
A Catalog of Architectural Tactics for Cyber-Foraging

Grace Lewis†‡

†Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA, USA
glewis@sei.cmu.edu, g.a.lewis@vu.nl

Patricia Lago‡

‡VU University Amsterdam
Amsterdam, The Netherlands

p.lago@vu.nl

ABSTRACT
Mobile devices have become for many the preferred way of
interacting with the Internet, social media and the enter-
prise. However, mobile devices still do not have the com-
puting power or battery life that will allow them to perform
effectively over long periods of time or for executing applica-
tions that require extensive communication or computation,
or low latency. Cyber-foraging is a technique enabling mo-
bile devices to extend their computing power and storage
by offloading computation or data to more powerful servers
located in the cloud or in single-hop proximity. This paper
presents a catalog of architectural tactics for cyber-foraging
that was derived from the results of a systematic literature
review on architectures for cyber-foraging systems. Ele-
ments of the architectures identified in the primary studies
were codified in the form of Architectural Tactics for Cyber-
Foraging. These tactics will help architects extend their de-
sign reasoning towards cyber-foraging as a way to support
the mobile applications of the present and the future.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture—
domain-specific architectures; H.3.4 [Information Storage
and Retrieval]: Systems and Software—distributed sys-
tems

General Terms
Design

Keywords
cyber-foraging, software architecture, architectural tactics,
mobile cloud computing, mobile computing

1. INTRODUCTION
Cyber-foraging is an area of work within mobile cloud

computing that leverages external resources (i.e., cloud ser-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
QoSA 2015 Montreal, Canada
Copyright c© 2015 ACM 978-1-4503-3470-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737182.2737188.

vers, or local servers called surrogates) to augment the com-
putation and storage capabilities of resource-limited mobile
devices while extending their battery life. There are two
main forms of cyber-foraging. One is computation offload,
which is the offload of expensive computation in order to
extend battery life and increase computational capability.
The second is data staging to improve data transfers be-
tween mobile devices and the cloud by temporarily staging
data in transit.

This paper presents a catalog of architectural tactics for
cyber-foraging derived from the results of a Systematic Lit-
erature Review (SLR) on architectures for cyber-foraging
systems. A set of 57 primary studies was identified (their
preliminary analysis is available in [19]). The studies were
categorized based on decisions regarding the following con-
cerns:

• Where to offload? Is computation and/or data of-
floaded to proximate (single-hop) resources or remote
(multi-hop) resources?

• When to offload? With optimization in mind, when
does it make sense to offload? Is computation always
offloades or is whether or not to offload a runtime de-
cision?

• What to offload? What is the granularity of the com-
putation that is offloaded? What is the size of the
payload to use the computation? What type of data
is offloaded? What data operations are offloaded?

The next section introduces the architectural tactics for
cyber-foraging, grouped into functional tactics (Section 3)
and non-functional tactics (Section 4). Section 5 presents
related work. Section 6 concludes the paper and outlines
the next steps in our research.

2. ARCHITECTURAL TACTICS FOR
CYBER-FORAGING

The tactics were extracted from the literature based on
(1) common components found in the studies, (2) quality
attributes explicitly stated in the studies, and (3) quality at-
tributes inferred from system and component descriptions.
Common design decisions were codified into architectural
tactics and grouped into functional and non-functional tac-
tics. Functional tactics are broad and basic in nature and
correspond to the architectural elements that are necessary
to meet cyber-foraging functional requirements. Non-func-
tional tactics are more specific and correspond to architec-
ture decisions made to achieve certain quality attributes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/43408512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Architectural Tactics for Cyber-Foraging

Non-functional tactics have to be used in conjunction with
functional tactics. Figure 1 presents the set of identified tac-
tics. The top levels of the figure are the tactic categories.
The boxes with solid lines under each category are the tac-
tics. A box with a dashed line under a tactic is a variation
of that tactic.

Each tactic category presented in the paper will include
a scenario, a short description of each tactic in the cat-
egory including an example system, and general obser-
vations about constraints and tradeoffs. The Computation
Offload tactic and the Pre-Fetching tactic for Data Staging
will be explained in greater detail because many of the other
tactics build on these two basic tactics. The full catalog of
tactics is available as a technical report [18]. The goal of the
catalog is to serve as a reference for architects designing
cyber-foraging systems.

3. FUNCTIONAL TACTICS

3.1 Computation Offload
A scenario for Computation Offload from a mobile device

to a surrogate is the following: The user of a mobile device
executes a cyber-foraging-enabled mobile application. The
application offloads the computation-intensive portions of
the application to a nearby surrogate, with minimal disrup-
tion to the mobile device user. Computation Offload extends
battery life by offloading computation-intensive portions of
an application to nearby surrogates with greater computa-
tion power. In addition, the single-hop proximity of surro-
gates combined with the use of WiFi or short-range radio
instead of broadband wireless (e.g., 3G/4G) also decreases

latency [3] and improves the user experience especially for
highly-interactive applications.

Figure 2 shows the main components of this tactic with
numbers that indicate the sequence of operations. The Com-
putation Offload tactic requires an Offload Client running
on the Mobile Device and an Offload Server running on the
Surrogate. This pair of components communicates to coor-
dinate the offload operation. The Cyber-Foraging Enabled
Mobile App invokes the Offload Client when it encounters a
portion of code that has been identified as offloadable com-
putation and passes it any App Metadata that is required to
set up the Offloaded Code. The Offload Client then coordi-
nates with the Offload Server to set up the Offloaded Code
so that it can be invoked by the Cyber-Foraging Enabled
Mobile App. The Offloaded Code runs inside a Container
on the Surrogate. Examples of a Container are a virtual
machine, application server, web server, or the operating
system. Figure 2 shows the Cyber-Foraging Enabled Mobile
App communicating directly with the Offloaded Code. An
alternative is for the Cyber-Foraging Enabled Mobile App to
always communicate through the Offload Client. This latter
alternative has the potential for performance problems as
the number of mobile clients using the surrogate increases.
This is because the Offload Server becomes a bottleneck as
all communication between mobile devices and the surrogate
would go through this component. However, some systems
that implement Fault Tolerance tactics (Section 4.2) place
the responsibility of detecting and managing disconnections
in the Offload Client and Offload Server which therefore
benefits from the single point of communication of the lat-
ter alternative.

Figure 2: Computation Offload Tactic

An example of the Computation Offload tactic is in the
Mobile Agents system [1] in which applications are manu-
ally partitioned into components that have to be executed
locally and components that can be offloaded. These offload-
able components are set up as Mobile Agents using the Java
Agent Development Environment (JADE). At runtime, the
system determines if the agent marked as offloadable should
be offloaded based on a comparison of local and remote ex-
ecution times.
Variation: Stateful Computation Offload. The Com-
putation Offload tactic assumes that the offload operation
is stateless. This means that no mobile app state needs to
be transferred between the Offload Client and the Offload
Server during the offload operation. This is what happens
when the granularity of the offload operation is a module or
class, a service, or a complete application (or server portion
of an application). When the granularity of the offload oper-
ation is at the process or at the method level, the state of the
program or object that contains the process or method being
offloaded has to be transferred to the equivalent program or
object on the surrogate. In this case, a state synchroniza-
tion operation is invoked either periodically or on-demand
before the offloaded code is executed to guarantee that the
state is equivalent on both sides. An example of the Stateful
Computation Offload tactic is in the CloneCloud system [5].

3.1.1 Observations
The Computation Offload tactics assume that offloaded

computation already exists on the surrogate (loaded on the
surrogate via a Surrogate Provisioning tactic at deployment
or run time (Section 3.3)) and that computation that is
marked for offload is always offloaded. Combining Com-
putation Offload tactics with Resource Optimization tactics
(Section 4.1) enables the system to determine when it is op-
timal to offload and when not. The tactics also assume that
the surrogate is always available for offload. Combining the
Computation Offload tactics with Fault Tolerance tactics
(Section 4.2) enables the system to deal with unavailable
surrogates.

3.2 Data Staging
A scenario for Data Staging is the following: A mobile

application is being used by multiple users to collect data
in the field. Upon detection that it is close to a surrogate,
the mobile application offloads the collected data. When the
operation is complete, the mobile device deletes the trans-
mitted data to free up storage space. In addition, when the
surrogate establishes connectivity to the main data center
in the cloud, it forwards the data that was collected by the
multiple users, where it is integrated into the enterprise data
repository. An additional capability of the application is to
provide data visualizations pertaining to the data collected
by the user, the data collected in the region that is served
by the surrogate, and the data collected by the entire set of
users. Therefore, data is pushed from the enterprise data
center to the surrogate either on-demand or periodically so
that the data is closer to the user and accessible even if the
surrogate is disconnected from the enterprise.

3.2.1 Pre-Fetching
Data-intensive mobile apps often rely on data located in

the cloud. However, access to this data is likely over a
lower-bandwidth and multi-hop connection, compared to the
higher-bandwidth, single-hop connection that exists between
a mobile device and a surrogate. Pre-fetching anticipates
data needs in order to minimize communication to the cloud
and reduce latency. The surrogate, according to a defined
pre-fetch algorithm, retrieves data from the cloud and stores
it locally so that it is available to the mobile device when
it needs it. Access to the cloud is therefore only necessary
when the data is not already available on the surrogate.

Figure 3 presents the main components of this tactic. The
Pre-Fetching tactic requires a Data Staging Client that runs
on the Mobile Client and a Data Staging Manager that runs
on the Surrogate. The Data Staging Client handles all data
operations on behalf of a Cyber-Foraging-Enabled Mobile
App. Before sending the data operation to the Data Staging
Manager, the Data Staging Client captures and also sends
along any Pre-Fetch Hints that are used by the Pre-Fetch
Algorithm to determine and anticipate data needs. Exam-
ples of pre-fetching hints include mobile device location, user
profile and preferences, and the user’s schedule. The Data
Staging Manager first executes the data operation against
the local Cache. If the operation is successful it returns the
results of the data operation. If the operation is not suc-
cessful the Data Staging Manager obtains the data from the
Cloud Data Repository in the Enterprise Cloud, stores it in
the local Cache, and returns the results of the data operation
to the Mobile Client. Asynchronously, either periodically or
triggered by certain conditions, the Data Staging Manager
will use the Pre-Fetch Hints from the Mobile Client and any
local data such as the user’s access history as parameters to
a Pre-Fetch Algorithm that will calculate the data set that is
likely to be needed next by the Cyber-Foraging Enabled Mo-
bile App. It will then retrieve this data set from the Cloud
Data Repository and store it in the local Cache so that it is
available when it is needed by the Cyber-Foraging Enabled
Mobile App. Similarly, either periodically or in response to
certain conditions, the Data Staging Manager will sync the
Cache with the Cloud Data Repository to ensure that data
is consistent locally and remotely.

In the Trusted and Unmanaged Data Staging Surrogates
system [9] data is staged on a Staging Server in the Surro-

Figure 3: Pre-Fetching Tactic

gate. After the Cache has been loaded with an initial data
set, all data operations are routed to the Staging Server. If
the requested file exists in the Cache then the data opera-
tion takes place locally on the Surrogate. If the file is not
available in the Cache it obtains the file from the File Server
and stores it in the Cache, along with any other files that
are predicted to be required based on the request.

3.2.2 In-Bound Pre-Processing
In order to reduce the amount of data received by the

mobile device, avoid direct communication to the cloud for
every data operation, and avoid the computation costs of
processing this data for visualization on mobile devices, the
surrogate pre-processes the data that is retrieved or pushed
from the enterprise cloud. The mobile device receives data
that is ready to be consumed, or filtered such that it only
receives data of interest or relevance. The mobile device can
request data on demand or periodically (synchronous) or
can register with the surrogate for data of interest (asyn-
chronous). The Edge Proxy system [2] uses a surrogate
called an Edge Server to monitor changes in user-defined ar-
eas of interest in web pages. It does high-frequency polling
of the web page on the web server and notifies the mobile
device if it detects a change in the areas of interest compared
to the cached web page.

3.2.3 Out-Bound Pre-Processing
Data-intensive mobile apps are often used to collect data

in the field, where Internet connectivity might not be avail-
able to mobile devices or might be costly. In addition, al-
though the field-collected data is valuable, it might be over-
whelming for a device to transmit all data collected to the
enterprise, especially if Internet connectivity is a scarce re-
source. In these cases, a surrogate can pre-process – clean,
filter, summarize, or merge – the data that is received from
the mobile devices that it serves such that the data that is
sent on to the enterprise cloud is ready for consumption and
serves an immediate need. The mobile device can also batch
data according to user or application preferences to conserve
the energy spent on turning the radio on and off for commu-
nication. Data collected on the surrogate can be uploaded
to the cloud when network connectivity is available. In the

Large-Scale Mobile Crowdsensing system [24] crowdsensing
participation apps gather data from one or more sensors on
the mobile device and send them to a surrogate. Appli-
cations running on the surrogate process the data streams
coming from mobile devices locally and/or format and send
the data to applications in the cloud.

3.2.4 Observations
All the Data Staging tactics require a Surrogate Provi-

sioning tactic (Section 3.3) to prepare the surrogate for data
staging. In addition, they require a configuration in which
the mobile device is connected to a surrogate and the surro-
gate is connected to the enterprise or cloud data center, even
if connectivity is intermittent or periodic. Combining Data
Staging tactics with Fault Tolerance tactics (Section 4.2)
enables implementations in disconnected or intermittent en-
vironments. Finally, if data is being modified on the mobile
device, as in potentially the Pre-fetching tactic, there needs
to be a mechanism in place, either manual or automatic,
to resolve any synchronization conflicts between surrogate
caches and cloud repositories.

3.3 Surrogate Provisioning
To be able to use a surrogate for cyber-foraging, it has to

be provisioned with the offloaded computation and/or the
computational elements that enable data staging. A sce-
nario for surrogate provisioning is as follows: a mobile de-
vice needs to execute a computation-intensive task. Instead
of executing the task locally, it locates a surrogate and sends
it a request to execute the computation on its behalf. The
surrogate first checks if it already has the computation to
support the task. Because it does not, it sees if it can lo-
cate the computation in a cloud repository. Because the
surrogate is not able to locate the capability in the cloud,
the mobile device sends the computation to the surrogate
for installation. Once the surrogate installs and starts the
computation it notifies the mobile device that it is ready,
executes the computation, and sends back the results of the
computation.

3.3.1 Pre-Provisioned Surrogate
Pre-provisioned surrogates have the advantage of shorter

response time to offload requests from mobile devices be-
cause the offloaded computation or data staging elements
already reside on the surrogate. In an operational setting in
which surrogates support multiple clients, a surrogate should
have minimal management capabilities that (1) help surro-
gate administrators to install capabilities and appropriate
execution containers, and (2) maintain a list of these capa-
bilities (similar to a service registry). This tactic requires
a Surrogate Manager component to manage a Capabilities
Repository, Capability Metadata to enable setup of capa-
bilities on demand, and a Capability Registry that is used
by Surrogate Discovery tactics (Section 3.4) for advertising
capabilities to mobile cyber-foraging clients. This tactic is
not present in any of the systems, but could be integrated
into any of the cyber-foraging systems that assumes that
offloaded computation and/or data staging elements are al-
ready available on the surrogate at runtime.

3.3.2 Surrogate Provisioning from the Mobile De-
vice

In Pre-Provisioned Surrogates (Section 3.3.1) a mobile de-
vice can only execute applications that already exist on the
surrogate. Provisioning the surrogate from the mobile de-
vice has the advantage of enabling the execution of a greater
number of applications because surrogates are provisioned
at runtime. The mobile device sends the offloaded compu-
tation to the surrogate at runtime. The surrogate installs
the computation inside an execution container and starts the
application on behalf of the mobile device. In the VM-Based
Cloudlets system [23] application overlays are sent at run-
time to the surrogate (cloudlet) and combined with a base
VM to produce a VM with the running application.

3.3.3 Surrogate Provisioning from the Cloud
Provisioning surrogates from the mobile device has the

advantage of enabling the execution of a greater number
of applications (Section 3.3.2) compared to pre-provisioned
surrogates (Section 3.3.1). However, the size of the compu-
tation that is sent to the surrogate at runtime can be sig-
nificant. In the examples for the MAUI system [6], the size
of the .NET components transmitted at runtime is between
0.2 MB and 13.8 MB. In the examples for the VM-Based
Cloudlets system [23], the size of an application overlay is
between 63 MB and 196 MB. An alternative is to send the
location of the computation in the form of a URL for the sur-
rogate to download and install. The payload in this case is
almost insignificant but the time to provision may be longer
due to potentially higher and unpredictable latency between
the cloud and the surrogate. However, the mobile device is
not consuming battery due to high transmission costs. In
addition, because the computation exists in a defined place
in the cloud it is easier to update because it does not have
to be sent to each mobile device after patches or upgrades.
In the Collective Surrogates system [10] a shell script is sent
to the surrogate at runtime that downloads the application
that corresponds to the offloaded code from an application
repository on an Internet server, installs the application and
starts it.

3.3.4 Observations
The Pre-Provisioned Surrogate tactic requires a manage-

ment component that provisions the surrogate with capa-
bilities before surrogate deployment. The Surrogate Provi-
sioning from the Mobile Device and Surrogate Provisioning
from the Cloud tactics requires a pre-established agreement
on the format of the offloaded code (e.g., Java class, Python
script, Windows application). In addition, depending on the
size of the offloaded code the tactics may require additional
components to provide reliable communications. Finally, in
the Surrogate Provisioning from the Cloud tactic the com-
putation has to exist at the indicated location.

3.4 Surrogate Discovery
In order to leverage cyber-foraging, mobile devices need

to be able to locate available surrogates on which to of-
fload computation or stage data. A scenario for surrogate
discovery is as follows: a mobile device needs to execute a
computation-intensive task and has already decided that it
will offload the task to a surrogate. The mobile device is able
to locate all nearby surrogates and selects the surrogate that
is the best match for the offloaded task.

3.4.1 Local Surrogate Directory

For mobile devices to leverage nearby surrogates they need
to know where the surrogates are located; that is, they need
to know their network address (i.e., surrogate IP address or
URL). A simple solution is for mobile devices to maintain
a list of potential surrogates including any information that
can help the mobile device to select the best surrogate in
case more than one is available. The list can be static, or
updated based on network conditions or offload execution
data. An advantage of a local list is that it will potentially
include only surrogates that are trusted by the mobile de-
vice. This tactic has two parts: one part involves a user
interface to populate and maintain the Surrogate Directory ;
the other part involves the components that interact during
the offload process to obtain the list of surrogates from the
directory and ping each to see if it is available for offload.
The Cuckoo system [14] has a component that maintains a
list of surrogates. If the surrogate has a visual display, upon
loading it shows a QR code that is read by the mobile device
and then added to the list of surrogates it can use for offload.
If it does not have a visual display, the resource description
file for the surrogate has to be copied to the mobile device
so that it can be added to the list.

3.4.2 Cloud Surrogate Directory
In the Local Surrogate Directory tactic (Section 3.4.1) the

mobile device is responsible for populating and maintaining
the list of surrogates on which it can offload computation.
This is a rather static solution because as more surrogates
become available in the environment there is no automated
way of discovering these new surrogates or updating their
metadata as changes occur. Maintaining the surrogate di-
rectory in the cloud has the advantage of a centralized loca-
tion for surrogate registration and metadata. All the mobile
device needs to know is the network address of the cloud
server that manages the surrogate directory. In addition,
optimal surrogate selection algorithms can run in the cloud,
which is an additional offload operation that can lead to
battery savings on the mobile device. Regarding trust, in
this tactic the mobile device only needs to trust the cloud
surrogate directory server assuming that the directory only
contains trusted surrogates (Section 4.4.1). In the Mobile
Agents system [1] the mobile device contacts a Cloud Direc-
tory Service to get a list of available surrogates and selects
the one with the highest communication link speed with the
mobile device as well as the highest computing power.

Variation: Intermediary Cloud Surrogate Direc-
tory. The Cloud Surrogate Directory tactic returns the ad-
dress of the selected surrogate to the mobile device, which
then contacts the surrogate directly. In systems such as
Large-Scale Mobile Crowdsensing [24] the cloud server does
not return the surrogate address to the mobile device, but
rather forwards the offload request to the selected surrogate
and then returns the results to the mobile device. In this
variation the cloud server acts as an intermediary between
the mobile device and the surrogate.

3.4.3 Surrogate Broadcast
The Local Surrogate Directory (Section 3.4.1) and Cloud

Surrogate Directory (Section 3.4.2) tactics require a direc-
tory of potential surrogates to be maintained either on the
mobile device or on a cloud server, respectively. Having sur-
rogates broadcast their availability and metadata to mobile
devices removes the burden of having to maintain surrogate

directories up to date. It creates a much more dynamic en-
vironment in which mobile devices can discover nearby sur-
rogates without needing to know their addresses in advance
or retrieving the addresses from a cloud server that could
potentially not be available when needed. In the VM-Based
Cloudlets system [23] surrogate information that includes
surrogate address is broadcast using an implementation of
Zeroconf (http://www.zeroconf.org/).

3.4.4 Observations
The Local Surrogate Directory tactic places the responsi-

bility of surrogate identification on the mobile device user.
If surrogate metadata changes or new surrogates are made
available, a cyber-foraging system will not have an auto-
mated way of updating the surrogate directory. The Cloud
Surrogate Directory tactic requires the mobile device to know
the address of the cloud server that holds the surrogate direc-
tory. The cloud server can become a single-point-of-failure if
it becomes unavailable to mobile devices. In the cases that
the cloud server acts as an intermediary it also becomes a po-
tential bottleneck. The Surrogate Broadcast tactic offers the
most flexibility but requires an agreement between mobile
devices and surrogates on the broadcast protocol. Regard-
ing trust, mobile devices will require additional components
to determine whether broadcast information is coming from
a valid, trusted surrogate (Section 4.4.1).

4. NON-FUNCTIONAL TACTICS

4.1 Resource Optimization
A scenario for Runtime Optimization is the following: A

mobile app is enabled for cyber-foraging. Upon request for
execution of computation that has been targeted for offload,
the mobile app first checks if it is better from a performance
and latency perspective to execute the computation locally
or remotely. Given that the network conditions between the
mobile device and the surrogate are not ideal, the computa-
tion is executed locally instead of offloaded to the surrogate.

4.1.1 Runtime Partitioning
In general, offloading is beneficial when large amounts of

computation are needed with relatively small amounts of
communication [17]. Runtime Partitioning enables mobile
devices to make runtime decisions regarding the benefits of
offloading. Computation is offloaded only if remote execu-
tion is better than local execution according to a defined
optimization function (often called a utility function). Lo-
cal execution cost typically takes into consideration the en-
ergy consumed by local execution as well as the local execu-
tion time. Remote execution cost typically considers the en-
ergy consumed by communication, the communication time
based on payload size and network conditions, and remote
execution time. If local execution cost is lower than remote
execution cost then the computation is executed locally; if
not, it is executed remotely (i.e., offloaded). In addition to
the components required by the Computation Offload tactic,
the Runtime Partitioning tactic requires an Offload Decision
Engine component that compares predicted local execution
cost against predicted remote execution cost. The MACS
system [16] uses service metadata related to memory size,
code size, and input/output parameter size; available mem-
ory information, CPU load and remaining battery on the
mobile device; network connectivity and bandwidth infor-

mation; and a pre-built energy model to make an offload
decision.

Variation: User-Guided Runtime Partitioning. The
Runtime Partitioning tactic assumes a static optimization
function. However, in some systems what to optimize is
determined based on user preferences or input. In the Pow-
erSense system [20] the user can select a Time Saver option
to minimize processing time or an Energy Saver option to
minimize energy consumption. The system has a user inter-
face on the mobile device to set these preferences.

4.1.2 Runtime Profiling
Systems that implement the Runtime Partitioning tactic

(Section 4.1.1) require developer input or static profiling to
obtain the values or models that are used in the calculation
of the optimization function that determines whether code
should run locally or remotely. However, models tend to
be inaccurate because (1) applications are not determinis-
tic; (2) smartphones scale the CPU’s voltage dynamically
to save energy (i.e., dynamic voltage scaling); (3) energy
models highly depend on hardware configuration, usage, and
even the battery model of a mobile device; and (4) network
quality is highly variable and often unpredictable [7]. To ac-
count for this variability and take into consideration current
conditions, once the offload operation ends, or periodically,
the system updates the profiling data and models that are
used by the optimization functions. In the MAUI system [6]
a Solver+Profiler component uses data from the annotated
method (inputs, outputs and CPU cycles), the Device En-
ergy Model, network data obtained via a Network Monitor,
and Past Program Execution and Network Data to compute
an energy-efficient program partition. Once an offloaded
method terminates, it updates the Past Program Execution
and Network Data to better predict whether future invoca-
tions of the method should be offloaded.

4.1.3 Resource-Adapted Computation
In the Runtime Partitioning tactic (Section 4.1.1) a deci-

sion is made at runtime to execute code locally or remotely
depending on an optimization function. In this tactic the lo-
cal and remote code are identical. Even though this makes
development and versioning easier, computation ends up be-
ing limited to what can execute on the mobile device, which
will always lag behind static elements such as surrogates
in terms of compute resources (power, CPU, memory, stor-
age) [22]. Resource-Adapted Computation enables cyber-
foraging systems to fully take advantage of the computing
power of surrogates by adapting the computation to the re-
source on which it will be executing. In an image processing
scenario, the object recognition algorithm that runs on the
surrogate can be much more computation-intensive than the
one that runs on the mobile device and can therefore de-
liver a much more precise result. In the Cuckoo system [14]
the Cuckoo Framework generates an implementation of the
same interface for a local and a remote service. Initially,
the remote implementation will contain dummy method im-
plementations, which the developer has to replace with real
method implementations that can be executed at the re-
mote location. The real methods can be identical to the
local service implementation, but may also be completely
different, because the remote implementation can run a dif-
ferent algorithm, use different libraries, or take advantage of
parallelization on the more powerful surrogate.

Variation: Resource-Adapted Input. A variation of
this tactic is for the mobile and surrogate versions of the
offloaded code to be identical, but what varies is the input
parameters. The enabler is that different input parameters
will lead to different resource consumption. PowerSense [20]
is an image processing system for dengue detection that uses
the same algorithm locally and remotely for image process-
ing, but uses lower resolution images if processed locally
and higher resolution images if processed remotely because
processing these higher quality images requires greater com-
puting power.

4.1.4 Observations
The Runtime Partitioning and Runtime Profiling tactics

assume that there is equivalent code for the offloaded com-
putation on both the mobile device and the surrogate. This
aspect limits the direct reusability of legacy code because a
version would have to be written for the mobile device or
surrogate depending on the original platform of the legacy
code. In addition, the optimization function should not be
a computation-intensive task because it would then cancel
the benefits of cyber-foraging. Finally, data collection of
app metadata to be used as optimization function parame-
ters has to be gathered in advance using techniques such as
static profiling. For the Runtime Profiling tactic, the cost of
profiling is not negligible and can impact overall application
performance [6]. System designers need to consider the type
and frequency of data to capture at runtime. Finally, the
Resource-Adapted Computation tactic requires developing,
profiling and maintaining different versions of offloadable el-
ements.

4.2 Fault Tolerance
A scenario for Fault Tolerance is the following: A mo-

bile app is enabled for cyber-foraging and is leveraging a
surrogate for computation offload. During the execution of
the remote computation the mobile device loses connectiv-
ity to the surrogate. The mobile device detects the situation
and executes the local copy of the computation instead with
minimal effect on user experience.

4.2.1 Local Fallback
Due to movement of a mobile device to an area with no

connectivity to the surrogate, problems with network qual-
ity, or service disruption, the mobile device may lose con-
nectivity to the surrogate during the computation offload or
data staging process. The Local Fallback tactic enables the
cyber-foraging enabled mobile app to detect loss of connec-
tivity and revert to local execution of the offloaded element.
The MAUI system [6] detects failures using a simple time-
out feature that returns control back to the mobile device
if a disconnect occurs and resumes running the method on
the local smartphone. After every offload operation, MAUI
returns program state as part of the results, which is ap-
plied to the local computation so that state is synchronized
between the local and remote computation.

4.2.2 Opportunistic Mobile-Surrogate Data Synchro-
nization

Data-reliant cyber-foraging systems, as their name indi-
cates, rely on stored data to fulfill their operations. The
Opportunistic Mobile-Surrogate Data Synchronization tac-
tic keeps data synchronized during periods of connection

such that the system can continue operating in periods of
disconnection. There are no systems in the primary studies
that implement this tactic for fault tolerance as described,
but the principle of using distributed storage in the Virtual
Phone system [12], for example, is the same: to opportunis-
tically keep data/state synchronized without placing the re-
sponsibility on the actual applications.

Variation: Opportunistic Surrogate-Cloud Data
Synchronization. The principles of the Opportunistic Mo-
bile-Surrogate Data Synchronization tactic can also be ap-
plied to handle disconnection between the surrogate and the
cloud, especially for data staging systems. Opportunistic
Surrogate-Cloud Data Synchronization enables a system to
continue operating in the event of disconnection between
the surrogate and the cloud and to synchronize data when
reconnection occurs. To support this tactic, a Data Syn-
chronization Client runs on the Surrogate and a Data Syn-
chronization Server runs in the cloud. Trusted and Unman-
aged Data Staging Surrogates [9] is a data staging system
that uses a distributed filesystem based on Coda (http:
//www.coda.cs.cmu.edu/) between the surrogate and the
cloud that supports disconnected operations to maintain
data opportunistically synchronized such that it is available
on the surrogate when needed.

4.2.3 Cached Results
Offload requests from mobile devices are not always as

simple as request-response interactions. Some requests may
take a long time to execute or may rely on data that has
been gathered and maintained over time. In the case of dis-
connection between a mobile device and a surrogate during
an offload operation, restarting the offload request or losing
data is not desired. The Cached Results tactic enables a
system to cache results and state on a surrogate until the
mobile device is able to reconnect. In the Grid-Enhanced
Mobile Devices system [11] the mobile device periodically
sends a keep-alive message to the surrogate to inform that
it is still connected. Before sending the results back to the
mobile device, the surrogate checks the device status and if
disconnected saves the results in a cache. When the mobile
device reconnects, the surrogate gets the results from the
cache and sends them back to the mobile device.

Variation: Client-Side Data Caching. The tactic as
described caches results on the surrogate and sends them to
mobile clients upon request or reconnection. A variation of
this tactic that is useful for data staging systems that imple-
ment the In-Bound-Pre-Processing tactic (Section 3.2.2) is
to cache collected data on the mobile device and send it to
the surrogate upon reconnection. The Feel the World sys-
tem [21] collects sensor data that can be aggregated and/or
transformed locally on the mobile device and uploaded to
the surrogate in real-time if the connection is available, or
at a later moment if it is unavailable.

4.2.4 Alternate Communications
Cyber-foraging systems typically leverage single-hop, higher

bandwidth communications mechanisms such as WiFi or
short-range radio instead of broadband wireless (e.g., 3G/4G)
because of the potential for energy savings and faster re-
sponse time [3]. However, these mechanisms require the
mobile device to be in proximity of the surrogate. The Al-
ternate Communications tactic enables the system to switch
to an alternate, potentially less energy-efficient communica-

tions mechanism, to continue serving the mobile user in spite
of disconnection (even if in a degraded mode). Edge Proxy
[2] is a data staging system that enables a user to be notified
when web pages of interest change. By default it commu-
nicates using WiFi but when the surrogate is ready to send
web page changes to the mobile device and detects that it is
disconnected, it leverages the existing Short Message Service
(SMS) infrastructure that most wireless carriers provide.

4.2.5 Eager Migration
Due to mobile device mobility or decrease in the quality

of the communications channel between the mobile device
and the surrogate, the mobile device might lose connectiv-
ity to the surrogate. The Local Fallback (Section 4.2.1),
Cached Results (Section 4.2.3), and Alternate Communica-
tions (Section 4.2.4) tactics for fault tolerance are reactive;
that is, they perform a corrective action after the discon-
nection is detected. The Eager Migration tactic takes a
more proactive approach and migrates the offloaded com-
putation to a connected surrogate before it becomes discon-
nected from the mobile device so that it can continue operat-
ing. In the Offloading Toolkit and Service system [25], if the
communication between the surrogate and the mobile de-
vice deteriorates based on reaching an established threshold
for connection quality, the execution of the offloaded code
is terminated on the current surrogate and migrated to a
connected target surrogate.

Variation: Lazy Migration. In Eager Migration the
offloaded computation fully moves from a source surrogate
to a target surrogate and the mobile device continues its
interaction with the target surrogate. In Lazy Migration,
the execution of the offloaded computation remains on the
source surrogate but the interaction with the mobile device
is handed off to the target surrogate. This means that all
interaction between the mobile device and the source surro-
gate goes through the target surrogate that acts as an inter-
mediary. This tactic is not present in any of the systems but
was considered as an alternative for the Offloading Toolkit
and Service system [25]. It was not selected because of the
high bandwidth that already existed between surrogates to
enable a fast full migration.

4.2.6 Observations
The Local Fallback tactic assumes that there is equivalent

code for the offloaded computation on both the mobile de-
vice and the surrogate. Because disconnection may happen
at any point in the offload process, this tactic is best fit for
stateless request-response operations that can be restarted
on the mobile device if the operation fails. Systems that im-
plement the Just-In-Time Containers tactic (Section 4.3.1)
with the Local Fallback tactic would require a component
or a periodic clean-up process that destroys containers that
are not being used in order to reduce the load on the sur-
rogate. Systems that implement the Opportunistic Mobile-
Surrogate Data Synchronization tactic need to be aware of
the energy consumption on the mobile device for keeping
data synchronized. Also, while disconnected, it is possible
that data may not be up-to-date, which may lead to incor-
rect results for applications that operate on time-sensitive
data. The Cached Results tactic is best fit for asynchronous
interactions between mobile devices and surrogates or ap-
plications that are not time-sensitive or require immediate
results. In addition, it requires a mechanism for detecting

disconnection from mobile devices. The Alternate Commu-
nications tactic assumes that the mobile device is enabled to
use the alternate communication mechanism. In addition,
depending on the type of interaction between the surrogate
and the mobile device (i.e., responding to a single offload
request or sending data periodically to the mobile device),
the surrogate would require a mechanism to determine when
connectivity has been restored so it can go back to the de-
fault communications mechanism. Finally, the Eager Migra-
tion tactic requires the source and target surrogates to be
connected. The impact on the user experience will highly
depend on the bandwidth between surrogates. In addition,
the system has to obtain any parameters for the algorithm
that determines potential disconnection, such as the distance
and communications quality between the mobile device and
both the source and target surrogate.

4.3 Scalability/Elasticity
A scenario for Scalability/Elasticity is the following: A

mobile app is enabled for cyber-foraging and is leveraging
a surrogate for computation offload that is also being lever-
aged by other mobile apps on other mobile devices. The
surrogate is able to optimize computing resources either lo-
cally or by leveraging other connected surrogates so that
multiple mobile devices can be supported with the goal of
minimal effect on user experience due to surrogate load.

4.3.1 Just-in-Time Containers
In an operational cyber-foraging scenario a single surro-

gate may support multiple mobile users. To decrease the
load on a surrogate, and therefore support a greater num-
ber of offload requests, the Just-in-Time Containers tactic
creates a container and/or an instance of the offloaded code
upon receipt of an offload request and then destroys the in-
stance of the offloaded code when the offload request is com-
pleted. In the Grid-Enhanced Mobile Devices system [11] a
Deputy Object is created for each offload request (task) from
a mobile device in the Grid Gateway. When the task is com-
pleted and the mobile device terminates the connection to
the Grid Gateway, resources on the surrogate are released
and the Deputy Object is destroyed.

4.3.2 Right-Sized Containers
In an operational cyber-foraging scenario a single surro-

gate may support multiple mobile users. However, not all
mobile users are offloading the same computation. Some
users may be executing a small task that does not require a
large quantity of surrogate resources while others may be ex-
ecuting very computation-intensive tasks that require much
more resources. To optimize resources on a surrogate, and
therefore support a greater number of offload requests, the
Right-Sized Containers tactic creates a container for the of-
floaded code that is of the smallest size possible in order
to run the offloaded computation, based on computation re-
quirements metadata related to the offloaded code. In the
ThinkAir system [15], when a surrogate receives an offload
request, the ThinkAir Framework on the surrogate deter-
mines the configuration of the VM (or VMs) to allocate for
the task based on app requirements in the offload request
that indicate the need for extra computing power (the sys-
tem has six VM configurations which differ in terms of CPU
and memory).

Variation: Dynamically-Sized Containers. The Think-
Air system [15] also implements this tactic. If an error oc-
curs at runtime that would indicate that the VM does not
have the necessary computing power for the task, such as an
OutOfMemoryError error, the system starts a more power-
ful VM and moves the offload request to the newly started
VM.

4.3.3 Surrogate Load Balancing
In an operational cyber-foraging scenario the relationship

between mobile devices and surrogates may be many-to-
many, meaning that multiple mobile devices may be lever-
aging multiple surrogates for computation offload and data
staging. The Surrogate Load Balancing tactic enables sur-
rogates to send offloaded computation or data to other less-
loaded, connected surrogates in order to provide a better
user experience to all mobile devices. In the Cloud Op-
erating System to Support Multi-Server Offloading (COS)
system [13] application modules are implemented as SALSA
Actors that are self-contained and therefore can easily mi-
grate between a source surrogate and a target surrogate.
When the source surrogate reaches a load threshold, it in-
forms the COS Manager, which determines the optimal tar-
get surrogate based on resource availability, communication
cost with other actors, and the cost for migration, and pre-
pares it for migration.

4.3.4 Observations
The Just-in-Time Containers and Right-Sized Containers

tactics have a greater startup time than tactics in which the
offloaded code is already running because they have to set up
the container, which is the execution environment for the of-
floaded code. In addition, the Right-Sized Containers tactic
requires a surrogate to maintain different container config-
urations. The Surrogate Load Balancing tactic requires the
source and target surrogates to be connected. The impact
on the user experience will highly depend on the on the
bandwidth between surrogates. The source surrogate re-
quires a mechanism to access the load level of all connected
surrogates (or an external manager that maintains this infor-
mation) in order to migrate computation to the less-loaded
surrogate and keep the load on all the surrogates balanced.

4.4 Security
One of the main findings from the primary studies is that

there is very little discussion of system-level concerns that
have to be addressed when moving from experimental pro-
totypes to operational systems. One of these system-level
concerns is security [19]. A scenario for Security is the fol-
lowing: A mobile app is enabled for cyber-foraging and is
in the process of discovering a surrogate for computation
offload. User and surrogate credentials are exchanged and
validated before the offload process so that the mobile app
and surrogate can interact according to agreed security poli-
cies.

4.4.1 Trusted Surrogates
When a mobile device discovers a surrogate it expects a

trustworthy surrogate execution environment, meaning that
once an offload operation starts, code and data are not ma-
liciously modified or stolen and that it provides trustful ser-
vices. In the same way, a surrogate expects that a mobile
device is a valid client and that it will not offload malicious

code or use it as a vehicle to other code and data offloaded
by other mobile devices. The Trusted Surrogate tactic adds
this trust element to the interaction between a mobile de-
vice and a surrogate. The only system that implements a
trust solution that uses a third-party trusted authority is the
Trusted and Unmanaged Data Staging Surrogates system
[9]. The user’s idle desktop serves as the trusted third party
that sits in between the file server and the surrogate. When
the mobile client requests a file, it communicates with the
Data Pump that runs on the desktop to obtain the key and
hash for the requested data file. The Data Pump retrieves
the data file from the file server and encrypts it before send-
ing it to the surrogate for staging. It then sends the mobile
client the key and hash for the file so it can be compared it
to the hash of the file that is retrieved from the surrogate to
determine if the file has been tampered with.

4.4.2 Observations
Any trust mechanism will be constrained by how the trust

relationship is established. Password-based approaches such
as those employed by systems in which surrogates are owned
by the mobile device user require users to be registered on
the surrogate. Hardware-based approaches such as TPM
(Trusted Platform Module) require surrogates to have TPM
chips on them. Systems that rely on third parties have to
be connected to online authorities or require certificates and
keys to be obtained from a central certificate authority.

5. RELATED WORK
There are several studies that survey the field of mobile

cloud computing and identify cyber-foraging as a research
area and challenge, but are not SLRs and do not have an
architecture focus. The work that is most similar to ours is
by Flinn et al [8] that presents a discussion of representative
cyber-foraging systems and their characteristics. However,
it is limited to a small number of systems and does not follow
a systematic process. To the best of our knowledge, ours is
the first systematic literature review related to architectures
for cyber-foraging.

As far as architectural tactics for cyber-foraging, this is
the first attempt to codify design decisions in software ar-
chitectures for cyber-foraging systems into a set of tactics.

6. CONCLUSIONS AND NEXT STEPS
We presented a set of architectural tactics for cyber-forag-

ing that were obtained from the results of an SLR in archi-
tectures for cyber-foraging systems. Common design deci-
sions present in the cyber-foraging systems were codified into
architectural tactics for cyber-foraging and then grouped
into functional and non-functional tactics. Functional tac-
tics provide the basic cyber-foraging operations and non-
functional tactics are combined with the functional tactics
to support required system qualities. Each tactic has trade-
offs that were briefly presented as observations in each tactic
category.

The next steps in our research are to create case studies
that validate these tactics in real systems to demonstrate
that they satisfy the functional and non-functional quality
attribute responses that they are intended to promote. Be-
cause tactics are not used in isolation, but rather combined
to satisfy system requirements, the case studies will be an-
alyzed to identify tactics that are commonly used together

and codify them into architectural patterns [4] for cyber-
foraging systems.

7. ACKNOWLEDGMENTS
This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded
research and development center. This material has been
approved for public release and unlimited distribution (DM-
0002040).

8. REFERENCES
[1] P. Angin and B. Bhargava. An agent-based

optimization framework for mobile-cloud computing.
Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA),
4:1–17, 2013.

[2] T. Armstrong, O. Trescases, C. Amza, and E. de Lara.
Efficient and transparent dynamic content updates for
mobile clients. In Proceedings of the 4th international
conference on Mobile systems, applications and
services, pages 56–68. ACM, 2006.

[3] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile
phones: A measurement study and implications for
network applications. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement
Conference, IMC ’09, pages 280–293, New York, NY,
USA, 2009. ACM.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[5] B.-G. Chun and P. Maniatis. Augmented smartphone
applications through clone cloud execution. In
Proceedings of the 12th conference on Hot topics in
operating systems, pages 8–8. USENIX Association,
2009.

[6] E. Cuervo. Enhancing Mobile Devices through Code
Offload. PhD thesis, Duke University, 2012.

[7] M. Dong and L. Zhong. Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’11, pages 335–348, New York, NY,
USA, 2011. ACM.

[8] J. Flinn. Cyber foraging: Bridging mobile and cloud
computing. In M. Satyanarayanan, editor, Synthesis
Lectures on Mobile and Pervasive Computing. Morgan
& Claypool Publishers, 2012.

[9] J. Flinn, S. Sinnamohideen, N. Tolia, and
M. Satyanarayanan. Data staging on untrusted
surrogates. In Proceedings 2nd USENIX Conference
on File and Storage Technologies (FAST03), Mar
31-Apr 2, 2003, San Francisco, CA., 2003.

[10] S. Goyal. A Collective Approach to Harness Idle
Resources of End Nodes. PhD thesis, School of
Computing, University of Utah, 2011.

[11] T. Guan. A System Architecture to Provide Enhanced
Grid Access for Mobile Devices. PhD thesis,
University of Southampton, 2008.

[12] S.-H. Hung, J.-P. Shieh, and C.-P. Lee. Migrating
android applications to the cloud. International
Journal of Grid and High Performance Computing
(IJGHPC), 3(2):14–28, 2011.

[13] S. Imai. Task offloading between smartphones and
distributed computational resources. Master’s thesis,
Rensselaer Polytechnic Institute, 2012.

[14] R. Kemp, N. Palmer, T. Kielmann, and H. Bal.
Cuckoo: a computation offloading framework for
smartphones. In Mobile Computing, Applications, and
Services, pages 59–79. Springer, 2012.

[15] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and
X. Zhang. Thinkair: Dynamic resource allocation and
parallel execution in the cloud for mobile code
offloading. In INFOCOM, 2012 Proceedings IEEE,
pages 945–953. IEEE, 2012.

[16] D. Kovachev and R. Klamma. Framework for
computation offloading in mobile cloud computing.
International Journal of Interactive Multimedia and
Artificial Intelligence, 1(7):6–15, 2012.

[17] K. Kumar and Y.-H. Lu. Cloud computing for mobile
users: Can offloading computation save energy?
Computer, 43(4):51–56, Apr. 2010.

[18] G. Lewis and P. Lago. A catalogue of architectural
tactics for cyber-foraging. Technical Report
2014-12.001, VU University Amsterdam, December
2014.
http://www.cs.vu.nl/~patricia/Patricia_Lago/

Shared_files/report-tactics-cyber-foraging.pdf

[19] G. Lewis, P. Lago, and G. Procaccianti. Architecture
strategies for cyber-foraging: Preliminary results from
a systematic literature review. In Proceedings of the
8th European Conference on Software Architecture
(ECSA 2014), volume 8627 of Lecture Notes in
Computer Science, pages 154–169. Springer
International Publishing, 2014.

[20] J. Matthews, M. Chang, Z. Feng, R. Srinivas, and
M. Gerla. PowerSense: power aware dengue diagnosis
on mobile phones. In Proceedings of the First ACM
Workshop on Mobile Systems, Applications, and
Services for Healthcare, page 6. ACM, 2011.

[21] T. Phokas, H. Efstathiades, G. Pallis, and
M. Dikaiakos. Feel the world: A mobile framework for
participatory sensing. In Mobile Web Information
Systems, volume 8093 of Lecture Notes in Computer
Science, pages 143–156. Springer Berlin Heidelberg,
2013.

[22] M. Satyanarayanan. Pervasive computing: vision and
challenges. Personal Communications, IEEE,
8(4):10–17, Aug 2001.

[23] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for VM-based cloudlets in mobile
computing. Pervasive Computing, IEEE, 8(4):14–23,
2009.

[24] Y. Xiao, P. Simoens, P. Pillai, K. Ha, and
M. Satyanarayanan. Lowering the barriers to
large-scale mobile crowdsensing. In Mobile Computing
Systems and Applications, 2013.

[25] K. Yang, S. Ou, and H.-H. Chen. On effective
offloading services for resource-constrained mobile
devices running heavier mobile internet applications.
Communications Magazine, IEEE, 46(1):56–63, 2008.

