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Models that simulate land-use patterns often use either inductive, data-driven approaches or deductive,
theory-based methods to describe the relative strength of the social, economic and biophysical forces that
drive the various sectors in the land system. An integrated framework is proposed here that incorporates
both approaches based on a unified assessment for local land suitability following a monetary, utility-
based logic. The framework is illustrated with a hedonic pricing analysis of urban land values and a
net present value assessment for agricultural production system in combination with statistics-based
assessments of land suitability for other sectors.

The results show that limited difference exists between the most commonly applied inductive
approaches that use either multinomial or binomial logistic regression specifications of suitability.
Land-use simulations following the binomial regression based suitability values that were rescaled to
bid prices (reflecting relative competitiveness) perform better for all individual land-use types.
Performance improves even further when a land value based description of urban bid prices is
added to this approach. Interestingly enough the better fitting description of suitability for urban
areas also improves the ability of the model to simulate correct locations for business estates and
greenhouses.

The simulation alternatives that consider the net present values for agricultural types of land use show
the relevance of this approach for understanding the spatial distribution of these types of land use. The
combined use of urban land values and net present values for agricultural land use in defining land
suitability performs best in our validation exercise. The proposed methodology can also be used to
incorporate information from other research frameworks that describe the utility of land for different
types of use.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Local land-use changes are driven by a wide range of social, eco-
nomic and biophysical forces. These forces have a different impact
on the various societal sectors that influence the land-use system.
Urbanisation is typically driven by factors such as economic devel-
opment, accessibility and spatial planning, agriculture is strongly
influenced by general agro-economic and local biophysical condi-
tions, while changes in natural areas generally result from (the
presence or lack of) agricultural perspective and policy interven-
tions. Obviously the strength of these forces varies across time
and space. Land-use models can be used to better understand the
interplay between these forces and provide information on the
possible future state of the land system (Verburg, Schot, Dijst, &
Veldkamp, 2004). Such models apply a wide range of theories
and methods to explain the magnitude and location of change
(see, for example, Koomen & Stillwell, 2007, chap. 1). A crucial
component in most land-use models is the definition of local suit-
ability of land for various types of use that is normally done by sta-
tistical analysis or expert judgement (Lesschen, Verburg, & Staal,
2005; Verburg, Schot et al., 2004). The latter approach is prevalent
in multi-criteria evaluation or related analytical hierarchy process
applications that rely on structured combinations of many differ-
ent spatially explicit data sets (Collins, Steinder, & Rushman,
2001; Malczewski, 2004). However, the causal relations that link
the underlying decision making processes to the observed changes
in land use are generally poorly represented in statistics- and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2014.10.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.compenvurbsys.2014.10.002
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:e.koomen@vu.nl
http://dx.doi.org/10.1016/j.compenvurbsys.2014.10.002
http://www.sciencedirect.com/science/journal/01989715
http://www.elsevier.com/locate/compenvurbsys


2 E. Koomen et al. / Computers, Environment and Urban Systems 50 (2015) 1–14
expert-based approaches (Munroe & Muller, 2007). Yet, data-
driven inductive approaches are popular because they tend to
perform better in reproducing existing spatial patterns
(Overmars, Verburg, & Veldkamp, 2007). Overmars et al. argue,
however, that a deductive theory-induced approach should be bet-
ter equipped to understand causal relations and ongoing processes.
Attempts to introduce a deductive approach to land-use modelling
are relatively scarce and tend to focus on land-use changes that
relate to single-sector processes such as agricultural practices
(Overmars, De Groot, & Huigen, 2007) or residential development
(Ettema, De Jong, Timmermans, & Bakema, 2007, chap. 14). This
is due to the fact that reproducing observed land-use patterns
(the typical procedure in validating model outcomes) following a
deductive approach is much harder in models that simulate multi-
ple land-use change processes (Van Schrojenstein Lantman,
Verburg, Bregt, & Geertman, 2011, chap. 3). The preference for
using either an inductive or a deductive approach is also related
to the disciplinary background of the researchers involved. Geogra-
phers usually focus on spatial patterns and typically rely on induc-
tive, data-driven approaches to describe and explain them,
whereas economists – that emphasise processes – normally rely
on deduction from theoretical principles.

We propose an integrated approach that can be used to simu-
late local land-use changes for multiple societal sectors simulta-
neously. In fact, we will follow the invitation of Overmars, De
Groot et al. (2007) to seek the interaction between inductive and
deductive work. Our framework aims to combine the strengths of
the available concepts, approaches and techniques of different
disciplines such as geography and economics (as advocated by
Verburg, Schot et al., 2004). A crucial issue here is to come to a uni-
fied assessment framework for land suitability that incorporates
the local potential for different types of use (urban, agricultural
and natural) based on, for example, market preferences, land use
related policy measures and biophysical conditions that change
over time.

The proposed suitability framework is implemented in an oper-
ational land-use model and applied to a challenging case study
area where economic processes, planning restrictions and biophys-
ical conditions interact and that is characterised by considerable
dynamics in multiple sectors. The Netherlands fulfil these criteria
and have the additional advantage that the necessary large
amounts of spatial data are available. Especially micro-level data
related to land values that have recently become available allow
us to pixelise the social as suggested by Geoghegan et al. (1998,
chap. 3) and help to reinforce the economic rationale in land-use
modelling.

To assess the merits of the proposed suitability framework the
resulting simulations are compared with model runs based on
inductive, statistically inferred land-use suitability definitions. All
simulations are performed using the same base data and cover a
period for which actual land-use observations exist to allow for a
proper validation of model outcomes.

2. Methodology

2.1. Conceptualising the land suitability framework

Land-use changes follow from the decisions that actors (e.g.,
farmers, nature managers, real estate developers) make in manag-
ing land. Major changes normally follow from the buying or rent-
ing of land and a subsequent conversion process. We therefore
take the land market as foundation for our approach and model
the factors that are relevant to the decision makers on this market.
For each of the groups of actors representing a societal sector that
influences land use we express their willingness to buy or rent a
location in a spatially explicit bid price map. These actor-specific
bid-prices are then used as a measure of local suitability to start
an iterative competition process to fulfil the (predefined) demand
for land of the various actors. Local land suitability is defined
following a monetary (utility-based) framework in the tradition
of the seminal theoretical work of Alonso (1964) and others. Suit-
ability for a particular type of land use is calculated as the net
profit for that use, in line with bid-rent theory and the host of lit-
erature on land markets and land evaluation. This utility-based
approach has the advantage that it allows for a unified assessment
of land suitability that can be directly linked to human behaviour
and can, potentially, be defined in a relatively objective way. It pro-
vides a common reference scale for the definition of suitability that
allows for straightforward interpretation, direct comparison
between different types of land use and regions, and a framework
for the inclusion of future changes in location characteristics.
It thus offers the possibility to insert discontinuities, policy
alternatives or anticipated scenario-based changes. These advanta-
ges are lacking in alternative approaches such as pure statistical
techniques, multi-criteria analysis or the analytical hierarchy
process.

Utility-based approaches are commonly applied to add
behavioural logic to land-use models, but this is normally con-
fined to the modelling of a single land conversion process (e.g.
urbanisation or deforestation) that is steered by economic logic.
Typical examples include the well-known spatially explicit
economic models for deforestation (Chomitz & Gray, 1996)
and urbanisation (Irwin & Geoghegan, 2001) and more recent
micro-simulation or multi-agent models that apply utility func-
tions to steer location choice of various urban actors (e.g.
Filatova, Parker, & Van der Veen, 2009; Ligtenberg, Bregt, &
Van Lammeren, 2001; Waddell et al., 2003). We address multi-
ple land-use change processes simultaneously in our conceptual
framework and incorporate the different rationales that under-
lie, for example, residential development, construction of new
offices and industries, nature development and changes in agri-
cultural systems.

Our land suitability definition approach essentially calls for
developing bid price maps for all types of land use used in simula-
tion. These bid prices can be generated by different methods and
we will test the merits of the following approaches:

� A statistics-based approach that defines spatial variation
in land suitability by linking observed bid prices per
land-use type with an explanatory analysis of land-use
patterns.

� Utility-based approaches that define suitability for specific
land-use types. In this paper we applied a sales comparison
approach (hedonic pricing analysis of house prices) for
urban land and an income approach (net present value)
for agricultural land. Other approaches can be selected
dependent on locally available knowledge and data.

The resulting spatially explicit and land-use specific bid price
maps are then used to define local suitability for all land-use types
in several validation runs that aim to simulate 1996 and 2008 land-
use patterns. These validation runs will be compared with simula-
tion efforts that only rely on a statistical explanation of observed
land-use patterns. As advocated by, amongst others, Pontius et al.
(2008) we only use spatial information that was available at or
before the 1996 base year of simulation wherever possible, thus
allowing a proper validation of the specification of suitability in
all cases.
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2.2. Statistics-based definitions of land-use specific bid price patterns

The statistics-based approach to define spatial variation in land-
use specific bid prices entails the following three steps that are
described in more detail below:

1. Establishing bid prices per land-use type.
2. Statistically explaining spatial variation in land-use pat-

terns from a range of driving forces.
3. Linking observed bid price per land-use type with their

explained spatial patterns.

2.2.1. Establishing bid prices per land-use type
Bid prices per land-use type are based on an analysis of the

agricultural land market by the Dutch Agricultural Economics
Institute (LEI, see: Kuhlman, Luijt, Van Dijk, Schouten, &
Voskuilen, 2010). This analysis is based on a selection of transac-
tions on the land market and only includes parcels of agricultural
land that: (1) were sold in 1998; (2) are located outside existing
urban areas; (3) do not include buildings or other property; (4)
are without lease contracts; and (5) have a value below 3 million
Euro per hectare. Subsequently, these transactions were
segmented based on the profession of the buyer indicating the
likely use to which the land will be put. Table 1 indicates clear
bid price differences between different types of land users. The
lowest prices are paid by those who aim to use the land for forest,
nature or agriculture. The latter type of use includes both grass-
land and arable farming and no systematic price difference has
been observed between these types of use (Kuhlman, personal
communication). Land used for horticulture has a higher price
and includes several sub classes: flower bulbs, fruit cultivation,
orchards, market gardening and greenhouse horticulture. The
latter type of use is associated with the highest land prices and
determines to a large extent the relatively high price observed
for the aggregated horticulture class.

Land that is likely to be put to urban types of use is sold for
the highest price. It is good to note, however, that these land
prices are inferred from the selling of agricultural land without
buildings or property. The observed values reflect the expectation
that the land may be transformed into urban use and thus hint at
spillovers from the urban land market into the rural land market;
two segments that are created by the relatively strict Dutch
spatial planning regulations (Dekkers & Koomen, 2011, chap. 9).
The price-increasing effect due to potential agro-urban land use
change (Malpezzi & Wachter, 2002) is, however, not fully cap-
tured in these transactions as in many cases the land is resold
by non-farmers (e.g. middlemen) and therefore absent in the
analysed agricultural land transactions. The observed values are
thus substantially below those for land with a non-agricultural
use, such as building lots and other serviced land that is legally
designated to become urban. Such land prices are typically ten
Table 1
Average price for agricultural land as paid by buyers from selected sectors in 1998.

Expected use (based on profession of buyer) Land price (€/m2)

Agriculture (grassland and arable farming) 2.5
Horticulture 5.5
Forest and nature 1.7
Mining 3.2
Recreation 6.4
Urban 10.6
Transport 4.0

Average transaction price 3.8

Source: Based on Kuhlman et al. (2010).
or more times higher as is evidenced in the reconstructed land
prices of, for example, De Groot (2011) that are further discussed
in Section 2.3.

2.2.2. Statistically explaining spatial variation in land-use patterns
To explain spatial variation in the land-use patterns observed in

our case study area, we apply binomial logistic regression analysis.
This approach essentially explains the probability that a location is
being used for a specific land-use type:

Pcj ¼ eðaþb�XcjÞ=ð1þ eðaþb�XcjÞÞ ð1Þ

In which:

Pcj is the probability for cell c being used for land-use type j.
a is a constant.
b is a vector of estimation parameters for all variables X.
Xcj is a set of location factors (explanatory variables) for cell c for
land-use type j.

Binomial logistic regression is commonly applied in land-
change analysis to explain the presence of individual land-use
types, often as a first step to build a spatially explicit model of
land-use change (Geoghegan, Schneider, & Vance, 2004;
Hoymann, 2010; Lesschen et al., 2005; Verburg, Ritsema van Eck,
De Nijs, Dijst, & Schot, 2004). In such statistics-based models the
term a + b ⁄ Xcj is commonly referred to as land suitability.

As explanatory factors we use a set of spatially explicit variables
that capture the most important forces behind land-use change.
Following general literature on the forces driving land-use change
(e.g. Bürgi, Hersperger, & Schneeberger, 2004) and prior studies
into the determinants of land-use change patterns in the Nether-
lands (Verburg, Ritsema van Eck et al., 2004) we include variables
related to policy measures, economic drivers and biophysical con-
ditions important for agricultural production (Table 2). This set is
by no means complete but allows for a reasonable explanation of
observed land-use patterns. The explained variance (Nagelkerke
pseudo R2) differs considerable for the different land-use types:
the presence of nature (0.68) and urban area (0.50) can be
explained reasonably well, business estates and agricultural land-
use types less so (0.29–0.21) and recreation hardly at all (0.08).
The poor performance of the latter type of use may be due to its
dispersed, infrequent occurrence (claiming 0.8% of the total land
area) and heterogeneous character (e.g., including campsites and
theme parks). We have refrained from directly incorporating refer-
ence to land use in neighbouring cells – that is a powerful approach
to reproduce land-use patterns (De Nijs & Pebesma, 2010; Hagoort,
2006; Van Vliet et al., 2013; Verburg, Ritsema van Eck et al., 2004;
Zhou & Kockelman, 2008) – as this would enforce spatial autocor-
relation on simulation results and possibly obscure the differences
resulting from the methods applied here to define local land suit-
ability. Annex 1 provides a summary of the statistical results.

2.2.3. Linking observed land-use specific bid prices with explained
spatial patterns

In the final step of our statistics-based approach to define spa-
tial patterns in land-use specific bid prices we assume that the
most attractive locations for a particular land-use type also repre-
sent the locations with the highest economic value for the actors
that are associated with it. This is a fundamental principle under-
lying the land appraisal process. So a location that is very likely
to be developed into residential land will most probably also have
a land price close to the observed prices for land transactions in
that land market segment as listed in Table 1. This implies that
suitability for a particular type of land use (described as a + b ⁄ Xcj

in our regression analysis) is equivalent to the observed bid price
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for that type of use. We apply this assumption to redefine the prob-
ability that a location is being used for a specific land-use type:

P0cj ¼ eminfBj�ðaþb�XcjÞ;Bjg 1þ eminfBj�ðaþb�XcjÞ;Bjg
� ��

ð2Þ

In which:

P0cj is the bid-price related probability for cell c being used for
land-use type j.
Bj is the bid price for land-use type j as listed in Table 1.
The minimum value of either Bj ⁄ (a + b ⁄ Xcj) or Bj is selected to
make sure that the suitability values for a particular type of land
use do not exceed the bid prices for that land-use type. By way
of example, the left hand side of Fig. 1 shows the local land suit-
ability values for urban areas as based on the reconstructed bid
price for urban land following the statistics-based approach
described in this section. The next section will describe alternative
utility-based methods to define spatial patterns in bid prices.

2.3. Utility-based definitions of land-use specific bid price patterns

Suitability values for different types of land use can also be
inferred from economic analysis that describes the utility of land
for specific purposes, for example, by revealing the investment
behaviour of real estate developers or farmers. Currently available
micro-level data offer interesting opportunities to link local bid
prices for different types of land to spatially explicit land-use mod-
els (Dekkers & Rietveld, 2011, chap. 9). In this paper, we use a
hedonic analysis of house prices to describe spatial variation in
expected bid prices (and thus suitability) for urban land and apply
the net present value method to define the value of location for
agricultural land.

To obtain a bid price for urban land that is closely related to
observed (residential) land values we have calculated implicit resi-
dential land values using the approach described by De Groot
(2011), De Groot, Marlet, Teulings, and Vermeulen (2010). This local
land value is calculated following a hedonic pricing analysis of house
transactions (i.e. excluding apartments) for the Netherlands in the
period 1993–1999 using transaction data provided by the Dutch
Association of Real Estate Brokers (NVM). The hedonic pricing
method is a regression technique that allows distinguishing the
Fig. 1. Suitability for urban area described as bid-price linked to the spatial explanation o
land values and a conversion cost on non-built-up land.
contribution of separate product components to the total product
price (Rosen, 1974). We use it to obtain the contribution of location
to the total transaction price of each sold object by controlling for
structural house characteristics. The price impact of location is
obtained as a region-specific fixed effect for each of the circa 4000
four-digit zip code areas in the country. Based on that, the land value
is computed by dividing the location component of the transaction
price by the plot size of the sold property. These individual land val-
ues are then averaged per four-digit zip code area weighting each
transaction for its plot size. For the current analysis real transaction
prices for 1999 are used, meaning that we correct for an overall
increase of house prices in the period 1993–1999. The resulting
urban land values are then used to define suitability for urban area
as a bid price following two more steps. First, the land values – that
at some inner city locations incidentally exceed 500 €/m2 – are
rescaled to a maximum of 50 €/m2 to prevent numerical overflow
errors in the subsequent simulation process. Second, we add conver-
sion costs to non-built-up land to account for the costs that are
involved in preparing land for buildings. These costs are estimated
at 40 €/m2 following a recent national report on land production
costs related to housing development projects (Keers, Van ‘t Hof, &
Scheele-Goedhart, 2013). The addition of local conversion costs
introduces spatial detail to the otherwise homogeneous zip code
areas that are used to calculate the average local land value. Fig. 1
(at right) shows the resulting spatial pattern next to a representa-
tion of bid prices that is inferred from a spatial explanation of the
occurrence of urban areas as was discussed in Section 2.2. Their
overall patterns are similar, but they differ in spatial detail and abso-
lute values. Note that negative values can occur in both approaches
at specific locations. In the utility-based approach they arise when
construction costs are higher than average residential land values
in a region. In the statistics-based approach to define bid price pat-
terns they result from a local dominance of explanatory variables
that have a negative influence on the occurrence of urban areas.
While such negative bid prices will not occur in reality they do
reflect locations where urban development is unlikely due to limited
or even negative net benefits.

To describe agricultural land values we apply the net present
value (NPV) approach. This is a standard method to calculate the
expected net economic benefits of long-term projects by measur-
ing discounted time series of expected cash flows. The net present
f the occurrence of this land-use type (left) and as bid price inferred from residential



E. Koomen et al. / Computers, Environment and Urban Systems 50 (2015) 1–14 5
value that a farmer can expect by producing a certain commodity
on a land parcel depends on the specific costs to produce that
commodity, the market prices of products and co-products and
the yields that can be obtained. The yields are related to the
biophysical properties of that parcel. When confronted with the
decision to buy land for a particular type of use, the net present
value can be considered to represent the maximum price a farmer
can bid for land without making a loss. This idea is similar to the
classic agricultural economic theories of Ricardo (1817), Von
Thünen (1826) that state that the land rent at a certain location
is equal to the yearly net profit at that location. Farms can be
regarded as long-term economic enterprises, involving capital
budgeting decisions according to required investment (e.g. in
facilities and commodity-specific machinery) and expected
future revenues (Barlowe, 1972; Plantinga, Lubowski, & Stavins,
2002; Schatzki, 2003; Van der Hilst et al., 2010). Therefore,
instead of considering a single yearly rent we now aggregate the
total profits over the life time of a production system to come to
a bid price.

In this study we calculate the net present value of agricultural
production systems (in our case corresponding to types of
agricultural land use) as follows:

NPVcj ¼ �Invcj þ
Xn

y¼0

Rcjy�Ccjy

ð1þ rÞy
ð3Þ

In which:

NPVcj is the net present value derived from land-use j in cell c in
year 0.
Invcj are the initial investment costs (e.g. land, new machinery,
buildings and facilities) of production system j in cell c in year 0.
Rcjy are the annual gross revenues of production system j in cell
c in year y.

Ccjy are the annual total costs of production system j in cell c in
year y consisting of field operation costs, input costs, fixed costs,
storing costs and transportation costs.
r is the discount rate.
n is the lifetime of the project in number of years.

To come to a location-specific assessment of the potential gross
revenues for a specific production system (Rcjy) this approach
relies on a cell-based description of biophysical suitability in
combination with the maximum attainable yields per hectare
and commodity prices:
Table 2
Explanatory variables used in regression analysis including descriptive statistics.

Variable

Economics (location preference and externalities)
Attractivity of surrounding landscape (expert judged; Roos-Klein Lankhorst et al. (20
Urban facility level (presence of cultural facilities, retail outlets, hotels, restaurants, b

500 m grid)
Euclidean distance any station 2002 (cut off at 10 km in analysis)
Euclidean distance IC stations 2004 (cut off at 25 km in analysis)
Euclidean distance highway exits 1991 (cut off at 5 km in analysis)
Travel distance to Amsterdam airport based on 500 m grid (cut off at 25 km)
Travel distance to Rotterdam harbour based on 500 m grid (cut off at 25 km)

Biophysical conditions
Soil subsidence due to peaty soil
Yield loss agricultural production (for grassland; Van Bakel et al. (2007))
Policy
Inside National Ecological Network (defined in 1990; this policy concept is discussed
Inside Green Heart restrictive policy zone VROM (1989)
Inside Buffer zone restrictive area (VROM (1989); the objectives and effectiveness of

discussed by Koomen, Dekkers, and Van Dijk (2008))
Rcjy ¼
Xn

k¼1

ymk � yrck � pk ð4Þ

In which:

k is a commodity produced in production system j.
n is the total number of commodities produced in production
system j.
ymk is the maximum attainable yield of commodity k under
optimal biophysical conditions.
yrck is the yield reduction of commodity k in cell c.
pk is the market price of commodity k

To describe local yield reduction per commodity (yrck) we fol-
low the most recently described relationships between soil type,
groundwater table and agricultural production for the Nether-
lands (Van Bakel, Van der Waal, De Haan, Spruyt, & Evers,
2007). These relationships are applied to detailed soil and
groundwater level data sets and express the fraction of the max-
imum attainable yield that can be obtained at locations where
biophysical conditions are not optimal for that commodity. These
maps are also applied in the regression analyses that explain
land-use patterns (Table 2). We considered an annuity time
period of 20 years as this is a common time horizon in other
cash-crop studies (Kuhlman, Diogo, & Koomen, 2013;
Stonehouse, Kay, Baffoe, & Johnston-Drury, 1988; Van der Hilst
et al., 2010). Furthermore a discount rate of 5.5% is assumed,
which is considered to be a realistic interest rate for farmer loans
(De Wolf & Van der Klooster, 2006).
2.4. Implementing the suitability definitions in a land change model

The proposed suitability definitions are applied in Land Use
Scanner, a local land change model rooted in economic theory that
has been applied in a large number of policy-related research pro-
jects in the Netherlands and abroad. (Hilferink & Rietveld, 1999;
Koomen and Borsboom-van Beurden, 2011). The model is particu-
larly useful for this purpose as it provides an integrated outlook on
land use and has a very flexible framework that allows different
model specifications to be tested. This makes it possible to cover
a range of urban, natural and agricultural land-use types simulta-
neously and centre the modelling process on the different defini-
tions of suitability for the distinguished types of land use. The
model’s basics and recent calibration have been described exten-
Unit Range Mean

02)) Scalar 1–11 7.7
ars and historic houses in 2002 in Index 0–87 0.5

km 0–34.0 7.2
km 0–46.4 14.3
km 0–40.0 7.7
km 0–226.2 119.8
km 0–268.2 126.3

Scalar 0–10 0.3
Scalar 0–20 3.9

by De Jong (2009)) Dummy (0/1) 0.4
Dummy (0/1) 0.2

Green Heart and Buffer zones are Dummy (0/1) 0.1
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sively elsewhere (Koomen, Hilferink, & Borsboom-van Beurden,
2011, chap. 1; Loonen & Koomen, 2009).

The model employs a logit-type approach – derived from dis-
crete choice theory and equivalent to the setup of logistic regres-
sion analysis – that allows modelling the choices made by actors
between mutually exclusive alternatives (McFadden, 1978). When
considering land-use related decisions, this approach explains the
probability that a certain use is chosen for a particular location,
based on the utility of that location for that specific type of use,
in relation to the total utility for all possible uses. In land-use mod-
elling the economics-based concept of utility is generally replaced
by the more general term suitability. This suitability is a combina-
tion of positive and negative factors that are usually combined
using statistical analysis, expert knowledge or scenario-based
assumptions. We now define suitability as an actual utility in
terms of approximate benefits and costs. In this way suitability
can be interpreted as the bid price a potential user is willing to
offer for a location.

This basic model is constrained by the overall demand for each
land-use function, and the amount of land that is available. Impos-
ing these two conditions results in a doubly-constrained logit
model in which the expected amount of land in cell c that will
be used for land-use type j is essentially described by the formula:
Mcj ¼ aj � bc � eðb�ScjÞ ð5Þ

In which:

Mcj is the amount of land in cell c expected to be used for land-
use type j.
aj is the demand balancing factor that ensures that the total
amount of allocated land for land-use type j equals the sector-
specific claim.
bc is the supply balancing factor that ensures that the total
amount of allocated land in cell c does not exceed the amount
of land that is available for that particular cell.
Scj is the suitability of cell c for land-use type j based on, for
example, local physical properties and operative policies.
b is a scaling parameter that specifies the importance of the
suitability value that is usually left at a value of one.

An iterative process is followed to find the appropriate aj values
that meet the demand of all land-use types as is described in detail
elsewhere (Dekkers & Koomen, 2007, chap. 20; Hilferink &
Rietveld, 1999). In fact, this iterative approach simulates a bidding
process between competing land users (or, actually, land-use clas-
ses). Each use will try to get its total demand satisfied, but may be
outbid by another category that derives higher benefits from the
land. In a simplified way, the model thus mimics the land market.
The land-use specific bid prices (Bj) included in Eq. (2) to rescale
the statistics-derived suitability values for specific land-use types
fit very well with this approach and can be considered as a land-
use specific replacement of the b scaling parameter described
above. Thus, by connecting bid price based suitability definitions
and a discrete choice theory-based algorithm, it is possible to
describe the land market clearing process: a land seller compares
alternative bids and sells to the actor with the highest bid,
thus maximizing both revenue of sellers and utility of buyers
(Martinez, 1992).

The model application used for testing the various definitions of
land suitability has a resolution of 100 m and distinguishes 11
types of land use of which 7 are endogenous (location simulated
by model) and 4 exogenous (location is fixed). Land-use model
applications tend to limit the number of land-use types in simula-
tion to those main categories that characterise spatial diversity, are
expected to show changes, have relevance to the topic of a specific
study (e.g. climate adaptation, flood risk or environmental impact)
and are manageable in terms of model specification and perfor-
mance. The selected seven endogenous land-use types (listed, for
example, in Table 5) are representative of typical Land Use Scanner
applications and range from urban area, business estates, through
three types of agriculture to recreation and nature. Their develop-
ments are driven by a range of different driving forces, providing
an interesting case study for our validation of different methods
to define land suitability. As we use the exact amounts of land
per type of use as exogenous input for both years of our simulation
(1996 and 2008) we only validate the spatial pattern of the alloca-
tion process. While interpreting the validation outcomes it is
important to note that simulation does not directly prescribe cur-
rent land use at specific locations, although reference to local land
use is implicitly incorporated in several explanatory variables and
the specification of conversion costs. The simulation process basi-
cally starts using a blank map and directly tries to find optimal
locations for each land-use type for the selected year.

In essence, our approach aims to mimic a land market in which
land-use classes fulfil the role of buyers, yet it differs from agent-
based models that simulate the behaviour and interactions of
actors on the land-use system. Typically, the unit of analysis in
such models represents a farm, plot or census tracts that matches
with the assumed agents of land-use change. The advantage of that
approach is the ability to incorporate social processes and
non-monetary influences on decision-making and to dynamically
link social and environmental processes, thus expressing the
co-evolution of the human and landscape systems based on the
interactions between human actors and their environment (Le,
Park, Vlek, & Cremers, 2008; Matthews, Gilbert, Roach, Polhill, &
Gotts, 2007; Parker, Manson, Janssen, Hoffmann, & Deadman,
2003). These models are well-equipped to analyse the impact of
socio-economic processes at the level of individual actors, for
example, to characterise processes of change in farm structure or
concentration of production (Bert et al., 2011). However, large
amounts of data are required to build a well-parameterized model
of decision-making for large areas and since the number of poten-
tially interacting agents and environmental factors is extremely
large, calibration is often too complex and quantitative validation
procedures can become intractable (Batty, Desyllas, & Duxbury,
2003; Brown, Page, Riolo, Zellner, & Rand, 2005; Li, Brimicombe,
& Li, 2008; Robinson et al., 2007). Therefore, agent-based models
have thus far mainly been implemented in simulating local to
regional land-use change processes (e.g. Castella & Verburg,
2007; Le et al., 2008; Schreinemachers & Berger, 2011; Valbuena,
Verburg, Bregt, & Ligtenberg, 2010).

2.5. Evaluating the different land suitability frameworks

To assess the performance of the proposed monetary suitability
framework in reproducing observed land-use patterns, the simula-
tions resulting from this approach are compared with two model
runs that are based on statistically inferred land-use suitability
definitions common to many land-use models. A pixel-by-pixel
based map-comparison method is applied to assess the degree of
correspondence of the different simulated land-use patterns with
observed patterns.

The statistics-based definitions of land suitability that are used
as reference points in our assessment follow binomial logistic
regression analyses and multinomial logistic regression analysis.
Both approaches are applied to explain the presence of a land-
use type at a certain location based on the explanatory factors
listed in Table 2. Tables 3 and 4 summarise the results of both
regression analyses. Compared to binomial regression analysis,
multinomial regression has the advantage of describing the rela-
tive importance of suitability factors across different land-use



Table 3
Binomial regression results.

Urban area Business estate Recreation Grassland Arable farming Greenhouses Nature
Nagelkerke pseudo R2 0.496 0.293 0.079 0.258 0.209 0.279 0.675

Variable in equation B S.E. B S.E. B S.E. B S.E. B S.E. B S.E. B S.E.

Constant 1.982 0.036 �0.195 0.061 �8.796 0.116 �8.246 0.036 0.282 0.027 3.678 0.111 �9.875 0.086
Attractivity landscape �0.553 0.001 �0.443 0.002 0.681 0.006 0.389 0.001 0.044 0.001 �0.187 0.003 0.856 0.003
Urban facility level 0.149 0.001 �0.089 0.001 0.053 0.003 �0.204 0.002 �0.186 0.002 �0.268 0.006 �0.003⁄⁄ 0.003
Dist. any station (<5 km) �0.085 0.001 �0.057 0.002 0.012 0.002 �0.070 0.000 0.115 0.001 �0.005⁄⁄ 0.004 0.028 0.001
Dist. IC station (<25 km) �0.023 0.000 0.000⁄⁄ 0.001 0.010 0.001 �0.023 0.000 0.037 0.000 �0.101 0.002 0.014 0.000
Dist. motorway exit (<5 km) �0.089 0.002 �0.155 0.003 �0.123 0.005 0.076 0.001 �0.013 0.001 0.249 0.007 �0.080 0.002
Dist. Amsterdam airport �0.006 0.001 �0.026 0.002 �0.077 0.004 0.152 0.001 �0.099 0.001 �0.154 0.002 �0.020 0.003
Dist. Rotterdam harbour 0.001⁄⁄ 0.001 �0.027 0.001 �0.035 0.002 0.058 0.001 �0.021 0.000 �0.179 0.001 �0.002⁄⁄ 0.001
Soil subsidence in peat area �0.204 0.004 �0.244 0.008 �0.189 0.008 0.281 0.001 �0.089 0.002 �0.138 0.014 �0.425 0.003
Yield loss Grassland 0.024 0.001 �0.010 0.002 0.136 0.003 0.062 0.001 �0.234 0.001 �0.343 0.007 0.223 0.001
Nat. ecological network (1) �1.382 0.014 �1.949 0.045 �2.159 0.026 �1.959 0.004 �1.664 0.006 �3.439 0.175 3.875 0.006
Green heart (1) �0.162 0.012 0.210 0.023 �0.719 0.034 0.947 0.007 �0.652 0.008 1.064 0.033 �1.474 0.018
Buffer zone (1) 0.195 0.019 �0.691 0.057 0.553 0.041 0.226 0.012 �0.043 0.016 �0.196 0.045 0.375 0.022

Coefficients indicated with ⁄⁄ are not significant, all others are significant at 0.01% level.

Table 4
Multinomial regression results using grassland as reference category – Nagelkerke pseudo R2: 0.660.

Urban area Business estate Recreation Arable farming Greenhouses Nature

Variable in equation B S.E. B S.E. B S.E. B S.E. B S.E. B S.E.

Constant 9.621 0.053 8.444 0.096 �4.819 0.126 5.455 0.040 11.761 0.197 �5.312 0.092
Attractivity landscape �1.121 0.002 �1.234 0.003 0.568 0.007 �0.305 0.001 �0.945 0.004 0.755 0.003
Urban facility level 0.273 0.002 0.191 0.002 0.204 0.004 0.038 0.002 0.01⁄⁄ 0.006 0.102 0.004
Dist. any station (<5 km) �0.042 0.001 �0.043 0.002 0.044 0.002 0.108 0.001 0.024 0.004 0.051 0.001
Dist. IC station (<25 km) �0.010 0.000 0.002⁄ 0.001 0.020 0.001 0.034 0.000 �0.079 0.002 0.022 0.000
Dist. motorway exit (<5 km) �0.121 0.002 �0.205 0.003 �0.148 0.005 �0.04 0.001 0.163 0.007 �0.096 0.002
Dist. Amsterdam airport �0.106 0.002 �0.125 0.002 �0.168 0.004 �0.166 0.001 �0.243 0.003 �0.086 0.003
Dist. Rotterdam harbour �0.043 0.001 �0.064 0.001 �0.062 0.002 �0.051 0.001 �0.204 0.001 �0.024 0.001
Soil subsidence in peat area �0.273 0.004 �0.366 0.009 �0.257 0.008 �0.147 0.002 �0.218 0.014 �0.451 0.003
Yield loss Grassland �0.014 0.001 �0.031 0.002 0.106 0.003 �0.205 0.001 �0.361 0.006 0.183 0.001
Nat. ecological network (0) 0.506 0.016 1.171 0.046 0.838 0.026 0.332 0.006 2.543 0.175 �3.762 0.006
Green Heart (0) 0.519 0.013 0.276 0.024 0.972 0.034 0.854 0.008 �0.548 0.033 1.583 0.017
Buffer zone (0) 0.054⁄ 0.022 0.908 0.058 �0.365 0.042 0.338 0.017 0.264 0.046 �0.307 0.022

Coefficients indicated with ⁄ are significant at 0.05 level, ⁄⁄ indicates not significant, all others are significant at 0.01% level.
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types (Chomitz & Gray, 1996; Dendoncker, Bogaert, & Rounsevell,
2007, chap. 7; Lesschen et al., 2005). It has the following basic
formulation that is essentially the same as the logit formulation
underlying the Land Use Scanner model:

Pcj ¼ eðaþb�XcjÞ
Xn

i¼1

eðaþb�XciÞ

,
ð6Þ

In which:

Pcj is the probability for cell c being used for land-use type j.
a is a constant.
b is a vector of estimation parameters for all variables X.
Xcj is a set of location factors (explanatory variables) for cell c for
land-use type j.
Xci is a set of location factors for cell c for all (n) land-use types i.

The suitability maps resulting from multinomial logistic regres-
sion are related and essentially follow the same scaling. Binomial
regression lacks this advantage, but is more flexible in its applica-
tion: different factors can be applied per land-use type and for the
(renewed) analysis of a new land-use type it is not necessary to
assess all other land-use types as well. Because binomial regression
provides separate equations that each describe the most probable
location for a particular type of land use, this approach is also used
in this study in combination with different utility-based
approaches to define suitable locations for specific types of land
use.

As measure of comparison we calculate a degree of correspon-
dence Cj that compares the ratios of simulated and observed land
use per cell as follows:

Cj ¼ 100� 100
RcjMcj � Ocjj=2

RcOcj

� �
ð7Þ

In which:

Cj is the degree of correspondence for land-use type j expressed
as percentage.
Mcj is the simulated amount of land in cell c for land-use type j.
Ocj is the observed amount of land in cell c for land-use type j.

The degree of correspondence equals 100% when the amount of
allocated land is equal to the observed amount in every cell. Con-
versely, the degree equals zero when none of the allocated amount
of land is present in the corresponding cells with observed land
use. If we would have considered all allocation differences here
without dividing them by two, the share of correspondence could
theoretically range to �100% when all allocation would take place
at wrong locations. In addition a weighted average degree of corre-
spondence is computed that takes the relative importance of each
land-use type into account in terms of its share in the total amount
of observed land. This simple map comparison measure is easier to
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comprehend than other more complex comparison methods that
deliver, for example, (Fuzzy)Kappa statistics or use the probabili-
ties underlying the land-use patterns (De Pinto & Nelson, 2006;
Hagen, 2003; Munroe & Muller, 2007; Pontius, Huffaker, &
Denman, 2004; Visser & De Nijs, 2006). The use of such simple,
intuitive measurements for assessing location disagreement was
recently advocated by one of the initiators of kappa-indices
(Pontius & Millones, 2011).
3. Validation results

We compare the performance of Land Use Scanner in simulating
land-use patterns according to different specifications of local land
Fig. 2. Depiction of simulated and observed land use for 2008 for part of the Netherlands
definitions listed in Table 5. This representation simplifies the underlying data that descr
model. In theory, the dominant type of use may cover only slightly more than 1/11 = 0.0
urban area or grassland) are overrepresented. Hence, we use land-use type specific s
subsequent figures.
suitability with observed land use for 1996 and 2008. Figs. 2, 3 and
4 provide a spatial representation of selected simulation results
including a comparison of simulated and observed land use. Table 5
lists the degree of correspondence between simulated and
observed land use for the various model specifications and shows
that the land-use types whose spatial distribution can be explained
reasonably well with statistical analysis (e.g., urban area and nat-
ure) are also simulated reasonably well by the model. Other
land-use types, especially those that are dispersed across the coun-
try and/or that occur less frequently (e.g., business estates, areas
for recreational use and greenhouses) are more difficult to simulate
correctly. A possible solution would be to subdivide these catego-
ries into internally more consistent types of land use that have a
less ambiguous spatial distribution. For example in the case of
. The maps show predominant land use per grid cell for the six alternative suitability
ibe an amount of land per cell for each of the 11 land-use types distinguished in the
9 hectares. Land-use types that, on average, cover most, but not all of a cell (such as
imulation results per cell to evaluate model performance as is illustrated in the



Fig. 3. Comparison of simulated and observed urban area for 2008. The maps show where simulation results in more (red) or less (green) urban area than the 2008 reference
map included in the top-left corner. The latter map also contains a fraction per cell and applies the same colour representation as the difference maps on the observed amount
of urban area in 2008. Yet, the observed urban area has a very distinct appearance: cells are either mostly urban, or not urban at all. The simulation results following the bid
price based suitability definitions (2a–2d) correspond more to this representation than the statistics-based suitability definitions (1a and 1b). The maps, furthermore,
highlight spatial differences between the various suitability map definitions that relate to the inclusion of specific elements. Alternatives 2b and 2d, for example, include
reference to residential land values which – compared to the other simulation alternatives – leads to less deviation from the observed urban area. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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business estates distinguish between industrial sites, logistic cen-
tres at harbour locations and area that primarily consist of offices.
This might improve the explanation of their current spatial distri-
bution (and hence their performance in simulation) but introduces
additional complexity in defining future developments in terms of
changes in total area and preferred location for these more detailed
types of use; a prerequisite for typical model application studies.
Table 5 also makes clear that limited difference exists between
the multinomial and binomial logistic regression specifications of
suitability. This is somewhat surprising as the multinomial logistic
regression results were expected to better capture the relative
importance of suitability factors for different types of land use.
Another obvious conclusion from the table is that performance
decreases over time; based on statistical analysis it is more difficult
to correctly simulate land-use patterns for a future year (2008)
than for the year on which the description of suitable locations is
based (1996).

When we look at the performance of the land-use simulations
following the binomial regression based suitability values that
were rescaled to bid prices (alternative 2a in Table 5) we find that
this approach performs better for all individual land-use types. So
apparently the relative competitiveness of these land-use types as
reflected in observed bid prices is a useful criterion to include in
their simulation. Performance improves even further when a land



Fig. 4. Comparison of simulated and observed grassland for 2008. The figures show that the simulation results based on suitability definitions that include a net present value
assessment for agricultural production systems (2c and 2d) correspond best to observed grassland.
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value based description of urban bid prices is added to this
approach. Interestingly enough the better fitting description of
suitability for urban areas also improves the ability of the model
to simulate correct locations for business estates and green-
houses. So by pinpointing more correct locations for urban area
the model is better able to locate these other land-use types at
their actual location, indicating that these types of land use
compete for similar locations in the simulation process. The
simulation alternatives that consider the net present values for
agricultural types of land use (alternatives 2b and 2c in Table 5)
show the relevance of this approach for understanding the spatial
distribution of these types of land use. Especially for grassland
the current description of the net present values for this type of
farming seems to be well-related to its spatial distribution. At
the same time the performance of other land-use types that
compete for ‘green’ space (nature and recreation) improves. The
combined use of urban land values and net present values for
agricultural land-use in defining land suitability (alternative 2d
in Table 5) performs best in our validation exercise leading to
degrees of correspondence of about 90% for the simulated
patterns of several types of land use in 1996. Similar to the
statistics-based definition of suitability, the performance drops
considerably for when 2008 land-use patterns are simulated. This
indicates that the current implementation of the factors that steer
land-use change is not complete. Yet, we believe that the pro-
posed methodology offers a good starting point to incorporate
more relevant factors. Also the simulation of recreation and
greenhouses deserves further attention as their degrees of
correspondence are only around 20–30%. The final section of this
paper provides some more general reflections on the presented
results and discusses potential improvements to the proposed
methodology.



Table 5
Comparison of simulated and observed land use for 1996 and 2008 expressed as degree of correspondence.

Statistics-based suitability definitions Urban
area

Business
estate

Recreation Grassland Arable
farming

Greenhouses Nature Weighted
average

(1a) Multinomial logistic regression 1996 52.4 16.9 2.9 64.1 49.2 11.8 67.6 57.9
2008 50.2 17.0 2.7 61.5 48.9 9.9 67.0 55.3

(1b) Binomial logistic regression 1996 54.4 11.0 2.7 65.4 50.6 10.0 70.9 59.4
2008 52.3 11.1 2.5 62.8 50.1 8.4 70.2 56.7

Bid price based suitability definitions
(2a) Binomial regression based suitability rescaled

to bid prices
1996 60.6 22.1 6.8 67.2 53.3 13.1 72.0 61.9

2008 59.3 20.2 6.6 64.8 52.7 10.5 71.4 59.5
(2b) As 2a with urban area bid price based on

residential land values
1996 91.2 52.8 7.4 68.5 54.7 24.3 72.2 66.5

2008 83.0 49.3 7.0 66.0 54.1 20.2 71.5 63.6
(2c) As 2a with arable farming and grassland bid

price based on NPV
1996 66.0 23.3 18.5 93.6 84.6 18.2 86.6 85.2

2008 63.8 21.4 16.4 82.8 69.1 12.3 83.7 74.0
(2d) As 2a with urban area, arable farming and

grassland bid prices
1996 91.8 60.3 20.7 94.0 86.6 36.8 86.7 89.2

2008 83.4 54.6 17.5 82.8 71.0 24.3 83.5 77.5
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4. Conclusion and discussion

The objective of this paper was to bring together different
approaches to explain land-use patterns and test the merits of a
new integrated utility-based approach to define local land suitabil-
ity by comparing its performance in reproducing observed
land-use patterns with often applied statistics-based methods.
From the presented validation exercise that simulated 1996 and
2008 land-use patterns in the Netherlands we conclude that the
proposed bid-price related definitions of land suitability outper-
form classic, purely statistics-based definitions. So integrating
inductive and deductive analysis indeed holds promise for improv-
ing land-use modelling performance as was suggested by other
scholars that experimented with combining these different types
of analysis (Castella & Verburg, 2007; Overmars, Verburg et al.,
2007). Adding investment costs on land-use conversion to define
the change resistance of existing land-use patterns greatly helped
to improve the performance of our simulations as was also found
by, for example, De Pinto and Nelson (2009). Such references are
less specific (but certainly not absent) in our statistics-based
suitability
specification. Land-use inertia is incorporated in our approach in a
transparent, motivated and flexible manner that allows for an
informed combination with other references to the costs and
benefits of land-use change. Other approaches to describe resis-
tance to land-use change (often referred to as conversion elasticity)
following, for example, semi-automated procedures and expert
judgement (Engelen & White, 2008; Koomen, Koekoek, & Dijk,
2011; Verburg & Overmars, 2009) or observed past transitions (fol-
lowing the idea of Markov chains put forward by Bell, 1974) are
more difficult to combine with different aspects of land suitability
in a consistent and meaningful way.

This paper illustrated the potential of our utility-based,
multi-sector framework for local-scale land-use modelling with
assessments of urban land value and net present values for agricul-
tural production systems only. But it is also possible to incorporate
information from other research frameworks describing the utility
of land for different types of use relying on, for example, ground
rent capitalisation or capital asset pricing methods in an urban
context (Mills & Hamilton, 1994), alternative economic land evalu-
ation methods for agricultural types of use (Rossiter, 1995), empir-
ical-statistical explanatory models of rural or commercial land
values (Buurman, 2003; Downing, 1973) or willingness to pay esti-
mates derived from stated preference experiments when monetary
prices are scarce or absent (e.g. for natural areas, see Ruijgrok,
1999). An additional advantage of the possibility to include
monetary information in the definition of suitability for different
land-use types is that it also allows for the assessment of the
spatial impacts of specific financial policy instruments. The applied
monetary scaling allows for a more meaningful interpretation
of suitability and can be used to refer to, for example, the
implementation of local taxes on urban development or subsidies
for specific biofuel crops as was explored in a previous study
(Kuhlman et al., 2013).

Economic rationale is certainly not the only aspect that steers
land-use change. While most land users will want to maximise
utility, various factors may complicate this decision making
process. Issues related to basic assumptions in economics-based
approaches (e.g. fully informed actors, perfect competition, pres-
ence of equilibrium between supply and demand) are inherently
difficult to solve, but other factors that interfere with the economic
rationale can be addressed in utility-based approaches using
recently developed methods. Some empirical studies have shown,
for example, that farmers do not always convert land to the most
profitable production option (e.g., Isik & Yang, 2004; Plantinga
et al., 2002; Schatzki, 2003) partly because they are averse of risk
and have to deal with many uncertain factors (e.g. arising from cli-
mate sensitivity, market price volatility, political commitment to
specific targets). Option valuation methods might help to monetise
land-use conversion decision-making under uncertainty (Isik &
Yang, 2004; Schatzki, 2003; Song, Zhao, & Swinton, 2011) and
can be used in combination with net present value approach dis-
cussed in this paper. Planning regulations that formalise societal
ambitions or preferences (e.g. in the form of zoning regulations
or development plans) are another important factor in land-use
change processes that interfere with a purely utility-driven
assessment of land change processes. Such interventions can be
incorporated in our integrated approach to define suitability by
describing their expected impact on the utility of a location (e.g.
in terms of a fine when a preferred use is not allowed following
zoning regulations) or by including spatially explicit regulations
as explanatory variables in the statistical analyses that describe
spatial variation in land-use patterns (as was, for example, done
with the plan for a National Ecological Network in the definition
of suitable areas for nature).

Another option to expand our utility-based framework is by
incorporating specific reference to spatial proximity and clustering
in land-use patterns. In many land-use models this neighbourhood
effect is expressed in spatially-explicit neighbourhood rules that
help simulate realistic patterns (Van Vliet et al., 2013). Such rules
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offer a powerful, albeit mechanistic way to add spatial realism to
simulation. It is possible, however, to incorporate this concept
more formally in the statistics-based definitions of suitability dis-
cussed in Section 2.2 by applying the spatial econometric methods
that are commonly used to control for spatial autocorrelation (see,
for example, Anselin, 1988; Jacobs-Crisioni, Rietveld, & Koomen,
2014). Adding the neighbourhood effect to land-use specific
utility-based definitions of suitability (as introduced in Section 2.3)
would also call for a quantified description of the underlying logic
in spatial clustering. This is a challenging research topic that has
thus far received limited attention. Such research could focus on
the economic benefits of small-scale agglomeration or, more prag-
matically, the prescription of minimum sizes for specific spatial
developments in land-use simulation.

Other driving forces, such as implicit cultural preferences or
social factors, are less easily captured in our deterministic quanti-
tative approach, especially when they are specific for certain
regions or societal groups and thus not reflected in our cross-
sectional analyses. A possible way to deal with the more idiosyn-
cratic preferences that result in a certain stochasticity of events
would be by adding a random component to simulation as is done
in many other operational models of land-use change (e.g., Dietzel
& Clarke, 2007; Engelen & White, 2008). Such solutions are power-
ful in generating plausible land-use patterns in which the exact
land use for individual pixels is not necessarily correctly predicted.
An alternative option would be to restrict the representation of
results to the level where relatively accurate results are obtained.
This choice can be informed by assessing model performance at
multiple resolutions following the example of Pontius et al. (2008).

The presented modelling framework relies on an external defi-
nition of the amount of land needed for the different types of use.
For the validation runs discussed here, this choice follows from our
intention to validate the ability of the model to simulate realistic
(observed) spatial patterns. This focus would be obscured by add-
ing demand sets that would not exactly match the total amounts of
land per type of use in the different validation years. External
demand sets are common to many operational local-scale land-
use allocation models as they allow for an efficient segmentation
in modelling the full chain of events that leads from global pro-
cesses to local development (Engelen, Lavalle, Barredo, Meulen, &
White, 2007, chap. 17; Lavalle et al., 2011; Verburg, Eickhout, &
Van Meijl, 2008). Regional demand sets are typically derived from
sector-specific models that describe national or global level
dynamics in demography, economy, industry, agriculture. The inte-
grated, multi-scale modelling frameworks that arise from linking
the many models addressing dynamics at different scales are effi-
cient and flexible, but often allow for limited interaction and feed-
back across scales and sectors. The approach we presented here is
no exception, as is exemplified by our sector-specific regional
demand sets. By relaxing the demand constraint in our modelling
framework (aj in Eq. (5)) we can, however, provide more flexibility
to the simulation process, giving preference to the local definition
of suitability. Thus far, we have relaxed the regional demand con-
straints by prescribing a minimum, maximum or bandwidth for
the land demand for a selection of land-use types. This approach
favours the demands of some land-use types over others and is
effective in allowing the model to find a feasible solution. Currently
we are also experimenting with simulating the competition
between different types of agricultural land use based on their
local economic potential without prescribing demands per agricul-
tural production system. Obviously, the number of potential inter-
actions in this more open approach increases tremendously when
more agricultural systems are added and more demand-related
variables are made endogenous in simulation. Adding changes in
population, for example, could lead to an adjusted demand for
agricultural products that would in turn lead to changing prices
etc. Simultaneously incorporating similar dynamics for the simula-
tion of other types of land use, would truly open Pandora’s box of
potential interactions and feedbacks. While others are encouraged
to trod this path we believe that operational, transparent and
insightful models are best developed in a more constrained setting.
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