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We investigate whether the natural orbitals (NOs) minimize kW�Uk2, where W is a wave function and U
is a full configuration interaction (CI) approximation to W in a reduced basis. We will show that the NOs
rarely provide the optimal orbitals for U, except when (1) there are only two particles or (2) only one
basis function is removed in the case of fermions. Further, we will show that the CI expansion coefficients
of W and U are identical up to a global scaling factor and demonstrate how the NOs can be used to gen-
erate the orbitals that minimize kW�Uk2.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The claim by Löwdin that the natural orbitals (NOs) are the
optimal orbitals for a configuration interaction (CI) expansion of
the exact wave function [1] is generally accepted [2]. The natural
orbitals, uk, are defined as the eigenfunctions of the one-body re-
duced density matrix (1RDM) defined as

cð1;10Þ :¼ hWjŵyð10Þŵð1ÞjWi ¼
X

k

ukð1Þu�kð1
0Þ;

where 1 ¼ r1r1 is a combined space-spin coordinate and the
eigenvalues nk are the natural occupation numbers (0 6 nk 6 1)
which are assumed to be labelled in decreasing order. Löwdin did
not state precisely in which sense the NOs give optimal conver-
gence, but this has been made more precise later by others. A rather
obvious optimality criterion [3] is that using the highest occupied
NOs, we obtain the best approximation to the 1RDM in L2-norm.
In other words, minimizing the distanceZ

d1
Z

d10 j cð1;10Þ �
Xm

i;j

bijfjð1Þg�i ð1
0Þj2;

gives bij ¼ nidij and fi ¼ gi ¼ ui, the highest occupied NOs. Kobe
pointed out that the NOs maximize the contribution of the refer-
ence determinant, i.e. the NOs ensure that the number of excited
determinants is minimal. In other words, the amount of excitations
above the pseudo Fermi surface defined by the reference determi-
nant is minimal [4,5]. Coleman showed that the NOs are optimal
in the sense that expansions of the wave function of the form

Uð1 . . . NÞ ¼
Xm

i;j¼1

ai;j/ið1Þhjð2 . . . NÞ
are closest to the exact wave function, W in L2-norm, i.e. minimizes
the distance kW�Uk2 if the highest occupied NOs are used for the
orbital /i. He also showed that the coefficients should be set to
ai;j ¼

ffiffiffiffi
ni
p

di;j possibly multiplied by a phase factor and the functions
hi are eigenfunctions of the (N � 1) RDM [6], which is exactly the
decomposition of the wave function found by Carlson and Keller [7].

Unfortunately, these optimality criterions are rarely aimed for
in practice. Instead, one would typically aim for a set of orbitals
which minimizes the energy or which provides the best approxi-
mation to the exact wave function W. Since the NOs are not directly
related to the Hamiltonian, but reflect the structure of the wave
function itself, it is more likely that they are optimal for the
expansion of the exact wave function W. Such orbitals are of great
interest in CI calculations to make the orbital basis as small as pos-
sible, to reduce the amount of ‘dead wood’ in the CI expansion
[8,9]. Keeping the size of the orbital space minimal is also very
important in the multi-configurational time-dependent Hartree–
Fock (MCTDHF) method [10]. The philosophy of MCTDHF is to
choose the orbital adaptively while propagating, to reduce the
amount of determinants required for a faithful representation of
the wave function [11–14].

A decade ago, Bytautas et al. have already provided numerical
evidence that the NOs actually do not provide the optimal basis
for neither of these optimality conditions [15]: nor for the energy,
nor for the normalization deficiency. This latter quantity is calcu-
lated by first transforming the CI expansion of the wave function
to the basis set of interest. The normalization deficiency is now de-
fined for a subset of determinants, as the deviation of the sum of
the squares of their coefficients from unity. The normalization defi-
ciency is therefore a measure how well the exact wave function is
approximated by this subset of determinants. Optimal orbitals can
now be defined as the ones that minimize the normalization defi-
ciency for a given subset of determinants.
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For completeness, we would like to mention that for the pur-
pose of finding orbitals which lead to short CI expansions, the nor-
malization deficiency is not the only suitable measure. A different
criterion of recent interest is the seniority number of a CI expan-
sion, which can be interpreted as a measure for the amount of un-
paired particles in the expansion [16,17]. Minimization of the
seniority number, therefore, reduces the number of significant
determinants in the expansion of the wave function.

The normalization deficiency used by Bytautas et al. is equiva-
lent to the normalization criterion under consideration in this Let-
ter, kW�Uk2, as we will show in more detail later. We will focus
on a full CI wave function as an approximation to W, constructed
from m basis functions

Uð1 . . . NÞ ¼
Xm

i1 ...iN

di1 ...iN /i1 ð1Þ . . . /iN ðNÞ:

The full CI model is generally considered to be too expensive to
use in practice. Of course, also other approximate forms of U could
be considered. The full CI approximations, however, prevents the
mathematical analysis to become overly complicated, while still
giving the general idea and leading to some interesting results. Fur-
ther, the full CI results might be of interest for a recent development
based on Monte Carlo techniques to handle up to 1029 determinants
in the full CI space [9,18–20]. The main idea of this method is to use a
set of walkers in the determinant space and to let them evolve
according a simple set of rules which include spawning, death and
annihilation. Since the walkers corresponding to an insignificant
determinant die during the population dynamics, the number of
walkers to be handled remains manageable. Finding an optimal ba-
sis which reduces the amount of walkers (determinants) required
for a faithful representation of the full CI wave function in this tech-
nique would make the full CI quantum Monte Carlo (FCIQMC) appli-
cable to even larger systems, since the amount of walkers in the
dynamics determines the main computational cost.

In this Letter we investigate in more detail why the NOs in general
fail to minimize kW�Uk2. We do this by first deriving the first order
optimality conditions that the optimal orbitals for U need to satisfy
to minimize kW�Uk2. Next we investigate in which situations the
NOs do satisfy these conditions. We will assume that the target wave
function W can be expanded in a finite orbital basis of dimension M.
Note that this assumption does not hold in Coulomb systems, since
one would need a complete basis to describe the Coulomb cusp at
the coalescence points of the electrons, so M ! 1 in these systems
[21–23]. The approximate full CI wave function U is constructed out
of m < M orbitals of the original orbital basis of the target wave
function W, so M �m þ 1 orbitals are eliminated from the original
basis set. We will demonstrate that the NOs are rarely the optimal
orbitals that minimize the error kW�Uk2, confirming the conclu-
sions by Bytautas et al. [15]. Further, we will investigate to what ex-
tend the NOs might still be useful as a sub-optimal choice and how
they can be used in procedures to build better orbitals for the
approximate wave function that minimize kW�Uk2.
2. First order optimality conditions

First we will establish the optimal coefficients for the reduced-
basis full CI wave function. Since the wave function needs to re-
main normalized we will work with the following Lagrangian

L :¼ kW�Uk2 � k
Xm

i1 ...iN

j di1 ...iN j
2 � 1

 !
:

For a minimum of kW�Uk2 under the normalization constraint,
we need that the first order derivatives of the Lagrangian with re-
spect to the expansion coefficients vanish
@L
@dk1 ...kN

¼
Z

d1 . . . dN U�ð1 . . . NÞ �W�ð1 . . . NÞð Þ

� /k1
ð1Þ . . . /kN

ðNÞ � kd�k1 ...kN
¼ 0:

Now we use the fact that we can make arbitrary transforma-
tions of the basis set for our target wave function, so in particular
we can choose the first m orbitals to be identical to the (optimal)
orbitals for the CI expansion U

Wð1 . . . NÞ ¼
XM

i1 ...iN

ci1 ...iN /i1 ð1Þ . . . /iN ðNÞ:

The orbitals /mþ1,. . .,/M are arbitrary linear combinations of
orbitals not contained in the basis set of U.

Using the orthonormality of the orbitals, the first order condi-
tion from the derivatives with respect to CI coefficients of U can
now compactly be written as

@L
@dk1 ...kN

¼ dykN ...k1
ð1� kÞ � cykN ...k1

¼ 0;

where dykN ...k1
:¼ d�k1 ...kN

. Therefore, we find that the full CI expansion
coefficients of the approximate wave function U are identical to the
ones of the target wave function W in the optimal basis, up to an
overall scaling factor ð1� kÞ to ensure that the approximate wave
function U is normalized. The derivatives with respect to d� give
the same result, so are not presented here. The same result has been
obtained by Zhang and Kollar using a different argumentation [10].

When searching for the best basis, we should ensure that the
basis functions remain orthonormal. Often the orthonormality is
enforced by using Lagrange multipliers. An alternative approach
is to realize that the allowed variations are in SU (M), so the unitary
variations can also be expressed as [24–26]

U ¼ expðXÞ;

where X is a traceless anti-hermitian matrix (Xy ¼ �X). Since the
matrix X is anti-hermitian, the unique elements are simply the low-
er or upper triangle of the matrix and we can perform a free optimi-
zation with respect to these unique elements.

Since the reduced-basis CI wave function has the same coeffi-
cients as the original wave function up to a global scaling factor
for renormalization, the minimization of kW�Uk2 is equivalent
to the maximization of the norm of U when using the unscaled
CI coefficients c of W

N :¼
Xm

i1 ...iN

XM

j1 ...jN

cj1 ...jN Uj1 i1 . . . UjN iN

�����
�����

2

: ð1Þ

This is easily checked, since using N ¼ ð1� kÞ2 due to the nor-
malization of U, we can work out the distance between the wave
functions as

kW�Uk2 ¼ 2� 2RehWjUi ¼ 2� 2
ffiffiffiffiffi
N

p
:

The derivative with respect to the free orbital parameters X are
readily worked out to be

0 ¼ @N
@Xkl

����
X¼0
¼ @

@Ukl
� @

@Ukl

� �
N ¼ hðm� lÞ � hðm� kÞð ÞcðmÞkl ; ð2Þ

where the Heaviside step function hðxÞ is 1 for positive x and 0 for
negative x and we introduced the truncated 1RDM

cðmÞkl :¼ N
Xm

i2 ...iN

cki2 ...iN cyiN ...i2 l: ð3Þ

Note that the truncated 1RDM is defined for the full original ba-
sis set of W, so is considered to be an M �M matrix. Only the sum-
mations are reduced from M to m.



222 K.J.H. Giesbertz / Chemical Physics Letters 591 (2014) 220–226
From the trace of this truncated 1RDM N can be expressed as

N ¼ 1
N

Tr cðmÞ
� �

: ð4Þ

Hence, if we partition the truncated 1RDM in blocks of orbitals
included and excluded from the reduced-basis CI expansion, we
find that only the off-diagonal blocks need to be zero. The rotations
between the included (excluded) orbitals do not affect N as ex-
pected, since full CI wave functions are invariant with respect to
orbital rotations within the CI space.

Naively one would expect that the NOs of W satisfy condition
(2) and that one could simply select the highest occupied NOs to
maximize N . However, the NOs of W diagonalize cðMÞ where the
sum runs completely up to M > m. Since not all CI coefficients of
W are included in the sum, the NOs will not diagonalize cðmÞ in gen-
eral as has already been pointed out by Davidson [5]. There are,
however, some special situations in which the NOs of W do satisfy
the optimality condition (2), so in these cases NOs constitute opti-
mal orbitals for the full CI expansion U in the reduced basis.

2.1. Two-body systems

That NOs can provide the optimal orbitals for two-body systems
to minimize kW�Uk2 is already known for quite some time
[27,28]. For completeness we will demonstrate explicitly that the
NOs of the two-body system indeed satisfy (2). The two-body sys-
tems are special, since the CI coefficients are only matrices with
two indices and the 1RDM becomes a simple matrix product

c ¼ 2c � cy;

so the square root of the natural occupation numbers,
ffiffiffiffiffiffiffiffiffiffi
nk=2

p
, are

the singular values of c. In the case of fermions or bosons, the CI
coefficients need to be anti-symmetric or symmetric respectively,
so restricting to the case of real coefficients, c is also normal, hence
diagonalizable and the eigenvalues nk are related to the singular val-
ues as j nk j ¼

ffiffiffiffiffiffiffiffiffiffi
nk=2

p
.1 Therefore, we find that the NOs block-diago-

nalize c where the blocks only contain degenerate NOs. By
diagonalizing the remaining blocks, one obtains a special set of
NOs that also completely diagonalizes the CI matrices c [30]. The
truncated 1RDM (3) in this special NO basis now become

cðmÞkl ¼ 2
Xm

i¼1

ckic
y
il ¼ nkdkl;

so are diagonal as well. By selecting the highest occupied NOs one
readily maximizes N (4).

2.2. Removal of one basis function for fermions

In the case of fermions the CI coefficients need to be anti-sym-
metric to ensure the anti-symmetry of the wave function. We find,
therefore, that when only one basis function, /M , is removed

cðM�1Þ
Ma ¼ N

XM�1

i2 ...iN

cMi2 ...iN cyiN ...i2a

¼ N
XM

i2 ...iN

cMi2 ...iN cyiN ...i2a ¼ cðMÞMa ;

where we used the fact that cMMi3 ...iN ¼ 0 due to the anti-symmetry.

Hence, the NOs of W also set cðM�1Þ
Ml ¼ 0, so satisfy the stationarity

condition (2). By simply leaving out the lowest occupied NO, we
1 The complex case is more involved, since c is not normal anymore in general.
Symmetric c are still diagonalizable [29]. Anti-symmetric c can only be block-
diagonalized tot 2� 2 blocks.
maximize N (4). In the case of degeneracy the maximum is not un-
ique and any linear combination of the lowest occupied NOs will do.

3. Calculating optimal orbitals

We found that the NOs of W are in general not the best orbitals
to minimize kW�Uk2. To calculate the true optimal orbitals, we
need to solve (2). The most naive way is to use an iterative scheme
where we simply construct a cðmÞ from the NOs of W, diagonalize it
and take the highest occupied NOs of cðmÞ as new basis functions,
reconstruct cðmÞ and iterate this procedure till convergence as de-
picted in Figure 1. This method is identical to a naive implementa-
tion of the optimization of the Hartree–Fock (HF) orbitals or Kohn–
Sham (KS) orbitals where in each iteration the Fock matrix is diag-
onalized to the generate new trial orbitals, which are subsequently
used to calculate a new Fock matrix till the algorithm converges.
This naive implementation is not very efficient to solve for the
optimal orbitals for the reduced-basis CI and is even not guaran-
teed to converge at all. Indeed small test calculations with ran-
domly generated CI matrices for 4 particles in 20 orbitals showed
that this iterative algorithm sometimes gets stuck in an alternating
solution as also often occurs in HF [26].

A number of improvements to this naive implementation are
obvious. The most important improvement is in the optimization
scheme itself, because of its lack of convergence. Since we only
need to optimize the orbitals, all the tricks that are available for
the optimization of the HF/KS orbitals can be used to try to achieve
and accelerate convergence, e.g. the direct inversion in the itera-
tive subspace (DIIS) [31,32]. In our case the hessian with respect
to the unique elements of X can readily be expressed for real X as

d2N
dXkldXab

¼ 2 CðmÞkabl þ CðmÞkbal þ dakc
ðmÞ
lb � dblc

ðmÞ
ka

� 	
for a; k 6 m < b; l and real upper triangular X (see Appendix for
more details). The truncated 2RDM is defined as

CðmÞklba :¼ NðN � 1Þ
Xm

i3 ...iN

ckli3 ...iN cyiN ...i3ba
Figure 1. Primitive optimization of the orbitals for the full CI wave function U in
the reduced space.
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and comes as an almost free by-product, since the truncated 1RDM
has to be constructed anyway from contracting the CI coefficients.
Because the hessian is readily available, we have implemented a
Newton–Raphson optimization algorithm including the usual
trust-region strategy to ensure convergence of the algorithm
[26,33–35]. This approach is well-known in second-order optimiza-
tion algorithms for the multi-configuration self-consistent field
(MCSCF) wave function [24–26]. Of course, also other optimization
schemes used in MCSCF calculations could be used as well [8,36–
38] or the iterative approach proposed by Zhang and Kollar [10].
However, the second order method is the most robust one, hence
most reliable to provide optimal orbitals.

Now let us consider the initial guess for the reduced-basis CI
orbitals. We have seen that the elimination of the lowest occupied
NO gives the optimal reduced-basis CI orbitals if only one orbital
had to be eliminated. An obvious scheme to generate the initial
guess is to continue this procedure to eliminate orbitals one by
one (see Figure 2). Unfortunately, this scheme does not yield di-
rectly the optimal orbitals, except under special circumstances.
To show this, consider the removal of two orbitals. Since /M�1 by
construction already satisfies its optimality condition cðM�2Þ

M�1a ¼ 0
for a 6 M � 2, we only need to consider

cðM�2Þ
Ma ¼ �NðN � 1Þ

XM

i3 ...iN

cMM�1i3 ...iN cyiN ...i3M�1a;

where we used the fact that cðMÞMa ¼ 0. The sum on the right-hand
side typically only vanishes if cMM�1i3 ...iN ¼ 0 for some reason. The
most obvious case is that /M is a NO with zero occupation number,
which means that this NO does not contribute to any determinant.
This situation is typical for non-interacting systems, which usually
only require one determinant. All unoccupied NOs can straightfor-
wardly all be eliminated. An other possible situation is that the
orbitals /M and /M�1 never co-occur in any determinant contribut-
ing to the CI. Both situations do not seem to be likely for fully inter-
acting systems [22,23].

Although this alternative guess for the orbitals does not give the
best orbitals for the reduced-basis CI, it is expected to give better
initial orbitals than just the highest occupied NOs. To check this
statement, we have implemented both procedures and the New-
ton–Raphson procedure to find the optimal orbitals for four fer-
mion CI wave functions. The Newton–Raphson procedure
terminated when the norm in the gradient was smaller than
Figure 2. One-by-one elimination scheme to generate an initial guess for the
optimal reduced-basis CI orbitals. It is based on the fact that for the truncation of
one orbital, the elimination of the lowest occupied NO is optimal (Section 2.2).
ffiffiffi
�
p
� 1:5 � 10�8, where � denotes the machine precision. The func-

tion NðXÞ can have multiple local maxima. To increase the chance
that the Newton–Raphson procedure terminates at the global max-
imum, we run the calculation two times. Once starting from the
highest occupied NOs and once from the orbitals generated by
the one-by-one elimination scheme.

To generate CI coefficients we used a random number generator
and have set the unique CI coefficients to

ci1 i2 i3 i4 ¼
ran1 � ran2

ran3 � ran4
;

where rani are subsequently generated random numbers. Only
using one random number, ci1 i2 i3 i4 ¼ ran1 did not give sufficient
variation in the coefficients to give a good sampling over all possible
full CI wave functions. Since the full CI wave functions are com-
pletely random, they are not necessarily eigenfunctions of a physi-
cal Hamiltonian with only one- and two-body operators.

For each randomly generated CI wave function we have calcu-
lated N for both initial guesses and also its value after full optimi-
zation by the Newton–Raphson procedure. In Figure 3 we show
statistical results for the sampling over 10000 randomly generated
CI wave functions for 20 basis functions as a function of the num-
ber of eliminated orbitals. The shaded areas indicate the spread of
the value ofN for each set of orbitals and the lowest value found, is
emphasized by a line [fully optimized (solid), highest NOs (dotted)
and one-by-one elimination (dashed)]. The spread completely
stretches to N ¼ 1 even when the maximum number of orbitals
is eliminated. This indicates that our sampling also generated full
CI wave functions which can (almost) exactly be represented by
one-determinant, which are eigenstates of a non-interacting sys-
tem of fermions. The fact that we randomly generated one-deter-
minant wave functions gave us confidence that the variation in
our sample is sufficient. The lines in the middle of the shaded areas
indicate the average values of N for the different methods.

The smallest value for N when using the highest occupied NOs
(lowest red dashed line in Figure 3) become exponentially small
when approaching the maximum of removable orbitals (16). This re-
Figure 3. The average (upper lines) and minimum values (lower lines) of N for an
initial basis set of 20 orbitals. The solid lines correspond to the fully optimized
orbitals, the dotted lines to the highest occupied NOs and the dashed lines to the
one-by-one removal of one NO (Figure 2). The spread of N is indicated by the
shaded areas and always extends fully up to N ¼ 1, since single determinant wave
functions are also present in the test sample.
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sult is orthogonal to the general assumption that the determinant
constructed from the highest occupied NOs always has a significant
overlap with the full CI wave function [39]. However, the full CI wave
functions in these worst case scenarios are highly correlated and
most NOs have a significant occupation. This large spread of occupa-
tion allows the main contribution to the wave function, to come from
determinants which only contain one or two of the 4 highest occu-
pied NOs. More details about the worst case for only retaining one
determinant can be found in the Supplementary Material. It is not
clear if such CI wave functions occur in physical systems. However,
a large number of significantly occupied NOs can occur in fractional
quantum Hall droplets [40], so this worst case scenario for the NOs
might be relevant for these very strongly correlated systems.

An interesting feature of the of plot in Figure 3 is that both for
the one-by-one elimination and the fully optimized orbitals, there
is no difference in the elimination of 15 or 16 orbitals. This is actu-
ally a general feature that the reduction to N and N þ 1 orbitals
yield the same reduced-basis normN . For the fully optimized orbi-
tals this can be easily understood. First consider the case of the
reduction to N orbitals. Since all orbitals need to be fully occupied,
only one Slater determinant can be constructed and the only de-
grees of freedom are the orbital rotations. When we extend the ba-
sis with one additional orbital, we also can have single excited
determinants. These additional single excited determinants, how-
ever, do not add additional variational freedom to the wave func-
tion, so are redundant [26]. This situation is similar to the
addition of determinants to the HF wave function to lower the en-
ergy. Adding only single excited determinants does not lower the
energy. One needs to add at least double excited determinants to
gain in energy, which is closely related to Brillouin’s theorem. More
explicit proofs can be found in [10] and references therein.

In order to prove this for the one-by-one elimination, more
work is required. By definition, we have for the elimination of
the last orbital /Nþ1

0 ¼ cðNÞNþ1;a ¼ N
XN

i2 ...iN

cNþ1i2 ...iN cyiN ...i2a ð5Þ
Figure 4. The number of times the initial guess from the NOs (red, right bar) and
the one-by-one elimination (blue, left bar) led to significant (10�6 times best N )
better values of N after the Newton–Raphson optimization. The black line indicates
the number of variational variables in the optimization procedure. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
¼ N!cNþ1�a2 ...�aN cy�aN ...�a2a; 8 a ¼ 1; . . . N;

where �a2 – �a3 – . . . – �aN 2 f1; . . . ;Ng n a, so �a2 . . . �aN can be seen as
a unique complement to a. Since we have only one Slater determi-
nant, we necessarily have cy�aN ...�a2a ¼ 1=

ffiffiffiffiffi
N!
p

, so Eq. (5) implies that
cNþ1�a2 ...�aN ¼ 0. Thus, for the reduction in N , we find

DN ¼ N
XN

i2 ...iN

j ci2 ...iN Nþ1j2 ¼ 0;

so there is no further reduction in the reduced-basis norm when
going from N þ 1 to N basis functions.

Statistically the one-by-one elimination is a clear winner. Both the
average value for N and the worst value of N are consistently higher if
more than one orbital is removed. The methods are identical for the elim-
ination of zero or only one orbital, so for these cases there is no difference
and both are optimal. However, in some cases using the highest occupied
NOs as an initial guess provide a superior initial guess compared to the
one-by-one elimination. Subsequent optimization with the Newton–
Raphson procedure starting from the one-by-one could not always over-
come this difference. In Figure 4 we have plotted the number of times one
of the initial guesses gave a significantly (10�6 times bestN ) more suc-
cessful result after optimization with the Newton–Raphson procedure.
Since the local hessian is readily available, we have checked whether it
was negative definite and it always was. The higher solutions found from
the less successful initial guess therefore correspond to lower lying local
maxima. The existence of multiple local maxima is no surprise, since the
exponential Ansatz for the orthogonal variations makes NðXÞ a highly
non-linear function.

A striking result from Figure 4 is that although the initial value for
N of the NOs is usually inferior to the value form the one-by-one
elimination, the NOs provide more often a superior initial guess for
the full optimization. Only for the elimination of 15 and 16 orbitals
the one-by-one elimination provided significantly more often a bet-
ter initial guess for the Newton–Raphson algorithm. The dependency
of the fully optimized value ofN on the initial guess seems initially to
be correlated with the number of degrees of freedom in the optimiza-
tion, which is indicated by the black curve in Figure 4. From 12 orbi-
tals onwards, this trent does not seem to hold anymore. Probably, the
variational landscape NðXÞ becomes more bumpy, so the optimiza-
tion becomes more dependent on the initial guess, although the
number of variational parameters goes down. Since we have only
used two different initial guesses, it is quite likely that the New-
ton–Raphson procedure did not even find the global maximum in
all cases, especially when a large number of orbitals are removed.
Possible improvements may be sought in starting from a larger num-
ber of initial guesses, which could be generated randomly by making
first a random transformation of the basis set as has also been pro-
posed by Zhang and Kollar [10]. An alternative solution would be to
use a global optimization scheme like simulated annealing.

It is not so clear in which cases one of the initial guesses is supe-
rior over the other. One might expect that there would be a con-
nection with the amount of correlation in the system, which can
be quantified as a correlation entropy [41,42] defined as
Scor :¼ � 1
N

Tr c ln cf g ¼ � 1
N

X
k

nk ln nk:

In Figure 5 we show the difference between the initial values of
N of the two initial guesses with open symbols as a function of cor-
relation entropy. The only correlation with respect to the Scor

seems to be the magnitude of the difference. When the initial
guesses are optimized by the Newton–Raphson algorithm, these



Figure 5. The difference between the two initial guesses as a function of the
entropy for the removal of 10 orbitals out of 20 for 10000 randomly generated full
CIs. The difference in the initial value for N is shown by open symbols: (round,
purple) for superior NOs and (square, green) for superior one-by-one elimination.
The difference in the final values of N is shown by solid symbols: (round, black) for
superior NOs and (square, red) for superior one-by-one. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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differences are mostly reduced to numerical precision. Only a few
significant differences remain (see also Figure 4). With increasing
correlation entropy, both the amount of significant differences
and the magnitude of the difference in N itself increase somewhat.
However, both initial guesses perform about equally for any value
of the correlation entropy, so the amount of correlation is irrele-
vant for the choice between the two initial guesses.

4. Conclusion

In this Letter we have investigated which orbitals minimize
kW�Uk2, where W is a CI wave function which is approximated
by the full CI wave function U in a reduced orbital space. First order
optimality conditions revealed that the CI coefficients of both wave
functions W and U are identical up to an overall scaling factor
which is required to have both wave functions normalized. We
have used this information to simplify the optimization problem
by reformulating it as a maximization of the norm of U when using
unscaled CI coefficients of W;N (1). Setting the first order deriva-
tive of N to zero provided the first order optimality condition that
the matrix elements of the truncated 1RDM (3) between the in-
cluded and excluded orbitals have to vanish (2). This requirement
is usually not satisfied by the NOs except when only one orbital is
removed in the case of fermions or when dealing with two-elec-
tron systems. In the case of two-electron systems these NOs should
not only diagonalize the 1RDM, but also W itself [30].

The similarity of the first order stationarity conditions in terms of
the truncated 1RDM and the Fock matrix immediately implies that
all the standard solution methods known in HF and DFT to solve their
orbital equations to self-consistency can be used. Since the hessian is
readily available, we have used the very powerful Newton–Raphson
procedure starting from two different initial guesses for the optimal
orbitals: (1) the NOs and (2) a one-by-one elimination scheme in-
spired by the fact that the NOs are optimal for the removal of one
orbital (Figure 2). We have run a trial over 10000 CI randomly gen-
erated CI wave functions for 4 fermions and 20 basis functions. The
one-by-one elimination gave the best initial value for N . The NOs,
however, provided more often a better starting guess for the optimal
orbitals when a Newton–Raphson procedure was subsequently used
to maximize N . We have not been able to find a clear criterion to
determine when one of the initial guesses performs better than the
other. Since there is no clear best initial guess, it will be best to use
both to generate the optimal reduced-basis CI orbitals in practice.
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Appendix A. Hessian

In this appendix we digress on the calculation of the hessian of
N with respect to the unique entries of X. First we expand U till
second order in X.

Ukl ¼ eX
 �
kl ¼ dkl þ Xkl þ

1
2

X2
� 	

kl
þ . . . ;

so for the first and second order derivatives with respect to X we
find

@Urs

@Xkl

����
X¼0
¼ dkrdsl;

@2Urs

@Xkl@Xab

�����
X¼0

¼ 1
2

dkrdsbdla þ dardsldkað Þ

Now we will use these expressions to calculate the gradient and
hessian of N with respect to X. First we write N explicitly in terms
of X as

N ¼
Xm

i1 ...iN

X
r1 . . . rN

s1 . . . sN

cr1 ...rN eX
 �
r1 i1

. . . eX
 �
rN iN
� e�X
 �

rN iN
. . . e�X
 �

r1 i1
cysN ...s1

The first order derivative with respect to X gives (2) and will not
be repeated here. The second order derivative is more involved.
Not only we have second order derivatives of one particular orbital
rotation, but we also obtain cross-terms

@2N
@Xkl@Xab

�����
X¼0

¼ CðmÞaklbðb; l 6 mÞ þ 1
2
cðmÞkb dalðb 6 mÞ

þ 1
2
cðmÞal dbkðl 6 mÞ þ CðmÞaklbða; k 6 mÞ

þ 1
2
cðmÞkb dalðk 6 mÞ þ 1

2
cðmÞal dbkða 6 mÞ

� CðmÞaklbðb; k 6 mÞ � cðmÞal dbkðb; k 6 mÞ
� CðmÞaklbða; l 6 mÞ � cðmÞkb dalða; l 6 mÞ;

where we indicated between brackets after each term the condi-
tions that need to be satisfied for the particular term to be present.
To reduce the hessian to only the unique elements of X, we will as-
sume that X is real to keep the equations simple. The second order
derivative with respect to the upper triangle of X at X ¼ 0 can now
be constructed as

d2N
dXkldXab

¼ @2N
@Xkl@Xab

� @2N
@Xkl@Xba

� @2N
@Xlk@Xab

þ @2N
@Xlk@Xba

¼ 2 CðmÞkabl þ CðmÞkbal þ cðmÞbl dak � cðmÞak dbl

� 	
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for a; k 6 m < b; l.
Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.cplett.
2013.11.038.
References

[1] P.-O. Löwdin, Phys. Rev. 97 (1955) 1474.
[2] A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory, Dover Publiations Inc, 31 East 2nd Street, Mineola,
N.Y. 11501, 1989.

[3] W. Kutzelnigg, V.H. Smith, J. Chem. Phys. 41 (1964) 896.
[4] D.H. Kobe, J. Chem. Phys. 50 (1969) 5183.
[5] E.R. Davidson, Rev. Mod. Phys. 44 (1972) 451.
[6] A.J. Coleman, Rev. Mod. Phys. 35 (1963) 668.
[7] B.C. Carlson, J.M. Keller, Phys. Rev. 121 (1961) 659.
[8] J. Ivanic, K. Ruedenberg, J. Comput. Chem. 24 (2003) 1250.
[9] G.H. Booth, A.J.W. Thom, A. Alavi, J. Chem. Phys. 131 (2009) 054106.

[10] J.M. Zhang, M. Kollar, Optimal multi-configuration approximation of an N-
fermion wave function, 2013.

[11] J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, A. Scrizini, Laser Phys. 13 (2003)
1064.

[12] T. Kato, H. Kono, Chem. Phys. Lett. 392 (2004) 533.
[13] J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Phys. Rev. A

71 (2005) 012712.
[14] M. Nest, T. Klamroth, P. Saalfrank, J. Chem. Phys. 122 (2005) 124102.
[15] L. Bytautas, J. Ivanic, K. Ruedenberg, J. Chem. Phys. 119 (2003) 8217.
[16] L. Bytautas, T.M. Henderson, C.A. Jiménez-Hoyos, J.K. Ellis, G.E. Scuseria, J.

Chem. Phys. 135 (2011) 044119.
[17] D.R. Alcoba, A. Torre, L. Lain, G.E. Massaccesi, O.B. Oña, J. Chem. Phys. 139
(2013) 084103.

[18] D. Cleland, G.H. Booth, A. Alavi, J. Chem. Phys. 132 (2010) 041103.
[19] C. Daday, S. Smart, G.H. Booth, A. Alavi, C. Filippi, J. Comput. Chem. 8 (2012)

4441.
[20] D. Cleland, G.H. Booth, C. Overy, A. Alavi, J. Chem. Theory Comput. 8 (2012)

4138.
[21] T. Kato, Commun. Pure Appl. Math. 10 (1957) 151.
[22] K.J.H. Giesbertz, R. van Leeuwen, J. Chem. Phys. 139 (2013) 104109.
[23] K.J.H. Giesbertz, R. van Leeuwen, J. Chem. Phys. 139 (2013) 104110.
[24] J. Linderberg, Y. Öhrn, Int. J. Quant. Chem. 12 (1977) 161.
[25] H.J.A. Jensen, P. Jrgensen, H. Ågren, J. Chem. Phys. 87 (1987) 451.
[26] T. Helgaker, P. Jrgensen, J. Olsen, Molecular Electronic-Structure Theory, John

Wiley & Sons LTD, West Sussex, 2000.
[27] P.-O. Löwdin, H. Shull, Phys. Rev. 101 (1956) 1730.
[28] P.-O. Löwdin, Rev. Mod. Phys. 32 (1960) 328.
[29] K.J.H. Giesbertz, Time-Dependent One-Body Reduced Density Matrix

Functional Theory; Adiabatic Approximations and Beyond, Ph.D. thesis, Vrije
Universiteit, De Boelelaan 1105, Amsterdam, The Netherlands, 2010.

[30] E.R. Davidson, J. Chem. Phys. 37 (1962) 577.
[31] P. Pulay, Chem. Phys. Lett. 73 (1980) 393.
[32] P. Pulay, J. Comput. Chem. 3 (1982) 556.
[33] J. Nocedal, S.J. Wright, Numerical Optimization, Springer Series in Operations

Research, Springer–Verlag, New York, 1999.
[34] A.R. Conn, N.I.M. Gould, P.L. Toint, Trust-Region Methods, MPS/SIAM Series on

Optimization, SIAM, Philadelphia, USA, 2000.
[35] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and

Algorithms, 3rd edition., Wiley-Interscience, Hoboken, New Jersey, 2006.
[36] B.O. Roos, P.R. Taylor, P.E.M. Siegbahn, Chem. Phys. 48 (1980) 157.
[37] K. Ruedenberg, M.W. Schmidt, M.M. Gilbert, S.T. Elbert, Chem. Phys. 71 (1982)

41.
[38] M.W. Schmidt, M.S. Gordon, Annu. Rev. Phys. Chem. 49 (1998) 233.
[39] M.L. Abrams, C.D. Sherrill, Chem. Phys. Lett. 395 (2004) 227.
[40] E. Tölö, A. Harju, Phys. Rev. B 81 (2010) 075321.
[41] D.M. Collins, Z. Naturforsch. A: Phys. Sci. 48 (1993) 68.
[42] P. Ziesche, J. Mol. Struct.: THEOCHEM 527 (2000) 35.

http://dx.doi.org/10.1016/j.cplett.2013.11.038
http://dx.doi.org/10.1016/j.cplett.2013.11.038
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0005
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0010
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0015
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0020
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0025
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0030
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0035
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0040
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0045
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0045
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0050
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0055
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0055
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0060
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0065
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0070
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0070
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0075
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0075
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0080
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0085
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0085
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0090
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0090
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0095
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0100
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0105
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0110
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0115
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0120
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0120
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0120
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0125
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0130
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0135
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0140
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0145
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0150
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0150
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0150
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0155
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0155
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0155
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0160
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0160
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0160
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0165
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0170
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0170
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0175
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0180
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0185
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0190
http://refhub.elsevier.com/S0009-2614(13)01451-6/h0195

	Are natural orbitals useful for generating an efficient expansion  of the wave function?
	1 Introduction
	2 First order optimality conditions
	2.1 Two-body systems
	2.2 Removal of one basis function for fermions

	3 Calculating optimal orbitals
	4 Conclusion
	Acknowledgements
	Appendix A Hessian
	Appendix B Supplementary data
	References


