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Reproductive success is widely used as a measure of fitness.
However, offspring quantity may not reflect the genetic contribu-
tion to subsequent generations if there is nonrandom variation in
offspring quality. Offspring quality is likely to be an important
component of human fitness, and tradeoffs between offspring
quantity and quality have been reported. As such, studies using
offspring quantity as a proxy for fitness may yield erroneous
projections of evolutionary change, for example if there is little or
no genetic variance in number of grandoffspring or if its genetic
variance is to some extent independent of the genetic variance in
number of offspring. To address this, we performed a quantitative
genetic analysis on the reproductive history of 16,268 Swedish
twins born between 1915 and 1929 and their offspring. There was
significant sex limitation in the sources of familial variation, but
the magnitudes of the genetic and environmental effects were the
same in males and females. We found significant genetic variation
in number of offspring and grandoffspring (heritability = 24% and
16%, respectively), and genetic variation in the two variables com-
pletely overlapped—i.e., there was a perfect genetic correlation
between number of offspring and grandoffspring. Shared envi-
ronment played a smaller but significant role in number of off-
spring and grandoffspring; again, there was a perfect shared
environmental correlation between the two variables. These find-
ings support the use of lifetime reproductive success as a proxy for
fitness in populations like the one used here, but we caution against
generalizing this conclusion to other kinds of human societies.
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Measuring selection and projecting evolutionary change,
including in contemporary human populations (1), relies

on validly measuring fitness (i.e., the genetic contribution to
future generations). Fitness is usually measured by a metric of
reproductive success, i.e., offspring quantity (1, 2). However,
offspring quantity may be a poor proxy for fitness when there is
nonrandom variation in the reproductive quality of offspring
(ref. 3; e.g., due to differences in offsprings’ viability, attrac-
tiveness to mates, or intrasexual competitive ability). For ex-
ample, a female might have few offspring but increase their
reproductive quality (and the female’s own fitness) by investing
parental care and resources in the offspring, by choosing a mate
who invests in the offspring (4), and/or by choosing a mate whose
superior (5) or more compatible (6) genetic makeup improves
the genetic quality of the offspring. A second female might have
more offspring but fewer grandoffspring (and so lower fitness) if
she and her mate(s) confer lesser material or genetic benefits to
her offspring. The same of course applies to males.
Given humans’ exceptionally slow life history (∼15 y to sexual

maturity) and high degree of biparental investment in offspring,
the quality of those offspring is likely to be an important
component of fitness in humans (7, 8), and extended parental
investment improves quality of offspring in terms of their

reproductive success (9). Research from preindustrial socie-
ties provides evidence for a tradeoff between offspring
quantity and reproductive quality (e.g., refs. 2, 8, and 10–12),
and there is evidence in postindustrial societies that offspring
quantity is associated with lower parental investment in each
offspring (13) and with detriments in offspring quality mea-
sures such as intelligence (14) and childhood growth (15) (see
ref. 16 for a review of quantity–quality tradeoffs in humans).
Such tradeoffs could mean that number of offspring might be
a misleading indicator of longer-range (i.e., better) measures of
fitness, e.g., number of grandoffspring.
Evolutionary change in a trait (i.e., the shift in population

mean over generations) due to selection depends on the trait’s
genetic covariation with fitness (17–19). In this way (i.e., using
the Robertson–Price identity), recent high-profile studies have
projected evolutionary change in human traits (20, 21). However,
because they used number of offspring to measure fitness, the
projected magnitude or direction of evolutionary change could
be wrong. For example, although previous research has revealed
genetic variation (39% of the total variation) in number of off-
spring (22), there might be little or no genetic variation in
number of grandoffspring, which would yield little or no long-
term evolutionary change. Alternatively, if there is genetic vari-
ation in number of grandoffspring, it might not be captured by
the genetic variation in number of offspring (e.g., because of the
genetic variation in traits relating to maternal investment, mate
choice, or mate retention), which would affect the magnitude or
direction of the genetic covariation with the trait. However, it
could be that the genetic variation in number of grandoffspring
completely overlaps (i.e., rg = 1.0) with the genetic variation in
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cess as a measure of fitness in comparable human populations.
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number of offspring, which would validate using number of off-
spring as a measure of fitness.
The classical twin design uses the greater genetic similarity of

identical twins (100%) compared with nonidentical twins (50%)
to partition traits’ variance and covariance into genetic and en-
vironmental sources. Here we examine Swedish twins born be-
tween 1915 and 1929 (n = 16,268) and their number of offspring
and grandoffspring born, which, for the vast majority of the
sample, reflect lifetime reproductive fitness in both generations
(Methods). We estimate the genetic variation in these variables
and assess whether there are genetic influences on number of
grandoffspring that are independent of the genetic influences on
number of offspring.

Results
Preliminary Analyses. Table 1 shows means and variances for the
sample. We first tested the assumption that identical and non-
identical twins are comparable except for their level of genetic
similarity—inequality of means and variances of identical and
nonidentical twins could suggest nonrandom sampling or sibling
interaction effects that could bias the estimation of variance
components (23). There were no significant mean or variance
differences between identical and nonidentical twins for number
of offspring or grandoffspring. As such, all means and variances
were equated between identical and nonidentical twins in
subsequent analyses. Women had more recorded offspring
(χ21 = 4:81, P = 0.03) and grandoffspring (χ21 = 3:69, P = 0.05)
than did men, although the differences were small—the differ-
ences were presumably due to the fact that 3.6% of the pop-
ulation did not have a recorded father (unknown paternity),
whereas unknown maternity was virtually nil. The variance in
number of offspring did not differ significantly between the sexes
(χ21 = 2:29, P = 0.13), but women showed greater variance than
men in number of grandoffspring (χ21 = 6:22, P = 0.01).
There were significant positive correlations of year of birth in

both males and females for number of offspring and grandoff-
spring, so the year of birth was retained as a covariate in
subsequent modeling.

Twin Pair Correlations. Twin pair correlations and cross-twin cross-
trait correlations are shown in Table 2. All twin pair correlations
were significantly greater than zero. Identical twin pair correla-
tions were greater than the corresponding nonidentical twin pair
correlations, suggesting genetic effects, which will be formally
tested in the next section, Genetic Analysis. Opposite-sex twin
pairs were significantly less similar than nonidentical same-sex
pairs for both number of offspring (χ21 = 5:48, P = 0.02) and number
of grandoffspring (χ21 = 6:39, P = 0.01), indicating an imperfect
overlap in the source of familial (i.e., genetic or shared environ-
mental) variation in males and females (i.e., sex limitation)—for
example, different genes influencing the variables in males
and females.

Genetic Analysis. To estimate the relative magnitudes of the ge-
netic and environmental components of variance, we use stan-
dard quantitative genetic analysis, which determines the genetic

(A), shared environmental (C), and residual (E) values that are
most likely given the observed data. The most powerful method
to estimate the relative magnitude of genetic and environmental
influences on two correlated variables is in a bivariate analysis
(rather than two univariate analyses), because the bivariate
method takes advantage of the extra information in cross-twin
cross-trait correlations. Most importantly, a bivariate design also
allows us to analyze the overlap in genetic and environmental
variation in the two variables.
The variance component estimates from a bivariate Cholesky

decomposition are shown in Table 3. Note that we do not include
opposite-sex twins in the variance component estimation because
of the aforementioned significant sex limitation—we have too
little information to tell whether it is the genetic effects and/or
the shared environmental effects that are sex limited, and a model
leaving both cross-sex genetic and cross-sex shared environmental
correlations free to be estimated would be nonidentified. How-
ever, as a guide to the extent of sex limitation of the genetic
effects, we ran a bivariate model including opposite-sex twins,
assuming no sex limitation in shared environmental effects and
leaving the cross-sex genetic correlation free to be estimated; this
yielded a cross-sex genetic correlation of 0.34 (where a cross-sex
genetic correlation of 1 would indicate the same genetic factors
underlie the trait in males and females and 0 would indicate en-
tirely different genetic underpinnings in each sex).
As can be seen in Table 3, male and female parameter esti-

mates from the bivariate analysis (as represented in Fig. 1) were
remarkably similar, and so we also present parameter estimates
constrained to be equal in males and females—unless otherwise
specified, from this point on we will refer to these male–female-
equated estimates. One genetic factor (A1 in Fig. 1) had a modest
but significant influence on both number of offspring and number
of grandoffspring, accounting for 24% [coefficient of additive
genetic variation (CVA) = 39.58] and 16% (CVA = 40.26) of
the variance, respectively. The genetic influences on number of
grandoffspring that are independent of genetic influences on
number of offspring were estimated at zero (i.e., parameter a22 in
Fig. 1 and Table 3), with the 95% confidence intervals suggesting
the true value is likely to be very close to zero—the upper confi-
dence interval was only 1% variance accounted for. The shared
environment contributed less, but significantly, to both number of
offspring and grandoffspring, accounting for 4% and 10% of
variation, respectively. Again, shared environmental influences
unique to number of grandoffspring were estimated at zero (pa-
rameter c22), also with narrow confidence intervals. The only
influences unique to number of grandoffspring were residual
factors, which could include any biological or environmental var-
iables not shared between twins (e.g., random chance, idiosyn-
cratic experiences, unique peer influences, stochastic biological
effects), along with measurement error (e.g., inaccuracies in
offspring data).
Genetic and environmental correlations are estimated in the

model, but the same values can be derived from the parameter
estimates in Table 3 using the formulas in SI Appendix, Box 1.
For example, the genetic correlation between number of off-
spring and grandoffspring is given by rA = a11× a21

ffiffiffiffiffiffiffi

a112
p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a212 + a222
p =

ffiffiffiffiffiffiffi

0:24
p

×
ffiffiffiffiffiffiffi

0:16
p

ffiffiffiffiffiffiffi

0:24
p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:16+ 0:00
p = 1.00. The corresponding shared environmental

correlation, rC, was also equal to 1.0, indicating complete overlap
in the genetic and shared environmental variation in number of
offspring and grandoffspring. The corresponding residual corre-
lation was substantially less than 1.00 (rE = 0.80), which is why the
phenotypic correlation was also imperfect (r = 0.85). The genetic,
shared environmental, and residual correlations accounted for
22%, 8%, and 70% of the phenotypic correlation, respectively (see
formulas in SI Appendix, Box 1). For more details on using the
classical twin design to decompose variance between two variables,

Table 1. Means and variances of number of offspring born and
number of grandoffspring born

No. of offspring
No. of

grandoffspring

Mean Variance Mean Variance

Males (n = 7578) 1.76 2.16 3.28 11.56
Females (n = 8690) 1.90 2.25 3.56 12.18

Total (n = 16268) 1.84 2.21 3.43 11.92
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see SI Appendix, Using the Classical Twin Design to Decompose the
Covariance Between Two Traits.

Discussion
We found that both number of offspring and number of grand-
offspring showed modest heritability (24% and 16%, re-
spectively), but that there was no genetic variation in number of
grandoffspring that was not accounted for by the genetic varia-
tion in number of offspring. Likewise, shared environment (e.g.,
parental influences, religious/cultural upbringing, rural/urban
background, family socioeconomic conditions, etc.) contributed
significantly to the variation in number of offspring and grand-
offspring (4% and 10%, respectively), but there was no shared
environmental influence that was unique to number of grand-
offspring. The sources of familial effects on both variables partly
differed between the sexes—this is especially noteworthy in the
context that such sex limitation is very rarely detected in complex
human traits (24). However, the magnitudes of the genetic and
environmental effects on each trait were remarkably similar
between males and females.
Our results have implications for the understanding of the

relative importance of offspring quantity and quality to evolu-
tionary change in developed human societies where the mean
and variance in reproductive success are low and survival of
offspring to reproductive age is high. The results suggest that in
such populations, because genetic variation in reproductive fit-
ness captures all of the genetic variation in longer-range fitness,
factors that affect offspring reproductive quality without affect-
ing offspring number will not effect an evolutionary response.
Although there could be a very small amount of genetic variance
unique to number of grandoffspring that we have failed to detect

due to sampling error, it is certainly of vastly lower magnitude
than that accounted for by genetic variation in offspring number.
This perfect genetic correlation of offspring quantity with

second-generation fitness suggests that studies of humans in
developed nations that have estimated evolutionary responses
using lifetime reproductive success as a proxy for fitness (e.g.,
refs. 20, 21, and 25) are probably justified in doing so, as are
future studies of this sort. Until now this has just been assumed,
which had cast uncertainty on the conclusions of such studies.
It probably matters little how lifetime reproductive success is
measured—we counted all births, which fully allows for manifest
variation in offspring quality, and more restrictive measures (e.g.,
only counting offspring that survive to sexual maturity) could
only exhibit even stronger correlation with number of grandoff-
spring. However, the present findings also recommend caution
regarding another aspect of the aforementioned studies. Byars
et al. (21) and Stearns et al. (20), as well as studies in natural-
fertility populations (e.g., refs. 26–28), estimated genetic vari-
ance in reproductive success using nontwin family relationships,
which cannot properly disentangle genetic from shared envi-
ronmental effects because they are confounded (i.e., genetic and
environmental similarity are probably associated). We find that
shared environmental effects, although relatively small, contrib-
ute significantly to familial similarity in number of offspring and
more so in number of grandoffspring (accounting for more than
a third of the familial variance). This recommends some caution
when estimating genetic correlations with reproductive success
from nontwin family data, but the fact that familial variation is
mostly genetic also reinforces the point that estimating genetic
correlations from nontwin family data is better than relying on

Table 2. Twin pair correlations for number of offspring and number of grandoffspring

Zygosity
No. of

offspring
No. of

grandoffspring Cross-twin cross-trait

Identical females 0.30 (0.25, 0.35) 0.27 (0.21, 0.32) 0.27 (0.23, 0.32)
Identical males 0.29 (0.23, 0.35) 0.22 (0.16, 0.28) 0.25 (0.20, 0.31)
Nonidentical females 0.15 (0.10, 0.19) 0.18 (0.14, 0.23) 0.16 (0.12, 0.20)
Nonidentical males 0.14 (0.09, 0.19) 0.17 (0.13, 0.22) 0.15 (0.10, 0.19)
Opposite sex 0.09 (0.05, 0.13) 0.12 (0.08, 0.15) 0.10 (0.07, 0.14) (MoFg)

0.10 (0.06, 0.14) (FoMg)

Numbers in parentheses are 95% confidence intervals. Cross-twin cross-trait correlations are the correlation
between number of offspring of one twin and number of grandoffspring of the other twin. FoMg is the
correlation between female offspring and male grandoffspring; MoFg is the correlation between male offspring
and female grandoffspring.

Table 3. Squared path coefficients from Fig. 1 for models of males and females and with the paths equated
between sexes

Variance component Parameter Males Females
Male and female

parameters equated

a112 0.24 (0.13, 0.31) 0.24 (0.14, 0.32) 0.24 (0.17, 0.30)
Genetic factors (A) a212 0.16 (0.05, 0.26) 0.17 (0.07, 0.27) 0.16 (0.09, 0.24)

a222 0.00 (0.00, 0.01) 0.00 (0.00, 0.02) 0.00 (0.00, 0.01)
c112 0.03 (0.00, 0.11) 0.05 (0.00, 0.12) 0.04 (0.01, 0.09)

Shared environment (C) c212 0.09 (0.02, 0.16) 0.10 (0.03, 0.18) 0.10 (0.04, 0.15)
c222 0.00 (0.00, 0.02) 0.00 (0.00, 0.02) 0.00 (0.00, 0.02)
e112 0.73 (0.68, 0.78) 0.71 (0.67, 0.76) 0.72 (0.68, 0.76)

Residual (E) e212 0.49 (0.44, 0.54) 0.49 (0.44, 0.53) 0.49 (0.45, 0.52)
e222 0.27 (0.26, 0.29) 0.24 (0.23, 0.26) 0.26 (0.25, 0.27)

Numbers in parentheses are 95% confidence intervals. Squared path coefficients represent the proportion of variance in the
observed trait to which an arrow (Fig. 1) is pointing that is accounted for by the latent factor from which the arrow originates. A1
represents the genetic variation that influences both number of offspring and grandoffspring (via paths a11 and a21). A2 represents
the genetic variation that influences number of grandoffspring (via path a22) but do not influence number of offspring. The same
applies to the corresponding C and E factors and paths.
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phenotypic correlations as proxies for genetic correlations (19),
as is often done (e.g., refs. 11, 25, and 29).
The present study should be replicated in other developed

nations, but we see no obvious reasons to expect very different
results. However, there are many reasons why the findings may
not generalize to developing societies, and especially not to
traditional, natural-fertility societies of the kind that character-
ized much of our evolutionary history. Scarce or unreliable
resources, high mortality rates, and high birth rates in such so-
cieties probably mean that the quality of offspring varies more
(e.g., more offspring die before reproductive age; less-equal
distribution of resources, e.g., nutrition during development;
more variation in serious illness during development; etc.) and
reproductive consequences of these differences are probably
greater, due to natural fertility and high birth rates. As such, it
remains to be tested in preindustrial societies whether there
is genetic variation unique to number of grandoffspring (and
hence to what extent reproductive success is a good proxy
for fitness).
The present study has several limitations that need to be taken

into account. As well as the data truncation noted in Methods
and the 3.6% of offspring with unknown paternity, there are
likely to be additional instances of nonpaternity (i.e., biological
father is someone other than who it is presumed to be, e.g., in
cases of cuckoldry). This would contribute to error variance,
because the offspring of the least-investing fathers (on average,
those fathering extrapair offspring) could be linked to the wrong
family (i.e., wrongly included or excluded from a twin’s lineage).
However, nonpaternity is uncommon (around 1–3%) in Western
societies including Sweden (30) and so should not have greatly
affected our results. Another caveat stems from limitations of the
classical twin design, which precludes nonadditive genetic effects
from being modeled along with shared environmental effects;
nonadditive genetic effects may nonetheless be present and un-
accounted for, in which case shared environmental variance
would be underestimated (31). However, our estimate of genetic
effects should provide a relatively robust estimate of the total
genetic variance (additive plus nonadditive) (31).
Keeping in mind these caveats, our findings reveal a perfect

genetic correlation between reproductive success and longer-
range fitness in an industrialized human population, a finding of
key importance when interpreting and designing studies aiming
to estimate evolutionary change in human characters.

Methods
Participants. Participants were drawn from the Swedish Twin Registry, a pop-
ulation-based study of twins (32). This study was approved by the Regional
Ethics Committee at Karolinska Institutet, Stockholm, Sweden. Informed
consent was not required because an independent government agency (Sta-
tistics Sweden) merged and anonymized the data, and the code identifying
the individuals was destroyed after merging. The twins’ zygosity was de-
termined by answering the question, “During childhood, were you and your
twin partner as alike as ‘two peas in a pod’ or not more alike than siblings in
general?”, a method which has been shown to accurately determine zygosity
in 95% of twin pairs (32). The question has been included in questionnaires
sent out to all Swedish twins in different waves; two waves, in 1961 and 1963,
cover the current twin population. In Sweden a personal identification num-
ber was introduced in 1947 for all individuals alive and living in Sweden, and
onwards for all born in Sweden. By use of the personal identification number
all Swedes are linked to their parents in the Multi Generation Register. The
coverage is almost complete for Swedes born in 1933 and later, who were
alive and living in Sweden in 1947, and practically complete for all born in
1947 and onwards (see ref. 33 for more details). Thus, we were able to ac-
curately register all births of twins alive in Sweden by 1961–1963, and all of
their offspring born in 1933 and onwards. We limited the twin sample to
those born between January 1, 1915 and December 31, 1929. This criterion
aimed to optimize the tradeoff between achieving the largest sample size
(necessary for obtaining precise parameter estimates) and minimizing trun-
cation due to twins reproducing earlier than our records of offspring start
(1933) or twins’ offspring reproducing later than our records of grandoff-
spring end (2009). As it is, truncation occurs such that the earliest-born twins’
births before age 18 y are not included in our data, and the latest-born twins’
grandoffspring are not included if they had not yet been born 80 y after the
twins’ own birth. Using the birth rates observed at various ages in cohorts for
which we have untruncated data, we estimate that ∼0.12% of individuals in
our sample are missing one or more offspring because of truncation and
∼1.3% of individuals are missing one or more grandoffspring (see SI Appen-
dix, Assessing the Impact of Truncation for details).

Statistical Analysis. Phenotypic (observed) variation in a trait can in principle
be partitioned into genetic and environmental (i.e., nongenetic) sources. In
practice this is often done by testing the phenotypic similarity of individuals in
families or pedigrees with known genetic relatedness. However, genetic and
environmental similarity are likely to be correlated, and this confound makes
it difficult to distinguish genetic and shared (family) environmental sources of
variance using standard family data. Identical and nonidentical twins provide
a natural experiment that allows genetic and shared environmental influ-
ences to be disentangled, because both identical and nonidentical pairs share
the same family environment (e.g., home environment and socioeconomic
status) whereas, genetically, identical twin pairs are twice as similar (100%) as
nonidentical twin pairs (50% on average). As such, genetic sources of vari-
ance, A, predict greater trait similarity in identical pairs than in nonidentical
pairs; if additive genetic were the only source of variance in a trait we would

Fig. 1. Path diagram of a Cholesky decomposition. Circles represent latent factors: A, genetic; C: shared environmental; and E, residual. These latent factors
influence the observed variables (rectangles) via the paths (arrows). The first latent genetic variable (A1) explains the genetic influences on number of offspring
and the correlated genetic influences on number of grandoffspring. The second latent genetic variable (A2) is uncorrelated with A1 and explains the remaining
heritability of number of grandoffspring. Corresponding latent structures apply to C and E latent variables. Parameter estimates are reported in Table 3.
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expect a twin correlation of 1 for identical pairs and 0.5 for nonidentical
pairs. In contrast, shared environmental sources of variance, C, predict equal
similarity of identical and nonidentical twin pairs; if shared environment
were the only source of variance in a trait, we would expect a twin corre-
lation of 1 for both identical and nonidentical pairs. Residual variance, E
(e.g., due to idiosyncratic experiences, stochastic biological effects, mea-
surement error), is uncorrelated in both identical and nonidentical pairs. In
reality, observed identical and nonidentical twin correlations generally re-
flect a combination of these sources of variance, and structural equation
modeling determines the combination that best matches the observed data.

A bivariate twin design enables the phenotypic variation of two variables,
and covariation between them, to be partitioned into A, C, and E sources;
that is, we can estimate the extent to which the observed correlations be-
tween variables is due to overlap in genetic influences (genetic correlation,
rg or rA), shared environmental influences (shared environmental correla-
tion, rC), or residual factors (residual correlation, rE). Fig. 1 shows a path
diagram representing the resemblance between identical and nonidentical
twins in a bivariate design in which twin pairs (twin 1 and twin 2) are each
measured on two variables, number of offspring and number of grandoff-
spring. The first latent genetic variable (A1) explains the genetic influences on
number of offspring and the correlated genetic influences on number of
grandoffspring. The second latent genetic variable (A2) is uncorrelated with
A1 and explains the remaining heritability of number of grandoffspring.
Corresponding latent structures apply to C and E latent variables.

This path diagram can be translated directly into structural equations
representing the expected covariances of identical and nonidentical twins (SI
Appendix, Table S2). In the freely available matrix algebra program, Mx (34),
full information maximum-likelihood modeling is used to determine the
parameters of these structural equations that best fit the observed data. We
can test whether a given parameter(s) is significantly different from zero by
fixing the parameter(s) to zero and testing the change in goodness of fit of
a model [distributed as χ2] against the change in degrees of freedom
(reflected by the difference in the number of parameters estimated); like-
wise, we can test if two parameters significantly differ from each other by
constraining them to be equal and similarly testing the change in model fit.

This methodology is standard in human quantitative genetics, and further
details can be found in SI Appendix and elsewhere (35, 36). As per standard
procedure, year of birth is modeled as a fixed effect on the mean so as not to
spuriously inflate twin pair correlations (since members of a twin pair have
the same year of birth). To check the robustness of the results across dif-
ferent modeling software, we replicated the main analysis in Mplus (37),
yielding equivalent results.
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