
Advances in Large-Scale
RDF Data Management

Peter Boncz1, Orri Erling2, and Minh-Duc Pham1(B)

1 CWI, Amsterdam, The Netherlands
{P.Boncz,duc}@cwi.nl

2 OpenLink Software, Burlington, UK
erling@xs4all.nl

Abstract. One of the prime goals of the LOD2 project is improving
the performance and scalability of RDF storage solutions so that the
increasing amount of Linked Open Data (LOD) can be efficiently man-
aged. Virtuoso has been chosen as the basic RDF store for the LOD2
project, and during the project it has been significantly improved by
incorporating advanced relational database techniques from MonetDB
and Vectorwise, turning it into a compressed column store with vectored
execution. This has reduced the performance gap (“RDF tax”) between
Virtuoso’s SQL and SPARQL query performance in a way that still
respects the “schema-last” nature of RDF. However, by lacking schema
information, RDF database systems such as Virtuoso still cannot use
advanced relational storage optimizations such as table partitioning or
clustered indexes and have to execute SPARQL queries with many self-
joins to a triple table, which leads to more join effort than needed in
SQL systems. In this chapter, we first discuss the new column store
techniques applied to Virtuoso, the enhancements in its cluster parallel
version, and show its performance using the popular BSBM benchmark
at the unsurpassed scale of 150 billion triples. We finally describe ongo-
ing work in deriving an “emergent” relational schema from RDF data,
which can help to close the performance gap between relational-based
and RDF-based storage solutions.

1 General Objectives

One of the objectives of the LOD2 EU project is to boost the performance and
the scalability of RDF storage solutions so that it can, efficiently manage huge
datasets of Linked Open Data (LOD). However, it has been noted that given
similar data management tasks, relational database technology significantly out-
performed RDF data stores. One controlled scenario in which the two tech-
nologies can be compared is the BSBM benchmark [2], which exists equivalent
relational and RDF variants. As illustrated in Fig. 1, while the SQL systems
can process by up to 40–175K QMpH, the Triple stores can only reach 1–10K
QMpH, showing a factor of 15–40 of performances difference.

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 21–44, 2014.
DOI: 10.1007/978-3-319-09846-3 2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/43408578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

22 P. Boncz et al.

Fig. 1. Triple stores vs. SQL: a heavy “RDF Tax”
(2009)

In the LOD2 project we
investigated the causes of this
large difference (the “RDF
tax”, i.e. the performance cost
of choosing RDF instead of
relational database technol-
ogy). Here we identify three
causes:

• the particular case of BSBM is to the disadvantage of RDF as BSBM by its
nature is very relational: its schema has just few classes, and all its properties
occur exactly once for each subject, such that the data structure is very tab-
ular. As such, the ease of use of SPARQL to formulate queries on irregularly
structured data does not come into play, and the complications to which such
irregular data leads in relational solutions (many more tables, and many more
joins) are avoided.

• relational systems are quite mature in their implementations. For instance, the
explore workload is an OLTP workload which relational systems target with
key index structures and pre-compiled PL/SQL procedures. The BI workload
of BSBM benefits from analytical execution techniques like columnar storage
and vectorized execution and hash joins with bloom filters (to name just a
few). While relational products over the years have implemented many such
optimizations, RDF stores typically have not. Another area where analytical
relational database engines have made important progress is the use of cluster
technology. Whereas in 1990s only the very high end of RDBMS solutions was
cluster-enabled (i.e. Teradata), many other systems have been added such
as Greenplum, Paraccel, Vertica, SAP HANA and SQLserver Parallel data
Warehouse (which without exceptional also leverage columnar storage and
vectorized or JIT-compiled execution).

• RDF stores do not require a schema but also do not exploit it, even though the
structure of the data in fact is highly regular. This hurts in particular in the
very common SPARQL star-patterns, which need to be executed using multi-
ple self-joins, where relational systems do not need joins at all. The structure
that is heavily present in RDF triples further leads to the co-occurrence of
properties to be heavily (anti-) correlated. The complexity of query optimiza-
tion is not only exponential with respect to the amount of joins (and SPARQL
needs many more than SQL) but also relies on cost models, yet cost models
typically become very unreliable in the face of correlations. Unreliable cost
models lead to bad query plans and this very strongly affects performance
and scalability of RDF stores. In all, query optimization for SPARQL is both
more costly and unreliable than for SQL.

Virtuoso6, a high-performance RDF Quad Store, was chosen as the main
RDF store for LOD2 knowledge base at the start of the project. In order to

Advances in Large-Scale RDF Data Management 23

reduce the “RDF tax”, we first revised architectural ideas from the state-of-the-
art of relational database systems, particularly, advanced column stores such as
MonetDB [9] and Vectorwise [18]. Then, we brought some of the unique tech-
nologies and architectural principles from these column stores into Virtuoso7,
making it work more efficiently on modern hardware. These techniques include
tuning the access patterns of database queries to be CPU-cache conscious, and
also making query processing amendable to deeply pipelined CPUs with SIMD
instructions by introducing concepts like vector processing. We note that the
insights gained in improving Virtuoso will also be useful for other RDF store
providers to enhance their respective technologies as well.

Further, the cluster capabilities of Virtuoso were significantly improved. Note
that by lack of table structures, RDF systems must distribute data by the triple
(not tuple), which leads to more network communication during query execution.
Network communication cost tends to be the limiting factor for parallel database
systems, hence Virtuoso7 Cluster Edition introduced an innovative control flow
framework that is able to hide network cost as much as possible behind CPU
computation.

By the end of the LOD2 project, these improvements in Virtuoso7 on the
BSBM BI workload strongly improved performance. A quantified comparison
is hard as Virtuoso6 would not even complete the workload (“infinitely better”
would be an exaggeration). Still, when comparing the SQL with the SPARQL
implementation of BSBM-BI on Virtuoso7, we still see an “RDF tax” of a factor
2.5. This performance difference comes from the schema-last approach of RDF
model: SPARQL plans need more joins than SQL and often the query plan is not
optimal. To address this issue, CWI performed research in the line of the second
bullet point above: the goal would be to give the RDF store more insight in the
actual structure of RDF, such that SPARQL query plans need less self-joins and
query optimization becomes more reliable. This goal should be achieved without
losing the schema-last feature of RDF: there should be no need for an explicit
user-articulated schema.

The idea of recovering automatically an “emergent” schema of actual RDF
data is that RDF data in practice is quite regular and structured. This was
observed in the proposal to make SPARQL query optimization more reliable by
recognizing “characteristics sets” [10]. A characteristic set is a combination of
properties that typically co-occur with the same subject. The work in [10] found
that this number is limited to a few thousand on even the most complex LOD
datasets (like DBpedia), and the CWI research on emergent schema detection
that started in the LOD2 project [15] aims to further reduce the amount of char-
acteristic sets to the point that characteristics sets become tables in a table of
limited size (less than 100), i.e. further reducing the size. To that, the additional
challenge of finding human-understandable labels (names) for tables, columns,
and relationships was added. The goal of emergent schemata thus became two-
fold: (1) to inform SPARQL systems of the schema of the data such that they
need less self-joins and query optimization becomes more reliable, (2) to offer
a fully relational view of an RDF dataset to end-users so that existing SQL

24 P. Boncz et al.

applications can be leveraged on any RDF dataset. The latter goal could help to
increase RDF adoption and further help make relational systems more seman-
tic (because all tables, columns and relationships in an emergent schema are
identified by URIs).

In all, this chapter shows tangible progress in reducing the “RDF tax” and a
promising avenue to further reduce the performance gap between SPARQL and
SQL systems and even some hope of making them converge.

2 Virtuoso Column Store

The objective of the Virtuoso7 column store release was to incorporate the state
of the art in relational analytics oriented databases into Virtuoso, specifically
for the use with RDF data. Ideally, the same column store engine would excel
in both relational analytics and RDF.

Having RDF as a driving use case emphasizes different requirements from a
purely relational analytics use case, as follows:

Indexed access. Some column stores geared purely towards relational ana-
lytics [18] obtain excellent benchmark scores without any use of index lookup,
relying on merge and hash join alone. An RDF workload will inevitably have to
support small lookups without setup cost, for which indexed access is essential.

Runtime data types. Runtime data typing is fundamental to RDF. There
must be a natively supported any data type that can function as a key part
in an index. Dictionary encoding all literal values is not an option, since short
data types such all numbers and dates must be stored inline inside an index. This
offers native collation order and avoids a lookup to a dictionary table, e.g. before
doing arithmetic or range comparisons. This is a requirement for any attempt
at near parity with schema-first systems. Thus dictionary encoding is retained
only for strings.

Multi-part and partitionable indices. Many early column stores [9] were
based on an implicit row number as a primary key. Quite often this would be
dense and would not have to be materialized. Such a synthetic row number is
however ill suited to a scale-out RDF store as a globally unique row number for a
partitioned column is hard to be maintained. Thus, Virtuoso does not have any
concept of row number but rather has multi-part sorted column-wise compressed
indices for all persistent data structures. In this, Virtuoso most resembles [1,7].
This structure is scale-out friendly since partitioning can be determined by any
high cardinality key part and no global synthetic row number needs to exist,
even as an abstraction.

Adaptive compression. Column stores are renowned for providing excellent
data compression. This comes from having all the values in a column physically
next to each other. This means that values, even in a runtime typed system,
tend to be of the same type and to have similar values. This is specially so for
key parts where values are ascending or at least locally ascending for non-first

Advances in Large-Scale RDF Data Management 25

key parts. However, since a single column (specially for the RDF object column)
will store all the object values of all triples, there can be no predeclared hints for
type or compression. Different parts of the column will have radically different
data types, data ordering and number of distinct values. Thus local environment
is the only indication available for deciding on compression type.

Transactionality. While a column-wise format is known to excel for read-
intensive workloads and append-style insert, RDF, which trends to index quads
at least from S to O and the reverse. Thus with one index there can be mostly
ascending insert but there is no guarantee of order on the other index. Also row-
level locking needs to be supported for transactional applications. This is by and
large not an OLTP workload but short transactions must still be efficient. Thus
Virtuoso departs from the typical read-intensive optimization of column stores
that have a separate delta structure periodically merged into a read-only column-
wise compressed format [7,18]. Virtuoso updates column-wise compressed data
in place, keeping locks positionally and associating rollback information to the
lock when appropriate. Thus there is no unpredictable latency having to do with
flushing a write optimized delta structure to the main data. While doing so, Vir-
tuoso has excellent random insert performance, in excess of the best offered by
Virtuoso’s earlier row store.

As a result of these requirements, Virtuoso uses a sparse row-wise index for
each column-wise stored index. The row wise index is a B-Tree with one row
for anywhere between 2000 to 16000 rows. This entry is called the row-wise leaf.
To each row-wise leaf corresponds a segment of each column in the table. Each
segment has an equal number of values in each column. Consecutive segments
tend to be of similar size. When values are inserted into a segment, the segment
will split after reaching a certain size, leading to the insertion of a new row-
wise leaf row. This may cause the row-wise leaf page to split and so forth. Each
column segment is comprised of one or more compression entries. A compression
entry is a sequence of consecutive values of one column that share the same
compression. The compression entry types are chosen based on the data among
the following:

• Run length. Value and repeat count
• Array. Consecutive fixed length (32/64 nbit) or length prefixed strings
• Run length delta. One starting value followed by offsets and repeat counts

for each offset
• Bitmap. For unique closely spaced integers, there is a start value and a one

bit for each consecutive value, the bit position gives the offset from start value
• Int delta. From a start value, array of 16 bit offsets
• Dictionary. For low cardinality columns, there is a homogenous or heteroge-

neous array of values followed by an array of indices into the array. Depending
on the distinct values, the index is 4 or 8 bits.

Using the Virtuoso [5] default index scheme with two covering indices (PSOG
and POSG) plus 3 distinct projections (SP, OP, GS), we obtain excellent com-
pression for many different RDF datasets. The values are in bytes per quad
across all the five indices, excluding dictionary space for string literals.

26 P. Boncz et al.

BSBM: 6 bytes DBpedia: 9 bytes Uniprot: 6 bytes Sindice crawl: 14 bytes

DBpedia has highly irregular data types within the same property and many
very differently sized properties, thus compresses less. Uniprot and BSBM are
highly regular and compress very well. The web crawl consists of hundreds of
millions of graphs of 20 triples each, thus the graph column is highly irregular
and less compressible, accounting for the larger space consumption. However one
typically does not reference the graph column in queries, so it does not take up
RAM at runtime.

2.1 Vectored Execution

A column store is nearly always associated with bulk operators in query execu-
tion, from the operator at a time approach of MonetDB [9] to vectored execution
[4,7,18]. The idea is to eliminate query interpretation overhead by passing many
tuples between operators in a query execution pipeline. Virtuoso is no exception,
but it can also run vectored plans for row-wise structures. The main operators
are index lookup and different variations of hash, from hash join to group by.
An index lookup receives a vector of key values, sorts them, does a log(n) index
lookup for the first and subsequently knows that all future matches will be to
the right of the first match. If there is good locality, an index lookup is indis-
tinguishable from a merge join. The added efficiency of vectoring is relative to
the density of hits. Considering that over a million rows are typically under one
row-wise leaf page (e.g. 16K rows per segment * 70 segments per page), there is
a high likelihood that the next hit is within the next 16K or at least within the
next 1M rows, hence there is no need to restart the index lookup from the tree
top.

Hash based operations use a memory-only linear hash table. This is essen-
tially the same hash table for hash join, group by and distinct. The hash table
consists of a prime number of fixed size arrays that are aligned by CPU cache
line. Different fields of a 64 bit hash number give the array and a place in the
array. The entry is either found at this place or within the same cache line or is
not in the hash table. If a cache line is full and the entry does not match, there is
an extra exceptions list which is typically short. One can determine the absence
of a value with most often one cache miss. Only if the line is full does one need
to consult the exceptions, leading to a second cache miss. Since the hash opera-
tions are all vectored, prefetch is used to miss multiple consecutive locations in
parallel. Further, if the hash table contains pointers to entries instead of single
fixed length integers, the high bits of the pointer are used to contain a filed of
the hash number. Thus one does not dereference a pointer to data unless the
high bits of the pointer (not used for addressing) match the high bits of the hash
number. In this way cache misses are minimized and each thread can issue large
numbers of cache misses in parallel without blocking on any.

Further, Bloom filters are used for selective hash joins. We have found that
a setting of 8 bits per value with 4 bits set gives the best selectivity. Typically

Advances in Large-Scale RDF Data Management 27

the Bloom filter drops most of non-matching lookup keys before even getting to
the hash table.

2.2 Vector Optimizations

Virtuoso can adjust the vector size at runtime in order to improve locality of
reference in a sparse index lookup. Easily 30 % of performance can be gained
if looking for 1M instead of 10K consecutive values. This comes from higher
density of hits in index lookup. The vector size is adaptively set in function of
available memory and actually observed hit density.

2.3 Query Optimization

All the advanced execution techniques described so far amount to nothing if the
query plan is not right. During the last year of LOD2 we have made a TPC-H
implementation to ensure that all state of the art query optimization techniques
are present and correctly applied. TPC-H is not an RDF workload but offers an
excellent checklist of almost all execution and optimization tricks [3].

The goal of LOD2 is RDF to SQL parity but such parity is illusory unless the
SQL it is being compared to is on the level with the best. Therefore having a good
TPC-H implementation is a guarantee of relevance plus opens the possibility of
Virtuoso applications outside of the RDF space. Details are discussed in [13].

In the following we cover the central query optimization principles in Virtuoso.

Sampling. Virtuoso does not rely on up-front statistics gathering. Instead, the
optimizer uses the literals in queries to sample the database. The results of
sampling are remembered for subsequent use. In RDF, there is an indexed access
path for everything. Thus if leading P, S or O are given, the optimizer can just
look at how many hits there in the index. The hits, if numerous, do not have to be
counted. Counting the number of hits per page and number of pages is accurate
enough. Also, within each RDF predicate, there is a count of occurrences of the
predicate, of distinct S’s, distinct O’s and G’s. These allow estimating the fan-
out of the predicate, e.g. a foaf:name has one O per S and foaf:knows has 100
O’s per S. Also we recognize low cardinality properties, e.g. there is one city per
person but 1M persons per city.

The statistics interact with runtime support of inference. Thus in one infer-
ence context, if tag is a super-property of about and mentions, but there are
no triples with tag, the statistics automatically drill down to the sub-properties
and sum these up for the super-property. This is however scoped to the inference
context.

There can be conditions on dependent part columns, e.g. if P, S and G are
given, G is likely a dependent part since in PSOG there is O between the leading
parts and G. Thus sampling is used to determine the frequency of a specific G
within a fixed P, S. The same is done for relational tables where there in fact
are dependent columns that do not participate in ordering the table.

28 P. Boncz et al.

Cost Model. It has been recently argued [17] that SPARQL can be optimized
just as well or even better without a cost model. We do not agree with this
due to the following: It is true that a cost model has many complexities and
possibilities for error. However, there are things that only a cost model can
provide, in specific, informed decision on join type.

There is a definite break-even point between hash join and vectored index
lookup. This is tied to the input counts on either side of the join. Both the
number of rows on the build and the probe sides must be known in order to
decide whether to use hash join. Also, when building the hash table, one has
to put as many restrictions as possible on the build side, including restrictive
joins. To get this right, a cost model of one kind or another is indispensable. The
choice hinges on quantities, not on the structure of the query. If the goal is only
to do look-ups efficiently, then one can probably do without a cost model. But
here the goal is to match or surpass the best, hence a cost model, also for RDF is
necessary even though it is very complex and has a high cost of maintenance. It is
also nearly impossible to teach people how to maintain a cost model. Regardless
of these factors, we believe that one is indispensable for our level of ambition.

2.4 State of the RDF Tax

We refer to the performance difference between a relational and RDF implemen-
tation of a workload as the RDF tax. This has been accurately measured with
the Star Schema Benchmark (SSB) [12], a simplified derivative of TPC-H. While
Virtuoso does TPC-H in SQL [13] on a par with the best, the RDF translation
of all the query optimization logic is not yet complete, hence we will look at
SSB.

SSB has one large fact table (line order) and several smaller dimension tables
(part, supplier, dw date, nation and region). The schema is denormalized into a
simple star shape. Its RDF translation is trivial; each primary key of each table
is a URI, each column is a property and each foreign key is a URI.

SSB was run at 30G scale on a single server with Virtuoso, MonetDB and
MySQL. In SQL, Virtuoso beats MonetDB by a factor of 2 and MySQL by a
factor of 300 (see Table 1). In SPARQL, Virtuoso came 10–20 % behind Mon-
etDB but still 100x ahead of MySQL. These results place the RDF tax at about
2.5x in query execution time. Thanks to Virtuoso’s excellent query performance,
SPARQL in Virtuoso will outperform any but the best RDBMS’s in analytics
even when these are running SQL.

All plans consist of a scan of the fact table with selective hash joins against
dimension tables followed by a simple aggregation or a group by with rela-
tively few groups, e.g. YEAR, NATION. In the RDF variant, the fact table scan
becomes a scan of a property from start to end, with the object, usually a for-
eign key, used for probing a hash table built from a dimension table. The next
operation is typically a lookup on another property where the S is given by the
first and the O must again satisfy a condition, like being in a hash table.

The RDF tax consists of the fact that the second column must be looked up
by a self join instead of being on the same row with the previous column. This is

Advances in Large-Scale RDF Data Management 29

Table 1. Star Schema Benchmark with scales 30 GB and 300 GB (in seconds)

Query 30 GB 300 GB

Virtuoso Virtuoso RDF MonetDB MySQL Virtuoso Virtuoso RDF

SQL SPARQL tax SQL SPARQL tax

Q1 0.413 1.101 2.67 1.659 82.477 2.285 7.767 3.40

Q2 0.282 0.416 1.48 0.5 74.436 1.53 3.535 2.31

Q3 0.253 0.295 1.17 0.494 75.411 1.237 1.457 1.18

Q4 0.828 2.484 3.00 0.958 226.604 3.459 6.978 2.02

Q5 0.837 1.915 2.29 0.648 222.782 3.065 8.71 2.84

Q6 0.419 1.813 4.33 0.541 219.656 2.901 8.454 2.91

Q7 1.062 2.33 2.19 5.658 237.73 5.733 15.939 2.78

Q8 0.617 2.182 3.54 0.521 194.918 2.267 6.759 2.98

Q9 0.547 1.29 2.36 0.381 186.112 1.773 4.217 2.38

Q10 0.499 0.639 1.28 0.37 186.123 1.44 4.342 3.02

Q11 1.132 2.142 1.89 2.76 241.045 5.031 12.608 2.51

Q12 0.863 3.77 4.37 2.127 241.439 4.464 15.497 3.47

Q13 0.653 1.612 2.47 1.005 202.817 2.807 4.467 1.59

Total 8.405 21.989 2.62 17.622 2391.55 37.992 100.73 2.65

the best case for the RDF tax, as the execution is identical in all other respects.
There are some string comparisons, e.g. brand contains a string but these are
put on the build side of a hash join and are not run on much data.

In a broader context, the RDF tax has the following components:

Self-joins. If there are conditions on more than one column, every next one
must be fetched via a join. This is usually local and ordered but still worse
than getting another column. In a column store, predicates on a scan can be
dynamically reordered based on their observed performance. In RDF, this is not
readily feasible as it would alter the join order.

Cardinality estimation. In a multi-column table one can sample several pred-
icates worth in one go, in RDF this requires doing joins in the cost model and is
harder. Errors in cost estimation build up over many joins. Accurate choice of
hash vs index based join requires reliable counts on either side. In SQL analytics,
indices are often not even present, hence the join type decision is self-evident.

Optimization search space. A usage pattern of queries with tens of triple
patterns actually hitting only a few thousand triples leads to compilation dom-
inating execution times. A full exploration of all join orders is infeasible, as this
is in the order of factorial of the count of tables and there can easily be 30 or
40 tables. Reuse of plans when the plans differ only in literals is a possibility
and has been tried. This is beneficial in cases but still needs to revalidate if the
cardinality estimates still hold with the new literal values. Exploring plans with

30 P. Boncz et al.

many joins pushed to the build side of a hash join further expands the search
space.

String operations. Since RDF is indexed many ways and arbitrary strings are
allowed everywhere, implementations store unique strings in a dictionary and a
specially tagged reference to the dictionary in the index. Going to the dictionary
makes a scan with a LIKE condition extremely bad, specially if each string is
distinct. Use of a full text index is therefore common.

URI’s. For applications that do lookups, as most RDF applications do, trans-
lating identifiers to their external, usually very long, string form is an RDF-only
penalty. This can be alleviated by doing this as late as possible but specially
string conditions on URI’s are disastrous for performance.

Indexing everything. Since there is usually an indexed access path for every-
thing, space and time are consumed for this. TPC-H 100G loads in SQL in
15 min with no indices other than the primary keys. The 1:1 RDF translation
takes 12 h. This is the worst case of the RDF tax but is limited to bulk load.
Update intensive OLTP applications where this would be worse still are gen-
erally not done in RDF. Of course nobody forces one to index everything but
this adds complexities to query optimization for cases where the predicate is not
known at compile time.

Runtime data typing. This is a relatively light penalty since with vectored
execution it is possible to detect a homogenous vector at runtime and use a typed
data format. If a property is all integers, these can be summed by an integer-
specific function. This usually works since RDF often comes from relational
sources. DBpedia is maybe an exception with very dirty data, but then it is not
large, hence the penalty stays small.

Lack of schema. There is usually no schema or the data does not comply
with it. Therefore optimizations like late projection that are safe in SQL are not
readily applicable. If you take the 10 youngest people and return their birth date,
name and address you cannot defer getting the name and address after the top
10 since there might be people with many names or no names etc. These special
cases complicate the matter but optimizations having to do with top k order
are still possible. Similarly dependencies inside grouping columns in a group by
cannot be exploited because one does not know that these are in fact functional
even if the schema claims so.

Many of these penalties fall away when leaving the triple table format and
actually making physical tables with columns for single valued properties. The
exceptions may still be stored as triples/quads, so this does not represent a return
to schema-first. Physical design, such as storing the same data in multiple orders
becomes now possible since data that are alike occupy their own table. Also n:m
relationships with attributes can be efficiently stored in a table with a multi-part
key while still making this look like triples.

This is further analyzed in a later section of this chapter. Implementation in
Virtuoso is foreseen in the near future.

Advances in Large-Scale RDF Data Management 31

3 Virtuoso Cluster Parallel

Virtuoso’s scale out capability has been significantly upgraded during LOD2.
The advances are as follows:

Elastic partitions. The data is sharded in a large number of self-contained
partitions. These partitions are divided among a number of database server
processes and can migrate between them. Usually each process should have one
partition per hardware thread. Queries are parallelized to have at most one
thread per partition. Partitions may split when growing a cluster. Statistics are
kept per partition for detecting hot spots.

Free-form recursion between partitions. One can write stored procedures
that execute inside a partition and recursively call themselves in another par-
tition, ad infinitum. This is scheduled without deadlocking or running out of
threads. If a procedure waits for its descendant and the descendant needs to
execute something in the waiting procedure’s partition, the thread of the wait-
ing procedure is taken over. In this way a distributed call graph never runs out
of threads but still can execute at full platform parallelism. Such procedures can
be transparently called from queries as any SQL procedures, the engine does the
partitioning and function shipping transparently.

Better vectoring and faster partitioning. Even the non-vectored Virtuoso
cluster combined data for several tuples in messages, thus implementing a sort
of vectoring at the level of interconnect while running scalar inside the nodes.
Now that everything is vectored, the architecture is simpler and more efficient.

More parallel control flows. The basic query execution unit in cluster is a
series of cross partition joins, called DFG (distributed fragment). Each set of
co-located joins forms a stage of the DFG pipeline. Each stage runs one thread
per partition if there is work to do in the partition. The results are partitioned
again and sent onwards. The DFG ends by returning vectors of query variable
bindings to the query coordinator or by feeding them in an aggregation. An
aggregation itself will be partitioned on the highest cardinality grouping key
if the cardinality is high enough. A subsequent DFG can pick the results of a
previous partitioned aggregation and process these through more joins again
with full platform utilization.

Different parallel hash joins. Tables are usually partitioned and in the case
of RDF always partitioned. However, if a hash join build side is small, it is
practical to replicate this into every server process. In this way, what would
be a non-collocated join from foreign key to primary key becomes collocated
because the hash table goes to its user. However, if the probe key is also the
partitioning key of the probe, there is never a need to replicate because the hash
table can be partitioned to be collocated with the probe without replicating. If
the hash table would be large but the probe key is not the partitioning key of
the probing operator, the hash table can still be partitioned. This will require a
message exchange (a DFG stage). However, this is scalable since each server will

32 P. Boncz et al.

only host a fraction of the whole hash table. Selective hash joins have Bloom
filters. Since the Bloom filter is much smaller than the hash table itself, it can
be replicated on all nodes even if the hash table is not. This allows most of
the selectivity to take place before the inter-partition message exchange (DFG
stage).

With SSB, the cluster shows linear throughput gains: 10x the data takes 5x
longer on twice the hardware (see Table 1). This is the case for either RDF or
SQL. The RDF tax is the same for cluster as for single server, as one would
expect.

3.1 Performance Dynamics

Running complex queries such as the BSBM BI workload makes high use of cross
partition joins (DFG) and of nested subqueries. This is a DFG inside a DFG,
where the innermost DFG must run to completion before the invoking stage of
the calling DFG can proceed. An existence test containing a non-collocated set
of joins is an example of such pattern.

We find that message scheduling that must keep track of distributed depen-
dencies between computations becomes a performance bottleneck. Messages can
be relatively fragmented and numerous. Scheduling a message involves a critical
section that can become a bottleneck. In subsequent work this critical section has
been further split. The scheduling itself is complex since it needs to know which
threads are waiting for which operations and whether a descendant operation
ought to take over the parent’s thread or get its own.

All the techniques and observed dynamics apply identically to RDF and SQL
but are worse in RDF because of more joins. Use of hash joins and flattening of
subqueries alleviates many of these problems. Hash joins can save messages by
replicating the hash table, so there are messages only when building the hash
table. In a good query plan this is done on far less data than probing the hash
table.

3.2 Subsequent Development

Virtuoso is at present an excellent SQL column store. This is the prerequisite
for giving RDF performance that is comparable with the best in relational data
warehousing.

The next major step is storing RDF in tables when regular structure is
present. This will be based on the CWI research, described in the next section.
Query plans can be made as for triples but many self-joins can be consolidated at
run time in into a table lookup when the situation allows. Cost model reliability
will also be enhanced since this will know about tables and can treat them as
such.

4 BSBM Benchmark Results

The BSBM (Berlin SPARQL Benchmark) was developed in 2008 as one of the first
open source and publicly available benchmarks for comparing the performance

Advances in Large-Scale RDF Data Management 33

of storage systems that expose SPARQL endpoints such as Native RDF stores,
Named Graph stores, etc. The benchmark is built around an e-commerce use case,
where a set of products is offered by different vendors and consumers have posted
reviews about products. BSBM has been improved over this time and is current on
release 3.1 which includes both Explore and Business Intelligence use case query
mixes, the latter stress-testing the SPARQL1.1 group-by and aggregation func-
tionality, demonstrating the use of SPARQL in complex analytical queries. To
show the performance of Virtuoso cluster version, we present BSBM results [2] on
the V3.1 specification, including both the Explore (transactional) and Business
Intelligence (analytical) workloads (See the full BSBM V3.1 results for all other
systems1).

We note that, comparing to the previously reported BSBM report2 for 200M
triples dataset, this BSBM experiment against 50 and 150 billion triple datasets
on a clustered server architecture represents a major step (750 times more data)
in the evolution of this benchmark.

4.1 Cluster Configuration

We selected the CWI scilens3 cluster for these experiments. This cluster is
designed for high I/O bandwidth, and consists of multiple layers of machines. In
order to get large amounts of RAM, we used only its “bricks” layer, which con-
tains its most powerful machines. Virtuoso V7 Column Store Cluster Edition was
set up on 8 Linux machines. Each machine has two CPUs (8 cores and hyper
threading, running at 2 GHz) of the Sandy Bridge architecture, coupled with
256 GB RAM and three magnetic hard drives (SATA) in RAID 0 (180 MB/s
sequential throughput). The machines were connected through an InfiniBand
Switch (Mellanox MIS5025Q). The cluster setups have 2 processes per machine,
1 for each CPU. A CPU has its own memory controller which makes it a NUMA
node. CPU affinity is set so that each server process has one core dedicated to the
cluster traffic reading thread (i.e. dedicated to network communication) and the
other cores of the NUMA node are shared by the remaining threads. The reason
for this set-up is that communication tasks should be handled with high-priority,
because failure to handle messages delays all threads. These experiments have
been conducted over many months, in parallel to the Virtuoso V7 Column Store
Cluster Edition software getting ready for release. Large part of the effort spent
was in resolving problems and tuning the software.
1 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

results/V7/index.html
2 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

results/V6/index.html
3 This cluster is equipped with more-than-average I/O resources, achieving an Amdahl

number >1. See www.scilens.org.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V6/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V6/index.html
www.scilens.org

34 P. Boncz et al.

4.2 Bulk Loading RDF

The original BSBM data generator was a single-threaded program. Generating
150B triples with it would have taken weeks. We modified the data generator to
be able to generate only a subset of the dataset. By executing the BSBM data
generator in parallel on different machines, each generating a different part of the
dataset, BSBM data generation has become scalable. In these experiments we
generated 1000 data files, and then distributed them to each machine according
to the modulo of 8 (i.e., the number of machine) so that files number 1, 9, ...
go to machine 1, file number 2, 10, ... go to machine 2, and so on. This striping
of the data across the nodes ensures a uniform load, such that all nodes get an
equal amount of similar data (Table 2).

Table 2. BSBM data size and loading statistic

Each machine loaded its local set of files (125 files), using the standard par-
allel bulk-load mechanism of Virtuoso. This means that multiple files are read
at the same time by the multiple cores of each CPU. The best performance
was obtained with 7 loading threads per server process. Hence, with two server
processes per machine and 8 machines, 112 files were being read at the same
time. Also notice that in a cluster architecture there is constant need for com-
munication during loading, since every new URIs and literals must be encoded
identically across the cluster; hence shared dictionaries must be accessed. Thus,
a single loader thread counts for about 250 % CPU across the cluster. The load
was non-transactional and with no logging, to maximize performance. Aggregate
load rates of up to 2.5M quads per second were observed for periods of up to
30 min. The total loading time for the dataset of 50 billion triples is about 6 h
28 min, which makes the average loading speed 2.14M triples per second.

The largest load (150B quads) was slowed down by one machine showing
markedly lower disk write throughput than the others. On the slowest machine
iostat showed a continuous disk activity of about 700 device transactions per sec-
ond, writing anything from 1 to 3 MB of data per second. On the other machines,
disks were mostly idle with occasional flushing of database buffers to disk produc-
ing up to 2000 device transactions per second and 100 MB/s write throughput.
Since data is evenly divided and 2 of 16 processes were not runnable because
the OS had too much buffered disk writes, this could stop the whole cluster for
up to several minutes at a stretch. Our theory is that these problems were being
caused by hardware malfunction.

To complete the 150B load, we interrupted the stalling server processes,
moved the data directories to different drives, and resumed the loading again.
The need for manual intervention, and the prior period of very slow progress
makes it hard to calculate the total time it took for the 150B load.

Advances in Large-Scale RDF Data Management 35

4.3 Notes on the BI Workload

The test driver can run with single-user run or multi-user run, simulating the
cases that one user or multiple users concurrently execute query mixes against
the system under test.

All BSBM BI runs were with minimal disk IO. No specific warm-up was used
and the single user run was run immediately following a cold start of the multi-
user run. The working set of BSBM BI is approximately 3 bytes per quad in
the database. The space consumption without literals and URI strings is 8 bytes
with Virtuoso column store default settings. For a single user run, typical CPU
utilization was around 190 of 256 core threads busy. For a multi-user run, all
core threads were typically busy. Hence we see that the 4 user run takes roughly
3 times the real time of the single user run.

4.4 Benchmark Results

The following terms will be used in the tables representing the results.

• Elapsed runtime (seconds): the total runtime of all the queries excluding the
time for warm-up runs.

• Throughput : the number of executed queries per hour. Throughput = (Total
of executed queries) * (3600 / ElapsedTime) * scaleFactor. Here, the scale
factor for the 50 billion triples dataset and 150 billion triples dataset is 500
and 1500, respectively.

• AQET : Average Query Execution Time (seconds): The average execution time
of each query computed by the total runtime of that query and the number of
executions: AQET(q) = (Total runtime of q) / (number of executions of q).

BI Use Case. Table 3 shows the results for the BI workload. Some results seem
noisy, for instance Q2@50B, Q4@50B, Q4@150B are significantly cheaper in the
multi-client-setup. Given the fact that the benchmark was run in drill-down
mode, this is unexpected. It could be countered by performing more runs, but,
this would lead to very large run-times as the BI workload has many long-running
queries.

In the following, we discuss the above performance result over the query Q2.
Further discussion on other queries can be found in [6].

SELECT ?otherProduct ?sameFeatures {
?otherProduct a bsbm:Product .
FILTER(?otherProduct != %Product%)
{SELECT ?otherProduct (COUNT(?otherFeature) AS ?sameFeatures) {

%Product% bsbm:productFeature ?feature .
?otherProduct bsbm:productFeature ?otherFeature .
FILTER(?feature=?otherFeature)

} GROUP BY ?otherProduct}}
ORDER BY DESC(?sameFeatures) ?otherProduct LIMIT 10

36 P. Boncz et al.

Table 3. BI Use Case: detailed
results (Jan. 2013)

Table 4. BI Use Case:
updated results (Mar. 2013)

BSBM BI Q2 is a lookup for the products with the most features in common
with a given product. The parameter choices (i.e., %Product%) produce a large
variation in run times. Hence the percentage of the query’s timeshare varies
according to the repetitions of this query’s execution. For the case of 4-clients,
this query is executed for 4 times which can be the reason for the difference
timeshare between single-client and 4-client of this query.

The benchmark results in the Table 3 are taken from our experiments running
in January 2013. With more tuning in the Virtuoso software, we have re-run the
benchmark with the dataset of 50B triples. The updated benchmark results in
Table 4 show that the current version of Virtuoso software, namely Virtuoso7-
March2013, can run the BSBM BI with a factor of 2 faster than the old version
(i.e., the Virtuoso software in January). Similar improvement on the benchmark
results is also expected when we re-run the benchmark with the dataset of 150B
triples.

Explore Use Case. We now discuss the performance results in the Explore
workload. We notice that these 4-client results seem more noisy than the single-
client results and therefore it may be advisable in future benchmarking to also
use multiple runs for multi-client tests. What is striking in the Explore results
is that Q5 (see the query below) dominates execution time (Tables 5 and 6).

SELECT DISTINCT ?product ?productLabel WHERE {

?product rdfs:label ?productLabel .

FILTER (%ProductXYZ% != ?product)

%ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProp1 .

?product bsbm:productPropertyNumeric1 ?simProp1 .

FILTER (?simProp1<(?origProp1+120) && ?simProp1>(?origProp1-120))

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProp2 .

Advances in Large-Scale RDF Data Management 37

Table 5. Explore Use Case: detailed results Table 6. Explore Use Case
results: query mixes per
hour

?product bsbm:productPropertyNumeric2 ?simProp2 .

FILTER (?simProp2<(?origProp2+170) && ?simProp2>(?origProp2-170))

} ORDER BY ?productLabel LIMIT 5

Q5 asks for the 5 most similar products to one given product, based on
two numeric product properties (using range selections). It is notable that such
range selections might not be computable with the help of indexes; and/or the
boundaries of both 120 and 170 below and above may lead to many products
being considered ‘similar’. Given the type of query, it is not surprising to see
that Q5 is significantly more expensive than all other queries in the Explore use
case (the other queries are lookups that are index computable. – this also means
that execution time on them is low regardless of the scale factor). In the Explore
use case, most of the queries have the constant running time regardless of the
scale factor, thus computing the throughput by multiplying the qph (queries per
hour) with the scale factor may show a significant increase between the cases of
50 billion and 150 billion triples. In this case, instead of the throughput metric,
it is better to use another metric, namely qmph (number of query mixes per
hour).

5 Emergent Schemas

In this section, we describe solutions for deriving an emergent relational schema
from RDF triples, that one could liken to an UML class diagram. These solutions
have been implemented in the RDF parser of the open-source research column
store, MonetDB, which we call MonetDB/RDF. A more extensive description of
this work can be found in [8].

38 P. Boncz et al.

Our problem description is as follows. Given a (very) large set of RDF triples,
we are looking an emergent schema that describes this RDF data consisting of
classes with their attributes and their literal types, and the relationships between
classes for URI objects, but:
(a) the schema should be compact, hence the amount of classes, attributes and
relationships should be as small as possible, such that it is easily understood by
humans, and data does not get scattered over too many small tables.
(b) the schema should have high coverage, so the great majority of the triples in
the dataset should represent an attribute value or relationship of a class. Some
triples may not be represented by the schema (we call these the “non-regular”
triples), but try to keep this loss of coverage small, e.g. <10 %.
(c) the schema should be precise, so the amount of missing properties for any
subject that is member of such an recognized class is minimized.

Our solution is based on finding Characteristic Sets (CS) of properties that
co-occur with the same subject. We obtain a more compact schema than [10],
by using the TF/IDF (Term Frequency/Inverted Document Frequency) measure
from information retrieval [16] to detect discriminative properties, and using
semantic information to merge similar CS’s. Further, a schema graph of CS’s is
created by analyzing the co-reference relationship statistics between CS’s.

Given our intention to provide users an easy-to-understand emergent schema,
our second challenge is to determine logical and short labels for the classes,
attributes and relationships. For this we use ontology labels and class hierarchy
information, if present, as well as CS co-reference statistics, to obtain class,
attribute and relational labels.

5.1 Step1: Basic CS Discovery

Exploring CS’s. We first identify the basic set of CS’s by making one pass
through all triples in the SPO (Subject, Predicate, Object) table created after
bulk-loading of all RDF triples. These basic CS’s are secondly further split out
into combinations of (property, literal-type), when the object is a literal value.
Thus, for each basic CS found, we may have multiple CS variants, one for each
combination of occurring literal types. We need the information on literal types
because our end objective is RDF storage in relational tables, which allow only
a single type per column.

Exploring CS Relationships. A foreign key (FK) relationship between two
CS’s happens when a URI property of one CS typically refers in the object field
to members of one other CS (object-subject references). Therefore, we make a
second pass over all triples with a non-literal object, look up which basic CS the
reference points, and count the frequencies of the various destination CS’s.

5.2 Step2: Dimension Tables Detection

There tends to be a long tail of infrequently occurring CS’s, and as we want a com-
pact schema, the non-frequent CS’s should be pruned. However, a low-frequency

Advances in Large-Scale RDF Data Management 39

CS which is referred to many times by high-frequency CS’s in fact represents impor-
tant information of the dataset and should be part of the schema. This is similar
to a dimension table in a relational data warehouse, which may be small itself,
but may be referred to by many millions of tuples in large fact tables, over a for-
eign key. However, detecting dimension tables should not be handled just based
on the number of direct relationship references. The relational analogy here are
snowflake schemas, where a finer-grained dimension table like NATION refers to
an even smaller coarse-grained dimension table CONTINENT. To find the tran-
sitive relationships and their relative importance, we use the recursive PageRank
[14] algorithm on the graph formed by all CS’s (vertexes) and relationships (edges).
As a final result, we mark low-frequency CS’s with a high rank as “dimension”
tables, which will protect them later from being pruned.

5.3 Step3: Human-Friendly Labels

When presenting humans with a UML or relational schema, short labels should
be used as aliases for machine-readable and unique URIs for naming classes,
attributes and relationships. For assigning labels to CS’s, we exploit both struc-
tural and semantic information (ontologies).

Type Properties. Certain specific properties (e.g., rdf:type) explicitly specify
the class or concept a subject belongs to. By analyzing the frequency distribution
of different RDF type property values in the triples that belong to a CS, we can
find a class label for the CS. As ontologies usually contain hierarchies, we create
a histogram of type property values per CS that is aware of hierarchies. The
type property value that describes most of the subjects in the CS, but is also
as specific as possible is chosen as the URI of the class. If a ontology class URI
is found, we can use its label as the CS’s label. In Fig. 3, the value “Ship” is
chosen.

Ontologies. Even if no type property is present in the CS, we can still try to
match a CS to an ontology class. We compare the property set of the CS with
the property sets of ontology classes using the TF/IDF similarity score [16].
This method relies on identifying “discriminative” properties, that appear in few
ontology classes only, and whose occurrence in triple data thus gives a strong
hint for the membership of a specific class. An example is shown in Fig. 2.

The ontology class correspondence of a CS, if found, is also used to find labels
for properties of the CS (both for relationships and literal properties).

Relationships between CS’s. If the previous approaches do not apply, we can
look at which other CS’s refer to a CS, and then use the URI of the referring
property to derive a label. For example, a CS that is referred as <author>
indicates that this CS represents instances of a <Author> class. We use the
most frequent relationship to provide a CS label. Figure 4 shows an example of
such “foreign key” names.

URI shortening. If the above solutions cannot provide us a link to ontol-
ogy information, for providing attribute and relationship labels we resort to a

40 P. Boncz et al.

Fig. 2. Example CS vs. ontology class

Fig. 3. CS type property values

Fig. 4. References to a CS

practical fall-back, based on the observation that often property URI values do
convey a hint of the semantics. That is, for finding labels of CS properties we
shorten URIs (e.g., http://purl.org/goodrelations/v1#offers becomes offers),
by removing the ontology prefix (e.g., http://purl.org/goodrelations/v1#) or
simply using the part after the last slash, as suggested by [11].

5.4 Step4: CS Merging

To have a compact schema, we further reduce the number of tables in the emer-
gent relational schema by merging CS’s, using either semantic or structural infor-
mation.

Semantic Merging. We can merge two CS’s on semantic grounds when both
CS class labels that we found were based on ontology information. Obviously,
two CS’s whose label was created using the same ontology class URI represent
the same concept, and thus can be merged. If the labels stem from different
ontology classes we can observe the subclass hierarchy and identify the com-
mon concept/class shared by both CS’s (e.g., <Athlete> is a common class for
<BasketballP layer> and <BaseballP layer>), if any, and then justify whether
these CS’s are similar based on the “generality” of the concept. Here the “gen-
erality” score of a concept is computed by the percentage of instances covered
by it and its subclasses among all the instances covered by that ontology. Two
CS’s whose labels share a non-general ancestor in an ontology class hierarchy
can be merged.

Structural Merging. The structural similarity between two CS’s can be assessed
by using the set of properties in each CS and the found relationships to them with
other CS’s. As original class can be identified based on “discriminating” proper-
ties (based on TF/IDF scoring), we merge two CS if their property sets have a
high TF/IDF similarity score. Additionally, as a subject typically refers to only
one specific entity via a property, we also merge two CS’s which are both referred
from the same CS via the same property.

http://purl.org/goodrelations/v1#offers
http://purl.org/goodrelations/v1

Advances in Large-Scale RDF Data Management 41

5.5 Step5: Schema and Instance Filtering

We now perform final post-processing to clean up and optimize both the schema
and the data instances in it. At part of this phase, all RDF triples are visited
again, and either become stored in relational tables (typically >90 % of the
triples, which we consider regular), and the remainder gets stored separately in
a PSO table. Hence, our final result is a set of relational tables with foreign keys
between them, and a single triple table in PSO format.

Filtering small tables. After the merging process, most of these merged classes
(i.e., surviving merged CS’s) cover a large amount of triples. However, it may
happen that some classes still cover a limited number of RDF subjects, (i.e.
less than 0.1 of all data). As removing these classes will only marginally reduce
coverage, we remove them from the schema (except classes that were recognized
as dimension tables with the described PageRank method). All triples of subjects
belonging to these classes will be moved to the separate PSO table.

Maximizing type homogeneity. Literal object values corresponding to each
attribute in a class can have several different types e.g., number, string, date-
Time, etc. The relational model can only store a single type in each column, so in
case of type diversity multiple columns will be used for a single property. As the
number of columns can be large just due to a few triples having the wrong type
(dirty data), we minimize this number by filtering out all the infrequent literal
types (types that appear in less than 5 % of all object values) for each property.
The triples with infrequent literal types are moved to the separate PSO table.

Minimizing the number of infrequent columns. Infrequent columns are
those that have lots of NULL values. If the property coverage is less than a
certain threshold value (i.e., 5 %), that property is infrequent and all the RDF
triples of that property are treated as irregular data and moved to the separate
PSO table.

Filtering the relationships. We further filter out infrequent or “dirty” rela-
tionships between classes. A relationship between csi and csj is infrequent if the
number of references from csi to csj is much smaller than the frequency of csi
(e.g., less than 1 % of the CS’s frequency). A relationship is considered dirty if
most but not all the object values of the referring class (e.g., csi) refer to the
instances of the referred class (csj). In the former case, we simply remove the
relationship information between two classes. In the latter case, the triples in csi
that do not refer to csj will be filtered out (placed in the separate PSO table).

Multi-valued attributes. The same subject may have 0, 1 or even multiple
triples with the same property, which in our schema leads to an attribute with
cardinality >1. While this is allowed in UML, direct storage of such values is not
possible in relational databases. Practitioners handle this by creating a separate
table that contains the primary key (subject oid) and the value (which given
literal type diversity may be multiple columns). The MonetDB/RDF system
does this, but only creates such separate storage if really necessary. That is, we
analyze the mean number of object values (meanp) per property. If the meanp

42 P. Boncz et al.

of a property p is not much greater than 1 (e.g., less than 1.1), we consider
p as a single-valued property and only keep the first value of that property
while moving all the triples with other object values of this property to the non-
structural part of the RDF dataset. Otherwise, we will add a table for storing
all the object values of each multi-valued property.

5.6 Final Schema Evaluation

For evaluating the quality of the final schema, we have conducted extensive
experiments over a wide range of real-world and synthetic datasets (i.e., DBpe-
dia4, PubMed5, DBLP6, MusicBrainz7, EuroStat8, BSBM9, SP2B10, LUBM11

and WebDataCommons12). The experimental results in Table 7 show that we
can derive a compact schema from each dataset with a relative small number of
tables. We see that the synthetic RDF benchmark data (BSBM, SP2B, LUBM) is
fully relational, and also all dataset with non-RDF roots (PubMed, MusicBrainz,
EuroStat) get >99% coverage. Most surprisingly, the RDFa data that dominates
WebDataCommons and even DBpedia are more than 90 % regular.

Table 7. Number of tables and coverage percentage after merging & filtering steps

Labeling Evaluation. We evaluate the quality of the labels in the final schema
by showing the schema of DBpedia and WebDataCommons (complex and, may
be, “dirty” datasets) to 19 humans. The survey asking for rating label quality
4 http://dbpedia.org - we used v3.9.
5 http://www.ncbi.nlm.nih.gov/pubmed
6 http://gaia.infor.uva.es/hdt/dblp-2012-11-28.hdt.gz
7 http://linkedbrainz.c4dmpresents.org/data/musicbrainz ngs dump.rdf.ttl.gz
8 http://eurostat.linked-statistics.org
9 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

10 http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
11 http://swat.cse.lehigh.edu/projects/lubm/
12 A 100M triple file of http://webdatacommons.org.

http://dbpedia.org
http://www.ncbi.nlm.nih.gov/pubmed
http://gaia.infor.uva.es/hdt/dblp-2012-11-28.hdt.gz
http://linkedbrainz.c4dmpresents.org/data/musicbrainz_ngs_dump.rdf.ttl.gz
http://eurostat.linked-statistics.org
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
http://swat.cse.lehigh.edu/projects/lubm/
http://webdatacommons.org

Advances in Large-Scale RDF Data Management 43

with the 5-point Likert scale from 1 (bad) to 5 (excellent) shows that 78 (Web-
DataCommons) and 90 % (DBpedia) of the labels are rated with 4 points (i.e.,
“good”) or better.

Computational cost & Compression. Our experiments also show that the
time for detecting the emerging schema is negligible comparing to bulk-loading
time for building a single SPO table, and thus the schema detection process
can be integrated into the bulk-loading process without any recognizable delay.
Additionally, the database size stored using relational tables can be 2x smaller
than the database size of a single SPO triple table since in the relational repre-
sentation the S and P columns effectively get compressed away and only the O
columns remain.

Final words. We think the emergent schema detection approach we developed
and evaluated is promising. The fact that all tested RDF datasets turned out
highly regular, and that good labels for them could be found already provides
immediate value, since MonetDB/RDF can now simply be used to load RDF
data in a SQL system; hence existing SQL applications can now be leveraged on
RDF without change. We expect that all systems that can store both RDF and
relational data (this includes besides Virtuoso also the RDF solutions by Oracle
and IBM) could incorporate the possibility to load RDF data and query it both
from SQL and SPARQL.

Future research is to verify the approach on more RDF dataset and further
tune the recognition algorithms. Also, the second and natural step is now to
make the SPARQL engine aware of the emergent schema, such that its query
optimization can become more reliable and query execution can reduce the join
effort in evaluating so-called SPARQL star-patterns. In benchmarks like LUBM
and BSBM our results show that SPARQL systems could become just as fast as
SQL systems, but even on “real” RDF datasets like DBpedia 90 % of join effort
can likely be accelerated. Work is underway to verify this both in MonetDB and
Virtuoso.

6 Conclusion

In this chapter we have described the advanced column store techniques and
architectural ideas implemented in Virtuoso RDF store and its cluster edition,
which help reduce the “RDF tax” by an order of magnitude (i.e., from 150 to
2.5). Extensive experiments using the BSBM benchmark on both short-running
index lookup queries (the Explore use case) and the complex analytical queries
(the BI use case) demonstrate that the new cluster architecture allows to perform
RDF data management on a unprecedented scale (i.e., 150 billion triples).

In addition to the promising approach of exploiting the column store tech-
niques, which significantly reduces the “RDF tax”, to make the performances
of SPARQL and SQL systems converge, RDF store needs to be aware of the
actual structure of RDF data, allowing it to decrease the inherent large num-
ber of self-joins and making query optimization more reliable. For that, we have

44 P. Boncz et al.

presented practical techniques for discovering an emergent relational schema in
RDF dataset, that recovers a compact and precise relational schema with high
coverage and useful labels as alias for all machine-readable URIs (which it pre-
serves). The emergent schemas not only open up many opportunities to improve
physical data indexing for RDF, but also respect the schema-last nature of the
semantic web as being automatically detected. Implementation of these tech-
niques will soon be realized in Virtuoso, and hopefully will close the performance
gap between the SPARQL and SQL systems.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Abadi, J.: Query execution in column-oriented database systems, MIT Ph.D. thesis
(2008)

2. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf.
Syst. (IJSWIS) 5(2), 1–24 (2009)

3. Boncz, P., Neumann, T., Erling, O.: TPC-H analyzed: hidden messages and lessons
learned from an influential benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC
2013. LNCS, vol. 8391, pp. 61–76. Springer, Heidelberg (2014)

4. IBM DB2. www.ibm.com/software/data/db2/
5. Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull.

35(1), 3–8 (2012)
6. Harth, A., Hose, K., Schenkel, R.: Linked Data Management. CRC Press, Boca

Raton (2014)
7. Lamb, A., et al.: The vertica analytic database: C-store 7 years later. Proc. VLDB

Endowment 5, 1790–1801 (2012)
8. Minh-Duc, P., et al.: Deriving an emergent relational schema from RDF data. In:

ISWC (submitted) (2014)
9. MonetDB column store. https://www.monetdb.org/

10. Neumann, T., et al.: Characteristic sets: accurate cardinality estimation for RDF
queries with multiple joins. In: ICDE (2011)

11. Neumayer, R., Balog, K., Nørv̊ag, K.: When simple is (more than) good enough:
effective semantic search with (almost) no semantics. In: Baeza-Yates, R., de Vries,
A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.)
ECIR 2012. LNCS, vol. 7224, pp. 540–543. Springer, Heidelberg (2012)

12. O’Neil, P., et al.: The star schema benchmark (SSB). PAT (2007)
13. Openlink Software Blog. http://www.openlinksw.com/weblog/oerling/
14. Page, L., et al.: The pagerank citation ranking: bringing order to the web. Technical

report, Stanford InfoLab (1999)
15. Pham, M.-D.: Self-organizing structured RDF in MonetDB. In: ICDE Workshops

(2013)
16. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-

Hill, New York (1983)
17. Tsialiamanis, P., et al.: Heuristics-based query optimisation for SPARQL. In:

EDBT (2012)
18. Zukowski, M., Boncz, P.A.: Vectorwise: beyond column stores. IEEE Data Eng.

Bull 35(1), 21–27 (2012)

www.ibm.com/software/data/db2/
https://www.monetdb.org/
http://www.openlinksw.com/weblog/oerling/

http://www.springer.com/978-3-319-09845-6

	Advances in Large-Scale RDF Data Management
	1 General Objectives
	2 Virtuoso Column Store
	2.1 Vectored Execution
	2.2 Vector Optimizations
	2.3 Query Optimization
	2.4 State of the RDF Tax

	3 Virtuoso Cluster Parallel
	3.1 Performance Dynamics
	3.2 Subsequent Development

	4 BSBM Benchmark Results
	4.1 Cluster Configuration
	4.2 Bulk Loading RDF
	4.3 Notes on the BI Workload
	4.4 Benchmark Results

	5 Emergent Schemas
	5.1 Step1: Basic CS Discovery
	5.2 Step2: Dimension Tables Detection
	5.3 Step3: Human-Friendly Labels
	5.4 Step4: CS Merging
	5.5 Step5: Schema and Instance Filtering
	5.6 Final Schema Evaluation

	6 Conclusion
	References

