventually led to 

fibrosis, decrease in microvasculature density and endothelial cell damage and mild but non-

progressive changes in cardiac function. We hypothesized that by administering thalidomide 

daily to the mice we could inhibit the inflammatory response and therefore inhibit fibrosis 

development. In chapter 6 we confirmed that irradiation induced inflammation and fibrosis 

and compromised microvascular function but no protective effect of thalidomide was seen. 

Therefore, we concluded that thalidomide is unable to inhibit radiation-induced inflammatory 

response and fibrosis after irradiation, at least in the doses we used. 

Recent studies have shown evidence of anti-fibrotic activity of thalidomide in various, 

non-radiation related, fibrotic diseases such as lung fibrosis induced by bleomycin sulfate 

administration. IL-6 and TGF-β1 play important roles in pulmonary fibrosis and reduced levels 

were found after thalidomide treatment leading to reduced collagen deposition (42, 43). 

Kim et al. showed reduced collagen levels in thalidomide treated rats suffering from diabetic 

cardiomyopathy (46). Thalidomide also attenuated the development of fibrosis during post-

infarction myocardial remodeling in a rat model, although no effect on cardiac function was 
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seen (44). We can only hypothesize that our radiation-induced fibrotic model initiates less 

fibrosis compared to diabetic cardiomyopathy and myocardial infarction models, and therefore 

the effect of thalidomide is less visible. Also, we started thalidomide treatment at 16 weeks 

after irradiation, which is when radiation-induced cardiac fibrosis occurs, whereas other non-

radiation cardiac models showing benefits of thalidomide started drug treatment at the same 

time as the fibrotic stimulus (47, 48). We cannot exclude that earlier treatment may have 

been more effective in our radiation model. A recently published study of Scharpfenecker et 

al. did show some beneficial effects from thalidomide in irradiated mouse kidneys (49). The 

inflammatory processes after kidney irradiation were inhibited, but thalidomide could not 

impede the development of fibrosis assessed at 40 weeks. In their study they suggest that 

CD45+ cells are not the main source of profibrotic cytokines in the irradiated kidney but that 

the observed reduction in the number of inflammatory cells may have slowed the progression 

of kidney fibrosis at time points beyond 40 weeks. Scharpfenecker et al. also mentioned 

that the delayed treatment with thalidomide, at week 16 after irradiation, might limit the 

impact of the reduced inflammatory response. Once more, one can hypothesize that the anti-

inflammatory and anti-fibrotic effect of thalidomide is an organ-specific effect, which needs 

to be further studied. 

We confirmed in our studies (chapter 2, 3, 4 and 5) the importance of endothelial cell 

proliferation and revascularization to restore microvasculature damage and maintain 

function of the irradiated heart. We have therefore examined the potential of bone marrow-

derived endothelial progenitor cells (BM-derived EPCs) for restoration of radiation- induced 

microvascular damage. However, in this study we could not demonstrate that microvascular 

damage was improved by this approach, although the development of radiation-induced 

fibrosis was inhibited by transplantation of BM-derived EPCs. Previous studies using models 

of surgically induced cardiac infarct show that BM-derived EPCs can home to sites of ischemia 

and stimulate revascularization (50-52). However, in our radiation model, damage occurs 

slowly and progressively, resulting in diffuse microvascular damage without the induction of 

strong ischemic foci. This might explain why no significant stimulation of revascularization took 

place and transplanted BM-derived EPCs were not able to reverse the progressive radiation- 

induced microvascular damage. A recently published study investigated the antifibrotic effect 

of bone marrow-derived progenitor cells in a diabetic mouse model. Kishore et al. showed 

that several miRNAs, that have been implicated in the regulation of fibrosis, are overexpressed 

after MI. One of these miRNA, miR-155, is reduced in expression after BMPC administration 

and this could be the cause of the reduced the fibrosis response. Further, BMPC releases 
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hepatocyte growth factor (HGF), which inhibits miR-155-mediated profibrotic signaling (53).

In studies of acute ischemic cardiac injury, BM-derived EPCs have been shown to contribute to 

recovery of the vascular system. Following mobilization into the circulation, EPCs are recruited 

to the traumatized or ischaemic tissues in response to secretion of stromal cell-derived factor-1 

(54, 55), or vascular endothelial growth factor (56). 

However, in a setting of radiation-induced vascular disease BM-derived EPCs did not restore 

dysfunctional endothelium and endothelial homeostasis (57). Perry et al. confirmed a lack of 

BM-derived endothelial cell incorporation into the lining of the dysfunctional endothelium, 

supporting findings of Hillebrands et al. and Aicher et al. (58, 59). In both studies the 

authors have shown that BM-derived EPCs do not contribute substantially to endothelial-cell 

replacement. Another study of Guthrie et al. showed evidence for positive effect of BM-

derived EPCs after laser-induced retinal injury (60). One striking difference between these 

studies is that the laser treatment induced photoagglutination of the retinal vasculature and 

that may have produced an inflammatory or cytokine response leading to systemic endothelial 

cell damage and renewal. In the study of Perry et al, however, no injury was inflicted during 

the time interval between sub-lethal radiation, BM transplant, and tissue analysis (57).

Thus, it seems to be crucial whether BM-EPCs are administrated during an acute phase of 

vascular injury or a chronic phase of injury. Related to our study, where we face a chronic phase 

of vascular injury, this could once more explain why we do not see a restore of endothelial cell 

damage after BM-EPCs administration. 

Concluding remarks
With our studies, we show that radiation to the heart induces modest changes in cardiac 

function despite progressive structural (e.g. fibrosis) and microvascular damage. Further, 

the additional presence of hypercholesterolemia accelerated the development of coronary 

atherosclerosis. When combining radiation treatment with the cardiomyocyte pro-survival 

pathway inhibitor lapatinib, no enhanced radiation toxicity was detected. In our radiation 

mouse models, damage occurs slowly and progressively, resulting in diffuse microvascular 

damage without the induction of strong ischemic foci. This might explain why transplanted 

BM-derived EPCs were not able to reverse the progressive radiation-induced microvascular 

damage, nor did anti-fibrotic agent thalidomide inhibit the damage. Also, we have confirmed 

that the heart can compensate for a significant structural and microvascular damage until a 

certain threshold, before collapsing and leading to sudden death. 
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Future perspectives 
Studies described in this thesis gave first insights in the underlying mechanisms of radiation and 

anthracyline induced cardiovascular damage but also raised new questions and hypothesizes 

for future research.

In our first study we described the phenomenon of sudden death in mice irradiated with 16 

Gy. While structural and vascular damage were demonstrated, cardiac function remained 

within normal limits until sudden death. Further micro array analysis of irradiated hearts gave 

indications that one, or even more, compensatory mechanism may operate in damaged 

hearts.  Future studies could investigate this further by first focusing on a group of interesting 

genes that were specifically upregulated in irradiated hearts. Proteomic analysis and 

immunohistochemistry may further indicate whether these genes play a role in protection 

of moderately damaged hearts, until the extent of damage becomes overwhelming. Mouse 

knock-out models could finally confirm the importance of these genes.

Cardiac function was mostly measured at 20 and 40 weeks after irradiation and demonstrated 

little or no changes in the left ventricle function. Further experiments, preferably with a small 

animal ultrasound device, with shorter intervals and starting at earlier time-points may be able 

to detect changes in the cardiac function prior to sudden death. Also the ultrasound, rather 

than the SPECT/CT, can detect myocardial perfusion abnormalities and may be more sensitive 

that the SPETC/CT. 

In general, earlier time-points and shorter intervals after irradiation would give a broader 

insight of the late side effects in normal cardiac tissue.
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summary

Radiotherapy is an effective treatment of cancer, although it contributes to late toxicity in 

surrounding normal (non-cancer) tissue. Little is known about the underlying mechanisms 

and the contribution of microvascular damage to late cardiac toxicity after radiotherapy alone 

or in combination with chemotherapy or tyrosine kinase receptor inhibitors. In this thesis 

we aim to shed light on the underlying mechanisms of radiation and anthracycline-induced 

cardiovascular damage. 

In chapter 2, a mouse model was used to investigate the histological and functional effect of 

low, intermediate and high dose (2, 8, 16 Gy) single irradiation to the heart at early (20 weeks) 

and late (40 and 60 weeks) time points. With this study we demonstrated that irradiation 

affects cardiac structure and microvascular function in a dose and time-dependent manner, 

with substantial damage after intermediate and high dose irradiation (8-16 Gy) and minor 

alterations after lower doses (2 Gy). 

High cholesterol level in the blood is linked to age-related atherosclerosis, an event that is 

also induced by irradiation in ApoE-/-mice, which have elevated levels of cholesterol, similar 

to humans on western-type diet. We therefore treated ApoE-/- mice in chapter 3 with single 

irradiation to the heart of 2, 8 and 16 Gy, resulting in an early and pronounced inflammatory 

response and microvascular leakage in the hearts. These mice also developed atherosclerotic 

lesions in mid-sized coronary arteries. 

The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is 

known about the increased risk when these treatments are combined with inhibitors of 

epidermal growth factor receptor 2 (ErbB2). Thus, we investigated in chapter 4 the effect of 

combined treatments on survival and growth of cardiomyocytes in vitro. We further studied 

histomorphology and microvascular damage of mice treated with radiation or anthracycline 

alone or in combination with ErbB2-inhibitor lapatinib. While radiation and anthracycline 

induced cardiac toxicity, we did not see any enhancement in structural and microvascular 

damage when blocking ErbB2. 

Endothelial cells have been shown to be highly sensitive to radiation. Endoglin, co-receptor 

of TGF-β1, is essential for angiogenesis and predominantly expressed in proliferating 

vascular endothelial cells and therefore may play a crucial role in cell proliferation and 

thus revascularization in damaged cardiac microvasculature. Chapter 5 demonstrates that 

radiation-induced endothelial cell damage was independent of endoglin expression levels. 

However, lower endoglin expression levels limits the early inflammatory response and fibrosis 

in our radiation-induced mouse model of cardiac damage.
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A better understanding of the underlying mechanisms of radiation-induced cardiac damage 

allows for the development of intervention strategies. In the second part of this thesis we 

focused on intervention and strategies to overcome radiation-induced cardiovascular damage. 

Since inflammatory and fibrotic events are dominant features in radiation-induced heart 

damage, we tested whether an anti-inflammatory and anti-fibrotic agent thalidomide could 

prevent further fibrotic progression after irradiation. In chapter 6 we have shown that 

radiation leads to inflammatory and fibrotic response and that these events could not be 

reduced by thalidomide. 

Radiation induces endothelial cell loss, which results in decreased microvascular density. 

Perfusion defects have been identified in asymptomatic breast cancer patients shortly after 

radiotherapy. Vaculogenesis, stimulated by precursor cells that differentiate into endothelial 

cells, has been shown to be essential in tissue repair and remodeling during acute and chronic 

ischemic tissue damage. In chapter 7 we used bone-marrow derived endothelial cells from 

either endoglin haplo-insufficient or endoglin profficient mice and transplanted them into our 

radiation-induced mouse models. We demonstrated that bone-marrow derived endothelial 

cells did reduce the amount of radiation-induced cardiac fibrosis. However, these cells were 

unable to restore microvascular damage.

We believe that our data on cardiac microvascular damage induced by radiation, give new 

insights into the underlying mechanisms and provide some crucial aspects for finding new 

strategies to overcome radiation-induced cardiac damage. 
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Radiotherapie is een effectieve behandelmodaliteit tegen kanker, maar draagt ook  bij aan 

het ontstaan van late toxiciteit als gevolg van schade aan het omgevende normale weefsel, 

zoals het hart en bloedvaten. Er is echter weinig bekend over de onderliggende mechanismen 

en de relatieve bijdrage van beschadigde kleine bloedvaten op late hartschade na bestraling 

al of niet in combinatie met chemotherapie of tyrosine kinase remmers. In dit proefschrift 

trachten wij inzicht te geven in de oorzaken van hartschade na bestraling en anthracycline 

chemotherapie. 

In hoofdstuk 2 beschrijven we de toepassing van een muizenmodel om acute (20 weken) 

en late (40 en 60 weken) histologische en functionele effecten van verschillende eenmalige 

bestralingsdoses (2, 8, 16 Gy) op het hart te onderzoeken. Met deze studie tonen wij aan 

dat bestraling de cardiale  structuur en microvasculaire functie beïnvloedt in een dosis- en 

tijdafhankelijke manier, met substantiële schade na intermediaire en hoge dosis bestraling 

(8-16 Gy) en minder afwijkingen na een lage dosis (2 Gy).

Een hoge serum cholesterol spiegel is geassocieerd met ouderdom-gerelateerde atherosclerose, 

een aandoening die ook geïnduceerd wordt door bestraling in ApoE-/- muizen die net als 

mensen met een Westers dieet, een hoge serum cholesterol spiegel hebben. In hoofdstuk 

3 beschrijven we de resultaten van een behandeling van ApoE-/- muizen met een eenmalig 

bestralingsdosis op het hart van 2, 8 en 16 Gy. Wij vonden een vroege en uitgesproken 

ontstekingsreactie en microvasculaire lekkage in het hart, en atherosclerotische veranderingen 

in middelgrote coronaire  slagaders.

Het risico van cardiale schade na anthracycline en bestraling is eerder herkend, maar er is 

weinig bekend over het risico als deze behandelingen gecombineerd worden met remmers 

van de epidermale groei factor receptor 2 (ErbB2). Daarom onderzochten wij in hoofdstuk 

4 het effect van deze gecombineerde behandelingen op groei en overleving van gekweekte 

cardiomyocyten. Daarnaast onderzochten wij de histomorfologie en microvasculaire schade 

bij muizen die behandeld werden met bestraling of anthracycline alleen of in combinatie 

met de ErbB2-remmer lapatinib. Terwijl bestraling en anthracycline hartschade veroorzaakten, 

vonden wij geen toename van schade als ErbB2 werd geblokkeerd. 

Endotheelcellen die de binnenbekleding van bloedvaten vormen, zijn zeer stralengevoelig. 

Endoglin, een co-receptor van TGF-β1 is essentieel voor angiogenese en komt voornamelijk tot 

expressie in prolifererende vasculaire endotheelcellen. Daarom zou endoglin een belangrijke 

rol kunnen spelen bij de re-vascularisatie van beschadigde cardiale bloedvaten. 

Hoofdstuk 5 toont aan dat bestraling geïnduceerde endotheelschade onafhankelijk is 

van endoglin expressie. Echter, een laag niveau van endoglin expressie beperkt de vroege 
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ontstekingsreactie en fibrose in ons muizen model met bestraling geïnduceerd cardiale 

schade.   

Het beter begrijpen van de onderliggende mechanismen van bestraling geïnduceerde 

hartschade  kan leiden tot de ontwikkeling van interventiestrategieën. 

In het tweede gedeelte van dit proefschrift richten wij ons op strategieën om bestraling 

geïnduceerd hartschade te voorkomen. 

Aangezien ontstekingseffecten en fibrotische veranderingen overheersen in bestraling 

geïnduceerde cardiale schade, onderzochten wij of de ontstekingsremmer en anti-fibrotisch 

middel thalidomide dit proces kan voorkomen. 

In hoofdstuk 6 laten wij zien dat bestraling leidt tot ontsteking en fibrose, en dat deze 

veranderingen niet konden worden verminderd door het toedienen van thalidomide. 

Bestraling induceert endotheelcel verlies wat uiteindelijk leidt tot in afname in microvasculaire 

dichtheid. Perfusie defecten kunnen worden aangetoond bij asymptomatisch borstkanker 

patiënten vlak na radiotherapie. Vasculogenese, gestimuleerd door precursor cellen die 

gedifferentieerd zijn tot endotheelcellen, is essentieel voor weefselherstel en ‘remodeling’ 

tijdens de acute en chronische fase van ischemische weefselschade.

In hoofdstuk 7 gebruikten wij uit beenmerg afkomstige endotheelcellen van endoglin 

deficiënte en endoglin proficiënte muizen en transplanteerde wij deze in ons bestraling 

geïnduceerd muizenmodel. 

Wij toonden aan dat deze uit het beenmerg afkomstige endotheelcellen in staat waren de 

door bestraling veroorzaakte fibrose te verminderen. Deze cellen konden echter niet niet de 

microvasculaire schade herstellen. 

De in dit proefschrift beschreven studies dragen bij aan een beter inzicht in de onderliggende 

mechanismen van cardiale microvasculair schade geïnduceerd door bestraling, en bieden de 

mogelijkheid om nieuwe strategieën te ontwikkelen om bestraling geïnduceerde hartschade 

te verminderen of voorkomen. 
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αSMA	 alpha-smooth muscle actin

ADRB1	 adrenergic, beta-1, receptor

AEC	 animal experiments committee

AF	 alexa fluor

ALK1	 activin receptor-like kinase 1 

ALK5	 activin receptor-like kinase 5 

ALP 	 alkaline phosphatase

ANGPT2	 angiopoietin 2

ApoE 	 apolipoprotein E

ARNTL	 aryl hydrocarbon receptor nuclear translocator like

B2M	 beta-2-microglobulin

BMC	 bone marrow cell

BMDC	 bone marrow derived cells 

BMEPC	 bone marrow-derived endothelial progenitor cells

CA3	 carbonic anyhydrase III

CCK-8	 cell counting kit-8

CCR	 C-C chemokine receptor type

CDKN1A	 cyclin dependent kinase inhibitor 1A

CFD	 complement factor D

CT	 chemotherapy

CTGF 	 connective tissue growth factor 

CVD	 cardiovascular disease 

CXCL	 chemokine motif ligand 

DAB	 diaminobenzidine 

Dil-ac-LDL	 Dil-labeled low-density lipoprotein

DNA	 deoxyribonucleic acid

Dox	 doxorubicin

EBCTCG	 the Early Breast Cancer Trialists’ Collaborative Group 

EC	 endothelial cell

ECG	 electrocardiography
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EDN1	 endothelin 1

EDV	 end diastolic volume

EF	 ejection fraction 

EGM-2	 endothelial cell growth medium-2

EM	 electron microscopy

Eng+/-	 endoglin heterozygous

Eng+/+	 endoglin homozygous

EPC	 endothelial progenitor cell

ErbB	 epidermal growth factor receptor 

ERR	 excess relative risk 

ESM1	 endothelial cell-specific molecule 1

ESV	 end systolic volumes 

FGF-2	 fibroblast growth factor-2

FN1	 fibronectin 1

FOV	 field of view 

F-type 	 flexible-type

FU	 follow-up

Gy	 gray

HCM	 human cardiac myocytes

H&E	 hematoxylin and eosin 

HHT	 hereditary hemorrhagic telangiectasia 

HMOX1	 heme oxygenase 1

HR	 hazard rate (chapter 1)

HR	 heart rate 

HSA	 human serum albumin 

Hsp	 heat shock protein

H-type 	 hierarchical-type

ICAM-1	 intercellular adhesion molecule-1

IFRT	 contemporary involved-field RT

IGRT	 image-guided-radiotherapy 
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IL	 interleukin

IMRT 	 intensity modulated radiotherapy

INRT	 involved-node RT 

i.p.	 intraperitoneal 

IPA	 ingenuity pathway analysis

IRF7	 interferon regulatory factor 7

i.v.	 intravenously 

LADCA	 left anterior descending coronary artery 

LDL	 low-density lipoprotein 

LVEF	 left ventricle ejection fraction

LV	 left ventricular 

MCP-1	 monocyte chemoattractant protein-1

MMP2	 matrix metalloproteinase 2

MNC	 mononuclear cell

MnSOD	 manganese superoxide dismutase

MVD	 microvascular density

MYL	 myosin light chain 

PAI-1	 plasminogen activator inhibitor-1

PBS	 phosphate-buffered saline

PDGF	 platelet-derived growth factor

PFA	 paraformaldehyde

PFR	 peak filling rate

PPAR	 Peroxisome proliferator-activated receptor 

PTX	 Pentoxifylline 

RIHD	 Radiation-induced heart disease 

RIN	 RNA integrity number

ROS	 reactive oxygen species 

RR	 relative risks 

RT	 radiotherapy

SD	 standard deviation
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SERCA	 sarcoplasmic reticulum Ca2+ ATPase 

SIR	 standardised incidence ratios 

SLN	 sarcolipin

(g)SPECT	 (gated) Single photon emission computed tomography 

TGF-β1	 transforming growth factor β1 

TIMP1	 tissue inhibitor of metalloproteinase 1

TM	 thrombomodulin 

TNF-α	 tumor-necrosis factor-α 

UEA-1	 ulex europaeus agglutinin-1

VCAM-1	 vascular cell adhesion molecule-1

VEGF	 vascular endothelial growth factor

vWF	 von Willebrand factor
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Heel veel dank voor al de professionele hulp, input en probleemoplossingen gaat naar de 
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microscopie, en in het bijzonder de proefdier pathologie met Ji-Ying, ellen en Joost en 

de rest van het clubje. Jullie waren al die jaren fantastisch! Ook de mannen (en vrouw) in het 

proefdierenhuis, Maaike, Henk, Sjaak en Sido, zonder jullie inzet en goede zorg was er 

sowieso geen boek van gekomen. Het was altijd heerlijk gezellig bij jullie in de kelder, dank 

ook hiervoor. Ik wens jullie het beste toe! Bjorn en Tanja op G2 jullie waren alert, 
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van ons eerste hoofdstuk, wat is Maastricht mooi. ;-) En eindelijk dan straks samen feesten in 
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beginnen; alex, door jou ben ik überhaupt in aanraking gekomen met medische biologie! Ik 
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ik een stage plek nodig had. Dat is dus dan ook gelukt, dankzij jou. Wat was dat wennen voor 
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Daarna had ik het geluk bij astrid en Carlos mijn master stage te mogen uitvoeren. Met 

maar liefs twee tassen bij me vloog ik (weer spontaan) in april naar Amsterdam om uit te 

vinden dat een master studie pas in september begint. Wat te doen? Gelukkig mocht ik 

toch meteen bij het ‘Liver Centre (AMC)’  aan de slag en wat had ik geluk met deze twee 

tegenovergestelde supervisors! Carlos, jij wist om te gaan met mijn onzekerheid en hebt 

mij het gevoel gegeven dat ik op mezelf kan vertrouwen. Dank je wel voor deze mooie 

les, het heeft mij het zelfvertrouwen gegeven om te solliciteren voor een PhD plek! Astrid, 

jouw nauwkeurigheid, jouw geduld bij uitleg achter de computer (presentaties, pubmed etc.) 
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mijn enthousiasme. Dank voor al jou steun ook veel jaren na deze stage bij het zoeken voor 

nieuwe carrière mogelijkheden!

Mike, je zult het niet geloven maar je hebt me met al jouw goede toespraken; privé-lessen 
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MaPa, “Flügel gibt man seinen Kindern, aber fliegen müssen sie selber”, trifft absolut auf 

euch zu. Schnell habt ihr mich selbstständig erzogen mit dem Gefühl, das falls ich falle mir 4 

starke Arme zur Hilfe eilen um mir wieder auf die Beine zu helfen (absolut grandioses Beispiel 

ist die Reise nach Canada...mit dem Perso und dem rasenden Papa hinterm Steuer). Das 

hat mir die nötige Sterke gegeben um meinen Weg zu gehen und dafür bin ich unglaublich 

dankbar. Egal wie meine Pläne auch aussahen, ihr habt sie immer unterstützt (außer als ich 

Ballett und Fußball lernen wollte), solange ich mit guten Argumenten kam (sogar ein Tattoo 

mit 17! Ihr habt echt nen Knall ;-) ). Ich dank euch van ganzen Herzen das ihr mir die Freiheit 

gebt meine Träume zu träumen und das Vertrauen und die Sicherheit meine Träume zu leben. 

acknowledgment



- 209 -





Curriculum Vitae



- 212 -

curriculum Vitae

Curriculum Vitae
Ingar Seemann was born on October 5th 1981 in Hentstedt-Ulzburg in the north of Germany. 

After completing school, Ingar moved to Berlin in autumn 2001 to study Biology at the 

Free University (FU) of Berlin. During her bachelor in biology she attended the Amsterdam 

marathon in 2004 and was impressed by the beauty of the city. Thus, she applied for an  

3-months internship at the University of Amsterdam titled: “Stress responses in Bacillus subtilis 

– How do bacteria get stressed?” under supervision of Dr. Alex ter Beek. Back in Berlin, Ingar 

obtained her bachelor in Biology and left Berlin to follow a Master in biomedical Science at 

the University of Amsterdam in spring 2006. 

During her master study Ingar performed two internships: the first entitled “Finding a new 

pathway for cholesterol excretion“ at the Liver center of the Academic Medical Center (AMC) 

under supervision of Dr. Astrid van der Velde and Dr. Carlos Vrins. The second internship was 

entitled “The role of glycosphingolipids in regulation CD163” and performed at the AMC 

under supervision of Dr. Marco van Eijk. Ingar finished her Master study with the master thesis 

“Efficient monitoring of immune response to monoclonal antibodies” under supervision of 

Prof.dr. Lucien Aarden at Sanquin. 

After finishing her masters in summer 2008, she started with her PhD training at the 

Netherlands Cancer Institute at the department of Experimental Therapy (later became: 

Biological Stress Response) under the supervision of Dr. Fiona A. Stewart and promoter Prof. 

Marcel Verheij. She also gave birth the same year to her funny, cute, smart and wonderful 

daughter Emma Pippi. 

Ingar now works as a project manager for EU-funded research projects at the AMC.



- 213 -



- 214 -








