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Mixed state entanglement: Manipulating polarization-entangled photons
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There has recently been much discussion regarding entanglement transformations in terms of local filtering
operations and whether the optimal entanglement for an arbitrary two-qubit state could be realized. We intro-
duce an experimentally realizable scheme for manipulating the entanglement of an arbitrary state of two
polarization-entangled qubits. This scheme is then used to provide some perspective to the mathematical
concepts inherent in this field with respect to a laboratory environment. Specifically, we look at how to extract
enhanced entanglement from systems with a fixed rank, and, in the case where the rank of the density operator
for the state can be reduced, show how the state can be made arbitrarily close to a maximally entangled pure
state. In this context we also discuss bounds on entanglement in mixed states.
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I. INTRODUCTION

Since the foundations of quantum mechanics were l
one of its most curious, and perhaps defining, features
been entanglement. Historically, this was discussed with
gard to questions of the nonlocal behavior of quantum s
tems, a consequence of the famous EPR paper@1#, and sub-
sequent work by Bell@2#. In the past decade the focus shifte
to a more information-theoretic interpretation of entang
ment in line with the global effort, to understand and eve
tually build a quantum computer. Quantum computing is
the only avenue that motivated interest. In more immed
terms, realistic endeavors involve quantum cryptograp
schemes, dense coding, and teleportation, as well as ge
questions regarding quantum information@3,4#. While the
realization of a quantum computer is a long term goal, th
pursuits are motivating an enormous amount of cro
disciplinary collaboration in questioning some of the fund
mentals of quantum mechanics and information theory,
how the two are related.

The centerpiece of much of this work is entangleme
Quantifying, generating, distributing, and maintaining e
tanglement make up the cornerstones of an enorm
amount of research in quantum information science. A me
of manipulating entanglement will be vital in distributin
and maintaining entanglement, and photons provide the m
realistic and accessible means of achieving this. In this pa
we refine an experimentally realizable@5# protocol for ma-
nipulating arbitrary states of polarization-entangled phot
which we previously introduced@6#. This scheme was sig
nificantly improved, and here we provide an extensive ana
sis of the protocol in the context of entanglement transf
mations. This scheme specifically targeted mixed states
experimentally it is unrealistic to consider the system i
lated from interactions with the environment. We would a
like to connect some of the mathematical concepts regar
entangled mixed states with a more intuitive and realis
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experimental proposal. In terms of manipulating a state’s
tanglement and purity, there was a proposal by Kentet al. @7#
pertaining to the requirements for an optimal entanglem
transformation. This was all performed in the context of loc
filtering operations, and in this paper we will show how a
why this works in a system using polarization-entang
photons and allowing for imperfect photodetection.

As only two qubit states are considered, an exact exp
sion for theentanglement of formation(EOF), introduced by
Wooters@8#, will be used.

The EOF is

E„C~r!…5h„@11A12C~r!2#/2… ~1!

whereh is the binary entropy function:

h~x!52x log~x!2~12x!log~12x!. ~2!

This is derived in terms of the spin-flip operation

r̃5~sy
A

^ sy
B!r* ~sy

A
^ sy

B!, ~3!

wheresy are Pauli operators, and the complex conjugation
taken in the computational basis. From this the concurre
can be found,

C~r!5max$l̃12l̃22l̃32l̃4 ,0% ~4!

where the square root of the eigenvalues forrr̃, l̃ i , are
sorted in descending order.

The other characteristic that is considered here is the
rity of the state and thevon Neumann entropyprovides a
convenient and useful measure. The entropy of the bipa
density matrix,rAB , is

S~rAB!52Tr@rAB log4rAB#52(
i 51

4

l i log4 l i , ~5!

wherel i are the eigenvalues ofrAB . In the latter form this is
analogous to the classical Shannon entropy. The log to ba
is used as this is the joint state, and hence in this form retu
©2001 The American Physical Society20-1
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a normalized entropy ranging from zero, for a pure state
one for the identity or totally mixed state.

For a correlated system the entropy of the whole system
less than the entropy of its parts, due to the information t
is present in the correlations between the two systems. F
maximally entangled pure stateS(rA)5S(rB)5 log(2) and
S(rAB)50. How the state was prepared cannot be de
mined by considering measurements on the two subsyst
The correlation in the joint state measurements must be
sidered.

The characteristics of the entropy for a mixed state,
garding both the joint state and the local subsystem, will
useful when discussing state transformations. The entr
provides a key element in discussing bounds on the Hilb
space associated with mixed states in the context of s
manipulation in general, and the scheme introduced h
These concepts will be discussed primarily in terms o
proposed bound on mixed-state entanglement enhance
@7# that requires the subsystem entropies to be maximize

II. ENTANGLEMENT MANIPULATION
USING BEAM SPLITTERS

The entanglement manipulation protocol introduced h
relies on the very simple process of filtering, a method p
posed by several people@9–11# as a means of manipulatin
entangled states. This protocol is conceptually similar to
procrustean methodintroduced by Bennettet al. @12#, which
dealt with pure states of entangled spin-1

2 particles, in a very
generic way.

Our aim is for two parties,A and B, who are spatially
separated, to share the optimal entanglement available.
qubits we consider here are polarization states, whereuV&
anduH& correspond to theu0& andu1& states within the stan
dard computational basis.

The schematic in Fig. 1 represents the proposed man
lation protocol which will be referred to from here on as t
beam splitter protocol. Everything to the left of, and inclu
ing, the BBO ~beta-barium-borate! crystal and decohering
elements are representative of the source that can suppl
initial entangled states that we propose to manipulate.
first polarizing beam splitter~PBS! at the input, before the
crystal, varies the weighting of a superposition state, wh
is then down-converted at the parametric crystal genera
pure entangled pairs. The decohering elements, after
crystal, vary the mixedness of the state. The recent adva
in the preparation of nonmaximally entangled pure@13#, and
mixed @14# polarization-entangled states allows for a cons
eration of a wide variety of initial states, with high produ
tion rates for the entangled photons@15#.

The scheme operates in the following manner. The ou
from the crystal, the two arms labeledsignal and idler, are
incident on PBS’s, spatially separating the vertical and h
zontal polarization modes of the two separate beams. Th
modes will be labeleduV&A ,uH&A ,uV&B ,uH&B . Both polar-
ization modesV and H in both armsA and B will then be
incident on variable beam splitters~VBS’s!. These variable
beam splitters can then be adjusted to obtain the desired
put state dependent on the transmission coefficienth for
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each mode. This transmission is polarization dependent.
to low detector efficiencies, in this protocol the reflect
modes are ignored and the final state that is considered is
state that has coincidence detections at bothA and B. This
will be justified shortly.

All four Bell-type states will be considered here. A mix
ture of two of these nonmaximally entangled Bell-typ
states,

uf6&AB5cosu1uVV&AB6sinu1uHH&AB , ~6!

uc6&AB5cosu2uVH&AB6sinu2uHV&AB , ~7!

will be used to illustrate the extension from pure to mix
state manipulation. The degree of entanglement in eac
these states is determined by the value ofu, i.e., a maximally
entangled state will have equal weighting of the coefficien
u1,25p/4.

When we consider a beam splitter interaction, we m
also consider that, in addition to the incident mode, the ot
port of the beam splitter is subject to the vacuum and si
larly the output will also have two modes. The effect that t

FIG. 1. The initial polarized beam is incident on a polarizin
beam splitter~PBS!, creating general superposition states which
dependent on the orientation of the PBS. This beam then under
a down-conversion process at the BBO crystal producing p
states where the degree of entanglement is determined from
initial superposition. The signal and idler outputs are then subjec
independent decohering environments~DE! allowing variations in
the mixedness of the state. This allows the generation of a w
variety of entangled states. The schematic for the beam splitter
tocol illustrates how an entangled state shared betweenA andB is
spatially separated with respect to its polarization modes by PB
Each mode is then incident on another beam splitter with varia
transmittivity ~VBS!. With some prior knowledge of the state th
VBS’s can be manipulated, concentrating the characteristics of
output state that has coincidence detections atA andB.
0-2
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MIXED STATE ENTANGLEMENT: MANIPULATING . . . PHYSICAL REVIEW A 64 022320
beam splitters have on a polarization-entangled state i
transform the modes in the following way:

uV,H&ABu0&→hV,HuV,H&ABu0&1A~12hV,H
2 !u0&ABu1&.

~8!

This can be interpreted as the vertical or horizontal mo
being passed by the beam splitter with a probabilityhV,H

2 ,
with a component at the reflected port that now has a pho
in an ancilla mode with a probability (12hV,H

2 ). This ap-
proach has a similar interpretation to those found by mod
ing imperfect detectors as perfect detectors, plus a b
splitter attenuating the input field@16#.

It is easy to determine how a single beam splitter in o
arm of the system could be coupled to a specific vertica
horizontal mode. It is not much harder to do this for a be
splitter atA andB; however, we wish to introduce two bea
splitters, both vertical and horizontal, to each polarizat
arm of the system. This couples a controllable variable,
transmission coefficient, to each mode, where the four v
able beam splitters act independently on the four polariza
modes of the bipartite system.

Consider a nonmaximally entangled pure state of the fo
of Eq. ~7!. After interactions with all four of the variable
beam splitters, the final state, before anything is discarde

uc& tot5Ñ$@cosuhVAhHBuVH&AB&

6sinuhHAhVBuHV&AB] u00&1cosuhVAA~12hHB
2 !

3~ uV0&ABu01&1u0H&ABu10&)6sinuhHAA~12hVB
2 !

3~ uV0&ABu01&1u0H&ABu10&)

1cosuA~12hVA
2 ! A~12hHB

2 !u00&ABu11&

6sinuA~12hHA
2 ! A~12hVB

2 !u00&ABu11&%. ~9!

The modes can be interpreted as follows: those labeledAB
are transmitted modes, and the others are ancilla. Also,
convenience, information regarding the polarization of
photons in the ancilla modes has been discarded, an
simple record of whether there is, or is not, a photon in
reflected port atA or B, which is all that is required, has bee
kept.

It was remarked previously that, due to low detector e
ciencies, the reflected component is ignored and a state
coincidence detection atA andB is considered. In Eq.~9!, it
can be seen that the only components having coincide
detections atA andB are the first two components. This ca
be considered to be a coincidence basis state. A coincid
basis state is a state that would have coincidence detec
at both A and B, i.e. detections for any o
$uVV&AB ,uVH&AB ,uHV&AB ,uHH&AB%. Alternatively, if it was
at all possible to detect single photons efficiently, then p
fect single-photon detectors could replace each of the b
blocks in the signal and idler arms in Fig. 1~b!. This would
allow the system to operate a gatelike device at the ou
that, with the aid of classical communication betweenA and
B, was open, and would allow maximally entangled pa
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through as long as a detection is made at one of the pr
ously discarded ports. Again, with reference to Eq.~9!, if this
condition was satisfied then the output state to whichA andB
would have access corresponds to what has been referr
as a coincidence basis state. As perfect photodetection is
a realizable process with current technologies, the be
blocks remain, and a state having joint coincidences foA
andB is considered. This leaves a reduced output state

uc& f5N@hVAhHB cosuuVH&AB1hHAhVB sinuuHV&AB],
~10!

with the normalization

N5@hVA
2 hHB

2 cos2 u1hHA
2 hVB

2 sin2 u#21/2. ~11!

This is a post-selective operation, selecting a subensem
with improved entanglement characteristics, and discard
the rest of the ensemble. If no detection is made then
state can be jointly discarded by bothA and B. This post-
selective process has the advantage that poor detector
ciencies only decrease the coincidence count rate. The
quirement for a maximally entangled state is therefore giv
by

cos2 uhVA
2 hHB

2 5sin2 uhHA
2 hVB

2 . ~12!

If cosu.sinu, then eitherhVA or hHB , or both, can be var-
ied such thathVA

2 hHB
2 5tan2u, thus obtaining a maximally

entangled state with probability

P52 sin2 u, ~13!

which constitutes an optimal transformation for single-co
pure states@17,18#. The probability of producing a maxi
mally entangled pure state for this protocol is dependent
the beam splitter transmission coefficients, and is determi
from the trace of the reduced output state density mat
This is the probability of obtaining the desired state after
beam splitter settings are determined.

This provides an intuitively simple explanation of th
process, for pure states at least; however, if mixed states
to be considered then a more convenient representation
be obtained by using the generalized measurement form
ism. This procedure constitutes a generalized measurem
in that an ancilla is attached to the system; unitary trans
mations are performed in the extended Hilbert space, wh
measurements are made; and then part of the system is tr
out and discarded@19#.

As we are only interested in the coincidence basis out
state, an equivalent local filtering operation can be deriv
that retains the polarization coupling characteristics deri
for the pure state case. Therefore aneffectivetransmission
matrix for the joint system can be written
0-3
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~A^ B!5F hVAhVB 0 0 0

0 hVAhHB 0 0

0 0 hHAhVB 0

0 0 0 hHAhHB

G .

~14!

It can easily be seen that this effective transmission ma
allows for a completely positive mapping of the input state
the coincidence basis output state. The total state transfo
tion matrix operates in a Hilbert space considerably lar
than the original state space, and in this expanded Hil
space there is now a greater degree of freedom in whic
manipulate the state. This is, in part, where the original p
crustean method obtained its name, in that it takes an in
state, places it in an extended Hilbert space, and then
nipulates and discards anything not needed.

Thus, with all the transmission coefficients acting ind
pendently on the$uV&A ,uH&A ,uV&B ,uH&B% modes, the trans
mission matrix of Eq.~14! represents the beam splitter m
nipulation process. This process is analogous to many of
filtering operations that were proposed@10,11#. Any of the
beam splitter transmission coefficientshVA ,hHA ,hVB , or
hHB can be manipulated individually or in unison.The key
feature of this proposal is that each polarization mode in
and B can be manipulated independently. The degree of free-
dom that this protocol provides means that a wide variety
operations for transforming a bipartite system can be sa
fied.

The output state, or more specifically, the reducedcoinci-
dence basisoutput state, can now be written in the form

r̂out5
A^ Br̂ inA†

^ B†

Tr@A^ Br̂ inA†
^ B†#

. ~15!

This state describes the subensemble that passes the filt
process, and would have coincidence detections atA andB.
The probability of this state being realized is given by

P5Tr@A^ Br̂ inA†
^ B†#. ~16!

The only restriction on these operations is that they m
satisfyA†A<I andB†B<I , being completely positive map
@19#.

The case of pure states provided a straightforward
ample of how this protocol works. So far, however, only tw
of the Bell-type states were considered. To illustrate
transmission matrix method and cover the other Bell s
variants, consider the pure state

uf6& in5cosuuVV&6sinuuHH&. ~17!

This state has an explicit density matrix representation

r̂ in5F cos2 u 0 0 6cosu sinu

0 0 0 0

0 0 0 0

6cosu sinu 0 0 sin2 u

G . ~18!
02232
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If we apply the transmission matrix to this state, then t
output state, given the matrix notation, is

r̂out5
1

PF hVA
2 hVB

2 cos2 u 0 0 6h̄ cosu sinu

0 0 0 0

0 0 0 0

6h̄ cosu sinu 0 0 hHA
2 hHB

2 sin2 u

G ,

~19!

with h̄5hVAhHAhVBhHB , and the probability is given by
the trace of the unnormalized, beam-splitter-transform
density matrix:

P5hVA
2 hVB

2 cos2 u1hHA
2 hHB

2 sin2u. ~20!

A maximally entangled state is recovered from the coin
dence basis output state

uf6&out5
1

AP
@hVAhVB cosuuVV&6hHAhHB sinuuHH&],

~21!

providing the requirements for a maximally entangled sta

cosuhVAhVB5sinuhHAhHB ,
~22!

hVAhVB

hHAhHB
5tanu,

are met. If cosu.sinu then eitherhVA or hVB , or both, can
be varied producing a maximally entangled state with pr
ability P52 sin2u. Conversely, if cosu,sinu, then varying
hHA or hHB would yield a maximally entangled state wit
probability P52 cos2u. It could be argued that this const
tutes nothing more than a simple variation on the procrust
method@12#, and requires only filtering at eitherA or B to
distill maximally entangled pure states. The reason for h
ing four individually tunable filters is perhaps not clear ye
and though there is obviously a large degree of freedom
controlling the system, the necessity will become more
parent as the mixed-state case is investigated.

III. MIXED-STATE MANIPULATION

It is the aim of this section to show how the beam split
protocol can be extended from pure-state manipulation
deal with the more complicated mixed-state manipulation.
aid in the understanding of how the protocol can realize th
a state which involves a mixture of two of the nonmaxima
entangled pure states already discussed will be introdu
The degree of entanglement of each of the states can
varied as a function ofu1,2, and the mixing of the two will
be determined by another parameterg, such that the state ha
the density-matrix representation

r̂~g!5guf1&^f1u1~12g!uc1&^c1u, ~23!

whereuf1& anduc1& correspond to positive variants of Eq
~6! and~7!, respectively. This state will be discussed in term
0-4
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of the effect that varying the entanglement and mixing of
components has on the entropy and entanglement of the
tem. In Fig. 2 the variation in the entanglement of the syst
and the entropy of the joint and subsystems are compare
the degree of mixing is varied. This illustrates the res
where the entanglement of one of the pure states is not
maximum, and we see that the entanglement of the joint s
decreases as the mixing is increased, withg50 correspond-
ing to the maximally entangled pure state andg51 the non-
maximally entangled pure state. When the state is not m
mally entangled the subsystems are not totally mixed,
hence the system tends toward the maximally entang
pure-state characteristics as the subsystem entropies ten
wards log(2), asg goes to zero.

Figure 3 illustrates where the entropies of the subsyst
are not always equal, and how the entanglement peaks w
the two subsystem entropies are both equal. The two turn
points, where the entanglement goes to zero, correspon
separable points, analogous to the case of equal mixture
maximally entangled components, where the entanglem
switches from a reliance on one entangled component to
other.

Already a great deal of complexity can be seen to
emerging from a consideration of the entanglement and
tropy characteristics of a relatively simple system involvi
two polarization-entangled qubits. This is before the e
tended Hilbert space is introduced via the beam splitter p
tocol, which itself introduces four new variables and henc
higher degree of complexity again.

For pure states the question of optimality of an entang
ment transformation for single-copy bipartite states
known. If the optimality of mixed states is taken as the m
entanglement that can be realized from a state regardle
the joint-state entropy, then the conditions to obtain this
be found by looking at the local density matrices ofA andB.

FIG. 2. The EOF and entropy, for the joint state and local s
systems, as the degree of mixingg is varied. The entanglemen
decreases as the mixing increases, as expected, between a
mally entangled state,g50 and a nonmaximally entangled stat
g51. The subsystem entropies are equal, and reach a maximu
log~2! at g50.
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The local-density matrices are found by tracing over the
grees of freedom for the other subsystem,rA5TrB@rAB# and
rB5TrA@rAB#. In terms of this, the condition for a Bell di
agonal, optimally entangled, state is thatrA5rB5I 2, corre-
sponding to totally mixed, or random, local density matric
with a maximum amount of entropy, a condition proposed
Kent et al. @7#.

How do the entanglement-entropy characteristics for
state vary under the influence of the beam splitter protoc
In Fig. 4 the characteristics of a range of states that
obtainable, using the beam splitter protocol, for a given i
tial state are plotted. A state of the form of Eq.~23! is em-
ployed, as this can be varied with respect to the mixture
the degree of entanglement of the two pure-state compon
which have already been considered. The data points ma
with a circle indicate the entanglement-entropy characte
tics of the initial state, and the solid lines represent a rang
states that can be accessed by varying the beam splitters
two figures are for a range of initial states determined by
mixing parameterg, which is labeled on each curve. Th
degree of entanglement of one component is reduced be
that of a maximally entangled pure state.

Consider the case ofg50.7 in Fig. 4. This state has
mixing which is weighted slightly toward the maximally en
tangled component, and the other component has on
small degree of entanglement. It is the modes with a hig
probability of being realized in the less entangled compon
that are targeted by the beam splitter protocol:hVA andhHB ;
hence the mixed state tends toward the maximally entan
pure-state component. The maximally entangled compon
is never fully extracted in this instance as a result of
problem inherent in most mixed-state manipulation pro
cols, in that the transformations affect all components of
mixture, not just the component that needs to be remove

-

axi-

of

FIG. 3. The EOF, and entropy, for the joint state and local s
systems, as the degree of entanglement of one of the pure
components is varied, for a fixed degree of mixing. In this insta
the subsystem entropies are not always equal; however, where
are equal corresponds to the point of maximal entanglement for
joint state.
0-5
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This protocol relies on a certain amount ofprior knowl-
edge of the state. This knowledge helps to determine
required parameters to concentrate the state characteri
We consider concentration as increasing both the entan
ment and purity of a state@6#. Recent advances in quantu
state tomography@13# allow for the measurement and reco
struction of the complete density matrix for a bipartite sta
allowing before and after comparisons.

So far the manipulation protocol has been introduced
shown to work for pure states, and it has also been show
increase both the entanglement and purity of a state con
ing of a mixture of pure states, one nonmaximally entang
and another maximally entangled. The pure-state transfor
tions have been shown to be optimal, both in the sense
the greatest amount of entanglement is obtained by the tr
formation and the transformation is carried out with an op
mal efficiency. Can this be extended to arbitrary mix
states? How this protocol works will constitute the major
of Sec. IV, where this state, as well as a range of other sta
will be considered, and an attempt will be made to extra
late some of the results to general systems. Chiefly, the b
splitter dependence on the joint state and the subsystems
be examined in greater detail to determine whether a s
can be transformed and, if it can, what beam splitters nee
be varied, and by how much, to obtain the most amoun
entanglement for the state.

IV. ANALYZING MIXED STATES

The main focus of this paper is the polarizing beam sp
ter protocol and mixed-state entanglement. However, on

FIG. 4. This figure shows the EOF as a function of the entro
S, of the joint state, for a range of states of the form of Eq.~23!,
with the variation dependent on the mixing and the entanglemen
the components. These involve a mixture of a maximally entang
state and one that is weighted toward theuVH& modes. The circles
indicate the characteristics for the initial state, and the solid
indicates the range of state characteristics obtainable by var
two beam splitters in unison. As the bean splitter transmissio
reduced, the curve traces out the concentration characteristics o
state until the maximum entanglement is reached, and the cha
teristics retrace their path and approach the zero point.
02232
e
ics.
le-

,

d
to
st-
d
a-
at
s-

-

s,
-
m
ill
te
to
f

-
of

the reasons for actually wanting such a device lies in
ability to explore mixed-state Hilbert space. To further illu
trate the capabilities of the protocol, and at the same t
investigate some recent proposals concerning entanglem
and various concepts and bounds, a few states will be
cussed in detail. To describe the manipulations of a state,
look at questions regarding optimality and how these m
nipulations can be realized, it will be necessary to look at
eigenvalues for the joint system and local subsystems. In
section a more detailed investigation into the mixed st
already introduced will first take place. The second state
will be looked at will be the Werner state, and then a st
that is a mixture of a pure entangled state and a separ
component will be introduced and discussed with a view
determining a bound on the entanglement-entropy plane
parametrized density matrix will finally evolve from this, an
then the beam splitter protocol and the state manipulati
will be discussed again in the context of this bound.

A. Two-Bell-state mixture

Consider again a state consisting of a mixture of two Be
like states

r̂~g!5guf1&^f1u1~12g!uc1&^c1u, ~24!

which has the explicit density matrix after the beam split
interaction of

r̃5
1

PBF gS hVA
2 hVB

2 cos2 u1 0 0 h̄ cosu1 sinu1

0 0 0 0

0 0 0 0

h̄ cosu1 sinu1 0 0 hHA
2 hHB

2 sin2 u1

D
1~12g!

3S 0 0 0 0

0 hVA
2 hHB

2 cos2 u2 h̄ cosu2 sinu2 0

0 h̄ cosu2 sinu2 hHA
2 hVB

2 sin2u2 0

0 0 0 0

D G ~25!

with h̄5hVAhHAhVBhHB as previously, and where

PB5g@hVA
2 hVB

2 cos2 u11hHA
2 hHB

2 sin2 u1#1~12g!

3@hVA
2 hHB

2 cos2 u21hHA
2 hVB

2 sin2 u2#. ~26!

To determine the conditions to optimize the entangleme
the reduced density operators for each of the subsyst
need to be found. If the subsystem entropies are to be m
mized,SA5SB5 log(2), then the following constraints mus
be satisfied:

,
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e
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tanu15
hVAhVB

hHAhHB
, ~27!

tanu25
hVAhHB

hHAhVB
. ~28!

As both the entanglement of formation and the entropy
dependent on the eigenvalues of the system, it is benefici
determine how these behave with regard to the subsys
constraints.

In satisfying the constraints on the local systems, the
genvalues for the joint system simplify to

l152ghVA
2 hVB

2 cos2 u1

1

PB
, ~29!

l252~12g!hVA
2 hHB

2 cos2 u2

1

PB
. ~30!

Given this, consider the ratio of these eigenvalues:

l1

l2
5S g

12g D sin 2u1

sin 2u2
. ~31!

Note that this ratio is independent of any transmission co
ficients only when the subsystem constraints are satis
Thus, by satisfying the subsystem constraints, the joint s
tem requirements are also being realized in that the degre
mixing of the state is reduced as much as possible, given
parameters governing the initial state. When this ratio
equal to 1, the joint system is maximally mixed, and there
no entanglement present. Recall that in Fig. 2, the entan
ment minima corresponds to the point wherel1 /l251. For
a maximally entangled state this is atg51/2; however, ifu
Þp/4, then the minima will be appropriately shifted. Whic
one of the joint state eigenvalues will dominate is determin
by both the mixing and the entanglement of the pure-s
components in the original mixture.

These constraints govern how much the state can be
proved by the beam splitters. In general, the entanglemen
a state is reduced as the degree of mixing is increased,
this provides a bound on the possible transformations for
state. By satisfying the local system constraints proposed
Kent et al. @7#, regarding optimal entanglement enhanc
ment, the joint state eigenvalues obtain their optimal valu

B. Werner state

The Werner state can be considered as a weighted mix
of all four of the Bell states@20#, a straightforward extension
of the mixture of two Bell states just discussed. However,
consider the Werner state in the form

r̂w~g!5~12g!
I 4

4
1g uf1&^f1u, ~32!

where the initial stateuf1& has a probabilityg of being
transmitted without errors, and there is a component
2g) of a totally mixed state. In the case whereg<1/3, the
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state is separable, and as such has no entanglement t
cover or maintain. If the pure-state component of this m
ture is maximally entangled, thenSA5SB5 log(2), regardless
of the degree of mixing and the state is as entangled as it
be. It is, perhaps, this characteristic that suggested it m
provide a bound on how entangled a mixed state could be
however, the pure-state component is not maximally
tangled, this constraint does not hold.

If the beam splitter protocol is now implemented on
Werner state, with a nonmaximally entangled pure-st
component, then the constraints on the subsystem and
state eigenvalues are determined, as in the case of the
ture of two Bell states previously. First, the subsystems
considered and the constraints that maximize the subsys
entropies are determined. The requirement for the local d
sity matrices of the Werner state, post-beam splitters, to
isfy SA5SB5 log(2), are

hVA5hVB , hHA5hHB , ~33!

tanu5
hVA

2

hHA
2

. ~34!

The joint system for the Werner state has four eigenvalu
which can be simplified using the previous constraints, a
the ratios of the eigenvalues are again independent of
beam splitter coefficients when the subsystem constraints
satisfied.

So, if the subsystem entropies can be made to eq
log(2), the degree of mixing in the joint state is minimize
with respect to the maximum amount of entanglement. Al
as there is no means of removing any of the eigenvalue
relatively high degree of mixing will be inherent in the sy
tem even after the beam splitter protocol. However, this m
ing will be the minimum obtainable while maintainingSA
5SB5 log(2). It can immediately be seen, given the co
straints of Eqs.~33! and~34!, that if tanu<1, then by setting
hHA

2 5hHB
2 51 and hVA

2 5hVB
2 5tanu, the mixing and en-

tanglement are optimized.
In Fig. 5 the entropies and the entanglement of the s

are plotted as functions of the two transmission coefficie
hVA andhVB . These two beam splitters are varied in uniso
h2[hVAhVB5hVA

2 , to satisfy the constraints on the su
systems. Given this, the entanglement of the state is m
mized at the point where the entropy of the local subsyste
reaches a maximum, log(2). The probability of a state w
these characteristics being realized is also shown. When
state is as entangled, as it can be~here an increase of aroun
20% is shown!, it can be seen that the probability of obtai
ing this state is around 55%.

The variation in the entanglement-entropy characteris
~Fig. 6! shows the results of individually varying the bea
splitters, and the improvement that is achieved when they
varied in tandem.hVA and hVB , when varied individually,
increase the entropy at the cost of entanglement, but w
varied in unison the increase in the entanglement is grea
The maximum entanglement in Fig. 6 again correspond
the point wherehVA

2 5hVB
2 5tanu'0.6.
0-7
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A boundary curve is introduced in Fig. 6~dotted line!
onto the characteristic plane denoting the bound allude
earlier for the Werner state, where the pure-state compo
is maximally entangled. The curve denotes the characteris
asg is varied. Regardless of whether the manipulations
made, individually or in unison, and how many beam sp
ters are utilized, the entanglement does not exceed
bound.

C. Entangled plus separable

In the preceding sections, discussion revolved aro
mixtures of pure nonmaximally entangled Bell states. T
first, a mixture of two states, and the second, a mixture of
four states, and the behavior of the characteristics of the s
under the beam splitter protocol have been observed. To
serve the behavior of a different class of state, a mixture
an entangled pure state and a separable state will now
considered, with the mixture having the form

r̂es~g!5g uc1&^c1u1~12g!uVV&^VVu. ~35!

There are only two eigenvalues for the joint system—l1
5g, andl25(12g)— independent ofu; however, the ei-
genvalues for the subsystems are dependent on both the
ing and the entanglement of the entangled component.

After the beam splitters, the eigenvalues for the s
system and the constraints on the joint system are de
mined, resulting in two requirements, the first being that

tan2 u5
hVA

2 hHB
2

hHA
2 hVB

2
, ~36!

which is very similar to those constraints found for previo
states. The second constraint poses an interesting proble
perhaps it should be considered a feature. The second
straint requires that

FIG. 5. The variation of the entanglement and entropies, of jo
and subsystems, for the Werner state, and the probability of ob
ing these characteristics as two beam splitters are varied in un
h2[hVAhVB5hVA

2 .
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hVA
2 hVB

2 →0. ~37!

This implies that the subsystems are totally mixed only in
limit of no transmission. Previously, when the subsyst
constraints were enforced on the joint system eigenvalu
the degree of mixing for the joint state was minimized.
this instance the ratio of the eigenvalues is still dependen
the beam splitter transmission coefficients. As such, ther
considerable control over the mixing of the state. This st
falls into the class of state recently shown by Verstraeteet al.
@21#, that could be brought arbitrarily close to a Bell state
reducing the rank of the density operator.

The behavior and the entanglement-entropy characte
tics of this state, as the beam splitters are varied, is illustra
in Fig. 7. The figure highlights the effects that both of the
constraints have on the state characteristics.

The mixture consists ofg50.3 of the entangled compo
nent, and shows the results in the case where the two b
splitters are varied together:hVA5hVB . With these param-
eter settings the entropies of the subsystems are not e
SAÞSB , and only in the limit where the transmission coe
ficients both go to zero do they converge, satisfying Eq.~37!;
when they do go to zero, they are not at a maximum, a
hence the state is not maximally entangled.

If the first constraint@Eq. ~36!# is satisfied, and the trans
mission coefficients of the beam splitters are varied ashVA
5hVBtanu, (tanu<1), then the behavior is not that differ
ent from the previous case, except that: the subsystem e
pies are equal throughout the variation of the beam splitt
and in the limit where the transmission tends to zero,
maximally entangled pure-state characteristics are
proached asSA5SB approaches log(2). As this is achieve
the probability of obtaining these state characteristics te
to zero.

In Fig. 8 this state is again considered, and the behavio
the characteristics on the entanglement-entropy plane ex
ined. The dashed curve denotes the behavior as the b

FIG. 6. The EOF and the entropy of the joint system are sho
for a range of Werner states, when the beam splitters are va
individually and in unison. The peak value on the bounding cu
corresponds to the tuning parameters from Fig. 6 whereSA5SB

5 log(2).
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splitters are varied in tandem as in Fig. 7, showing that
pure but nonmaximally entangled state characteristics are
proached. The solid line shows the transformed states
tained by varying the beam splitters while satisfying bo
subsystem constraints. This curve shown does not p
through the circle marking the initial state characteristi
due to the fact that the initial state, numerically consider

FIG. 7. The entanglement and entropy characteristics for a m
ture of nonmaximally entangled and separable components a
two beam splitter coefficients are varied with both equal (h2

[hVAhVB5hVA
2 ). The subsystem entropies are not equal excep

the limit where the joint state entropy initially increases, and
crease only as the transmission coefficients tend to zero. The
nonmaximally entangled state characteristics are obtained in
limit as the transmission goes to zero.

FIG. 8. The range of state characteristics obtainable by im
menting the beam splitter protocol on a mixture of entangled
separable states. The two curves, dashed and solid, respect
denote the beam splitters being varied equally, and when the
system constraints are satisfied. The latter case shows that the
acteristics can approach those of a maximally entangled state.
Werner bound state is also shown, and is crossed for some o
states obtained.
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has someh dependence such that initialhÞ1, again due to
the first constraint.

This state already presented some quite unusual cha
teristics; however, it should also be noted that for variatio
in the mixture and entanglement of this state, the same c
centration characteristics as in Fig. 8 are produced. In f
this solid curve can be further extrapolated down the pla
for, as long as there is some component of the entangled
state present in the mixture, a state arbitrarily close to
maximally entangled state can be recovered. The probab
of such a situation is proportionally unlikely; indeed it
approaching zero as the state approaches maximal enta
ment. Regardless of this the state may provide some use
ness experimentally in looking at questions regarding ‘‘h
den’’ nonlocality @22# as well as the efficiency of protocol
such as teleportation and cryptography in the mixed-s
regime, in that it covers so much of the entangleme
entropy plane.

The characteristics of the Werner state suggested th
might provide a bound on mixed-state entanglement. In
figure, in the case where the first subsystem constrain
satisfied, there exist states with characteristics above
Werner bound. Clearly the Werner state does not provide
absolute bound for mixed-state entanglement, and a hig
bound needs to be found.

V. BOUNDS ON ENTANGLEMENT

More recently, an attempt to put a bound on mixed st
entanglement resulted in a proposal by Munroet al. @23#.
Their proposed bound involves a density matrix, not entir
dissimilar to the previous mixture of an entangled state an
separable state. By considering a slight variation on t
state, which involves placing some restrictions on the den
matrix elements, a state of the form

r̂~g!5S 122g~g! 0 0 0

0 g~g! g/2 0

0 g/2 g~g! 0

0 0 0 0
D ~38!

is obtained, whereg(g)5g/2 for g>2/3 andg(g)51/3 for
g,2/3.

This state has a maximum amount of entanglement for
degree of purity, in terms of the linear entropy, where t
linear entropy@24#, SL512P, is related to the purity of the
state,P5Tr@r2#. This is then normalized, so that

SL5
4

3
~12Tr@r2# ! ~39!

returns a value ranging from 0 for pure states, to 1 fo
totally mixed state. This state has a behavior very similar
that of the previous state forg>2/3, but significantly differ-
ent below this point. For this state there are two nonz
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eigenvalues forg.2/3, and three below this point. Note he
that g is not the mixture coefficient, as previously defined

If the subsystem constraints are again considered, the
striction

hVA
2 hHB

2 5hHA
2 hVB

2 ~40!

applies, and, as before,

hVA
2 hVB

2 →0. ~41!

When g,2/3, the state undergoes the most signific
change in its entanglement-entropy characteristics. Belog
52/3 the behavior of this bounding state differs marke
from that of the previous state. The emergence of the e
eigenvalue increases the entropy, and hence extends the
erage of the bound on the entanglement-entropy plane
such, this would suggest that there is some higher bo
with respect to the entanglement of formation and entro
above what this state proposes. This might also suggest
if the bound is going to be complete, then at some point
emergence of a bounding state with four eigenvalues ma
necessary as the entanglement tends to zero. At this poin
Werner state may indeed provide the small-entangleme
large-mixing bound.

In Fig. 9 the Werner state bound and the linear entro
bound are shown, and, as just suggested, as the entangle
approaches zero, the Werner state bound is greater, goin
zero atg51/3 andS;0.9 as the state becomes separab
The previous state is again shown here, where a mix
containing a maximally entangled pure state is used. T
state and the Werner state both coincide with the linear
tropy bound atg52/3. The previous state covers quite

FIG. 9. The EOF and entropy characteristics~solid line! for the
state given by Eq.~35! starting atg50.3, and the linear entropy
bound state atg(g)51/2. The first state approaches and then f
lows the linear entropy bounding curve up to the peak value
coincides with the linear entropy curve atg52/3. Both the Werner
and linear entropy bounds are shown, and the beam splitter pro
enables the state characteristics to exceed the linear entropy b
An example of a state starting atg51/2 is shown.
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large region of this space, with the characteristics first
creasing in entanglement at the cost of entropy, before b
the entanglement and the entropy improve and concentra
is realized.

The other curve in this figure is the solid line starting
g51/2. This curve denotes the characteristics of the lin
entropy bounding state when the beam splitter protoco
applied to it. Note that the boundary curve is exceeded, b
above and below the bifurcation point, for the state atg
52/3. This should not be unexpected, as the subsystem
tropies are not maximized for this state. The state was o
mized in terms of the linear entropy of the joint state. Op
mization in terms of the von Neumann entropy is curren
underway.

VI. DISCUSSION

Several key points were looked at in this paper, and al
these revolved around the beam splitter protocol for mani
lating mixed states. In doing this, the equivalence betw
the coincidence detection state and that obtained by a ‘‘de
and discard’’ protocol, with perfect detectors at the reflec
ports of the beam splitters, was justified. The process
then reintroduced, equivalently, in the context of local filte
ing operations. Although only a limited range of states w
considered, the way the beam splitter protocol transform
state showed that, due to the large number of degree
freedom of the protocol, the scheme is highly adaptable.
transformations were shown to extract the most amoun
entanglement from a state that is possible for a given deg
of mixing, and in this sense could be considered optimal. T
question of a bound on the amount of entanglement th
mixed state can have was explored, first for the Werner s
and then for the linear entropy bound.

For mixed states, questions of efficiency and optima
are not clear, and as such discussion regarding these
been limited. A distinction is made regarding these conce
it is one thing for the transformation to obtain a final sta
with the most amount of entanglement that is possible, an
is another to show the optimal probability or efficiency
carrying out a particular state transformation. The propo
bound on entanglement enhancement of Kentet al. @7# ap-
plies to the first interpretation, and the protocol was shown
satisfy these requirements. In the case of the second inte
tation, there was recently a proposal by Vidal@25# which is
an extension of his ideas on single-copy pure states,
requires a minimization over a set of entanglement mo
tones which has been left for future work.

The primary piece of information to note here is that:if
there is some initial amount of entanglement,and the sub-
systems are notboth totally mixed, thenmore entanglemen
can be obtained by transforming the mixed state. The be
splitter protocol introduced here can achieve this, and it
do it in a very simple way and one that is experimenta
realizable.

The recovery and maintenance of an entanglem
resource is a process that will be of paramount importa
for any form of reliable quantum communication. Just
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important is the investigation of mixed-state entanglemen
its own right. An understanding of the relationship betwe
classical and quantum probability distributions, specifying
entangled mixed state, is still not complete, and any opp
tunity to investigate this in an experimental regime should
promoted.
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