
Service Networks for Development Communities
Damian A. Tamburri

Department of Computer Science,
VU University Amsterdam,

The Netherlands
d.a.tamburri@vu.nl

Patricia Lago
Department of Computer Science,

VU University Amsterdam,
The Netherlands

p.lago@vu.nl

Hans van Vliet
Department of Computer Science,

VU University Amsterdam,
The Netherlands

j.c.van.vliet@vu.nl

Abstract—Communities of developers have rapidly become
global, encompassing multiple timezones and cultures alike. In
previous work we investigated the possible shapes of communities
for software development. In addition, we explored mechanisms
to uncover communities emerging during development. However,
we barely scratched the surface. We found that development
communities yield properties of dynamic change and organic
evolution. Much work is still needed to support such commu-
nities with mechanisms able to proactively react to community
dynamism. We argue that service-networks can be used to deliver
this support. Service-networks are sets of people and information
brought together by the internet. This paper is a first attempt at
studying this research area by means of a real-life case-study in
a large global software development organisation.

I. INTRODUCTION

Software engineering has evolved from a process of few to
an organisation of many [1], [2]. Where once stood a handful
of developers, now stands a community of thousands of
people, with multiple organisations, roles, cultures, in multiple
locations [3]. This new angle on software processes, requires
novel approaches for their representation and support. More in
particular, How can we support (global) social communities of
developers?

In previous work we obtained the state of the art in social
communities [1] and produced a social community decision
mechanism [4]. The missing keystone is to support social
communities with an innovative and pro-active mechanism
operating through services. The research hypothesis that drives
the work in this paper is quite simple and equally intriguing:
social communities of developers can be supported by a global
network of software and socio-technical services, spanning
different organisations, sites, timezones and cultures. The
result is a service-network [5], [6] that blends the internet of
services with large-scale, adaptable choreographies to deliver
a powerful and scalable solution that adapts to the changes
of a community. On one hand, software services are pieces
of software operating under a service-dominant logic. These
pieces of software collaborate together across the web using
standard protocols, to deliver complex, adaptable functionality
(e.g. cloud-based functionalities such as GoogleDocs). Much
literature in service sciences provide ways to identify, monitor
and adapt software services [7]. On the other hand, socio-
technical services are hybrid human and software services,
i.e. services that explicitly mediate the collaborative work of
people within a social community, e.g. by fostering relevant

community aspects [1], [4], or by increasing situation aware-
ness of community members [8] or maintaining community’s
socio-technical congruence [9].

Supporting development communities with service-
networks can be achieved by associating each social
community emerging in an organisation with the set of
software and socio-technical services needed to dynamically
support its operations. Communication across communities
would then become a service-assembly problem that we can
study and support with state-of-the-art services technology.
For example, suppose that project X in company Y involves
two social communities. Both need explicit support. A single
service-network can support project X blending services to
support both social community types. A specific combination
of services can be used to support X within its context.
Ad-hoc adaptation dynamics can be integrated.

The benefits of this approach are manifold. Service-
networks could be shaped using the state of the art in service
sciences, to deliver a powerful and innovative solution for
community-based software engineering [1], [2]. Moreover,
a service-dominant logic would allow dynamic retrieval of
services from the cloud, as needed to support communities.
In addition, the approach could assist the emergence of Enter-
prise 2.0 technologies [10], blending social communities and
services together.

This paper shows the potentials of this idea in practice, by
reporting on its application to a real-life industrial scenario
from a large global software development organisation [11].
We found that service-networks help pinpointing hazardous
organisational barriers (i.e. impediments to the smooth coop-
eration within a community [12]) in software development. In
addition, service-networks ease (semi-)automatic steering of
development social communities. Our findings are encouraging
but open up many intriguing research paths.

The rest of the paper is structured as follows: Section II
explains related work; Section III applies the idea on a case-
study; Section IV discusses the case-study while Section V
concludes the paper.

II. PREVIOUS AND RELATED WORK

Our previous work offers theoretical premises to sustain the
idea presented in this paper. In [13] we discussed the im-
portance of studying social communities in (global) software
engineering. In [1] we identified relevant social community

978-1-4673-3074-9/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

1253

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/43408499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Select participants

Setup communication channel

Contact participants and add to channel

Get members

Monitor Channel

Log Communication

Participants

MembersProject
description

Election

Comunication

Fig. 1. Case-Study: informal communication service.

types from organisational and social-networks theory. The
types we identified, can be used as core ingredients to express
social community types observable in software engineering
practice. The work in this paper offers a practical application
of the idea on a real-life industrial scenario. We use empirical
evidence and mechanisms from previous work [4] to apply
service identification [14].

Related works such as [15], [16] present related and com-
pounding ideas. In both works, the authors rise the abstraction
level of service-based software solutions to introduce design
by units. Units encompass human, infrastructure and hybrid
services alike. Our idea of a service-network is indeed rotating
around very similar concepts, i.e. socio-technical or software
services to mediate human collaboration. Our work in this
paper however, doesn’t go as far as designing a complete
solution, it shows services to support social communities in
a real-life industrial scenario.

Similarly, works like [17] act towards the idea of using
cloud-based solutions to aid global software development. Our
idea could benefit from such mechanisms to deploy and adapt
service-networks for (global) social communities.

III. SUPPORTING DEVELOPMENT COMMUNITIES WITH
SERVICE NETWORKS: A CASE-STUDY

In pursuit of our goal, i.e. to support communities with
service networks, we further studied the case contained in

[11], [4]. The case entails two major corporations: A is a
big software consulting and development company with over
twelve thousand employees spanning four continents; B is
a banking multi-national, serving over 85 million customers
worldwide. In the case in question, company A (Netherlands
Site) works for company B (Netherlands site) on a business-
critical integration project. Company A works with an in-
tegrated Scrum model encompassing a partner development
company from India. Figure 2 provides an overview of the case
organisational structure. The integrated Scrum model adopted
by A is realised with three development units (Ready, Done,
Shippable) collaborating globally between two sites (India and
Netherlands). In addition to the classic Scrum Model [18],
the behavior in our case included a Wrapper sprint, in which
the increment from the current sprint from company A, is
“wrapped” inside systems at company B.

In previous work [4], we found that the three Scrum teams
were working as: (a) a “Formal Network” in NL; (b) a
“Community of Practice” in India; (c) finally, an “Informal
Network” globally, across sites (see top part of Fig. 2). We
focused on the global community, i.e. “Informal Networks”,
so that, for example, we could investigate support for time
distance barrier of 4-hours. From [1] we learned that “informal
communication” is key for “Informal Networks”.

To identify software and socio-technical services to support
“informal communication” in “Informal Networks ” we ap-
plied the service identification method in [14]. We used avail-
able information in [1] and [6] as requirements. We elicited
the behaviour of candidate services to support “informal
communication” within “Informal Networks”. Such behaviour
(see Fig. 1) can be described in three stages, supported by one
service each (see dashed boxes in Fig. 1). This is shown with
the service-network in Fig. 2:

1) Service “Select Participants”, automates the process of
participants election. We found that “informal interac-
tions” take place between a number of participants,
elected among members of the “Informal Network”. In
our case-study, Scrum Masters need informal lists of
people-to-task allocations, to understand who is member
of the “Informal Network” of developers. Moreover,
from a set of members, a number of participants need to
be selected according to current interaction needs. The
“Select Participants Service” is a socio-technical service
since it requires the input of humans and mediates their
collaboration. For example, in our case-study, all teams
(“Shippable”,“Ready” and “Done”) are members of the
“Informal Network”, but during daily Scrum meetings
only Teams “Ready” and “Done” are participants.

2) Service “Setup Informal Communication Channel”, au-
tomates channel creation and decommissioning. We
found that “informal interactions” need an informal
communication channel to be opened and deployed for
participants. The “setup Communication Channel” is a
software service, since it can be fully automated with
state-of-the-art technology. For example, in our case, an

1254

array of eye-catcher devices 1 were used to support daily
Scrum meetings.

3) Service “Manage Connection”. We found that “infor-
mal interactions” need constant monitoring and log-
ging services to adapt communication, e.g. to channel
misbehaviour. In addition, interactions need to log ex-
changed information. Finally, unavailable but required
participants need to be reached via other means and
linked to the interaction channel. A “Connection Man-
agement” service can be offered to deliver these com-
bined functions. The “Connection Management” service
is a software service, since it can be fully automated
with state-of-the-art technologies. For example, in our
case, minutes of meeting were informally gathered and
circulated among participants. In addition, informal calls
and e-mails were used frequently to substitute eye-
catcher interaction. More pro-active mechanisms (e.g.
Enterprise Social Networks [10]) could be deployed to
dynamically support communication needs.

The resulting service-network is illustrated in Fig. 2 where
setup- and run-time services are differentiated and, for sake
of clarity, the teams are repeated (see upper and lower part
of the figure). Services in grey are needed to setup the
service-network. Services in white are run-time services that
support participants’ interactions. More specifically, accord-
ing to the Scrum process in our case-study, an “informal
interaction” is needed many times during the agile process:
(a) every day, for daily Scrum meetings where “Ready” and
“Done” teams participate; (b) monthly, for Wrapper Sprints
and Sprint Reviews, where all teams participate. In addition,
Scrum masters are responsible to setup the service-network for
“Informal Networks” by calling the “Informal Comm.” service.
To setup, the “Informal Comm.” service, Scrum Masters call
eligible participants by means of the “select Informal Comm.
Participants” socio-technical service. The “Select Informal
Comm. Participants” service provides a list of participants
to the “Setup Informal Communication Channel” service
that links participants’ clients to the ad-hoc communication
channel. Finally, once communication starts, the “Informal
Comm.” service deploys the “Manage Connection” service that
manages the informal communication.

IV. DISCUSSION

While the case-study illustrated in Fig. 2 specifically ad-
dresses the informal communication occurring globally across
“Informal Network” participants, the work in [11] highlighted
that major barriers are linked exactly to insufficient support
of such informal communication. Comparing our solution
supported by service-networks with the conclusions in [11],
we made four key observations. In italic an interpretation.

First, we found that a service-networks help locating haz-
ardous organisational barriers [12]. In our case, for example,
due to EU policies some banking information could not be
exchanged between sites. Using a service-network, we were

1http://www.qconferencing.eu/product/eye-catcher/

LE
G

EN
DA

Ready
Team

Shippable
Team

Done
Team

FORMAL
 NETWORK (NL)

COMUNITY
OF PRACTICE

(INDIA)

SE
RV

IC
E-

NE
TW

O
RK

Manage Conversation
Service

Select Informal Comm.
Participants Service

Socio-Technical Interactions

Service Interactions

Run-time Services

Participants

Informal
Communication
Channel Service

Informal
Channel

Client Service

Informal
Channel

Client Service

Informal
Channel

Client Service

Setup Informal Comm.
Channel Service

INFORMAL NETWORK (GLOBAL)

Community Boundaries

O
RG

AN
IS

AT
IO

N

S-TeamR-Team
(Scrum
Master)

D-Team

S-TeamR-Team D-Team

Bootstrap Services

Informal
Comm. Service

Service Invocation

RUN-TIME

SETUP-TIME

Informal Comm.

Fig. 2. Case-Study: three communities across two locations - during service-
network setup, Scrum masters invoke the “Informal Comm. Service”.

able to narrow down the effect of this limitation. More specif-
ically, we found that developers’ “informal interactions” did
not need to be concerned with the limitation since interactions
did not discuss sensitive information. Rather, the limitation
had to be taken into account every time the stakeholder (the
Banking Corporation) came into play, since their “informal
interaction” involved sensitive information. Therefore, infor-
mation restrictions could be applied (e.g. through specific
protocols) only during interactions that involved stakeholders
(monthly Wrapper sprints in our case). Representing software
development communities with service-networks helps identify-
ing and mitigating potential organisational barriers. As part
of the work in [1] we found many organisational barriers.
Further study should investigate which barriers occur during
development and how these can be mitigated effectively, e.g.
by adding services to the service-network dynamically.

Second, we found that a service-networks help uncovering
missing or implicit support. In the case-study reported in [11]
none of the services identified were explicitly supported by
software. For example, “informal interaction” service exists in
the form of passive schedules and meeting dates, as regulated
by Scrum masters. Conversely, the “informal interaction” ser-
vice could be automated with state-of-the-art services. Service-
networks can be used to steer community operations in a

1255

(semi-)automated manner. This characteristic helps the emer-
gence of Enterprise 2.0 technologies since it enables social
communities to self-organise by means of software and based
on their operational context. In perspective, more pro-active
services could crawl scheduling information to dynamically
and autonomously adapt meetings according to data currently
available (e.g. applying evidence-based scheduling [19]).

Third, in previous work [4] three social community types
were identified for the case presented in this paper, namely,
“Informal Networks”, “Community of Practice” and “Formal
Networks”. In this paper we found software/socio-technical
services that support the key operation within an “Informal
Network”, i.e. “informal communication”. We found that some
of these services are needed for “Community of Practice”
type as well. More specifically, the “informal interaction”
service could be adapted and reused to support the collocated
cooperation of people at the Indian site. The existence of
services that are already common to more than one community
type suggests that service-networks could ease the work of co-
operating communities. Multiple communities could blend in
the same service-network. Each community becomes a services
clique, cooperating with others through standard interfaces to
deliver the much needed just-in-time retrieval of supporting
service compositions. Within the resulting (adaptable) service
compositions, both social and technical needs of the com-
munity meet and tune with the supporting service-network.
Fourth, we found that service-networks help identifying “ac-
countability holes”. In our case-study, for example, we found
explicit responsibility allocation only for the “Select Informal
Communication Participants” service, which is completely in
the hands of Scrum masters. Other services did not have an
accountable counterpart. While this specific research topic is
not addressed explicitly in our case, service-networks could
indeed be used to allocate responsibility more dynamically.
Allocation could aid developers’ engagement, e.g. by means
of reward mechanisms for highly-responsible employees.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed the use of service-networks to
support social communities of developers. We expanded this
idea with a real-life industrial case-study. Although very hum-
ble, this work shows encouraging results. Service-networks
help uncovering hazardous organisational barriers acting upon
the community. More specifically, service-networks present the
organisational structure in the form of services and allows
a more granular analysis. In addition, service-networks help
mitigating organisational barriers using service adaptation.
Finally, service-networks help in (semi-)automatically steering
the community operations. This complies with Enterprise 2.0
proactivity, openness and social-awareness.

Much work is still needed in this research. In the future
we plan to elaborate the validation of the present work. In
addition we plan to identify service patterns for all community

types in [20], [1]. An analysis of community-support service
patterns could reveal services that ease community interop-
eration. Finally, we plan to apply the identified patterns in
additional real-life scenarios, to understand how communities
(co-)operate successfully.

REFERENCES

[1] D. A. Tamburri, P. Lago, and H. van Vliet, “Organizational social
structures for software engineering,” to appear in ACM Computing
Surveys, pp. 1–35, 2012.

[2] J. Keyes, Social software engineering. Boca Raton, FL: Taylor &
Francis, Auerbach Series, 2011.

[3] R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and J. Kazmeier, Global
Software Development Handbook (Auerbach Series on Applied Software
Engineering Series). Boston, MA, USA: Auerbach Publications, 2006.

[4] D. Tamburri, P. Lago, and H. van Vliet, “Uncovering latent social
communities in software development,” Software, IEEE, vol. 30, no. 1,
pp. 29 –36, jan.-feb. 2013.

[5] IfM and IBM, Succeeding through Service Innovation: A
Service Perspective for Education, Research, Business and
Government. Cambridge, United Kingdom: University of
Cambridge Institute for Manufacturing, 2008. [Online]. Available:
http://www.ifm.eng.cam.ac.uk/ssme/

[6] D. A. Tamburri and P. Lago, “Supporting communication and coop-
eration in global software development with agile service networks,”
Proceedings of the European Conference on Software Architecture 2011,
vol. Springer, p. 8 pages, 2011.

[7] T. O. Group, “Soa source book,” http://www.opengroup.org/projects/soa-
book/.

[8] F. T. Durso and S. D. Gronlund, Situation Awareness. West Sussex,
England: John Wiley & Sons, 1999, ch. 10, pp. 283–314.

[9] J. D. Herbsleb, “Global software engineering: The future of socio-
technical coordination.” in FOSE, L. C. Briand and A. L. Wolf, Eds.,
2007, pp. 188–198.

[10] A. P. Mcafee, “Enterprise 2.0: The Dawn of Emergent Collaboration,”
Management of Technology and Innovation, vol. 47, no. 3, 2006.

[11] R. Noordeloos, C. Manteli, and H. van Vliet, “From RUP to Scrum in
global software development: A case study,” International Conference
on Global Software Engineering, pp. 31 – 40, 2012.

[12] A. M. R. Correia, A. Paulos, and A. Mesquita, “Virtual communities
of practice: Investigating motivations and constraints in the processes
of knowledge creation and transfer.” Electronic Journal of Knowledge
Management, vol. 8, no. 1, pp. 11–20, jan 2010.

[13] D. A. Tamburri, E. di Nitto, P. Lago, and H. van Vliet, “On the nature
of the GSE organizational social structure: an empirical study,” pro-
ceedings of the 7th IEEE International Conference on Global Software
Engineering, pp. 114–123, 2012.

[14] P. Lago and M. Razavian, “A pragmatic approach for analysis and
design of service inventories,” in Proceedings of the 2011 international
conference on Service-Oriented Computing, ser. ICSOC’11. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 44–53.

[15] S. Tai, P. Leitner, and S. Dustdar, “Design by units: Abstractions for
human and compute resources for elastic systems,” Internet Computing,
IEEE, vol. 16, no. 4, pp. 84 –88, july-aug. 2012.

[16] S. Dustdar and K. Bhattacharya, “The social compute unit,” IEEE
Internet Computing, pp. 64–69, 2011.

[17] P. Yara, R. Ramachandran, G. Balasubramanian, K. Muthuswamy, and
D. Chandrasekar, Global Software Development with Cloud Platforms,
2009, p. 81.

[18] B. Gloger, “Scrum delivers or scrum and the toyota way,” 2006.
[19] M. Gunderloy, Painless project management with FogBugz, 2nd ed., ser.

Books for professionals by professionals. Berkeley, Calif.: Apress [u.a.],
2007.

[20] N. Milanovic, “Service engineering design patterns,” in Service-Oriented
System Engineering, 2006. SOSE ’06. Second IEEE International Work-
shop, Oct. 2006, pp. 19–26.

1256

