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Chapter 1

Introduction

This chapter will review the development of e-commerce in the past years and shed light on

its particular characteristics in comparison to in-store buying. Given the increase of sales via

online channels for many vendors, we explain and discuss the need for adaptation in the lo-

gistics operations to facilitate efficient and service-oriented order fulfillment. The chapter will

introduce the major roles of commercial warehouses in supply chains and pinpoint the novel-

ties and challenges for warehouse operations being accompanied by Internet purchases. It will

further introduce the case of a library warehouse, which is used for numerical experiments in

the thesis, and will explain its distinctions but also its commonalities with e-commerce ware-

houses that make a library warehouse a suitable example for our considerations. Lastly, this

chapter will clarify the purpose of this dissertation and indicate its research contributions and

practical implications.

1.1 Today’s e-commerce business

During the last two decades e-commerce has become an essential part of the retailing industry

(Gefen, 2000; Ha and McGregor, 2013). For consumers the possibility to purchase a wide range

of products via the Internet is widely accepted and common (Ofek et al., 2011; Doherty and

Ellis-Chadwick, 2010). Besides the most obvious reason, namely the convenience to shop at

home and the accompanied time savings, the reasons for the growing number of Internet pur-

chases are manifold. Consumers are not restricted by opening hours. They can browse through

websites and place their orders whenever it is comfortable for them. The products are usually

delivered within very short delivery times and directly to the consumer’s house. Companies

permit several weeks - often even months - to return products free of charge. Online shopping
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Figure 1.1: E-commerce returns in the Netherlands, Source: Internet Logistiek: De Sleutel tot

verdere e-commerce groei, jaarverslag 2012

is very easy regarding the comparison of products (Keeney, 1999), discount offers, and prices

of different vendors. Typically even a larger product variety is offered than in in-store assort-

ments, because larger product collections are possible if the products are stored in warehouses

rather than being presented in retail stores; and a larger assortment has been found to attract

customers (Brynjolfsson et al., 2003). Moreover, services of online retailing, such as recom-

mendations of products and a variety of payment opportunities make Internet shopping very

attractive for today’s consumers.

High speed Internet connections in private households have facilitated this strong growth

of e-commerce, which, therefore, has a relatively short history. For example, Figure 1.1 shows

the development of the e-commerce growth in sales in The Netherlands since 2007 showing an

increase of 96% within five years. This strong increase can also be observed in other countries.

Considering the logistics perspective, the increase of Internet sales has led to changes in

the fulfillment of demand. Companies’ supply chains have to adjust to the transition from

processing large stock-keeping units (SKU) for in-store buying toward dealing with numerous

small orders to be delivered to single end customers. Next to that, online retailing has raised

the amount of product returns for which optimal processing channels still have to be designed.

The underlying supply chain concepts differ considerably from traditional supply chains of

in-store buying. Burt and Sparks (2003) list the major characteristics of e-retailing. Those in-

clude the opportunity to operate through multiple marketing channels, new forms of non-price

competition (e.g., website quality and delivery times), and the central importance of customer

loyalty. Logistics operations obviously become more complex given highly demanding cus-
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tomers. The storage of goods in external distribution centers might be employed to save time

and costs. However, in this case time and cost restrictions are not only issues of single com-

panies, but also there is an impact on their business partners being responsible for production,

supply, and replenishment. Given the convenience for the customer to choose products from

the collections of many providers at the time, competition is higher and the need to excellent

service performance has become inevitable for maintaining a competitive position.

These circumstances motivate and require a reconsideration and potentially adjustments

of the operational processes within supply chains of e-commerce businesses with respect to

efficiency-based and service-oriented performance measurement. A central component of e-

commerce supply chains are the warehouses in which products from various manufacturers

and suppliers are stored, picked, consolidated, packed and bundled for shipment. This thesis

will focus on aspects that have an impact on warehouse performance in retail supply chains.

Before we discuss those in more details we illustrate the problem of numerous product returns

being one of the major challenges that emerged in the course of e-commerce growth. Product

returns will therefore be a central issue of this work.

1.2 Customer order returns

The convenience to shop online is usually accompanied with the opportunity for customers to

send arbitrarily many products back to the warehouse within a certain time period after deliv-

ery. In most cases customers have the right to return products by law within a certain period,

or when the product is damaged or mistakenly delivered. However, many vendors also use

their return policies to create a competitive advantage by offering very flexible return policies

such as returns guarantees long after the order, free of costs, and without the request for return

reasons. Generous return polices have been shown to serve as incentives for customers to order

products, since all undesired deliveries can always be sent back. Chang et al. (2013) recently

found a strong positive effect of good return policies on consumer trust; already Ramanathan

(2011) confirmed a strong effect of good return policies on customer loyalty.

In spite of the advantages that product return policies have for companies to attract cus-

tomers, the actual product returns are problematic from a logistics perspective. Mostard and

Teunter (2006) reported that return rates can be as high as 75% depending on the product cate-

gory. These products have to be unpacked, inspected, repackaged or discarded, and reinserted

in the warehouse stock before they can be resold (Su, 2009). Next to that, product returns

cause additional inventory holding costs as long as they are not available for purchase again.

If a product is not reincorporated in the warehouse stock yet, it can usually not be ordered by
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other customers, since the allowed time windows for order picking are very tight and those

deadlines cannot be met if a product are not at its designated storage location. Quick and

reliable inventory updates therefore should include the returned products, and thus assist in

maintaining a good overview of the collection in stock which allows for smart replenishment

policies, while avoiding obsolescence and stock-outs. Product returns are causing high oper-

ational costs (Shulman et al., 2010), so that the high return rates have become problematic for

online vendors. Nevertheless, many researchers remark that product return issues have not

been studied extensively in the past (Bonifield et al., 2010) and that the impact of returns is ig-

nored or not well-understood yet (Mollenkopfa et al., 2011). Also, Bernon et al. (2013) suggest

to improve the product return processing.

As indicated above, many of the problems accompanied with product returns occur in the

logistics processing. With respect to shipment, companies have to develop low-cost policies

to transport the products back to the warehouse. For the convenience of the customers the

return shipment is often arranged by a third party and at the expense of the vendor, so that

the customer can easily bring the package to a post office in the neighborhood or arrange that

the package is picked up at the customer’s house. When the returned product arrives at a

warehouse it has to be processed. It might be prepared for reorder, repackaged, shipped to

the manufacturer, inspected, or even discarded. Thereby the processing of returns often inter-

feres with the remaining warehouse operations to handle the outgoing orders. Small numbers

of returns might be handled with auxiliary cost and labor effort in order to maintain efficient

and undisturbed operations for the outgoing flow of customer orders. Yet if the number of

returns is very high, this option might become enormously expensive. Therefore, the first three

research projects in this thesis deal with operational methods for warehouses that face a large

number of product returns. We suggest methods to integrate returns in an efficient manner

with the classical operations to fulfill customer orders whenever this is appropriate. The fol-

lowing section provides a more detailed explanation of the tasks and operations of and within

a warehouse, which will reveal the opportunities to deal with product returns by combining it

with customer orders.

1.3 Warehouses

Warehouses are a central component in e-commerce supply chains. Many webstores are sell-

ing products from different manufacturers and work with supplying business partners so that

the assortment of offered products is brought together in a warehouse. The warehouse is re-

sponsible for inventory management and replenishment of orders, as well as storing, sorting,
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and potentially repackaging of goods. Most importantly, the warehouse is managing customer

orders, which consists of picking the order, consolidation and sorting, packaging and label-

ing, as well as it is managing in the information throughout the supply chains (e.g. reporting

stock-outs or order status information for the customer). We distinguish between external and

internal tasks of warehouses, which are explained in more details in the following.

1.3.1 Warehouse tasks

Warehouses can adopt a variety of roles within a supply chain, depending on the type of prod-

ucts to be stored and the function of the other supply chain members. These roles might go

beyond the most obvious task to temporarily store goods. Heragu (2008) classifies these roles

as follows:

• Put together customer orders: This describes typical e-commerce situations in which the

warehouse stores products in large quantities received from one or multiple suppliers. In

response to customer orders these products are grouped and sent directly to the customer.

• Serve as a customer service facility: The warehouse is in charge for handling replacement or

reparation of sold goods as well as it can provide after-sales services.

• Protection of goods: Naturally an important role of warehouses is to protect the stored

products against external influences, such as theft, fire, or floods.

• Segregate hazardous or contaminated materials: It might be necessary to store some materials

apart a manufacturing system. In such cases a warehouse can be used to store these

materials.

• Perform value-added services: If warehouses receive products in large quantities (re-) pack-

aging to small quantities might be required. Also testing and inspection of the received

products can belong to a warehouse’s tasks.

• Inventory: Inventory control, safety stock decisions, and replenishment policies are tasks

that a warehouse is facing. Especially in e-commerce, the assortment of products rapidly

changes and products are often in stock in small quantities to avoid obsolescence of the

product collection. Accurate inventory management are in this case crucial to control

operation costs and to guarantee smooth operations.

Further a major role of warehouses is the grouping of inbound and outbound flows to reduce

transport costs. These roles represent the external tasks that can be assigned to a warehouse in
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Figure 1.2: Framework for warehouse design and operation problems, Source: Gu et al. (2007)

interaction with other supply chain members. Not all tasks mentioned here are applicable to

e-commerce warehouses. In this thesis, we will focus on the internal operations of warehouses,

which are here included in the first bullet, namely the temporal storage of goods and the prepa-

ration of their shipment to the customer. In the following section we discuss the operations that

are accompanied with this main function in more details.

1.3.2 Warehouse operations

The design of operational policies in warehouses has the overall goal to achieve cost efficient

fulfillment of the assigned tasks which were introduced in the previous section. Gu et al. (2007)

conduct a review on the related problems of warehouse design and operations and also illus-

trate their interaction. Figure 1.2 shows the authors’ classification of warehouse problems.

According to Gu et al. (2007), warehouse design issues concern all related aspects that shape

the warehouse in general. Those include the overall structure which includes decisions on the

material flow, a separation of the warehouse into multiple departments, and their relative lo-

cation in the warehouse. Also sizing questions, as the size of the overall warehouse as well

as size and dimensioning of the departments, are important in warehouse design. Next, the

department layout which refers to the stacking pattern, aisle orientation, length, width, and

number, as well as the location of doors are problems to be decided when designing a ware-
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house. The authors also include the equipment selection in the design which encompasses the

level of automation and the selection of storage and material handling equipment. Lastly, the

operation strategy determines a storage strategy and an order picking method.

The framework of Gu et al. (2007) also illustrates the warehouse operations which con-

trol the material flow between the receiving of goods and their shipping. With respect to the

incoming product flow (receiving) docks have to be assigned for arriving trucks and a corre-

sponding dispatching strategy must be defined. The storing of goods is distinguished into the

allocation of SKUs to departments, zoning, and the storage location assignment. The first de-

termines which SKU is stored in which warehouse department, zoning describes a partitioning

of departments into storage zones, and the last determines how a specific storage location for

products is found and whether class-based storage is implemented. The order picking process,

in turn, is distinguished into (1) batching, which groups several customer orders to one batch

which is then processed by one picker, (2) routing, which defines the sequence in which the

picker visits certain storage locations, and (3) sorting, at which the picked products are sorted

into the individual customer orders for packaging and shipping.

In Chapter 3-5 we will consider the order batching and warehouse routing problem. Both

are essential problems for the warehouse performance as they are frequently repeated opera-

tions that require a large amount of labor. According to Tompkins et al. (2010), the order picking

costs represent the highest amount of the overall warehouse operation costs. Furthermore, or-

der picking has been identified to be one of the most time consuming processes in warehouses

(Dekker et al., 2004) compared to e.g., sorting and packaging. Most importantly, batching and

routing allow for opportunities for a simultaneous handling of product returns and customer

orders which is a major goal of this research (Chapter 3 and 4). While sorting and unpackag-

ing of product returns usually have to be performed apart from the sorting and packaging of

outgoing orders, labor costs can be reduced significantly, when product returns are integrated

with orders for the batching and the picker routing. Batching problems in picker-to-parts sys-

tems, for example, are restricted by the transport capacity of the order picker. Clearly, when

integrating orders with returns, this restriction can be relaxed to twice the transport capacity, if

the route is designed accordingly. Besides, the two problems are interrelated. The performance

of a certain batching policy is obviously dependent on the routing policy that is used to retrieve

the products in the batch. In turn, the design of a method to determine short routes requires an

understanding of the characteristics of the batches to be composed. We present an integrative

approach in Chapter 5 to handle the combined batching and routing problem for picker-to-part

systems.
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1.4 Warehouses performance

Classical warehouse (design or operational) performance measures are the maximum through-

put at minimum investment and operational costs, maximum storage utilization, and mini-

mum response times (Rouwenhorst et al., 2000). With the economic changes, particularly with

the movement from in-store buying to online shopping, warehouse performance becomes mul-

tifactorial (Chen et al., 2010) and encompasses also service performance components, such as

product availability, on-time delivery, reliability, and correct delivery, are relevant as drivers of

customer satisfaction (Xu et al., 2009; Cox and Dale, 2001). Customers have high demand with

respect to service of Internet purchases. Keeney (1999) identified the fundamental objectives

to be achieved in order to maximize customer satisfaction for Internet purchases. Later, many

researchers adopt this framework (e.g., Kuo et al., 2009; Caruana and Ewing, 2010; Ahn et al.,

2004). Keeney (1999) identifies the fundamental objectives being product quality, low cost,

short time to receive a product, convenience, short time spent on purchases, privacy, shopping

enjoyment, safety, and a low environmental impact. To realize these objectives Keeney (1999)

classified auxiliary objectives for e-commerce companies. Some of them are system security,

product availability, product information, ease of use, product variety, and reliable delivery.

Inside of warehouses, operations switched to the picking of single product orders quickly, in-

stead of processing big units for shipping to stores (Chen and Wu, 2005; Hsieh and Huang,

2011), which made service performance an essential measure for warehouses operations. One

of the aims of this thesis will be to propose mathematical formulations to combine efficiency

and service measurement, so that operational policies in warehouses can be judged on both.

We propose examples for such measures in Chapter 3.

1.5 Planning under uncertainty

Logistics operations in general are facing a number of uncertainty sources which have an im-

pact on policy choices and performance. One of the most intuitive examples of uncertainty

sources in e-commerce is customer demand. Although for in-store buying actual customer de-

mand is in fact also unknown, replenishment periods, inventory control, and staffing decisions

are shaped by the opening hours of the store and shopping peak times during the day or for

specific week days are more predictable. Online shopping has diminished this predictability.

Customer orders are placed independent from opening hours, especially during weekends or

evenings (Pechtl, 2003). Additionally, highly competitive environments and the uncertainty

about the actions of competitors make it harder to predict customer demand. Gong and De
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Koster (2011) identify uncertainty sources of warehousing systems in more detail and review

models and solution approaches to deal with them. Apart from customer demand, also uncer-

tainties of the capacity side, such as equipment failure, employee absenteeism or stock-outs, are

sources of uncertainties that have to be taken into account when designing operational policies

in logistics.

For the purpose of taking uncertainties into account, several research ideas are prominent.

Robust optimization, for example, is an important tool to reduce the effect of specific uncer-

tainties (Ehrgott and Ryan, 2002; Tharmmaphornphilas and Norman, 2007). Periodic review

models are another example and suitable for problems in which rescheduling on short-notice

is an option, so that decisions for short time periods can be made when (almost) all required

information is available (Axsäter, 1993; Cachon, 2001; Tagaras and Vlachos, 2001). In Chapter

6 and 7 we discuss the literature on stochastic approaches for logistics problems in more de-

tail. When uncertainties are high and have a high impact on performance, risk assessment and

control next to the reduction of uncertainty sources can be advantageous in many situations.

If, for example, demand fluctuation is very high, any optimal staff scheduling for the average

demand might lead to high labor shortages on some days, to expensive over-staffing on other

days. In contrast, preparing for the highest demand on all days is certainly too expensive in

most situations. In such cases, an appropriate measurement of risks, which can be taken into

account in an optimization and allows for efficient and risk averse planning, is useful. In the

course of considering warehousing problems in e-commerce, Chapter 7 are, therefore, dedi-

cated to the problem of risk-averse warehouse staff scheduling by means of analyzing several

risk control strategies and their impact on the resulting staffing policies. We furthermore pro-

pose a tool that can help warehouse managers to take specific risks of their practical situation

into account.

1.6 Special case: library warehouses

For validation purposes several warehouse cases are considered in this work of which one is a

library warehouse. There are many similarities between e-commerce and library warehouses

that motivate this consideration. In many libraries even the majority of material is stored in ar-

eas which are not accessible for the customers or users. Space restrictions usually prohibit that

particularly older materials are stored in open shelf areas, since those would utilize more space

than the tight storage of books and journals in a warehouse in which only library employees

are in charge for retrieving the books in response to customer requests. In these warehouses the

processing of customer requests follows the similar pattern of order placement, potentially or-
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der batching, order picking, consolidation, and eventually product return, as it is known from

commercial warehouses. In this respect library warehouses share many operations regarding

order picking and product return handling, with the distinctive characteristic of having a 100%

return rate.

Libraries have the responsibility of collecting, organizing and preserving documents (Kohl,

2003); it is their aim to store knowledge and make it accessible over long periods of time and in

the form of very different types of storage media. The amount of published material is contin-

uously growing and even though the vast majority of new material is stored digitally, also the

physically stored collection expands and libraries are usually averse to the disposal of paper

copies (CHEMS Consulting, 2005). In contrast to commercial warehouses, libraries are there-

fore facing a continuously growing stock of several million unique items. Shared and off-site

storage are currently two popular options to achieve the best utilization of library storage space

(Seaman, 2004; Kohl, 2003; Chepesiuk, 1999). Next to the growing collections stored on limited

space, budget limitations, warehouse versus open shelf storage, and special humidity and se-

curity requirements for some very old or valuable books lead to complex storage decisions for

libraries.

Another uniqueness of library warehouses compared to commercial warehouses lies in the

enormous number of unique small items that have to be managed. Dedicated storage systems

or assigned policies are inevitable and, in contrast to commercial warehouses, commonly mul-

tiple copies of books are stored together rather than distributed over the warehouse. Since

the storage of products at multiple locations allows for more flexible order picking, the latter

is often applied in commercial settings. Moreover, library warehouses are lacking a number

of characteristics that can be typically observed in commercial settings. For example, packing

activities are less common since library customers usually are present to pick up their orders.

Also inspection and repackaging of product returns are in library warehouses less time con-

suming.

However, comparing the order picking system of commercial warehouses with libraries it

appears that the amount of materials to archive in libraries usually requires dense storing and

thereby manual order picking as it is common in many commercial warehouses, too. In the

last 30 years especially high-density storage facilities became prevalent to provide space for

enormous library collections (Nitecki and Kendrick, 2001).

Even more than other warehouse situations libraries are facing service performance require-

ments. Mostly, no third party is involved (apart from inter library loans) for customer request

processing and shipping of orders, so that the library is directly linked to its customers whose

service evaluation is thereby dominantly focusing on the library operations.
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Given the numerous commonalities with commercial settings study the case of a library

warehouse to test the performance of our batching policy presented in Chapter 3. The results

indicate that especially library warehouses can gain efficiency if they make use of the potential

to integrate outgoing and incoming material.

1.7 Aims and contribution of this thesis

Given the new developments in e-commerce, the new requirements on supply chain prac-

tices and performance, and the new challenges involved, this thesis contributes to science by

proposing promising solution approaches for several warehouse operational problems, namely

order batching, order picker routing, and staff scheduling. Batching and order picker routing

are two major operations which have a strong potential of cost savings by integrating order and

return product flows. Staff scheduling in turn is a crucial issue since labor costs and planning

uncertainties are typically high.

The overall goal of this thesis is to propose solution methods for warehousing problems that

require a reconsideration due to two substantial challenges of e-commerce, namely product

returns and demand fluctuation, which necessitate adjustments of traditional methods. To this

end the thesis is aligned to the following research questions.

1. What are suitable performance measures to account for service quality next to logistics

efficiency in warehouse operations?

2. How can a batching method be designed to integrate order picking with product returns

processing in order to utilize existing labor capacities instead of processing returns sepa-

rately?

3. If customer orders and product returns are combined in batches, what is an appropriate

method to compute efficient order picking routes through the warehouse storage area?

4. Since batching and routing method performances are interrelated an integration of the

two problems seems to be promising. How does an integrative approach have to be de-

signed to solve both problems simultaneously and for which situations is this beneficial?

5. How can risk management tools be taken into account for staff scheduling problems in

highly uncertain environments?

To answer these research questions we use quantitative research techniques by presenting

mathematical formulations of the underlying optimization problems, propose solution ap-
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proaches, and use numerical validations to evaluate the performance of our methods. Chapter

3, 4, and 5 propose solution approaches to improve and adjust the order picking to facilitate a

sophisticated handling of orders and product returns. Next to a batching and a routing policy

for integrated forward and return processing, we make a first step in combining interrelated

warehouse operation problems into a single optimization by presenting a solution approach

for integrated batching and routing. All methods are tested by numerical experiments. Our

batching method, proposed in Chapter 3, is tested via simulation in comparison the practices

of a library warehouse. The routing method for joint order and return processing and the inte-

grated batching and routing solution approach are tested by means of numerical experiments.

Our decision support tool for managing risks in warehouse staff planning is derived with the

help of a numerical analysis and tested for a commercial warehouse case to demonstrate its ap-

plicability. Furthermore, we discuss practical implications and future research ideas to further

increase order picking performance in e-commerce warehouses.

Chapter 6 and 7 of the thesis will be dedicated to an uncertainty problem that warehouses

are increasingly facing in online retailing. By means of numerical experiments we analyze

the applicability of various risk optimization models, their behavior in different settings, and

their impact on monetary outcomes. Moreover, we develop a decision support tool that allows

managers to incorporate uncertainties and risks in their staff planning procedures which we

test in a case application of a Dutch commercial warehouse.

1.8 Outline of the thesis

In Chapter 2 we review the state of the art of warehouse order picking literature and thereby

provide an introduction to the warehouse operation problems that are approached thereafter.

Parts of this review are based on the research papers which we mention in the following.

Chapter 3 relies on the article Wruck et al. (2013d) and contains two new batching methods

that combine customer orders with product returns and consider the batching problem in a

time-restricted context. Chapter 4 is based on Wruck et al. (2013a) in which we revisit the order

picker routing problem and present a solution approach capable of finding routes to visit prod-

uct pickup and delivery locations in the warehouse through building routes which fulfill the

transport capacity constraint. We propose an approach to integrate the batching and routing

problem in Chapter 5, which evolved in the course of the paper Wruck et al. (2013c). Chapter 6

is dedicated to the introduction of staff planning problems under uncertainty. In Chapter 7 we

present a decision support tool for risk optimization in staff scheduling in warehouses. This

chapter is based on Wruck et al. (2013b). Chapter 8.1 is dedicated to summarizing conclusions
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and implications of the research project and indicates potential future research directions for

e-commerce.
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Chapter 2

Literature Review on Order Picking

in Warehouses

The following three chapters of the thesis are dedicated to the redesign of warehouse processes

in order to react on recent challenges that have arisen in the course of e-commerce. This chapter

aims to introduce the tasks that are typically performed in warehouses to process requests

of customers and we illustrate the wide range of warehouse decision problems that play an

important role in practice and have, therefore, been in the focus of scientific literature.

The main functions of e-commerce warehouses are the storage of goods, the assembling of

customer orders and preparation for shipping, and the inventory control (Heragu, 2008). These

tasks require numerous operations within the warehouse which are typically cost intensive for

the company. Efficiency, accuracy, and quickness are for that reason essential for the economic

success of an online retailer. To achieve these targets many decision problems that shape a

warehouse and its operations have to be considered. Sophisticated solution approaches for

complex models are crucial to facilitate well-performing warehouse operations at low cost and

are therefore often studied in the scientific literature. A thorough classification of warehousing

problems is given by Rouwenhorst et al. (2000). The authors distinguish decision problems

on three different levels, namely strategic, tactical, and operational decision level. The specific

decision problems are further divided by the authors into resource, organization, or process

related issues. In order to elaborate on each segment in more detail and to clarify the scope of

this thesis part we first provide an overview of Rouwenhorst et al.’s classification in Figure 2.1.

Strategic level decision problems have a long-term impact and are typically accompanied

with the highest costs among warehouse problems. Decisions at this level cannot be recon-
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sidered short- or medium-term and thus concern rather general decisions that shape the ware-

house process flow design and the selection of the types of warehousing systems (Rouwenhorst

et al., 2000). The process flow design determines which processes are required. The selection

of warehouse system types involves, for example, the decision on an implementation of a for-

ward/reserve storage area and whether a sorting system is required to facilitate batching.

Tactical decisions are, according to Rouwenhorst et al. (2000), for example, workforce capac-

ity selection, but also layout decisions (Roodbergen and Vis, 2006; Hassan, 2002; Önüt et al.,

2008), the storage system (Lee and Elsayed, 2005), replenishment policies (Kim et al., 2003;

Zhou, 2003; Chiang and Monahan, 2005), the dimensioning of forward, reserve, and dock area,

and the batch size. Also the selection of picking equipment and the level of automation (Baker

and Halim, 2007; Hamberg and Verriet, 2012) are tactical decisions. The warehouse problems

considered in this thesis belong to the tactical decision level as well. Decisions concerning the

particular batching method that should be used and a suitable routing policy are two tactical

decisions that we consider in this work. Order batching denotes the method to group a number

of customer orders into sets, each of which can then be picked by one order picker. Routing

in turn describes the problem of finding the shortest possible route for a given batch. Both

policies have to be designed within the constraints set by the strategic level decisions. The

routing policy, for example, is restricted by the storage layout and the arrangement of stor-

ages racks, but also by other tactical decisions, such as the availability and capacity of picking

equipment. In general, policies selected at the tactical level can be adjusted or replaced by

more suitable policies, if the outer circumstances require that. However, the tactical level en-

compasses medium-term decisions which, just like strategic decisions, cannot be reconsidered

short-term and frequently. Related literature on order batching policies and warehouse routing

methods is handled later in this chapter.

The operational level encompasses all decisions that directly affect the daily operations

within the warehouse. Examples are workforce and shift assignment to employees, task as-

signment, allocation of incoming goods (dock assignment, storage plan, replenishment task

assignment), and order fulfillment sequencing (e.g., batch formation, pick task assignment,

and route determination)(Rouwenhorst et al., 2000).

Many of those decision problems are interrelated. For example, the long-term strategic de-

cisions which specify the type of the storage, the type of sorting system (e.g., automated or

manual), and the storage unit (i.e., pallet, box, or bin) have a major impact on the tactical de-

cisions which concern, for example, equipment and workforce capacity. For example, manual

order picking requires more labor, but allows to store single products very densely to achieve

high space utilization. The decision to prefer one or the other is made at the strategic level. In
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turn, tactical decisions are influential for the decision options at the operational level, as at the

latter choices are made to control the daily operations in accordance with the organizational

and policy decisions made at the tactical level.

In the following literature review we focus on the warehouse problems which we approach

in this thesis and refer for extensive reviews on warehousing to Rouwenhorst et al. (2000), Gu

et al. (2007), De Koster et al. (2007), and Gong and De Koster (2011). A discussion of the order

batching literature is provided in Section 2.1 and Section 2.2 outlines research articles dealing

with order picker routing in warehouses. In Section 2.3 we discuss research that is dealing with

the integrated consideration of interrelated warehousing problems and Section 2.4 concludes

this chapter by summarizing the gaps in research that our review revealed.

2.1 Order batching

For the sake of clarification we begin with the definition of several terms that are often used

in the batching literature. Order batching itself is often implemented in manual order picking

systems in which order pickers are capable of transporting multiple items at the time. It de-

scribes the method to group several orders among a pool of pending orders (the order wave) into

smaller sets which an order picker can retrieve in one single route through the warehouse. A

distinction is often made between time window batching and proximity batching. The former de-

notes methods in which customer orders are batched based on their arrival times or due dates

in order to realize short processing times and on-time delivery. The latter covers batching pro-

cedures which group items based on proximate storage locations to achieve short routes. Most

literature on batching heuristics belongs to either the class of seed-order algorithms or savings al-

gorithms (Henn et al., 2010). Seed-order heuristics construct batches step by step (e.g., Elsayed

and Stern, 1983). Thereby, a (or multiple) seed order is selected to be the first order in a batch

and other orders are included until a transport capacity limit is reached or until all orders

are distributed among batches. Savings heuristics, in contrast, begin with a trivial batching

solution (e.g., each batch consists of a single order) and batches are merged or re-sorted se-

quentially and according to certain rules with the objective to minimize the overall travel dis-

tance. Lastly, we can distinguish between constructive methods and search-based methods. Con-

structive heuristics build batching solutions sequentially (for example, seed-order methods);

search-based heuristics aim to iteratively improve an initial solution by exploring solutions

in a specified search region. The majority of meta-heuristic batching approaches relies on the

latter.

The literature reveals that most batching policy designs are heuristic approaches, which is
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caused by the high combinatorial complexity of this problem. For example, the very small

sized problem to batch 100 items in batches with a maximum capacity of 5 items has 79.375.495

feasible solutions. Gademann et al. (2001) prove that the decision variant of the order batching

problem is NP-complete. For this reason optimal solution techniques are scarce and have not

been used widely in practice, because order pools of e-commerce warehouses can be very large.

Optimal approaches for the batching problem are for that reason scarce in the literature.

Armstrong et al. (1979), for example, proposed a mixed-integer model and an optimal solution

approach using Benders decomposition to solve small-sized batching problems. Gademann

et al. (2001) attempt to minimize the maximum throughput time for customer orders with a

branch-and-bound algorithm. Gademann and Van De Velde (2005) rely on a branch-and-price

algorithm and likewise solve the problem for small cases (wave size of 300 and batch size of 10

orders). Chen et al. (2005) instead use association-based clustering to maximize the similarity

between customer orders within batches. A genetic algorithm, proposed in Hsu et al. (2005),

might solve problems for larger sizes and provides near-optimal solutions. Henn et al. (2010)

present an iterated local search approach and an ant colony optimization approach. They use

S-shape and largest gap routing to evaluate the batching performance and find experimen-

tally that significantly better solutions emerge with both proposed solution approaches rather

than with constructive heuristics and basic local search methods; their iterated local search al-

gorithm also finds solutions in shorter computation times. In line with Ho et al. (2008) and

Theys et al. (2010), who combine classical warehouse-specific concepts with generally appli-

cable meta-heuristic tools to solve the warehouse routing problem, this study supports the

potential of combinations of powerful search techniques with warehouse problem characteris-

tics. Matusiak et al. (2013) present a simulated annealing algorithm which is based on optimal

precedence-constrained routing. In their experiments they obtained very small gaps to the

optimal solution for batches of three customer orders and high travel distance savings for a

real-life case. Finally, Gong and De Koster (2009) consider the problem of finding an optimal

batch size, from a logistics and customer point of view, when the order arrival process is de-

scribed by a stochastic process.

In contrast, heuristic techniques limit computation times, facilitate online implementations,

and encourage practical adoptions. Beyond intuitive priority-rule procedures (e.g., first-come,

first-served (FCFS)), there are more complex heuristic techniques that perform well. Ho et al.

(2008) consider several constructive heuristics in their attempt to minimize the total travel dis-

tance. To test the performance of these methods the authors implement largest gap routing

for a set of experiments, then combine largest gap routing with simulated annealing to deter-

mine a route for a second set of experiments. They observe that simulated annealing can help
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to improve routing sequences, which had been determined preliminarily with a constructive

heuristic. Chen et al. (2005) design a search-based order batching policy based on association

rule mining. By identifying similarities between customer orders, they aim to minimize the

similarities between the resulting batches to eventually minimize labor effort. With a fixed

routing method (S-shape routing) the authors find that their association rule batching method

significantly outperforms the straightforward FCFS method. De Koster et al. (1999) review and

test several seed-order and savings algorithms using S-shape and largest gap routing. They

compare the heuristics not only with respect to the resulting travel distance and the number of

batches formed but also with respect to robustness (i.e., for several warehouse layouts). They

conclude that smart seed-order methods substantially outperform FCFS. Moreover, the authors

propose a batching method selection tool in which they incorporate their results to identify the

most suitable batching policies for a specific warehouse setting. Further, Ho and Tseng (2006)

and Pan and Liu (1995) study the performance of multiple seed-order and accompanying or-

der selection rules. Ruben and Jacobs (1999) also compare the performance of a seed-order

algorithm with so-called naive heuristics that do not incorporate the storage location of items

when forming batches. Other authors propose some alternatives, such as Albareda-Sambola et

al.’s (2009) efficient savings algorithm that uses multiple neighborhood structures to identify

better solutions. The authors test their method for several common routing methods. These

neighborhood structures define neighbored solutions to be those solutions that result from,

e.g., removals and reinsertions of one order into another batch to decrease the travel distance.

Hwang et al. (1988) and Hwang and Kim (2005) use cluster analyses to propose other promising

techniques to solve the batching problem, whereas Elsayed et al. (1993) approach the problem

by determining not only the content of a batch but also the sequence of batches, in an attempt

to achieve just-in-time fulfillment. Finally, the heuristic of Chen et al. (2005) aims to identify

suitable batches using data mining that reveals and groups similar customer orders.

Order batching is one of the warehouse policies which allow for an integration of customer

orders and product returns. Yet to maintain short response times to customer orders new

models are required which account for time restrictions. By approaching the batching problem

with time constraints we can facilitate returns processing together with the order picking, while

performance is measured not only with efficiency indicators (as travel distance or completion

time) but also with service-oriented measures such as maximum processing times. We propose

suited models and solution methods for this problem in Chapter 3.
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2.2 Order picker routing

Routing order pickers in warehouses aims to find a sequence of locations to be visited by the

picker in order to retrieve all products in a batch. The goal is to minimize the traveled distance

and the travel time, respectively. It thereby represents a special case of the Traveling Salesman

Problem (TSP) with the particular characteristic of the warehouse layout, which specifies the

distance metric.

Order picker routing in warehouses is well studied in research (for picking activities only).

Routing problem descriptions in this context can differ in a number of warehouse characteris-

tics such as the warehouse layout, the number and location of depots, and the restrictions on

travel options through the warehouse (e.g., one-way, back and forth or effort of turns). A fun-

damental step toward optimal routing in warehouses has been made by Ratliff and Rosenthal

(1983), who propose a polynomial time algorithm to solve the routing problem in a rectangular

warehouse with one depot, multiple parallel picking aisles, and two cross aisles to optimality.

Extensions of this approach are presented by De Koster and Van Der Poort (1998) for decen-

tralized depositing and Roodbergen and De Koster (2001a) for the availability of a middle

cross aisle. Next to those optimal approaches, several research studies focus on heuristic and

meta-heuristic routing methods to find an appropriate trade-off between solution quality and

computation time. Particularly the computational effort of large-scale problems, but also diffi-

cult warehouse layouts or the irregularity of optimal routes might impede the use of optimal

routing in practice (Gu et al., 2007; Petersen and Aase, 2004). Examples of classical construc-

tive heuristic approaches can be found in Petersen (1995), Petersen (1997), and Roodbergen

and De Koster (2001b). Petersen and Aase (2004) study the effect of several classical routing

methods in combination with batching and storage location assignment policies. Theys et al.

(2010) consider multi-aisle warehouse layouts and evaluate the potential of more generally ap-

plicable solution techniques to the warehouse-specific routing problem. Using an adaptation

of the Lin-Kernighan-Helsgaun TSP heuristic the authors demonstrate that savings up to 47%

can be gained, when classical warehouse routing methods are combined with a well-designed

search-based method. The authors’ results and discussion also question the applicability of

rigid dedicated routing methods and rather recommend a focus on solution techniques based

on the specific instance rather than on the layout of the warehouse.

The warehouse routing problem with product returns, which we consider in this thesis, is

closely related to a variant of the vehicle routing problem with pickup and delivery (VRPPD) in

which vehicles serve customers with products that are initially located at a depot and products

are picked up from customers and have to be transported to the depot. The underlying met-
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ric for VRPPDs is typically the Euclidean or Manhattan distance. The VRPPD thus describes

an extension of the classical TSP, which reduces to the traditional TSP when the capacity is

not restricted (e.g., Goksal et al., 2013). The objective of VRPPDs is to route multiple vehicles

to minimize total travel distances. The VRPPD was first introduced by Min (1989) who pro-

posed a mathematical problem formulation and a sequential solution procedure suitable for

the distribution problem of a public library case. Mosheiov (1994) proposes two heuristics for

this problem. In one approach the author determines the optimal route ignoring the capac-

ity restriction of the vehicle first and proves that each of these routes can be made feasible by

choosing another starting point of the route. The second approach is based on cheapest feasible

insertion. Hernández-Pérez and Salazar-González (2004) assume that goods which are picked

up at one customer can be delivered to another customer and propose a branch-and-cut algo-

rithm to solve this problem to optimality for instances up to 75 customers. Hoff et al. (2009), Ai

and Kachitvichyanukul (2009) as well as Montané and Galvão (2006) develop meta-heuristics

based on tabu search and particle swarm optimization to approach the VRPPD. Bianchessi

and Righini (2007) conduct a performance evaluation of several constructive, local search, and

tabu search algorithms for the VRPPD and thereby focus on accuracy, computation times, and

the trade-offs between those. They conclude that a local search approach with complex and

variable neighborhoods performs best and is robust with respect to the diversity of instances.

Nagy and Salhi (2005) present and discuss heuristic algorithms by differentiating between one

and multiple depot situations. Their methods are capable of solving instances of up to 249

customers within several seconds while the results outperformed prior heuristic approaches.

Li and Lim (2001) propose a tabu-embedded simulated annealing algorithm and demonstrate

its applicability also for large problem instances. They define a variety of neighborhood struc-

tures and corresponding operators to identify promising neighbored solutions iteratively. We

design a similar procedure to solve the integrated batching and routing problem in Chapter 5.

We contribute to this research by proposing in Chapter 4 a warehouse routing method for

simultaneous order picking and return processing. In a genetic algorithm we incorporate the

specific characteristics of layouts and routing options in warehouses, to facilitate a simultane-

ous order and return flow processing in warehouses with computation times that allow for an

implementation in practice.

2.3 Integrated approaches

Many researchers recommend the integration of multiple warehouse operational problems into

a single optimization problem, because of the interdependency in their impacts on order pick-
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ing objectives (De Koster et al., 2007; Roodbergen and Vis, 2009; Rouwenhorst et al., 2000).

For example, which options exist to build efficient routes depends on the storage layout and,

in particular, on the arrangement of storage racks. Also which batching policy is possible and

promising depends particularly on the order (i.e. its due date, number of items), but also on the

available transport equipment and capacity of order pickers. Nevertheless, motivated by the

complexity of many warehouse operational problems, most research continues to approach in-

terrelated decision problems isolated and assumes that the corresponding other policy is fixed.

Wilson (1977) aims to find an integrative solution for the storage location and storage space

assignment problem and presents a gradient search procedure to solve the resulting model.

A combination of inventory management, space allocation in forward and reserve areas, and

storage area layout in one single evaluation model is proposed by Malmborg (1996), who min-

imizes the costs associated with design and operations. Hodgson and Lowe (1982) consider lot

sizing and storage space allocation at once. They aim to minimize the total material handling

costs and propose a heuristic solution method for the resulting problem. Matusiak et al. (2013)

propose an approach to solve the joint order batching and order picker routing problem for a

general warehouse layout by using an optimal routing algorithm and a simulated annealing-

based combinatorial search algorithm. Chen et al. (2010) propose an evaluative framework to

identify suitable order picking policy sets to assist a warehouse manager’s policy selection.

Tsai et al. (2008) present an approach to integrate the batching and routing problem for a spe-

cific warehouse layout by developing a multiple genetic algorithm (GA). To find an efficient

batch partitioning, they use an outer GA to identify the batch formation, and then an inner GA

to evaluate the quality of these batches by optimizing the route. However, this approach is not

designed to integrate product returns or situations in which multiple order pickers are avail-

able. In Chapter 5 we present an approach to integrate these issues together with the presence

of customer order deadlines.

2.4 Gaps in research

With the first three research projects reported in this thesis we contribute to warehouse research

in several ways:

First, with respect to batching in warehouses our review reveals a strong focus on static

models, without consideration of processing time restrictions. Most studies address the batch-

ing problem in one time step, with a wave of customer orders that arrived in the past and that

needs to be grouped into batches, and can be conducted in one order picking tour. The most

commonly used objective is solely the minimization of travel distance. Only a few research
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studies incorporate deadlines. Chen et al. (2010) account for due dates in their consideration

of demand characteristics when deciding on a suitable order picking policy set. Elsayed et al.

(1993), for example, propose a heuristic method to solve a sequencing and batching problem

for automated storage and retrieval systems to minimize earliness and tardiness of orders. Tsai

et al. (2008) adopt the same objective in proposing a multiple genetic algorithm that optimizes

batches and order picker routes simultaneously for manual order picking. These methods,

however are not applicable to simultaneously consider order and return fulfillment, for which

also time-restricted models are required in order to make use of the more flexible due date

restriction of returns. Chapter 3 and Chapter 5 contain modeling approaches which take such

time restrictions into account.

Second, as several researchers suggest (e.g., Ho et al., 2008; Theys et al., 2010) order picking

methods should not rely solely on constructive heuristics, as there is a potential to improve per-

formance by incorporating well-designed search methods. Also dedicated methods are usually

inferior in comparison with more sophisticated methods (Theys et al., 2010). Meta-heuristic

approaches represent a potential to improve order picking operations as they are capable of

incorporating warehouse-specific layout characteristics in the design of search-based solution

approaches (Theys et al., 2010). This can yield a strong performance, despite the complexity of

the problems. Examples of search-based methods are presented in Chapter 4 and Chapter 5.

Third, most solution approaches are designed to apply for only one order picker or ma-

chine. Yet in commercial warehouses multiple order pickers are processing requests simulta-

neously and when on-time fulfillment is of interest, an optimization for all order pickers can

be advantageous because, in this case, both batch content and sequencing is of interest for all

pickers. Yet models and solution approaches for this more general case are still lacking in the

literature and we present an integrative batching and routing solution approach in Chapter 5.

Fourth, with respect to product returns in warehouses in general, De Koster et al. (2002)

and Stock and Mulki (2009) conducted an exploratory study among retailer warehouses to

investigate how return handling is organized in practice. In both studies it is observed that

returns are often still processed separately, partially due to the required special treatment (e.g.,

unpacking and inspection). These studies conclude that the impact of returns on warehouse

operations still lacks investigation and they conclude that warehouses should be designed with

respect to the amount of product returns. The main focus of the research related to warehouse

operations in this thesis is dedicated to integrative approaches for forward and return product

flow handling in warehouses.



Chapter 3

Batching Methods for Integrated

Order and Return Processing

In e-commerce warehouses the products that customers order online are picked, sorted, con-

solidated, packed, and prepared for shipping. Short delivery time promises made by the com-

pany allow very limited time for these internal warehouse operations, so efficiency is crucial.

Since each customer order consists of only a few single products simultaneous order picking of

several customer orders in an efficient manner is desirable. Order batching is a popular tool to

enhance efficiency in order picking operations. It describes the method of grouping a set of pick

(and return) jobs into smaller subsets, each of which can be performed simultaneously by one

order picker. Batching can help the firm organize its order picking appropriately and besides,

it offers an opportunity to incorporate returns processing, which can be a strong advantage in

the competitively intense e-commerce environment because it can save labor time.

In Chapter 2, Section 2.1 we discussed that, despite the promise of batching to enhance per-

formance, the underlying optimization program is challenging to solve (Gademann and Van

De Velde, 2005). This applies already to the batching problem related to order picking alone,

which several research studies address (Won and Olafsson, 2012; Ho and Tseng, 2006; Ho et al.,

2008). In this chapter we show that the problem also can be solved for additionally occurring

product return flows, using optimization models with time constraints. Batching policies de-

signed solely to fulfill forward product flows suffer when return rates are high, because they

cannot differentiate between orders and returns and using those methods returns would be

processed isolated from the order picking. Yet return processing generally enjoys more flexible

time restrictions, such that the returns effectively could be included in suitable batches and be
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handled together with the order picking. With this approach, the picking process should not

be negatively affected, but return handling still takes place.

A second focal point of this chapter is the incorporation of customer orientation into the

design of efficient logistics processes. Some research recommends such multi-objective policies

(e.g., De Koster et al., 2007; Heikkilä, 2002; Tang, 2010), which perform well if they achieve

cost and labor efficiency, together with consumer satisfaction (Won and Olafsson, 2012). By

studying the batching problem in a dynamic situation, marked by time relations between job

arrivals, job fulfillment, and assigned due dates, we can use consumer-oriented objectives and

a multi-objective perspective (e.g., Heikkilä, 2002; De Koster et al., 2007; Tang, 2010).

In contrast, most prior studies consider the batching problem in a static situation without

processing time constraints (e.g., Albareda-Sambola et al., 2009; Ho et al., 2008; Bozer and Kile,

2008; Hsu et al., 2005; Chen et al., 2005; Gademann and Van De Velde, 2005). The few stud-

ies that incorporate time-oriented objectives include Armstrong et al. (1979), who attempt to

minimize throughout times, and Elsayed et al. (1993), who assign due dates to jobs and use a

penalty function for earliness and tardiness to optimize just-in-time fulfillment. Although Tsai

et al. (2008) and Won and Olafsson (2012) combine logistics efficiency and customer response

time, they assume that all customer orders arrived in the past and can be included in any batch.

Initial steps toward a dynamic problem formulation are made by Gong and De Koster (2009)

and Le-Duc and De Koster (2007) who incorporate stochastic order arrival flows. The former

try to determine the optimal batch size; the latter study the impact of batching and zoning on

order picking performance. In turn, our aim is to contribute to this research stream by deriv-

ing batching models that restrict the processing times allowed for jobs and thereby facilitate

the efficient incorporation of product returns and a focus on on-time delivery and restricted

throughput times. Those allow to find policies that match customer wishes and help firms

make reliable delivery time promises. Moreover, by improving the inventory management

through quick returns processing, the availability of products at any time should improve too,

without overloading the warehouse. Ultimately, short, dependable delivery times are possi-

ble if the batching process is organized in accordance with expected outgoing and incoming

product flows.

More precisely, we propose in this chapter two dynamic optimization models for processing

forward and return flows through job batching. As the objectives of these models, we consider

both logistic efficiency and consumer evaluations. Overall, we demonstrate that significant

savings in time and cost can result from integrating the forward and return processes. We

propose both an offline model, to evaluate solutions for a time horizon, and an online model to

make batching decisions at a certain time step. In doing so, we obtain insights into how policies
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perform over time and how to use information about fluctuations of the job arrival process. The

models apply to any warehouse setting that receives a significant amount of product returns

and uses manual order picking, such as e-commerce retailers, catalog companies and library

warehouses. For our numerical experiments, we use the case of a library warehouse. Similar

to traditional retailers, libraries are confronted with return flows that are in this special case as

large as their order flows and therefore provide a well-suited application example.

The remainder of this chapter is structured as follows: We develop our two dynamic batch-

ing models in Section 3.1 and outline advantageous performance measures. In Section 3.2 we

present a solution approach for each model. Section 3.3 is dedicated to numerical examples,

in which we show the effect of simultaneous order and return job processing as well as the

behavior of the batching process using different measures. Our conclusions are in Section 3.4.

3.1 Modeling approach

We propose two dynamic optimization models for integrated forward and return flow han-

dling that can account for customer response times and on-time delivery by employing the

different processing time restrictions for order and return jobs and can achieve short travel dis-

tances. One dynamic model pertains to an offline context and describes an entire time horizon,

such that orders and returns arrive over time, must be fulfilled over time, and have corre-

sponding due dates within a time horizon. Available solution techniques, such as savings,

neighborhood search, or genetic algorithms, cannot be applied easily in this case, because they

require feasible solutions to begin, and for models with time constraints, such solutions are not

trivial to find. As Gong and De Koster (2009) did, the offline model can be used to identify

general rules that shape the batching procedure by identifying optimal batch sizes, tour start

intervals, and conditions for including product returns.

The second dynamic model is designed for online application and makes batching decisions

at a certain time step in periodic review; its description is similar to traditional descriptions

(wave picking) of a large set of customer orders that must be grouped into batches. In con-

trast with most classical problem formulations, our online model starts with a decision about

whether a batch should be formed at all, considering all currently pending jobs and their in-

stantaneous throughput times. If a batch is formed, not all pending jobs must be included,

but they might be postponed to the next review period. For these optimization models, we

formulate suitable performance measures that should be maximized.
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3.1.1 Offline model

As we noted, many studies have formulated optimization models for the batching problem

for a wave picking situation, which is common in warehouses with many customer orders. In

an offline setting, several waves arrive at the warehouse at certain time steps within the time

horizon, so the solution of an offline optimization model can be useful to identify rules at the

tactical level that match the regular job flow. For example, the size of the waves, the jobs they

contain in terms of arrival times and types (pick or return jobs), and the time steps at which the

waves arrive at the warehouse are tactical decisions that can be made with the help of an offline

model. Taking the throughput times of all jobs into account, it might also be wise to detect and

handle peaks in the job arrival process and bottlenecks in the fulfillment process. Moreover, for

tactical decisions, such as the number of order pickers or the purchase of transport equipment,

an offline solution might reveal the effects of changes on the utilization of capacities and service

quality. However, our offline model does not include waves of jobs; rather, we consider the job

arrival process itself, across the entire time horizon, and aim to compose batches for single

order pickers. The model can be applied for one or more order pickers. It is restricted only by

the due dates of jobs and the durations of the tours. That is, each job must be fulfilled before

its due date, and a new tour of an order picker cannot start before his or her previous tour has

ended.

To develop the model, let T = {0, . . . , T} be a discrete time horizon. Jobs can arrive at any

time step in T , and an order picker’s tour can start at the specific time steps {t∗1 , . . . , t∗I } = T ∗ ⊂

T . We assume that jobs are unit-sized and that each job consists of a single product to be picked

or returned. Customer requests containing multiple products are treated as separated jobs. We

define the set of all products in the warehouse by N = {1, . . . , N} , and M = {1, . . . , M} is

the set of order pickers. Products can be ordered or returned by customers. All products to

be picked must be delivered to an i/o point in the warehouse (the depot) by the order picker;

all returned products are initially located at the depot and must be transported to their storage

location in the warehouse. Thus, an order picker’s route always starts and ends at the depot.

We define the set S = {0, 1}, where 0 denotes that a product is ordered and 1 denotes that a

product is returned. With the help of these notations, we interpret each job j as an element of

the set

J ⊂ N × T × S .

Thus, a job j ∈ J can be represented as the 3-tuple j = (nj, tarr
j , sj), where nj ∈ N specifies

the product to be picked or returned and its location; tarr
j ∈ T is the arrival time of the job; and

sj ∈ S the type of the job.
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Two types of variables describe the tour composition. First, for each time step in which a

tour can start t∗i ∈ T ∗ and the order picker m ∈ M, we define the binary variable rt∗i ,m as

follows:

rt∗i ,m =

{
0, m does not start a tour at t∗i
1, m starts a tour at t∗i

.

Second, to describe the inclusion of a job j ∈ J in a tour of order picker m starting at time

step t∗i , we use a binary variable inct∗i ,m
j . Each job has a certain due date tdue

j , depending on its

arrival time and its type. For each job j with tarr
j ≤ t∗i < tdue

j we thus can define

inct∗i ,m
j =

{
0, j is not included in the tour of m starting at t∗i
1, j is included in the tour of m starting at t∗i

.

Because logistics efficiency and customer service simultaneously influence warehouse process

optimization, it is difficult to define warehouse performance; highly efficient policies might

not imply good service performance and vice versa. We therefore develop several appropriate

objectives and determine how to combine these targets.

Minimizing travel distances is a popular efficiency-oriented objective. The travel distance

to fulfill one batch depends on the jobs it contains and the storage location of each product. An

optimization model to minimize the total travel distance of all formed batches can be stated as

follows

min
I

∑
i=1

M

∑
m=1

L
Jt∗i ,m (3.1)

subject to:

M

∑
m=1

I

∑
i=1

inct∗i ,m
j = 1 ∀j ∈ J , (3.2)

inct∗i ,m
j − rt∗i ,m ≤ 0 ∀j ∈ J , ∀m ∈ M, ∀t∗i ∈ T ∗, (3.3)

rt∗i+k ,m − (1− rt∗i ,m) ≤ 0 ∀k : t∗i < t∗i+k ≤ t∗i + D
Jt∗i ,m , ∀m ∈ M, (3.4)

feas
Jt∗i ,m = 1 ∀m ∈ M, t∗i ∈ T ∗, (3.5)

leadj + tarr
j − tdue

j ≤ 0 ∀j ∈ J , (3.6)

where Jt∗i ,m is the batch formed at time step t∗i and fulfilled by order picker m. Furthermore,

L
Jt∗i ,m denotes the corresponding tour length to fulfill batch Jt∗i ,m, and D

Jt∗i ,m is its duration. We

define L
Jt∗i ,m = D

Jt∗i ,m = 0, if there is no tour starting at t∗i which is conducted by order picker m

(i.e., rt∗i ,m = 0). feas
Jt∗i ,m is a function to evaluate the feasibility of a batch for transport capacity,

assuming the implemented routing method is fixed. It is defined as follows:

feas
Jt∗i ,m =


1, rt∗i ,m = 0
1, rt∗i ,m = 1 and Jt∗i ,m is feasible
0, rt∗i ,m = 1 and Jt∗i ,m is infeasible

.
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The objective function (3.1) expresses the sum of all tour lengths of batches which are built

at the time steps {t∗1 , . . . , t∗I } = T ∗ and fulfilled by order pickers {1, . . .M}. Constraint (3.2)

requires each job to be fulfilled exactly once. With Constraint (3.3), we require that a job can be

included only in time steps in which batches are formed. Constraint (3.4) prohibits a new tour

start for an order picker if his or her previous tour has not ended. Regarding the number of jobs

in a batch, more flexibility is possible with incorporated returns, so the number of jobs is not

necessarily limited to the maximum transport capacity. However, transport capacity cannot

ever be exceeded during a tour. Constraint (3.5) expresses that all formed batches are feasible

with regard to transport capacity within the tour. The throughput time leadj (lead time) of a

job j is the time-lag between the arrival of an order at the warehouse and its delivery to the

depot. If j is contained in the batch Jt∗i ,m, its lead time can be derived by

leadj = t∗i − tarr
j + D

Jt∗i ,m for j ∈ J : inct∗i ,m
j = 1.

Thus, Constraint (3.6) requires the fulfillment of each job before its due date.

To maintain a certain service level and similar to (3.1), we can develop objectives that are

more preferable from the customers’ perspective. The maximum throughput time for order

jobs, for example, should be as short as possible within warehouse capacity constraints. Let

Jord be the set of order jobs. As an alternative to (3.1), the objective of minimizing the maxi-

mum lead time can be stated as

min max
j∈Jord

leadj. (3.7)

For the consumer, the throughput time of ordered products is of greater interest, and this objec-

tive would reduce the number of returns in a batch. We then need an appropriate constraint to

find solutions that incorporate the fulfillment of return jobs. Instead of Constraint (3.6), which

limits the allowed lead time for jobs in general, we add a constraint for objective (3.7) that

restricts the lead time specifically for return jobs, such as

leadj ≤ tdue
j for j ∈ J : sj = 1. (3.8)

Another important driver of customer satisfaction is on-time product delivery. When the seller

mentions an exact delivery time, the customer expects the product to be available at exactly

that time. Tardiness thus can significantly affect customers’ evaluations of service quality. This

also holds for settings in which third party suppliers are involved, whose scheduling is highly

depended on on-time fulfillment within the warehouse. Furthermore, in very busy settings,

Constraints (3.6) and (3.8) might cause infeasible optimization programs. Thus, we provide

another service-oriented objective, namely, minimizing tardiness, and introduce another bi-

nary variable that describes the lateness of a job j ∈ J . For a job j that is included in a batch
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Jt∗i ,m we define

latej =

{
0, t∗i + D

Jt∗i ,m ≤ tdue
j , j ∈ J

1, t∗i + D
Jt∗i ,m > tdue

j , j ∈ J .

With the help of this variable, we can express the objective of minimizing the number of late

deliveries as

min ∑
j∈J

latej. (3.9)

For this objective, the lead time restrictions in (3.6) and (3.8) are not needed. However, for both

objectives (3.1) and (3.7), another adequate constraint appears to be necessary to control for

exceeded due dates. Instead of the constraints (3.6) or (3.8), we might tolerate late deliveries,

but we target a solution with a certain maximum number of delays. Let latemax ∈ N+ be the

maximum number of late deliveries accepted. They can be limited by requiring

∑
j∈J

latej ≤ latemax. (3.10)

Because efficiency and service orientation usually play a simultaneous role, even as they might

come in conflict, a beneficial trade-off is required for practice. To achieve and evaluate such

a compromise, we propose an objective that combines the two preceding objectives, namely,

travel distance and maximum throughput time.

min

(
H

∑
h=1

M

∑
m=1

L
Jt∗i ,m + λ· max

j∈Jord
leadj

)
. (3.11)

With this objective, the overall travel distance and maximum lead time can be minimized si-

multaneously. The parameter λ is used as scaling factor to account for differences in units, as

well as to weight the desired relevance of the different objective variables against each other if

they are in conflict.

With the help of this offline model, we can identify rules that shape the batching policy,

adjusted to the regular job flow, such as average batch sizes and tour start intervals. It can

also support tactical decisions about required labor and equipment. Moreover, we can analyze

the effects of different optimization objectives on the batch formation. To refine this batching

procedure for daily fluctuations, we next propose an online optimization model, in which we

define multiple test time steps in the time horizon. It is possible to test online whether a batch

should be formed and, if so, which jobs it should contain, given information about currently

pending jobs. Insights on the periods between test time steps can be obtained by analyzing

solutions of the offline model.
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3.1.2 Online model

In deterministic online models, information about incoming job flows is not known in advance.

Decisions are made only on the basis of information about the past. In contrast with other stud-

ies though, we do not formulate the online model for a wave picking situation. We consider

a model in which all jobs that arrived before a certain test time step and remain unfulfilled

get taken into account. A batch does not have to be formed at each test time step. Rather, a

prior decision reveals whether an order picker tour is required, according to the number of

currently pending jobs and their instantaneous lead times. This model and the solution ap-

proach we present subsequently are more suitable in smaller settings (with fewer jobs) and for

a highly varying job arrival process. If the average batch size and average tour start intervals

are known, adjustments for exceptionally busy days might be useful.

The objectives of an online approach cannot be the optimization of characteristics that

evolve over time, as in (3.1). Rather, the decisions aim to maximize performance of a suit-

able measure at one time step. To develop the model, we first let t∗i ∈ T be a fixed point in

time. At t∗i there is a set of pending order and return jobs J t∗i = {j1, . . . , jK} ⊂ J that arrived

in the past and have not been fulfilled in any previous tour. If order picker m is available at

time step t∗i , the first decision is whether a batch should be formed. In this case, we define clear

conditions for the value of the variable rt∗i ,m (see the offline model formulation on page 35). We

propose a decision based on the time gap between t∗i and the arrival times tarr
jk

, k = 1, . . . , K of

the pending jobs and the number of pending jobs K, respectively:

rt∗i ,m =


1, there is a job jk ∈ J t∗i : t∗i − tarr

jk
≥ τmax

1, K ≥ Jmax

0, otherwise.
,

where τmax ∈ R+ is the maximal tolerated time gap between the arrival time of a job tarr
jk

and

the current time step t∗i , and Jmax ∈ N+ is the maximum number of pending jobs allowed. In

case rt∗i ,m = 1, a batch is formed that contains some currently pending jobs.

Next, to evaluate the quality of a potential batch, we need a suitable performance measure.

First, we provide a measure that includes both tour length and the number of jobs contained

in the batch (batch size). For any potential batch Jt∗i ,m ⊂ J t∗i we define the length-based per-

formance of the batch P length

Jt∗i ,m by

P length

Jt∗i ,m = α· |Jt∗i ,m| − L
Jt∗i ,m ,

where α ∈ R+ is a control parameter, similar to the scaling factor λ in (3.11). That is, it weights

the importance of the batch size and the tour length, respectively. With the help of this length-
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based measure, we propose the following optimization model to be solved at time step t∗i :

maxP length

Jt∗i ,m (3.12)

subject to:

feas
Jt∗i ,m = 1 ∀m ∈ M, t∗i ∈ T ∗, (3.13)

where Constraint (3.13) assures the feasibility of the resulting tour, as introduced in the offline

model.

Another performance measure, beyond tour length, also accounts for the lead times of or-

der jobs. A method that evaluates a batch on the basis of throughput times alone would simply

form batches with the longest pending jobs (first-come, first-served); instead, any incentive to

account for the efficiency of the resulting tour should be combined with service-based mea-

sures. Here, we must recognize that the lead times of jobs not contained in the current batch

cannot be determined exactly. However, these jobs must have a negative impact on service-

based performance measures, so we introduce a penalty value pen ∈ R+ that is added to the

instantaneous lead time of jobs that are not included and that redefines the (partially estimated)

lead time of pending jobs in t∗i by

leadj =

 t∗i − tarr
j + D

Jt∗i ,m , j ∈ Jt∗i ,m

t∗i − tarr
j + D

Jt∗i ,m + pen, j ∈ J t∗i \Jt∗i ,m .

Using this equation, we can define a service-based measure to evaluate the throughput time of

all pending jobs, according to the maximum lead time of included orders and the sum of the

estimated lead time of excluded jobs. That is,

tpt
Jt∗i ,m = max

j∈J
t∗i ,m
ord

leadj + ∑
j∈J t∗i \Jt∗i ,m

leadj,

where Jt∗i ,m
ord denotes the set of included order jobs in batch Jt∗i ,m. A performance measure that

combines time and length indicators can thus be defined for any batch Jt∗i ,m ⊂ J t∗i by

Pcomb
Jt∗i ,m = |Jt∗i ,m|+ β· |Jt∗i ,m

ord | − γ· tpt
Jt∗i ,m − δ· L

Jt∗i ,m ,

where β, γ, and δ again are scaling factors. The resulting optimization model to be solved at t∗i
we obtain

maxPcomb
Jt∗i ,m (3.14)

subject to constraint (3.13).
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3.2 Solution approaches

In this section, we propose solution approaches for the dynamic batching models from Section

3.1, which are applicable to each objective that we proposed. Depending on the underlying

objective, we define a performance measure to evaluate the quality of a single batch. When

solving the offline model, this measure is used to construct batches iteratively; it instead is

used to identify optimal batches at one time step when the online model is to be solved. For the

description of the solution approaches we assume that the travel speed of the order pickers is

constant and we do not include storage ans retrieval times. Extensions of the solution methods

to account for both, varying travel speed and the incorporation of storage and retrieval times,

can easily be made.

3.2.1 Seed-order algorithm for offline application

With the help of the previously defined offline model, we propose a new seed-order algorithm

(see Section 2, page 24). The structure of this heuristic is based on the sequential selection

of seed orders. The accompanying order rule is controlled by the performance measure, ac-

cording to the underlying objective and the corresponding constraints (Section 3.1.1), so the

performance measure must be selected in advance. The selection of accompanying orders is

limited to the set of jobs for which the arrival time is close to the arrival times of jobs already

included in the batch. Iteratively, those jobs join the batch which optimize the performance

measure with respect to the corresponding tour start, tour end, and due dates. Thus we en-

sure the fulfillment of Constraints (3.2) - (3.6) as defined on page 35. If a batch is complete or

no more jobs can be included, a new seed order is selected, defined as the first arrived and

unfulfilled job. If this seed order cannot be fulfilled on time because of a late tour end for the

previous batch, a swapping method incorporates the job in the previous batch. If swapping

alone cannot facilitate an on time fulfillment of the earliest arrived, not included job (i.e., the

new seed order) jobs with later due dates have to removed from the batch to realize an earlier

tour end. In detail, the algorithm is as follows:

Seed-order algorithm for dynamic order and return job batching

1. Initialization: Initialize the set of jobs, their due dates and the performance measure:

Let {j1, . . . , jN} = J be a set of all jobs. We assume that the jobs are sorted according to

their arrival time, i.e.,

tarr
j1 ≤ tarr

j2 ≤ · · · ≤ tarr
jN .
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Let tpmax
ord and tpmax

ret be the maximum allowed throughput times of order jobs and return

jobs, respectively. Calculate the due dates for job jk by

tdue
jk =

tarr
jk

+ tpmax
ord , for sjk = 0

tarr
jk

+ tpmax
ret , for sjk = 1

.

Select a performance measure to evaluate the quality of a batch Bi,m, which matches the

given objective of the model (Section 3.1.1). For example, for the distance-based objective

(3.1), we would use the measure

P(Bi,m) = α· |Bi,m| − LBi,m

to evaluate the quality of a batch Bi,m.

Denote length and duration of a batch Bi,m by LBi,m and DBi,m , respectively.

Select a tolerance parameter ttol which defines the search interval for jobs to be included.

2. First seed order selection: Select the first seed order and define the search interval:

Select the first arrived job j1 to be the first seed-order, assign it to an order picker m, and

denote the first batch B1,m) = {j1}. Identify all jobs with arrival times in the time interval

SIB1,m =

[
min

jk∈B1,m
tarr

jk , min
jk∈B1,m

tdue
jk − ttol

]
.

The parameter ttol is required, because the tour cannot start before the arrival of the last

included job and must be fulfilled before the due date of the first arrived job. Next,

calculate the instantaneous performance of the batch P(B1,m).

3. Accompanying orders: Select accompanying orders iteratively:

Identify a best-fitting job for the batch by solving the optimization program

max
jk :tarr

jk
∈SIB1,m

P(B1,m ∪ {jk})−P(B1,m) (3.15)

subject to:

max
jl :tarr

jl
∈SIB1,m∪{jk}

tarr
jl + DB1,m∪{jk} ≤ min

jl :tarr
jl
∈SIB1,m∪{jk}

tdue
jl , (3.16)

feasB1,m = 1. (3.17)

In this model, the performance difference between the original batch and the potential

new batch is maximized. The first constraint ensures that the tour is completed before the

maximum due date of each included job, to fulfill Constraint (3.6). The second constraint

requires the feasibility of each batch in terms of transport capacity (3.5).
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(a) If a solution has been found, include the corresponding job in the batch and repeat

step 3.

(b) If no solution can be found, proceed.

4. Batch start times and tour ends: Calculate tour start and end of a batch:

The tour start of a batch brtBi,m is the arrival time of the latest arrived job included in the

batch. The corresponding tour end teBi,m is the sum of start time and tour duration.

5. New seed order: Select a new seed order:

Let Bi,m be the last batch built in previous iterations. Among all remaining jobs select the

job with the earliest arrival time to be the next seed order.

(a) If there is an unfulfilled job jk, test order picker availability.

i. If an order picker m is available to fulfill job jk or

max
(

tarr
jk , max

i
teBi,m

)
+ tol ≤ tdue

jk (3.18)

denote the new batch with Bi+1,m and proceed to step 2.

ii. If no order picker is available to fulfill job jk on time, proceed with step 6.

(b) If all jobs are included in batches, stop.

6. Swapping method: A swapping method between included jobs and the leftover job gets

applied until the earliest arrived, un-included job fulfills condition (3.18).

The optimization model in step 3 allows for a decrease in batch performance, which is nec-

essary because performance might decrease by including jobs into a batch with, for example,

travel distance as a performance indicator. The test in step (3a) thus evaluates the performance

decrease and mandates that if the decrease exceeds a certain tolerance, the corresponding job

is not included in the batch.

3.2.2 Online model solution approach

In an offline view, online solution approaches always lead to a heuristic solution, because even

optimal decisions in each review period cannot necessarily produce an optimal solution for the

entire time horizon. The complexity of the batching problem in general, and considering that

in practice online solutions are required quickly, leads us to propose an approach with several

relaxed restrictions by the test time step selection (e.g., order picker availability), such that an

optimal (maximum) value of the performance measure P can be found at the current time step.

We defined several suitable performance measures for the online situation in Section 3.1.2. The

online solution approach for a time step t∗i can be described as follows:
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Online solution algorithm for integrated forward and return flow batching

1. Order picker availability: Check the availability of an order picker.

(a) If an order picker is available, proceed.

(b) If no order picker is available, proceed with step 6.

2. Initialization: Identify the currently pending jobs jk ∈ J t∗i and their due dates tdue
jk

, k =

1, . . . , K.

3. Batch formation test: Decide whether a batch should be formed by considering the number

of pending jobs and their instantaneous lead times.

(a) Form a batch if at least one job is urgent (i.e., there is a jk ∈ J t∗i : t∗i − tarr
jk
≥ τmax)

or there are more than Jmax jobs pending. Denote the urgent jobs by jurg
ki

, i = 1, . . . , I

and proceed with step 4.

(b) If there are neither urgent nor too many jobs pending, proceed with step 6.

4. Formation of a central batch: Include as many as possible urgent jobs jurg
ki

,i = 1, . . . , I in

the batch. If no urgent jobs are pending, the central batch is empty. Otherwise,

(a) If all urgent jobs form a feasible batch (in terms of transport capacity), proceed with

step 5.

(b) If not, determine the position within the tour in which the capacity problem occurs

and remove the corresponding job from the central batch (I = I − 1). Repeat step 4

for the reduced batch.

5. Optimal filling up: Include pending jobs in the central batch that maximize the perfor-

mance measure. Solve the optimization program

max
Jt∗i ,m⊂J t∗i

P(Jt∗i ,m)

subject to:

jurg
ki
∈ Jt∗i ,m, ∀i = 1, . . . , I.

where P denotes one of the performance measures defined in Section 3.1.2.

6. Termination: Remove the batch from the set of pending jobs and determine the next test

time step.

(a) If no order picker is available, define the next test time step as t∗i+1 = t∗i + postop.
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(b) If the central batch has to be reduced, define the next test time step as t∗i+1 = t∗i +

postcb.

(c) Otherwise, use the regular interval length between test time steps: t∗i+1 = t∗i + il.

To control for tardiness, the constants postop and postcb are incorporated; they reduce the time

until the subsequent test time step if not all urgent jobs could be fulfilled or if no order picker

was available. However, the values for τmax and Jmax must be defined in advance; we cannot al-

ways prevent late deliveries. We show with examples in Section 3.3 that with a well-considered

parameter choice, the number of late deliveries is small. Furthermore, we incorporated a func-

tion to accelerate optimization in step 5 in situations in which no urgent jobs but more than

2Jmax jobs are pending. In this case, the constructed central batch contains a small number of

jobs, located close to each other in the warehouse, order to reduce the combinatorial complexity

of the optimization in step 5.

3.3 Numerical and practical validation

We study the effects of our solution approaches for the two dynamic models using numerical

examples derived from a real-life case. We simulate the online solution approach over a time

horizon of one day. With these examples, we can demonstrate the importance of efficient return

flow processing, judged according to logistic efficiency and customer response time. We per-

form our experiments using transaction data for a library warehouse and compare the batching

solutions of the dynamic methods with the order picking practices of this library. Library ware-

houses are a good option for our experiments, because they feature 100% return rates. For ease

of explanation, we assume only one order picker is available for each experiment. As we ex-

plained previously, both models are suited for cases with more than one order picker though.

Moreover, the solution approaches can be used for any kind of storage location assignment

policy implemented in the warehouse. The library warehouse consists of three floors, each

with 24 parallel aisles. A parallel aisle can be switched only at a cross aisle in the middle of the

floor. Stairs to switch between floors are located next to the fourth and the twentieth parallel

aisle. The entrance, which is considered the depot, is located at the fourth parallel aisle of the

ground floor. The storage location assignment in this library warehouse reflects clustering in

topics; location assignment is not based on customer order frequency.

Because performance of the order batching problem and the routing problem are highly

interrelated, we used a fixed routing policy for order picking (Ratliff and Rosenthal, 1983) in

the dynamic models. This routing method is optimal for one-type situations (only picking
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or only returning activities). Thus, when considering two types of jobs simultaneously, the

route might be infeasible in terms of transport capacity, resulting in an infeasible batch. In our

dynamic batching models, another batch would be selected.

Gademann et al. (2001) highlight that computation efforts depends not only on the number

of jobs to fulfill in total but also on the batch size, or the number of jobs contained in one batch.

Including picking and return jobs simultaneously in this problem doubles the potential batch

size. We consider on average 100 jobs (picks and returns) per day, and a customer with multiple

jobs can be split up over more than one batch. The transport capacity is limited to five items

in the dynamic models, which results in a maximum batch size of ten jobs. We derived 14 test

instances related to transaction data of 14 days varying patterns in the number of jobs, from 50

to 144. The percentage of return jobs in these examples varied from 38% to 62%.

We implemented the solution approaches in C++; the experiments were conducted on an

Intel Core 1.33 GHz processor. All results of the offline seed-order algorithm were calculated

within a few seconds. The calculation of the online model simulation was performed in less

than five minutes for each sample day.

In Table 3.1, we provide the results for the offline and online solution method, with two

different objectives: total travel distance or the combination of travel distance and the maxi-

mum throughput time of order jobs (objectives (3.1) and (3.11), Section 3.1.1). We compare the

results based on the indicators total travel distance and maximum throughput time of order

jobs. The results of the offline solution (Panel a) strongly confirm that the maximum through-

put time of order jobs can be reduced significantly (46% on average), by incorporating it as an

objective. However, this decrease is obviously accompanied by longer tours (14% on average).

The results from the online solution in Panel b show that in most instances, the maximum

throughput time again can be decreased by incorporating it into the objective. However, in

contrast with the offline solution, short throughput times cannot be assured in online settings,

as some results show. Very efficient batches in the beginning of the time horizon might lead

to postponements, especially of return jobs, when using the combined performance measure.

Bottlenecks at later periods can thus cause high throughput times for later orders.

With Table 3.2 we indicate the importance of a differentiation between orders and product

returns. For the distance-based objective without any differentiation, the possible batch size

is limited to the transport capacity of the order picker, so the result indicates how existing

methods, designed for one-type job batching, perform when they must address not only order

and but also return jobs. Our experiments in the real-life case thus show the savings possible

through combining the order and return job processing. There is an essential improvement

opportunity available in a distinction of order and return jobs. First, a differentiation of the
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Sample day #jobs
td* objective Combined objective

td* (m) Max tpt* (min) td* (m) Max tpt* (min)
a. Offline solution approach
1 50 634 77 650 8
2 62 803 78 974 54
3 72 773 82 853 35
4 84 936 85 1094 45
5 87 1061 79 1309 59
6 93 1035 79 1177 27
7 100 1118 80 1415 37
8 110 1307 88 1528 60
9 114 1401 86 1509 67
10 116 1407 84 1503 35
11 123 1427 83 1756 43
12 131 1380 86 1621 68
13 137 1396 87 1720 62
14 144 1532 85 1794 34
b. Online solution approach
1 50 554 78 737 51
2 62 908 74 869 73
3 72 752 89 852 80
4 84 843 74 945 78
5 87 1046 69 1240 71
6 93 944 84 1072 103
7 100 1050 90 1206 73
8 110 1279 80 1382 95
9 114 1363 85 1572 75
10 116 1220 96 1641 89
11 123 1538 84 1592 84
12 131 1549 87 1663 89
13 137 1626 98 1586 79
14 144 1623 97 1732 89
* td - travel distance, tpt - throughput time.

Table 3.1: Total travel distance and maximum throughput time for orders
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Sample day #jobs
Offline solution Online solution

td* (m) Max tpt* (min) td* (m) Max tpt* (min)
1 50 963 71 720 110
2 62 1310 81 1058 128
3 72 1313 77 963 140
4 84 1332 77 1308 147
5 87 1621 84 1324 138
6 93 1686 77 1297 169
7 100 1906 83 1265 163
8 110 2239 80 1761 130
9 114 2193 81 1647 149
10 116 2430 81 1700 132
11 123 2454 79 2024 159
12 131 2471 83 2020 148
13 137 2461 81 1988 134
14 144 2700 81 2138 151
* td - travel distance, tpt - throughput time.

Table 3.2: Undifferentiated job types

type leads to significantly shorter total travel distances (44%). Second, regarding the maximum

throughput time of order jobs using the offline solution algorithm (restricted to 90 minutes),

all the solutions produced enormously increased travel distances. From the simulation of the

online solution approach for the entire day, we can determine that many small batches lead

to not only longer travel distances but also substantially larger throughput times. Using the

type differentiation, we can reduce the number of small batches that might contain only urgent

returns and delay order job processing.

Finally, we show in Table 3.3 the performance that currently practiced job fulfillment attains

in the library warehouse. In practice, the order picking process is separated to three picking

and three return rounds per day. All order jobs that arrive before a pick round are included

in the next pick batch, as are all returns included in the return batch. A cart transports the

items, and the size of each batch can be greater than 10. No optimal routing is used; instead,

the order picker fulfills the jobs in a batch separately for each floor, using an elevator (next to

front stairs) to transport the cart. Within one floor, the order picker likely follows an optimal

route, though to confirm that our results did not depend on different routing methods, we also

conducted experiments with an optimal routing policy. Differences between the actually used

(non-optimal) routing method and optimal routing were small and had only minimal negative

effects on the total travel distance, likely because in practice the batches can be very large.

Longer travel distances instead result from separated fulfillment of pick and return batches.
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Sample day #jobs td* (m) Max tpt* (min)
1 50 1373 167
2 62 1507 140
3 72 990 145
4 84 1313 151
5 87 1593 150
6 93 1438 124
7 100 1695 200
8 110 1878 233
9 114 1593 241
10 116 1534 180
11 123 2402 247
12 131 1986 236
13 137 2075 239
14 144 2218 221
* td - travel distance, tpt - throughput time.

Table 3.3: Job fulfillment in practice

In the large order pick round, the order picker travels through most of the locations of the

warehouse; conducting returns in a second round leads to an unnecessary revisiting of many

locations. The results, compared with the dynamic models, demonstrate that on average it is

possible to obtain 31% savings in travel distance by integrating the pick and return rounds. The

maximum throughput time of orders is obviously high for the processing in practice, because

batches are formed statically at fixed time steps, independent of the arrival process.

3.4 Concluding remarks

This chapter deals with batching policies that integrate order and return flow processing which

can lead to significant improvements in warehouses operational performance. Two dynamic

models, in offline and online contexts, support the design of a more efficient job batching

process through a problem formulation with processing time restrictions. We developed two

suitable solution approaches and validated them with the help of numerical examples and in

comparison with a real-life case. The seed-order algorithm proposed for the offline model,

provides good heuristic solutions in a very short computation time and thus could be used in

large warehouse settings to support tactical decisions that reflect the given job flows. It also

can help design an online approach. Future research is required to analyze to what extent the

method performs well to provide good start solutions for metaheuristic search approaches. In

contrast, the online optimal batches must be found quickly, so the amount of jobs determines



3.4. CONCLUDING REMARKS 49

the applicability of this approach. Computation times increase with the batch size, which can

be twice as high as the transport capacity if we integrate order and return job handling. For the

warehouse case we study, we find that the proposed online solution approach delivers very

good results in acceptable computation times.

In e-commerce warehouse cases it should be remarked that additional sorting and consol-

idation effort is required which might be higher, if customer orders are conducted in multiple

batches. Also the administrative tasks to complete returns processing might be necessary. The

trade-off between the time savings achieved by integrated batching and the additional time

effort required for sorting process and the like has to be balanced for a specific case. Never-

theless, time and cost savings can be possible also in commercial warehouse by integrating

forward and return flows. Future research to study the precise case of commercial warehouses

might be required to analyze to which extent the methods are transferable.

Furthermore, we have provided insights into how consumer-oriented performance mea-

sures can be incorporated into the design of batching policies and the affect they have on total

travel distances. Multi-objective performance measures help significantly shorten response

times and also lead to the formation of efficient batches. With our dynamic seed-order algo-

rithm, savings algorithms and other powerful meta-heuristics become possible tools for solving

the batching problem with time constraints.

This research also shows the strong interdependency of batching and routing policies in

warehouse order picking and we demonstrated the potential benefits of integrating forward

and return flows for operational policies. In the following chapter we therefore consider the

corresponding routing problem which integrates order and return job processing to make the

best use of the transport capacity of the order picker and picking device. Chapter 5 will then

focus on an integrative approach.
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Chapter 4

Order Picker Routing with Product

Returns

The most labor intensive operation in warehouses is the order picking process. The picking

is for many product categories still processed manually, since high storage space utilization

mostly prohibits automation. Especially when batching is implemented and many locations

have to be visited in the warehouse to pick the orders of multiple customers, routing policies

that lead to efficient picking routes are highly important, as labor time is expensive. When in

addition to customer orders also product returns are contained in the batch, new warehouse

routing policies are required. Our aim in this chapter is to design a method capable of incorpo-

rating product returns in the picking routes in order to make best use of the available capacities

instead of processing product returns separately.

The warehouse routing problem under study is the following: Order pickers travel through

the warehouse to visit a number of locations at which they pick or return products. Each route

starts and ends at a central depot at which all products to be returned are initially located, and

at which all picked products have to be deposited. As the transport capacity of the picking

device is limited and routes start with a certain load of returns, this implies that the order

picker cannot visit locations to pick products at some points in the route. Our objective is to

design a method to define routes in that each pickup and return location is visited, that never

exceed the transport capacity, and that minimize the traveled distance.

Also already indicated in Chapter 2 routing problems in warehouses form a special case of

the Traveling Salesman Problem (TSP). The classical TSP (i.e., for Euclidean norms) is known

to be NP-complete (Papadimitriou, 1977). For some specific warehouse layouts, such as single
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block and two block warehouses, the corresponding routing problem can be solved in poly-

nomial time (e.g., Ratliff and Rosenthal, 1983; Roodbergen and De Koster, 2001a). With an

increasing number of cross aisles the routing problem approaches a Manhattan TSP, which has

been shown to be NP-complete as well (Papadimitriou, 1977). With the integration of prod-

uct returns in the picking route, a new challenge is added to the problem. Then, this case is

related to the vehicle routing problem with pickup and delivery (VRPPD). The transport ca-

pacity of the picking device has to be respected at every point of the route. In this case, the

warehouse routing problem appears to be highly complex already for warehouses with fewer

cross aisles. Besides, in practice, routes often have to be determined online and very short

computation times are thus desirable. As these routes have to be determined frequently and

periodically in commercial settings, short order picking routes can realize major cost savings,

and sophisticated solution methods are of high practical relevance.

In this chapter we propose a genetic algorithm (GA) to solve the warehouse routing prob-

lem with pickups and returns. Thereby we make use of the potential of well-designed search

techniques and combine it with the specific characteristics of the warehouse routing problem.

The GA is suited to identify short routes in computation times which are acceptable for online

applications. Moreover, it is independent from the specific warehouse layout and can therefore

be widely applied for various layouts. We demonstrate that using the GA near-optimal - and

often even optimal - solutions can be determined and we perform an analysis to identify the

best mix of returns and picking requests in order picker routes.

The structure of this chapter is as follows. In Section 4.1 we give a detailed problem descrip-

tion and introduce an ILP formulation of the problem under study. Section 4.2 is dedicated to

the illustration of the GA, and we summarize and discuss the results of our numerical experi-

ments in Section 4.3. We make concluding remarks on this chapter in Section 4.4.
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4.1 Problem description

To model the warehouse routing problem with pickup and return we use the following nota-

tion:

P Set of pickup locations
D Set of return locations
n Number of locations to be visited
N Set of locations to be visited including the depot; (|N | = n + 1)
cij Travel distance between the locations i, j ∈ N
pi ≥ 0 Volume to be picked at location i ∈ P
di ≥ 0 Volume to be returned at location i ∈ D
q > 0 Transport capacity

We denote the set of all locations to be visited byN = {0, . . . , n}, where 0 corresponds to the

location of the depot. The sets P ⊂ N and D ⊂ N denote the subsets of locations with pickup

and return requests, respectively. Potential locations with both pickup and return requests are

treated as two separated locations with a distance equal to zero. Each route of an order picker

starts and ends at the depot and the storage location and volume of each product to be picked

or returned at this location is known beforehand. We assume that each set of products, which

in total does not exceed the capacity, can be transported at once, i.e. products are assumed to

have uniform sizes. Each location with pickup or return requests has to be visited and multiple

visits of the depot, which could elude the capacity constraint, are not permitted. Our decision

variables are

xij ∈ {0, 1} Is 1, if the order picker travels along arc (i, j), 0 otherwise
yij ≥ 0 Load already picked and transported along arc (i, j)
zij ≥ 0 Remaining load to be returned and transported along arc (i, j)

The binary variable xij, for i, j = 0, . . . , n, corresponds to the decision whether location j

is visited directly after location i was visited, or not. By means of the non-negative variables

yij and zij we control the transported load along each arc (i, j) with i, j ∈ N in the network.

Obviously, if the locations i and j are visited subsequently it has to be assured that the sum of

the load picked so far (yij) and the load which still has to be returned (zij) does not exceed the

transport capacity.

The order picker routing problem with pickup and return in warehouses can be formulated

as

min
n

∑
i=0

n

∑
j=0

cijxij (4.1)
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subject to

n

∑
i=0

xij = 1 ∀j ∈ {0, . . . , n} (4.2)

n

∑
j=0

xij = 1 ∀i ∈ {0, . . . , n} (4.3)

n

∑
j=0

yij −
n

∑
k=0

yki =


pi i ∈ P

−∑N
i=1 pi i = 0
0 i ∈ D

(4.4)

n

∑
j=0

zij −
n

∑
k=0

zki =


−di i ∈ D

∑N
i=1 di i = 0
0 i ∈ P

(4.5)

yij + zij ≤ qxij ∀i, j ∈ {0, . . . , n} (4.6)

yij, zij ≥ 0 ∀i, j ∈ {0, . . . , n}

xij ∈ {0, 1} ∀i, j ∈ {0, . . . , n}

The objective function (4.1) represents the total travel costs to be minimized when traveling

a complete route. Constraints (4.2) and (4.3) assure that each location is visited exactly once.

With Constraints (4.4) and (4.5), we control for the currently transported volume between any

pair of locations i and j. Constraint (4.4) requires that the volume of any location i is picked,

if i ∈ P , and that all products were picked, when the order picker returns to the depot (i.e.,

i = 0). Constraint (4.5) states the condition that the entire volume to be returned at location i

is returned , if i ∈ D, and that all items were returned at the end of the route. Constraint (4.6)

limits the transported load between each pair of locations i and j to the transport capacity of

the order picker.

4.2 Genetic algorithm

Our literature review revealed a clear suggestion to make use of more generally applicable

meta-heuristic approaches in combination with warehouse-specific constructions (Theys et al.,

2010; Ai and Kachitvichyanukul, 2009; Bianchessi and Righini, 2007). Genetic algorithms are a

class of meta-heuristics that are often applied for complex and large-scale optimization prob-

lems. Inspired by evolutionary theory, they rely on the generation of a set of solutions, an initial

population, which is iteratively altered by crossover and mutation functions. At each step the

quality of a solution is evaluated and influences the probability of its attributes to survive in

the next generation. For the warehouse routing problem at hand genetic algorithms appear to

be a well-suited tool for a number of reasons. First, an initial population (i.e., a set of sequences
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to visit all locations) is very easy to generate. Second, with a sophisticated crossover definition

we can facilitate the inheritance of attributes of well-performing solutions. These attributes

correspond to partial sequences of locations in our case. Third, the mutation of individuals

(i.e., single solutions in a population) is usually implemented to avoid that the GA stops at

local minima. Here, mutations also allow us to incorporate warehouse-specific characteristics

by developing mutation operators which make use of the warehouse layout information.

The general procedure of a GA can be described as follows. After creating the initial pop-

ulation, the objective value of each individual solution within the population is calculated. In

the mutation phase some randomly selected individuals are mutated by means of one or mul-

tiple mutation operators. Then, in the crossover phase a number of solution pairs are selected

based on probabilities that are defined with respect to their quality. Better performing individ-

uals are more likely to be selected for crossover. Each selected solution pair is recombined in

a certain manner to create a new solution. In the last phase, the selection phase, the solutions

which build the following generation, i.e. the new population, are determined. Thereby, a cer-

tain percentage of the by crossovers created solutions and the mutated individuals replace a

number of solutions in the current population. Doubling of individuals in the same generation

should be avoided in order to maintain diversity in the population. The algorithm stops, when

a fixed number of iterations has been performed. In the following we describe each step of our

proposed GA for the warehouse routing problem with pickup and return in detail.

4.2.1 Initial population

Diversity of solutions in the populations is essential in genetic algorithms in order to allow for a

broad search perspective. In preliminary experiments on which we elaborate later in the chap-

ter, we observed that especially for large instances a good initial population is advantageous

for high quality solutions. We, therefore, do not construct the initial population completely ran-

dom, but employ a variant of the nearest neighbor heuristic by incorporating parameterized

regret based random sampling, as for example used in Fang and Wang (2012). The classical

nearest neighbor heuristic is a deterministic constructive procedure in which at each step, be-

ginning at the depot, the route is extended by including the closest unvisited location (Dorigo

and Gambardella, 1997). Obviously, this procedure would always lead to the same routing

sequence. Hence, to obtain diversity in the population, we incorporate a degree of random-

ness in the sense that subsequent locations are selected randomly, but based on probabilities

according to their distance from the current location. Let i denote the current location. The next

visited location j ∈ N is selected either out of all remaining return locations, if the currently
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transported load up to location i equals the transport capacity, or out of all remaining unvisited

locations otherwise. For those locations j ∈ N that do not violate the capacity constraint we

define the priority vj to visit the location subsequently by

vj = max
k∈Nu

cik − cij, (4.7)

where Nu ⊂ N denotes the set of unvisited (feasible) locations and cij denotes the distance

between two locations i and j. We use the priority of a location to define a regret value rj for

not selecting a location by

rj = vj − min
k∈Nu

vk. (4.8)

Last, we define the probability pj for selecting the location j by

pj =
(rj + 1)α

∑k∈Nu(rk + 1)α
, (4.9)

where α ∈ [0, ∞) determines the degree of randomness incorporated. Thereby, α = 0 provokes

a completely random selection of locations. With an increasing value of α the route construc-

tion becomes more deterministic, while prioritizing closer locations over distant ones. In our

numerical experiments we discuss the impact of various selections of the control parameter α

on the solution quality.

4.2.2 Mutation

As noted earlier the role of mutation operators for our solution approach is twofold. First, mu-

tations are essential in genetic algorithms to prevent that the procedure stops at local minima

(Hong et al., 2000). With a crossover function alone it might be harder to find good solutions.

Second, in the mutation phase we also incorporate the warehouse-specific characteristics when

defining mutation operators, such as sorting partial sequences in an intuitive order with respect

to the warehouse layout. Taking these specifications into account facilitates that the search pro-

cedure of the genetic algorithm can become more efficient and focused (Theys et al., 2010).

A mutation rate pm ∈ (0, 1) determines the percentage of the population size to be altered

by mutation operators in each iteration. A mutated individual thereby replaces its original

in every case, even when the resulting performance is worse than the original individual’s

performance. A prioritization of individuals to be selected for mutation is not made; each

individual is equally likely to be selected. For the selected individuals one out of four different

mutation operators is randomly selected. Each of those mutation operators is now described.

For the first two mutation operators, illustrated in Figure 4.1 we define an integer-valued

control parameter S > 0 which determines the intensity of change between the original indi-

vidual and the mutation. The first mutation operator creates a mutated individual by swapping
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0 4 5 7 3 1 8 10 2 6 9 0

0 3 8 7 4 1 5 10 6 2 9 0

(a) Operator 1: exchange

0 4 5 7 3 1 8 10 2 6 9 0

0 5 3 2 1 7 8 10 6 4 9 0

(b) Operator 2: removal and reinsertion

Figure 4.1: Mutation operator 1 and 2 for S = 3

location pairs within the sequence. The number of swaps made is given by S. While small val-

ues of S result in mutations which are still very similar to the original individual, larger values

of S will produce more alteration of the original. The second mutation operator is designed in

a similar manner. It forms a new individual by removing a randomly selected location from

the sequence and reinserting it at another again randomly selected position in the sequence.

The number of removals and reinsertions made by this mutation operator is again controlled

by the parameter S. This design suggests a careful definition of the value of S. Clearly, a low

value for S could cause a decrease of diversity in the population, which in turn might lead to

local optima. In contrast, any too large value for S might impede that mutations survive in the

population over a number of iterations, as in the selection process better performing solutions

must be prioritized to a certain extent. We elaborate on well-suited selections of the control

parameter S in our numerical experiments.

The mutation operators 3 and 4 are illustrated in Figure 4.2. By means of these mutation

operators we make use of the specific warehouse characteristics and provoke that all locations

to be visited within an aisle are sorted according to an intuitive routing sequence. With the third

mutation operator any aisle which contains locations to be visited is randomly selected. All

locations in this aisle are sorted in such a way that results in traversing the aisle from one aisle

end to the other, i.e. locations to be visited in this aisle are sorted by their location in the aisle.

The direction of sequencing is randomly selected. The resulting partial sequence containing all

locations of one aisle is inserted in the complete routing sequence at any point of the original

individual at which the corresponding aisle was visited before. By implication, all locations

within this aisle are removed from the sequence at all other positions. The fourth mutation

operator is designed in a similar manner. Here, again one aisle which contains locations to be

visited is randomly determined. In contrast to the third mutation operator, all locations in this

aisle are sorted in such a way as the aisle is entered from one side by the picker, all returns

are conducted on the picker’s way in the aisle, the picker turns at the farthest pickup or return

location, and all pickup requests are fulfilled on the picker’s way to leave the aisle. Again,
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Mutation Operator 3 Mutation Operator 4

Operator 3
Operator 4

aisle i

2 8 26 17 10 2 10 17 26 8 13

Figure 4.2: Mutation operator 3 and 4 ((p)=pick, (d)=deliver)

the side on which the picker enters and leaves the aisle is randomly selected according to a

uniform distribution.

Mutations are used to facilitate the creation of attributes which might not be contained in

the individuals of the population yet. The four operators designed here therefore facilitate that

the GA can escape from local minima, which can here be interpreted with solutions that result

from the best combinations of attributes which are currently existent in the population. Next

to that, we apply with the help of operator 3 and 4 a kind of local focus within single aisles to

create potentially promising attributes.

4.2.3 Crossover

The crossover phase aims to inherit well-performing attributes to the next generation. To do so,

the algorithm determines the objective value of each individual solution in the current popula-

tion, including mutated individuals. Its objective value determines an individual’s probability

to be selected as parent for a crossover. Subsequently, based on those probabilities two parents

are chosen. The creation of a new individual (child) from two parents is similar to the method

of Kazarlis et al. (1996) and can be described as follows. Any location to be visited is randomly

selected. Up to this location all locations are inserted in the new individual in the same se-

quence as in the first parent. All remaining locations are added to the new individual in the

sequence in which they appear in the second parent. The crossover procedure is illustrated in

Figure 4.3. Doing so, two potentially well-performing individuals are re-combined in a way

that maintains advantageous partial sequences. Obviously, the crossover as explained so far

would allow only little variation in the beginning of sequences, as the first part (of random

length) of an individual would always be adopted by the children from the first parent. To pre-

vent this effect we apply the crossover procedure either by starting at the beginning or at the

end of the routing sequence. The selection of the direction is determined randomly beforehand

for each newly created child.
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0 6 3 4 1 9 10 7 2 5 8 0 0 9 6 7 1 2 4 5 8 3 10 0

Parent 1 Parent 2

0 6 3 4 1 9 7 2 5 8 10 0Child

Figure 4.3: Crossover

4.2.4 Selection

In the selection process we determine the new population, consisting of individuals of the pre-

vious population, some mutations, and some of the new individuals created by crossovers.

The degree of change from one population to another needs to be considered carefully. While

too few new children entering the population could decelerate the algorithm and require more

iterations, too many entering new solutions might harm the diversity of the population and

lead to local minima. The number of new individuals, which enter the population is controlled

by a parameter s ∈ (0, 1), which represents a percentage of the population size. Along the

entire procedure we maintain a constant population size, so that only the best newly created

individuals enter the population by replacing the worst solutions of the current population. We

refer to the following section, in which we discuss the impact of this survival rate s on solution

quality. Furthermore, we allow for a limited number of infeasible solutions in each population.

The mutation as well as the crossover procedure can lead to the creation of infeasible solutions.

However, those solutions might still have valuable attributes (in terms of well-performing par-

tial sequences) and should not generally be excluded from the population. In the discussion of

our numerical experiments we elaborate on suitable values to control the number of tolerated

infeasible solutions.

4.3 Numerical experiments

We describe our experimental setting in Section 4.3.1. To calibrate the control parameters of the

GA, such as suitable population size, mutation, and survival rate, we conducted experimental

tests and report on the corresponding results in Section 4.3.2. Thereafter we provide in Section

4.3.3 insights in the performance and applicability of the GA by comparing its computational

results with the optimal solutions and two constructive heuristics for larger instances. Lastly,

in Section 4.3.4 we aim to identify the best policy to integrate product returns with customer

orders by determining the best possible division of pickups and returns for order picker routes

in practice.
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Figure 4.4: Rectangular warehouse

4.3.1 Experimental setting

As noted above, a strength of our solution approach is the applicability for a variety of ware-

house layouts. Particularly, the GA is independent of the length, alignment, and number of

storage aisles. Our experiments we therefore conducted for a commonly used rectangular

warehouse layout with two cross aisles and the front and back side of several parallel aisles

of equal length (De Koster and Van Der Poort, 1998). This layout is depicted in Figure 4.4.

The configuration of our experimental design is similar to previous literature on warehouse

routing (e.g., De Koster and Van Der Poort, 1998; Roodbergen and De Koster, 2001b). The

length of the parallel aisles varies for different experiments, the aisle width is set to 2.5 meters.

Pickup and return locations are assumed to be located solely in the parallel aisles and not in the

cross aisles. Further, as we consider relatively narrow aisles, we assume that order pickers can

reach the left and right hand side of an aisle without traveling additional distances. Cross aisles

can be used to switch between aisles. Moreover, each aisle can be traversed in both directions.

Locations in the aisles are assigned accurate to 0.1 meters. Capacity and transported load are

measured for unit sized products. For each location there is one unit of products to be picked

or returned. Adjustments for more detailed or varying weights can easily be made.

4.3.2 Control parameters

In preliminary experiments we restricted ourselves to the standard form of the problem, which

describes the situation in which both pickup and return load coincide with the transport capac-

ity (Mosheiov, 1994). Each pick list consists of 50% pickups and 50% returns, while the trans-
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Route constructions for initial population 2000
Degree of randomness α 20
GA iterations 500
Population size 600
Number of crossovers 600
Survival rate s 0.33
Mutation rate pm 0.05
Mutation intensity S 1
Allowed infeasible solutions 0.05

Table 4.1: Control parameters

port capacity equals the number of pickups and returns, respectively. Obviously, these are the

most difficult problems and we thus optimize our control parameters for such instances. For

the same reason, the preliminary experiments are conducted for larger batches with 60 and 100

locations to be visited in total.

For the creation of an initial population, we determined the best results with constructing

2000 routes. α was thereby set to 20 and the best of those constructed routes formed the initial

population. The high value of α leads to the creation of an initial population of high quality,

which turned out to be superior to an initial population of lower quality and higher diversity.

Regarding the number of GA iterations, we found in all tests that the solutions did not improve

significantly after 500 iterations, so that in the remaining experiments the number of iterations

is fixed to 500. Moreover, we observed that the GA performs best when a large population

size is maintained across the entire procedure. This effect might be explained by the size of

instances and thereby with the number of feasible solutions, which requires a large population.

Nevertheless, given the tight restrictions on computation times in practical applications we

used a population size of 600 individuals, while the population size remains constant across

the GA iterations.

Given this population size, we found that the generation of 600 children is appropriate. The

best performing survival rate s, as defined in Section 4.2.4 on page 59 has been found to be 33%.

Selecting more children fails to focus on promising areas of the search region, whereas selecting

fewer children apparently leads to too fast convergence and therewith potentially to adherence

in local solutions. With respect to the mutation control parameters we noticed that a mutation

rate of pm = 5% provides the best results. Higher mutation rates harm the search process,

since mutated individuals always enter the population. In contrast, lower mutation rates limit

the search region, so that solely the inheritance of attributes within the initial population can

improve the solutions.
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The mutation intensity S is best set at 1 location swap, larger mutation intensities yield

solutions too far away from the good individuals and thereby cannot survive in the population.

For the selection phase we observed slight improvements when allowing for 5% infeasible

solutions in each generation compared to the exclusion of infeasible solutions. Higher limits for

the amount of infeasible solutions in the population however could not improve the solutions

and too high values obviously even harmed the quality of the results. An overview of the best

performing selection for control parameters is provided in Table 4.1.

4.3.3 Results

The sample data to study the performance of our algorithm is illustrated in Table 4.2 which

provides an overview of the warehouse size (i.e., number and length of aisles) and the instance

size (i.e., transport capacity of the order picker and batch size, which describes the number

of locations to be visited in one route). Clearly, there is a difference in the problem difficulty

between hard instances in which the transport capacity is fully utilized (i.e., batch size = 2·

capacity) and other instances with more flexibility. It consists of 18 scenario sets each of which

consisting of 100 instances. These instances consist of an equal number of return and pickup

locations to be visited. The transport capacity and the warehouse size vary.

We provide a comparison with optimal solutions, obtained with CPLEX, for the scenario

sets 1− 6. However, optimal solution procedures substantially suffer from increasing instance

sizes. While the computation times for the scenario sets 1 and 2 were a few seconds only, for

scenario set 5 results were computed in approximately 30 minutes. For the larger instances

of the sets 7− 18 no optimal solutions could be obtained in realistic computation times. For

those scenarios the constructive cheapest feasible insertion heuristic and an adapted variant of

S-shape routing serve as upper bounds. Cheapest feasible insertion (CFI) describes the method

which initially creates a routing sequence consisting of the depot and two random locations

only. All remaining locations to be visited are included in this routing sequence one after an-

other at the position in the routing sequence at which they cause the least additional travel cost

and do not violate the capacity constraint. As a second heuristic approach we adjust traditional

S-shape routing to make it applicable for pickup and return requests. When using S-shape

routing the picker entirely traverses each aisle containing locations to be visited. Thereby each

second aisle is traversed in reverse direction. Adjusted to the case of pickup and return re-

quests, pickup locations at which the capacity would be exceeded are skipped and the order

picker returns to the aisles with these locations on his or her way back to the depot. Also in

this second round aisles are traversed entirely. The results of our comparison are summarized
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Scenario Set Aisle length # Aisles Capacity Batch Size
1 12 7 10 20
2 12 7 15 20
3 12 7 15 30
4 12 7 20 30
5 12 7 20 40
6 12 7 30 40
7 12 7 25 50
8 12 7 35 50
9 32 15 30 60
10 32 15 40 60
11 32 15 35 70
12 32 15 45 70
13 32 15 40 80
14 32 15 50 80
15 32 15 45 90
16 32 15 55 90
17 32 15 50 100
18 32 15 60 100

Table 4.2: Sample datasets

in Table 4.3 for the scenario sets 1− 6, and in Table 4.4 for the scenario sets 7− 18.

All methods were programmed in C++ and experiments were performed on an Intel Core 2,

2.99 GHz processor. Solutions of the heuristics S-shape and CFI routing were obtained within

1 second. The GA delivered results within 10 seconds (scenario sets 1 and 2) and 2 minutes on

(scenario set 17). The optimal solutions obtained with CPLEX took between a few seconds for

the scenario sets 1 and 2 and 30 minutes on average for scenario set 5.

The results provide a number of insights on the performance of our algorithm. First, Table

4.3 shows that we obtained very small gaps to the optimal solutions, especially for scenario

Set Optimal GA GA to CFI CFI S-Shape S-shape
optimal to GA to GA

1 103.05 103.57 0.50% 133.89 20.76% 136.27 23.53%
2 101.51 101.72 0.20% 109.34 6.77 % 124.75 18.09%
3 111.06 112.56 1.36% 156.64 25.89% 142.47 20.37%
4 109.32 109.39 0.06% 122.19 10.06% 129.75 15.61%
5 109.02 114.72 5.30% 170.93 30.98% 145.16 20.39%
6 109.06 112.22 2.98% 129.66 13.14% 130.04 13.64%

Table 4.3: Results of scenario sets 1 - 6 (distances in meter)
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sets in non-standard form. When the transport capacity is not completely utilized by pickup or

return requests, more flexible routing is possible, which facilitates the GA to maintain a diverse

population of feasible solutions and good quality.

Also the results of larger instances in comparison with CFI and S-shape routing show strong

improvements. Compared to the CFI method improvements of 20.14% were obtained on aver-

age over all scenario sets. Further, the GA led to 15.20% shorter routes than S-shape routing on

average. We also observe that the gap between CFI routing and the GA solutions increases with

the number of locations if we consider and non-standard form instances as well as the small

and the large warehouse layout separately. The reason for this is the rigid nature of the cheap-

est feasible insertion heuristic. The special metrics in warehouses might require short detours

when building order picking routes in order to avoid that the picker has to return to distant

aisles at the end of a route. CFI does not account for this by building routes in a constructive

way. In contrast, the GA is capable of keeping a variety of partial sequences of locations in

the population and explores various combinations of those, which eventually leads to better

results. With respect to the comparison of our approach with S-shape routing we observe the

opposite effect of the gap. Again, separated into standard and non-standard form scenarios

as well as the small and the large warehouse layout, we find that the gap between the GA

solutions and S-shape routing decreases with an increasing instance size. This effect can be ex-

plained partially by the decrease of performance of the GA with is identifiable in comparison

with the optimal routes. However, if the number of locations to be visited increases relative to

the overall number of locations in the warehouse, certainly passing nearly all locations in the

warehouse might become inevitable to build a route that visits all required locations. S-shape

routing might thus be a good method to conduct very large batches in general. If addition-

ally the capacity is not completely utilized, detours might not be necessary, which explains the

relatively small gaps between GA and S-shape solutions for the scenario sets 14, 16, 18. Never-

theless, overall we could demonstrate that the GA leads to significantly better solutions for all

scenarios tested here.

4.3.4 Batch composition experiments

To give insights in the practical application of our solution approach we conducted a second

set of experiments to analyze the most suitable composition of pickup and return requests in

the batches. Clearly, the total number of return requests will typically be lower in e-commerce

settings than the number of picking request. Warehouses in online retailing confront return

rates of 18 to 74% (Mostard et al., 2005), depending on the product category and return oppor-
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Scenario GA CFI Gap CFI S-Shape Gap S-shape
Set to GA to GA

7 118.04 176.28 30.97% 145.64 18.27%
8 114.88 134.37 14.15% 131.00 12.31%
9 511.38 688.75 25.06% 642.63 20.14%

10 503.08 573.16 12.08% 570.95 11.75%
11 525.08 703.44 24.42% 667.60 18.50%
12 516.14 598.99 13.63% 578.48 10.70%
13 540.65 756.93 27.53% 652.23 16.67%
14 531.86 625.88 14.85% 582.47 8.65 %
15 552.28 783.39 28.73% 659.91 15.84%
16 541.77 649.64 16.41% 587.59 7.73 %
17 557.49 794.24 28.66% 658.68 15.05%
18 548.54 674.51 18.40% 585.72 6.34%

Table 4.4: Results of scenario sets 7 - 18 (distances in meter)

Case # Batches # pick # return # mixed Picks / returns
batches batches batches per mixed batch

1 160 80 0 80 30 / 30
2 160 64 0 96 30 / 25
3 160 40 0 120 30 / 20
4 160 0 0 160 30 / 15
5 176 0 16 160 30 / 12
6 208 0 48 160 30 / 6
7 240 160 80 0 -

Table 4.5: Batch composition cases

tunities. The dataset that was used for the following experiments consists of 7200 locations to

be visited in total, of which one third (i.e., 2400) are return requests. The goal of these experi-

ments is to determine the best combination of pickup and return requests in single batches. We

aim to find out whether the returns should be distributed only over a few batches, or whether

an even distribution of returns over all picking batches is more advantageous. For these exper-

iments the larger warehouse layout with 15 aisles and an aisle length of 32 meters was used.

The locations of the 7200 pickup and return requests where assigned randomly with a uni-

form distribution. Here, the capacity of the picking device is set to 30. Seven cases of batch

compositions were computed, which are characterized in Table 4.5. The cases vary between a

full integration of pickup and return requests in one half of all batches, while the second half of

batches contains pickup requests only (case 1) and a completely separated processing of pickup

and return requests in 240 batches, each of which containing 30 requests (case 7).
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Figure 4.5: Results of various batch compositions

Our results are illustrated in Figure 4.5. The shortest total travel distance to fulfill all 7200

requests was obtained with full integration of pickups and returns, i.e., for case 1 with 71.36km

travel distance. However, we also observe that a distribution of return requests over more

batches does not affect the results significantly, as for case 2 (71.95km), case 3 (71.98km), and

case 4 (72.72km). For practical reasons a distribution of returns over more batches might still

be advantageous to allow for some flexibility for the order picker in sorting products in the

picking cart. In contrast, we find significant differences in the resulting travel distance for all

cases in which returns are processes separately. While in case 5 (76.88km) and case 6 (85.03km)

still some pickup and return requests are performed in the same batches, in case 7 returns and

pickups are entirely separated which leads to an overall travel distance of 91.94km for case 7.

Hereby we can clearly show that the integration of pickup and return requests can significantly

reduce travel distance. Our experiments show savings of 22.39% between the cases 1 and 7.

However, the results also indicate that the precise combination of orders and returns has less

impact on the total length as long as returns are processed together with the customer orders

and not in separated batches.

4.4 Conclusions

In this chapter we considered the order picker routing problem in warehouses for two types

of jobs to be fulfilled, since the number of products that are returned to the warehouses by

customers require to reconsider classical warehouse order picking methods. We proposed a

genetic algorithm to identify order picker routes by which products returns can be returned
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to their storage locations, while customer orders are picked as well. In numerical experiments

we demonstrated the good performance of our solution approach and evaluated the potential

gains in travel distance in comparison with two constructive heuristics and the gap to optimal

solution for small instances. Furthermore, we explored the most suitable manner to integrate

product returns in the picking batches and found that an incorporation of many returns in

fewer picking batches is slightly more profitable than a distribution of returns over all pick-

ing batches. However, the most significant savings can be gained with integrated compared

to separated processing of orders and returns in general, rather than with a specific mix of or-

ders and returns in batches. Mixed batches, however, might require more processing times in

practice. Future research might be necessary to explore the impact of simultaneous order and

return processing on batch preparation, picking, retrieval, and sorting time.

The following chapter suggests a step further to adjust order picking operations to today’s

e-commerce environment. We model the batching and routing problems in an integrated form

and propose a solution approach which not only accounts for product returns, but also com-

bines two strongly interdependent warehouse operation problems.
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Chapter 5

Integrated Batching and Routing

The two warehouse operation problems we studied in the previous chapters are certainly in-

terrelated (De Koster et al., 2007). The performance of a batching policy is to a large extent

dependent on the routing method that is used. Vice versa, short routes are easier to create

when the batch consists of products that are stored at proximate locations in the warehouse.

A simultaneous consideration of these two problems and an integrative solution approach can

therefore lead to better order picking performance. For that reason this chapter is dedicated

to the presentation of a linearized, mixed-integer optimization model that describes the simul-

taneous batch and route formation problem in a picker-to-parts system for a pool of customer

orders and product returns. Our goal is to view the order picking process as a whole and iden-

tify a schedule for multiple order pickers that specifies the appropriate batching and routing

sequences while minimizing total travel costs and still meeting customer deadlines.

We integrate batching and routing into one solution approach, in accordance with Tsai et

al.’s (2008) proposed nested genetic algorithm. We build on this work by (1) proposing a model

that is independent from the warehouse layout, (2) suited for the incorporation of customer

returns, and also designed to (3) include multiple order pickers simultaneously, who attempt

to meet customer order deadlines.

According to De Koster et al. (2002), the warehouses of mail order companies might process

and ship approximately 7000 customer orders per day, each of which can consist of multiple

items. In addition to the customer orders that need to be picked per working shift, returns

arrive at the warehouse and must be handled. We show that the presented solution algorithm

can find efficient batch schedules for such large-scale problems. With its help, the order pick-

ing (i.e., batching and routing) problem can be solved holistically, and the return flow can be

incorporated in an efficient manner.
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Search-based algorithms and especially iterated search techniques have been shown to be

suited for and applicable to the solution of warehouse order picking problems (e.g., Albareda-

Sambola et al., 2009; Henn et al., 2010; Theys et al., 2010). Therefore, we study in this chapter

the potential of near-optimal approaches to solve large-scale problems while also facilitating

implementation in practice.

The remainder of the chapter is structured as follows: We present a linearized model of

the problem under study in Section 5.1. In Section 5.2 we describe the iterated local search

algorithm in detail. Section 5.3 is dedicated to the introduction of our experimental design and

data samples. In Section 5.4 we summarize and discuss our numerical results. We conclude in

Section 5.5.

5.1 Problem definition

We consider a warehouse order picking problem with multiple pickers in a picker-to-parts

system. Our objective is to find a schedule which states a sequence of batches for each order

picker and the routes that a picker uses fulfill a batch. We model this problem independent

from most specific warehouse characteristics including their specific layouts, only the distances

between locations need to be specified. We assume that the shortest path between any pair of

locations is known. Furthermore, the number of products to be returned does not affect the

design of the model itself; we simply require that the warehouse possesses only one depot.

The depot is the location to which all picked products get delivered by the order pickers and

all returned products initially are located in the depot; therefore, all routes of pickers begin

and end at the depot. The number of available order pickers is also known. An order line

refers to a single, specific product to be picked or returned, possibly with multiple quantities.

An item refers to a single product, so an order line consists of one or more identical items. In

turn, a customer request (pick or return) can consist of multiple order lines and is allowed to

be distributed over multiple batches. However, an order line cannot be split. Customer order

deadlines apply to all order lines contained, whenever they occur during the shift, whereas

deadlines for returned products are set to occur at the end of the shift. Each item has a known

weight, and the transport capacity of a picker is limited and cannot be exceeded at any point

of a route. We assume that no single order line exceeds the transport capacity of the picking

device and we anticipate that the travel speed of all order pickers and the time required to pick

or return an item are constant. We detail our notations for the main parameters and decision

variables in Tables 5.1 and 5.2.

The set of all locations in the warehouse is denoted by N = {0, . . . , N}, where 0 represents
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N = {0, . . . , N} Set of all locations v Travel speed
I = {1, . . . , I} Set of all order lines cbreak Break between subsequent routes
E = {1, . . . , E} Set of order pickers s Travel cost per time unit
distn1n2 Distance between n1 and tp Pick / return time of one item

n2 ∈ N α Delay penalty per item and time unit
qp

i Quantity of i to pick Q Capacity of picking device
qr

i Quantity of i to return He Maximum number of batches of
di Deadline of i relative to picker e ∈ E

the start of the shift H Total number of batches
wi Weight of one item in

order line i

Table 5.1: Parameter Notations

bhe
i ∈ {0, 1} Equals 1, if i is contained in the h-th batch of picker e

χhe
ij ∈ {0, 1} Equals 1, if location of j is visited after location of i in the h-th batch of

picker e, 0 otherwise
ψhe

ij ∈ R+ Total load of already picked items, transported along arc (i, j)
ωhe

ij ∈ R+ Total load to be delivered, transported along this arc (i, j)
tdhe ∈ R+ Travel distance of the route of the h-th batch of picker e
τi ∈ R+ Tardiness of i
ci ∈ R+ Completion time of i
sthe, cohe ∈ R+ Start and completion time of the h-th batch of picker e

Table 5.2: Decision Variable Notations
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the depot. One request by a customer consists of either returns or orders (otherwise, the request

is treated as two separate order lines), such that qr
i = 0 or qp

i = 0 for all i ∈ I . The distance

between any pair of locations n1, n2 ∈ N is denoted by distn1n2 . The maximum number of

batches that can be assigned to order picker e ∈ E is denoted by He, and the total number of

batches is H = ∑E
e=1 He. Because the number of batches that are built for the solution schedule

is not known in advance, this construct implies that some batches might be empty. However,

with our modeling approach, empty batches do not cause any travel cost and have no duration.

The decision variables χhe
ij , ψhe

ij , and ωhe
ij serve to model the routing decisions, comparable

to the formulation provided by Mosheiov (1994). Thus, χhe
ij is a binary variable that expresses

whether the arc between the locations of order line i and j (arc (i, j)) is traveled by picker e in

batch h to visit the locations i and j. In turn, ψhe
ij denotes the load that has already been picked,

and ωhe
ij refers to the load of order lines that still have to be returned in this route. Both loads

are carried along the arc (i, j); the sum must not exceed the transport capacity Q.

Before we present the entire programming model, we introduce the most important inter-

relations between variables. The binary variable bhe
i describes whether order line i is contained

in batch h of picker e, that is

bhe
i =

{
1 if i is contained in the h-th batch of e
0 otherwise

∀i ∈ I , h = 1, . . . , He, ∀e ∈ E .

Thus, we must require that the length of the arc (i, j) between the locations of order line i

and j is considered in the corresponding route only when both i and j are contained in the

corresponding batch. That is,

χhe
ij ≤ bhe

i ∀i, j ∈ I , h = 1, . . . , He, ∀e ∈ E ,

χhe
ij ≤ bhe

j ∀i, j ∈ I , h = 1, . . . , He, ∀e ∈ E .

The travel distance of one batch can then be described by

tdhe = ∑
i∈I

∑
j∈I

distn(i)n(j)· χhe
ij ∀h = 1, . . . , He, ∀e ∈ E ,

where n(i) and n(j) denote the locations of order lines i and j, respectively.

The start and completion times of all batches of an order picker e depend on each other and

can be iteratively described by

sthe = 0 for h = 1, ∀e ∈ E ,

cohe = sthe +
tdhe

v
∀h = 1, . . . , He, ∀e ∈ E ,

sthe = co(h−1)e + cbreak ∀h = 2, . . . , He, ∀e ∈ E ,
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where v is the travel speed, and cbreak is a break between two routes of a picker to prepare

for the coming route or to take a break. The completion time ci of an order line i then can be

derived with the help of a technical variable che
i ≥ 0, using

che
i = cohe· bhe

i ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E , (5.1)

ci =
E

∑
e=1

He

∑
h=1

che
i ∀i ∈ I ,

where che
i denotes the completion time of an order line in a particular batch and is equal to the

completion time of this batch, if it is contained in it. For all other batches it is equal to 0. To

maintain a linear model formulation, we transform constraint (5.1) into a linear expression by

requiring

cohe − che
i = κ1

ihe ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E ,

che
i = κ2

ihe ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E ,

κ1
ihe ≤ (1− bhe

i )· A ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E ,

κ2
ihe ≤ bhe

i · A ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E ,

where κ1
ihe, κ2

ihe ≥ 0, and A > 0 is a sufficiently large constant.

The potential tardiness of an order line i then can be derived by

τi = max{0, ci − di} ∀i ∈ I . (5.2)

In our case, the description of the delay τi can be simplified by requiring the linear restrictions

τi − (ci − di) ≥ 0 ∀i ∈ I ,

τi ≥ 0 ∀i ∈ I ,

because the delay τi is directly minimized in the objective function.

In total, the mixed-integer linear programming model, which minimizes the total cost and

tardiness, takes the following form:

min

s·

1
v
·

E

∑
e=1

He

∑
h=1

I

∑
i=0

I

∑
j=0

distn(i)n(j)· χhe
ij︸ ︷︷ ︸

travel time

+
I

∑
i=1

(qp
i + qr

i )· tp︸ ︷︷ ︸
pick time

+ α·
I

∑
i=1

τi· (q
p
i + qr

i )︸ ︷︷ ︸
delay time

 (5.3)
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subject to

E

∑
e=1

He

∑
h=1

bhe
i = 1 ∀i ∈ I , i 6= 0 (5.4)

E

∑
e=1

He

∑
h=1

I

∑
i=0

χhe
ij = 1 ∀j ∈ I , j 6= 0 (5.5)

E

∑
e=1

He

∑
h=1

I

∑
j=0

χhe
ij = 1 ∀i ∈ I , i 6= 0 (5.6)

I

∑
j=0

χhe
0j ≤ 1 ∀h = 1, . . . , He, ∀e ∈ E (5.7)

I

∑
j=0

ψhe
ij −

I

∑
k=0

ψhe
ki =

{
qp

i ·wi· bhe
i if i 6= 0

−∑l∈I qp
l ·wl · bhe

l if i = 0
(5.8)

∀h = 1, . . . , He, ∀e ∈ E
I

∑
j=0

ωhe
ij −

I

∑
k=0

ωhe
ki =

{
−qd

i ·wi· bhe
i if i 6= 0

∑l∈I qd
l ·wl · bhe

l if i = 0
(5.9)

∀h = 1, . . . , He, ∀e ∈ E

ψhe
ij + ωhe

ij ≤ Qχhe
ij ∀i, j ∈ I , h = 1, . . . , He, ∀e ∈ E (5.10)

χhe
ij ≤ bhe

i ∀i, j ∈ I , h = 1, . . . , He, ∀e ∈ E (5.11)

χhe
ij ≤ bhe

j ∀i, j ∈ I , h = 1, . . . , He, ∀e ∈ E (5.12)

sthe = 0 for h = 1, ∀e ∈ E (5.13)

cohe = sthe +
tdhe

v
∀h = 1, . . . , He, ∀e ∈ E (5.14)

sthe = co(h−1)e + cbreak ∀h = 2, . . . , He, ∀e ∈ E (5.15)

ci =
E

∑
e=1

He

∑
h=1

che
i ∀i ∈ I (5.16)

cohe − che
i = κ1

ihe ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E (5.17)

che
i = κ2

ihe ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E (5.18)

κ1
ihe ≤ (1− bhe

i )· A ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E (5.19)

κ2
ihe ≤ bhe

i · A ∀i ∈ I , ∀h = 1, . . . , He, ∀e ∈ E (5.20)

τi ≥ ci − di ∀i ∈ I (5.21)

χhe
ij , bhe

i ∈ {0, 1} ∀i, j ∈ I , h = 1, . . . , He, ∀e ∈ E

ψhe
ij , ωhe

ij , κ1
ihe, κ2

ihe, τi ≥ 0 ∀i, j ∈ I , h = 1, . . . , He, ∀e ∈ E

The objective function in Equation (5.3) includes the total travel and pick time costs of all order

pickers, as well as the penalty cost α for order lines fulfilled too late. Constraint (5.4) ensures
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that each order line is contained in exactly one batch. With the help of the constraints in Equa-

tions (5.5) and (5.6), we also confirm that each location at which order lines need to be picked or

returned gets visited exactly once in one route. Constraint (5.7) prohibits multiple visits to the

depot within one route, to avoid that the capacity restriction can be eluded. With Constraints

(5.8) and (5.9), we keep track of the currently transported load during each route. Equation

(5.10) limits the transported load at any point of an order picker’s route to the maximum trans-

port capacity Q. Constraints (5.11) and (5.12) are required to express that an arc (i, j) can only

be traveled if i and j are contained in the same batch. In Equations (5.13) - (5.15), we express the

relationships of the start and completion times of the batches addressed by same order picker.

Constraint (5.16) defines the completion time of an order line, and Equations (5.17) - (5.20) re-

place the nonlinear Equation (5.1). Finally, Equation (5.21) replaces the maximum expression

in Equation (5.2) for tardiness τi.

Overall, we seek a solution that assigns all order lines to a schedule, consisting of a fixed

number of order pickers and set a number of batches per order picker. A single order picker

deals with his or her batches sequentially. Order lines are included into batches in such a way

that the capacity restriction of the picking device is not exceeded at any point of any route,

the deadlines of order lines are met, and the total travel distance remains as short as possible.

Some batches might be empty. However, using the proposed objective function in Equation

(5.3), we note that these batches do not cause any travel costs and have no duration.

To provide insights into the problem complexity, let us first consider the order picker rout-

ing problem with integrated order picking and return handling alone. For one order picker

and one batch, this problem reduces to a classical Traveling Salesman Problem (TSP), if the

transport capacity of the order picker is large enough (Hernández-Pérez and Salazar-González,

2004). With respect to TSP problems for warehouse routing, some previous research studies

propose polynomial time solution approaches for specific layouts (Ratliff and Rosenthal, 1983;

Roodbergen and De Koster, 2001b). However, Theys et al. (2010) argue that the problem turns

into a hard problem again for warehouse layouts with more than three cross aisles. The as-

signment of deadlines to customer orders does not further complicate our problem, because

deadline violations are penalized in the objective function, but they are not restricted. Thus,

the decision variant of our optimization program combines several Traveling Salesman Prob-

lems, each of which with simultaneous order picking and return processing. Therefore, and

considering the size of the instances to be solved in practice, we propose a meta-heuristic ap-

proach, namely an iterated local search approach, to determine near-optimal solutions within

reasonable computation times. In the following section, we explain this solution approach in

detail.
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Iteration n

Current schedule

Best schedule among 
structures

Determination of 
schedules with 
structures I-IV

Determination of 
schedules with 
structures I-IV

Local minimum

Iteration n+1

New start schedule

Determination of 
schedules with 
structures I-IV

Best local search schedule

Figure 5.1: Algorithm design

5.2 Iterated local search

The presented approach is an iterated local search algorithm, capable of dealing with large

numbers of customer orders. With the help of a local search heuristic, a local minimum can be

derived from an initial solution. The iteration of this local search procedure offers a broader

search perspective. In each iteration, random changes of the local minimum create a new start

solution for the subsequent local search. The algorithm stops when a pre-set number of itera-

tions is reached and the best solution found during the procedure arises. The algorithm design

is illustrated in Figure 5.1.

For the initial solution, preliminary experiments with variously constructed starting points

showed that the choice of the initial solution had no significant effects on the performance of the

final schedule. Therefore, we selected an intuitive construction of initial solutions by including

order lines iteratively in batches in the sequence in which they appear in the (unsorted) set of

all order lines (data set). The first batches of all order pickers are filled before the order lines

are included in the second batch of any order picker. When including order lines, we limit the

maximum weight of the batches to the transport capacity, without considering the order line

type (pick or return) or their deadlines.
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5.2.1 Local search

Local search algorithms are often accompanied by adjustments of the neighborhood search op-

erators during the procedure (e.g., Albareda-Sambola et al., 2009). We use four structures, each

of which addresses a different attribute of a solution, which in total covers our multi faceted

objective. Combining several neighborhood structures can be a helpful method to explore the

search region broadly (Bianchessi and Righini, 2007; Stenger et al., 2013). From each structure,

we can identify a candidate solution and select the best performing candidate solution which

have been identified by the neighborhood search operators which then informs the next local

search step.

In contrast with the programming model, which we derived in the previous section, ca-

pacity violations are not prohibited in the solution algorithm, but they are penalized with ad-

ditional costs. We take the capacity constraint into account, without further complicating the

solution approach, by setting the violation costs sufficiently high, such that no local search pro-

cedure stops before a solution without capacity violations has been derived. The four neighbor-

hood search operators can recombine or re-sort batches. We search for improvements through

the removal and reinsertion of outliers (e.g., order lines that require long detours) and order

lines that violate deadlines. During each local search, we control for the focus of the algorithm

by adjusting the search region and the impact of certain structures. Thus, we first find a batch

formation on the basis of the proximity of locations of order lines. In subsequent local search

steps, we assign more weight to refining the schedule, by removing capacity violations, tardi-

ness, and detours. If no better solution can be found in any of the neighborhood structures, the

local search stops. To measure the performance of a candidate solution, we use Equation (5.3)

to define the total costs TOC, to which we add penalty costs for transport capacity violations.

These violation costs are added to the objective value for each route step at which a capacity

violation occurs in the routing sequence. We set the start time of the first batch of each picker

to be 0. The remaining start and completion times are determined iteratively by the current

travel time of each batch.

Neighborhood structure I: similarity of batches

For any pair of batches B1 and B2 in the current solution, we define a similarity expression by

B1 and B2 are similar if

{
|stB1 − stB2 | ≤ tolsim and
|coB1 − coB2 | ≤ tolsim ,

(5.22)

where tolsim is a positive tolerance parameter that is high in the beginning of a local search,

decreases during the local search, and then resets to an initial value at the beginning of a new
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local search. Thus, any pair of batches is similar if they have similar start times and similar

completions times according to the current tolerance value tolsim. We elaborate on the specific

selection of control parameters in the following section. A suitable selection of tolsim depends

on the instance size and the average duration of routes. At the beginning of a local search, the

value of tolsim should facilitate similarity among all batches with the same number (e.g., the

first batch of each picker is similar to the first batch of other pickers) and the two subsequent

batches of the same picker. We define a neighbored solution according to neighborhood struc-

ture I, as one obtained by the recombination of the order lines of two similar batches, B1 and

B2. Therefore, we divide the set of order lines in B1 ∪ B2 into two new batches by applying

single linkage cluster merging. For this procedure we define clusters which are sets of order

lines that we aim to merge to two new batches. Each cluster initially contains only one order

line of the set B1 ∪ B2. Iteratively, we merge two clusters c1, c2 ⊂ B1 ∪ B2, if they fulfill the

following condition:

(c1, c2) = arg min
c1, c2⊆C

{
distn(i1),n(i2)| i1 ∈ c1, i2 ∈ c2, c1 6= c2

}
,

where C denotes the set of all clusters, and n(i) is the location of order line i. The cluster

merging procedure stops if two clusters are left or if the total load of orders or returns reaches

the transport capacity. In the latter cases, all remaining clusters are merged to a single second

cluster. Single linkage cluster merging appears to be suited, because it combines two clusters,

if the first cluster contains an order line that is as close as possible to an order line of the second

cluster, that is we search for the minimal additional traveled distance when merging two sets

of order lines. We also determine the performance when both batches merge for small batch

pairs. If two entire batches merge an empty batch might appear in the schedule. In that case,

all later batches of this picker shift. To obtain a new solution, we specify the sequence of

locations to be visited in an S-shape routing plan, while respecting the capacity restriction.

That is, the locations are visited in an S-shaped route through the warehouse and the orders

that would exceed the capacity get skipped, to be picked on the order picker’s way back to the

depot. For warehouse layouts in which S-shape routing is not possible, the route can be sorted

according to another intuitive routing policy. By decreasing the tolerance tolsim successively,

we allow for a broader search for recombination improvements in the beginning and reduce the

computational effort in later local search steps when a rough batch schedule has been found.

The best solution among all recombinations of pairs of similar batches is the candidate solution

according to neighborhood structure I.
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Neighborhood structure II: outlier

For each batch in the current solution, we define an outlier as an order line for which either

long detours must be made, which causes capacity violations, or its removal leads to signifi-

cant reductions of deadline violations for later fulfilled order lines by the same order picker. To

detect these outliers, we compute the objective value for each order picker separately. We com-

pare its performance (i.e., travel distance, cost of capacity violations, and delay costs) of this

order picker with the resulting performance after one order line has been removed. The travel

distance is thereby obtained by the summation of all shortest paths between two subsequent

locations including the depot at the beginning and at the end of each route. If performance

increases and the increase exceeds a certain value tolout, the corresponding order line is treated

as an outlier.

In this case, the outlier is tested for insertion in all batches with the same batch number

and in all batches of the same order picker. Among those batches, we determine the ideal

insertion batch for each outlier, that is, the batch for which the outlier causes the least additional

cost relative to the savings gained by its removal from the original batch. The insertion batch

may be empty. In the insertion batch, the outlier is included at the position in the sequence

that creates the minimum additional cost. An outlier insertion is accepted if it improves the

objective value. We also allow for multiple successive outlier shifts to obtain a neighbored

solution and vary the maximum number of outliers that can be shifted per local search step. To

reduce the computational effort, the search can be reduced to only a subset of the order pickers,

which varies in each local search step. This subset is determined by dividing the set of order

pickers (approximately) evenly into the desired number of order picker subsets, while in each

local search step alternating only one subset is considered.

In total, a neighbored solution according to neighborhood structure II is any solution that

results from a set of shifts of outliers from their origin batch to an insertion batch. The solution

that results from all (or the maximum number of) outlier insertions that improve the objective

value is the candidate solution in neighborhood structure II. Similar to the previous neighbor-

hood search operator, we set the tolerance tolout high in the beginning of a local search and then

decrease it successively, to capture only the most disturbing outliers first. In contrast, the max-

imum number of outlier shifts nos increases slowly, to increase the impact of the entire search

operator in later local search steps. Appropriate values of tolout and nos depend on the instance

size and the average distance between locations of order lines.
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Neighborhood structure III: deadline violations

With the help of neighborhood search operator III, we account for the reduction of tardiness

in the current schedule. The algorithm searches for order lines contained in a batch that is

completed after the order line is due

τi∗ < coB1 (5.23)

where i∗ ∈ B1 is a late completed order line. In this case, the order line is tested for insertion in

any earlier completed batch, such that the additional costs of the insertion batch are minimized.

Again, the insertion batch can be an empty batch, in the case that fewer batches are assigned

to another order picker and these batches are completed earlier. Let B denote the set of all

batches. i∗ is removed from its origin batch B1 and inserted in batch B2 at position k, if

B2 = argmin
B∈B

{
min

k
(distn(jk−1)n(i∗) + distn(i∗)n(jk))− distn(jk−1)n(jk)| jk−1, jk ∈ B

}
. (5.24)

While searching for an insertion position, we also test whether a swap of order lines, instead

of an insertion, can improve the objective. If any order line in the potential insertion batch

is due after the completion time of the origin batch, the algorithm swaps this order line with

the order line for which the deadline is violated and computes the resulting objective. The

insertion of the order line or swapping of two order lines is accepted, if it improves the objective

value. By facilitating swaps as well, we avoid the possibility that early completed batches are

overloaded during the procedure, which could narrow flexibility in later local search steps.

Therefore, we also prioritize swapping over insertion, if the resulting objective values are equal.

Similar to the second search operator, this procedure is repeated up to nds times for other order

lines with violated deadlines in each local search step. It stops when no deadline violations

can be observed anymore, if no insertion of order lines in earlier batches can improve the

objective value, or if a maximum number of insertions/swaps (per local search step) nds has

been reached.

The solution that results from the number of insertions of order lines with violated dead-

lines into the corresponding best suitable prior completed batches is the candidate solution

within the third neighborhood. nds is increased during a local search and reset to the initial

value at the beginning of a new local search. We thus facilitate the reduction of deadline viola-

tions during the entire local search, but we increase the impact of structure III in later iterations,

when a rough sorting based on the proximity of storage locations already has taken place. The

selection of initial and change values for nds depends on the total number of order lines relative

to the number of pickers.
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Neighborhood structure IV: route performance

The fourth neighborhood search operator facilitates improvements within a batch and aims to

reorganize the sequence of order lines to reduce travel costs. For each non-empty batch B, we

first determine its total load of order lines to be picked lp
B and the load to be returned lr

B. A

feasible route for batch B (i.e., a route that does not violate the transport capacity restriction)

exists if

lp
B ≤ Q and

lr
B ≤ Q.

Otherwise the batch contains too many order lines to be picked, or too many order lines to

be returned, and no feasible route can be found. Batches for which a feasible route exists

initiate the application of the cheapest feasible insertion heuristic (CFI) to redesign the route

(Mosheiov, 1994; Hansen and Mladenović, 2001). Starting with a route that contains only two

randomly selected locations to be visited in the route, any new order line gets inserted at the

position in the sequence at which it causes the minimum additional travel cost and does not

violate the transport capacity restriction. For batches for which no feasible route exists, the

transport capacity restriction is neglected, and the route is built only according to the cheapest

insertion (CI) heuristic. The capacity violation in such batches creates high costs which facil-

itates that those batches are treated in future local steps by neighborhood operator I or II. A

reorganization of the route of any batch by CFI or CI is accepted if it improves the objective

value. The solution that results from all reorganizations that improve the objective value is the

candidate solution within neighborhood structure IV.

By adjusting some of the neighborhood-specific control parameters, we facilitate a changing

focus of the solution algorithm during each local search (Hansen and Mladenović, 2003; ?).

For example, in the beginning of a local search, the similarity of batches affects many batch

pairs, because the tolerance value is high. This procedure is computationally intensive, but

it supports a broad search for improvements across large parts of the schedule through batch

recombination. Later, we restrict the similarity expression, because by then most order lines

have been sorted in the batches with respect to their deadlines, and recombinations of batches

only lead to improvements if the batches are conducted at similar times. Similarly, structure II

aims to detect and remove the most disturbing outliers first, then focuses on refining changes

later.
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5.2.2 Iteration

If a local minimum has been identified, such that no improvements are possible according to

any of the neighborhood structures, the local minimum is randomly altered, and a new local

search starts. This alteration can be achieved by random swaps of complete batches between

order pickers, swaps of partial sequences of order lines with random length between batches,

and swaps of single order lines, to obtain a new schedule. This schedule serves as the start

solution of the subsequent local search. The total algorithm halts after a certain number of

iterations and returns the best local search minimum found during the procedure.

5.3 Experimental design

In this section we provide an overview of our experimental design by introducing the ware-

house layout that we mainly use for the experiments and we present the details and character-

istics of our sample data sets. We perform our experiments for the same warehouse layout as

we did in Chapter 4, which is depicted again in Figure 5.2 and commonly used to study order

picking performance (Gademann et al., 2001; Gong and De Koster, 2009). Again, we emphasize

that our solution algorithm, as well as the programming model we described in Section 5.1 are

applicable irrespective of the warehouse layout. The warehouse possesses parallel aisles with

the length alength and width awidth, along with two cross aisles at the beginning and the end of

the parallel aisles, which allow order pickers to switch between the parallel aisles. Products are

stored only in the parallel aisles, not in the cross aisles. With respect to the storage locations

of order lines, we make no differentiation between the shelves of the left and the right side in

an aisle. That is, order pickers can reach locations on the left and the right side within an aisle

without traveling additional distances.

For this warehouse layout, the distance between any pair of locations n1, n2 ∈ N is given

by

distn1,n2 =

{
|xn1 − xn2 | if yn1 = yn2

awidth· |yn1 − yn2 |+ min{xn1 + xn2 , 2alength − xn1 − xn2} if yn1 6= yn2

.

where yn corresponds to the aisle and xn to the location in the aisle.

We used 12 randomly generated sample data sets that serve as the order and return arrival

process of one working shift (8 hours) and multiple order pickers. We are not aware of research

studies that deal with integrated batching and routing, while taking product returns and order

line deadlines into account. Therefore, we cannot use existing data sets that would allow for a

comparison with other methods. Rather, the 12 data sets provide good insights into the perfor-
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Figure 5.2: Rectangular Warehouse

mance of our solution method for all relevant characteristics of typical warehouse order picking

situations. The data sets are randomly generated only by controlling for the approximate num-

ber of order lines and amount of returns in order to obtain a variety of instances. They vary in

the number of order lines, the warehouse size, and the amount of returned products to fulfill

as the overview of these characteristics in Table 5.3 indicates. Note that the amount of returned

products is not identifiable through the return rate of a company, because the latter typically

expresses the percentage of customer orders returned to the warehouse, on average. The per-

centages in Table 5.3, column 4, reveal the percentage of customer returns with respect to the

total number of requests, such that a return amount of 30% indicates that 30 of 100 customer

requests are product returns, which corresponds to a (30/70 =)43% actual return rate. Pickers

move through the warehouse with a constant pace of 0.7 meters per second, and the time to

pick or return one item is set to 8 seconds. In all experiments, we used travel costs of 0.54e

per minute per order picker, which equates to approximately 32e for an order picker in each

hour. Delay costs are set to 0.06e per minute per delayed item (similar to Tsai et al., 2008). The

capacity of the picking device is 80 kg for all order pickers. Finally, we set the break between

two subsequent routes of the same order picker to equal cbreak = 5 minutes.

The number of parallel aisles in data sets 1− 9 is 35, with an aisle length of 30 meters. For

data sets 10− 12, we considered 50 aisles, with a length of 40 meters. The aisle width is set

to 2.5 meters in all experiments. Deadlines for returned products are the end of the work shift

(i.e., 8 hours). Deadlines for customer orders might occur during the shift, at every full hour;

we assigned them randomly with a uniform distribution. The quantity of items in an order
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Data set #customers
Order Return Total Orders Returns

lines amount weight (kg) (kg) (kg)
1 195 598 10% 641.0 578.1 62.9
2 227 640 20% 714.0 579.4 134.6
3 292 864 30% 904.8 528.6 376.2
4 566 1737 10% 1893.3 1764.2 129.1
5 672 2028 20% 2191.9 1766.0 425.9
6 920 2786 30% 2988.8 2097.9 890.9
7 1348 4000 10% 4299.8 3848.7 451.1
8 1706 5049 20% 5647.1 4597.3 1049.8
9 1817 5431 30% 6092.8 4099.4 1993.4
10 2029 6059 10% 6711.6 5947.0 764.6
11 2341 6995 20% 7654.3 6082.5 1571.8
12 2673 8038 30% 8897.9 6181.9 2716.0

Table 5.3: Sample Data Sets

line can be a maximum of 4, being 1 for 40% of the order lines, 2 for 30%, 3 for 20%, and 4

for 10%, resulting in a mean quantity of two items per order line. The weight of an item is

accurate to 0.1 kg with a uniform distribution and a maximum of 1 kg. Similarly, the storage

locations of order lines, given by the aisle number and the location in the aisle, accurate to

0.1 meters, are assigned with a uniform distribution. Random storage location assignment,

as we assumed in our sample, is widespread in warehouses, because it is easy to implement,

maximizes space utilization, and performs especially well when number of order lines to be

fulfilled is large (Chan and Chan, 2011). However, our solution algorithm can be applied with

any other storage location assignment policy. Furthermore, the number of customer requests

reflects common sizes (De Koster et al., 2002). In particular, we included the smaller data sets

(1− 3) in line with previous research (e.g., Albareda-Sambola et al., 2009; Chen et al., 2005), to

demonstrate the large range of application opportunities with our method. Lastly, our datasets

cover typical product return rates in e-commerce businesses (Mostard et al., 2005; De Koster

et al., 2002) and thus form a generally representative sample.

5.3.1 Benchmark models

Realistic instance sizes prohibit a comparison with optimal solutions. We therefore compare

the performance of our method with two constructive heuristic methods. Such constructive

heuristics have been widely proposed for batching (e.g., seed-order and accompanying order

selection rules (Ho et al., 2008; De Koster et al., 1999)) and the routing problem (e.g., cheapest

insertion heuristic); they also are often used in practice (Gademann and Van De Velde, 2005).
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The first benchmark model (BM1) uses a variation of the earliest deadline first (EDF) job

scheduling heuristic and organizes the route of each batch by applying the cheapest feasible

insertion heuristic (CFI). In contrast with job scheduling problems, our case features no single

jobs. Thus, when applying EDF, we need to make an additional decision when an order line

is included in an already existing (non-empty) batch or in a new empty batch. This decision

involves the consideration of the earliest deadline that occurs in the non-empty batch among

already included order lines. Therefore, we consider the order lines to be sorted according

to their deadlines. Note that we assigned the end of the shift to be the deadline for product

returns. The first order line is included in the first batch of the first order picker. This batch is

filled up with the next order lines. We determine a preliminary route by visiting the locations

in the sequence in which the order lines are included in the batch. The batch is considered full

if (1) the inclusion of another order line would lead to a violation of the deadline of the first

included order line or (2) the total load of orders or the total load of returns would exceed the

transport capacity. In these cases, subsequent order lines are included in the first batch of the

next order picker in the same manner. If the first batches of all order pickers are full, order

lines get included in the second batch of the first order picker. At this point, potential deadline

violations must be tolerated. When all order lines are included in a batch, CFI is applied for

each batch to determine the final route. To begin, only two order lines of the batch form an

initial route that starts and ends at the depot. Any next order line is included at the position in

the sequence at which it causes the least additional travel cost and does not violate the capacity

restriction.

The second benchmark model (BM2) is a constructive insertion heuristic. Again, we con-

sider the order lines to be sorted by their deadlines. In this sequence they are included in

batches. We call a batch open if it already contains order lines and is not full with respect to

the transport capacity (for orders or returns). For each order line, we allow insertion in open

batches only. We first include an order line in the first batch of the first order picker and denote

the first batch of the second picker to be open. The subsequent order lines are tested on each

position of every open batch for insertion with respect to the resulting objective value, and

then they are inserted at the most cost-efficient position. The objective function corresponds

to the objective we presented in Equation (5.3), with additional costs for capacity violations

(similar to Ribeiro and Laporte (2012)). The high penalties for capacity violations enforce their

inclusion at positions that do not lead to infeasible solutions. If an order line is included in an

empty batch, a new empty batch is opened unless a maximum number of open batches has

been reached. In our experiments we set the maximum number of open batches to equal the

number of available order pickers. A batch is closed if the total load of orders or the total load
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of returns reaches the transport capacity.

5.3.2 Control parameters

The number of iterations (i.e., the number of local searches) is set to 30 for data sets 1− 9 and to

15 for data sets 10− 12, because these selections result in good solutions and reasonable com-

putation times. To choose the remaining control parameters, we conducted preliminary tests

and observed good performance with the following values. The majority of control parame-

ters remains constant for all experiments. A change of control parameters, as described in the

solution algorithm in Section 5.2, occurs in every fifth local search step. The initial time toler-

ance to define which batch pairs are considered similar, used in neighborhood search operator

I, is tolsim = 2000 s, which approximately corresponds to the time that an order picker’s tour

takes. tolsim decreases to 95% until a lower bound of 500 s is reached. The number of outliers

that can be shifted by neighborhood search operator II is initially set to 20, increases by 1, and

is limited to 35, which facilitates that long detours are already removed in the beginning the

search operator II retains sufficient impact in later local search steps. The tolerance that defines

an outlier is tolout = 1. It decreases to 80% and is limited to 0.2. The number of shifts that can

be made by neighborhood search operator III is initially set to 20 for instances with less than

5000 order lines and 40 otherwise. It increases by 1 and is limited to 40 and 60, respectively.

The costs for capacity violations are set to 10e/kg, which suffices to avoid capacity violations

in all final local search solutions. To avoid unnecessary searching effort, we split the number

of order pickers for neighborhood search operator II, which only searches for improvements in

one-third of the order pickers per local search step. In the two subsequent local search steps,

the neighbor search is applied for the remaining two-thirds of order pickers. The number of

random swaps of batches and order line sequences, conducted at the end of a local search to

derive a new start schedule, needs to be adjusted to the size of the data set. This step facili-

tates a broad view of the search region, which requires a degree of randomness that is radical

enough; it also must allow for an improvement effect over several iterations. We selected the

number of swaps by defining a parameter swaps

swaps = max
(

3,
#order lines

120

)
.

The new start schedule is derived by the number of entire batch swaps, the number of sequence

swaps of random length, and the number of swaps of single order lines. These values are
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selected by

#batch swaps ≈ swaps
4

#sequence swaps ≈ swaps
2

#order line swaps ≈ swaps.

Preliminary experiments, which we do not report here, showed that small variations of these

parameters do not significantly affect the quality of solutions.

5.4 Numerical results

We demonstrate the performance of our proposed algorithm in several steps. First, the two

previously described constructive heuristics, BM1 and BM2, serve as benchmarks to verify the

performance of our solution approach. Second, to show the effect of a joint optimization of

order batching and order picker routing, we provide a comparison with solutions that we ob-

tained through our algorithm when implementing a fixed routing policy, instead of an iterated

route optimization. Third, we illustrate the potential gains that can be achieved by integrating

customer order picking and product returns in a joint process. To do so, we solve each sample

data set again and in two computations, one to process orders and one to process returns. We

compare the results with those of integrated processing. Fourth, to demonstrate the generaliz-

ability of the solution algorithm, we perform experimental tests using a warehouse layout with

an additional middle cross aisle. The results are summarized in Table 5.4.

5.4.1 Comparison with benchmark models

To solve the sample data sets with the two previously described heuristics, we observed that

the solutions - especially of BM1 - are sensitive to the number of available order pickers. Insuf-

ficient order pickers cause enormous deadline violation costs, because the assignment of order

lines into batches is relatively rigid, and no swapping or shifting of order lines is possible later

when using BM1. We solved each data set with several calculations for 2− 25 order pickers

and used only three reasonable results of BM1 (per data set) for a comparison with our method

and BM2. The results of these experiments are provided in Table 5.4, column 3 (BM1), 4 (BM2),

and 5 (our iterated local search approach).

As the results show, our approach significantly outperforms both BM1 and BM2 for all

datasets and all picker numbers. Relative to BM1, we achieved a cost reduction of 52.6% (stan-

dard deviation 7.72%) on average over the first 27 instances. For the largest data sets 10− 12
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1 2 3 4 5 6 7 8

Set
#

BM1 BM2 ILSA
Fixed No ILSA Cross

Pickers Routes Integration Aisle Layout

1 3 166.08 122.12 98.87 105.93 112.91 96.67
4 163.23 110.12 93.72 107.23 104.63 85.82
5 174.20 111.24 91.77 104.64 102.01 87.68

2 3 175.33 130.82 98.83 123.94 123.88 94.50
4 177.06 116.28 93.84 115.57 117.99 91.82
5 172.68 115.26 98.20 109.72 114.79 88.99

3 4 256.18 166.87 98.17 123.36 147.05 100.73
5 207.06 163.49 98.88 102.90 137.06 97.17
8 267.05 126.74 102.60 120.19 162.66 100.36

4 7 478.65 325.82 253.49 329.91 276.44 245.96
8 442.43 301.85 249.85 331.81 280.26 239.83
9 432.77 305.40 251.97 329.49 274.93 239.56

5 8 507.23 352.96 270.54 333.21 316.50 256.62
9 504.92 347.04 273.35 336.28 327.74 257.24
10 515.47 319.80 258.44 321.32 319.76 242.83

6 8 806.85 510.11 343.78 410.16 411.83 328.39
9 802.13 499.04 336.45 412.35 413.19 316.40
10 705.79 484.07 333.18 422.92 420.03 317.37

7 12 1560.10 699.49 538.71 622.80 588.28 526.80
13 1263.72 683.63 536.29 639.64 593.54 523.90
14 1215.67 667.92 524.26 666.14 589.18 509.56

8 14 1689.77 894.95 660.11 757.18 838.50 623.57
15 1667.47 872.77 648.94 745.12 787.09 635.62
16 1502.21 860.55 660.41 757.73 776.47 628.00

9 14 1694.76 985.53 645.93 735.58 787.93 624.74
15 1598.96 958.22 651.47 749.78 800.22 626.18
16 1578.38 942.26 643.27 749.34 791.00 631.50

10 20 5874.19 1255.08 978.28 1191.99 1126.07 933.13
21 5518.00 1238.72 1000.55 1257.34 1031.17 927.52
22 4828.81 1197.41 976.95 1239.14 1086.93 922.46

11 20 6438.19 1477.99 1090.11 ——- 1230.30 1012.68
21 6129.53 1454.73 1092.31 1277.89 1230.37 1024.67
22 5641.09 1427.63 1060.38 1379.76 1224.75 992.38

12 20 6677.17 1750.86 1191.35 ——- 1397.23 1121.50
21 5483.92 1740.34 1193.94 ——- 1392.84 1109.76
22 5266.06 1701.28 1169.86 1381.29 1356.25 1098.16

Table 5.4: Overview of the total costs (in e) for various experiments
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BM1 cannot offer reasonable results with realistic numbers of order pickers. Compared with

BM2, the total costs are on average 24.9% (standard deviation 6.76%) lower. In each experiment

our solution approach derived results without capacity violation costs. Deadline violation costs

were observed in 3 of the 36 solutions in column 5 (data set 4 with 7 pickers, 8 with 14 pickers,

and 11 with 20 pickers,), but they accounted for less than 1e in each case.

The reason for this performance is that constructive heuristics suffer from an inflexibility

that our search algorithm eludes. Constructive heuristics cannot make use of a global perspec-

tive when constructing solutions successively. Order lines that are included in specific batches

cannot be removed later, even if that would be profitable to distribute later considered order

lines. In contrast, our algorithm searches for promising candidate solution by considering all

order lines and batches at any time. Even the integrative heuristic (BM2), which accounts for

route and batch optimization simultaneously, builds the schedule successively. For example,

switches of order lines along batches are not possible, which might lead to unsuitable assign-

ments of later inserted order lines. Our search algorithm instead improves the initial schedule.

During the entire procedure, it uses information about the full data set in its assignments, and

therefore, it can make decisions from a broader perspective. Furthermore, iteration helps im-

prove the solution by multiple local search rounds and also facilitates an improvement for the

local search.

5.4.2 Joint vs. separated batch and route optimization

The comparison of the two constructive heuristics provides interesting insights into the poten-

tial gains that can be achieved from optimizing batching and routing simultaneously. Whereas

BM1 (Table 5.4, column 3) initially assigns orders and returns into batches, and sorts the rout-

ing sequence in a second step, BM2 (Table 5.4, column 4) aims to find the best suitable batch for

an order line while simultaneously finding its best suitable position in the routing sequence.

In turn, BM2 performs on average 37.1% (standard deviation 8.26%) better than BM1 (average

over data sets 1-9 only).

Table 5.4, column 6 shows the results when we implemented S-shape routing in our solution

algorithm, instead of iterative route optimization. Using S-shape routing, the order picker tra-

verses each aisle that contains pick or return locations entirely. Every second aisle is traversed

in reverse direction (De Koster et al., 1999; Henn et al., 2010). Potentially skipped locations

(due to the capacity constraint) are visited again in a second round in the same manner. These

experiments showed similar results. The iterated local search approach (Table 5.4, column 5)

achieved on average 16.5% (standard deviation 4.89%) lower costs than those accrued using
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an S-shape routing strategy and the same algorithm design (Table 5.4, column 6). The fixed

routing variant was solved with 30 iterations for all data sets, but for three of the large exper-

iments it did not return results with reasonable deadline violation costs. These effects can be

explained partially by the general drawback of rigid routing heuristics; the distance traveled

between any pair of locations is not always the shortest possible path from one location to the

other, if pickers follow a fixed routing policy. In other words, the same set (and sequence) of

locations to be visited might lead to a longer travel distance for any fixed routing policy com-

pared with our approach, in which the shortest path between any pair of locations always is

traveled. However, with the help of neighborhood search operator IV, which is neglected in

the fixed routing variant, we can test routes in each local search step for improvement. The

random selection of start points for the cheapest (feasible) insertion facilitates a test of mul-

tiple options to create a route for the same batch. Furthermore, it supports the detection of

outliers, which can be removed in the following steps by neighborhood search operator II.

Neighborhood search operators II and III also lose impact in the fixed routing variant. Instead

of testing several potential insertion positions in one batch, fixed routing usually allows only

one position for inserting an order line, which then limits the search region of the fixed routing

algorithm. Overall, these results support our arguments about the high relevance of integrated

batching and routing models.

5.4.3 Integrating product returns

For the purpose of demonstrating the potential gains of the integration of customer orders

with product returns in the order picking process, we conducted experiments with orders and

returns processed separately. We determined a schedule that fulfills all orders first. Thereafter,

we reassigned the start times of the first batches of each picker to be the completion time of

the corresponding last batch in the order schedule (+cbreak) and repeated the calculation for

returns only. The results in Table 5.4, column 7, express the total cost of orders and returns.

The total cost when returns are processed together with order picking are 15.6% (standard

deviation 6.80%) lower on average, than separated processing. Separated according to the

different characteristics of the data sets we find 9.6% (standard deviation 2.57%) savings for

data sets with a return amount of 10% (data sets 1, 4, 7, and 10), average savings of 16.3%

(standard deviation 3.49%) for data sets with a return amount of 20% (data sets 2, 5, 8, and 11),

and average savings of 21.0% (standard deviation 7.59%) for data sets with a return amount

of 30% (data sets 3, 6, 9, and 12). These results clearly demonstrate the potential gains to be

obtained from integrating orders and returns in one joint operation.
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5.4.4 Warehouses with a cross aisle

As mentioned previously, our approach is suitable for any kind of warehouse layout, in that

it uses a network representation of the locations to be visited (i.e., a distance matrix). We

conducted another set of experiments for the data sample 1 − 12 for the situation of a two-

block warehouse. That is, we assumed another cross aisle in the middle of the parallel aisles, in

which order pickers can switch between parallel aisles. The width of the cross aisle determines

the distance between the first and the second block and is set to across = 3.5 meters. Because

neighborhood search operator I determines a preliminary routing sequence by S-shape routing,

we adjusted it for these experiments. Here, S-shape routing is applied for the first block only,

and thereafter for the second block. Potentially skipped locations, due to capacity problems,

are dealt with during a second S-shape round in the reverse direction.

The results of these experiments are in Table 5.4, column 8. In line with previous research

(Roodbergen and De Koster, 2001a; Vaughan and Petersen, 1999), we find that an additional

cross aisle is advantageous because it provides more flexibility for building good routes. In

comparison with the previously introduced warehouse layout depicted in Figure 5.2, we find

on average 4.5% (standard deviation 2.30%) lower total costs if an additional cross aisle is

available.

5.4.5 Computation times

All methods were programmed in C++, and we conducted the computational experiments on

an Intel(R) Core(TM) i7 (3.40GHz) processor.

For the first benchmark model BM1, all solutions were obtained in a few seconds. For the

second benchmark model, computation times varied between approximately 2 minutes (data

set 1) and 2.5 hours (data set 12). With our solution algorithm, we solved instances 1 − 9

by applying 30 iterations (for all experiments in columns 5− 8). Computation times largely

depended on the size of the data set and varied from 1 min (data set 1) to 4 hours (data set

9). Data sets 10− 12 were solved with 15 iterations and took at maximum 7 hours (data set

12, 22 pickers). Differences in computation times between the two warehouse layouts were not

observed. With the fixed routing variant, the results were computed slightly faster than with

the algorithm that also optimizes the route.

The complexity that results from the integration of two optimization problems, together

with the large size of our data sets, leads to higher computation times than when using more

intuitive methods, such as BM1 and BM2. Yet good solutions and large improvements com-

pared with the two benchmark heuristics emerged already from the early iterations for all
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Figure 5.3: Improvements during iterations relative to the results of BM2

instances. Figure 5.3 provides an overview of the average improvements compared with BM2

for specified numbers of iterations. For up to 15 iterations, these averages cover all data sets,

whereas for more iterations, the averages were determined for data sets 1− 9 only.

As Figure 5.3 shows, our solution approach outperforms the comparison model, even with

just five iterations. Yet significant improvements can be obtained, if longer computation times

can be facilitated and the algorithm can make the best use of the improvement effect that ac-

companies alternations to a current local search minimum. The resulting solution schedule

organizes the order picking activities for an entire working shift and all available order pickers

at one time. Thus, we consider computation time limits less restrictive because the schedule

for the coming working shift in the warehouse can be calculated during the current shift. Nev-

ertheless, Figure 5.3 also illustrates that with shorter computation times good results can be

achieved.

As indicated in the Section 5.3, neighborhood search operator II is only applied for one-

third of the order pickers per local search steps. A further reduction in the number of order

pickers affected by structure II during each local search step could accelerate the procedure.

Similarly, this division could be incorporated when searching in neighborhood III.

We studied the option to apply all neighborhood search operators subsequently, instead of

accepting only the best solution among all structures in each local search step. Yet with this

algorithm version, we suffered significant quality losses in the resulting solution (up to 30%).

A subsequent application of the structures obviously reduces the required number of local

search steps until a local minimum has been identified. However, this quick convergence of the

local searches provides fewer opportunities to find good local optima and thereby prohibits a
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broad exploration of the search region, such that it exerts ultimately a negative effect on overall

performance.

5.5 Conclusions

In this chapter we studied the combination of two highly relevant warehouse operation prob-

lems, namely, batching and order picker routing. Both are essential for the overall warehouse

performance, because order picking accounts for the major part of the warehouse operation

costs. The numerical experiments reported in this chapter show that there is a clear potential to

save costs if the two interdependent processes order batching and order picker routing are con-

sidered simultaneously. The integration yields 16.5% savings in the total cost. We proposed an

ILP formulation that combines the two problems, accounts for customer order deadlines, and

can incorporate potential product returns in the order picking process as well. Our experiments

also reveal that small return amounts can almost completely be processed without additional

labor effort by integration with the picking. Furthermore, our proposed model is applicable for

multiple order pickers, which is especially of interest for batching problems in which orders are

accompanied by deadlines. We have presented a solution algorithm that can also solve large

problem instances. We observed potentially significant cost reductions compared with two

constructive heuristic methods (52.6% compared with BM1 and 24.9% compared with BM2),

as well as a search-based method, in which the routing method is not optimized but instead

remains fixed.

In summary, our model and solution algorithm help to organize the order picking process as

a whole; to account for the interdependencies between batching and routing, multiple pickers,

and deadlines; and to tackle increasing volumes of product returns.
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Concluding remarks on Chapter 3-5

These first chapters of the thesis dealt with order picking operations in warehouses and studied

opportunities for integrating the forward and return flow processing for companies with many

product returns. While some operations (e.g., sorting and (un-)packaging) have to remain sep-

arated for orders and returns, batching and picker routing are two warehouse operations which

allow for such integration. In particular for these order picking operations a consideration of

simultaneous processing of product returns and orders appears to be a promising idea to en-

hance performance. Order picking batches, which are obviously restricted by the transport

capacity of the picker or the picking device, can be much larger than for separated order and

return handling if only the batch consists of no more orders and no more returns than capacity

allows. We showed that by conducting larger batches travel costs can be reduced significantly.

We dealt with the order picking problem once for isolated batch and route formation (Chap-

ters 3 and 4) and in a second step we dealt with the problems in an integrated manner. There

are good reasons which motivate these two designs: On the one hand, in practice not all ware-

houses have the freedom to select batching and routing policies arbitrarily. The case of the

library warehouse in Chapter 3, for example, has, due to the warehouse layout, limited routing

options, so that efficiency of the order picking can be increased only by focusing on the batch-

ing policy. Vice versa, short deadlines and many customer orders might restrict the batching

policy to a time window based approach (see section 2.1) and leave space for improvement

only with respect to the routing policy. Although we showed in Chapter 5 that an integration

of batching and routing can certainly be useful, isolated approaches are therefore important as

well.

The integrated approach in Chapter 5 extends the application area by approaching the prob-

lem for multiple order pickers simultaneously. Especially in e-commerce deadlines to process

customer orders are given and can be very short. In this case it is important to consider all

available order pickers at the time to decide which picker conducts which tasks in which se-

quence. Therefore a holistic approach to schedule an order picking shift is required which

implies a simultaneous batch and route formation and we presented an appropriate solution

approach for large-scale problems in Chapter 5.



Chapter 6

Staff Planning in Warehouses under

Uncertainty

This and the following chapter deal with another major challenge that e-commerce warehouses

are confronted with. The opportunity for customers to order online at home and at any time,

the high competition, and the need for short delivery times have resulted in high planning

uncertainties related to several warehousing issues. Referring to the classification of Rouwen-

horst et al. (2000) on warehouse problems, especially operational level decision problems are

affected by uncertainties with internal and external sources (Gong and De Koster, 2011), due

to the little space for failures or delay on the one hand and tight budgets on the other.

Especially decisions related to staff scheduling, such as the assignment of full time staff

to specific tasks and working shifts, the allocation of flexible labor sources (e.g., hourly em-

ployees), or the utilization of external workforce via temporary employment agencies, shape

essential decision problems on which uncertainties can have a major impact. This applies to

warehouses as well as to many other supply chain links. Labor is often a large cost component

(Eveborn and Rönnqvist, 2004) and must therefore be used most efficiently. In warehouses,

delays of order fulfillment are hardly an option and the time windows to pick an order and

to prepare it for shipment have become very short (Gunasekaran et al., 2001). On the other

hand, over-staffing needs a careful consideration to obey budget restrictions due to the costs

involved.

Chapter 7 proposes a way to control risks in warehouse staff scheduling problems by means

of appropriate risk optimization modeling approaches. It contains a risk model analysis and,

based on that, derives a decision support tool to guide warehouse managers in making risk
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averse staff scheduling decisions.



Chapter 7

A Decision Tool for Risk Control in

Warehouse Staff Planning

Staff planning plays a vital role in the economic success in many industries. Labor is typically

accompanied with high costs in many production, retailing, and service environments (Ernst

et al., 2004). Excellent staff scheduling policies become crucial when fluctuating workforce de-

mand or other uncertainties are present (Gong and De Koster, 2011), while shortage of labor

might have a serious impact on performance and causes bull whip effects in an entire supply

chain. Furthermore, diverse working contracts, specific skills and tasks, and the variance in

productivity of employees might complicate staffing decisions (Fowler et al., 2008). Neverthe-

less, due to the high costs and risks involved, staffing decisions must be made as accurately as

possible by incorporating all available information.

Our aim in this chapter is to consider warehouse staffing problems and to propose a deci-

sion support tool which assists warehouse managers to make the right choice of risk control

in order to identify suitable staffing policies that match their goals. In commercial warehouses

products have to be picked, packed, and prepared for shipping in response to customer orders.

Thereby, typically large numbers of small orders have to be fulfilled, which involve higher

uncertainties than the shipping of large order quantities for in-store buying. In contrast to

stores that order on a regular basis, the consumers’ online shopping behavior is less easy to

predict. Short response times to customer orders and accuracy in delivery times are essential

service performance indicators (Keeney, 1999). Besides demand fluctuations also absenteeism

of workers and the amount of returns to be processed are examples of the stochastic influ-

ences that affect labor requirements in warehouses. Zhang et al. (2009), for example, reported
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a dramatic increase of costs caused by small variations in the amount of absent workers, which

suggests to also prepare for such events to a certain extent. Demand peaks have to be taken

into account and especially distribution centers that perform the fulfillment for other compa-

nies are often informed about special promotions, advertisements, or discount offers of their

clients on very short notice. The best possible scheduling for the upcoming planning period

is essential, while accounting for uncertainties becomes inevitable if the impact of even small

failures is high. Any inaccuracy can lead to lost sales or unnecessarily high labor costs when

external personnel needs to be hired on short-notice, and mismanagement can even lead to a

loss of the client or the competitive position.

Since staffing decisions are very sensitive to the given problem, they are usually approached

for specific application areas in the literature (Ernst et al., 2004). The staffing in e-commerce

warehouses differs in two ways from other application areas. First, the demand fluctuation

accompanied by Internet retailing is high (Gong and De Koster, 2011) due to the flexibility for

customers to shop independent from opening hours (Pechtl, 2003). Furthermore, high product

return rates are a result of many online purchases; their number and the labor effort involved

creates additional uncertainty for the labor demand. Second, in most settings warehouse work-

ers do not require specific skills to perform one or the other task. In contrast to other staff

scheduling problems, here it remains the problem of scheduling the number of working hours

for each employee to fulfill a specific workload.

Staff scheduling problems with uncertain labor demand have been approached in previous

literature (Bard et al., 2007; Liao et al., 2012; Jeang, 1994). However, variating demand patterns

in e-commerce warehouses motivate a further exploration of risk aversion tools. For example,

the common approach of replacing the stochastic parameters with their deterministic expected

values will only lead to well performing staffing policies as long as the realizations of the

stochastic parameters correspond approximately with the expectation. Especially in the context

of warehouse operations staff predications are only reliable to a certain extent and variations

are high. In this case, staffing policies which prepare the ”mean case” might fail to provide

reasonable performance for the majority of possible scenarios. Multistage stochastic models are

a more sophisticated approach to tackle the uncertainties in staffing problems. Bard et al. (2007)

demonstrate in their article on staff scheduling in mail processing potentially 4% lower costs

when recourse decisions are allowed during the planning horizon compared to the outcomes

of the problem that solely optimizes expectations of the entire time horizon.

To develop the tool we examine five optimization approaches to deal with uncertainties

in warehouse staff planning. We study the behavior of various risk models, which are often

used in financial risk management, in a representative warehouse situation for a variety of de-
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mand and shortage scenarios. The first model is a classical multistage stochastic programming

approach with the objective to minimize the expected total costs. Two other models utilize

multistage risk measures, namely the multi-period conditional value at risk (CVaR) and the

multi-period expected excess (EE), as the objective function to be minimized. Lastly, we incor-

porate two so-called mean-risk modeling approaches, each of which being based on one of the

risk measures CVaR and EE.

The aim of this chapter is to extend traditional stochastic programming methods by an-

alyzing the potential of risk-averse optimization strategies which rely on the CVaR and the

EE for warehouse staffing problems. We propose a decision support tool that guides ware-

house managers in their choice of risk control strategies in order to identify staffing policies

that match their purposes. Our research design is sketched in Figure 7.1. After explaining the

five models we introduce the set of warehouse scenarios for which the models are studied. The

tool is designed with the help of numerical experiments for a warehouse staffing problem and

eventually tested with the help of a real-case example of a Dutch commercial warehouse.

The remainder of this chapter is organized as follows. We give an overview of related

literature in Section 7.1. Thereafter, Section 7.2 introduces the warehouse staffing problem we

are dealing with in a deterministic version first. In Section 7.3 we specify the five multistage

stochastic models on which the decision support tool is based and we provide an overview

of our experimental design in Section 7.4. The development of the decision support tool on

the basis of the numerical outcomes is given in Section 7.5. Section 7.6 is dedicated to a case

application to test the tool. We conclude this chapter in Section 7.7.
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7.1 Literature

As labor typically contributes highly to the overall cost of a company, the need for accurate

models to determine staff levels, schedules, and training policies is evident. Staff scheduling

problems are therefore well-studied in the literature. For an extensive review on rostering and

personnel planning models and methods we refer to Ernst et al. (2004).

Typically, staffing problems are studied for specific application areas due to the unique-

ness and diversity of the underlying optimization problems (Ernst et al., 2004). Many solution

methods can be found for the nursing sector (e.g., Jeang, 1994; Eveborn et al., 2006), which

implies, for example, a careful consideration of people’s skills, or potentially preferred staff

members for certain patients. Others focus on call center agencies (Aksin et al., 2007), where

the response rates to calls have to be very short and the staffing problem is restricted by a cer-

tain service level constraint (Roubos, 2012). Airline crew scheduling adds complexity through

geographical factors to the problem (e.g., Barnhart et al., 2003; Schaefer et al., 2005; Dunbar

et al., 2012). In turn, multi-department problems are staffing problems in which several dif-

ferent types of work have to be fulfilled and not each employee is capable of performing one

or the other type of work or the productivity for different departments varies (e.g., Brusco,

2008; Fowler et al., 2008). Also in the service industry staffing problems can be found, where

labor shortage leads to lower attention to the customer’s needs and thereby to lower perceived

service quality (Dı́az et al., 2002). A commonality among all these staffing problems is the un-

certainty in labor demands, while the problem constraints, and thereby problem complexity

and suitability of specific solution approaches, vary for different application areas.

Stochastic models are most prominent for staffing problems. Abernathy et al. (1973) pro-

pose a stochastic model in the nursing context and an iterative solution method to maximize

workforce utility. Other approaches deal with less constrained problems and pay more atten-

tion to uncertain demands. Sadjadi et al. (2011) consider a staffing problem for various time

horizons, divided into periods. Their decision variables describe the available workforce per

period which is regulated by hiring and layoff policies. The author’s objective is to minimize all

related costs accompanied with hiring, layoff, workforce shortage, and surplus. A genetic al-

gorithm is proposed to solve the problem near-optimal and stochasticity is taken into account

by using expectation expressions. Zhang et al. (2009) study a complex staff and equipment

scheduling ILP in a mail processing context, solved by decomposition and LP relaxation. The

authors observe significant cost increases caused by even small variations in the amount of

absent workers.

Bard et al. (2007) consider a staffing problem in the mail processing context and derive a
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two-stage stochastic problem with recourse. First-stage decisions thereby concern full time la-

bor allocation and part time workforce amount. Second-stage decisions consist of the specific

assignment of part time workers to the schedule, potential shortages are recovered with flexi-

ble workforce. The authors solve the corresponding high dimensional ILP heuristically based

on LP relaxation, which yields near-optimal results in acceptable computation times. Com-

parisons with outcomes of the expected-value problem as well as with the perfect information

wait-and-see approach clearly motivate stochastic models for staffing problems; their recourse

problem has led to 4% lower costs compared to the simple deterministic problem, in which

uncertain parameters are replaced by constant expectations.

Liao et al. (2012) consider a stochastic staffing problem for call centers with two types of

tasks. Their objective is to derive a constant staffing level throughout the planning horizon.

Additional uncertainty is added to their problem by random mean arrival times of inbound

calls within different periods. Similar to Bard et al. (2007), the authors highlight the neces-

sity for sophisticated approaches for situations in which the system is very sensitive toward

data variation. They propose a classical stochastic programming approach for situations with

known exact distributions and a robust optimization approach to protect against uncertainties.

Also Van Landeghem and Vanmaele (2002) propose a robust planning model for supply chain

management. They include uncertainties that might lead to bull whip effects or unnecessary

re-planning cycles. The model is based on incorporating stochastic behavior via distributions

and solving the resulting simulation model with the Monte Carlo method. By means of a case

application they show that re-planning effort as well as disturbances can be reduced by study-

ing various outcomes of the stochastic parameters before a final decision is made.

Fragnière et al. (2010) dealt with an annual staff planning problem in the banking sector

in which also capacity is an uncertainty source. This extension is motivated by the number of

external changes, the complexity of paperwork, and other tasks in the banking industry which

might create capacity uncertainties of less experienced personnel if requests requires actions

varying from the standards. The authors report that expending significant cost for reserving

qualified personnel solely to protect against potential operational risks is at the moment per-

ceived to be not viable in practice. However, by means of an analysis of the shadow costs they

could clearly demonstrate that a surplus of qualified personnel not only reduces the opera-

tional risks but also the overall costs.

In conclusion, we observe that previous research clearly suggests to focus on sophisticated

stochastic modeling approaches for staff scheduling problems (Bard et al., 2007; Liao et al.,

2012; Fragnière et al., 2010). Also the focus on a specific context, namely e-commerce ware-

houses in our case, is motivated by the uniqueness of each application area. The distinctiveness
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of warehouse staffing problems lies in the high fluctuations of the amount of placed orders, the

amount of product returns, and thereby the amount of required labor to realize the short re-

sponse times that are typical for online retailing situations. Risk management approaches for

warehouse staffing problems are therefore of high interest. However, to the best of our knowl-

edge robust optimization is so far the sole main approach to incorporate risk control in staffing

decisions. Our research thereby extends previous literature by performing an analysis of risk

modeling approaches for warehouse staffing problems and by providing a decision support

tool which on the one hand involves several risk control options that differ in applicability and

outcomes, and which on the other hand provides guidance for warehouse managers to select

an advantageous risk control policy for their specific situation.

7.2 Problem definition

The warehouse staffing problem which we use in our experiments describes a typical situation

as it occurs in commercial warehouses. A large amount of the daily work is performed by full

time employees, who are hired by the company, working 40 hours per week in varying shift

schedules, and the warehouse pays constant salaries to them. The maximum number of hours

per day that a full time worker may work is limited, as well as the minimum number of days

that a person has to be off within the planning period (Eveborn and Rönnqvist, 2004). Second,

there is more flexible workforce available, which we refer to as part time staff. For part time

staff we do not differentiate between single employees. Instead we incorporate a variable de-

noting the number of workload hours which is performed by part time staff. Third, any labor

shortage to fulfill demand when full and part time staff have already been assigned has to be

recovered by external workforce. Warehouses often work together with temporary employ-

ment agencies. In that way they can request workforce on short notice to fulfill exceptionally

high demands due to, for example, seasonal peaks or high labor effort due to discount sales.

However, such recourse decisions (i.e., for example, to hire externals) might also have different

backgrounds. They might correspond to overtime performed by full time or part time staff

and which is more expensive than regular working time. Also, recourse decisions can refer to

the postponement of work to the next shift, which in turn can cause expensive delays in the

order fulfillment. Similar to Bard et al. (2007), recourse costs exceed the regular working hour

costs so that there is an incentive to find schedules with low recourse costs (i.e., low use of

externals, little overtime or fewer delays). We assume all workers to have an equal productiv-

ity. In practice, there are different tasks to fulfill in commercial warehouses, like, for example,

order picking, sorting, packaging, and inspection. However, this work is usually easy learn
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T = {1, . . . , T} Time horizon (t ∈ T is one day)
A = {1, . . . , A} Set of full time workers
ca ∈ R Costs of full time worker per hour
cp ∈ R Costs of part time worker per hour
ce ∈ R Costs of external worker per hour
hmax ∈N Maximum number of working hours for a full time worker per day
Doff ∈N Minimum number of days off of full time workers in a period of length P
ρ ∈ R Maximum fraction of part time relative to full time workforce

Table 7.1: Parameter notations

and computer-supported so that all tasks can be performed by all employees which eventually

justifies the assumption that there is one department, i.e., one type of work. The real-life case

which is used to test the decision support tool confirms this assumption. Lastly, we restrict the

staffing problem by the commonly used condition that the ratio part time relative to full time

workforce is limited (Bard et al., 2007) which is often used if flexible workers are accompanied

with lower costs than full time employees and a certain level of full time staff assignment is

desired.

7.2.1 Notations

To formulate the model let T = {1, . . . , T} denote the discrete time interval which describes

the planning horizon. We assume a single shift mode, so that one period t ∈ T represents, for

example, one day. The warehouse manager can allocate full time employees A = {1, . . . , A}

to specific days t ∈ T with the help of the binary variable xt
a and a specific number of hours

by choosing ht
a for a ∈ A and t ∈ T . As mentioned above full time workers receive a constant

salary, which is denoted by the cost parameter ca stating the costs per worker and hour. The

total costs of full time workforce is independent from the shift schedule. This concept describes

a base level of workforce that is always available and limited by a maximum number of hours

per day and a minimum number of days off in the period. Part time workforce at day t ∈ T

is denoted by pt and solely restricted by the ratio ρ ∈ [0, 1] of workload relative to full time

workload. Part time workforce is paid for each hour assigned, their costs are denoted by the

cost parameter cp per hour. Recourse costs are denoted by the cost parameter ce and the corre-

sponding total number of labor hours is described by the variable yt. Table 7.1 summarizes the

notation of the parameters used. The decision variables are listed in Table 7.2.
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xt
a ∈ {0, 1} Binary variable equals 1 if a ∈ A is working at day t ∈ T , otherwise 0

ht
a ∈N Number of hours that a ∈ A is scheduled for work at day t ∈ T

pt ∈ R Number of working hours performed by part time workers at day t ∈ T
yt ∈ R Working hours performed by externals at day t ∈ T

Table 7.2: Decision variable notations

7.2.2 The deterministic model

We introduce the formal model by developing the deterministic optimization model in which

the objective is to minimize the total labor costs along the planning horizon. For the sake of

clarification we summarize the constant costs of full time workforce by CA = ca · hmax · T ·

A. Further, workforce demand and labor shortage are known parameters in the deterministic

model so that we add here the following the notation to Table 7.1:

dt ∈ R Workforce demand at day t
st ∈ [0, 1] Fraction of absent workforce

The corresponding optimization problem which minimizes the total labor cost can be stated

as follows:

min TC = min CA +
T

∑
t=1

(
cp pt + ceyt) (7.1)

subject to:

dt −
(
(1− st)

(
A

∑
a=1

ht
a

)
+ pt + yt

)
≤ 0 ∀t ∈ T (7.2)

ht
a − (xt

ahmax) ≤ 0 ∀t ∈ T , a ∈ A (7.3)
T

∑
t=1

xt
a − T + Doff ≤ 0 ∀ a ∈ A (7.4)

pt − ρ
A

∑
a=1

ht
a ≤ 0 ∀t ∈ T (7.5)

The objective function in Equation (7.1) consists of three cost components being the labor cost

for full time workers, the labor cost for working hours conducted by part time workers, and

the labor costs for external workforce. Constraint (7.2) ensures that the demand is fulfilled at

each time step. Constraint (7.3) limits the number of working hours for each full time worker

per day. Constraint (7.4) regulates the number of days off within the period T . Constraint

(7.5) restricts the amount of work that can be fulfilled by part time workers relative to full

time workers at each time step. External workforce cannot be restricted in such a way, since

our approach relies on complete recourse modeling, which means that for any realization of

the stochastic parameters there is at least one feasible recourse option, which is potentially

accompanied with high costs.
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This deterministic formulation is not used for experiments in the following, but it assists in

developing the multistage stochastic formulation, because it clearly describes the warehouse

staffing problem if all information would be available. In the following section we introduce

the multistage stochastic models which build the basis for our decision support tool.

7.3 Stochastic optimization models

We use five different multistage stochastic programming approaches that are suited to deal

with uncertainties and known from financial risk management and other application areas.

In contrast to the previous deterministic formulation demand and labor shortage are here

not known in advance, but described by a bivariate stochastic process {dt, st}t∈T with the

realizations (dt
l , st

l) ∈ Lt for t ∈ T . Lt ⊂ R2 thereby denotes the finite set of realizations at

time t. Finiteness of those sets is an important assumption that we have to make, because it

enables us to represent the possible outcomes with a scenario tree and to solve the resulting

optimization models with traditional solvers.

The first proposed model represents a classical risk-neutral multistage stochastic modeling

approach which aims to minimize the expected total costs. We use this model to benchmark

the risk averse approaches. Clearly, if any kind of risk aversion is the optimization objective

the expected total costs are higher than with this model, but the solutions also provide more

protection. Yet too high expected total costs are impractical.

The second and third model are likewise multistage stochastic optimization models, yet

here the conditional value at risk (CVaR) and the expected excess, respectively, are minimized.

The CVaR and the EE are related and represent two well-suited risk measures for staff planning

problems, because both incorporate not only the probability of certain risks but also the extent

to which in these cases the expected costs exceed a specific barrier. Both risk measures are

often used indicators in financial risk management, because of their mathematical properties.

For a more details description of those we refer to, for example Rockafellar and Uryasev (2002),

Acerbi and Tasche (2002), an Artzner et al. (1999).

In particular the CVaR and the EE are also suited for mean-risk modeling, which is applied

here in the fourth and fifth model. As both risk optimization and expected cost minimization

alone might utilize limited information on the stochastic parameters or cost structures, mean

risk approaches form an alternative which incorporates both (Heinze, 2008).

To formulate the models we introduce a notation, which describes conditional probabilities

of realizations. Let until time t the historical realizations be given by ((d1
l1

, s1
l1
), (d2

l2
, s2

l2
), . . . ,

(dt−1
lt−1

, st−1
lt−1

)) ∈ L1 × L2 × · · · × Lt−1. Then, we denote the conditional probability of the real-
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ization (dt
l , st

l) ∈ Lt to occur at time t by πlt−1

lt
, where lt−1 = (l1, . . . , lt−1). In other words πlt−1

lt

is the probability of a realization (dt
l , st

l) given the information that until time t the realizations

(d1
l , s1

l ), . . . , (dt−1
l , st−1

l ) have been observed. πl1 denotes the absolute probabilities of outcomes

at the first time steps.

7.3.1 Expected value based multistage stochastic model

The first optimization approach that we incorporate in our analysis is a classical and risk-

neutral multistage stochastic programming model. Its objective function is a nested expression

of expected costs for each time step, while minimization is targeted over the sum of all realized

costs of past time periods and expected costs of future periods. Here, the amount of externals

used in time step t are incorporated by the stochastic recourse costs Ct which is a function of

stochastic demand and shortage. The first expected-value based model of problem 7.1 can then

be stated as

min M1 = min(CA + cp p1 + IE1[C1 + cp p2 + IE2[C2 + cp p3 + IE3[C3 + (7.6)

+ · · ·+ IET [CT ] . . . ]]])

= CA + cp p1 + ∑
l1∈L1

πl1(C
1
l1 + cp p2 + ∑

l2∈L2

πl1

l2 (C
2
l2 + cp p3 + (7.7)

+ ∑
l3∈L3

πl2

l3 (C
3
l3 + · · ·+ ∑

lT∈LT

πlT−1

lT CT
lT )))

subject to

Ct
lt ≥ 0 ∀t ∈ T , lt ∈ Lt (7.8)

Ct
lt − ce

(
dt

lt − pt − (1− st
lt) ∑

a∈A
ht

a

)
≥ 0 ∀t ∈ T , lt ∈ Lt (7.9)

ht
a − (xt

ahmax) ≤ 0 ∀t ∈ T , a ∈ A (7.10)
T

∑
t=1

xt
a − T + Doff ≤ 0 ∀ a ∈ A (7.11)

pt − ρ
A

∑
a=1

ht
a ≤ 0 ∀t ∈ T (7.12)

Decision variables in this formulation are xt
a and ht

a to assign full time workforce to the schedule

and pt for defining the amount of work to be performed by part time staff. Potential shortage

in labor causes the recourse costs Ct for t ∈ T , which are modeled with the help of Con-

straints (7.8) and (7.9), so that the objective function in model 1 (Equation (7.7)) states the total

costs of full time and part time staff together with the expected recourse costs of each time

step. The latter formulation is thereby the key of stochastic modeling approaches, since it
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provides a deterministic ILP formulation, if the number of realizations is finite at each time

step. Constraints (7.8) and (7.9) are used to model the recourse costs. In accordance with the

deterministic framework Constraints (7.10) - (7.12) guarantee the feasibility of the decisions

(xt
1, . . . , xt

A, ht
1, . . . , ht

A, pt). In the following we refer to the problem (7.7) as model 1.

7.3.2 Risk based models

When fluctuations in the stochastic outcomes are high, the expected value problem might lead

to solutions which are impractical for real applications. If the standard deviation of outcomes

is high, any decision policy that solely adjusts to mean values can cause high recourse costs. To

protect against the risk of unexpectedly high cost we propose the first two risk averse modeling

approaches which are based on the minimization of a the risk measures conditional value at

risk (CVaR, model 2) and expected excess (EE, model 3).

For one period models, the conditional value at risk for a level α ∈ (0, 1] expresses the

expected cost of unfavorable realizations, i.e, in our case of high recourse costs Ct. Which

realizations are thereby unfavorable is defined by a parameter α. We elaborate in Section 7.4.3

on the effects of different values for α. To define the CVaR for one period first let Z be a random

variable Z. The conditional value at risk is then defined as follows:

CVaRα = inf
z∈R

{
z +

1
α

IE
[
(Z− z)+

]}
,

where

(Z− z)+ =

{
Z− z , if Z− z ≥ 0

0 , otherwise

Put simply, the conditional value at risk for a level α expresses the expected cost, if one of

the α · 100% worst realizations occur. We can transfer the conditional value at risk into a multi-

period risk measure of our recourse costs Ct. With α = (α1, . . . , αT) ∈ (0, 1]T the CVaRα-based

formulation of our problem becomes (model 2)

min M2 = min CA +
T

∑
t=1

zt + cp p1 +
1
α1

IE1[Z1 + cp p2 +
1
α2

IE2[Z2 + cp p3 + (7.13)

+
1
α3

IE3[Z3 · · ·+ 1
αT

IET [ZT ] . . . ]]]

= min CA +
T

∑
t=1

zt + cp p1 +
1
α1

∑
l1∈L1

πl1(Z1
l1 + cp p2 +

1
α2

∑
l2∈L2

πl1

l2 (Z2
l2 + (7.14)

+cp p3 +
1
α3

∑
l3∈L3

πl2

l3 (Z3
l3 + · · ·+

1
αT

∑
lT∈LT

πlT−1

lT ZT
lt ) . . . ))
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subject to

Zt
lt ≥ 0 ∀t ∈ T , lt ∈ Lt (7.15)

Zt
lt − (Ct

lt − zt) ≥ 0 ∀t ∈ T , lt ∈ Lt (7.16)

and subject to the Constraints (7.8), (7.9), and (7.10) - (7.12).

Similar to the above definition the multi-period CVaR is here modeled with the additional

variables z1, . . . , zT and the random variables Z1, . . . , ZT . Naturally the remaining conditions

of the risk model correspond to the expected value based formulation of model 1.

A related measure of risk is the expected excess. Let β ∈ R+ be a predefined value and

B again a random variable with values in R. The expected excess for one period is formally

defined by the expected value of the difference between β and all realizations of B greater than

β, i.e.

EEβ = IE
[
(B− β)+

]
Like the CVaR, the EE thus describes the risk of exceeding a specific barrier. In contrast to

the CVaR the expected excess defines this barrier with a real number and independent from

the number or probability of scenarios for which B exceeds β. Let β = (β1, . . . , βT) ∈ R the

EEβ-based formulation of our problem can be stated as follows (Model 3):

min M3 = min CA + cp p1 + IE1[B1 + cp p2 + IE2[B2 + cp p3 + (7.17)

+IE3[B3 · · ·+ IET [BT ]]]]

= min CA + cp p1 + ∑
l1∈L1

πl1(B1
l1 + cp p2 + ∑

l2∈L2

πl1

l2 (B2
l2 + cp p3 + (7.18)

+ ∑
l3∈L3

πl2

l3 (B3
l3 + · · ·+ ∑

lT∈LT

πlT−1

lT BT
lt )))

subject to

Bt
lt ≥ 0 ∀t ∈ T , lt ∈ Lt (7.19)

Bt
lt − (Ct

lt − βt) ≥ 0 ∀t ∈ T , lt ∈ Lt (7.20)

and subject to the Constraints (7.8), (7.9), and (7.10) - (7.12).

As indicated above the main difference between the CVaR and the EE to optimize risks, is

the definition of risk either by those realizations that belong to a specified percentage of un-

favorable realizations (CVaR) or by those realizations that exceed a specific monetary barrier

(EE). Both formulations have advantages and disadvantages for specific settings on which we

elaborate in Section 7.5. For example, the EE formulation might have no risk aversion impact

for high values of βt, if the potential recourse costs are low. On the other hand, the CVaR
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formulation might suggest highly expensive over-staffing solutions for low values of αt, es-

pecially if the standard deviation of the recourse costs are high. In this case model 2 would

suggest staffing policies that prepare for only a few expensive outcomes which results in high

total cost policies.

7.3.3 Mean-risk models

Another option to cope with uncertainties in stochastic planning problems is to combine the

expected value problem in model 1 with a risk optimization approach as in model 2 and 3. We

propose two options, which rely on the risk measures above. This concept is called mean-risk-

modeling (Heinze, 2008), which is the method to model a bi-criteria optimization problem with

the objective to minimize a certain risk expression next to the expected value of the objective

function.

We begin with the mean-risk model which uses the CVaR (model 4). The CVaR-based mean-

risk-model at level α = (α1, . . . , αt) is given by

min M4 = min CA +
T

∑
t=1

zt + cp p1 + IE1[C1 +
Z1

α1
+ cp p2 + IE2[C2 +

Z2

α2
+ cp p3 + (7.21)

+IE3[· · ·+ IET [CT +
ZT

α3
] . . . ]]]

= min CA +
T

∑
t=1

zt + cp p1 + ∑
l1∈L1

πl1(C
1
l1 +

Z1
l1

α1
+ cp p2 + ∑

l2∈L2

πl1

l2 (C
2
l2 + (7.22)

+
Z2

l2
α2

+ cp p3 + ∑
l3∈L3

πl2

l3 (C
3
l3 +

Z3
l3

α3
+ · · ·+ ∑

lT∈LT

πlT−1

lT (CT
lT +

ZT
lT

αT
) . . . )))

subject to the Constraints (7.8), (7.9), (7.15), (7.16), and (7.10) - (7.12).

In a similar manner it evolves the EE-based mean-risk model (model 5):

min M5 = min CA + cp p1 + IE1[C1 + B1 + cp p2 + IE2[C2 + B2 + cp p3 + (7.23)

+IE3[· · ·+ IET [CT + BT ] . . . ]]]

= min CA + cp p1 + ∑
l1∈L1

πl1(C
1
l1 + B1

l1 + cp p2 + ∑
l2∈L2

πl1

l2 (C
2
l2 + B2

l2 + (7.24)

+cp p3 + ∑
l3∈L3

πl2

l3 (C
3
l3 + B3

l3 + · · ·+ ∑
lT∈LT

πlT−1

lT (CT
lT + BT

lT ) . . . )))

subject to the Constraints (7.8), (7.9), (7.19), (7.20), and (7.10) - (7.12).

We discuss in the following sections the impact of each modeling approach on the resulting

staffing policies in specific settings. Mean-risk approaches might be more applicable to situ-

ations in which either the expected recourse costs are so high that not much attention can be
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given to risk protection, so that the policy design has to concentrate more on expected out-

comes, or there is not much uncertainty so that a slight risk aversion together with the mini-

mization of expected cost yields the best results.

7.4 Experimental design

In order to analyze the behavior of the different models and to shape the decision support

tool for staff scheduling policies we solve all five optimization models for various demand

and shortage situations. Since the corresponding deterministic programming model of a mul-

tistage stochastic model can become extremely large (with increasing time horizon, number

of scenarios, or number of constraints of the underlying problem), we used an approximation

procedure to create scenario trees, developed by Heitsch and Römisch (2009), which can re-

duce the dimension of potentially large scale input data in order to make the decision support

tool applicable for a wide range of practical staffing problems. In Section 7.4.1 we explain this

procedure in more detail. Section 7.4.2 is used to present four different scenario sets, each of

which with specific characteristics that help to examine the behavior of the optimization mod-

els. In Section 7.4.3 we calibrate the risk measures to find suitable values for the scalars αt and

βt, t ∈ T and we illustrate how different values for these control parameters affect the risk

model solutions.

For all experiments with generated input data we used the following parameters. We con-

sider a setting with 20 full time workers, who can work 5 out of T = 7 days (i.e. Doff = 2),

with hmax = 8 hours at maximum per day. Similar to the warehouse operation problems dis-

cussed earlier in this thesis, we set the costs of a full time worker to 32e per hour (similar to

Chapter 5). Part time workforce can be employed with up to ρ = 50% of scheduled full time

workforce at each day. The costs of part time labor are 35e per hour. Under-staffing by full and

part time labor has to be recovered with external workforce (overtime, delay costs or the like),

which is accompanied with costs of 50e per labor hour. The number of full time workers and

the value of the control parameter ρ are determined by the specific warehouse situation. Here,

those values have been selected to match the demand scenarios which we present in Section

7.4.2. Last, a scaling factor is used in the tree approximation to create similar units in the bivari-

ate stochastic process {dt, st}t∈T . It is defined by the average demand divided by the average

shortage and is used only during the scenario tree construction to facilitate that both demand

and shortage are equally affected by the approximation.
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7.4.1 Scenario tree construction

For a detailed description of the backward tree construction method we refer to Heitsch and

Römisch (2009). The authors suggest a tool to approximate multivariate input data, repre-

sented as data fans, by scenario trees with a reduced number of nodes. Thereby data obser-

vations are aggregated, if their gap (for a suitable norm) falls below a certain tolerance. The

approximation is conducted backwards in time. In our case the procedure is controlled by two

parameters εT+1 ∈ R and q ∈ [0, 1]. q is used to inductively define those maximum gaps for

partial time horizons, whereas εT+1 thereby defines the maximum gap between the original

data set and the first approximation step. Formally, the εt for t = 1, . . . , T are defined by

εt = q · εt+1.

Aggregation of two observations takes place by deleting one observation, while its probability

is added to the residual observation. Let ldel
1 , . . . , ldel

K denote the observations which are deleted

in step t, then this reduction fulfills the condition

t

∑
τ=1

K

∑
k=1

πk · min
lτ∈Lτ

{√
|dτ

ldel
k
− dτ

lτ |+ |sτ
ldel
k
− sτ

lτ |
}
≤ εt

is fulfilled. πk thereby denotes the absolute probability (not conditional probability) of the

observation and the minimum expression describes the smallest gap that a deletion of this ob-

servation can result in. The outcome of this approximation is a scenario tree with a reduced

number of paths, which branches at nodes where the backward tree construction deleted ob-

servations.

For our experiments we performed initial tests with original input data consisting of 200

observations. The average demand is set to 170 hours per day with a standard deviation of

30 hours and an average labor shortage of 5% with a standard deviation of 2%. Approxi-

mations were generated for all possible combinations of the values q and εT+1 in the ranges

q = 0.975, 0.95, 0.925, . . . , 0.7 and εT+1 = 1, 2, . . . , 15. We solved model 1 for the original data

with 200 observations and for each approximation and we are interested in the gaps between

optimal solutions of approximated data and original data. From all solutions we distracted the

constant costs of full time workforce to analyze the percentaged gaps of the variable costs only.

These preliminary experiments show very small gaps for nearly all values of q and for start

values εT+1 ≤ 10 (less than 1%). The lower the start value εT+1 the fewer observations are

aggregated and the smaller the gap of the resulting scenario tree to the original data. On the

other hand small values of εT+1 also cause high dimensional problems which almost reproduce

the original input data and might still be difficult to solve. Secondly, we observe that larger
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values of q produce higher gaps, because if q is set very high, large gaps are tolerated for very

short data paths which in turn leads to aggregations of observations that differ significantly.

For the remaining experiments we proceed with εT+1 = 8 and q = 0.8. This approximation

shows a significant reduction in the number of nodes, while a good reflection the original input

data is maintained. All models were solved with CPLEX in less than one minute.

7.4.2 Numerical data scenarios

An overview of the scenario sets that we studied is given in Table 7.3. For simplification we

introduce a notation based on the positions in Table 7.3 to refer to a single scenario. For exam-

ple, ’i1231’ refers to the scenario in set i with an average demand of 130 hours,with a standard

deviation of 10 hours, an average shortage of 0.02 with a standard deviation of 0.01.

Overall, our aim is to study the behavior of the risk models for stochastic workforce demand

and shortage. Thus, with our first set of scenarios (set i) we analyze how different character-

istics, such as average and predictability of demand and shortage, affect the solutions of the

different models. The total number of different scenarios in set i is 225. The second set, set ii,

describes the situation that certain workforce peaks can be predicted. In some practical situ-

ations peaks in demand are commonly expected (e.g., specific week day). We differentiate in

data set ii the intensity by which the peaks increase the workforce demand on average, i.e. a

peak intensity of 0.15 with a regular demand of dreg will result in an average workforce de-

mand of 1.15 · dreg on peak days. The standard deviation of the peak intensity in constantly set

to 0.05, which describes a relatively predictable situation in which solely fluctuation in work-

force demand is high. The total number of scenarios in set ii is 9. Set iii deals with the situation

of promotion offers which can significantly increase the workforce demand for a certain pe-

riod, while promotion start and intensity of the additional workforce demand are stochastic.

On average the promotion starts at day 4, while we vary the standard deviation of the start day.

Special offers, the adoption of discounts and vouchers by customers, and actions of competi-

tors make promotion offers being accompanied with more uncertainty in workforce demand

than on a peak day. Set iii therefore varies not only in the mean of the intensity of the pro-

motion, but also in the corresponding standard deviation, which results in a total number of

48 scenarios. Lastly, set iv combines peaks and promotion days to a certain extent which adds

36 scenarios. In total we study the behavior of the risk models for 318 scenarios, which cover

a wide range of warehouses situations and thereby represent a suitable sample to derive the

decision support tool rules which assist in warehouse staffing decisions.
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Set Fixed Position 1 Position Position 3 Position 4
i demand mean demand std shortage mean shortage std

130 (1) 5 (1) 0 (1) 0.01 (1)
150 (2) 10 (2) 0.01 (2) 0.02 (2)
170 (3) 20 (3) 0.02 (3) 0.03 (3)

30 (4) 0.03 (4)
40 (5) 0.04 (5)

ii # peaks
peak intens

mean
demand mean 150 1 (1) 0.15 (1)

demand std 30 2 (2) 0.25 (2)
shortage mean 0.03 3 (3) 0.35 (3)

shortage std 0.03
peak intens std 0.05

iii tstart std
prom intens prom intens

mean std
demand mean 150 1.0 (1) 0.15 (1) 0.05 (1)

demand std 30 1.5 (2) 0.20 (2) 0.10 (2)
shortage mean 0.03 2.0 (3) 0.25 (3) 0.15 (3)

shortage std 0.03 2.5 (4) 0.30 (4)
tstart mean 4

iv # peaks
peak intens

tstart std
prom intens

mean mean
demand mean 150 1 (1) 0.15 (1) 1.0 (1) 0.15 (1)

demand std 30 2 (2) 0.25 (2) 1.5 (2) 0.20 (2)
shortage mean 0.03 2.0 (3) 0.25 (3)

shortage std 0.03
tstart mean 4

peak int.std 0.05
prom intens std 0.05

Table 7.3: Scenario sets
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Figure 7.2: CVaR minimization for various scenarios and α-levels

7.4.3 Risk measure scaling

The risk measures CVaR and EE are both risk measures that provide insights into the expected

costs of negative outcomes. To clarify how different values of α1, . . . , αT and β1, . . . , βT affect

the staffing policies we selected a few scenarios of each set. Those scenarios we solved for

model 1, as well as for the models 2 and 3 for various values of αt and βt for t = 1, . . . , T. In

multi-period models obviously differing values for different time steps are possible for these

control parameters. However, such detailed experiments to prioritize single time steps in the

planning horizon are an issue of specific case applications and would not add insights for the

design of the decision support tool. Hence, we set in all experiments all values αt and βt,

respectively, to equal values for all t = 1, . . . , T. We denote them by α = α1 = · · · = αT and

β = β1 = · · · = βT . To illustrate the behavior of the CVaR we depict the results for the solution

of model 2 in Figure 7.2.

Model 2 minimizes the expected costs for cases in which workforce demand and shortage

realize in the α · 100% highest recourse costs. Thus, it is important to mention that Figure

7.2a does not depict the actual expected staffing costs, but the expected costs of those most

expensive realizations only. These costs are aimed to be minimized by model 2. Obviously, α =
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1 results in an optimization for the worst 100% of all realization, and thus, in an optimization

of the expected total costs as in model 1. For a comparison we show in Figure 7.2b in which

expected total costs the corresponding staffing policy would result in.

The results show that for decreasing α both the objective value and the expected total costs

increase. The objective value increases, because the expected costs of a decreasing number of

expensive realizations is considered. The expected total costs increase, since the staffing policy

becomes more adjusted to these outcomes, which results in over-staffing policies.

The results already indicate that model 2 is suited for situations with lower potential re-

course costs. Especially for such scenarios, as i1111, i2332, and ii11, the increase of costs ap-

pears to be lower than for scenarios with higher expected recourse costs, as the scenarios i3553,

iii443, and iv2233. More precise, Figure 7.2c depicts the impact of risk protection on the ex-

pected total costs. While an α = 0.05, i.e. a staffing policy suited for the 5% most expensive

realizations can be achieved with 8, 11% increased expected total costs for scenario i1111, an in-

crease of 28, 56% has to be expected for scenario i3553 where workforce demand and shortage

are high with high standard deviations. In general, it can be noted that especially shortages

in workforce have a large impact on costs. For high recourse cost situations, such as iii443

and iv2233, risk protection for α = 0.8 already approaches 10% of cost increase, so that an

optimization of even lower risk levels becomes impractical.

In Figure 7.3 we demonstrate the impact of using model 3, i.e., when the expected excess

is the underlying risk measure. The EE denotes the expected costs above the barrier β of all

scenarios in which they exceed β. In contrast to the conditional value at risk, model 3 thereby

defines risk by explicit costs. Figure 7.3a depicts the objective value of model 3. It decreases

with increasing β since the objective function only measures the recourse costs that arise over

and above βt for each day. We thus have with higher β less additional costs even though the

overall expected costs (depicted in Figure 7.3b) increase.

For scenario i1111 this model cannot provide more risk aversion than with β = 1500 where

the objective value reaches 35840e which are the constant costs of full time employees. The

corresponding expected total costs of this staffing solution are 46288, 37e which is 15% above

the expected total costs of the risk-neutral approach (model 1). In contrast to the CVaR model,

model 3 shows higher increases for low potential recourse cost situations (e.g., scenario i1111)

than for potentially higher recourse costs as iv2233.

Figure 7.3c shows the increase of expected total costs in more detail. With increasing β

particularly the scenarios i1111, i2332, and ii11, which showed low and mediate expected cost

increases for model 2, here show enormous cost increases. The reason for this is that only

a few observations in these scenarios show potentially high recourse costs (which exceed β)
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Figure 7.3: Expected excess minimization for various scenarios and β-levels
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and to those model 3 adjusts the staffing policy, which leads to unnecessary over-staffing. In

contrast, in higher expected recourse cost scenarios also expensive outcomes are more likely,

which are continuously respected in the optimization also for lower β which overall results in

this a slower increase of expected total costs.

For the remaining experiments to solve all 318 scenarios we proceed with the values of

α = 0.9 and β = 500, since these values provided reasonable results for all scenarios. More

risk aversion would result in expensive over-staffing policies. In contrast, lower risk aversion

produce a nearly risk neutral optimization for many of our scenarios, so that we limit the scope

of our analysis to this parameter selection.

7.5 Computational Findings

In this section we first discuss the results of solving the four data sets with the five optimization

approaches with the aim to identify the implications for a risk control tool with respect to

specific warehouse situations. Eventually, Section 7.5.2 is dedicated to present the step-by-step

tool to decide on a suitable model to control for risks in warehouse staff scheduling.

Obviously, when comparing the total expected costs for the various models, model 1 will

always provide the lowest cost solution, as those are directly minimized in model 1. As already

seen in the previous experiments the risk optimization approaches sometimes differ to a large

extent from this risk-neutral solution that model 1 determines. Such high differences, however,

imply high over-staffing solutions, which would be impractical to implement. On the other

hand we will also discover some scenarios in which one or the other model has no impact on

the policy compared to model 1, i.e. no risk-aversion effect, and is therefore unsuited for these

scenarios as well. The aim of the following analysis is therefore to identify those situations in

which the risk and mean-risk approaches provide similar (i.e., slightly higher) expected total

costs than model 1 in order to derive a practical risk aversion strategy.

7.5.1 Analysis of models

The results of scenario set i are illustrated in Figure 7.4, separated into the scenarios with small,

medium, and high average workforce demand (which also reflect the extent of the potential

recourse costs). A more detailed illustration is provided in Appendix A.

The models show very different behavior for the various scenarios in set i. Generally, we

can derive in line with previous literature (Zhang et al., 2009) that high average labor shortage

as well as uncertainties related to labor shortage significantly increase the expected costs for
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Figure 7.4: Results of scenario set i

all five models. This effect can also be observed for scenarios with the same value for the

average of labor shortage and solely increasing standard deviation. The same applies when

the uncertainty on workforce demand increases.

Model 2 provides reasonable expected total costs when the average workforce demand and

thereby the potential recourse costs are low. The difference between the objectives in model 2

and 1 is smaller for scenarios with low recourse costs than for situations with higher workforce

demand and therewith higher recourse costs. Furthermore, we can observe with respect to

CVaR-based risk measurement that for low recourse costs scenarios model 2 provides lower

costs than its mean-risk equivalent model 4. The mean-risk model 4, in turn, appears to be

suited for situations with higher average workforce demand and for lower standard deviations,

while the effect of risk optimization disappears for model 4 when the standard deviation is too

low (e.g. for scenario i3111 with a cost difference of 0.18% compared to model 1). In summary,

we find that model 2 is suited for situations in which low recourse costs are expected (e.g.,

low demand relative to the available workforce, low labor shortage). Its mean-risk variant

model 4 instead is a generally save option for low uncertainty settings, while it might have no

effect when the potential recourse costs are high and variation is too low, since in these cases

the risk measurement part in the objective has only little impact compared to the risk-neutral

component in the objective (see Equation (7.21) on page 109).

The EE-based models 3 and 5 show nearly an opposite behavior. First, it appears that model

3 is not a good choice for low potential recourse costs and low variation scenarios, where it

produces highly expensive solutions, although these are intuitively the ”easiest” scenarios, be-

cause they are almost deterministic. In those situations model 3 creates policies which prepare

for cases where the daily recourse costs exceed 500e (i.e. the costs for external workforce) and

those hardy occur. Model 3 becomes more applicable when demand uncertainty increases,

since then also the number of scenarios with higher recourse costs increases. In total, model 3

is suited for situations with higher recourse costs, because the risk level is defined by a mone-
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Figure 7.5: Results of scenario set ii

tary value rather than by scenario probabilities. Model 5, in contrast, provides generally good

results for small and medium variation, while the effect of risk-protection might disappear for

settings with too low uncertainties. In these cases the excess barrier β is hardly reached so that

the results of model 5 almost coincide with those of model 1.

Lastly, it appears that for high potential recourse costs and low uncertainty (i.e., standard

deviation) both mean-risk models have lower costs than their risk-based alternatives. The risk

aversion has little impact in these scenarios, so that the expected costs are similar to those

that model 1 yields. On the other hand it stands out that when recourse costs decrease and

uncertainty increases, the mean-risk models suggest more expensive staffing policies than their

risk-based equivalents, which is somewhat surprising, as the expected total costs are also part

of the minimization objective in model 4 and 5. The reason for that is that for these cases

too much attention is given to minimizing the risk term in the objectives (7.21) and (7.23),

so that the objective value reaches its minimum for higher expected total costs than a sole

minimization of the expected total cost would do. Mean-risk models can therefore only be

applied when the right trade-off between the terms in the objective is given. They are not

suited for situations with too low uncertainties, because then the risk term has no impact and

the solution is almost risk neutral, and for situations with too high uncertainties, because then

the risk term has too much impact and the solution becomes expensive. For such situations a

scaling factor between the two terms in the objective could help to make a mean-risk model

applicable. However, in this work we do not consider such scaling factors since they would

shift the focus of the objective of the mean-risk model either toward the risk or toward the

risk-neutral objective which our decision support tool would correspondingly suggest.

The results of scenario set ii are summarized in Figure 7.5. We find that the risk based mod-

els contentiously provide good results throughout all scenarios (1.42% higher costs with model

2 and 1.45% higher costs with model 3 on average). Model 2 becomes slightly more expen-
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Figure 7.6: Results of scenario set iii

sive (2.75% higher costs for scenario ii33), when the average peaks intensity increases, which

again represents a scenario with higher recourse costs. This effect can be explained by similar

reasons as in the analysis of scenario set i. The CVaR optimization affects a large percentage

of expensive scenarios when uncertainty increases. Although this also implies the more risk

averse solution strategy, model 2 is in these cases a cost-intensive option. The basic setting

of set ii, described by the fixed parameters in Table 7.3 on page 113, characterizes a situation

with relatively high fluctuations in workforce demand and shortage throughout all scenarios

of set ii, which explains why the mean-risk models provide expensive staffing solutions for the

scenarios ii11-ii22. For the remaining scenarios model 4 and 5 almost coincide with the risk

models.

The solutions of scenario set iii, depicted in Figure 7.6, suggest the following: The mean-

risk models 4 and 5 almost coincide throughout all scenarios. Obviously, with an increase of

the average intensity of a promotion event the expected total costs increase for all models. No

significant impact can be observed for an increase of the standard deviation of the promotion

intensity, which might be explained by the selection of rather small values of this deviation

in set iii. The uncertainty of the promotion start day has an effect on the expected total costs

and also on the risk model outcomes. The effect, however, is very small relative to the impact

that the intensity of promotions has on outcomes. The reason for this might be that in such

high recourse cost settings no full time staff can be additionally assigned to prepare for an

earlier start of a promotion. Then, this can only be arranged by additional part time staff at this

one day, which causes lower costs than in cases in which the overall costs are also bounded.

In total set iii again describes a relatively stable situation with little uncertainty. In line with

the analysis of set i we thus observe that the mean-risk models provide solutions with lower

costs than the risk models, and, moreover, that for this setting the EE-based model 3 provides
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Figure 7.7: Results of scenario set iv

solutions at lower costs than the CVaR-based model 2, which confirms the results of set i in

which the EE-based approach outperforms the CVaR approach for high recourse cost settings.

Lastly, we analyze the behavior of the risk optimization approaches for scenario set iv, for

which we depict the results in Figure 7.7. Clearly, there is an increase in expected costs, when

the number of peak days increases and also with an increase of the workload due to promo-

tions. Again, we observe that the impact of uncertainty related to the exact start of promotion

offers is present, but not significant. The results of the mean-risk models 4 and 5 again do not

differ significantly. We also find, similar to the previous case, that the risk models have higher

expected total costs than their mean-risk alternatives throughout all scenarios, as the fluctu-

ation of workforce demand is low. The same applies to the intensity of additional workload

through peaks. Overall, scenario set iv represents an workforce intensive case, for which the

expected excess models appear to be the best option.

These analyses showed that the choice of a risk control approach in warehouse staff situa-

tions is mainly dependent on the level of uncertainty and the extent of the potential recourse

costs of the staffing situation. Special uncertainty sources, such as peak days and labor effort

through promotion offers, fit in this concept and influence the outcome of risk optimization

mainly based on their impact on costs and their predictability. We therefore propose a risk ap-

proach determination based on these two factors and therewith suggest the selection of a risk

optimization approach in accordance with the decision matrix depicted in Figure 7.8.

We do not specify precise barriers for the quarters in the matrix, because these can result

from more than one source in practical applications. Also in our considered warehouse sit-

uations uncertainty was driven by labor demand and shortage. In our experiments low un-

certainty reflected very stable situations with a labor fluctuation of 5 hours and a shortage

fluctuation of 1%. The highest uncertainty was given by scenarios with 40 hours labor demand
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Figure 7.8: Decision matrix for risk optimization approach

fluctuation and a shortage standard deviation of 3%. Moreover, the selection of an approach is

not exclusive; applications with medium uncertainty and recourse cost situations might allow

for two risk optimization approaches with a adjacent models in the matrix.

7.5.2 Decision support tool for risk management

We design a decision support tool to identify an appropriate risk measurement approach for

a specific warehouse case. The tool also includes the specification of the warehouse situation

in order to clarify the underlying optimization model. Questions on uncertainties and their

impact thereafter guide the decision on which model should be used and how to calibrate it

for the specific purpose of the warehouse manager.

Step 1 Identification of the underlying optimization problem

Specify the desired planning horizon T. Specify potential fixed labor costs in the planning

horizon (costs which arise independent from specific workforce schedules), set variable

costs (i.e., labor costs per hour, which are only paid when workload is assigned), and

other values and parameters related to the problem. Which constraints shape schedul-

ing problem as exemplary shown in Section 7.2.2 (e.g., multiple shifts, shift lengths, and

breaks)?

Step 2 Determine recourse options

Which options are available to recover shortage in labor on short notice? Examples are

overtime, employing external workforce, postponement or the like. Multiple options are

possible; yet each shortage in workforce demand must be recovered by one or another

option. Specify the costs of each recourse option and potentially limitations which have

to be added with the help of constraints (e.g., overtime limits).
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Step 3 Compose the resulting optimization model

Combine the scheduling problem of Step 1 with the recourse options of Step 2 into one

single optimization model as exemplary shown in model 1 in Section 7.3.1.

Step 4 Analyze historical data on workforce demand and potentially labor shortage

If historical data, especially for workforce demand, shows no significant trend, which

suggests that future observations considerably differ from past observations, a suffi-

ciently large set of historical data can be used to determine labor schedules for the future.

If historical data shows respective trends a suitable forecasting method which incorpo-

rates those trends has to be used to simulate future demands.

Step 5 Develop scenario trees

Depending on the number of data observations, the complexity of the model (i.e., number

of constraints), and the length of the planning horizon T, it might be necessary to reduce

the number of observations with an approximation method as suggested in 7.4.1.

Step 6 Analyze data

Determine means and standard deviations of the uncertainty sources, for example, work-

force demand, shortage, peak days intensity, promotion effort intensity.

Step 7 Decide on a risk optimization approach

Determine the most suitable approach by locating the scenario in the matrix in Figure 7.8.

If no unique quarter can be chosen, proceed with the most suitable options in Step 8 and

make a final decision based on experimental tests.

Step 8 Calibrate control parameters

If in Step 7 a CVaR-based model has been selected, an αt ∈ (0, 1) has to be defined for

each time step t = 1, . . . , T. High values of αt create lower risk aversion, and thereby also

lower total costs, than low values of αt. Recall that αt = 0.9 realizes an optimization of

the 90% highest recourse cost observations in the data set.

If in Step 7 an EE-based model has been selected, choose a βt for each t = 1, . . . , T.

βt has to be a monetary value and determines the excess barrier. Recall that βt = 500e

leads to an optimization which minimizes the average occurring costs on days were 500e

recourse costs are exceeded.

Step 9 Test the selection experimentally

Solve the model(s) selected in Step 7 with the control parameters selected in Step 8. Com-

pare the results with the expected total costs and analyze the resulting policy.
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If the results do not match the desired risk aversion level go back to Step 8 and increase

the risk aversion (lower αt and higher βt) until an acceptable solution is found.

If the results exceed the possible total costs go back to Step 8 and decrease the risk aver-

sion (higher αt and lower βt) until an acceptable solution is found.

7.6 Case application

To apply the decision support tool we consider the staffing problem of a Dutch commercial

warehouse and study the behavior of the risk aversion approaches for this real-life case. Doing

so, we can clarify how to determine the warehouse situation according to the decision matrix

in Figure 7.8 and test the corresponding optimization approach in contrast with the others.

7.6.1 Warehouse setting

The warehouse handles order requests placed by individual consumers as well as business

to business and has therefore manual as well as semi-automated order picking implemented.

The warehouse has full time and part time staff members employed, who work eight and four

hours per day, respectively, when assigned to a shift. Potential labor shortage is recovered with

external workforce via a temporary employment agency; postponement of customer requests

is not possible and delays are aimed to be avoided. Work is conducted in two shifts and five

days a week. However, the specific staff assignment in early and late shift in this warehouse is

separated from the decision on the number of labor hours to allocate for each day. Therefore

we also focus on the number of full time and part time hours to be allocated only.

The planning horizon of the company is one week. The costs of full and part time employees

are 25e per hour. External workforce is paid with 19e per hour. Yet external workers are

usually not familiar with the warehouse and the work, so that those are considered to be less

productive than the personnel employed by the warehouse. To account for this imbalance we

assume a productivity rate of 0.7 for external workforce. Similar to the experiments in the

previous sections, also in this real-life case different types of work are not distinguished, as the

warehouse has a cross-train policy implemented, which implies that each full time and part

time employee is capable of performing each type of work.

Workforce demand is derived from incoming transactions of one year. The labor effort dif-

fers depending on whether an order consists of a single order line, a few order lines, or whether

a request is fulfilled for a business partner and bulks have to be processed. We estimated the

resulting demand of labor hours with a similar procedure as the company on the basis of the
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Figure 7.9: Average labor demand for single week days

number of transaction per day. The average labor demand per day is 1785 hours with a high

standard deviation of 41%. Yet this average covers the entire year. The work load for specific

weekdays, however, varies significantly, so that the demand (except for this predictable vari-

ation for the week days) shows a less uncertain behavior if we consider it for each day of the

week. The average workforce demand throughout the week is depicted in Figure 7.9. The stan-

dard deviation for the single weeks days then constitutes 24% on average. No exact historical

data on absenteeism of workers is available; however, it has been observed to be approximately

2% on average with a low standard deviation (1%).

7.6.2 Decision tool

Step 1 Identification of the underlying optimization problem

The planning period of the company is one week and the warehouse is operating 5 days

per week, which results in T = 5 time steps. Staff is paid on an hourly basis. The staff

members consist of full time employees, who work eight hours when being assigned to

a shift and part time employees who work four hours per shift. The costs of a labor hour

are cw = 25e for full and part time staff members.

Step 2 Determine recourse options

Postponement or delays are not possible, so the only allowed recourse option is the re-

covery of labor shortage with external workforce, with a productivity of 0.7 relative to

full time and part time staff and with costs of ce = 19e per labor hour.

Step 3 Compose the resulting optimization model
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We denote the number of full time workers assigned at day t by xt
f t and the number of

part time workers by xt
pt. The risk-neutral model of this case has the following form:

min cw(x1
f t + x1

pt) + IE1[C1 + cw(x2
f t + x2

pt) + IE2[C2 + · · ·+ IET [CT ] . . . ]]

subject to

Ct
lt ≥ 0 ∀t ∈ T , lt ∈ Lt

Ct
lt ≥

ce

0.7

(
dt

lt − pt − (1− st
lt)
(

8xt
f t + 4xt

pt

))
∀t ∈ T , lt ∈ Lt

Step 4 Analyze historical data on workforce demand and potentially labor shortage

In the current practice of this warehouse historical data is used to predict future demand.

Historical transaction data of one year is used, while the number of transactions is trans-

lated in labor hours similarly to the policy of the warehouse. Labor shortage is simulated

according to the past observations with an average of 2% and a standard deviation of 1%.

Step 5 Develop scenario trees

The data did not require an approximation and could be directly used in the optimization,

since the time horizon was relatively short and the available data fan could be used.

Step 6 Analyze uncertainty sources

The warehouse situation described here shows a scenario with a relatively highly fluctu-

ating workforce demand in comparison with the previous experiments (approximately

24%). The potential recourse costs can be considered to be low, since the cost difference

between pre-scheduling costs (25e per labor hour) and recourse costs ( 19
0.7 e per labor

hour) is rather low. In contrast to the warehouse example from the numerical experi-

ments, in which part time labor use (pre-scheduling costs) was also bounded and thereby

high recourse costs occurred, here the warehouse could prepare for any outcome before

the realization, which naturally lowers the recourse costs.

Step 7 Decide on a risk optimization approach

Given the analysis of the case as described above our decision support tool suggests to

use a risk approach rather than a mean-risk model, and, given the low recourse costs, a

CVaR approach rather than an EE-based model (see Figure 7.10).

Step 8 and 9 Calibrate control parameters and test the selection experimentally

We summarize the last two steps by providing an overview of the outcomes that various

values for α in the CVaR-based risk modeling approach as well as of the outcomes of

various values for β in an EE-based risk approach lead to. The total expected cost of
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Figure 7.10: Risk approach selection for case application

the risk neutral approach (i.e., model 1) are 48967.47e. We include model 3 also in this

analysis since it could potentially also be an option for this warehouse case and illustrate

the expected total cost of model 2 and 3 by demonstrating the cost increase in comparison

with model 1. Since a risk averse decision making can hereby be quantified, the final

selection of the risk-aversion level (i.e. α and β, respectively) can now be made by the

decision maker. Figure 7.11 shows the results of both risk models for a number of values

of α and β, respectively.
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Figure 7.11: Cost increases with risk-based modeling relative to risk-neutral optimization

7.6.3 Case results and implications

The decision on the warehouse situation which the real-life case reflects was made by ana-

lyzing the uncertainty sources and recourse costs in comparison with the numerical examples

that we studied in the previous section to derive the decision tool. High workforce demand

fluctuations of approximately 24% thereby motivated a focus on risk-based approaches rather

than mean-risk models, because they capture more clearly the uncertainty, and thereby allow
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(b) Mean-EE results for various values of β

Figure 7.12: Cost increases with mean-risk modeling relative to risk-neutral optimization

for smarter risk aversion policies than a combination of expected value and risk measure does.

Although in practical applications not all models should have to be analyzed, we also solved

model 3 and 5 here for the same range of α and β values to illustrate the effect of this uncertainty

on those models. We present the results in Figure 7.12. We find that both mean-risk modeling

approaches have very low risk-aversion effects. The mean-risk model 4 (CVaR-based mean-

risk) has a small effect for very low values of α, which means, put simply, that this model could

be used for optimizing a combination of the average outcomes and a few highly expensive re-

alizations. This concept however might be less intuitive than the corresponding CVaR-based

risk approach. The EE-based mean-risk model, in contrast, shows a small risk aversion effect

only for small values of β which implies that the uncertainties that the risk term in the objective

covers are too small, so that the trade-off between average costs and risks is imbalanced.

The risk-based approach using the CVaR turns out to indeed leave most flexibility to control

risks in this real-life warehouse case. However, we also observe a strong sensitivity of the risk

aversion on the expected total costs. Already values for α which are slightly smaller than one

cause significantly higher cost. A value of α = 0.95, for example, which suggests a staffing

policy that is optimal for an average of the 95% most expensive scenarios, results in expected

total costs that are already 10.58% higher than a risk-neutral optimization.

The warehouse should therefore use an CVaR-based modeling approach when aiming to

take risk aversion into account into their staff planning method. However, the strong increase

of the expected total costs with decreasing values of α also indicates that risk aversion policies

can become very expensive for this company. The reason for this behavior is again the low dif-

ference between pre-scheduling and recourse costs. In the risk-neutral approach the expected

total costs are minimized which might lead several days in the planning period in which re-

course cost are accepted, because they result in the lowest costs. The CVaR model, in contrast,
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aims to minimize the risk of these recourse costs by over-staffing with slightly less expensive

warehouse personnel. This results in a small cost advantage for busy days, but implies high

unnecessary costs for the other days.

7.7 Conclusions

In this chapter we considered a staffing problem for commercial warehouses which is often

accompanied with high planning uncertainties. We analyzed risk optimization approaches in

comparison with an expected value-based optimization approach with the help of multistage

stochastic modeling. We developed a decision support tool which can assist to control risks in

specific practical warehouse settings and we applied the decision tool in a Dutch commercial

warehouse case, for which risk control with the multi-period conditional value at risk appeared

to be most applicable among the four approaches.

The contribution of this work is twofold. First, we designed a decision support tool that can

be used by practitioners together with an analysis and explanation of the decisions to be made

and their impact on momentary outcomes. Testing the tool for a real-life case has shown its

applicability. For the case that we studied here the risk modeling approach with the conditional

value at risk has provided the best results.

Second, from an academic perspective we make a step further toward the use of stochastic

modeling approaches in logistics problems, which has been often recommended by researchers

(e.g., Gong and De Koster, 2011; De Koster et al., 2007). Stochastic approaches allow for all

kinds of risk management in an optimization and some examples are provided in this work.

The use of risk measures in a logistics contexts has also revealed a distinction compared to

the application in financial mathematics. While for financial products uncertainty is usually

accompanied with gains on the one hand and losses on the other; here, we observed another

effect. For example, an increase of the variation of labor shortage leads to significantly higher

costs, even though the average of shortages is the same. Clearly, while the total costs suffer

from highly expensive outcomes, they do not profit from exceptionally low shortage realiza-

tions, which leads to the observed effect. Risk control in logistics planning problems enables

the decision maker to quantify certain risks and can take this effect into account in future re-

search.



130 CHAPTER 7. RISK MANAGEMENT IN WAREHOUSE STAFF SCHEDULING



Chapter 8

Conclusions and Future Research

Many online retailers are facing the need for changing their operational policies to fulfill cus-

tomer wishes. Warehouses play in this context a major role since they are responsible for appro-

priate storage of a large number of goods, for processing of orders within very short response

times, for an accurate inventory management, and for appropriate replenishment. All these

issues are usually cost intensive and sophisticated operational polices are needed to react on a

firm’s specific situation. Driven by the need for adjustments of traditional warehouse problems

due to product returns, high service quality, and high planning uncertainties, we suggested in

this thesis a number of solution methods for logistics decision problems to account for newly

arisen phenomena.

This PhD thesis has focused on essential factors and challenges that complicate warehouse

operation processes in today’s e-commerce environment and presented solution approaches to

deal with them. More precisely, this work proposes methods to deal with high product return

rates in warehouses as well as for staff planning under uncertainty. All proposed solution

methods have been validated by means of numerical experiments and/or were applied to real-

life cases which showed promising results for significant savings in warehouse operation costs

and an increase in service performance.

In Chapter 3-5 we focused on warehouse order picking problems with respect to the inte-

gration of product returns and by accounting for service performance to answer the research

questions 1-4 as specified in Section 1.7. Chapter 3 proposes modeling approaches to incor-

porate service-oriented performance measurement in batching procedures. We provide an ex-

ample of how consumer-oriented targets can be integrated with efficiency-based objectives of

warehouse operations, which addresses research question 1. A real-life case demonstrates that

processing times can significantly be reduced with 46% if service performance is incorporated

131
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in the optimization objective. Furthermore the proposed batching method is designed to inte-

grate order picking with returns processing. Experiments with the case of a library warehouse

(i.e., with a return rate of 100%) showed possible savings of 31% in travel distances when or-

der picking and returns processing are integrated. Chapter 3 thereby provides an answer to

research question 2.

Chapter 4 presents a routing method to deal simultaneously with orders and returns and

thus answers research question 3. It builds on Chapter 3 by presenting a widely applicable

routing algorithm which creates near-optimal routes for batches, which consist of customer

order requests to be picked as well as product returns to be brought back to specific storage

locations. In both Chapters experiments are reported which show a strong potential to reduce

labor and time effort by integrating product returns in the order picking process.

Research question 4, addressing the interrelation of batching and routing, is approached

in Chapter 5 in which we presented an integrative approach to combine batch formation and

order picker routing. The integration of several warehouse operation problems into joint op-

timization approaches can result in major advantages if they are interrelated. We propose in

Chapter 5 a solution procedure which simultaneously determines batch composition and short

routes for each batch. The results of our numerical experiments support the concept of inte-

grating influential warehousing problems by indicating 16.5% potential cost savings for joint

in comparison with separated batch and route formation. In total, we proposed solution ap-

proaches for both, integrated batch and route formation, for warehouse situations in which

both policies have sufficient flexibility, and separated policies, in cases in which one or the

other policy is restricted by other warehouse design issues.

Chapters 6 and 7 deal with planning problems under uncertainty in warehouse staffing

decisions and thereby address research question 5. The high fluctuations in labor demand

of warehouses, the large impact of small disturbances, and high labor costs make warehouse

staffing decisions a complex task. Chapter 7 builds on existing stochastic modeling approaches

to control the risks of staffing decisions with the help of a decision support tool. This tool pro-

vides guidance to choose between a risk-neutral and four forms of risk-averse optimization.

Specific uncertainty sources of warehouses are considered as well as regular demand fluctua-

tions and labor shortage. The tool is tested for a real-life case to demonstrate its applicability.

The implementation of the in Chapter 3-5 proposed methods in practical applications re-

quires a careful consideration of the specific warehouse case. While the actual implementation

of the solution algorithm requires computer supported order picking systems (e.g., to route

order pickers operationally), which are already available in many e-commerce warehouses,

the possibility to integrate product returns has to be analyzed in depth. For example, in ware-
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houses in which random storage location assignment is used, the integration of product returns

might save time and costs, but it does not require new methods since returns can most likely

be delivered at locations which the order picker visits to pick products. Furthermore, it has to

be tested how the order picking and returns processing can be integrated operationally, how

physical size and weight of the products complicate the problem, and how much preparation

and sorting time must be added when, for example, an integrated batching method is used.

8.1 Future research

This thesis motivates several promising directions for future research. Driven by the results of

Chapter 3 customer service objectives should play a vital role in warehouse operation designs

in future studies. Search and waiting times, for example, have been identified to strongly in-

fluence the customer’s perception of service quality (Keeney, 1999), so that in future research

not only short delivery times, but also just-in-time delivery objectives should be considered.

Depending on the warehouse situation the right manner of performance evaluation and mul-

tifactorial measures will play a crucial role in warehouse research and practice. Moreover, new

indicators of performance have become important in a competitive environment and require

research attention when designing new policies. Environmental friendliness, sustainability,

and an employer’s social responsibility are some examples of relevant indicators that will play

an increasing role in the future. The consumers’ perception of quality, i.e., the values of those

indicators is difficult to measure and hard to balance with cost related investments and out-

comes. Future research is asked to find appropriate measurement tools and frameworks to

take issues like those into account. Researchers should continue to focus on performance mea-

surement by identifying the relevant features of specific scenarios, finding a way to combine

them in performance expressions, and evaluate the measurement tool in comparison with tra-

ditional measures and the added value of the newly measured features. Also a framework

which categorizes performance indicators is of interest.

Further, this thesis has clearly demonstrated a potential to save costs when interrelated

warehouse operation problems are approached jointly. Future research should continue to

explore integrated warehouse operation methods to account for the interdependency of dif-

ferent problems. For example, the storage location assignment (see Chapter 2) exerts a sub-

stantial impact on order picking performance (Theys et al., 2010), so that an optimal corre-

sponding storage location assignment policy should account for routing options and the im-

plemented batching policy. Staff scheduling problems under uncertainty are interrelated with

cross-training policies and error rate minimization problems. The discussion of integrated ap-



proaches should furthermore take practical limitations into account. Since warehouse opera-

tions problems a usually already mathematically complex when they are considered isolated,

optimal approaches with sufficiently short computation times will be challenging to find. In

those case metaheuristic search techniques might be promising direction for further research

on integrated warehousing problems.

With respect to the integration of warehouse processes, as we have proposed for order pick-

ing and returns processing, new challenges arise to optimize the material handling flow before

and after the order picking. Batch composition, sorting, and consolidation might require more

processing time when orders and returns are processed together. Appropriate batch composi-

tion methods and sorting systems are required to maintain the cost savings that are possible

when orders and returns are integrated in batching and order picker routing. Since analytical

and numerical analyses alone might not be able to reflect the entire complexity of a practical

problem, research which is guided by specific practical needs might be the best option to focus

on for future research.

Moreover, although more calculation time can be allowed for the meta-heuristic approach

in Chapter 5, because it determines a schedule for an entire order picking shift, still, unex-

pected, short-notice rescheduling might be necessary sometimes. This requires solution ap-

proaches with shorter computation times which in turn allow for more planning flexibility. In

that respect also further research on the in Chapter 5 considered integrated order picking prob-

lem is of interest to explore lower bounds, which can facilitate the design of more powerful

solution techniques.

Future research should also focus on stochastic methods to design warehouse policies that

are affected by uncertainties. Labor scheduling is only one problem that usually requires longer

planning horizons than the available exact information on future demand would allow. Avail-

ability of products and resources, lateness, and technical failure might be other examples of

uncertainties that complicate planning problems.

Last, the decision support tool, presented in Chapter 7, could be extended by incorporating

other suitable risk measures, a more detailed decision guideline design, or other uncertainty

sources. The outcomes of our analyses revealed a relatively general directive to determine a

risk modeling approach, which suggests a potential extension of the research design to other

staff scheduling contexts and other logistics problems that are influenced by uncertain factors.

Future research is required to test the applicability of our decision tool for similar problems.
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Detailed figures of results of scenario set i

 

40000 

40500 

41000 

41500 

42000 

42500 

43000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios set i (average demand 130h, std 5h) 

 

44000 

44500 

45000 

45500 

46000 

46500 

47000 

47500 

48000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 150h, std 5h) 

 

48000 

49000 

50000 

51000 

52000 

53000 

54000 

55000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 170h, std 5h) 

 

39500 

40000 

40500 

41000 

41500 

42000 

42500 

43000 

43500 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i ( average demand 130h, std 10) 

 

44500 

45000 

45500 

46000 

46500 

47000 

47500 

48000 

48500 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 150h, std 10h) 

 

48000 

49000 

50000 

51000 

52000 

53000 

54000 

55000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 170h, std 10h) 

 

40500 

41000 

41500 

42000 

42500 

43000 

43500 

44000 

44500 

45000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 130h, std 20h)  

 

45500 

46000 

46500 

47000 

47500 

48000 

48500 

49000 

49500 

50000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios if set i (average demand 150h, std 20h) 

 

50000 

51000 

52000 

53000 

54000 

55000 

56000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 170h, std 20h) 

 

41500 
42000 
42500 
43000 
43500 
44000 
44500 
45000 
45500 
46000 
46500 
47000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 130h, std 30h) 

 

46000 

47000 

48000 

49000 

50000 

51000 

52000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 150h, std 30h) 

 

51500 

52000 

52500 

53000 

53500 

54000 

54500 

55000 

55500 

56000 

56500 

ex
pe

ct
ed

 c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 170h, std 30h) 

 

42000 

43000 

44000 

45000 

46000 

47000 

48000 

49000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

scenarios of set i (average demand 130h, std 40h) 

 

47000 

48000 

49000 

50000 

51000 

52000 

53000 

54000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 150h, std 40h) 

 

52500 

53000 

53500 

54000 

54500 

55000 

55500 

56000 

56500 

57000 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n 
€)

 

Scenarios of set i (average demand 170h, std 40h)  

 

40000 

42000 

44000 

46000 

48000 

50000 

52000 

54000 

56000 

58000 

11
11

 

11
23

 

11
42

 

12
11

 

12
23

 

12
42

 

13
11

 

13
23

 

13
42

 

14
11

 

14
23

 

14
42

 

15
11

 

15
23

 

15
42

 

ex
pe

ct
ed

 to
ta

l c
os

ts
 (i

n€
) 

Scenarios of set i (average demand of 130h per day) 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 



Chapter 9

Summary

English Summary

In today’s e-commerce continuous technological development, high competition, and espe-

cially high service standard requirements pose major challenges for the logistics operations of

a company. Especially warehouses, which are responsible for the storage of goods, which are

picked, packed, and shipped in response to customer orders, are requested to adjust their oper-

ations due to recent developments. High product return rates are one of those phenomena that

complicate logistics operations. Significant return rates have become common for many com-

panies and can, depending on the product category, be very high. For consumers the oppor-

tunity to shop online is usually accompanied with very liberal return policies, which induces

those high return rates. Returned products in warehouses need to be unpacked, inspected, and

re-integrated in the warehouse stock before they can be resold. With an increasing number of

returns the processing becomes labor intensive so that the need for well-performing methods

to deal with returns is prominent. This motivates reconsideration and redesign of traditional

logistics processes which facilitate logistics efficiency on the one hand, as well as quick and

reliable deliveries on the other hand.

The first chapters of this dissertation deal with order picking operation problems in ware-

houses of companies which face high return rates. Order picking operations contribute to

more than 55% to the overall operation costs of warehouses. We show that when product re-

turns arrive at the warehouse next to customer orders, there is a potential to save labor costs

by integrating the two flows in some warehouse processes. Order batching and order picker

routing are two warehouse problems that apply to both order picking and returns processing,

which suggests to integrate the product flows. With batching a number of requests is grouped
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into smaller sets each of which to be picked in one route, which in turn facilitates an efficient

order picking process. If those requests consist of not only customer orders but also product

returns, larger batches can be formed than the transport capacity would actually allow, if only

the batch consists of the right mix of orders and returns. In Chapter 3 we considered the prob-

lem of batching a number of customer orders together with product returns in order to achieve

quick order picking, while orders and returns are processed together in order to save time and

costs. Order picker routing, which we discussed in Chapter 4, allows for an integration in a

similar manner. Once a batch of orders and returns has been found, the order picker must be

routed not only with the shortest possible route, but also under consideration of the transport

capacity. We presented a well-performing method to determine such routes and also studied

the impact that a specific mix of orders and returns in batches has on the quality of solutions.

In Chapter 5 we discussed the opportunity to consider the order batching and order picker

routing problem holistically. Obviously, the two problems are interrelated and the performance

of one method depends on the performance of the other. While sticking to context of integrated

order and return flows, we proposed a model to also integrate batching and routing and pre-

sented a solution method to solve large-scale problems.

In Chapter 6 and 7, we focused on another important driver of warehouse costs, namely

staff planning. We studied a staff planning problem for warehouses in situations of high work-

force demand fluctuations, which are - just like product returns - a common issue and problem-

atic for e-commerce retailers. Labor is usually highly cost-intensive and has to be used most

efficiently by optimal scheduling. We discussed five optimization approaches to incorporate

risk management in a staff schedule optimization problem and presented a decision tool for

warehouse managers which can assist them in deriving low-cost solutions by simultaneously

controlling risks of shortages.

Overall we addressed in this thesis a number of problems, which arise in many warehouses

of e-commerce retailers and presented suited solution approaches for those problems. The

performance of our designed algorithms we demonstrated by means of numerical experiments

and partially by considering real-life situations. Our experiments showed that significant cost

savings can be achieved by integrating incoming and outgoing product flows in warehouses,

as well as by combining and jointly solving interrelated warehouse problems.
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Samenvatting

Magazijnprocessen opnieuw bezien - nieuwe uitdagingen en methoden

Niet alleen de enorme groei van e-commerce, maar ook de hevige concurrentie, de door-

lopende ontwikkelingen en de stijgende servicestandaarden stellen de logistieke operaties van

retailers voor grote uitdagingen. Retailketens worden steeds complexer en klanten worden

steeds veeleisender. Dat betekent dat een efficiënte operatie, goede leverprestaties en een flinke

dosis innovativiteit essentiële voorwaarden zijn voor succes. Met name in de magazijnen die

verantwoordelijk zijn voor het opslaan, verzamelen, verpakken en verzenden van producten,

is de druk groot.

Een belangrijke complicerende factor vormen de retourstromen. Veel online retailers hanteren

een tolerant retourbeleid om de service te vergroten en op die manier het vertrouwen van

klanten te winnen. Het resultaat is dat afhankelijk van de productgroep tot wel 75 procent

van de verkochte producten wordt teruggestuurd. In hun magazijnen dienen retailers al deze

producten uit te pakken, te controleren en weer op voorraad te leggen voordat ze opnieuw

in de verkoop kunnen. Omdat het aantal retouren toeneemt, wordt dit proces steeds arbei-

dsintensiever. Daardoor groeit de behoefte aan efficiënte methoden voor het afhandelen van

retouren. Reden genoeg om de traditionele logistieke processen opnieuw tegen het licht te

houden en opnieuw te ontwerpen. Alleen dan kan een efficiënte logistiek inclusief adequate

retourprocessen en snelle en betrouwbare leveringen ontstaan.

In deze dissertatie worden methodieken voorgesteld voor het integreren van de retour-

processen in de bestaande orderverzamelprocessen. Integratie in orderverzamelprocessen, die

gemiddeld 55 procent van de totale operationele kosten uitmaken, leidt tot lagere operationele

kosten. In de eerste vier hoofdstukken na de introductie staan daarom de orderverzamelpro-

cessen centraal. Het verzamelen van orders en het verwerken van retouren worden samenge-

bracht in twee processen: het samenstellen van groepen van orders (batches) en het bepalen

van de looproute van medewerkers langs de opslaglocaties. Het samenstellen van batches

betekent dat meerdere klantorders of retouren worden samengevoegd tot n grote opdracht

die aan een enkele medewerker kan worden toegewezen. De looproute door het warehouse

bepaalt in belangrijke mate de efficiëntie van medewerkers bij het verzamelen of juist weer op

voorraad leggen van producten.

In veel magazijen worden orders gegroepeerd om de efficiëntie van het orderverzamel-

proces te vergroten en meer orders in kortere tijd te kunnen afhandelen. De grootte van de

batch wordt bepaald door de beperkte capaciteit die de medewerker heeft om alle verzamelde
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producten op zijn ronde mee te nemen. Als we nu het verzamelen van orders en het weer

op voorraad leggen van geretourneerde producten combineren, kunnen we batches samen-

stellen die groter zijn dan de transportcapaciteit van de medewerker toelaat. Met andere wo-

orden: medewerkers starten hun route door het magazijn met een kar vol geretourneerde pro-

ducten die weer op voorraad moeten worden gelegd en eindigen met een kar vol producten

die door klanten zijn besteld. Dat is mogelijk zolang de juiste mix van orders en retouren

wordt samengebracht. In deze dissertatie tonen we aan de hand van een casus in een biblio-

theekmagazijn aan dat een dergelijke integratie van orders en retouren tijd en kosten bespaart

zonder dat dat ten koste gaat van de responstijden en de kwaliteit van de dienstverlening

aan klanten. Om de prestaties van een gentegreerd orderverzamel- en retourproces te kunnen

meten, zijn prestatie-indicatoren gedefinieerd waarmee zowel de efficiëntie van de operatie als

de kwaliteit van de dienstverlening worden gemeten.

Na het samenstellen van batches komt in deze dissertatie het bepalen van looproutes aan

bod. Het is de uitdaging om gegeven een batch die uit zowel orders als retouren bestaat -

de kortst mogelijke route te berekenen langs de locaties in het magazijn die de medewerker

moet bezoeken. Voor dat doel is een genetisch algoritme ontwikkeld dat het mogelijk maakt

om in zon kort mogelijke tijd de optimale route voor grote batches te berekenen. Het algoritme

is getest middels een aantal numerieke experimenten. Tevens is onderzocht hoe orders en re-

touren zo efficiënt mogelijk tot batches kunnen worden gecombineerd, terwijl de medewerker

voldoende flexibilteit houdt bij het sorteren van producten op de kar.

Deze twee hoofdstukken over batching en routering worden gevolgd door een hoofdstuk

waarin we onderzoeken of het mogelijk is om het formeren van batches en bepalen van looproutes

gelijktijdig uit te voeren. Daaruit blijkt dat het soms onmogelijk is om beide activiteiten te in-

tegreren, bijvoorbeeld door de grote complexiteit van elk probleem afzonderlijk of het gebrek

aan flexibiliteit in de keuze van een batch- of routeringsmethode. Als het echter mogelijk is

om beide activiteiten wel te integreren en het probleem holistisch te benaderen, kan dat zowel

tijd als kosten besparen. In deze dissertatie wordt hiervoor een oplossing gepresenteerd en

gevalideerd, die gebaseerd is op een iteratieve locale zoekmethode en verscheidene neighbor-

hood structuren.

Het laatste deel van deze dissertatie gaat over een andere belangrijke uitdaging in logistieke

operaties: personeelsplanning. Arbeid is duur, zodat het belangrijk is om de beschikbare ar-

beidskrachten met optimale planningstechnieken zo efficiënt mogelijk in te zetten. Online re-

tailers kampen bovendien met grote onzekerheden in het planningsproces, aangezien de vraag

uit de markt per definitie onbekend is en sterk kan fluctueren. Om daarmee adequaat om te

gaan is risico management vereist. In deze dissertatie bespreken wij vijf methoden om risico
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management in personeelsplanning te incorporeren. Daarnaast presenteren we een instrument

waarmee magazijn managers een kostenefficiënte personeelsplanning kunnen maken en geli-

jktijdig de kansen op personeelstekorten kunnen minimaliseren.

Deze dissertatie levert een bijdrage aan de wetenschappelijke literatuur door een aantal

klassieke problemen voor e-commerce warehouses opnieuw aan een onderzoek te onderw-

erpen. Nieuwe methodes voor de afhandeling van retouren en het omgaan met de sterk

fluctuerende vraag leidt tot nieuwe mogelijkheden voor een efficiëntere logistiek, die we in

deze publicatie bespreken.


