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Mixed state entanglement: Manipulating polarization-entangled photons
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There has recently been much discussion regarding entanglement transformations in terms of local filtering
operations and whether the optimal entanglement for an arbitrary two-qubit state could be realized. We intro-
duce an experimentally realizable scheme for manipulating the entanglement of an arbitrary state of two
polarization-entangled qubits. This scheme is then used to provide some perspective to the mathematical
concepts inherent in this field with respect to a laboratory environment. Specifically, we look at how to extract
enhanced entanglement from systems with a fixed rank, and, in the case where the rank of the density operator
for the state can be reduced, show how the state can be made arbitrarily close to a maximally entangled pure
state. In this context we also discuss bounds on entanglement in mixed states.

DOI: 10.1103/PhysRevA.64.022320 PACS nuntber03.67—a, 42.50-p, 03.65.Ta

[. INTRODUCTION experimental proposal. In terms of manipulating a state’s en-
tanglement and purity, there was a proposal by keratl.[7]

Since the foundations of quantum mechanics were laidpertaining to the requirements for an optimal entanglement
one of its most curious, and perhaps defining, features hdgansformation. This was all performed in the context of local
been entanglement. Historically, this was discussed with refiltering operations, and in this paper we will show how and
gard to questions of the nonlocal behavior of quantum syswhy this works in a system using polarization-entangled
tems, a consequence of the famous EPR pBbernd sub-  photons and allowing for imperfect photodetection.
sequent work by Be[l2]. In the past decade the focus shifted ~As only two qubit states are considered, an exact expres-
to a more information-theoretic interpretation of entangle-sion for theentanglement of formatiofEOF), introduced by
ment in line with the global effort, to understand and even-Wooters[8], will be used.
tually build a quantum computer. Quantum computing is not The EOF is
the only avenue that motivated interest. In more immediate
terms, realistic endeavors involve quantum cryptographic E(C(p))=h([1+1-C(p)°]/2) @
schemes, dense coding, and teleportation, as well as generaﬁlq . . .
questions regarding quantum informatif®,4]. While the ~Wherehis the binary entropy function:
realization of a quantum computer is a long term goal, these
pursuits are motivating an enormous amount of cross-
disciplinary collaboration in q.uestionir)g some of the funda—a-hiS is derived in terms of the spin-flip operation
mentals of quantum mechanics and information theory, an
how the two are related.

The centerpiece of much of this work is entanglement.

Quantifying, generating, distributing, and maintaining en'whereay are Pauli operators, and the complex conjugation is

tanglement make up the cornerstones Of. an enormoYgen in the computational basis. From this the concurrence
amount of research in quantum information science. A means, . pe found

of manipulating entanglement will be vital in distributing
and maintaining entanglement, and photons provide the most
realistic and accessible means of achieving this. In this paper
we refine an experimentally realizakilg] protocol for ma-
nipulating arbitrary states of polarization-entangled photon ) i
which we previously introducef]. This scheme was sig- S°rtéd in descending order.

nificantly improved, and here we provide an extensive analy- The other characteristic that is considered herg is the pu-
sis of the protocol in the context of entanglement transfor/1ty Of the state and theon Neumann entropprovides a
nvenient and useful measure. The entropy of the bipartite

mations. This scheme specifically targeted mixed states, &2V . .
experimentally it is unrealistic to consider the system iso-d€NSity matrix,pxg, is
lated from interactions with the environment. We would also 4
like to connect some of the mathematical concepts regarding _ _

) . e " =—Tr lo =—2, \jlogs A\, 5
entangled mixed states with a more intuitive and realistic S(pae) [pag10Gsp ] 21 11094 A ©

h(x)=—xlog(x)—(1—x)log(1—Xx). (2

p=(oy@0y)p* (oy®0y), @3

C(p):max{X]__XZ_XS_X4,0} (4)

where the square root of the eigenvalues far, X;, are

where\; are the eigenvalues pfyg. In the latter form this is
*Electronic address: thew@physics.uq.edu.au analogous to the classical Shannon entropy. The log to base 4
"Electronic address: billm@hplb.hpl.hp.com is used as this is the joint state, and hence in this form returns
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a normalized entropy ranging from zero, for a pure state, to )
one for the identity or totally mixed state.

For a correlated system the entropy of the whole system is
less than the entropy of its parts, due to the information that Parametric
is present in the correlations between the two systems. For a Crystal
maximally entangled pure sta®(p,)=S(pg) =log(2) and -

S(pag)=0. How the state was prepared cannot be deter- —Z—»
mined by considering measurements on the two subsystems. "™ 5Ee

The correlation in the joint state measurements must be con- .
sidered. BBO

The characteristics of the entropy for a mixed state, re-
garding both the joint state and the local subsystem, will be PBS: Polarizing Beam Splitter
useful when discussing state transformations. The entropy DE: Decohering Element
provides a key element in discussing bounds on the Hilbert b)
space associated with mixed states in the context of state
manipulation in general, and the scheme introduced here.
These concepts will be discussed primarily in terms of a
proposed bound on mixed-state entanglement enhancement [ﬂ

DE, sighd

Vacuum Input

Single
\ Photon

[7] that requires the subsystem entropies to be maximized. VBS " hatector
Beam Block
II. ENTANGLEMENT MANIPULATION VBS: Variable ransmittivity Beam Splitter (1))

USING BEAM SPLITTERS
. . . FIG. 1. The initial polarized beam is incident on a polarizing

The entanglement manipulation protocol introduced hergeam spiitte(PBS, creating general superposition states which are
relies on the very simple process of filtering, a method proependent on the orientation of the PBS. This beam then undergoes
posed by several peopl8-11] as a means of manipulating a down-conversion process at the BBO crystal producing pure
entangled states. This protocol is conceptually similar to thetates where the degree of entanglement is determined from the
procrustean methothtroduced by Bennett al.[12], which initial superposition. The signal and idler outputs are then subject to
dealt with pure states of entangled sgirparticles, in a very independent decohering environmefiBE) allowing variations in
generic way. the mixedness of the state. This allows the generation of a wide

Our aim is for two partiesA and B, who are spatially variety of entangled states. The schematic for the beam splitter pro-
separated, to share the optimal entanglement available. THiecol illustrates how an entangled state shared betweandB is
qubits we consider here are polarization states, Wlh‘élse spatially separated with respect to its polarization modes by PBS's.
and|H) correspond to thg0) and|1) states within the stan- Each mode is then incident on another beam splitter with variable
dard computational basis. transmittivity (VBS): With some prior kpowledge of the state the

The schematic in Fig. 1 represents the proposed manipl}lBS'S can be manlpulat_edZ concentratnn_g the characteristics of the
lation protocol which will be referred to from here on as the CutPut state that has coincidence detection andB.
beam splitter protocol. Everything to the left of, and includ-
ing, the BBO (beta-barium-borajecrystal and decohering
elements are representative of the source that can supply t
initial entangled states that we propose to manipulate. Th
first polarizing beam splitte(PBS at the input, before the
crystal, varies the weighting of a superposition state, which?
is then down-converted at the parametric crystal generatin
pure entangled pairs. The decohering elements, after th
crystal, vary the mixedness of the state. The recent advanc81es:

each mode. This transmission is polarization dependent. Due
low detector efficiencies, in this protocol the reflected

gwodes are ignored and the final state that is considered is the

State that has coincidence detections at bthnd B. This

ill be justified shortly.

All four Bell-type states will be considered here. A mix-

re of two of these nonmaximally entangled Bell-type

in the preparation of nonmaximally entangled pLt8], and =y =050 [V st sin 6:|HH 6
mixed [14] polarization-entangled states allows for a consid- |4%)ne 1VVae 1lHH) as, ®)
eration of a wide variety of initial states, with high produc- |~ )Y ag=C0SO,|VH) agE SINO,|HV) o, (7)

tion rates for the entangled photofisb].

The scheme operates in the following manner. The outputvill be used to illustrate the extension from pure to mixed
from the crystal, the two arms labelsignal andidler, are  state manipulation. The degree of entanglement in each of
incident on PBS’s, spatially separating the vertical and horithese states is determined by the valu@afe., a maximally
zontal polarization modes of the two separate beams. Thesntangled state will have equal weighting of the coefficients;
modes will be labeledV)s,|H)a,|V)g,|H)g. Both polar- 6, ,=m/4.
ization modesV andH in both armsA and B will then be When we consider a beam splitter interaction, we must
incident on variable beam splitte(¥BS’s). These variable also consider that, in addition to the incident mode, the other
beam splitters can then be adjusted to obtain the desired oytort of the beam splitter is subject to the vacuum and simi-
put state dependent on the transmission coefficigrfor  larly the output will also have two modes. The effect that the
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beam splitters have on a polarization-entangled state is tthrough as long as a detection is made at one of the previ-

transform the modes in the following way: ously discarded ports. Again, with reference to 8, if this
condition was satisfied then the output state to witicndB
IV.H) agl0)— 7yl V. H) al 0) + V(1= 77, 11)|0) a6l 1). would have access corresponds to what has been referred to

(8)  as a coincidence basis state. As perfect photodetection is not
a realizable process with current technologies, the beam
This can be interpreted as the vertical or horizontal modeblocks remain, and a state having joint coincidencesAor
being passed by the beam splitter with a probabi%(H, andB is considered. This leaves a reduced output state
with a component at the reflected port that now has a photon
in an ancilla mode with a probability (2 71\2/,H)- This ap-
proach has a similar interpretation to those found by model-
ing imperfect detectors as perfect detectors, plus a beam
splitter attenuating the input field.6].
It is easy to determine how a single beam splitter in onewith the normalization

arm of the system could be coupled to a specific vertical or
horizontal mode. It is not much harder to do this for a beam , _
splitter atA andB; however, we wish to introduce two beam N=[79amiis 08 6+ niamygsin® 61712 (11
splitters, both vertical and horizontal, to each polarization

arm of the system. This couples a controllable variable, therys js a post-selective operation, selecting a subensemble
transmission coefficient, to each mode, where the four variy;ih improved entanglement characteristics, and discarding
able beam splitters act independently on the four polarizatioghe rest of the ensemble. If no detection is made then the

modes of the bipartite system. state can be jointly discarded by bothand B. This post-
Consider a nonmaximally entangled pure state of the formyg|ective process has the advantage that poor detector effi-

of Eq. (7). After interactions with all four of the variable iencies only decrease the coincidence count rate. The re-

beam splitters, the final state, before anything is discarded, uirement for a maximally entangled state is therefore given

- by
|4 101=M[ €080 7y a71E|VH) AB)
+5in0nyanvelHV) agl [00) + oSO 7y A\ (1 - 7iig) coS 07§ anhe=SIM’ 07fiAns- (12
X(|VO) gl 01) +|OH) ap| 10)) £ Sin 0714\ (1= 7i) _ _
If cos 8>sin 6, then eitheryy or 74, Or both, can be var-

X(|VO)ag|01) +|0H)2g| 10)) ied such thatp?,7%s=tarf6, thus obtaining a maximally
+coso(1— n\z/A) Ja- ﬁﬁs)|00>As|ll) entangled state with probability

+siNOV(1- 750 V(1-738)[00a/ 1D} (9) P—2si? 6, (13

|) =M 1yanue C0SO|VH) ag+ 714a7vE SIN G| HV)AB(]iO)

The modes can be interpreted as follows: those labaled
are transmitted modes, and the others are ancilla. Also, fawhich constitutes an optimal transformation for single-copy
convenience, information regarding the polarization of thepure stated17,18. The probability of producing a maxi-
photons in the ancilla modes has been discarded, and raally entangled pure state for this protocol is dependent on
simple record of whether there is, or is not, a photon in ahe beam splitter transmission coefficients, and is determined
reflected port af or B, which is all that is required, has been from the trace of the reduced output state density matrix.
kept. This is the probability of obtaining the desired state after the
It was remarked previously that, due to low detector effi-beam splitter settings are determined.
ciencies, the reflected component is ignored and a state with This provides an intuitively simple explanation of this
coincidence detection # andB is considered. In Eq9), it  process, for pure states at least; however, if mixed states are
can be seen that the only components having coincidena® be considered then a more convenient representation can
detections aA andB are the first two components. This can be obtained by using the generalized measurement formal-
be considered to be a coincidence basis state. A coincidenésm. This procedure constitutes a generalized measurement
basis state is a state that would have coincidence detectioins that an ancilla is attached to the system; unitary transfor-
at both A and B, ie. detections for any of mations are performed in the extended Hilbert space, where
{IVV)ag,IVH) ag,|HV) ag,|HH) A5} Alternatively, if it was ~ measurements are made; and then part of the system is traced
at all possible to detect single photons efficiently, then perout and discardef{l9].
fect single-photon detectors could replace each of the beam As we are only interested in the coincidence basis output
blocks in the signal and idler arms in Fig(bl This would  state, an equivalent local filtering operation can be derived
allow the system to operate a gatelike device at the outpuhat retains the polarization coupling characteristics derived
that, with the aid of classical communication betweéeand  for the pure state case. Therefore @ffectivetransmission
B, was open, and would allow maximally entangled pairsmatrix for the joint system can be written
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MVATIVE 0 0 0 If we apply the transmission matrix to this state, then the
output state, given the matrix notation, is
(A®B)= IVATIHB 0 0
0 0 THATIVB 0 ' MiangeCoS 6 0 O =7ycosdsing
0 0 0 MHATHB ~ 1 O O O O
A4 Poup 0 0 0 0 |

It can easily be seen that _this effecti_ve transmission matrix +pcosfsing 0 O NAan5s SINP 6
allows for a completely positive mapping of the input state to (19)

the coincidence basis output state. The total state transforma-
tion matrix operates in a Hilbert space considerably largefith 7= 7ya7ua7ve7ns, and the probability is given by

than the original state space, and in this expanded Hilbethe trace of the unnormalized, beam-splitter-transformed,
space there is now a greater degree of freedom in which tgensity matrix:

manipulate the state. This is, in part, where the original pro-

crustean method obtained its name, in that it takes an initial P= 5755 COS 0+ 77,02 SINPo. (20)
state, places it in an extended Hilbert space, and then ma- . . o
nipulates and discards anything not needed. A maximally entangled state is recovered from the coinci-

Thus, with all the transmission coefficients acting inde-dence basis output state
pendently on the|V),|H)a,|V)g,|H)g} modes, the trans- .
mission matrix of Eq(14) represents the beam splitter ma- o = ;
nipulation process. This process is analogous to many of the|¢ Jour= \/E[WA”VB COSOVV) = e sin 0| HH)I,
filtering operations that were proposgtD,11]. Any of the (22
beam splitter transmission coefficienig a, 74a, 7ve, OF
7ue can be manipulated individually or in unisofihe key providing the requirements for a maximally entangled state,
feature of this proposal is that each polarization mode in A
and B can be manipulated independentilize degree of free-
dom that this protocol provides means that a wide variety of
operations for transforming a bipartite system can be satis- M:tane,
fied. TTHATIHB

The output state, or more specifically, the reduceihci-
dence basi®utput state, can now be written in the form

CoSOnyanyve=SiNOnHATHE s
(22)

are met. If cog>sin 6 then eithern, 5 or 7yg, or both, can
be varied producing a maximally entangled state with prob-
ability P=2 sirf. Conversely, if cog<sin 6, then varying
! ) (15) nua OF 7y Would yield a maximally entangled state with
TTA®Bp;,A'®B'] probability P=2 cogé. It could be argued that this consti-
tutes nothing more than a simple variation on the procrustean
This state describes the subensemble that passes the filteriggpthod[12], and requires only filtering at eithek or B to
process, and would have coincidence detections atdB.  distill maximally entangled pure states. The reason for hav-
The probability of this state being realized is given by ing four individually tunable filters is perhaps not clear yet,
. and though there is obviously a large degree of freedom in
P=Ti{A®Bp;,A'@B"]. (16  controlling the system, the necessity will become more ap-
?arent as the mixed-state case is investigated.

. A®Bp;,ATe BT
Pout=

The only restriction on these operations is that they mus
; i t ; iti
Flag]sfyA A=<I| andB'B=I, being completely positive maps IIl. MIXED-STATE MANIPULATION
The case of pure states provided a straightforward ex- It is the aim of this section to show how the beam splitter
ample of how this protocol works. So far, however, only two protocol can be extended from pure-state manipulation to
of the Bell-type states were considered. To illustrate thedeal with the more complicated mixed-state manipulation. To
transmission matrix method and cover the other Bell stat&id in the understanding of how the protocol can realize this,

variants, consider the pure state a state which involves a mixture of two of the nonmaximally
. _ entangled pure states already discussed will be introduced.
|~ )in=c0s6|VV)£sinf|HH). (17 The degree of entanglement of each of the states can be

_ o _ _ _ varied as a function ob, ,, and the mixing of the two will
This state has an explicit density matrix representation be determined by another paramegesuch that the state has
the density-matrix representation

cos 6 0 0 =*cosésing
] 0 00 p(N =Y W [+ L=y N y*l, (23
Pin= 0 0 0 0 (18
where|¢ ™) and|¢ ™) correspond to positive variants of Egs.
*+cosfdsing 0 O sirf 6 (6) and(7), respectively. This state will be discussed in terms
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<
[72]

EOF

FIG. 2. The EOF and entropy, for the joint state and local sub- FIG. 3. The EOF, and entropy, for the joint state and local sub-
systems, as the degree of mixingis varied. The entanglement systems, as the degree of entanglement of one of the pure state
decreases as the mixing increases, as expected, between a max@mponents is varied, for a fixed degree of mixing. In this instance
mally entangled statey=0 and a nonmaximally entangled state, the subsystem entropies are not always equal; however, where they
v=1. The subsystem entropies are equal, and reach a maximum afe equal corresponds to the point of maximal entanglement for the
log(2) at y=0. joint state.

of the effect that varying the entanglement and mixing of theThe local-density matrices are found by tracing over the de-
components has on the entropy and entanglement of the sygrees of freedom for the other subsystem= Trg[ pag] and
tem. In Fig. 2 the variation in the entanglement of the systenpp=Tra[ pagl. In terms of this, the condition for a Bell di-
and the entropy o_f _the jpint and subsystems are compared agonal, optimally entangled, state is that=pg=1,, corre-

the degree of mixing is varied. This illustrates the resultsponding to totally mixed, or random, local density matrices
where the entanglement of one of the pure states is not at\gith a maximum amount of entropy, a condition proposed by
maximum, and we see that the entanglement of the joint stat@at et a1 [7].

decreases as the mixing is increased, with0 correspond- How do the entanglement-entropy characteristics for the

Ing to the maximally entangled pure state anel1 the NON- state vary under the influence of the beam splitter protocol?
maximally entangled pure state. When the state is not maxi-

. (Ip Fig. 4 the characteristics of a range of states that are
mally entangled the subsystems are not totally mixed, an btainable, using the beam splitter protocol, for a given ini-
hence the system tends toward the maximally entangle? ’ g P X ' 9

pure-state characteristics as the subsystem entropies tend <?—I state are_plotted. A Sté.‘te Of. the form of H@3) IS em-
wards l0g(2), asy goes to zero. ployed, as this can be varied with respect to the mixture and

Figure 3 illustrates where the entropies of the subsystem@e, degree of entanglement of .the two pure-state c_omponents
are not always equal, and how the entanglement peaks whé¥{ ich hqve a!regdy been considered. The data points marl_<ed
the two subsystem entropies are both equal. The two turninlyith @ circle indicate the entanglement-entropy characteris-
points, where the entanglement goes to zero, correspond H5S of the initial state, and the solid lines represent a range of
separable points, analogous to the case of equal mixtures tates that can be accessed by varying the beam splitters. The
max|ma||y entang|ed Components’ where the entang|emeﬁwo figures are for a range of initial states determined by the
switches from a reliance on one entangled component to theixing parametery, which is labeled on each curve. The
other. degree of entanglement of one component is reduced below

Already a great deal of complexity can be seen to bghat of a maximally entangled pure state.
emerging from a consideration of the entanglement and en- Consider the case oy=0.7 in Fig. 4. This state has a
tropy characteristics of a relatively simple system involvingmixing which is weighted slightly toward the maximally en-
two polarization-entangled qubits. This is before the ex-tangled component, and the other component has only a
tended Hilbert space is introduced via the beam splitter prosmall degree of entanglement. It is the modes with a higher
tocol, which itself introduces four new variables and hence grobability of being realized in the less entangled component
higher degree of complexity again. that are targeted by the beam splitter protoegly and 7yg;

For pure states the question of optimality of an entanglehence the mixed state tends toward the maximally entangled
ment transformation for single-copy bipartite states ispure-state component. The maximally entangled component
known. If the optimality of mixed states is taken as the mostis never fully extracted in this instance as a result of the
entanglement that can be realized from a state regardless pfoblem inherent in most mixed-state manipulation proto-
the joint-state entropy, then the conditions to obtain this carols, in that the transformations affect all components of the
be found by looking at the local density matricesfodndB. mixture, not just the component that needs to be removed.
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1 ; g T ; ; g - ; ; the reasons for actually wanting such a device lies in its
: : : : ability to explore mixed-state Hilbert space. To further illus-
trate the capabilities of the protocol, and at the same time
investigate some recent proposals concerning entanglement
and various concepts and bounds, a few states will be dis-
cussed in detail. To describe the manipulations of a state, and
look at questions regarding optimality and how these ma-
nipulations can be realized, it will be necessary to look at the
eigenvalues for the joint system and local subsystems. In this
section a more detailed investigation into the mixed state
already introduced will first take place. The second state that
will be looked at will be the Werner state, and then a state
that is a mixture of a pure entangled state and a separable
component will be introduced and discussed with a view to
determining a bound on the entanglement-entropy plane. A
parametrized density matrix will finally evolve from this, and
then the beam splitter protocol and the state manipulations

FIG. 4. This figure shows the EOF as a function of the entropy,WIII be discussed again in the context of this bound.

S of the joint state, for a range of states of the form of EzB),

with the variation dependent on the mixing and the entanglement of

the components. These involve a mixture of a maximally entangled

state and one that is weighted toward thié1) modes. The circles Consider again a state consisting of a mixture of two Bell-

indicate the characteristics for the initial state, and the solid lindike states

indicates the range of state characteristics obtainable by varying

two beam splitters in unison. As the bean splitter transmission is p(V)=yd W |+ (L= )|y Wy, (24

reduced, the curve traces out the concentration characteristics of the

state until the maximum entanglement is reached, and the charac-

teristics retrace their path and approach the zero point. which has the explicit density matrix after the beam splitter
interaction of

A. Two-Bell-state mixture

This protocol relies on a certain amount @fior knowl-
edge of the state. This knowledge helps to determine the

required parameters to concentrate the state characteristics. 2 2 — .

We consider concentration as increasing both the entangle- aTiveCOS b1 0 0 7 €06, Sin 0,

ment and purity of a statg6]. Recent advances in quantum ~ 1 0 0 0 0

state tomograph}3] allow for the measurement and recon- P~ p_| 7 0 0 0 0

struction of the complete density matrix for a bipartite state, _ _ 5 o

allowing before and after comparisons. ncoséysing; 0 0 npiaAmig S 6
So far the manipulation protocol has been introduced and +(1-7)

shown to work for pure states, and it has also been shown to Y

increase both the entanglement and purity of a state consist- 0 0 0 0

ing of a mixture of pure states, one nonmaximally entangled 5 5 _ )

and another maximally entangled. The pure-state transforma- y 0 7ya7heCOS 6,  pcosh,sing, O 25

tions have been shown to be optimal, both in the sense that — . 2 2 o

the greatest amount of entangIeFr)nent is obtained by the trans- 2 K coseg sind, nHAnV; Sirt 0, (z)

formation and the transformation is carried out with an opti-
mal efficiency. Can this be extended to arbitrary mixed
states? How this protocol works will constitute the majority _
of Sec. IV, where this state, as well as a range of other statejith 7= nyanuamve7ne as previously, and where
will be considered, and an attempt will be made to extrapo-

late some of the results to general systems. Chiefly, the beam

splitter dependence on the joint state and the subsystems will Ps= Y[ 75755 COS 01+ nianig Sil? 11+ (1— )
be examined in greater detail to determine whether a state
can be transformed and, if it can, what beam splitters need to
be varied, and by how much, to obtain the most amount of
entanglement for the state.

X[ 7y amiie COS 02+ M7y SIT 62]. (26)

To determine the conditions to optimize the entanglement,
the reduced density operators for each of the subsystems
need to be found. If the subsystem entropies are to be maxi-

The main focus of this paper is the polarizing beam split-mized, Sy= Sg=109(2), then the following constraints must
ter protocol and mixed-state entanglement. However, one dfe satisfied:

IV. ANALYZING MIXED STATES
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state is separable, and as such has no entanglement to re-

IVATIvB s ; .
tang, = ; (27 cover or maintain. If the pure-state component of this mix-
"THATIHB ture is maximally entangled, the3)= Sg=10g(2), regardless
IVATHE of the _degree of mixing and the state is as entangled as it_can
tanf,=———. (29 be. It is, perhaps, this characteristic that suggested it might
THATIVB provide a bound on how entangled a mixed state could be. If,

As both the entanglement of formation and the entropy ar however, the pure-state component is not maximally en-

dependent on the eigenvalues of the system, it is beneficial ?g\ngled, this constraint does not hold.

determine how these behave with regard to the subsystew If the beam splltter protocol_ is now implemented on a
constraints erner state, with a nonmaximally entangled pure-state

e . .component, then the constraints on the subsystem and joint
In satisfying the constraints on the local systems, the ei- . . : )
envalues for the joint system simplify to state eigenvalues are deter_mlned, as in the case of the mix-
g ture of two Bell states previously. First, the subsystems are
1 considered and the constraints that maximize the subsystem

N1=2y7eAn’5C0S Hlp—, (290  entropies are determined. The requirement for the local den-
B

sity matrices of the Werner state, post-beam splitters, to sat-
isfy Sa=Sg=log(2), are

No=2(1- ) 7 urse 008 b, 5 (30)
Pg A= VB, THA= THB » (33
Given this, consider the ratio of these eigenvalues: 2
LAY
Ay y |\ sin 26, tanfg=——. (34)
Y S ) (31) TTHA
Ao \1—1vy/sin26,

) o o The joint system for the Werner state has four eigenvalues,
Note that this ratio is independent of any transmission coefyhich can be simplified using the previous constraints, and
ficients only when the subsystem constraints are satisfieghe ratios of the eigenvalues are again independent of the

Thus, by satisfying the subsystem constraints, the joint Sysseam splitter coefficients when the subsystem constraints are
tem requirements are also being realized in that the degree ghisfied.

mixing of the state is reduced as much as possible, given the So, if the subsystem entropies can be made to equal
parameters governing the initial state. When this ratio igyg(2), the degree of mixing in the joint state is minimized
equal to 1, the joint system is maximally mixed, and there isyjth respect to the maximum amount of entanglement. Also,
no entanglement present. Recall that in Fig. 2, the entanglgss there is no means of removing any of the eigenvalues, a
ment minima corresponds to the point wharg,=1. For  rejatively high degree of mixing will be inherent in the sys-

a maximally entangled state this is pt 1/2; however, if6  tom even after the beam splitter protocol. However, this mix-
# /4, then the minima will be appropriately shifted. Which ing will be the minimum obtainable while maintainirsy

one of the joint state eigenvalues will dominate is determined- Ss=log(2). It can immediately be seen, given the con-
by both the mixing and the entanglement of the pure-stat@yaints of Egs(33) and(34), that if tand<1, then by setting

components in the original mixture. 2 — .2 1 and 72.= n2-=tand. the mixing and en-
These constraints govern how much the state can be im?%/ale%%Bnt are optﬁl\"l/i/;engB ’ g

proved by the beam splitters. In general, the entanglement of In Fig. 5 the entropies and the entanglement of the state
ah state |§dreducbed a; the r(]degree %fl m|xmgf IS Incr easid, ?]%qe plotted as functions of the two transmission coefficients
this provides a bound on the possible transtormations for the, 4, These two beam splitters are varied in unison,

o o e o Y= i 1ve= ., 1o sty the consirins on the sut
- L7, Teg g op 9 systems. Given this, the entanglement of the state is maxi-

ment, the joint state eigenvalues obtain their optimal vaIue.mized at the point where the entropy of the local subsystems
reaches a maximum, log(2). The probability of a state with
B. Werner state these characteristics being realized is also shown. When the
The Werner state can be considered as a weighted mixtugiate is as entangled, as it can(bere an increase of around
of all four of the Bell state$20], a straightforward extension 20% is showy, it can be seen that the probability of obtain-
of the mixture of two Bell states just discussed. However, weng this state is around 55%.
consider the Werner state in the form The variation in the entanglement-entropy characteristics
(Fig. 6) shows the results of individually varying the beam
~ I4 splitters, and the improvement that is achieved when they are
puly)=(1=y) ¥y [¢7) (7], 32 Varied in tandemay, and 7y, when varied individually,
increase the entropy at the cost of entanglement, but when
where the initial statgd¢®) has a probabilityy of being varied in unison the increase in the entanglement is greater.
transmitted without errors, and there is a component (1IThe maximum entanglement in Fig. 6 again corresponds to
— ) of a totally mixed state. In the case wheye=1/3, the the point Wherer;\Z,A= 7/\2,B=tan0~0.6.
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FIG. 5. The variation of the entanglement and entropies, of joint  FIG. 6. The EOF and the entropy of the joint system are shown
and subsystems, for the Werner state, and the probability of obtairfor a range of Werner states, when the beam splitters are varied
ing these characteristics as two beam splitters are varied in unisofidividually and in unison. The peak value on the bounding curve
7= vanve= 77\2/A- corresponds to the tuning parameters from Fig. 6 wt&ye Sy

=log(2).

A boundary curve is introduced in Fig. @otted ling ,
onto the characteristic plane denoting the bound alluded to 7yamve— 0. (37

earlier for the Werner state, where the pure-state componeq,tnis implies that the subsystems are totally mixed only in the

finit of no transmission. Previously, when the subsystem
S . : A'Constraints were enforced on the joint system eigenvalues,
made, individually or in unison, and how many beam split-ie jegree of mixing for the joint state was minimized. In
ters are utilized, the entanglement does not exceed thigis instance the ratio of the eigenvalues is still dependent on
bound. the beam splitter transmission coefficients. As such, there is
considerable control over the mixing of the state. This state
C. Entangled plus separable falls into the class of state recently shown by Verstrattal.
21], that could be brought arbitrarily close to a Bell state by
educing the rank of the density operator.
The behavior and the entanglement-entropy characteris-

In the preceding sections, discussion revolved aroun&
mixtures of pure nonmaximally entangled Bell states. The

first, a mixture of two states, and the second, a mixture of al}ics of this state, as the beam splitters are varied, is illustrated

four states, and the behavior of the characteristics of the sta . . S
under the beam splitter protocol have been observed. To ot};_8 Fig. 7. The figure highlights the effects that both of these

serve the behavior of a different class of state, a mixture o onstraints have on the state characteristics.

an entangled pure state and a separable state will now be The mixture consists of=0.3 of the entangled compo-
. gled p . Sep k?1ent, and shows the results in the case where the two beam
considered, with the mixture having the form

splitters are varied togethef, p= nyg. With these param-

~ _ ter settings the entropies of the subsystems are not equal,

=y [T+ (1= y)|VVNVY. @35 & . S are

Ped V)= [0 HY [+ (1= mIVVIVV (35 Sa# Sg, and only in the limit where the transmission coef-
There are only two eigenvalues for the joint systemy,  [ICIENts both go to zero do they converge, satisfying Ba);
=, and\,=(1—y)— independent of; however, the ei- when they do go to zero, they are not at a maximum, and
genvalues for the subsystems are dependent on both the mii€Nce the state is not maximally entangled.
ing and the entanglement of the entangled component. _” fthe first c_o_nstraln(Eq. (36)] is sa_t|sf|ed, and the trans-

After the beam splitters, the eigenvalues for the subMission coefficients of the beam sphttgrs_are var|ed7§_;1§

system and the constraints on the joint system are detef= 7vetand, (tané<1), then the behavior is not that differ-

mined, resulting in two requirements, the first being that e_nt from the previous case, except that: the subsystem'entro-
pies are equal throughout the variation of the beam splitters;

2 2 and in the limit where the transmission tends to zero, the
tar? 6= M' (36) maximally entangled pure-state characteristics are ap-
nf.An\z,B proached a$,= Sg approaches log(2). As this is achieved,
the probability of obtaining these state characteristics tends
which is very similar to those constraints found for previousto zero.
states. The second constraint poses an interesting problem, or In Fig. 8 this state is again considered, and the behavior of
perhaps it should be considered a feature. The second cothe characteristics on the entanglement-entropy plane exam-
straint requires that ined. The dashed curve denotes the behavior as the beam
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has somey dependence such that initigl* 1, again due to
the first constraint.

This state already presented some quite unusual charac-
teristics; however, it should also be noted that for variations
in the mixture and entanglement of this state, the same con-
centration characteristics as in Fig. 8 are produced. In fact,
this solid curve can be further extrapolated down the plane,
for, as long as there is some component of the entangled pure
state present in the mixture, a state arbitrarily close to a
maximally entangled state can be recovered. The probability
of such a situation is proportionally unlikely; indeed it is
approaching zero as the state approaches maximal entangle
ment. Regardless of this the state may provide some useful-
ness experimentally in looking at questions regarding “hid-

. den” nonlocality[22] as well as the efficiency of protocols
¢ o1 02 03 04 05 06 07 08 08 I such as teleportation and cryptography in the mixed-state
n regime, in that it covers so much of the entanglement-

FIG. 7. The entanglement and entropy characteristics for a mix€Ntropy plane. _
ture of nonmaximally entangled and separable components as the 1he characteristics of the Werner state suggested that it
two beam splitter coefficients are varied with both equaf ( Might provide a bound on mixed-state entanglement. In this
= vanve= 72,). The subsystem entropies are not equal except ifigure, in the case where the first subsystem constraint is
the limit where the joint state entropy initially increases, and de-satisfied, there exist states with characteristics above the
crease only as the transmission coefficients tend to zero. The pulderner bound. Clearly the Werner state does not provide an
nonmaximally entangled state characteristics are obtained in thabsolute bound for mixed-state entanglement, and a higher
limit as the transmission goes to zero. bound needs to be found.

Probability

splitters are varied in tandem as in Fig. 7, showing that the
pure but nonmaximally entangled state characteristics are ap-
proached. The solid line shows the transformed states ob- More recently, an attempt to put a bound on mixed state
tained by varying the beam splitters while satisfying bothentanglement resulted in a proposal by Murtoal. [23].
subsystem constraints. This curve shown does not pasgeir proposed bound involves a density matrix, not entirely
through the circle marking the initial state characteristicsgjssimilar to the previous mixture of an entangled state and a
due to the fact that the initial State, numerica”y Consideredseparab|e state. By Considering a s||ght variation on this
state, which involves placing some restrictions on the density

V. BOUNDS ON ENTANGLEMENT

= matrix elements, a state of the form
0.9
0.8 1-2g9(y) O 0O O
o7k A 0 g(y) v/2 O
osl PI=l 0 42 gy O (38)
Wosl - 0 0 0O ©O
1T}
0.4
03 is obtained, wherg(y) = v/2 for y=2/3 andg(y)=1/3 for
’ y<2/3.
0.2 This state has a maximum amount of entanglement for the
04 degree of purity, in terms of the linear entropy, where the
5 ‘ : z ‘ - linear entropy[24], S . =1—P, is related to the purity of the
% 01 02 03 04 05 08 07 08B 08 1 state,P=Tr[p?]. This is then normalized, so that
S
FIG. 8. The range of state characteristics obtainable by imple- 4 2
menting the beam splitter protocol on a mixture of entangled and S,_—§(1—Tr[p D (39)

separable states. The two curves, dashed and solid, respectively,

denote the beam splitters being varied equally, and when the sub-

system constraints are satisfied. The latter case shows that the ch&gturns a value ranging from O for pure states, to 1 for a
acteristics can approach those of a maximally entangled state. THetally mixed state. This state has a behavior very similar to
Werner bound state is also shown, and is crossed for some of tH#at of the previous state far=2/3, but significantly differ-
states obtained. ent below this point. For this state there are two nonzero
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1 —— Concentration large region of this space, with the characteristics first in-
- S Bound creasing in entanglement at the cost of entropy, before both
""" Werner Bound the entanglement and the entropy improve and concentration
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | is realived.

- The other curve in this figure is the solid line starting at
vy=1/2. This curve denotes the characteristics of the linear
entropy bounding state when the beam splitter protocol is
" applied to it. Note that the boundary curve is exceeded, both
above and below the bifurcation point, for the stateyat
=2/3. This should not be unexpected, as the subsystem en-
tropies are not maximized for this state. The state was opti-
_ mized in terms of the linear entropy of the joint state. Opti-
mization in terms of the von Neumann entropy is currently
underway.

Losb. - gt =113

. - VI. DISCUSSION
FIG. 9. The EOF and entropy characteristisslid line) for the

state given by E@35) starting aty=0.3, and the linear entropy Several key points were looked at in this paper, and all of
bound state ag(y)=1/2. The first state approaches and then fol- these revolved around the beam splitter protocol for manipu-
lows the linear entropy bounding curve up to the peak value. Iiating mixed states. In doing this, the equivalence between
coincides with the linear entropy curve at2/3. Both the Werner  the coincidence detection state and that obtained by a “detect
and linear entropy bounds are shown, and the beam splitter protoceind discard” protocol, with perfect detectors at the reflected
enables the state characteristics to exceed the linear entropy bourgghrts of the beam splitters, was justified. The process was
An example of a state starting gt=1/2 is shown. then reintroduced, equivalently, in the context of local filter-
ing operations. Although only a limited range of states was
eigenvalues fory>2/3, and three below this point. Note here considered, the way the beam splitter protocol transforms a
that y is not the mixture coefficient, as previously defined. state showed that, due to the large number of degrees of

If the subsystem constraints are again considered, the réreedom of the protocol, the scheme is highly adaptable. The

striction transformations were shown to extract the most amount of
y y entanglement from a state that is possiblt_a for a givgn degree
IVATHB™ THATIVB (40) of mixing, and in this sense could be considered optimal. The
guestion of a bound on the amount of entanglement that a
applies, and, as before, mixed state can have was explored, first for the Werner state
) and then for the linear entropy bound.
7yanve— 0. (41) For mixed states, questions of efficiency and optimality
are not clear, and as such discussion regarding these have
When y<2/3, the state undergoes the most significantoeen limited. A distinction is made regarding these concepts:
change in its entanglement-entropy characteristics. Bglow it is one thing for the transformation to obtain a final state
=2/3 the behavior of this bounding state differs markedlywith the most amount of entanglement that is possible, and it
from that of the previous state. The emergence of the extr& another to show the optimal probability or efficiency of
eigenvalue increases the entropy, and hence extends the c@arrying out a particular state transformation. The proposed
erage of the bound on the entanglement-entropy plane. Asound on entanglement enhancement of Ketrdal. [7] ap-
such, this would suggest that there is some higher bounglies to the first interpretation, and the protocol was shown to
with respect to the entanglement of formation and entropysatisfy these requirements. In the case of the second interpre-
above what this state proposes. This might also suggest thtdtion, there was recently a proposal by Vifiab] which is
if the bound is going to be complete, then at some point thean extension of his ideas on single-copy pure states, and
emergence of a bounding state with four eigenvalues may beequires a minimization over a set of entanglement mono-
necessary as the entanglement tends to zero. At this point thenes which has been left for future work.
Werner state may indeed provide the small-entanglement — The primary piece of information to note here is thiét:
large-mixing bound. there is some initial amount of entanglemeand the sub-

In Fig. 9 the Werner state bound and the linear entropysystems are nditoth totally mixed,thenmore entanglement
bound are shown, and, as just suggested, as the entanglemeah be obtained by transforming the mixed state. The beam
approaches zero, the Werner state bound is greater, going $plitter protocol introduced here can achieve this, and it can
zero aty=1/3 andS~0.9 as the state becomes separabledo it in a very simple way and one that is experimentally
The previous state is again shown here, where a mixturesalizable.
containing a maximally entangled pure state is used. This The recovery and maintenance of an entanglement
state and the Werner state both coincide with the linear ernresource is a process that will be of paramount importance
tropy bound aty=2/3. The previous state covers quite afor any form of reliable quantum communication. Just as
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