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Abstract— Depression is a disorder that has a huge impact 

on both the patient and its environment. An effective treatment 

of depression is of crucial importance. Currently, Internet-

based self-help therapies are the state-of-the-art among 

therapies that do not involve a human therapist. However, 

these interventions are not tailored towards individual patient 

needs. The utilization of pervasive technology, including a 

mobile phone and its sensors could potentially provide a way to 

make therapies more personalized and accessible at any time. 

One crucial aspect to make such personalization possible is to 

understand the current state of the patient and the ability to 

make a prediction on the expected state of the patient in the 

future. Obviously, predictions can differ greatly per patient. 

This paper takes a cognitive modeling approach in which the 

parameters of the model can be adapted to the characteristics 

of the patient. Hereby, an existing model for mood and coping 

is taken as a basis and different techniques are proposed to 

tailor the model towards the patient using sensory information 

that has been obtained. An evaluation is performed using a 

dataset from the psychological domain. 
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I.  INTRODUCTION 

Depression is a mental disorder associated with huge 
losses of quality of life in patients and their relatives, 
including increased mortality rates, high levels of service 
use, and enormous economic costs. Hence, effective 
treatment of depressive disorders is of utmost importance. 
Nowadays, a movement can be seen that is directed towards 
more self-help therapies within the domain of depression 
(see e.g. [15]). Such therapies facilitate the patient to 
schedule his/her own therapy, do homework assignments 
and obtain feedback without necessarily involving a human 
therapist in the loop. It has been shown that such treatments 
are as effective as face-to-face counseling [1]. Although 
clearly a promising result, the therapies are setup in a 
generic way, without much personalization towards the 
patient. A sophisticated mobile application which can be 
accessed by the patient at any time and utilizes sensory 
information to provide highly personalized and situation 
specific feedback and exercises might be able to bring a 
substantial added value and could truly engage the patient in 
the therapy. 

In order for the mobile application to be effective, it 
should be able to build up a picture of the depressed patient, 
and also have the ability to forecast their expected 
developments. Based on this information it is possible to 
adapt the therapy and provide suitable feedback to maximize 
the effectiveness of the treatment. The composition of such a 
picture is however not a trivial task; each patient has his/her 
own characteristics and behaves in a different way. The 
approach chosen here is to use a cognitive model to make a 
judgment of the current and future state of the patient. This 
model has been developed in previous work [4; 5] and 
contains the most important states that play a role in 
depression and the relationship between these states. An 
experiment with six patients has shown that good parameter 
values could be found to describe the patient behavior well 
and even enable forecasting of the developments of the 
patient [3]. Although these results were promising, the 
learning techniques deployed were relatively simple, and 
only two states out of a total of ten were actually measured 
and forecasted. Furthermore, only a limited number of 
patients were used. To really understand the full capabilities 
and suitability of the model a more extensive evaluation is 
needed as well as a more sophisticated learning approach 
which potentially also utilizes a knowledge about a set of 
similar patients to tailor the model towards a new patient. 

In order to tackle the issues as expressed above, there is 
a need for a richer, more extensive, dataset describing the 
behavior of depressed patients. Luckily, an increasing 
number of experiments are being conducted by researchers 
in the domain of Psychology in which so-called ecological 
momentary assessments (EMA) are frequently performed 
using mobile phones with a questionnaire application [14]. 
In the future, such a questionnaire could be partially 
replaced with advanced sensors which do not require 
explicit action of the patient. Even the current mobile 
applications however already facilitate the measurement of 
the key states of the patient on a regular basis. Such a dataset 
has been used in this paper, which allows for: (1) judging 
the descriptive and predictive capabilities of the existing 
model for a large number of different patients, and (2) 
developing a new algorithm that facilitates the 
personalization of a predictive model for mood and coping 
in a more effective way by exploiting data about historical 
patients. In the end, the model with the newly proposed 



learning techniques can form the true engine of a mobile 
computing application to support depressed patients. 

This paper is organized as follows. Section 2 describes 
the mood and coping model. In Section 3 the dataset that has 
been obtained is described in more detail, whereas Section 4 
presents the learning algorithms. Section 5 presents the 
results and finally, Section 6 concludes the paper. 

II. MOOD AND COPING MODEL 

In this paper, the same model for mood is used as in [3], 
which is based on [4] and [5]. A detailed description of the 
model can be found in those papers.  

The main concepts include the mood level, appraisal and 
coping skills of a person, and how the levels for these states 
influence the external behavior in the form of selection of a 
situation.  The model is based upon a number of 
Psychological theories, see [4] for a mapping between the 
literature and the model itself. In addition to the internal 
concepts that relate to emotions, a number of external 
influences are also part of the model: some things might not 
be controllable for the human (e.g. a negative event such as 
a sudden illness of a close family member). In this model, 
these external influences have been added specifically for a 
type of depression therapy, namely cognitive behavioral 
therapy (since this is the case study from which the data 
originates). However, they could just be seen as external 
influences on the global level.  

In the model, a number of states are defined, where each 
state is represented by a number on the interval [0,1]. First, 
the state objective emotional value of situation is present, 
which represents the value of the situation a human is in 
(without any influence of the current state of mind of the 
human). The state appraisal represents the current judgment 
of the situation given the current state of mind (e.g. when 
you are feeling down, a pleasant situation might no longer 
be considered pleasant). The mood level represents the 

current mood of the human, whereas thoughts level the 
current level of thoughts (i.e. the positivism of the thoughts). 
The long term prospected mood level expresses what mood 
level the human is striving for in the long term, whereas the 
short term prospected mood level represents the goal for 
mood on the shorter term (in case you are feeling very bad, 
your short term goal will not be to feel excellent 
immediately, but to feel somewhat better). The sensitivity 
indicates the ability to select situations in order to bring the 
mood level to the short term prospected mood level. Coping 
expresses the ability of a human to deal with negative moods 
and situations, whereas vulnerability expresses how 
vulnerable the human is for negative events and how much 
impact that structurally has on the mood level. Finally, 
world event indicates an external situation which is imposed 
on the human (e.g., losing your job).  

In addition to the states mentioned above, a number of 
states have been added to the model that are specific for a 
therapy that tries to influence the mood of the human [5]. 
First, a state representing the intervention or therapy (i.e., 
intervention) expresses that an intervention is taking place. 
The state reflection on negative thoughts expresses the 
therapeutic effect that the human is made aware of negative 
thinking about situations whereas the appraisal effect 
models the immediate effect on the appraisal of the 
situation. The world influences state is used to represent the 
impact of a therapy aiming to improve the objective 
emotional value of situation. The openness for intervention 
is a state indicating how open the human is for therapy in 
general, which is made more specific for each specific 
influence of the therapy in the state openness for AS (where 
AS stands for Activity Scheduling). Finally, reflection 
represents the ability to reflect on the relationships between 
various states, and as a result learn something for the future.  

The states as explained above are causally related, as 
indicated by the arrows in Figure 1. These influences have 
been mathematically modeled (cf. [4; 5]). 
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Fig. 1. Computational model for Cognitive Behavioral therapy. 



III. EXPERIMENTAL DATA 

The dataset used in this paper consists of 109 depressed 
patients, each of them part of either a control group (no 
treatment), an active control group (learning problem 
solving strategies and introspection) or undergoing emotion 
regulation training, based on cognitive behavioral therapy. 
For about a week long, each patient filled in measures of 
agreement to an extensive list of 122 statements, such as “I 
feel tired or without energy“. The patients did this on a 
regular basis, so each day around ten answers to each of the 
questions were available for each patient. This collection of 
data is called the pre-intervention data. After this week, an 
intervention took place. Roughly six weeks later, the 
patients again answered the same statements for about a 
week long, the post-intervention data. 

To use these statements, a mapping has been created 
between them and the concepts in the computational model. 
A mapping states that a specific statement in the survey was 
relevant for a concept in the model. Most of the concepts 
could be mapped to at least one survey statement, but 
because the data was not tailored towards this model, it was 
impossible to relate all model concepts to statements in the 
survey. As an example, the objective emotional value of 
situation could not be mapped, since the survey did not 
include statements regarding the situation the person found 
him- or herself in. As a consequence, it was not possible to 
derive a value for this concept from the survey data. 
Concepts with similar issues were long term prospected 
mood level and openness to intervention. 

In the dataset, the measure of agreement is represented 
as a scale of either four or five possible answers. To derive 
values for the concept in the model, the data was first 
transformed to a value in the range [0,1]. Since all concepts 
depend on multiple statements in the survey, a mechanism 
was needed to aggregate the survey values that are relevant 
for a specific concept. The following algorithm has been 
used: 

current_concept_value = 0.5 
for each (survey_value relevant_for concept): 
 if (current_concept_value – survey_value) ≥ 0: 

new_concept_value = new_concept_value +  
(1-current_concept_value) *  
(survey_value-current_concept_value)  

 else: new_concept_value = new_concept_value +  
current_concept_value *  
(survey_value-current_concept_value) 

 end if 
end for 

 

The algorithm expresses that the default value of each 
concept is 0.5. The new concept value will increase (to a 
maximum of 1) compared to the current concept value in 
case the encountered new survey value is higher than the 
current concept value, and decrease (to a minimum of 0) in 
the opposite case. These calculations result in a value for the 
states of the model (except for the concepts specified earlier) 
for each time point at which the full questionnaire was filled 
in by the patient, i.e. a series of values for the first week and 
a series of values for the last week. 

After this pre-processing, a running average was taken 
over the various time points, to smoothen the course of the 
actual values. This approach simultaneously solved the 
problem of any missing values the answers contained. 

A total of nine concepts were derivable from the dataset 
using this approach, seven of which eventually suitable for 
calculating performance (see section IV). 

IV. LEARNING ALGORITHMS 

Given that the main goal is to personalize the mobile 

application using the model, the parameters of the model 

should be tailored towards the specific user. The aim of the 

learning algorithms is to find sets of parameters that results 

in a model which provide maximal predictive capabilities. 

These predictions form the basis for dedicated feedback and 

an engaging user experience. For the learning algorithms, 

the following hypotheses are expressed:  

H1. Utilizing data from other patients can help in 
improving performance of the prediction for 
individual patients. 

H2. Individualizing parameter values (as opposed to 
having a single set of parameters for all patients) 
will result in better performance with respect to the 
reproduction of patterns seen for a patient. 

H3. Individualizing parameter values will result in an 
improved performance with respect to the prediction 
of future patterns. 

Given these hypotheses, different variants of learning 
algorithms have been specified. The basis for the learning is 
formed by a Genetic Algorithm (GA). The precise 
application of the Genetic Algorithm to the case at hand is 
expressed first, followed by different variants of the learning 
algorithm. 

A. Learning Basis 

The genetic algorithm applied is the Java GA Package, or 

JGAP
1
. The main features of a GA are discussed below. 

 Chromosome representation: each individual within 

the population is represented by a vector pv: <pv1, 

…, pvn>, where pvi is the parameter value of the i-th 

parameter used by the mood and coping model. 

Initialization is done by taking random real values 

between 0 and 1. 

 Selection: after evolving, the X% individuals (both 

parents and children) with the highest fitness are 

chosen. The 100-X% left are clones of the top 

performing individuals. 

 The crossover operator is a simple one-point 

crossover, requiring two parents and creating two 

children in the process. 

 Mutation: each gene is mutated with a probability p. 

 

In order to evaluate the effectiveness of a chromosome 

in the population (i.e. assign a fitness value, in GA terms), 

the parameters are used to simulate the entire model (given 

certain initial values for the states). This results in a 

temporal pattern of prediction values between the simulation 

start time tstart and the simulation end time tend for each of the 

individual states within the model: pred_value(state, t, pv). 

For example if the state mood has a predicted value of 0.5 at 

t1 with parameter vector pv, then pred_value(mood, t1, pv) = 

0.5. In addition, it is assumed that there is a certain observed 
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value for each state (coupled to an individual patient p): 

obs_value(state, t, p).  The fitness value is then calculated 

by first taking the root mean squared error (RMSE) as 

follows: 

 

 
 This value is then converted to a fitness value (where a 

higher value means a better set of parameters) by simply 
applying the following formula: 

  

 The fitness is thus essentially equal to the accuracy of 
certain parameter sets in percentages. 

B. Learning Algorithms 

Given the specification above, learning can now be 
applied to find parameter sets with good predictive 
capabilities. A number of different approaches to optimize 
the parameters for an individual patient are specified in this 
paper. The following variants of learning are distinguished:  

1. Initial individual learning period – Learn the 

parameters at an individual level during a learning 

phase, and use those to predict future states. In this 

case, the learning phase (i.e. the training set) is the 

pre-intervention survey week for the specific patient 

and the fitness function to be optimized is based on 

the RMSE of that training set. The testing phase (i.e. 

test set) is the post-intervention survey week. This 

approach is similar to [3] and is mainly investigated 

to continue the exploration of this model in that 

respect. Note that in this approach, no information is 

shared regarding parameter settings based on other 

patients which may be similar. For each new patient, 

optimal parameter settings need to be found. 

Previously learned data is thus not incorporated in 

the prediction, which gives at the very least a cold 

start problem when patients start using for example a 

mobile application which incorporates an approach 

such as this one.  

2. Generic Parameters – This approach is drastically 

different from approach 1. First, only a single 

parameter set is learned for all patients. Second, the 

learning phase here is both the pre- and post-

intervention week of all patients in the training set. 

The fitness function is extended to be the combined 

RMSE across all patients in the training set. The 

patients in the test set then use the parameter set 

obtained in the training set, after which the test 

accuracy is calculated. In summary, one set of 

parameters that works well across all patients in a 

certain training set will be used for predictions of 

states in a test set.  
3. Nearest Neighbor Parameters - To be able to include 

information about specific patients that have been 
seen before in the tuning of the parameters, a third 
approach is proposed which takes the known 
parameters of another patient that is closest to the 
current patient. This approach is very similar to 
approach 2 in how the model is trained. Thus, the 
learning phase here is again both the pre- and post-
intervention week of all patients in the training set. 
However, an important difference is the fact that, like 
in approach 1, the model finds parameter sets for 
each individual patient. The patients in the test set 
are then assigned parameter values based on 
similarity between themselves and patients in the 
training set. For each of the patients in the test set, 
the full parameter set of the most similar patient in 
the training set is chosen, and the test accuracy is 
calculated. This similarity between a patient in the 
test set and one in the training set is calculated based 
on abstracted values from the pre-intervention week 
only. This is done so the approach still has proper 
predictive capabilities. For each concept in this week, 
its mean, variance, and the amount of change (which 
is simply the mean of the first half of the pre-
intervention week subtracted from the mean of the 
second half) will be calculated. 

Table I shows the characteristics of the learning approaches 
and the corresponding settings of the patients, where pre- 
and post-week represent the pre- and post-intervention data, 
respectively. 

V. RESULTS  

A. Algorithm parameters 

The genetic algorithm and nearest neighbor approach 
described in the previous session require some parameters to 
be set, themselves. For the genetic algorithm, the default 
configuration provided by JGAP is used, which accumulates 
to a random point crossover with a rate of 0.35, a mutation 
rate of 0.08 (per gene) and a 90% elitist selection. These 
parameter settings were found to be best after a substantial 
period of trying various parameter settings for the GA. 
Furthermore, each chromosome contains 15 double values 
(equal to the amount of parameters we are tuning) between 0 
and 1. A simple 1-nearest neighbor approach was used, 
because the GA provided such diverse sets of parameters 
that averaging parameters across multiple neighbors did not 
seem promising. 

TABLE I : LEARNING ALGORITHMS. THE PRE-INTERVENTION WEEK IS WRITTEN AS PRE-WEEK. THE POST-INTERVENTION WEEK IS WRITTEN AS POST-WEEK. 

 

Approach Training set Test set Test patient parameter selection 
Initial learning period Pre-week, 100% of patients Post-week, 100% of patients Same patient 

Generic parameters Pre- and post-week, X% of 

patients 

Pre- and/or Post-week, 100-X% 

of patients 

Global parameter set 

Nearest Neighbor Pre- and post-week, X% of 

patients 

Pre- and/or Post-week, 100-X% 

of patients 

Same as most similar (= nearest neighbor) 

 



B. Dataset 

Since the model is constructed to be for cognitive behavioral 

therapy, only the self-regulation training group (a form of 

CBT) is investigated. Thirty patients in this set were 

removed because of erroneous dates (e.g. 1-1-1970 for some 

or all entries) or a lack of occurrence in either the pre- or 

post-intervention week, or both. This left us with 38 patients 

to experiment with. 10-fold cross validation was used for 

approaches (2) and (3), whereas for approach (1), simply all 

the pre-intervention week data is the training data, and all 

the post-intervention week data is the test data (no cross fold 

validation is possible in this case). 

 

C. Accuracies 

The resulting mean training and test accuracies and 
corresponding standard deviations are summarized in table 
II. The different rows for the second and third approaches 
show accuracies of the individual parts of the data set. The 
main interest of this paper is in predicting the post-
intervention week. The aggregated accuracy incorporates all 
data set entries, both from the pre- and the post-intervention 
weeks. All statistical comparisons described below were 
made using unpaired two-tailed t-tests with a statistical 
significance level of α=0.05. 

D. Validation of hypotheses 

Hypothesis 1 is concerned with whether approaches 2 
and/or 3 perform better than approach 1. We may compare 
these approaches because the test set of approach 1 is 

identical to the test set of approaches 2 and 3 when only 
regarding the latter’s post-week accuracies. In table III, we 
see that the data partly support hypothesis 1. Namely, 
approach 1’s testing phase (µ=72.35%, σ=10.93%) is 
significantly smaller than approach 2’s post-intervention 
testing week (µ=79.36%, σ=6.71%). However, approach 1’s 
testing phase is statistically the same as approach 3’s post-
intervention testing week (µ=74.42%, σ=8.61%). It can be 
concluded that, depending on the exact approach taken, 
incorporating data from previous cases can help in 
predicting new cases.  

Hypothesis 2 is concerned with whether the individuali-
zation of parameters gives en edge to the descriptive 
performance (i.e. training set performance) of the model. In 
order to investigate this, we compare the performance of the 
training sets of both the post-intervention week and the 
aggregated results for approaches 2 and 3. In table IV, it can 
be seen that the data support hypothesis 2: approach 2’s 
training phase for the post-intervention week (µ=79.08%, 
σ=6.89%) is smaller than approach 3’s training phase for the 
post-intervention week (µ=86.13%, σ=4.46%). This is also 
the case for the aggregated accuracy (µ=81.54%, σ=6.76% 
is smaller than µ=86.84%, σ=4.43%). 

Hypothesis 3 is identical to hypothesis 2, except for the 
fact it is concerned with the predictive capabilities (or test 
set performance) of the model. Thus, the post-intervention 
week and aggregated performances of the test sets of 
approaches 2 and 3 are compared. In table V, it can be seen 
that the data do not support hypothesis 3. Namely, approach 
2’s test phase for the post-intervention week (µ=79.36%, 

TABLE III : COMPARISON BETWEEN APPROACH 1 ON THE ONE HAND,  
AND APPROACHES 2 AND 3 ON THE OTHER HAND 

 

Approach Comparison p_value < α? Best performing 
 (1) vs (2), test, post-week only yes (p = 0.0012) Approach 2 

 (1) vs (3), test, post-week only no (p = 0.3607) No difference 
 

TABLE IV : DESCRIPTIVE (TRAINING) PHASE COMPARISON  

BETWEEN APPROACH 2 APPROACH 3 

 

Approach Comparison p_value < α? Best performing 
(2) vs (3), training, post-week only yes (p < 0.0001) Approach 3 

(2) vs (3), training, aggregated yes (p < 0.0001) Approach 3 
 

TABLE V : PREDICTIVE (TEST) PHASE COMPARISON  
BETWEEN APPROACH 2 APPROACH 3 

 

Approach Comparison p_value < α? Best performing 
(2) vs (3), test, post-week only yes (p = 0.0067) Approach 2 

(2) vs (3), test, aggregated yes (p = 0.0336) Approach 2 
 

TABLE II : MEAN ACCURACIES AND STANDARD DEVIATIONS FOR ALL APPROACHES. 

 

Approach µtraining (%) σtraining (%) µtest (%) σtraining (%) 
1. Initial learning period 88.91 4.46 72.35 10.93 

2. Generic 

parameters 

Pre-week only 84.00 5.66 84.11 5.55 

Post-week only 79.08 6.89 79.36 6.71 

Aggregated 81.54 6.76 81.74 6.56 

3. 

Individualize

d Parameters 

Pre-week only 87.54 4.29 81.47 7.00 

Post-week only 86.13 4.46 74.42 8.61 

Aggregated 86.84 4.43 77.95 8.56 
 



σ=6.71%) is larger than approach 3’s test phase for the post-
intervention week (µ=74.42%, σ=8.61%). This is also the 
case for the aggregated accuracy (µ=81.74%, σ=6.56% is 
larger than µ=77.95%, σ=8.56%).  

E. Analysis 

In order to get a better understanding of the results, the 
patients for which the performance is best have been 
selected. Figure 1 represents the actual level of the state 
thoughts as shown by the patient versus the predicted level 
of thoughts using the initial learning approach (approach 1). 
Notice that the initial period used for learning includes the 
set of points on the left, whereas the set of points on the 
right are the ones that have not been seen before and are 
predicted given the initial period. Figure 2 shows the same 
setup for the appraisal state. The figures show that the initial 
approach seems to predict the trend in quite a reasonable 
way without doing it on a very detailed level. However, the 
prediction is quite difficult as there is a substantial period of 
missing data and the first period is not necessarily 
representative nor a good predictor for the second period.  

Figures 3 and 4 show examples of approach 2 (using one 
generic set of parameters) for the mood level and sensitivity 
respectively. The graphs show that a straight line is specified 
by the model which can be explained by the fact that the 
average difference between the pre and the post-week is 
almost zero when taking a large group of patients. Hence, 
predicting the same level in the pre- and post-week makes 
sense.  

  

Fig. 1. Actual and predicted thoughts level for patient mz032 
as calculated by approach 1 (initial learning period) 

 

Fig. 2. Actual and predicted appraisal for patient mz032  as calculated by 
approach 1 (initial learning period). 

 

Fig. 3. Actual and predicted mood level for patient TEKPAM_187  as 
calculated by approach 2(generic parameters). 

 

 

Figure 4 Actual and predicted sensitivity for patient TEKPAM_187 as 
calculated by approach 2 (generic parameters). 

 

Fig. 5. Actual and predicted appraisal for patient mz016 as calculated by 

approach 3 (nearest neighbor). 
 



 

Fig. 6. Actual and predicted sensitivity for patient mz016 as calculated 
by approach 3 (nearest neighbor). 

 Finally, Figures 5 and 6 show the results for the nearest 
neighbor approach (approach 3), for the appraisal and 
sensitivity states, respectively. Here it can be seen that the 
trend is nicely predicted. When comparing these figures to 
figures 3 and 4, it may seem puzzling that according to table 
V, approach 2 outperforms approach 3. Two reasons could 
underlie this. First, the behavior shown in Figure 5 and 6 
only holds for a limited number of patients, as the period to 
compare the values of a new patient with a known patient 
(using the 1-nearest neighbor algorithm) is very short (one 
week long, the pre-intervention week) and not necessarily 
representative for the values seen for the states in the later 
period. Second, the dataset may show too little variation in 
general between the pre- and post-intervention weeks. This 
might allow for a static straight line (as in figures 3 and 4) to 
provide reasonably good prediction, while in reality there is 
(subtle) change in the reported values of the patient. 

VI. DISCUSSION AND CONCLUSION 

Correctly predicting the course of a depression based on 
measurements of a patient’s behavior and self-reports can be 
helpful to create a highly personalized support system which 
truly engages the patient. In order to make such predictions, 
in this paper a model-based approach has been taken as 
basis, which still requires tailoring towards the individual 
patient. 

Only few computational models of depression have been 
developed [4; 6], and those have not been personalized 
based on actual patient data. A model of depression can be 
seen as a specific instantiation of a model of mood and 
emotion regulation. There are more computational models 
for emotions, for example [7; 9; 16]. However, also for these 
models holds that there has been no attempt to personalize 
them for individual patients based on real data. 

There are a limited number of studies in which such 
models have been related to data about actual humans. 
Gratch and Marsella [10] utilized the aggregated outcomes 
of a questionnaire with respect to stress and coping to 
evaluate their proposed model, but not to adapt it. In [11] the 
relation between appraisals and the intensity of human 
emotion is measured, and compared with several emotion 
models. In both papers, the main intent is not to look at 
individuals, but to look at general trends of the emotions of 
humans based on the situation (although in [11], subgroups 
were studied). 

Another body of research involves the evaluation of 
systems that are using a model of emotion or mood. Most of 
these evaluations take place based upon user experience and 
not on the realism of the emotional levels themselves (e.g. 
measuring actual mood or emotion levels in users). 
Examples of papers describing such an evaluation are for 
instance [2], [8] and [13]. Pontier & Siddiqui [12] performed 
such an evaluation specific for a virtual therapist 
incorporating emotions in depression. Their results showed 
that the emotion-based virtual agent was preferred over the 
non-emotional agent.  

In this paper, however, a more ambitious approach was 
taken. The aim was to fully tailor the parameters of the 
model towards the behavior of the human, possibly 
incorporating historical data from other patients, and 
showing that the model is able to describe the behavior of an 
arbitrary user with high accuracy. Especially when the 
purpose of the model is to make predictions about a specific 
individual, such an evaluation is crucial. Hereto, three 
techniques have been examined in this paper: (1) learning 
parameters for individual patients during an initial period in 
the data set; (2) finding parameters that work well across a 
lot of patients by learning during the complete period of the 
dataset, and (3) using parameters that worked well for prior 
similar patients.  

By experimenting with an extensive dataset it was shown 
that using more information than just the initial period for 
finding appropriate parameters (i.e. approach 2 and 3) is 
better than using solely the initial information from a single 
patient (approach 1), as was conjectured in hypothesis 1. Do 
note however that for this dataset only generic parameters 
were shown to perform significantly better than those found 
by the initial learning period approach which was not 
anticipated in advance. The reason could be the highly 
complex and varying relationship between the pre-
intervention week data and the data from the post-
intervention week. 

By comparing the predictions of a personalized model 
(approach 3) with model predictions based on a standard 
parameter set (approach 2), it has been shown that 
personalization can be beneficial for descriptive purposes 
(i.e. the results for the training sets), as was surmised in 
hypothesis 2.  

However, for this specific dataset and model, a global 
parameter approach (approach 2) seemed to work better for 
making predictions than the nearest neighbor approach 
(approach 3), unlike what hypothesis 3 stated. Nevertheless, 
due to the fact that approach 3 provides more ‘natural’ 
values than approach 2 for some patients (when looking at 
the graphs), it is suggested that hypothesis 3 needs to be 
investigated more thoroughly on different data sets. 

There are two possible explanations that the predictions 
for approach 3 were not as accurate as initially anticipated. 
First, there exists the possibility that the abstracted values 
for the pre-intervention survey week are not representative 
enough for a patient’s (complex) behavior. Therefore, the 
nearest neighbor measure may not have been able to select 
the ‘actual’ most similar patient. Second, the nearest 
neighbor approach might have been too naïve after all, in 
that only a single neighbor was used. This was initially done 
because we assumed taking averages of k other patients (k-



NN) would create too much noise, since the parameters 
tuned were so vastly different from each other.  

Apart from the possible imperfections mentioned in the 
previous paragraph, it might be interesting to look at giving 
different weights to states when calculating the fitness. The 
mood state could for instance be made more important for 
the fitness, which might change the final parameters chosen, 
affecting the performance (for better or worse). 
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