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Informative Bayesian Model Selection: a method
for identifying interactions in genome-wide data†

Mehran Aflakparast,ab Ali Masoudi-Nejad,*a Joseph H . Bozorgmehra and
Shyam Visweswaranc

In high-dimensional genome-wide (GWA) data, a key challenge is to detect genomic variants that

interact in a nonlinear fashion in their association with disease. Identifying such genomic interactions is

important for elucidating the inheritance of complex phenotypes and diseases. In this paper, we

introduce a new computational method called Informative Bayesian Model Selection (IBMS) that

leverages correlation among variants in GWA data due to the linkage disequilibrium to identify

interactions accurately in a computationally efficient manner. IBMS combines several statistical methods

including canonical correlation analysis, logistic regression analysis, and a Bayesians statistical measure

of evaluating interactions. Compared to BOOST and BEAM that are two widely used methods for

detecting genomic interactions, IBMS had significantly higher power when evaluated on synthetic data.

Furthermore, when applied to Alzheimer’s disease GWA data, IBMS identified previously reported

interactions. IBMS is a useful method for identifying variants in GWA data, and software that implements

IBMS is freely available online from http://lbb.ut.ac.ir/Download/LBBsoft/IBMS.

Background

The elucidation of genetic variants that underlie complex pheno-
types and diseases such as Alzheimer’s disease remains a
challenging problem. The most common type of genetic varia-
tion is the single nucleotide polymorphism (SNP) that results
when a single nucleotide is replaced by another in the DNA
sequence. The development of high-throughput genotyping
technologies that simultaneously measure many thousands of
SNPs have resulted in more than 600 genome-wide association
(GWA) studies. However, many of the identified SNPs in GWA
studies have only a small to moderate effect on the susceptibility
of the disease.1,2 One possible explanation for this observation is
that interactions among SNPs including non-linear interactions
may account for stronger effects. Non-linear interactions among
genetic variants including SNPs are also known as epistatic
interactions, and some progress has been made in recent years
in developing computational and statistical methods for identi-
fying such interactions in GWA data.2,3 Methods that identify

epistatic interactions in high-dimensional data such as GWA
data have to address several challenges such as multiple testing,
low power, and false positive rates. In typical GWA studies that
measure more than a million SNPs, the number of potential
epistatic interactions grows exponentially in the number of
SNPs4 and any interaction detection method has to address
the problem of examining such a large number of potential
interactions in an efficient fashion.

A characteristic of GWA data is the presence of extensive
correlation among SNPs due to linkage disequilibrium (LD).
Exploiting this correlation can help in reducing the number of
SNPs to be examined for potential interactions. Two general
categories of methods for reducing the number of variables
(such as SNPs) are often used, namely, variable selection and
variable extraction.5 Variable selection methods such as filter
and wrapper methods select an optimal subset of variables
from the original set of variables. In contrast, variable extrac-
tion methods such as principal component analysis transform
the original variables into a smaller set of more informative
variables that retain the greatest amount of variation.6,7

Variable selection methods can be categorized into univari-
ate and multivariate methods. Univariate variable selection
methods have been used in analyzing GWA data8 because they
are computationally efficient. These methods primarily identify
main effects of SNPs and ignore correlations or interactions
among them. Multivariate variable selection methods such as
Relief have been applied to GWA data too because of their
ability to consider additional effects beyond main effects.9–11
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While being effective in discarding irrelevant SNPs, Relief is
unable to eliminate redundant SNPs. Thus, an important draw-
back of currently used variable selection methods for GWA data
is that they may select a subset of correlated SNPs.1,12,13

Computational methods including combinatorial methods
have recently been developed to identify and characterize
epistatic interactions.14 Combinatorial methods search over
all possible combinations of SNPs to identify combinations
that are predictive of the phenotype of interest. Multifactor
dimensionality reduction15–17 and the Bayesian combinatorial
method (BCM)18 are examples of combinatorial methods that
identify associations between multiple SNPs and a phenotype
by examining higher-order interactions among SNPs in case–
control data. However, such methods that examine all possible
subsets of SNPs can be applied only to data that consist of a few
SNPs and are impractical for high-dimensional GWA data.

In this paper, we develop and evaluate a computationally
efficient method called Informative Bayesian Model Selection
(IBMS) that detects both SNP–SNP interactions and interactions
between two groups of SNPs (e.g., a group may consist of SNPs
that map to a gene). Given grouped SNPs, this method consists
of two main stages: (1) calculating group interactions that lead
to weighting the two groups and their corresponding SNPs,
and (2) identifying interacting SNPs using the weights and a
stochastic search strategy. IBMS combines canonical correla-
tion analysis, logistic regression analysis, and BCM to effi-
ciently identify epistatic SNPs in GWA data. Using synthetic
data, we compare IBMS to two powerful and widely used
methods for detecting genetic interactions, namely BOOST
and BEAM. Furthermore, we apply IBMS to a late-onset Alzheimer’s
disease GWA dataset that contains over 300 000 SNPs.

Methods and materials
Algorithmic methods

This section provides background information on the Bayesian
combinatorial method (BCM) which uses a Bayesian statistic
for measuring genetic interactions, and canonical correlation
analysis (CCA) which measures the linear relationship between
two multidimensional variables. It then describes the Informa-
tive Bayesian Model Selection (IBMS) method which is based on
BCM, CCA and logistic regression analysis (LRA).

Bayesian combinatorial method

BCM searches over combinations of SNPs to identify combina-
tions that have a strong statistical association with the pheno-
type. Specifically, it exhaustively searches over all possible
combinations of SNPs and identifies combinations with a high
posterior probability using a Bayesian statistical method.18

BCM has several advantages including the ability to handle
sparse and unbalanced data, ability to deal with nonlinear
interactions, and is computationally efficient.

In BCM, an interaction model M is defined as a set of
probabilities hc that is represented as P(Z|g = (g1,g2,. . .,gc)) for
phenotype Z, given a combination of SNP genotypes g. For a

given g value, a multinomial distribution is assumed for Z
(binomial, if Z has only two states). Assuming that the para-
meters of all multinomial distributions i.e. hc a priori follow a
Dirichlet distribution, a posterior estimate for hc is obtained.
The Bayes theorem is used to compute the score of an inter-
action model as follows:

P(M|Data) p P(Data|M)P(M) (1)

where P(M) is the prior probability of model M, which is assumed
to be uniform over all models and P(Data|M) is the marginal
likelihood, which is evaluated with the following equation:

P(Data|M) =
Ð

P(Data|M,hc)P(hc|M)dhc (2)

where P(Data|M,hc) is the distribution of the data for a given
genotype–phenotype table. Fig. 1 presents an example of a
genotype–phenotype table that gives counts obtained from data
for an interaction model with two SNPs (denoted SNP1 and
SNP2) and a binary phenotype (e.g., case and control).

A binomial distribution for each column (i.e., the combi-
nation of genotypes for SNP1 and SNP2) is assumed. Thus,
P(Data|M,hc) is obtained by multiplying nine independent
binomial distributions in Fig. 1.

The closed form for P(Data|M) is given by the following
equation and was originally derived by Cooper and Herskovits:19

PðDatajMÞ ¼
YI
i¼1

ai � 1ð Þ!
ni þ ai � 1ð Þ!

YJ
j¼1

nij þ aij � 1
� �

!

aij � 1
� �

!

 !
(3)

where aij are the hyperparameters of a Dirichlet distribution withP
aij = ai�I is the number of genotype combinations (e.g., nine for a

model with two SNPs), J is the number of phenotype states (e.g., two
for case-control data), ni is the number of samples for a given
genotype combination of an epistatic model, and nij is the number
of samples for a given phenotype state j and genotype combination
i of a model. Assuming that the prior distribution P(M) is uniform
over all possible models and the hyperparameters of the Dirichlet
distribution are all set to 1, the following expression gives the score
that is used by BCM for an interaction model:

ScoreBCMðMÞ ¼
YI
i¼1

J � 1ð Þ!
ni þ J � 1ð Þ!

YJ
j¼1

nij !

 !
(4)

BCM produces a posterior probability of association of a
combination of SNPs of interest with the phenotype. The higher
this probability the stronger is the interaction model’s association
with the phenotype. If it is desired to obtain a small list of high
probability combination of SNP pairs a threshold of posterior
probability Z0.95 may be used. A major limitation of BCM is that

Fig. 1 An example of genotype–phenotype table with 2 SNPs and a
phenotype with two states (e.g., case and control). The counts in the table
are obtained from a dataset of genotypes that have been measured on a
group of cases and controls.
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it searches exhaustively over all possible combinations of SNPs and
hence it does not scale up to high-dimensional data. The IBMS
method overcomes this limitation by computing an informative
prior over models (instead of the uniform prior used in BCM) and
by performing stochastic search over combinations of SNPs
(instead of the exhaustive search used in BCM).

Canonical correlation analysis

Canonical correlation analysis (CCA) was developed by Hotelling20,21

for characterizing relationships among multiple dependent
and independent variables. Given two sets of variables,
X = (X1,X2,. . .,Xp) and Y = (Y1,Y2,. . .,Yq) that are measured on
the same set of n objects, CCA constructs pairs of new variables
as linear combinations of X and Y such that the correlation in
the new pair is maximized. The new variables are defined in
such a way that they explain the largest amount of variance in
the data. CCA outputs a number of estimated equations called
canonical functions; each canonical function provides two
canonical variants representing the optimal linear combina-
tions of X and Y, and the canonical correlation coefficient
R which represents the linear relationship between them.
The first canonical function identifies linear combinations of
original variables that yield the largest canonical correlation coeffi-
cient; the second identifies linear combinations of original variables
that are not correlated with the first pair of canonical variants and
yield the second largest canonical correlation coefficient; and so on.
The output of CCA includes (1) canonical weights that are defined as
coefficients that are assigned to the original variables (also called
standardized coefficients), (2) canonical loadings that are defined as
correlations between the original variables and their corresponding
canonical variants, and (3) canonical cross-loadings that are defined
as the correlation between original variables of one set X and
canonical variants of the other set Y. In multivariate analysis, when
the original variables increase in their correlation with each other
canonical loadings and canonical cross-loadings are more often
employed in interpreting the results.22

CCA has several characteristics that make it appropriate to be
used as part of IBMS. The problem of multiple testing is mitigated
by CCA by limiting the inflation of Type I error. IBMS creates
groups of SNPs (a group of SNPs is defined as a set of SNPs that
map to a particular gene or a set of SNPs that are in LD in a
genomic region) and performs CCA on every pair of groups. In
IBMS, we use canonical cross-loadings and canonical loadings to
measure the significance of each SNP in its group. CCA helps to
identify significant gene–gene or region–region interactions, which
in turn avoids testing the large number of all possible SNP–SNP
interactions. This is described in detail in the next section.

Informative Bayesian Model Selection

The IBMS method combines CCA and LRA with the interaction
model score used in BCM. IBMS uses a two-stage approach to first
identify pairs of groups of SNPs that interact and then identifies
individual SNPs across a pair of groups that interact. This
approach achieves computational efficiency by partitioning SNPs
into groups and then selecting SNP combinations from highly
weighted groups to be evaluated with the BCM score.

After grouping SNPs (two approaches to grouping are
described in the next section), in the first stage we use CCA
to measure the informativeness of each SNP using the loading
and cross-loading values. Then we use LRA to identify group–
group interactions that are significantly associated with the
phenotype. A weight is assigned to each group by calculating
the frequency of having significant interactions with the
remaining groups. Therefore, assuming Group as a random
variable, a discrete probability distribution is obtained. In the
second stage, IBMS stochastically searches the space of inter-
action models using an Independent Metropolis-Hastings algo-
rithm to identify significant SNP–SNP interactions. In the
following sections we describe the IBMS method in more detail
(see Fig. 2 and 3).

Grouping of SNPs

We use two ways to partition SNPs:
(1) Partitioning SNPs according to their associated genes

such that SNPs on a gene are in a single group. This grouping
leads to identifying gene–gene interactions prior to identifying
SNP–SNP interactions.

(2) Partitioning SNPs based on LD so that SNPs in a group
have high LD. Typically, such a group contains SNPs that lie
adjacent to each other in some genomic region. This may be
approximated by grouping together a constant number of SNPs
successively along the genome.

Determining which partitioning scheme to use depends on
the goals of the analyses and the computational costs. If the
goal is to identify gene–gene and SNP–SNP interactions, then
partitioning SNPs according to genes is used. If the goal is to
identify only SNP–SNP interactions, then partitioning SNPs
based on LD is preferred.

Fig. 2 Flowchart showing the weighting stage of IBMS.
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In addition, a partitioning scheme should balance the
sample size (i.e., total number of cases and controls) and group
size (i.e., number of SNPs or variables in each group). In CCA,
the ratio of sample size to the number of variables plays
an important role in the significance of statistical findings.
Very small ratios will not represent the correlations well, thus
obscuring any meaningful relationships. Very large ratios, on
the other hand, may lead to inflated statistical significance.
Since, our main focus was to develop a procedure for detecting
interaction effects rather than proposing a specific procedure to
partition SNPs, we selected the partitioning method and its
parameters based on limited analyses of synthetic data. How-
ever, in order to comprehensively consider the effect of these
parameters, sensitivity analysis should be performed.

Other ways of partitioning SNPs can also be considered.
For instance, similarity of genes based on the function and the

biological process (as defined, e.g., by the gene ontology), genes
grouped by biological pathways (as defined, e.g., in the KEGG
knowledge base), can be used to group SNPs.

Stage 1: weighting

We use a novel approach for weighting SNPs and groups of
SNPS using a combination of CCA and LRA (see Fig. 2). The
steps used in deriving the weights are as follows:

(1) Let S = (s1,s2,. . .,sL) be the set of all SNPS in the data.
Partition S into m groups such that:

S = ,m
i=1 Si, Si - Sj = + Si = (s1i,s2i,. . .,snii), i a j = 1,. . .,m

(2) Apply CCA to every pair of groups. Each application of CCA
results in a set of canonical variables for each group. Select the
first optimal canonical variable for each group, namely, U and V
which account for the largest amount of variation. Then apply
LRA and perform the Wald test for a single coefficient in order to
test interaction of groups (i.e., H0:b3 = 0) in association with the
phenotype as follows:

log it(P(Zi = 1)) = b1Ui + b2Vi + b3UiVi (5)

(3) From the LRA tests, for a group Si use the frequency of
statistically significant interaction effects to determine a weight
of informativeness using the following expression:

P Sið Þ ¼

Pm
j¼1 jaið Þ

Iij

Pm
j¼1

Pm
j¼1 jaið Þ

Iij

(6)

where Iij is an indicator variable that signifies whether the null
hypothesis H0:b3 = 0 is rejected (i.e., Iij = 0) or not.

(4) For i = 1,. . .,m calculate:

gj (sil) = |clj (sil)| + |cclj (sil)| j = 1,. . .,m l = 1,. . .,ni

(7)

oj silð Þ ¼
gj silð ÞPni

p¼1
gj sip
� � l ¼ 1; 2; . . . ; ni (8)

where oj (sil) is a measure of informativeness for the lth SNP in
the ith group, when CCA is applied to Si and Sj. The canonical
loading and canonical cross-loading for the lth SNP in the ith
group, when CCA is applied to Si and Sj, are denoted as clj (sil)
and cclj (sil) respectively.

Stage 2: stochastic search

In the second stage, using the outputs from the first stage, we
use stochastic search to score a set of interaction models (see
Fig. 3). The steps in the search are as follows:

(1) For a predefined c to construct c-way interaction models,
start the Metropolis algorithm by sampling c different groups
(S(0)

1 ,. . .,S(0)
c ) from all the groups using the probability distribution

given by eqn (6).
(2) Choose c SNPs, (s(0)

1 ,. . .,s(0)
c ), one SNP from each group,

as elements of the first interaction association model M(0).

Fig. 3 Flowchart showing the stochastic search stage of IBMS.
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Then calculate the model probability using the probability
distribution from the previous stage as follows:

P M ¼Mð0Þ
� �

¼

Pc
k¼1

h s
ð0Þ
k

� �
Fc

(9)

h s
ð0Þ
k

� �
¼

Pc
j¼1ð jaiÞ

oj s
ð0Þ
k

� �
Pc

j¼1ð jaiÞ

Pnk
p¼1

oj skp
� �k ¼ 1; 2; . . . ; clk ¼ 1; 2; . . . ; nk

(10)

where Fc is a constant that represents the sum of weights for
any possible c-way model in the data. Determining this value
can be ignored, since in the following steps it appears both in
the numerator and the denominator of the fraction.

(3) For a defined value of c, the stochastic search will
consider c groups. Accordingly, the search method will need

the results of the weighting stage of
c
2

� �
¼ c!

c� 2ð Þ!2!
analyses

(i.e., one CCA for each pair of groups) to assign weights to the
SNPs of the selected groups. Each CCA calculation outputs two
sets of weights such that each set contains the weights for the

SNPs of a group. Hence, 2� c
2

� �
columns of weights are

reported. This means that c-1 weights are assigned for every
SNP in its group. The total weight of a SNP is computed as the
sum of the c-1 weights, which forms the numerator in eqn (10).

(4) Sample c SNPs (S(1)
1 ,. . .,S(1)

c ) from the selected groups in step 1,
one SNP from each group, as the elements of the next interaction
association model M(1). Then calculate the following ratio:

(5)

l ¼ ln
P DatajMð1Þ
� �

P Mð1Þ
� �

P DatajMð0Þ
� �

P Mð0Þ
� �

0
@

1
A (11)

where P(Data|M(1)) is the BCM score given by eqn (4), and
P(M(1)) is the prior probability of an interaction model given by
eqn (10).

(6) If l 4 0: update model: M(1) - M(0), else, update model
with the probability l.

(7) Repeat steps 3–4 until the number of predefined within-
group iterations is reached. Then report the last k resulting
interaction models.

(8) Repeat steps 1–5 until the number of predefined among-
group iterations is reached.

(9) Compare all the resulting interaction models obtained
from step 5 using steps 3–4, and report the final k interaction
models.

Experimental methods

This section provides details of the synthetic and the GWA
datasets and the comparison of algorithmic methods used in
our experiments.

Synthetic SNP data

The synthetic datasets that we used were generated from a set
of 70 epistatic models which were previously developed17 and
used in evaluating interaction detection methods.17,23–25 The
models have two minor allele frequency (MAF) values of 0.2 and
0.4 and seven heritability (H) values of 0.01, 0.025, 0.05, 0.10,
0.20, 0.30, and 0.40 (Velez et al. 2007 provides a detailed
description of these genetic models).

For each model, 100 datasets were generated for each of four
sample sizes (200, 400, 800 and 1600) where each dataset
contains an equal number of case and control samples. The
epistatic models were used to generate a pair of epistatic SNP
values, and a set of 18 SNPs that were assigned random values
was appended to simulate SNPs that are non-informative with
respect to the case–control status. Thus, each sample contained
values for 20 SNPs of which only two SNPs were functionally
related to the case–control status. These synthetic datasets are
available online at http://discovery.dartmouth.edu/epistatic_
data/#VelezDataModels.

Alzheimer’s disease GWA data

Alzheimer’s disease (AD) is the commonest neurodegenerative
disease associated with aging and the commonest cause of
dementia.26 AD affects about 3% of all people between ages
65 and 74, about 19% of those between 75 and 84, and about
47% of those over 85. AD is characterized by adult onset of
progressive dementia that typically begins with subtle memory
failure and progresses to a slew of cognitive deficits like
confusion, language disturbance and poor judgment.27

AD is typically divided into early-onset Alzheimer’s disease
(EOAD) in which the onset of disease is before 65 years of age
and late-onset Alzheimer’s disease (LOAD) in which the onset is
at 65 years of age or later. EOAD is rare and exhibits an
autosomal dominant mode of inheritance. The genetic basis
of EOAD is well established, and mutations in one of the
three genes (amyloid precursor protein gene, presenilin 1, or
presenilin 2) account for most cases of EOAD.28

LOAD is widespread and is estimated to affect almost half of
all people over the age of 85. LOAD is believed to be a disease
with both genetic and environmental influences, and elucidat-
ing the role of genetic factors in the pathogenesis and devel-
opment of LOAD has been a major focus of research for more
than a decade. One genetic risk factor for LOAD that has been
consistently replicated is the apolipoprotein E (APOE) locus29

determined by the combined genotypes at the loci rs429358
and rs7412. In the past few years, GWASs have identified several
additional genetic loci associated with LOAD.

The LOAD GWA data we used were collected and analyzed
originally by Reiman et al. In the genotype data collected for
about 1411 samples that contained 861 cases diagnosed with
late-onset Alzheimer’s disease (LOAD) and 550 controls; 644
were APOE e4 carriers (one or more copies of the e4 allele) and
767 were non-carriers. Of the 1411 samples, the status of case/
control was neuropathologically determined from brain tissue
in 1047 samples and was determined clinically in 364 samples.
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In this dataset, 61% (861 of 1411) had LOAD. For each indivi-
dual, the genotype data consist of 502 627 SNPs that were
measured on an Affymetrix chip; the original investigators
analyzed 312 316 SNPs after applying quality controls. We used
those 312 316 SNPs, plus two additional APOE SNPs from the
same study namely, rs429358 and rs7412.

Evaluation of IBMS

We evaluated three aspects of IBMS on synthetic data. First, we
assessed its ability to correctly rank SNPs in data generated
from different genetic models and of varying sample sizes.
Second, we compared the performance of IBMS with BCM on
the hardest to detect interactions that are generated by genetic
models that have low H and low MAF values. Third, we
compared the performance of IBMS to two commonly used
genetic interaction methods, namely, BEAM and BOOST.
Although several other methods for detecting genetic inter-
actions have been described in the literature, we restricted our
evaluation to BEAM and BOOST, since these methods have
been shown to be superior and scalable over other methods.

BEAM is a Bayesian-based epistasis detection method that
partitions genetic markers into three categories.30 The first
category contains markers assumed to have no impact on the
phenotype, the second category contains associated markers
that are assumed to have main effects, and the third category
contains markers that are assumed to have main and inter-
action effects. BEAM uses a novel Bayesian statistic to exhaus-
tively score interactions among markers. The BEAM software is
available from http://www.fas.harvard.edu/Bjunliu/BEAM.

BOOST is an exhaustive search method that identifies two-
locus interactions in GWA data using log-linear models. It
proposes an upper bound for the likelihood ratio test statistic
to prune insignificant epistatic interactions. This procedure
approximates the test statistic which reduces the computa-
tional cost to a considerable degree. Moreover, it uses a Boolean
representation of the genotype data which allows efficient
collection of counts for genotype–phenotype tables using logic
operations.31 The BOOST software is available from http://
bioinformatics.ust.hk/BOOST.html.

Results

This section describes the results obtained from applying IBMS
and the comparison methods to synthetic data and the results
obtained from applying IBMS to the LOAD GWA data.

Synthetic data results

Using the synthetic datasets we examined the highest scoring
two-locus interactions using IBMS and two comparison meth-
ods, namely, BOOST and BEAM. Fig. S1 (ESI†) gives the detailed
results for 70 pure epistasis models without main effects. For
each genetic model, we defined power of the method as the
proportion of the 100 replicate datasets for which the method
ranked the two interacting SNPs as the top two SNPs. For a
small number of models, such as the models with H and MAF

both set to 0.2, the statistical power of BOOST is slightly higher
than IBMS. This almost always happened with stochastic
search methods compared to exhaustive search methods.

For all other genetic models IBMS outperforms both BOOST
and BEAM. The power of all methods was affected by H and
MAF in that lower values resulted in lower power. However,
when the values for H and MAF are low (e.g., H = 0.01, MAF =
0.2) IBMS has nearly double the power as BOOST or BEAM.

The average power of the three methods over all 70 genetic
models shows that IBMS performs better than the two compar-
ison methods (see Table 1). In particular, at low sample sizes
BOOST and BEAM had lower power compared to IBMS. This is
due to the nature of IBMS which provides a complementary
combination of a SNP-weighting linear function and a Bayesian
scoring non-linear function.

All experiments were conducted using a desktop computer
with a 2.26 GHz CPU and 4 GB RAM. Table 2 gives the average
running time for each method on 100 datasets with 20 SNPs
and different sample sizes. The average running times of IBMS
are the lowest among all methods. BEAM has higher running
times compared to other two methods. It is possible to reduce
the running time of BEAM by adjusting its MCMC parameters,
but reducing the running time typically leads to lower power.
On the other hand, BOOST has lower running times due to its
pruning and Boolean operation techniques.

We also compared the performance of IBMS to that of BCM
on the five most challenging genetic models, namely, models
55–59 that have low H and low MAF values. The powers of
the two methods on these models are shown in Table 3, and the
running times for the two methods are shown in Fig. 2. The
results show that IBMS achieves higher power with lesser lower
running times compared to BCM. The reduced running time is
due to IBMS examining fewer interaction models compared to
BCM. The higher power is because of the non-constant value of
the interaction model probability which makes IBMS scoring
function distinct from that of BCM.

Since, the weighting stage is the critical component of IBMS,
we evaluated IBMS in its ability to rank SNPs. For this analysis,
we used the synthetic datasets with different combinations of H
and MAF values. First, we partitioned a dataset into two groups

Table 1 Average power of the three interaction methods obtained by
averaging over 70 genetic models

Sample size IBMS BOOST BEAM

1600 0.96 0.94 0.67
800 0.90 0.85 0.64
400 0.84 0.69 0.41

Table 2 Average running times in seconds for 100 datasets for the three
interaction methods

Sample size IBMS (s) BCM (s) BOOST (s) BEAM (s)

1600 11 17 11 150
800 7 11 8 85
400 5 8 6 55
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such that each group contained one of the interacting SNPs.
Then, we applied CCA and obtained weights for all SNPs in
either of the two groups and ranked SNPs according to their
weights such that a SNP with the highest weight was assigned a
rank of one and so on. After examining 100 datasets of each
genetic model, we determined the average rank for each of the
two interacting SNPs over 100 runs (see Fig. 4). The results
show that the interacting SNPs are highly weighted on the
whole. This becomes more pronounced as the sample size
grows. For instance, IBMS achieves excellent performance in
ranking SNPs for the sample size of 1600 with an average rank
of close to one for the interacting SNPs.

LOAD GWA data results

We used a LOAD GWA dataset to demonstrate the application
of IBMS on a genome scale dataset. This dataset contained
234 665 SNPs from 861 cases and 550 controls. We used
IMPUTE (http://mathgen.stats.ox.ac.uk/impute/impute.html)
for imputing the missing genotypes. We applied the genotypic
test using the chi-square statistic with 2 degrees of freedom
using the PLINK software, and retained 76 755 SNPs with
p-values less than 0.2 for further analysis.

To identify potential epistatic interactions, we applied IBMS
to identify pairs of interacting SNPs. In the first stage, we
partitioned the SNPs into 295 groups with each group contain-
ing 260 adjacent SNPs (with the exception that the last group
contained 315 SNPs). CCA was applied to every pair of groups.
Then, the first canonical variables, one for each group, were
extracted and analyzed with LRA to detect group-interactions.
The LRA model contained two SNP variable terms and one SNP
interaction term, and a t-test was performed on all pairs of

group-variables (i.e., canonical variables) to statistically test the
interaction term. After Bonferroni correction for multiple test-

ing, we used a p-value threshold of
0:05

295
2

� � to reject or accept

the interaction term. The application of the first stage showed
that there was a significant interaction between the groups
containing SNPs mapped to the APOE and GAB2 genes. This
interaction was previously reported by the original authors.34

The APOE group of SNPs obtained a higher weight than the
GAB2 group.

In the second stage, the stochastic search identified several
SNPs that interact with rs7412 which is a well characterized
SNP on the APOE gene that is associated with LOAD.32–34 Table
S1 (ESI†) gives the top 50 high scoring SNPs that interact with
SNP rs7412. In particular, five previously reported SNPs namely
rs901104, rs4291702, rs71158590, rs4945261, and rs2510038 in
the GAB2 gene obtained low ranks and high interaction scores
(see Table S1, ESI†).

The running time for the weighting stage was approximately
4 hours on a desktop computer with a CPU of 2.66 MHz and
RAM of 4 GB running the 32-bit Windows 7 operating system.
The running time for the stochastic search stage was approxi-
mately 17 hours.

Discussion

A range of methods have been described in the literature to
identify true disease associated genetic variants in high-
dimensional GWA data that contain a large and highly redun-
dant set of SNPs. Such data present several analytic challenges
especially in the detection of interacting SNPs. In this paper, we
described and evaluated a computationally efficient method
called IBMS that identifies SNP–SNP interactions and interac-
tions between two groups of SNPs in high-dimensional GWA
data. The IBMS method is a two-stage method that combines
CCA, LRA, and BCM to detect epistatic SNPs.

The results demonstrate the utility of IBMS in identifying
epistatic interactions. Compared to existing methods such as
BOOST and BEAM, IBMS performed better in identifying inter-
acting SNPs. Moreover, it is computationally efficient for appli-
cation to high-dimensional GWA data.

Table 3 Comparison of the power of IBMS and BCM on the five most
challenging synthetic genetic models

Sample size Method Model 55 Model 56 Model 57 Model 58 Model 59

1600 IBMS 0.67 0.75 0.72 0.97 0.51

800 BCM 0.66 0.71 0.68 0.96 0.51
IBMS 0.31 0.34 0.27 0.64 0.21

400 BCM 0.27 0.29 0.28 0.56 0.19
IBMS 0.13 0.12 0.12 0.27 0.10

BCM 0.07 0.11 0.10 0.27 0.05

Fig. 4 Performance of IBMS in ranking SNPs on synthetic data using the first stage of the method. It gives the average rank of the interacting SNPs,
namely SNP1 and SNP2 over 100 datasets under different genetic models. The lower the average rank value, the higher the informativeness of the SNP.
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The IBMS method can be considered as a variable selection
method. Most existing variable selection methods that are applied
to SNP data focus on identifying a subset of SNPs with good
classification accuracy, and are typically guided by the main effects
of the individual SNPs. IBMS, however, weights SNPs based on
their main effects as well as on their interaction effects. Thus, SNPs
that are selected by IBMS may provide even better classification
accuracy by the inclusion of interaction effects.

A key advantage of IBMS is in addressing the multiple-testing
problem. In GWA data, as the number of SNPs increases, the
number of tests for association of single SNPs or their combina-
tions with the disease becomes astronomical. Therefore, the
results become unreliable because of the large number of false
positives. In IBMS we tackled this problem by partitioning the
SNPs into groups, and reduced the number of tests to a great
degree by performing analyses for only two-group interactions.
By grouping SNPs based on adjacency on the genome we take
advantage of the correlation due to LD between nearby SNPs.
By grouping SNPs according to their associated gene, and
weighing the informativeness of each group, we can identify
more informative groups of SNPs that can facilitate the selection
of candidate genes for future biological experiments.

Partitioning of SNPs into groups plays an important role in
IBMS, and one limitation of our method is that we have
considered only two simple approaches for grouping SNPs. In
future work, we plan to explore new approaches for grouping
SNPs based on combining different sources of biological data.
Such new grouping methods have the potential to further
improve the performance of IBMS.

Another limitation of IBMS is that although the interaction
scoring function is non-linear, the CCA function is linear. Thus,
IBMS considers only linear relations for group–group inter-
actions. In future work, we plan to extend IBMS to use non-
linear canonical correlation methods.

In conclusion, we have developed a computationally efficient
and accurate method for detecting interactions among genomic
variants in high-dimensional data. We hope that researchers will
find IBMS to be a useful tool for the analyses of GWA data and
that future extensions will lead to additional improvements.
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