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Abstract

In response to environmental concerns, the composites industry is showing a growing interest

in natural fibre biocomposites as an alternative to wood plastic composites and glass fibre

thermoplastics. Albeit many years of research, the potential of these new materials has not

being reached and the properties obtained are too often lower than expected. A main reason for

this is because the natural fibre properties are variable and poorly characterised, and inefficient

traceability makes it difficult to grade the fibres. When it comes to biocomposite manufacturing,

short plant fibre composites have attracted the interest of the thermoplastic compounding

industry but only a few companies have mastered the compounding step. Too often, the

extruder is treated as a “black box” and the critical processing parameters have not yet been

identified. As a result, the full potential of extrusion process for biocomposites is not exhausted.

This research aimed to generate a better understanding of bast fibre surfaces, their interaction

with the matrix and to optimise the extrusion process for short fibre biocomposites. New

generation in-lens Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy

(XPS) provided quantitative information of the first ten nanometres of the fibre surface with

high precision, and Inverse Gas Chromatography (IGC) enabled the determination of natural

fibre surface energy. Combined, XPS, in-lens SEM and IGC offered a unique complementarity

to unravel natural fibre surface properties. In particular, the results achieved provided key

complementary information about the nature of the chemical groups present at the fibre surface

and showed clear evidence of the effect of fibre treatment on the surface properties. Field retting

and water washing were insufficient to remove lignins, pectins and waxes from flax and kenaf

fibre surface. Alkaline treated fibres had a cleaner but rough surface still partially covered with

an amorphous layer rich in lignins and waxes. Surface energy profiles obtained by IGC also

revealed a change in polarity and the distribution of the energetic active sites post treatment.

In addition, the critical parameters to determine the BET surface area values with IGC were

identified and a protocol applicable to natural fibres was proposed.

The series of extrusion trials brought new insights into the feasibility of large scale biocomposite

extrusion. Statistical analysis showed a significant interdependence between all factors and

particularly between the screw speed and the screw design. At both laboratory scale and

i



medium scale, fibre content was the dominant factor for the tensile strength and elastic modulus

whilst screw speed and screw design affected to a lower degree the tensile properties. The fibre

surface properties and fibre length distribution were also determinant for the biocomposite

properties. For instance, the alkaline treated fibre reinforced polypropylene composites under-

performed compared to the water washed fibre polypropylene composites although the former

had a surface more energetically homogeneous and less polar. It is assumed that the higher

fibre aspect ratio of the water washed fibres and their homogeneous fibre length distribution

largely contributed to increase the composite performance.

Finally, extrusion at industrial scale has been successfully performed and represents a major

achievement of the thesis. However, significant amount of porosity was noticed in the extruded

samples throughout the trials and further work is required to overcome this issue. Whilst the

porosity detected in the samples questions the industrial-usefulness of some of the results, the

contribution of this thesis to the development of natural fibre compounding capability at The

University of Queensland and collaborating local industries was immense. The methodology

and the lessons learned will undoubtedly be used to further optimise the extrusion process and

produce better biocomposite materials.
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Chapter 1

Introduction

1.1 Background & Motivations

Over the past few decades, considerable efforts have been made to develop alternatives to

synthetic polymer composites. Tightening of the environmental directives across the globe is

putting pressure on many industries to become more sustainable. At the same time, there is a

drive to create new markets for natural products and this has opened new fields of research. In

order to tackle such environmental issues and respond to an ever-increasing demand, natural

fibres, which by definition embody eco-friendly raw products, appear as potential candidates.

Plant fibre composites have been deemed potential substitutes for traditional materials as well

as replacements for other materials, in particular glass filled/reinforced plastics, Wood Plastic

Composites (WPCs) and timber. It is well established that some natural fibres possess inter-

esting physico-mechanical properties and, for instance, have an elastic modulus that compares

well to E-glass [Summerscales et al., 2010]. Their sustainability and high Young’s Modulus

per unit mass are the main advantages when compared to synthetic reinforcement elements

[Mohanty et al., 2001]. The combination of low cost, low carbon footprint and good tensile

properties makes plant fibres attractive as a reinforcement element in a plastic matrix for high

volume commodity products.

1



Chapter 1

WPCs have already gained significant share replacing timber as a building product. Due to

the large demand for timber, this resource is becoming increasingly sparse and expensive. In

many applications, plant fibre composites also have the potential to substitute timber. Plant

fibre biocomposites perform typically better than WPCs and yield (per area/per annum) is

higher for the common bast fibre producing plants [Grigoriou and Ntalos, 2001]. This makes

bast fibres attractive as replacement for wood fibres as fillers in commodity thermoplastics.

Despite many years of research, Natural Fibre Composites (NFCs) have not yet made it into

the market and research projects often stagger at up-scaling. Actual performance of NFCs

remains average compared to thermoplastics and sometimes underperform in tensile strength

[Sobczak et al., 2012]. Major issues persist along the value chain of NFCs, creating multiple

challenges for the industries involved and limiting the uptake of plant fibre composites. This is

due to the fact that the route to manufacture NFCs is complex and involves multiple variables

(see Figure 1.1).

Figure 1.1: Chart representing the route to short bast fibre biocomposites

Many factors influence the properties and quality of the fibres during crop production; the

choice of cultivar, the growth conditions and the harvesting period and technique. Post harvest

retting, fibre separation and fibre extraction are also critical stages that affect the fibres’ length
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and the fibres’ surface properties [Akin, 2012]. In addition, short natural fibre composites

are manufactured by direct processing or via compounding and processing. Each technique

involves specific processing variables that need to be adjusted for maximal product performance.

Between each stage, the transport and storage conditions can also affect the fibre quality. For

instance, moisture uptake and biodegradation are of major concern as natural fibres have high

hygrothermal sensitivity.

Too often, traceability during the fibre production, the fibre processing and the product man-

ufacturing is lacking or, when it exists, is insufficient. Consequently, systematic correlation

between the composite performance and the fibre properties is often not possible. In particu-

lar, many research studies have focused on process optimisation while working with fibres that

were poorly characterised; with little information on the fibre cultivar, the size distribution,the

degree of separation and on the surface properties. However, the performance of short fibre

reinforced composites strongly depends on the quality of the fibre/matrix interface, which in

turn is closely related to the fibre surface physico-chemical structure. This makes scale-up

to industrial production problematic. It seems necessary to bridge the gap between the fibre

producers and the product manufacturers so that one can relate the fibre processing effects

with the biocomposite properties to maximise the overall performance. Optimisation of the

compounding process for short fibre biocomposites and investigation of the feasibility of large

scale production should also be performed to launch short fibre biocomposites on the market.

1.2 Scope and Objectives

This PhD project was part of project P1.1 “Plant Fibre Biocomposites”of the Cooperative Re-

search Centre for Advanced Composite Structures (CRC-ACS). The overall aim of this project

was to develop technology for increased adoption of plant fibre biocomposites, to provide infor-

mation and guidelines to the Australian composites industry enabling them to increase usage

of sustainable composites, and to develop new composites based on thermoset, thermoplastic

and/or biopolymer matrices. The project consists of two major work packages. One work

package was focused on developing design guide lines for biocomposites, whilst work package

two was focused on the development of a thermoplastic short plant fibre composite. This PhD
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project forms an essential part of work package two. The objective of work package two was

defined in the CRC-ACS participant agreement as follows:

“Short fibre composite products, with fibres from plant sources, will be developed with an aim

of producing building products compliant (or compliant in the future) with the Building Code

of Australia (BCA). Short fibres from candidate bast fibres (a minimum of kenaf and hemp)

will be extracted using different physical and chemical methods, allowing the production of

reinforcing biofibre with maximised performance and competitive cost. Fibre lengths studied

will encompass short fibres (less than 5 mm) through to nanocellulose. Where a suitable method

is identified, extraction of plant product will be extended to the core to allow manufacture of

low-cost products. Candidate materials will undergo an optimised compounding process for

subsequent extrusion (optionally also for injection moulding and/or rotomoulding) to enable

maximised retained aspect ratio (above ten), optimised dispersion of reinforcing material, and

treatment system optimisation to enhance properties such as toughness, creep and elongation

to failure. Compounded materials will be manufactured by extrusion into structural shapes and

benchmarked against equivalent wood composites and manufactured products. Benchmarking

may include dry and wet mechanical properties, tensile, compression, flexural, impact and creep

properties. Demonstration of semi-structural or structural components will be undertaken, with

the aim of producing product compliant with the BCA.”

This thesis focused on key aspects of biocomposite development for industrial application that

is the triad of natural fibre properties, the techniques for natural fibre grading and the extrusion

process (ref Figure 1.2). Main objectives of the thesis were to:

• Characterise natural fibres with advanced surface techniques to resolve the chemistry and

physical properties of the fibres’ surface. These techniques include Scanning Electron Mi-

croscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Inverse Gas Chromatography

(IGC).

• Optimise the extrusion process: investigate the effects of processing variables on the final

product performance and study the feasibility of large volume production by up-scaling.

• Establish a correlation between the fibre properties and the composite properties with respect

to the fibres’ surface characteristics and the processing variables.
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Figure 1.2: Triad of natural fibre properties, characterisation techniques and extrusion

1.3 Thesis Outline

In this thesis, Chapter 1 introduces the general background and identifies the specific issues

that need to be addressed to expand short fibre biocomposites to the industrial market. It

also outlines the scope of research and the main objectives. Chapter 2 provides an overview

of the previous work on natural fibre composites, focusing on the overall performance of short

fibre biocomposites. A review of the current state-of-the-art in natural fibre surface charac-

terisation is also presented. The last section of this chapter outlines the current challenges to

biocomposites extrusion. In Chapter 3, the results of XPS and SEM are reported with critical

analysis and discussions. Chapter 4 introduces Inverse Gas Chromatography as a potential

technique for fibre surface energy characterisation. The first section investigates the capability

to determine the specific surface area of bast fibres with IGC and the second section describes

the methodology for natural fibre surface energy determination. A couple of case studies are

presented with discussions. The optimisation of twin-screw extrusion process for biocomposites

is presented in Chapter 5. Finally, Chapter 6 summarises the main findings of the thesis

and suggests future works for the development of short fibre biocomposites.
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Literature Review

2.1 Natural Fibre Composites: general background

Natural fibre composites is a broad and rapidly developing area of materials science. Several

publications provide a complete histology of natural fibres and their applications. Bledzki

and Gassan [1999] provided a state of the art review on natural fibre composite research and

development until the late 90s. Faruk et al. [2012] produced later an updated review on the latest

progresses from 2000 till 2010. Both manuscripts provide a clear and concise understanding

of what natural fibre reinforced composites are made of, how they are manufactured and how

they perform. The aim of this section is to give a general overview and to introduce short fibre

biocomposites which is the main theme of this work.

2.1.1 Natural fibres and biocomposites

The denomination “Natural Fibre Composite”(NFC) relates to any material that contains one

type of biofibre (or more) and a matrix component. The commonly accepted hierarchy in

the field of NFCs begins with “bio-based composites”at the top, beneath this biocomposites

(also called eco-composites) refer to any material containing a “bio”component and composites

that are fully “bio”are usually categorised as “green composites”[Mohanty et al., 2005]. The

following discussion focuses on composites reinforced with plant fibres.
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Natural fibres refer to vegetal fibres, fibres produced from biomass, mineral fibres and animal

fibres. Plant fibres are extracted from plants grown specifically (primary plants) or for other

purpose (secondary plants). In the latter case, the fibres are usually a by-product and sometimes

considered as agri-waste. There are multiple ways to classify plant fibres (taxonomy, cellulose

content, application etc.), the most common is the botanical hierarchy illustrated in Table 2.1.

Six major groups include fibres extracted from plant stems (bast and core fibres), from leaves

or seeds, grass fibres and reeds and wood fibres.

Table 2.1: Botanical classification of plant fibres [Pickering, 2008]

Bast Leaf Seed Core Grass Other

Fibres Pod Husk Fruit Hulls

Hemp Pineapple Cotton Kenaf Wheat Wood

Ramie Sisal Kapok Jute Oat Roots

Flax Agava Loofah Hemp Barley Galmpi

Kenaf Henequen Milk

weed

Flax Rice

Jute Curaua Coir Bamboo

Mesta Banana Oil

palm

Bagasse

Urena Abaca Rice Corn

Roselle Palm Oat Rape

Cabuja Wheat Rye

Albardine Rye Esparto

Raphia Sabai

Canary

Grass

Both biobased and petroleum-based polymers are common matrices for biocomposites applica-

tions. Petrochemical plastics represent a vast majority of the matrices used for NFCs with com-

modity thermoplastics (polyolefins, polystyrene, polyvinyl chloride) and thermosets (polyester,

epoxy, vinyl esters) being extensively applied. Popular biopolymers include cellulose polymers,

starch polymers, corn-derived polymers (polylactic acid) and protein and vegetable oil-based

polymers. Note that biobased polymers may not all be biodegradable and some petroleum-

derived polymers are biodegradable. For instance, soy oil-based resins and biobased polyolefins
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are non biodegradable polymers. Poly(ε-caprolactone) and aliphatic polyesters are common

examples of petrochemical biodegradable polymers. The ISO definition states that a biodegrad-

able plastic may be defined as a compound that undergoes “a significant change in its chemical

structure under specific environmental conditions resulting in a loss of some properties that

may vary as measured by standard test methods appropriate to the plastic and the application

in a period of time that determines its classification. The change in the chemical structure

results from the action of naturally occurring microorganisms.”[Müller, 2005]. Biodegradabil-

ity depends on the compound chemical structure and the environment. Some biocomposites

may be 100% biobased (in that case they are called green biocomposites) and partially or

completely biodegradable. For instance, Wood/PLA compounds are green composites com-

pletely biodegradable whilst products made of flax fibres embedded in biobased polyethylene

are partially biodegradable only. Satyanarayana et al. [2009] published an extended review that

provides a clear insight on biodegradable composites based on lignocellulosic fibres.

Finally, hybrid biocomposites combine biofibres with a polymer matrix. The latter can be

biobased, petroleum-derived or a blend of both. Combinations of biobased and petrochemical

polymers have been of particular interest as they offer interesting cost-performance proper-

ties and provide a compromise between fully fossil-based plastic matrices and 100% biobased

materials, for instance by limiting the moisture absorption or increasing the impact strength

[Mohanty et al., 2005]. Hybrid biocomposites may be the way to foster the implementation of

NFCs in industrial applications. An overview of the NFC types and their related compounds

is shown in Figure 2.1.
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Figure 2.1: Natural fibres, Biopolymers and Biocomposites
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2.1.2 Performance & properties

2.1.2.1 Natural fibre properties

Plant fibres, contrary to synthetic fibres, do not have standardised properties but rather their

properties spread over a large range. The mechanical properties of plant fibres depend on the

species, the growth conditions, time of harvest and the fibre location in the stem [Ayre et al.,

2009, Charlet et al., 2007, Duval et al., 2011, Mediavilla et al., 2001, Satyanarayana et al.,

2007]. Natural fibre mechanical properties also depend on the retting process [Akin et al., 2001,

Paridah et al., 2011, Stuart et al., 2006] and the extraction and separation techniques [Dupeyre

et al., 1998]. These processes also likely induce potential damage to the fibres [Hänninen et al.,

2012]. Finally, testing procedures are another source of discrepancy in the data [Mukherjee and

Satyanarayana, 1986]. For instance, the tensile performances vary with the specimen length as

the probability of sampling defects increases with increasing fibre length [Defoirdt et al., 2010,

Fidelis et al., 2013, Virk et al., 2009]. All the parameters mentioned above explain why values

published in literature vary to a considerable extent. An attempt to provide typical specific

modulus values for common plant fibres is given in Figure 2.2.
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Figure 2.2: Ranges of specific Youngs’ Modulus values for natural fibres and glass fibres
[Dittenber and GangaRao, 2012]

2.1.2.2 NFCs properties

A majority of studies on NFC performances focus on the tensile properties whilst impact, shear,

compression and flexural responses are less frequently investigated [Anderson, 2008, Arbelaiz

et al., 2005, Herrera-Franco and Valadez-Gonzalez, 2005, Thumm and Dickson, 2013]. This

section gives an overview of the tensile and impact properties one can expect from short plant

fibre reinforced thermoplastics.

Tensile behaviour Introduction of short fibres in thermoplastic matrix increases the stiff-

ness due to the fibre’s high elastic moduli. However, composite failure is usually more brittle

compared to the neat polymer and tensile strength tends to be similar or slightly reduced. Lower

strain at break and reduced strength are due to the composite microstructure and is directly

related to the constituents, the composition and manufacturing process. For instance, voids,

weak interfacial interactions and poor fibre dispersion act as defects and stress concentration
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points that induce failure. Under tensile load, composites with efficient stress transfer show

higher strength, higher stiffness and lower strain at break than those with a weak interface.

A review of the literature on tensile performance of short fibre thermoplastic biocomposites

is given in Figure 2.3. As shown in the graphs, there is an approximately linear increase in

stiffness with increasing fibre content till ca. 40 wt.%. Adding more than 40 wt.% fibre is less

efficient and the performance seems to reach a plateau. Efficient and homogeneous dispersion

is indeed difficult to achieve at higher fibre load and fibre agglomerates become potential stress

concentration zones. The data scattering in Figure 2.3 also reflects how the coupling agent,

the manufacturing process and the fibre treatment affect the biocomposite stiffness. Tensile

strength is much more difficult to improve and in many cases the performance equal the matrix

performance, or in some cases degrades the matrix performance (Figure 2.3).
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Figure 2.3: Performances of natural fibre thermoplastics (see references in Appendix A)

Impact strength NFCs response to impact stress has been less studied than the tensile

properties and the mechanisms remain poorly understood [Bledzki and Gassan, 1999, Sobczak

et al., 2012]. The published literature shows inconsistent results. In many cases, addition of

fibres to the matrix reduced the impact strength [Huda et al., 2008, Lei et al., 2007, Xu et al.,
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2008, Zheng et al., 2007] but some authors reported an improvement in impact properties

[Karnani et al., 1997, Rahman et al., 2010]. The fibre type also influence the impact properties

[Pavithran et al., 1987].

From a micromechanics point of view, adding short fibres to the polymer induces specific failure

modes, namely fibre-matrix interface failure, fibre fracture and fibre pull-out. These can increase

the energy dissipation but the deformation mechanisms and strain at break strongly depend on

the quality of the interface. Fibre load and fibre length are also critical [Bengtsson et al., 2007,

Rana et al., 2003]. Impact strength usually increases with fibre load till a threshold where good

dispersion may be difficult to achieve and fibre agglomerates become potential defects [Mohanty

et al., 2006, Thwe and Liao, 2003]. Impact strength increases with increasing fibre length but

the evolution profile closely depends on the interfacial shear strength and the critical fibre

length (this will be detailed in the next paragraph). Note that fibre length may also affect the

dispersion of the fibres in the matrix hence its influence is difficult to quantify. Efficient coupling

agents that strengthen the interface also tend to improve the impact properties [Bledzki and

Gassan, 1999, Mohanty et al., 2004]. Finally, NFCs have lower impact strength than Glass

Fibre Reinforced Plastics (GFRPs) because natural fibre tensile strengths fall below those of

glass fibres and hence fibre fracture occurs earlier i.e. at lower strain [Sobczak et al., 2012,

Wambua et al., 2003].

Main factors for biocomposite performance Like in traditional short fibre composites,

the compound mechanical properties depends on multiple variables. Fibre length is a major

criteria for mechanical properties. The concept of critical fibre length established by Cox [1952]

and Kelly and Tyson [1965] is well accepted for short synthetic fibre reinforced polymers. The

authors modelled the micromechanics of short fibre composites with a shear-lag mechanism and

defined the minimum fibre length required for the fibres to carry maximal shear stresses so that

the composite fails by fibre fracture rather than by shear failure at the interface [Bowyer and

Bader, 1972]. The critical fibre length lc is defined as:

lc =
σfdf
2τm

(2.1)

14



Chapter 2

with σf the tensile strength of the fibre, df the fibre diameter and τm the shear strength of the

interface, which is usually considered as the matrix shear strength. Equation 2.1 also shows how

the fibre aspect ratio and the fibre/matrix adhesion limit the reinforcement effect; low aspect

ratios or poor adhesion restrict the fibre reinforcement for any given length. On the other

hand, for a given [fibre, matrix] system with fixed aspect ratio and interface shear strength,

increasing fibre length results in better properties (Figure 2.4). Figure 5 also highlights how the

composite stiffness is readily improved even with very short fibres (<0.5 mm) compared with

tensile strength and toughness. This is because stiffness mainly relies on strain transfer between

the fibres and the matrix. Stiffness is measured in the elastic behaviour of the composite and

is barely sensitive to the ultimate tensile strength of each component.

Figure 2.4: Prediction of tensile and impact performance with respect to fibre length for fibre
reinforced thermoplastic composites (adapted from Thomason and Vlug [1996])

However, the model of critical fibre length assumes a perfect interface (i.e. full stress transfer

from the matrix to the fibres) and elastic behaviour, which might not be realistic for natural

fibre composites. Given the complexity of the fibre/matrix interface, the variability in the fibre

dimension and the large range of properties, estimation of a single critical length for natural
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fibre composites is questionable. One can have the ideal [fibre, matrix] components but the

composite properties will not reach high performance unless the interface is efficient.

Fibre content and fibre orientation are also main factors for biocomposite performance. Optimal

condition is when the fibres are oriented along the load direction while increasing angles reduce

the transferred load. Actually, most of the short fibre reinforced thermoplastics have 2D or 3D

randomly oriented fibres and therefore fibre orientation is usually not considered as a variable

one can control. Fibre content is much easier to control and largely affects the overall mechanical

properties (Figure 2.4, Figure 2.3). Theoretically, the higher the fibre content the better the

reinforcement but actual performance is limited by the manufacturing process. Natural fibres

are indeed more challenging to process than traditional synthetic fibres and it is difficult to

achieve homogeneous dispersion at high fibre load. This will be discussed later in the chapter.

Finally, long term performance and durability are crucial for NFCs and constitute the major

concerns for their applications. Exposure to humidity, temperature and weathering (UV ra-

diation) reduce the product performance [Espert et al., 2004, Pickering, 2008]. Natural fibres

degrade easily under environmental conditions, which is an advantage for material disposal but

also a challenge for the compound durability. UV-absorber, anti-fungi and other additives are

usually introduced during the manufacturing process to slow down the degradation mechanisms

and better control the degradation rate over the product lifetime [Kamdem et al., 2004, Xie

et al., 2010].
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2.2 Natural Fibre Characterisation

This section reviews firstly the complexity of natural fibre structure and surface properties.

The second part discusses the challenges to characterise the surface of bast fibres with tradi-

tional techniques. The third part introduces Inverse Gas Chromatography as a novel promising

technique.

2.2.1 Surface properties

2.2.1.1 Natural fibre structure

Figure 2.5: Structural hierarchy in kenaf plant (modified from Khalil et al. [2013] and Baillie
[2004])
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Note nomenclature: a single fibre is frequently called macrofibril, cell wall or technical fibre.

The cellulose fibril is also called microfibril or elementary fibre. For the sake of clarity, the

terms single fibre and cellulose fibril are used in the document.

Plants exhibit a multiscale hierarchical structure that reflects the outstanding complexity of

nature (Figure 2.5). Bast fibres are located in the outer layer of the plant stem, between the bark

(cuticle/epidermis and bark parenchyma cells) and the phloem (see illustration in Gorshkova

et al. [2000]). Bast fibres represent ca. 30-40% of the stem. In that area, single fibres gather in

bundles of variable sizes depending on the plant variety and its maturity (typically 50-100 µm

in kenaf stem and 100-300 µm in flax). A single fibre, so called bast fibre, has a complex 3D

microstructure with three membranes enclosing the lumen: the primary cell wall, the secondary

cell wall (S1, S2 and S3) and the plasma membrane. Each membrane consists of cellulose fibrils

embedded into a matrix of hemicellulose and lignin and also contains pectins, proteins, waxes

and other extractives. The chemical composition and the molecular arrangement vary between

the layers and fluctuate with the fibre location in the plant stem. For instance, the density of

cellulose crystals and the chain orientation vary within the different layers. The primary wall

contains fibrils dispersed with no proper orientation whilst in the secondary wall the cellulose

chains gather into bundles that follow to a certain degree the fibre axis. The arrangement in the

latter makes it more dense than in the other layers. The tertiary wall has the lowest content of

cellulose and poor chain orientation [O’Sullivan, 1997]. The average composition for common

bast fibres is given in Table 2.2.

Table 2.2: Average chemical composition of common bast fibres [Bledzki and Gassan, 1999,
Dittenber and GangaRao, 2012, Faruk et al., 2012, Mohanty et al., 2005, Satyanarayana et al.,

2009]

Chemical composition (wt.%)

Fibre cellulose hemicellulose lignin pectins waxes

Flax 62-72 17-21 2-5 1.8-2.3 1.5-1.7

Hemp 68-78 15-22 4-10 0.9 0.8

Jute 59-72 12-20 12-13 0.2-0.4 0.5

Kenaf 31-72 20-22 8-19 3-5

Ramie 69-85 13-17 0.5-0.7 1.9 0.3
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2.2.1.2 Natural fibre surface properties

The type of cellulose, the cellulose content, the orientation of the cellulose fibrils in the cell

walls (microfibril angle) and the crystallinity determine the mechanical properties [Baley, 2002,

Bledzki and Gassan, 1999]. On the other hand, the capability to form a strong interface with

polymer matrices closely depends on the surface chemistry. Natural fibres as an entity absorb

water and contain numerous hydrophilic components (cellulose, hemicellulose), which raises two

major issues. First, the fibres have high moisture uptake that compromises their dimensional

stability (swelling) and increases the risk of degradation. It also challenges the biocomposite

stability and long term performances. Secondly, the polarity of the polymers on the surface

of natural fibres can produce severe incompatibility with non-polar matrices. Fibre wetting is

therefore difficult to achieve. This inherent incompatibility should be overcome to get a strong

interface in the compound.

Note that the concept and the definition of surface for natural fibres is complex because the na-

ture of the surface depends on which “layer”is exposed, which in turn depends on the extraction

process and the post-processing steps, since these affect different levels of the fibre structure

[Le Duigou et al., 2012, Zafeiropoulos et al., 2002]. Depending on the surface exposed, natural

fibres may be more or less hydrophilic and more or less polar.

Common approaches to enhance the fibre/matrix interface involve fibre surface modification (via

chemical treatment, physical modification or grafting), use of coupling agents (fibre or matrix)

or use of compatibilisers. Bledzki et al. [1996], George et al. [2001], Keener et al. [2004], Li

et al. [2007] and John and Anandjiwala [2008] successively published reviews on the common

treatments applied to bast fibres. These documents describe the mechanisms and summarise

the main effects associated with the treatments. Actually, many studies showed sparse and

inconsistent results. No clear trends could be established so far on the effects of these surface

modification methods, but rather a general state of confusion and recurrent contradictions exist.

There are various explanations for these contradictions:

• Samples differ by their origin and processing history hence it is difficult to establish direct

comparison and cross-correlation between studies. For instance, treatment may be applied to
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the fibres before the final processing stage and therefore loses efficiency due to separation of

the bundles.

• Poor information on the fibre samples challenges data interpretation. Too often, an assump-

tion is made on the fibre specimen history. For example, in comparing flax samples, retted

and non retted, the latter fibre surface likely contains epidermal tissues. The nature of these

samples is quite different so a direct comparison would be inappropriate. As mentioned earlier,

this is more a problem of communication and a lack of traceability rather than a scientific issue.

• The methods used to analyse natural fibre surfaces. Characterisation of natural fibre surface

is complex because of the numerous components present on the surface. Appropriate methods

and strategy should be used to investigate these materials. This will be discussed in the next

section.

2.2.1.3 Surface characterisation techniques

Scanning Electron Microscopy (SEM) has been widely used to analyse natural fibre surface

topography and particularly to compare fibres before and after treatment [Baley et al., 2006,

Bismarck et al., 2001, Edeerozey et al., 2007, Sreekala et al., 2000]. A typical series of SEM

images is shown in Figure 2.6. The SEM micrographs reveal distinct topographies between

the treated fibres, which highlight the different effects of fibre treatment on the sisal fibres’

surface. Environmental Scanning Electron Microscopy (ESEM) is another type of SEM that

allows imaging of fibres in their natural state without being dehydrated (no vaccuum, no sample

coating) [Donald, 2003]. This technique has a potential interest to study natural fibres but few

works have been published so far [Liu et al., 2004, Lu et al., 2008]. A novel generation of

SEM (field emission SEM) is being developed that achieves good resolution at low acceleration

voltages thanks to a specific “in-lens”detector configuration [Liu, 2000]. This technique allows

imaging of the very near fibre surface (ca. tens of nanometers) and contrast mapping at low

atomic number [Rasch et al., 2014, Truss et al., 2015, Trygg and Fardim, 2011].

20



Chapter 2

Figure 2.6: SEM images of raw sisal fibre (A) and sisal fibres after various chemical treatments:
immersion in resorcinol/hexamethylenetetramine aqueous solution (B), mercerisation (C) and
mercerisation followed by immersion in resorcinol/hexamethylenetetramine aqueous solution

(D) (modified from Martins et al. [2006])

Atomic Force Microscopy (AFM) has been used to a lesser extent to evaluate the fibre surface

roughness [Gustafsson et al., 2003, Koljonen et al., 2003, Le Duigou et al., 2012]. AFM provides

3D topography and has higher resolution than SEM (typically <1 nm and 10 nm respectively)

but a much smaller analysis window (ca. factor 100). SEM is usually preferred to visualise

various fibres at a time. AFM is also more complicated to operate than SEM, is a sensitive

technique but time consuming. On the other hand, AFM allows force mapping (elastic forces,

adhesion forces) but few works have been published on these applications for natural fibres

[Guhados et al., 2005, Le Troëdec et al., 2011].

Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS)

are commonly applied to characterise natural fibre surfaces [Felix and Gatenholm, 1991, Sgriccia

et al., 2008, Tserki et al., 2005, Valadez-Gonzalez et al., 1999]. FTIR gives semi-quantitative

information of the chemical groups present on the fibre surface (the absorbance spectra are

compared to a reference spectrum), is easy to operate and it is also relatively straightforward
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to interpret data. After many years of research, the absorption bands of the main components

(cellulose, hemicellulose, lignins) have been identified and reference data are available [Morán

et al., 2008, Nelson and O’Connor, 1964b, Oh et al., 2005b, Yang et al., 2007]. XPS provides

quantitative information of the very near surface composition (first 10 nm) based on the anal-

ysis of peak shifts in the binding energy spectra. Wood pulp and cellulose fibres have been

extensively studied [Andresen et al., 2006, Dorris and Gray, 1978a, Johansson, 2002, Johansson

and Campbell, 2004, Johansson et al., 1999]. However, data analysis is challenging for complex

surfaces typical of natural fibres. The accuracy of peak fitting and identification of chemical

groups have been discussed by multiple authors [Artyushkova, 2010, Johansson et al., 2004,

McIntyre et al., 1981].

Average chemical composition of natural fibres has also been studied by Carbon-13 Nuclear

Magnetic Resonance (13CNMR) and particularly the identification of aromatic compounds in

lignins [Froass et al., 1998, Mart́ınez et al., 2008, Seca et al., 1998]. 13CNMR is a powerful tech-

nique to decipher the chemistry of natural fibres but it reflects the overall chemical composition

rather than the surface chemistry (samples are dissolved in solution). Data interpretation also

remains difficult due to the complexity of the technique [Mansfield et al., 2012].

Finally, characterisation of the crystalline structure and estimation of the degree of crystallinity

of cellulose fibrils in plants have been performed with X-Ray Diffraction (XRD), Fourier Trans-

form Raman Spectroscopy, FTIR and 13CNMR [He et al., 2007, Nelson and O’Connor, 1964a,

Newman and Hemmingson, 1990, Oh et al., 2005a, Zuluaga et al., 2009]. XRD is usually

preferred because it is more direct than the other techniques and it provides quantitative in-

formation (calculation of the Crystallinity Index (CI)) but data interpretation remains difficult

[Park et al., 2010].

Each of the techniques aforementioned has its own specific variables: analysis depth, sensitivity

and sampling area. The concept of “surface”is therefore relative to the method chosen for

characterisation. For fibre grading at large scale, other criteria should also be considered when

selecting a characterisation technique such as the resources necessary to run an experiment

(time, funds, personnel, consumables) and the complexity to run and interpret experimental

data. The latter depends on whether the technique is well established for natural fibres and if
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consistent databases are available. A comparison of the techniques reviewed in this section is

given in Table 2.3.

2.2.1.4 IGC: a novel technique to characterise natural fibre surfaces

The fibre surface chemistry, its adsorption capacity as well as its wettability and dispersability

in a matrix correlate with the fibre surface energy values and depend also on the accessible

surface area. The surface energy is directly related to the thermodynamic work of adhesion.

The surface energy provides information on the intermolecular forces that can occur at the fibre

surface. These combine long range Van der Waals forces and short range chemical forces, also

known as dispersive and polar forces respectively. The nature of these interactions and their

intensity also depend on the accessible surface area.

Traditional methods used to determine the fibre surface energy involve the measurement of

contact angles. Various approaches reviewed by Williams [2015] and Heng et al. [2007] provide

methods for measuring droplet angles to calculate the fibre surface tension. The most common

are the Young model, the Fowkes and extended Fowkes (Owens & Wendt) approaches and the

Van Oss et al. model. Capillary rise, Wilhelmy plate and sessile drop are common methods and

numerous studies have been published on natural fibres [Collins, 1947, Rong et al., 2002, Shen

et al., 2004]. Although these techniques are excellent on flat surfaces, natural fibre’s porous

structure and heterogeneous surface properties challenge the accuracy and the validity of the

experimental data [Pietak et al., 2007]. These methods are based on liquid-solid interactions

where swelling and dissolution may occur and skew the data.

Inverse Gas Chromatography (IGC) is an alternative tool to study surface energies. Briefly, the

gas probe molecules are transported by the carrier gas and injected into the chromatography

column containing the sample at defined conditions of pressure and temperature. Adsorption

followed by desorption occur at the sample surface and an elution peak results (Figure 2.7).

The study of the thermodynamic quantities from sorption equilibrium enables to determine

the surface energy components of the material under investigation. It is a versatile technique

to characterise samples of any shape, as long as the specimen can be packed in the column

and molecular interactions can occur. IGC exists since the early 50s and it has been applied
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mostly to pharmaceutical industry [Mohammadi-Jam and Waters, 2014], for characterisation

of zeolites [Aşkin and Bilgiç, 2005, Eva Dı́az, 2004] and carbon nanostructures [Papirer et al.,

1999] but IGC has not been well established yet for natural fibre characterisation.

Figure 2.7: IGC Surface Energy Analyser (modified image supplied by Surface Measurement
Systems)

Gamelas [2013] published an extended review on the characterisation of natural fibres with

IGC that introduces the theoretical approaches to determine both dispersive and specific en-

ergy components of plant fibres and discusses the main findings up to the present. This review

provides a solid insight into IGC investigations of natural fibres. The following paragraphs

summarise the main results published in the literature.

Cellulose fibres and wood fibres have been the most studied because of its relevance to the

pulp and paper industry. For instance, Dorris and Gray [1979, 1980] pioneered that area with

their work on cotton paper and thermomechanical wood pulp. They developed novel calculation

methods to determine the London dispersive component of the surface free energy in the Henry’s

law region of the adsorption isotherm where only London forces interactions occur between the

adsorbent (the fibre) and the adsorbate (the solvent). The London dispersive components were
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estimated at 50 mJ.m−2 and 39 mJ.m−2 for the cellulose paper and the wood fibres respectively.

Since then, their approach has been widely used to determine the dispersive surface energy

component of natural fibres. Other studies on various type of cellulose (cotton, hardwood

cellulose, cellulose powder etc.) reported values between 40 mJ.m−2 and 50 mJ.m−2 [Belgacem

et al., 1995, Tshabalala, 1997, Tze et al., 2006].

It would seem appropriate here to explain in further detail why the dispersion of surface energy

is of interest and how this is specifically of importance to bio-based composites since polar

forces are not mentioned here.

More recently, IGC has been applied to bast fibres. A review of the literature shows that the

data obtained range from ca. 35 mJ.m−2 to 45 mJ.m−2 i.e. slightly lower values than those of

cellulose fibres [Gamelas, 2013]. Mills et al. [2008] attributed these values to the lower cellulose

content and higher lignin and hemicellulose content in bast fibres compared with cellulose fibres

but no clear trend was established and energy values differed considerably within the same fibre

varieties. For instance, the energy dispersive component of hemp at 40◦C varied between 36

mJ.m−2, 38 mJ.m−2 and 41 mJ.m−2, that of sisal was estimated at 38 mJ.m−2, 41 mJ.m−2 and

49 mJ.m−2 and that of flax at 35 mJ.m−2 and 43 mJ.m−2 [Gulati and Sain, 2006, Heng et al.,

2007, Mills et al., 2008, Ramires and Frollini, 2012].

As expected, energy values changed substantially with temperature although the evolution was

non uniform. Mills et al. [2008] studied the evolution of dispersive energy with temperature for

various fibres and found that hemp, flax and kenaf energy decreased with increasing temperature

from 43.1 mJ.m−2, 42.7 mJ.m−2 and 43.1 mJ.m−2 at 20◦C to 35.9 mJ.m−2, 34.9 mJ.m−2 and

36.9 mJ.m−2 at 40◦C respectively. However, jute, abaca and sisal showed higher energy values

at higher temperature: 40.2 mJ.m−2, 35.8 mJ.m−2 and 35.5 mJ.m−2 at 20◦C and 43.5 mJ.m−2,

36.2 mJ.m−2 and 41.2 mJ.m−2 at 40◦C respectively.

IGC has also been used to study the effect of fibre processing and chemical treatment on the

surface energy. Heng et al. [2007] found that flax fibres dew retted in the field had higher

energy values than fibres separated with industrial washing or by steam explosion treatment

(45.4 mJ.m−2 versus 35.5 mJ.m−2 and 31.6 mJ.m−2 respectively). Cordeiro et al. [2011a]

studied the effect of alkali treatment and zein treatment on various fibres and a majority
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of samples showed a decrease in dispersive energy values after treatment (flax, hemp, kenaf,

agave and sisal) although some fibres were outliers (pineapple). The authors extended their

study to wood and bagasse fibres and observed a similar scenario: eucalyptus and bagasse

fibres displayed lower energy values after treatment (respectively 43.2 mJ.m−2 and 44.2 mJ.m−2

before treatment vs. 42.7 mJ.m−2 and 42.8 mJ.m−2 after treatment) whereas spruce and wheat

showed higher energy (respectively 41.6 mJ.m−2 and 45.1 mJ.m−2 before treatement vs. 44.2

mJ.m−2 and 48.8 mJ.m−2 after treatement) [Cordeiro et al., 2012]. Ashori et al. [2012] also

observed different behaviours on cotton fibres, tobacco fibres and other natural fibres after alkali

treatment. Besides, Pommet et al. [2008] observed a slight decrease in energy for both hemp

and sisal fibres treated in bacterial cellulose medium (2% and 9% respectively) but an increase

in energy by 50% and 62% respectively when the fibres were pretreated in alkali solution.

Overall, no general trends could be established so far on the surface energy values of bast fibres

due to the variety of the results obtained. This is likely because IGC has only been recently

applied to natural fibres and a lot still needs to be done to better understand the thermodynamic

phenomena involved. The current status of IGC for natural fibre surface characterisation can

be summarised as follow:

• Few IGC studies have been performed on bast fibres hence only small data sets are available.

Given the various fibre types and their wide range of properties, more experimental work should

be conducted in order to extend the existing database and, when possible, to establish trends

between the fibre types and their surface properties.

• Most of the studies on natural fibres have been performed in different conditions (temperature,

relative humidity), with different solvents and using various calculation procedures. The lack

of information and details of experimental procedures make it difficult to compare and validate

data. Moreover, the large variability of natural fibre properties and their complexity compared

to synthesised and well designed man made materials means that a systematic study of the

common procedures and models implemented in IGC is required to assess its capabilities as a

technique to characterise natural fibre surfaces.

• IGC requires the specific surface area to determine the surface energy, especially as this can

depend on surface coverages. Usually, the specific surface area is determined by the Brunauer
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Emmett Teller (BET) method which uses nitrogen sorption [Bismarck et al., 2002, Livingston,

1949] or krypton [Beebe et al., 1945, Rosenberg, 1956], for surface areas below 0.5 m2.g−1 where

the nitrogen shows limitations [Sing, 2001]. These techniques involve extreme conditions of high

vacuum at low temperature (77K) under which the fibre properties are likely to change and thus

the BET surface area. An alternative and preferred technique for measuring the BET surface

area of low surface natural fibres would be to use IGC at room temperature. Some authors

determined the BET area values of bast fibres with IGC but none questioned the influence of

experimental conditions on the measured specific surface areas [Ashori et al., 2012, Cordeiro

et al., 2012]. For instance, the solvent choice and the effect of sample packing have not been

investigated. Whether these experimental conditions influence the thermodynamic behaviour of

the molecules in the column and hence lead to different BET values should be considered. Lee

and Luner [1993] already raised this issue when studying the adsorption isotherms of alkanes

on cellulose and suggested further investigation but not much has been done since then.

• Traditional IGC is performed at infinite dilution which means that only the higher energetic

sites interact with the solvent molecules and therefore single surface energy values will be similar

even though the fibre surface is heterogeneous [Williams, 1994]. Natural fibre surfaces present

chemical heterogeneities (functional groups, degree of crystallinity) and physical heterogeneities

(porosity, asperities etc.) hence the energy values are expected to vary along the surface.

Mapping the surface energy heterogeneity profile would be more representative of natural fibre

surface and constitutes a new area of research to explore. The new generation of IGC equipment

enable experiments with finite dilution which opens new opportunities for natural fibre surface

characterisation [Rudzinski and Everett, 2012, Thielmann, 2004, Ylä-Mäihäniemi et al., 2008].
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2.3 Compounding Short Fibre Biocomposites

Twin-screw extrusion is one of the key processes used both in the compounding stage and pro-

duction stage for short fibre reinforced thermoplastics. Despite the importance of this process,

all too often the extruder is treated as a “black-box”with temperature and screw-speed being

the main parameters controlled [Beaugrand and Berzin, 2013, Chevali and Ulven, 2012, Oksman

et al., 2003]. By neglecting aspects such as the screw configuration, feeding location or feed-

ing strategy, the full potential of the extruder is not exhausted. While the importance of these

aspects is widely acknowledged for the compounding of traditional filled/reinforced thermoplas-

tics [Giles Jr et al., 2004, Villmow et al., 2010, Wang et al., 2004], the effects of screw design

and feeding location in the compounding of biofibres have not received a great deal of attention.

When these aspects have been considered, findings showed a strong relationship between these

and the composite performance but no general trends could be established because the results

were rather inconsistent and the studies involved different processing variables [Keller, 2003,

Santos et al., 2007, Zhang et al., 2012].

Figure 2.8: Twin-screw extrusion sheet line with downstream side feeding (www.leistritz-
extrusion.com)

Understanding the twin-screw compounding process of plant fibre composites is one of the key

steps on the route to a viable commercial product. It is necessary to relate the processing vari-

ables with the composite microstructure in order to optimise the final product performance.
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Multiples authors showed that the processing variables affect the final properties of the ex-

truded compound [Carneiro et al., 2000, Siaotong et al., 2010, Sombatsompop and Panapoy,

2000]. Development and optimisation of extrusion process for biocomposites also require specific

challenges to be tackled that arise when working with natural fibres:

• Feeding the fibres into the barrel is a main issue because of their low density and fluffiness.

Feeding masterbatches is difficult because the blend tends to separate. Side-feeding the fibres

is also challenging as these tend to bridge in the hopper, which generates inconsistent feeding

into the barrel.

• It is necessary to control the humidity in the barrel as natural fibres have high moisture uptake

and moisture release during processing induces porosity in the final product unless efficient

venting is maintained. The vacuum systems should be positioned according to the screw design

and in particular the location of the kneading blocks [Giles Jr et al., 2004]. Monitoring the

fibre humidity content during storage also helps to reduce moisture release.

• Natural fibres have low thermal degradation that requires the temperatures in the barrel

to stay below 180◦C- 200◦C [John and Anandjiwala, 2008, Mohanty et al., 2001]. However,

the temperature profile in an extruder is complex and results from multiple mechanisms. The

materials, the extruder configuration (screw design, barrel length to weight ratio, venting and

cooling zones) and the processing conditions (screw speed, barrel temperature, torque, residence

time) determine the melt temperature profile in the barrel. The extruder should be configured

to achieve efficient mixing and fibre dispersion without degradation of the fibres.

• Last but not least, characterisation of biocomposites may be arduous especially analysing

fibre dispersion in the matrix. Estimation of the fibre length distribution is difficult as well

because traditional techniques applied to synthetic fibre composites involve burning the matrix

[Bowyer and Bader, 1972, Fu et al., 2000]. This method is obviously not applicable to natural

fibre composites. X-Ray Micro Computed Tomography (µ-CT) enables 3D visualisation of

short fibre composites and has made significant progress in the last decades [Shen et al., 2004,

Stock, 1999] but few works have been published on natural fibres composites [Alemdar et al.,

2008, Chinga-Carrasco et al., 2013, Etaati et al., 2014]. Limitation in resolution (typically

1µm to 5µm) and low contrast between natural fibres and thermoplatics render the analysis
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difficult [Virk et al., 2010]. New generations of X-Ray nanotomographs enable higher resolution

(<400nm) but these are expensive and few research laboratories own such apparatuses. Finally,

image processing and quantification are complex [Miettinen et al., 2012].

When it comes to large scale production of biocomposites, only a few companies have mas-

tered the compounding step and are selling commercial biocomposite compounds (c2renew,

Automotive Performance Materials (NAFILean technology), Greencore). A major reason is

the many challenges upstream of the extrusion process with which manufacturers are typically

unfamiliar. Numerous research programs are conducted in Europe, Canada, South America

and in other countries with an interest in this part of the bio-economy (BioStruct, UltraFibre,

Naturtruck etc.). The majority of investigations have not made it past the laboratory scale.

Studies are performed with small to medium extruders and usually focus on one aspect rather

than on the overall production process. A complete production process also encompasses the

management of material supply, storage, material preparation in large volumes and last but not

least, extrusion on a large scale i.e. with large throughput. Handling big volumes of natural

fibre is complicated because of their important volume to weight ratio and high sensitivity to

humidity. The scale-up process is challenging, particularly for research groups with limited

facilities, but this procedure is sine qua non for commercialisation of short fibre biocomposites.

It is necessary to study the feasibility of the biocomposite extrusion at a large scale to identify

the specific needs and issues that arise. Resultant information should be transmitted to the

manufacturers so that extrusion production lines become competitive and biocomposites are

implemented progressively into the market.
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Surface Characterisation

This chapter lays out firstly the materials used throughout the thesis and gives a brief overview

of the effects of alkaline treatment on natural fibre properties. The second section presents

the Scanning Electron Microscopy (SEM) analysis, with a comparison between the surface

properties of natural fibres as received and post chemical treatment. Surface analysis by X-

ray Photoelectron Spectroscopy (XPS) follows in the third section. The latter investigates the

effect of fibre processing on the oxygen to carbon ratio and further analyses the fibre surface

chemistry by peak fitting the high resolution spectra.

3.1 Materials

The purpose of this study was to develop and validate the capability of various experimental

techniques to characterise natural fibre surfaces and, in particular, to analyse the effect of fibre

processing on the surface properties. As mentioned in the previous chapters, there is a large

variability of fibre properties between species and genera and as result of fibre growth conditions

and processing. Since the focus of this work was on commercial exploitation of natural fibres, it

was important to select fibres readily available and processed via standard methods at industrial

scale to ensure traceability and reliable supply. Various types of fibres were used so that

the experimental data could be representative and to enable cross comparisons. Three main

varieties of bast fibres were tested: flax, kenaf and hemp. Various samples of each variety were
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provided by different suppliers and in variable amounts. Cellulose fibres and a batch of cellulose

pellicles produced by bacteria were also integrated to the test matrix as a reference for Inverse

Gas Chromatography (IGC) and XPS. The information available regarding the fibre origins

and processing steps were sometimes unfortunately incomplete among the samples. The data

provided by the suppliers are reported in the following paragraphs and summarised in Table

3.1 and Table 3.2.

A Canadian linseed flax and a Chinese linen flax (varieties unknown) were supplied by Compos-

ites Innovation Centre (CIC), Winnipeg, Canada. The latter had been previously water retted

while the linseed flax (unretted) had been mechanically decorticated by a lab scale scutching

machine (Alcock et al. [2012]). Two kenaf samples from different origins were used: a Thai

kenaf and a variety of kenaf grown in the USA. Engage Eco Product Co. Ltd (Wattana, Thai-

land) supplied batches of Thai kenaf variety Kohn-Kaen 60 (KK60). The fibres were locally

ribbon retted for 2-3 weeks in local waterways, rinsed and dried before shipping. The other

kenaf sample was supplied by Ecofibre Industries Operations Pty Ltd. (EIO), grown in Mis-

sissippi (USA) and retted (retting process unknown). Finally, a non-woven hemp mat (variety

unknown) was supplied by CIC. All the samples mentioned previously were considered and

labelled “as received”as per the conditions at delivery.

BioMid cellulose fibres were supplied by ENC International (South Korea). BioMid is a

cellulose-based continuous filament produced from a dry-jet-wet spinning process. The feed-

stock is a mixture of softwood and hardwood chips, a by-product from the wood pulp and paper

industry. The cellulose is extracted from the biomass and then injected through a spinneret.

Cellulose films generated by G. Xylinus bacterial activity were used as a second reference mate-

rial. G. Xylinus bacteria cultivated in a specific medium (Hestin and Schramm liquid medium)

can produce cellulose in a similar way to plants. In the process, bacterial cellulose pellicles are

extracted from the gel grown during fermentation, then washed to remove the extra bacteria

and polymers and stored in a biocide solution (Dolan [2014]). This biomimetic system has

been largely used to model plant cell wall mechanics (Iguchi et al. [2000], Mikkelsen and Gidley

[2011]). The samples were provided by G. Dolan (ARC Centre of Excellence in Plant Cell Walls,

The University of Queensland, Australia). Both BioMid and cellulose film were expected to be
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pure cellulose and were hence considered as reference materials. The sample used in the study

are summarised in Table 3.1.

Table 3.1: Samples used in the study

Sample Supplier Variety

Kenaf Engage Eco Product Co. Ltd. Thai cultivar KK60

Kenaf Ecofibre Industries Operations

Pty Ltd.

US cultivar

Linseed flax Composites Innovation Centre Canadian cultivar

Linen flax Composites Innovation Centre Chinese cultivar

Hemp Composites Innovation Centre unknown

Bacterial Cellulose ARC Centre of Excellence in

Plant Cell Walls

Cellulose produced by G. Xylinus

culture

Cellulose BioMid ENC International Hardwood and softwood shives

As mentioned in Chapter 2, post-processing is necessary to extract the bast fibres from the

plant stem and to remove extractives, lignins and pectins from the fibre surface. In this study,

some samples “as recieved”were further water washed and chemically treated while others

were mechanically processed. The flax and hemp fibres were treated by CIC and the kenaf

(KK60) fibres were treated and post-processed on site by Engage Eco Product before shipping

to Australia.

The flax, hemp and kenaf KK60 fibres were alkaline treated at different concentration in a

more or less aggressive environment. Both linseed and linen flax received a “gentle”treatment

(1% w/v NaOH at 78◦C) compared to the hemp mat (10% w/v NaOH at 78◦C). Kenaf KK60

was soaked in a solution of 1% w/v sodium hydroxide with sodium metasilicate pentahydrate

(Na2SiO3.5H2O) at 70◦C. This is a standard wood treatment to extract lignin, similar to the

Kraft process [Blount, 1977]. Kenaf KK60 received the most “aggressive”treatment compared to

hemp and flax respectively. Finally, EIO processed the kenaf fibres using a high velocity airmill

“Aximill”, a system developed by the company (Morrison and Andre, 2005). The processing

details, when available, are summarised in Table 3.2.
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Table 3.2: Details on the treatments applied to the fibre samples

Sample As received Water washed Post-Processed

Linseed flax Non retted, / 1. Scutched

mechanically

decorticated by

scutching

2. Soaked: 1% w/v NaOH in

ethanol solution (95%), at 78◦C

3. Washed, oven dried at 80◦C for

24 h

Linen flax Water retted / Same treatment as linseed flax

Hemp mat No data 1. Soaking in distilled water for

24 h at RT

1. Water washed

2. Washed, air dried for 48 h 2. Soaked: 10% w/v NaOH at

60◦C for 2 h

3. Washed till pH=7, air dried for

48 h

Kenaf KK60 Water retted 1. Water retted 1. Water retted

2-3 weeks in lo-

cal waterways

2. Washed, dried and hammer

milled

2. Soaked in a alkaline solution

(1% w/v NaOH, sodium metasili-

cate pentahydrate) at 70◦C for 40

min

3. Washed, dried and hammer

milled

Kenaf EcoFibre No data / Mechanically processed by high

velocity airmill

The following paragraphs describe the physico-chemical modifications induced by alkaline treat-

ment on natural fibres in order to better understand the effect on the surface properties of the

fibres studied and to help with the interpretation of experimental data.

Alkaline treatment, also called mercerisation, is an old process developed by John Mercer (UK)

in the early 19th century to modify cellulose fibres, particularly cotton in the textile industry.

The standard definition established in the ASTM D1965 refers to “the process of subjecting a

vegetable fibre to an interaction with a fairly concentrated aqueous solution of a strong base,

to produce swelling with resultant changes in the fine structure, dimension, morphology and
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mechanical properties”. This technique has been developed, applied and improved for cotton

textiles. The physico-chemical transformations happening through mercerisation are fairly well

understood for cotton fibres and the process has been optimised to tailor the fibre properties.

The effects of mercerisation on cotton fibres have been expansively reviewed [Ugbolue, 1990,

Warwicker and Hallam, 1970] and will not be detailed here. The main effects on mechanical

properties are: an increase in tensile strength, a better elasticity and a higher strain at break.

Cotton fibres also gain in lustre and uniformity due to the changes in the cross-section (they get

more circular), to a better surface homogeneity and untwisting of the cellulose fibrils [Ugbolue,

1990].

A brief overview of the effects of alkaline treatment on cellulose fibres may help to interpret

the mechanisms that occur on bast fibres. Soaking cellulose fibres in highly concentrated alkali

medium induces swelling that further leads to shrinkage and molecular chain reorientation upon

removal of the swelling agent. Another important structural change is the transformation of

cellulose I into cellulose II [Ugbolue, 1990]. The polymorphs have slightly dissimilar crystallo-

graphic structures but the main difference is the way the cellulose chains are packed. These lie

parallel to each other in cellulose I and anti-parallel in cellulose II [O’Sullivan, 1997]. In the

latter configuration, the chain elastic modulus is slightly lower compared to the E modulus in

native cellulose [Kroon-Batenburg and Kroon, 1997] but the effect of molecular orientation and

fibre shrinkage predominate and the overall tensile properties increase [Zeronian et al., 1990].

Unlike cotton fibres that are made of ca. 90% cellulose, bast fibres contain multiple components

and the overall effect of alkali treatment results from the effects on the cellulose fibrils and on

the non-cellulosic constituents i.e. hemicellulose, lignins, pectins, waxes and other extractives

present on the fibre surface. Consequently, immersion of bast fibres in alkali medium involves

various adjunct mechanisms. It is assumed that the non cellulosic matrix [hemicellulose +

lignin] is partially dissolved and so the cellulose chains pack more densely i.e. the crystallinity

index increases [Bledzki and Gassan, 1999, Lefeuvre et al., 2015, Sharma et al., 1995]. This

phenomenon also increases the Youngs’ modulus. Gassan and Bledzki [1999a] claimed that

reduction of the non cellulosic matrix, on the other hand, weakens the stress transfer to the

cellulose fibrils i.e. it reduces the stress development in the fibres under tensile load. The authors

mentioned that removal of lignins also affects the middle lamella because some microvoids
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collapse as the lignins dissolve. This results in higher degree of plasticity and higher strain at

break.

There seems to be a compromise between improving the tensile strength and strain at break

and decreasing the elastic moduli, the resultant effects depending on the treatment conditions

[Bledzki et al., 2004, Gassan and Bledzki, 1999a, Goda et al., 2006, Mukherjee et al., 1993,

Ray et al., 2001]. Unfortunately, reviewing the literature is confusing because publications

report inconsistent results. Actually, improved properties may be obtained when the treatment

intensity is balanced to be efficient enough without degrading the tissues. Considering that bast

fibres have a complex physico-chemical structure that varies between the species and depends

as well on the fibre processing history, it is very difficult to understand and dissociate the

mechanisms occurring during alkali treatment (and any other treatment) on different natural

fibres. This likely explains why the results published in literature are inconsistent, poorly

understood and no general claim could be established so far with confidence.

3.2 Scanning Electron Microscopy

Conventional SEM involves high accelerating voltage (typically 10 kV for natural fibre imaging)

and standard detectors positioned below the lens. This configuration requires coating of the

samples to avoid charging effects, which limits the capability to observe good contrast between

organic samples that have low atomic numbers. In addition, high energetically charged electrons

travel more than 100 nm through the surface and therefore the signal provides information from

below the surface more than the very near surface.

A new generation of Field Emission (FE) SEM has been developed lately with detectors located

in the column, commonly named “in-lens”, “upper”or “Through The Lens”(TTL) detectors

(Figure 3.1). This specific configuration allows low voltage imaging of uncoated organic samples

when operating in certain conditions to achieve dynamic charge balancing [Joy and Joy, 1998].

Under these conditions, it is possible to obtain good contrast even at low atomic number, which

offers a considerable advantage for natural fibre characterisation compared to conventional SEM.

The electron beam in low voltage SEM has a short depth of penetration and therefore the signal
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provides information from about the first 10 nm to 20 nm and reflects the very near surface

properties [Goldstein et al., 2012]. The benefits of working at low voltage also come with a few

drawbacks: low resolution signal implies high signal-to-noise ratio and difficulty in focusing.

Imaging is more challenging and requires a slow scan rate.

Figure 3.1: Conventional SEM with below lens SE detector and new generation FE-SEM with
in-lens on axis filter detector (adapted from [Stricher, 2012])

The linseed flax (as received, alkaline treated) and the kenaf KK60 (as received, water washed

and alkaline treated) were imaged with a JEOL JSM7001 FE-SEM. This SEM has an in-lens

detector with a metallic grid placed above the latter that enables pure Backscatter Electron

(BSE) or a combination of SE and BSE signals [Asahina et al., 2012]. The specimens were

uncoated and imaged at 1.4 kV accelerating voltage with both the conventional below-lens SE

detector and the JEOL in-lens on-axis Upper Electron Detector (UED). The bias filter was -200

V for the BSE mode. The micrographs obtained are shown in the following paragraphs with

discussions.
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(a) (b)

Figure 3.2: SEM micrographs of flax fibres as received imaged with conventional SE detector
(a) and UED detector filtering backscattered electrons (b)

The Secondary Electron Images (SEI) of the flax fibres as received show that the fibre surface

was rough and contained multiple layers (Figure 3.2a). The top layer (label A) was likely the

cuticle/epidermis layer, which was expected to be seen as these fibres were non retted. Dust

particles and traces of epidermal particles were scattered over the outer layer surface, likely

projected during scutching. The outer layer was fragmented during mechanical scutching in

some areas (bottom centre and middle right of the fibre) and made visible the bast fibre bundles

underneath (label B) but most of the fibre surface remained coated with a mixture of amorphous

like materials, probably lignins, lipids, pectins and extractives.

Micrographs obtained with UED detector filtering the BSE reveal a clear contrast between

the outer layer and the layer underneath (Figure 3.2b), with boundaries corresponding to the

fragmentation pattern identified on the topographical SEI. This suggests a significant difference

in the chemical composition between both layers, due to the presence of polymeric components

of various average atomic numbers [Rasch et al., 2014, Truss et al., 2015]. Bast fibres contain

cellulose, hemicellulose, pectins, lignins and other extractives, and each component has a specific

oxygen content and average atomic number, which explains the contrast observed with BSE

imaging. Cellulose has a theoretical oxygen to carbon (O/C) ratio of 0.83, hemicellulose and

pectins have similar O/C given their chemical structure, pure lignins O/C averages 0.33 and
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extractives have lower O/C values [Dorris and Gray, 1978a]. A scale based on the O/C ratio of

each component gives the following increasing brightness sequence using the UED BSE imaging:

Extractives <Lignins <Cellulose, hemicellulose, pectins <Inorganic particles

Some spots appear much brighter than other components of the outer layer (indicated with

arrows). These were likely inorganic particles from the plants such as mineral silicates. Rasch

et al. [2014] observed similar features on flax fibres and performed Energy Dispersive X-Ray

(EDX) analysis that confirmed traces of Si, Al, Mg, K and O in various samples. Truss et al.

[2015] also identified silica, particles rich in Ca and particles rich in Si, Al, Mg, K and O on the

surface of hemp fibres.

SEM imaging was performed on the fibres post alkaline treatment (Figure 3.3). The individual

flax fibres can be clearly distinguished on the SEI image of the alkaline treated fibres (Figure

3.3a and 3.3b). The chemical treatment removed most of the cuticle/epidermis layer, revealing

the fibres located underneath. Although fibre separation was obvious, the outer layer was

still visible in some cases in the background (label A). The regular patterns transverse to the

fibre axis were nodes and kinks (indicated with arrows 1). The bast fibres were still covered by

scattered patches of an amorphous like substance adhering to the fibre surface that was probably

a mixture of lignins remaining on the surface (indicated with arrows 2). It is common to observe

residual lignin particles adhering to the fibre surface after chemical treatment [Edeerozey et al.,

2007, Gassan and Bledzki, 1999b, Stuart et al., 2006].
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(a) (b)

(c) (d)

Figure 3.3: SEM micrographs of flax fibres alkaline treated imaged with conventional SE
detector (a), (b) and UED detector filtering backscattered electrons (c), (d)

The UED BSE images of the alkaline treated fibres have low contrast (illustrated in Figure

3.3c and 3.3d), meaning that the fibre surfaces were much more homogeneous than in their as

received state (Figure 3.2b). Some spots appeared slightly darker than the background fibre

surface, which supports the hypothesis that these were a mixture of lignins remaining on the

surface after treatment. A few bright spots were also still visible, most likely residual inorganic

compounds (indicated with arrows).
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Another series of experiments was performed with kenaf fibres to validate the capability of

the TTL FE-SEM technique to observe the effect of chemical treatment on the fibre surface.

Examples of the images obtained are given below with discussions.

The kenaf fibres as received were covered with an amorphous layer and scattered with adhering

particulates, likely inorganic components (Figure 3.4a). Epidermal hairs and stomata were also

visible on the surface (indicated with arrows). These are typical features of the epidermal tissue

and suggest that the fibres, although water retted, were still covered with epidermal tissues.

This was expected as the fibres were water retted in the field without further decortication

processing. In this case, water exposure solely was insufficient to remove lignins, pectins and

waxes from the bast fibre surfaces.

Three levels of contrast can be seen on the BSE images (Figure 3.4b). The sticky agglomerates

observed on the SE image appeared as bright spots on the BSE image, suggesting these were

inorganic compounds similar to those observed previously on flax fibres (Figure 3.2b). The two

other levels of contrast are less obvious: the fibre surface was relatively homogeneous but some

spots appeared darker than the background surface (indicated with arrows). The latter were

probably traces of extractives un-dissolved during water retting. The fibre surface was most

likely a mixture rich in lignins and waxes. The epidermal hairs could barely be distinguished

from the background layer, suggesting these had a similar chemical composition to the surface

layer. This is consistent with the hypothesis that the fibre surface layer contains mostly lignins

and waxes compounds rather than cellulose and hemicellulose (in that case, the epidermal hairs

would have appeared darker than the surface layer).
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(a) (b)

Figure 3.4: SEM micrographs of kenaf fibres as received imaged with conventional SE detector
(a) and UED detector filtering backscattered electrons (b)

The kenaf water washed fibres were then rinsed, dried and hammer milled. The resulting fibres

were much cleaner than the previous batch and appeared relatively smooth (Figure 3.5a). Few

traces of epidermal hairs and cuticle particulates could be seen but small particulates were still

visible all over the surface. These seemed to be loosely attached to the fibre surface and were

most likely inorganic materials deposited during the water wash process or projected when the

fibres were milled. The particle features could be identified on the BSE images as they appeared

much brighter than the other elements (Figure 3.5b). There was no other major contrast in the

pictures except these spots, assuming the fibre surface was relatively homogeneous in terms of

chemical composition. The surface layer was probably rich in lignins and waxes i.e. of similar

composition to that of the background layer observed in the previous batch (Figure 3.4b). Both

batches underwent water exposure only and hence the fibre surfaces were expected to be alike.
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(a) (b)

Figure 3.5: SEM micrographs of kenaf fibres water washed imaged with conventional SE
detector (a) and UED detector filtering backscattered electrons (b)

The third batch of kenaf fibres was water retted and then chemically treated by immersion in an

alkaline solution with sodium metasilicate pentahydrate (see details in Table 3.2). SE images

of the chemically treated fibres show that the outer surface layer was degraded during the

process and individual fibres appeared underneath (Figures 3.6a). Although some areas were

still covered with the amorphous substance layer (label A), the chemical treatment removed

most of it. Note that the cover layer seemed to have been dissolved in certain zones more

than others, which created a pattern. This phenomenon has been previously observed in other

studies [Alvarez and Vázquez, 2006, Arsène et al., 2013, Martins et al., 2006].

The pattern was also visible on the BSE images, as illustrated in Figure 3.6b. Various levels

of contrast can be seen in these micrographs. The background surface was slightly brighter

than the pattern layer, confirming that the amorphous layer is rich in lignins and waxes and

the surface underneath contains more cellulose, hemicellulose and pectins. This is consistent

with the observations made earlier on the kenaf water retted and water washed fibre samples

(Figures 3.4 and 3.5). The few bright spots visible on the surface were probably remnants of

inorganic compounds deposited during the treatment, as observed in the water washed batches.

A couple of dark spots were also visible on some fibres (indicated with arrows), likely traces of

extractives.
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(a) (b)

Figure 3.6: SEM micrographs of kenaf fibres alkaline treated imaged with conventional SE
detector (a) and UED detector filtering backscattered electrons (b)

This series of experiments performed with the new generation of FE-SEM with TTL BSE

detectors demonstrated the capability to obtain good contrast between low atomic number

polymeric species as well as fine topography of the very near surface. The SE and BSE images

of flax and kenaf fibre samples showed clear evidence of the effect of chemical treatment on

the fibre surface properties. Specific UED BSE images provided complementary information to

interpret the physico-chemical mechanisms that occur on bast fibre surfaces during processing.

Further experiment on XPS is needed to identify the nature of the compounds and to quantify

the elemental chemical composition. This will be explored in the following section.
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3.3 X-Ray Photoelectron Spectroscopy

3.3.1 Theroretical background

X-Ray Photoelectron Spectroscopy (XPS) is a high resolution analysis technique to investigate

the surface chemical composition of materials. XPS is nondestructive and provides high preci-

sion information (±10% relative) on a small surface area (ca. 300 µm by 700 µm). Briefly, the

sample under investigation is irradiated with X-Ray photons in a ultra-high vacuum chamber

(< 1 × 10−8 Torr). X-Rays interact with the core electrons of the material and some of these

undergo elastic scattering (Figure 3.7). The emitted electrons have a kinetic energy Ek given

by:

Ek = hν − Eb − φ (3.1)

Figure 3.7: Photoelectron scattering induced by X-Ray illumination

where hν is the photon energy, Eb the binding energy of the atomic orbital from where the

electron is ejected and φ the work function of the spectrometer. The XPS spectrum gives

the intensities of the photoelectrons (counts per second) as a function of the binding energy
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Eb (eV). As the binding energy is specific to each element, it is possible to determine which

atoms are present in the sample surface by measuring the kinetic energy of the photoelectron.

The position and intensity of the peaks provide information on the chemistry (oxidation state)

and quantitative elemental composition (>0.1 atom %) for all elements, except hydrogen and

helium [Dorris and Gray, 1978b].

In XPS, the emitted photons electrons have low kinetic energy and so only those from the

very near surface escape and can be detected. In other words, XPS data is representative of

the near sample surface only. Hence, this technique is of particular interest for natural fibres

because it involves the chemical groups that will interact directly with the polymer matrix. For

comparison, XPS analysis samples ca. 2-10 nm in depth (ca. 30 first atomic layers) vs. 1-5 µm

for Energy Dispersive X-ray Spectroscopy (EDX). EDX data give chemical analysis of a deeper

volume that may have considerably different chemistry than the first atomic layers.

XPS analyses on natural fibres were originally performed on wood fibres and cellulose paper

in the late 70s, driven by the pulp and paper industry. Dorris and Gray [1978a,b], Gellerstedt

and Gatenholm [1999], Laine et al. [1994] pioneered XPS analysis with their works on wood

pulps and paper. Since then, numerous studies were published on natural fibre characterisation

by XPS [Johansson et al., 2004, Östenson et al., 2006, Rasch et al., 2014, Truss et al., 2015,

Zafeiropoulos et al., 2003]. However, it remains difficult to establish the elemental composition

and to quantify the compounds present on the fibre surface because the reference values for

chemical composition found in the literature are based on dry matter and hence represent the

average chemical composition of the fibre (primary wall, secondary walls, inner membrane).

The fibre surface chemistry contains other specific groups (pectins, lignins, waxes, extractives)

and therefore the average composition may be non representative and constitutes a poor ref-

erence for XPS analysis. It is also particularly challenging to build models for natural fibres

because the elemental proportions vary between the fibre genera and species and also within a

sample. All the reasons aforementioned suggest that XPS data interpretation for natural fibres

is particularly problematic and should be based on the analysis of multiple specimen per sample

rather than a singular specimen in order to have good confidence in the data.
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3.3.2 Experimental

Two varieties of flax (linseed and linen flax), two types of kenaf (Ecofibre, KK60) and one variety

of hemp were characterised by XPS. The main purpose was to check if similarities (atomic

composition, oxygen to carbon ratio) could be detected between fibres from multiple varieties

and different species. XPS was also performed on the fibres after treatment to assess the effect of

post-processing and to compare their efficiency. In addition, both cellulose samples (BioMid R©

and bacterial cellulose) were characterised and used as reference materials. A minimum of three

runs and up to 11 runs were performed on each sample to ensure average representative values.

A summary of the test matrix is presented in Table 3.3. Survey scans were performed on all

specimens and kenaf KK60 were further characterised with high resolution scans.

Table 3.3: Samples studied by XPS

Sample As recieved Processed

Bacterial cellulose / /

Cellulose BioMid R© / /

Linen flax Water retted Scutched + alkaline treated

(gentle)

Linseed flax Non retted, scutched Scutched + alkaline treated

(gentle)

Kenaf Ecofibre No information Mechanically processed by high

velocity air mill (Aximill)

Kenaf KK60 Water retted Water washed + alkaline treated

(aggressive)

Hemp No information Water washed + alkaline treated

(gentle)

The specimen were characterised with an XPS Kratos Axis ULTRA at the Centre of Microscopy

and Microanalysis (CMM). The X-Ray source was monochromatic Al Kα. The advantages

of using an X-Ray monochromator rather than a conventional source (achromatic) include

a reduced background, better resolution and no satellite peaks. The binding energy steps

for survey scan and high resolution scan were 1 eV and 0.05 eV respectively. The analyser

pass energy (intensity resolution) was 160 eV for survey scans and 20 eV for high resolution
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scans. The fibre samples were mounted on a bar (see Figure 3.8) and loaded under vacuum

overnight to reach Ultra High Vacuum (UHV) conditions (< 1 × 10−8 Torr). These vacuum

conditions are necessary to detect electrons, avoiding scattering of the photoelectrons from

residual gases between the detector and the sample surface. Conditioning the sample overnight

enables to eliminate residual water molecules that adsorbed on the chamber walls. Data analysis

was performed with CasaXPS v.2.3.12 and the Kratos Library to identify the elements. The

correction factor was 2.8 eV. The calibration for peak fitting was set up for C-C bond at 285

eV.

Figure 3.8: Samples mounted for XPS analysis. 1: BioMid R©, 2, 3: linen flax as received,
NaOH treated, 4,6: linseed flax as received, NaOH treated, 5: bacterial cellulose, 7: kenaf

Aximilled, 8, 9, 10: kenaf Engage as received, water washed, NaOH treated

3.3.3 Results and discussions

Three levels of discussions are presented below. Firstly, the analysis based on the data from

survey scans is presented to compare the O/C ratios of multiple fibres, as received and post

treatment. The second part discusses the evolution of O/C ratio of hemp and kenaf fibres at

different stages. Finally, an analysis of the high resolution scans of kenaf KK60 is presented

to identify the chemical groups and discuss the evolution of the surface composition due to

chemical treatment.

The average chemical compositions and the O/C ratio of the fibre samples are listed in Table

3.4 and illustrated in Figure 3.9.
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Table 3.4: Chemical compositions of the sample surfaces obtained by survey scans

Sample C O N Ca O/C Trace others

Cellulose theoretical 0.83

Bacterial cellulose 57.5 42.2 0.4 0.73 N

Cellulose BioMid R© 75.5 23.4 0.8 0.31 Ca, Na

Linen flax as recieved 85.7 13.0 1.1 0.15 Ca

Linen flax NaOH treated 72.1 24.7 2.3 0.9 0.34

Linseed flax as recieved 81.6 16.6 1.9 0.20

Linseed flax NaOH treated 69.2 26.1 3.3 1.4 0.38 Ca

Kenaf Ecofibre as recieved 76.5 19.8 3.8 0.26

Kenaf Ecofibre Aximilled 72.0 25.3 2.2 0.35 Ca, Mg

Kenaf KK60 as recieved 76.4 21.1 2.4 Traces 0.28 Ca, Si

Kenaf KK60 water washed 72.3 24.5 2.1 Traces 0.34 Ca, Si, Al

Kenaf KK60 NaOH treated 66.4 29.0 1.8 Traces 0.44 Ca, Si,Na

Hemp as recieved 72.9 23.3 3.8 Traces 0.32

Hemp water washed 71.9 25.4 2.7 Traces 0.35

Hemp NaOH treated 65.5 32.4 1.8 Traces 0.49

Figure 3.9: O/C ratios of the fibre samples as received and after treatment

50



Chapter 3

Firstly, the O/C ratios obtained from the fibres as received were far lower than the O/C ratio

of pure cellulose (0.83), indicating that the fibre surfaces contained several components other

than cellulose. This was expected, given the composition of bast fibres, and the values obtained

agree well with XPS data found by previous authors. Sgriccia et al. [2008] observed higher

O/C ratio for kenaf fibres (0.45) than for hemp (0.27) and flax fibres (0.19). Tserki et al. [2005]

reported similar O/C values for hemp (0.26) and slightly higher values for flax (0.24) but other

authors reported low O/C values for flax fibres. Stricher [2012] analysed flax LINEO R© fibres

and estimated an O/C of about 0.19 and Csiszár et al. [2013] found O/C of 0.16. Zafeiropoulos

et al. [2003] studied green flax and dew retted flax with XPS and found O/C ratios of 0.22 and

0.25 respectively. The authors claimed that these low O/C values resulted from a surface rich

in waxes and lignins.

Cellulose BioMid R© surface displayed a ratio O/C of 0.31 that is far from the theoretical ratio of

pure cellulose. The surface seemed rather similar to kenaf and hemp (both are produced also at

industrial scale) with a O/C ratio of 0.28 and 0.32 respectively. The cellulose paper-like surface

produced from bacteria showed an average O/C ratio of 0.73 that is much closer to pure cellulose.

Dorris and Gray [1978b] and Andresen et al. [2006] found similar values on XPS analysis of

cellulose fibres from filter paper (0.79 to 0.83 and 0.74 respectively). In the current study, a set of

three cellulose samples from different production batches have been analysed and showed similar

values from 0.70 to 0.75, hence the average value was assumed to be representative. A possible

sample contamination with carbon may have induced the slightly lower values than that of pure

cellulose and is often observed on cellulose samples [Johansson and Campbell, 2004]. Traces of

nitrogen were detected in one of the specimen, which suggested residual bacteria on the sample

surface. Bacteria contain multiple intracellular organic molecules including proteins, made from

chains of amino acids that contain amine groups [Carpita and Gibeaut, 1993, Cosgrove, 1997].

Fibres subjected to milling have seen their O/C ratio increased by ca. 35% that could be

explained by the fibre breaking and defibrillation. In an Aximill, the fibres are exposed to high

velocity air flow that generates two reverse cyclones leading the fibres bundles to break and

separate as they impact each other and the chamber wall. The epidermal tissues and cuticle

attached to the fibres were also likely removed during dry milling. These epidermal tissues had

low O/C ratio, which explains the increase in O/C observed after the Aximilling process. This
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mechanical process seemed to have less impact on the fibre surface properties than the alkaline

treatments. The O/C ratio increased by 50% minimum after alkaline treatment and by 35%

only after the Aximilling process. However, the comparison between both processes should

be done with caution. The surface may have been modified to different levels (depth) and in

various aspects; not only chemically but structurally (surface roughness, degree of separation)

and a comparison based on survey scan only could be misleading.

The effect of alkaline treatment on O/C ratio was clear for all specimens: O/C increased

considerably by more than 50% on hemp fibres and up to 125% on flax fibres. It would be

incorrect to compare directly the chemical compositions between the specimens because the

alkaline treatments applied were different. Kenaf KK60 fibres were subjected to an aggressive

treatment with sodium silicate and caustic soda while the flax fibres were immersed in a more

gentle alkaline solution. Hemp fibres were treated with an intermediate alkaline solution. This

will be discussed in detail later.

At this level, based on survey scan data, interpretation of the chemical composition evolution

is anything but straightforward because the mechanisms involved may be different and might

still result in similar O/C values (linen flax and kenaf Ecofibre for example).

The highest O/C ratio increase has been observed on the flax fibre specimens, with an augmen-

tation of 90% and 125% for the linseed and the linen flax respectively. The variability between

the two types of flax subjected to same treatment is of particular interest. This could be related

to the fibre properties in their as received state: both fibre surfaces showed different O/C ratios

(0.15 for linen flax vs. 0.20 for linseed flax). This was expected as flax grown for seeds and

linen flax go through different cultivation routes. Linseed flax culture maximises seed yield

hence harvest occurs at full seed maturity whereas flax linen is harvested earlier for optimal

fibre quality [Bismarck et al., 2005]. Bast fibre structure and chemical composition are closely

related to plant maturity and the linseed and linen flax fibre surfaces differ in both chemistry

and physical structure [Akin, 2012]. Also, linseed flax stems are thicker and more difficult to

extract than flax linen stems. In our study, the linseed flax fibres were unretted and extracted

by hammer mill. This mechanical process is aggressive on the fibres and likely induced kinks

that act as stress concentration points and are preferential sites for chemical reaction [Hänninen

et al., 2012]. Unretted fibres likely contain more pectins, waxes and non-cellulosic molecules
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than the water retted fibres [Akin, 2012]. For all the reasons aforementioned, it was expected

that alkaline treatment may alter the fibres in different ways. Note that the O/C ratio of lin-

seed flax sample as received was lower than the O/C values usually attributed to fibres rich in

lignin (at maturity) which range around 0.30 or above [Johansson, 2002]. Morvan et al. [2003]

previously questioned the amount of lignin and its location in flax fibre walls. The O/C ratio

observed in this study suggests the predominance of extractives and pectins on the surface as

the fibres were not retted. Extractives are indeed much richer in carbon than polysaccharides

and have lower O/C ratios. For instance, Laine et al. [1994] found O/C values of about 0.12 in

wood pulp.

Note that these observations are not exclusive to this study but can be extended to the dis-

cussions about natural fibre treatment analysis in general: it does not make sense to compare

composition values and O/C ratios without minimal amount of information on the sample (va-

riety, growing conditions, harvest, retting, post- processing). A proper traceability brings clues

to avoid incoherent assumptions and to support data interpretation.

3.3.3.1 Effect of water wash and alkaline treatment on kenaf and hemp fibres

Figure 3.10 shows the survey scan spectra of kenaf and hemp fibres at different stages; as

received, water washed and alkaline treated. The overlays highlight the specificities of each

spectra to detect the presence of singular elements. It is preferable to compare the spectra

with the peak ratios rather than the peak amplitudes because the base line varies between the

runs and so does the signal intensity. The latter depends to some degree on the sample surface

profile, which is particularly true for natural fibres specimens that lay down in bundles like a

nest on the XPS stage.

53



Chapter 3

(a)

(b)

Figure 3.10: Survey scans of (a) kenaf and (b) hemp fibres at different stages: 1. As received,
2. Water washed and 3. Alkaline treated
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No traces of silica, calcium or aluminium were detected in the specimen of kenaf as received

showed in Figure 3.10a but multiple runs were performed and these elements appeared in traces

in other samples (four specimens from 11). Two of the hemp fibre samples also showed traces of

calcium. Calcium can play a key role in the bast fibre structure: calcium molecules cross-link

the non-methoxylated carboxyl groups of the glucose acids in pectin to form stable bridges

between the pectin molecules [Preisner et al., 2014, Sakai et al., 1993]. Calcium could also be

present as calcium carbonate, oxylate, or it could come from aluminosilicates; these compounds

are present in plant soils and traces are usually found in plant composition [Curtis N., 1998].

The small amount (ca 1.5 at.%) of sodium detected in the alkali treated fibres was assumed to

be a residue from the chemical treatment even though the fibres had been washed. XPS is very

sensitive to sodium; Na 1s has a relative sensitivity factor six times higher than C1s (Kratos

library Relative Sensitivity Factors in CasaXPS) therefore a very small amount of sodium will

be obvious in the spectrum. The alkaline treatment applied to the hemp fibres included water

washing till neutral pH and thus no trace of sodium was expected.

The evolution of the O/C peak ratio after water wash and alkaline treatment is an indicator to

gauge the effect of chemical treatment. Figure 3.11 shows the ratios of kenaf Engage and hemp

fibres at different stages. After water wash, hemp and kenaf fibre surface O/C ratios slightly

increased by 10% and 20% respectively. Immersion in water could have removed the cuticle

material (low O/C), pectins (high O/C due to glucose rings) and some proteins (low O/C due

to long carbon chains) from the fibre surface but was unlikely to affect lignin. Evolution of the

O/C ratios results from the combination of these mechanisms and it is difficult to distinguish

which one was dominant. The gentle increase in O/C ratio reflects these phenomena, as species

with low O/C and high O/C were removed, and might not be a signature for more cellulose

established on the surface. These results agree well with the SEM analysis (ref section 3.1): the

water washed kenaf fibre surface was still rich in lignin and waxes and poor in cellulose (Figure

3.5). Truss et al. [2015] performed TTL SEM analysis on the hemp fibres and also observed

that the water washed fibre surface was still rich in lignin and extractives.

Note that the trend is coherent with the treatment intensity: the kenaf fibres have been soaked

for up to three weeks whilst the hemp fibres were immersed in water for 24 h only. Fibre

separation and degradation mechanisms occur with time i.e. the longer the fibre are soaked,
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the more they tend to separate, facilitating the biodegradation of the components [Paridah

et al., 2011].

Figure 3.11: Evolution of O/C ratios of kenaf KK60 and hemp fibres after treatment

After alkaline treatment, the O/C ratio increased by 53% for hemp sample and by 57% for

kenaf sample, compared to the as received stage. The alkaline treatment applied to the kenaf

batch contained sodium metasilicate and caustic soda whilst the hemp batch was immersed in a

solution based on NaOH only, but at higher concentration. Kenaf fibres were soaked for 40 min

at 70◦C and hemp fibres were immersed for 2 h at 60◦C (see Table 3.2). Both alkaline solutions

were then assumed to be of equivalent degree and lead to a similar increase of the O/C ratio by

ca. 50%. Such an increase of the O/C ratio suggests more cellulose on the fibre surface (highest

O/C of 0.83) and less amorphous substances that have lower O/C than cellulose i.e. lignins,

waxes, extractives etc. This assumption is consistent with the SEM observations that revealed

surfaces with proportionally more cellulose compared to the as received and water washed fibre

surfaces, for both the kenaf and hemp fibres (see section 3.1 and the results from Truss et al.

[2015]). However, the O/C ratios were still much lower than the theoretical value of cellulose:
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hemp fibres had an O/C of 0.49 and kenaf 0.44 compared to 0.83 for pure cellulose. This agrees

as well with the SEM results that showed in both cases the alkaline treated fibre surfaces were

still rich in lignins and extractives.

It is worth noting that a comparison based solely on the O/C ratio absolute values could be

misleading. For instance, both water washes seemed to produce the same effect on the fibres

(hemp O/C ratio reached 0.35 and kenaf O/C ratio was 0.34 after water wash) and alkaline

treatment seemed to be more efficient on hemp than on kenaf (final O/C was 0.49 and 0.44 for

hemp and kenaf respectively). However, as mentioned previously, discussions based on the O/C

values only should be treated with caution because similar O/C can be obtained from different

surface chemistries. Information on the fibre as received (origin, processing) and details on

the chemical treatments largely helped to interpret the data. For a better understanding of

the fibre surface chemistry and to validate the assumptions made, further analysis with high

resolution scans is needed.

3.3.3.2 High resolution scans

High resolution scans were performed over the main elements of interest to study their “chem-

istry” and deduce which chemical functional groups were present on the sample surface. These

scans give information on the chemical shift; the change in Binding Energy (BE) of a core

electron due to a change in chemical bonding of that electron. Core binding energies are deter-

mined by the electrostatic interactions between the core and the nucleus. Binding energies are

reduced or increased depending on whether a valence electron charge is withdrawn or added

respectively. Hence, for each element, secondary peaks appear at specific binding energies cor-

responding to different chemical bonding. These peaks can be dissociated from each other and

identified by peak fitting the XPS spectra.

In practice, the XPS spectra is fitted with a series of single peaks positioned so that the sum

envelope fits the experimental curve. Each single peak can be (and should be) attributed to a

chemical bonding by identification with the corresponding element BE. References for C1s, O1s

and N1s binding energies can be found in the literature (Beamson and Briggs [1992], Ratner

and Castner [2009]) and a large database established by the National Institute of Standards
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and Technology (NIST) is available online (srdata.nist.gov). Note that the chemical shifts may

vary slightly depending on the chemical environment of the atoms i.e. in complex molecules.

This is particularly true for natural fibre surfaces as these contain various polysaccharides and

other extractives components that comprise aromatic groups. A comprehensive peak fitting of

the main elements (C, O and N) should provide key information to identify which functional

groups are present (or not) on the sample surface.

Peak fitting is powerful but it is a difficult task since peak deconvolution must be fastidious to

be correct (Artyushkova [2010]). Peak fitting can have shallow minima so several options may

have similar goodness of fit. However, peak shapes and widths are not arbitrary but rather

follow models built on physics (Gaussian- Lorentzian shape etc.). Hence, specific rules and

criteria apply to ensure the curve fit is coherent, reproducible and as accurate as possible. Four

essential rules have been established (Artyushkova [2010], Beamson and Briggs [1992]):

• All peaks within the same element should have the same (± 0.2 eV) Full Width Half Maximum

(FWHM). In complex molecules, tolerance up to ± 0.5 eV may be justified.

• When comparing multiple samples from the same specimen (for instance fibres before and

after treatment), the reference sample is first curve fitted and the other spectra are fitted

following the same constraints. The BE and FWHM should be constrained to ± 0.2 eV. New

peaks are added if necessary.

• If there is no reference sample, one sample is taken as a reference and the other spectra are

curve fitted with the constraints mentioned above.

• Cross correlation between the elements is a key indication to verify that the deconvolution

is coherent. For example, if the peak representative of C-N=O bond is identified in the C1s

spectrum, it should be present as well in N1s and O1s spectra.

The following case study focuses on the kenaf fibre samples. High resolution scans were per-

formed on C, O and N. Peaks were curve fitted with CasaXPS software according to the criteria

mentioned previously (BE, FWHM). The alkaline treated fibre sample was taken as a reference

assuming that it would be the “simplest” among the three samples because the peaks were

sharp and distinct. The peak fitting model was then applied to the water washed fibre sample
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and the fibres as received. The C1s spectra of kenaf KK60 fibres alkaline treated is presented

in Figure 3.12.
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Figure 3.12: C1s spectra for kenaf fibres alkaline treated

59



Chapter 3

Listing the chemical groups likely to exist on the fibre surface is useful to build up a coherent

peak fit model. The kenaf fibre surface was assumed to contain cellulose, hemi cellulose, pectins,

lignins, fatty acid and water. The function carboxyl, ester and amide present in pectin as well

as the functional groups from lignins were expected to be seen on the XPS spectra.

Cellulose is a linear chain of repeated polysaccharide units of D- anhydroglucocypranose. The

molecular structure is shown in Figure 3.13. There are two types of carbon bonding in cellulose:

carbon bonded to a single O (labelled 1) and carbon bonded to two non-carbonyl oxygen atoms

(labelled 2). Beamson and Briggs [1992] and Briggs and Beamson [1992] analysed pure cellulose

(Whatman filter paper) and came up with BE of 286.53 eV - 286.73 eV and 287.86 eV - 288.06

eV respectively. Pure cellulose XPS spectrum theoretically contains only these two peaks

but a third peak from C-C bond usually appears due to sample contamination and impurity

[Johansson and Campbell, 2004]. The oxygen spectrum consists of two peaks at 532.93 eV

(corresponding to OH, labelled 1) and 533.51 eV (corresponding to C-O-C, labelled 2).

Figure 3.13: Cellulose structure

Hemicellulose is a branched chain of multiple polysaccharides. Its bonding structure is similar

to cellulose but the functional groups vary between the different types of sugar. Gutiérrez Suárez

et al. [2010] and Neto et al. [1996] studied the chemical composition of hemicellulose in kenaf

plants and claimed that kenaf bark hemicellulose (i.e. where the bast fibres are located) was

particularly rich in xylose (a pentose with five carbon atoms). Xylose contain numerous hy-

droxyl group substitutions so a large peak at OH binding energies (286.47 eV - 286.73 eV for

C1s and 532.74 eV - 533.09 eV for O1s) may appear on high resolution spectra of a sample

surface rich in hemicellulose [Beamson and Briggs, 1992].
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Pectins’s structure is similar to hemicellulose but contain random sequences of three functional

substitutions, as shown in Figure 3.14. The carboxyl, amide and ester substitutions should

give specific peaks in the XPS high resolution spectra. The C1s chemical shift associated to

carboxyl substitution should be observed at 289.18 eV - 289.26 eV. Amide functional group

induces chemical shifts at 287.97 eV - 288.59 eV and ester substitution should be seen at 286.12

- 286.98 eV with a secondary peak at ca. 285.4 eV (carbon bonded to C=O) [Beamson and

Briggs, 1992].

Figure 3.14: a) repeating segment of pectin molecule and functional groups b) carboxyl, c)
ester and d) amide in pectin chain [Sriamornsak, 2003]

Lignin(s) is a complex polymer whose structural composition varies in each plant species.

Lignin is built up from three monolignol precursors (phenylpropane units) that react via

enzyme-initiated dehydrogenative polymerisation [Santos et al., 2013]. The three building

blocks are p-coumaryl, coniferyl and sinapyl alcohols (Figure 3.15). The proportion of each

structural block varies between plant species, making lignin a complex random network poly-

mer. Lignin is classified into three families depending on the phenylpropane unit ratios: guaia-

cyl(G) lignin comprised mostly coniferyl groups, guaiacyl-seringyl (G-S) lignin is a copolymer

of coniferyl and sinapyl alcohol and H-lignin contains mostly p-coumaryl alcohol units. G-lignin

is dominant in softwoods (gymnosperms) and G-S lignin in hardwoods (angiosperms). Both
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softwoods and hardwoods contain small amount of H-lignin but this third type of lignin is

mainly found in grass plants (graminaceous).

Figure 3.15: The three types of monolignols responsible for lignin synthesis: p-coumaryl
alcohol, sinnapyl alcohol and coniferyl alcohol (adapted from Santos et al. [2013])

Bast fibres belong to the angiosperms group and various authors reported that kenaf lignins

present similarities with hardwood lignins that has a high S:G ratio i.e. a dominant methoxy

substitution on the aromatic rings [Neto et al., 1996, Ralph et al., 1995]. During polymerisation,

numerous linkages occur randomly between the phenylpropane units creating a large network

with a complex and unique three dimensional structure. As listed in Table 3.5 and illustrated

in Figure 3.16, the predominant linkages in hardwood lignins are aryl ethers (β-O-4) and 5-5

linkage, with a majority of β-O-4 linkage (60%). Based on these findings, these types of ether

linkages are expected to be seen on the spectra.
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Table 3.5: Predominant linkages in lignins in softwood (SWD) and hardwood (HWD) (from
Santos et al. [2013])

Linkage type Dimer structure %Linkage SWD %Linkage HWD

β-O-4 Arylglycerol

β-aryl ether

45-50 60

5-5 Biphenyl and Dibenzodioxocin 18-25 20-25

β-5 Phenylcoumaran 9-12 6

β-1 1,2-Diaryl propane 7-10 7

α-O-4 Phenylpropane α-aryl ether 6-8 7

4-O-5 Diaryl ether 4-8 7

β-β β-β-linked structures 3 3

Figure 3.16: Common phenylpropane linkages in lignins (adapted from [Chakar and Ra-
gauskas, 2004])
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In addition to the main constituents mentioned above, bast fibres usually contain lipophilic

extractives and more particularly waxes and fatty acids, as shown in Table 3.6 and illustrated

in Figure 3.17. As it can be seen in Figure 3.17, these compounds have a long carbon chain

backbone with terminal groups and some functional groups on the backbone. Hence extractives

would generate a strong C-C peak in the XPS spectra (ca. 285 eV) and also some satellite peaks

due to the functional groups (hydroxyl, carbonyl, ether etc.).

Table 3.6: Composition of lipophilic extractives in bast fibres (adapted from
Gutiérrez Suárez et al. [2010])

Flax Hemp Kenaf Jute

n-alkanes 27 43 27 5

fatty alcohols 220 2 13 13

n-aldehydes 371 25 1 -

fatty acids (A) 552 78 33 13

ω-hydroxyfatty acids - - - 3

α-hydroxyfatty acids 11 9 - 10

free sterols/triterpenols 92 36 5 4

sterols/triterpenols esters 6 7 1 -

sterols glycosides 5 13 ¡1 1

steroid hydrocarbons 14 30 2 2

steroid/triterpenoid ketones 33 27 4 3

ester waxes (B, C, D, E) 284 17 30 20
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Figure 3.17: Chemical structure of compounds representing the main lipophilic ex-
tractives present in bast fibres: A, palmitic acid; B, octacosyl hexadecanoate;
C, 1-monodocosanoylglycerol; D, docosanyl, 16-hydroxyhexadecanoate; E, 1-mono(24-

hydroxytetracosanoyl)-glycerol (modified from Gutiérrez Suárez et al. [2010])

The procedure applied to curve fit the spectra and identify the chemical bonds present is

summarised below:

• The region considered for deconvolution was defined with a linear background type.

• XPS spectra was curve fitted with line shapes of type Gaussian-Lorentzian product function

GL(n) with n = 30 (if n=0, pure Gaussian line and if n=100, pure Lorentzian line).

• Constraints were specified for FWHM for each element: 1.2 ± 0.3 eV for C1s, 1.6 ± 0.2 eV

for O1s and 1.5 ± 0.2 eV for N1s.

• Deconvolution peaks were positioned so that the residual Standard Deviation of the sum

envelope was below 1 for C1s and below 1.4 for O1s and N1s.

• Calibration was done with C-C (Carbon with a single bond) reference at 285 eV.
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• Each single peak was attributed to a specific chemical bond by identification with reference

to published in the literature (Beamson and Briggs [1992], Ratner and Castner [2009]) and the

NIST database.

• Cross-correlation between N, C and O was performed to check the peak fitting model
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3.3.3.3 Peak fitting and identification of functional groups in kenaf fibres

C 1s/ Kenaf Engage alkaline treated

Name
O 1s
O 1s
O 1s
N 1s
C-C ref
C 1s
C 1s
C 1s
C 1s
C 1s

Pos.
531.474
533.116
534.845
400.202

285
286.432
286.843
288.113
289.129
290.289

At%
4.168
22.13
2.494
1.086
27.05
17.33
14.42
8.435
2.094
0.798

C
 1

s

x 102

10

15

20

25

30

35

40

C
P

S

298 296 294 292 290 288 286 284 282 280

Binding Energy (eV)

 

Figure 3.18: C1s spectra curve fitting for kenaf alkaline treated fibre sample
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O 1s/ Kenaf Engage alkaline treated
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Figure 3.19: O1s spectra curve fitting for kenaf alkaline treated fibre sample
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As shown in Figure 3.18, the C1s spectra was reconstructed with six peaks. Based on the C-C

reference peak at 285 eV, the five other peaks were identified as follow:

- C1 peak at 285 eV was largely attributed to C-C bonds (reference peak). The binding energies

of C=C and aromatic C are shifted only a small amount from that of C-C and so these are also

present under 285 eV. Single carbon-carbon bonding does not exist in cellulose. Large C1s peak

could account for the aromatic groups in lignins and for fatty acids that have a long carbon

chain backbone. Certain types of carbohydrates also contain single carbon bonds. A small

contribution from contamination on the sample surface should also be considered [Johansson

et al., 2004].

- C2 peak at 286.4 eV could be either ether linkage C-O-C or hydroxyl C-OH, usually observed

in the range 286.13 eV - 286.75 eV and 286.47 eV - 286.73 eV respectively. As mentioned

previously, kenaf lignins have a majority of methoxy substitution and aryl ether linkage between

the aromatic groups [Chakar and Ragauskas, 2004]. Poly(4- methoxystyrene) was taken as a

reference model for the methoxy substitution with C1s at 286.4 eV and 286.8 eV (Beamson and

Briggs [1992]). The monomer 4-methoxystyrene (C9H10O) is illustrated in Figure 3.20.

Figure 3.20: Binding Energies for Poly(4-methoxystyrene)

- C3 peak at 286.8 eV could be the ester group C*-O-C=O (286.12 eV - 286.98 eV). Aliphatic

esters are present in pectins (carboxylic ester) and fatty acids. Lignins contain aromatic esters

(ester substitution on the phenyl ring). Neto et al. [1996] found that kenaf hemicellulose was
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particularly rich in xylan (xylan is a pentosan i.e. a carbohydrate with five C atoms) and

uronic acids. Uronic acids, which contain both carbonyl and carboxyl acid groups, could also

be present in soluble polysaccharides, for instance in pectins. Das et al. [1984] assumed that

all the uronic acids on the xylan backbone are ester-bonded with lignins, forming a lignin-

carbohydrate complex.

- C4 peak at 288.1 eV is typical from amide functional group N-C=O (287.97 eV - 288.59

eV). C1s peak at 288.1 eV is also O-C-O from cellulose but the O1s characteristic peaks from

cellulose (532.9 eV and 533.5 eV) were missing (Figure 3.19), therefore C4 peak was assigned

to N-C=O and C=O, most likely from pectins and proteins.

- C5 peak at 289.1 eV was attributed to the carbonyl bond in the ester group C-O-C*=O

(288.64 eV - 289.23 eV).

- C6 peak at 290.3 eV could be attributed to carbonate (290.35 eV - 290.44 eV) but the O1s

peaks characteristic from carbonate (532.4 eV and 533.9 eV) were not visible on the O1s spectra

and the concentration was slightly higher than that of Ca observed on the spectra (0.2 at% to

0.4 at%) therefore the presence of CaCO3 was unlikely. As mentioned in the previous section,

Ca can also complex with pectins and form branched macromolecules [Sedan et al., 2007]. The

latter are too complex to be identified and quantified by XPS. C6 peak could also result from

satellite peaks arising from shake up processes that involve Pi-Pi* transition in aromatic groups

[Clark et al., 1976, Morgan, 2014]. This phenomenon is likely to occur in the numerous phenyl

rings in lignins [Dorris and Gray, 1978b].

- The oxygen spectra was peak fitted with a broad central peak at 533.1 eV and two auxiliary

peaks at 531.5 eV and 534.8 eV (Figure 3.19). The broad peak was associated to ester bond

in pectins and in the methoxy substitution, within the tolerance of 0.5 eV (see Figure 3.19).

The low shoulder peak at 531.5 eV was attributed to the amide group (pectins) and carbonyl

bond in ester group (pectins, lignins, fatty acids). The high shoulder peak at 534.8 eV could

be from residual water in the fibre cells [Johansson et al., 1999]. This secondary peak has been

observed previously by Truss et al. [2015] on hemp fibres.

- Nitrogen was curve fitted with a single peak at 400.2 eV. Nitrogen was attributed to amide

N-C=O from pectins and proteins.
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Cross-correlation of the elements was performed to validate the peak fitting model. Nitrogen

was peak fitted with a single peak so it makes a good candidate to start the cross-correlation.

Nitrogen appeared at 1.1 at%. The peaks related to the amide group in C1s and O1s should

have similar concentration, so 1.1 at% was deduced from the total amount. The ester group

and methoxy substitution were considered for cross-correlation following the same procedure.

For better clarity, the calculations are reported in the table below:

Table 3.7: Binding energies and concentrations (at%) of kenaf fibres NaOH treated

Name Pos.

(eV)

At% Amide group

(at%)

Ester group

(at%)

Methoxy substitution

(at%)

Residual

(at%)

O1s 531.48 4.2 4.2-1.1 = 3.1 3.1-2.1 = 1 1

O1s 533.12 22.1 22.1-2.1 = 20 20-12.3 = 7.7 7.7

O1s 534.85 2.5 2.5

N1s 400.2 1.1 Reference / / /

C-C 285 27.1 27.1

C1s 286.43 17.3 17.3-12.3 = 5 5

C1s 286.83 14.4 14.4-2.1 = 12.3 Reference /

C1s 288.11 8.4 8.4-1.1 = 7.3 7.3

C1s 289.13 2.1 Reference / /

C1s 290.29 0.8 0.8

Allocation of the residual amounts was not straightforward because the fibre surface consists

of a complex mixture of polymers so the chemical environments of the atoms induce specific

chemical shifts that may not be identifiable in the literature (usually based on pure organic

samples). The residual O1s at 533.1 eV and C1s at 288.1 eV were in similar concentration

of 7.7 at% and 7.3 at% respectively. These could not be precisely identified; it could not be

cellulose as the O/C ratio did not match (1/1 in that case versus 2/1 in cellulose). It could be

related to aliphatic C=O. The residual C1s at 286.43 eV (5 at%) could be attributed to ether

bonds. This could be from fatty acids (see Figure 3.17). C1s at 290.3 eV could be due to Pi-Pi*

transitions. O1s at 534.5 eV was attributed to residual water in the fibres (2.5 at%). Although

it was not possible to identify all the chemical bonds due the complexity of the sample, the cross-

correlations validated the peak fitting and the spectra analysis was considered as consistent.
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These results are coherent with the previous findings from SEM and the XPS survey scans.

SEM analysis suggested the fibre surface was rich in lignins and waxes with underneath a

surface containing more cellulose, hemicellulose and pectins. The strong peaks associated with

the functional groups (ester, methoxy substitution and Pi-Pi* shake-up) were also identified in

the high resolution spectra. The strong C-C peak confirmed as well the presence of extractives.

The high resolution scans also suggested the presence of pectins on the surface, or calcium

complexed with pectins.

Once the peak fitting model validated for the reference sample, it was applied to the water

washed fibre and the as received fibres. Figure 3.21 shows the C1s spectra of water washed

kenaf fibres:

72



Chapter 3

C 1s/ Kenaf Engage water washed

Name
O 1s
O 1s
O 1s
N 1s
C-C ref
C 1s
C 1s
C 1s
C 1s
C 1s

Pos.
531.759
533.032
534.331
400.37

285
286.269
287.004
288.121
289.171
290.548

At%
5.685
17.17
3.525
1.742
32.28
17.16
11.81
6.448
3.51

0.6744
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Figure 3.21: C1s spectra curve fitting for kenaf water washed fibre sample
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O 1s/ Kenaf Engage water washed
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Figure 3.22: O1s spectra curve fitting for kenaf water washed fibre sample
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Cross-correlation of the elements was performed in a similar way to the reference alkaline treated

fibres. The details are summarised in Table 3.8:

Table 3.8: Binding energies and concentrations (at%) of kenaf fibres water washed

Name Pos.

(eV)

At% Amide group

(at%)

Ester group

(at%)

Methoxy substitution

(at%)

Residual

(at%)

O1s 531.76 5.7 5.7-1.7 = 4 4-3.5 = 0.5 0.5

O1s 533.03 17.2 17.2-3.5 = 13.7 13.7-8.3 = 5.4 5.4

O1s 534.33 3.5 3.5

N1s 400.37 1.7 Reference / / /

C-C 285 32.3 32.3

C1s 286.27 17.2 17.2-8.3 = 8.9 8.9

C1s 287.00 11.8 11.8-3.5 = 8.3 Reference /

C1s 288.12 6.5 6.5-1.7 = 4.8 4.8

C1s 289.17 3.5 Reference / /

C1s 290.55 0.7 0.7

Similar to the analysis of the alkaline treated fibres, allocation of the residual amount is chal-

lenging due to the complex nature of the surface. The residual O1s at 533.03 eV and C1s

at 288.12 eV were within the same concentration range of 5.4 at% and 4.8 at% respectively

and were attributed to C=O, to be consistent with the previous model established in alkaline

treated fibres. O1s at 534.33 eV was attributed to residual water in the fibre cells. The large

C-C peak at 285 eV reflected a majority of single carbon bonds, or C=C or aromatic C within

the multiple components. The residual C1s at 286.27 eV (8.9 at%) could be attributed to ether

bonds. This could be from fatty acids indicating the presence of lignins (see Figure 3.17). Trace

of the Pi-Pi* transitions were also observed in this spectra (0.7 at%).

These data were consistent with the SEM analysis and the XPS survey scans, which suggested

a lignin rich surface poor in cellulose. The typical corresponding peaks (ester group, methoxy

substitution, Pi-Pi* shake up) were visible on the XPS high resolution spectra. The peaks

reflecting the presence of cellulose and hemicellulose on the surface (O1s at 533.03 eV and C1s

at 288.12 eV) were in smaller concentrations than in the NaOH treated fibres (concentration

of 5.4 at% and 4.8 at% vs. 7.7 at% and 7.3 at% respectively). This confirm the assumption

that the alkaline treated fibre surface contained more cellulose than that of water washed fibres.
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XPS high resolution scans also suggested that the surface contained more fatty acids than the

alkaline treated fibre surface: the residual C1s at 286.27 eV (8.9 at%) were more important

than in alkaline treated fibres (5 at% identified at 286.43 eV). This seems logical as NaOH is

more efficient to remove fatty acid than water wash.

Finally, the spectra from kenaf as received were peak fitted and analysed (Figure 3.23 and

Figure 3.24).
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C 1s/ Kenaf Engage as received

Name
O 1s
O 1s
O 1s
N 1s
C-C ref
C1s
C1s
C1s
C1s
C1s

Pos.
531.796
533.057
534.164
400.369

285
285.93

286.737
287.817
288.848
289.788

At%
4.742
11.97
4.342
2.803
30.5

17.29
15.26
7.409
3.848
1.838
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Figure 3.23: C1s spectra curve fitting for kenaf fibres as received
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O 1s/ Kenaf Engage as received
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Figure 3.24: O1s spectra curve fitting for kenaf fibres as received
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An attempt was performed to do cross-correlation of the elements following the same procedure

as for the kenaf treated fibre samples but the peaks could not be specifically assigned to chemical

groups because of the surface complexity. The spectra was fitted following the same constraints

as for the other spectra and the residual standard deviation was 0.82 hence the curve fitting

was assumed correct. However, the chemical shifts were different than those observed in the

other samples and could not be identified either with typical binding energies referenced in the

literature [Beamson and Briggs, 1992, Ratner and Castner, 2009]. The binding energies depend

indeed on the specific environment where the chemical groups are located and, as shown earlier

by SEM (see Figure 3.4 in section 2.1), the surface of kenaf fibres as received was a mixture

of complex molecules therefore it was expected to observe slightly different shifts. Allocating

the peak was too challenging considering the numerous polymeric species likely present on the

surface and their complex molecular structure (lignins, extractives, oxygenated species etc.).

On the other hand, the trends were consistent with the SEM observations and the XPS survey

scans. The strong C-C peak suggested the presence of long carbon chain from fatty acids and

other extractives (see Figure 3.17). SEM analysis of the fibre surface revealed the presence of

lignins, pectins and waxes as well as some epidermal tissues (Figure 3.4). Nitrogen was also

more important than in the treated fibre spectra, suggesting more pectins and proteins on the

fibre surface in the as received stage than in the treated fibres. These could result from the

parenchyma cells in the epidermis/cuticle layer that are rich in pectins, as seen on the SEM

images.

In conclusion, XPS analysis of bast fibres brought key complementary information to the SEM

analysis. The survey scans showed that the O/C ratio of hemp and kenaf increased after

treatment, which suggested a change in the fibre surface chemistry. This was further confirmed

on the kenaf fibres with high resolution scans on carbon, oxygen and nitrogen. The experimental

data confirmed that the water wash and alkaline treatment cleaned the fibre surface and removed

most of the epidermal tissues. However, the treatments were too gentle to remove lignins and

pectins and the fibres’ surface remained rich in lignins and oxygenated species, and poor in

cellulose. On the other hand, these treatments may have modified the bast fibre physical

structure and the energetic site distribution, which play major roles in the physicochemical

interactions between the fibre and the matrix. This will be discussed in the next chapter.
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Inverse Gas Chromatography on

Natural Fibres

This chapter presents the research undertaken at the Composites Innovation Centre (CIC)

in Winnipeg, Manitoba, as part of the ongoing collaboration with the Cooperative Research

Centre for Advanced Composite Structures (CRC-ACS). The author was tasked to commis-

sion the inverse gas chromatograph system in the newly established FibreCITY facilities and

successfully developed experimental procedures for characterisation of plant fibres by Inverse

Gas Chromatography (IGC). Section 4.1 relates the method development to determine the spe-

cific surface area of natural fibres by IGC. This work has been published as: Legras, A., et

al. “Inverse gas chromatography for natural fibre characterisation: Identification of the critical

parameters to determine the Brunauer–Emmett–Teller specific surface area.”Journal of Chro-

matography A 1425 (2015): 273-279. Section 4.2 presents a method to determine the surface

energy profiles of plant fibres followed by application case studies.

Note: The paper has been formatted according to thesis requirements.
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4.1 Identification of the Critical Parameters to Deter-

mine the Brunauer-Emmett-Teller Specific Surface

Area

4.1.1 Introduction

Bast fibres have been traditionally destined for the textile industry and this remains the primary

application with constant innovations for clothing, technical textiles etc. However, the last

decades have seen a significant trend to utilise natural fibres in other sectors, particularly the

automotive industry [Ashori, 2008, Holbery and Houston, 2006, Karus and Kaup, 2002]. Natural

fibres appeal to vehicle manufacturers with their excellent strength to weight ratio, low cost,

low carbon footprint and availability. They are integrated into polymer matrices as filler or

reinforcement elements for interior components [Huda et al., 2008, Marsh, 2003]. Biocomposites

have also emerged as an alternative to wood plastic composites for building materials.

Diversification into novel applications places new demands on the fibre processing and proper-

ties. One of the major issues is that natural fibres are generally hydrophilic and consequently

are inherently incompatible with hydrophobic commodity polymers. Natural fibres also suffer

from considerable batch-to-batch heterogeneity and particularly dimensional variability, which

directly affect the tensile properties. Natural fibre moisture sensitivity is another issue for the

biocomposite durability.

The compatibility, dispersibility and reinforcement capability of natural fibres are related to

the fibre surface energy and to its specific surface area. Bast fibres have a complex 3D mi-

crostructure with multiple membranes enclosing the lumen. The chemical composition and

the molecular arrangement vary between the layers and depend on the fibre specie. The fi-

bre location within the plant stem and the growth conditions also play a major role in the

physico-chemical structure, creating fibres with unique and complex surfaces [Charlet et al.,

2007, Satyanarayana et al., 2007]. Figure 4.1 illustrates the architecture of bast fibre bundles

with cellulose microfibrils embedded into a matrix of hemicellulose and lignin. The outer layer

also contains pectins, waxes and other extractives. The fibre surface chemistry, its adsorption
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capacity as well as its wettability and dispersability in a matrix correlate with the fibre surface

energy values and depend also on the accessible surface area. The surface energy provides

information on the intermolecular forces that can occur at the fibre surface. These combine

long range Van der Waals forces and short range chemical forces, also known as dispersive and

polar forces respectively. The nature of these interactions and their intensity also depend on

the accessible surface area.

Figure 4.1: Structure of an elementary plant fibre showing the different layers and the orien-
tation of the cellulose microfibrils (Adapted from Baillie [2004] and reproduced with authori-

sation of the author)

Traditional methods used to determine the fibre surface energy involve the measurement of

contact angles. Various approaches reviewed by Williams [2015] and Heng et al. [2007] provide

methods for measuring droplet angles to calculate the fibre surface tension. The most common

are the Young model, the Fowkes and extended Fowkes (Owens & Wendt) approaches and the

Van Oss et al. model [Heng et al., 2007]. Capillary rise, Wilhelmy plate and sessile drop are

common methods and numerous studies have been published on natural fibres [Collins, 1947,

Rong et al., 2002, Shen et al., 2004]. Although these techniques are excellent on flat surfaces,

natural fibre’s porous structure and heterogeneous surface properties challenge the accuracy

and the validity of the experimental data. These methods are based on liquid-solid interactions

where swelling and dissolution may occur and skew the data.
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Inverse Gas Chromatography is an alternative tool to study surface energies. IGC is based

on solid-gas interactions and the affinity between gas probe molecules and the fibre surface

molecules is quantified. It is a versatile technique to characterise samples of any shape, as long

as the specimen can be packed in the column and molecular interactions can occur. IGC exists

since the early 50s and it has been applied mostly to pharmaceutical industry [Mohammadi-

Jam and Waters, 2014], for characterisation of zeolites [Aşkin and Bilgiç, 2005, Eva Dı́az, 2004]

and carbon nanostructures [Papirer et al., 1999] but IGC has not been well established yet for

natural fibre characterisation. Most of the studies on natural fibres have been performed with

home built equipment, using different solvents and various calculation procedures. The lack of

information and details of experimental procedures make it difficult to compare and validate

data. Moreover, the large variability of natural fibre properties and their complexity compared

to synthesised and well designed man made materials means that a systematic study of the

common procedures and models implemented in IGC is required to assess its capabilities as a

technique to characterise natural fibre surfaces.

IGC requires the specific surface area to determine the surface energy, especially as this can

depend on surface coverages. Usually, the specific surface area of a solid is determined by BET

method which uses nitrogen sorption [Bismarck et al., 2002, Livingston, 1949] or krypton [Beebe

et al., 1945, Rosenberg, 1956], for surfaces areas below 0.5 m2.g−1 where the nitrogen technique

shows limitations [Sing, 2001]. These techniques involve extreme conditions of high vacuum at

low temperature (77K) under which the fibre properties are likely to change and thus the BET

surface area.

An alternative and preferred technique for measuring the BET surface area of low surface area

natural fibres would be to use IGC at room temperature. This paper systematically studies the

influence of various parameters that may affect the measured specific surface area using BET

theory with IGC. On the basis of the results of this study, a procedure applicable to natural

fibres is proposed.

BET theory

The BET theory was developed with nitrogen but is applicable to other gases such as those

used in IGC. Five types of isotherms can occur depending on the adsorption scenario [Charmas
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and Leboda, 2000, Thielmann, 2004]. The BET equation is applicable on isotherms type II

and IV only, where there is a formation of a monolayer followed by multi-layers and further

capillary condensation. The BET equation is given by:

P

n(P0 − P )
=
C − 1

nmC
(
P

P0

) +
1

nmC
(4.1)

where P is the solvent partial pressure in the gas phase (Torr), P0 the saturated solvent vapor

pressure (Torr), n the amount of gas adsorbed (Mol.g−1), nm the monolayer capacity (Mol.g−1)

and C the BET constant. The BET equation fits the isotherm (type II or IV) over a specific

range of equilibrium pressure P/P0, usually for 0.05 < P/P0 < 0.35. The monolayer capacity

nm can be determined from the slope and intercept of the linearised BET equation fitted to the

isotherm. The BET specific surface area (m2.g−1) is expressed as:

SBET = aNAnm (4.2)

with a the molecule cross section area, NA the Avogadro Number and nm the monolayer ca-

pacity. Since nm and a are known, the specific surface area SBET can be calculated.

4.1.2 Experimental procedure

4.1.2.1 Materials

Two types of bast fibres and one type of cellulose fibre were used in the study. The Cana-

dian linseed flax (variety unknown) specimen was supplied by Composites Innovation Centre

(CIC), Winnipeg, Manitoba (Canada). The fibres were not retted and have been mechanically

decorticated by a lab scale scutching machine [Alcock et al., 2012]. Kenaf fibres (variety KK60)

were provided by Engage Eco Products Co. Ltd. in Thailand. The fibres were locally ribbon

retted, rinsed and dried before shipping. Both flax and kenaf samples were characterised in the
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as-received conditions. BioMid R© cellulose fibres were supplied by ENC International (South

Korea). BioMid R© is a 100% cellulose-based continuous filament produced from dry-jet-wet

spinning process. The feedstock is a mixture of softwood and hardwood chips, a by-product

from the wood pulp and paper industry. The cellulose is extracted from the biomass and then

injected through a spinneret. Also, BioMid R© structure is different from the bast fibres that

have a “membrane” structure. BioMid R© fibres are expected to be a pure cellulose sample and

was considered as a reference for the study. The sample details are summarised in Table 4.1.

Table 4.1: Industrial fibre grades used for the study

Sample Variety Fibre processing

Cellulose BioMid R© (ENC International,
South Korea)

Dry-jet-wet spinning process

Kenaf KK60 (Thailand) Water retting
Flax Linseed flax (Canadian variety

unknown)
Mechanical decortication by
scutching

4.1.2.2 Methods

The strategy to study the influence of experimental parameters on the output BET value

involved four criteria. The experimental approach is detailed in the following paragraphs and

summarised in Table 4.2.

• Reproducibility within the column:

Various diffusion processes can drive the elutant molecule flow in a column packed with porous

material. These scenarios depend on the column dimension, the sample porosity, the pack-

ing homogeneity and the flow rate [Thielmann, 2004]. Natural fibre pore widths range from

micrometers down to a few nanometers [Arsène et al., 2013, Bledzki et al., 2005, Stone and

Scallan, 1965] and so these exceed in size the elutant molecules (cross sectional area ca. 10

Å2 to 100 Å2 [Perry et al., 1997]). As a consequence, the free diffusion process dominates the

molecule flow into the column: the gas probe molecules travel both in axial and longitudinal

directions. As they elute, these likely encounter cavities and asperities where they will adsorb

before complete elution. Whether this phenomenon occurs randomly and if it further affects the

flow rate is questionable. Successive runs were performed on the same chromatography column
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under identical experimental conditions to assess the reproducibility of the BET experiment.

Note that this experiment is possible with inverse gas chromatography as the column can be

used multiple times.

• Gas probe:

Various solvents can be used to run a BET experiment with IGC, the requirement being non-

polar adsorbates where surface and no bulk sorption occurs. Octane, heptane and cyclohexane

are common adsorbates. Whether the nature of the solvent affects the BET value of natural

fibres or not has not been clarified so far and few authors specify which gas probe has been

used to determine the specific surface area. For the sake of clarity and to know if data obtained

from various solvents can be compared, the impact of the solvent choice on the output value

was investigated. Among the common adsorbates used for the BET experiment, octane and

cyclohexane were selected for two main reasons. The latter showed better retention peaks than

other solvents, for instance, hexane and heptane had too low retention times. The second reason

is that octane and cyclohexane differ in their molecular structure and chemical properties, which

facilitates the observation of effects due to molecule geometry.

• Variability within a batch:

The variability of the BET specific surface area measured using octane was investigated within

a batch of natural fibres. The specific surface area is expected to fluctuate as the diameter,

porosity and the surface profile vary between fibres. Little information is currently available as

to whether the specific surface area changes and to what extent. A chromatography column

usually contains ca. a gram of fibres i.e. a relatively small amount of material. It is necessary

to estimate how variable the BET value is for grading procedures.

• Sample packing:

Another variable rarely specified is the sample packing. Unlike powder particles, natural fibres

can be packed in the column in multiple ways. For instance, post-processed fibres are usually

chopped and well separated compared with fibres as received. Short and long fibres may behave

differently in the inverse gas chromatography column. In this experiment, the fibres were cut
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into “short”fibres of 2 cm length and compared with ”long” fibres of ca. 10 cm length (usual

fibre length in a column of 4 mm internal diameter).

Table 4.2: Strategy to investigate the critical parameters for BET experiment

Criterion Experimental Method

Reproducibility within the column Repeat 3 runs per column
Gas probe Run with octane and cyclohexane
Variability within a batch Run 5 columns per batch
Sample packing Pack the column with long (10 cm) and short (2

cm) fibres

All experiments were conducted with an Inverse Gas Chromatograph Surface Energy Analyser

(IGC SEA) from Surface Measurement Systems (London, UK). This commercial equipment is

set-up for pulse chromatography; a precise amount of adsorbate is transported by the carrier

gas through the column containing the fibres. Adsorption followed by desorption occur at the

fibre surface and an elution peak results. The configuration of the IGC SEA is schematised

in Figure 4.2. The retention time was determined by a Flame Ionization Detector (FID) to

benefit a high sensitivity compared to thermal conductivity detector [Mohammadi-Jam and

Waters, 2014, Wang et al., 2013]. Silane-treated glass columns were filled with ca. 0.7 g to

1 g of fibres. The 4 mm internal diameter column was preferable for packing the fibres. To

insert the fibres in a column, wax-free dental floss was tied to the end of the fibres and then

pulled through the column. Once the fibres were in place, the dental floss was removed and the

column was then plugged with silanised glass wool to avoid any contamination in the injection

system. For the experiment with chopped fibres, the short fibres were introduced in the column

using a funnel and then packed with a column packing device. The columns were then plugged

as mentioned previously. The sample bed length was ca. 30 mm to minimise peak broadening

due to free molecular diffusion in the column. Helium was the carrier gas and methane was the

reference gas to determine the dead time, which represents the time necessary for a molecule to

travel across the column without any interaction. Octane and cyclohexane were injected over

a coverage range (n/nm) within 0.01 to 0.44, the minima and maxima values depending on the

sample mass. All experiments were carried out under the same conditions (30◦C, 0% RH) with

column conditioning for 1 hour (40◦C, 0% RH) before the first injection only. The carrier gas

flow rate was set up at 10 mL.min−1.
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Figure 4.2: IGC Surface Energy Analyser set up (Modified image supplied by SMS).

The BET theory was applied to determine the specific surface area of the fibres according to

the following procedure:

- The retention time was determined as the time corresponding to the peak centre of mass

(CoM) rather than the time of the maximum FID signal. The peak CoM was preferred as most

of the elution peaks were asymmetric.

- The solvent vapour pressure P0 was calculated with the modified Antoine equation [Perry

et al., 1997] described as:

P0 = exp[C1 +
C2

T
+ C3ln(T ) + C4T

C5 ] (4.3)

with C1, C2, C3, C4 and C5 constants specific to the solvent and T the temperature (K). P0 is

expressed in Pa.
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- The linearised BET equation was fitted to the isotherms (amount adsorbed vs. relative

pressure) in the range of 0.05 < P/P0 < 0.35. The range of calculation was adjusted so that

R2 ≥ 0.995 with P/P0 upper limit down to a minimum of 0.25 to get representative values.

4.1.3 Results and Discussions

4.1.3.1 Reproducibility within a column

Table 4.3 shows the repeatability of the BET experiment with octane on both bast fibres and

on the BioMid R© sample. In each case, all the runs were performed on the same column. An

illustration of the data fitted to the linearised BET equation for the kenaf sample is given in

Figure 4.3.

Table 4.3: Reproducibility BET experiment

BET Specific Surface Area (Octane) (m2.g−1) at 30◦C and 0% RH

Specimen Run 1 Run 2 Run 3 Mean Std (%)

BioMid R© 0.546 0.545 0.543 0.545 0.1
Kenaf 0.503 0.494 0.501 0.500 0.5
Flax 1.373 1.423 1.440 1.412 3.5

Figure 4.3: Plot of P/n(P0 − P ) versus P/P0 for successive runs on kenaf fibres.

With standard deviations less than 5% for all samples, the BET experiment showed excellent

reproducibility. One run should suffice to determine the BET specific surface area of a fibre

89



Chapter 4

specimen but it is suggested that two runs be completed to avoid any possible outlier. The BET

surface area of BioMid R© and kenaf fibres were similar (0.55 m2.g−1 and 0.50 m2.g−1) whilst

the flax fibre showed tripled specific surface area (1.41 m2.g−1). This could be directly related

to the surface roughness of the flax fibres. This batch has not been retted, which means that

the microbial degradation process that helps separation of the fibres from non-fibrous tissues

was omitted. Morrison and Andre [2005] and Akin et al. [1999] showed that insufficient retting

leads to poor separation of the non-fibrous material (cuticle/epidermis and woody core) from

the bast fibres. These remaining tissues tend to entangle with the fibres during next mechanical

processing steps of scutching and hackling. In this study, the flax fibres were scutched without

being retted and hence it was expected to observe numerous non-fibrous tissues spread on the

surface. Optical microscope images (Figure 4.4) clearly showed that the flax fibres were covered

with fragments of cuticle and epidermis tissues whereas the kenaf fibre surface appeared neat

and clean, similar to the BioMid R© fibres. The flax fibre surface roughness and heterogeneity

accounted for a high BET surface area. BET surface areas of plant fibres were measured with

IGC under similar conditions (30◦C, 0% RH); Ashori et al. [2012] found to cotton fibres specific

surface area of 0.75 m2.g−1 and Cordeiro et al. [2011b] obtained BET area values from bast fibres

and other plant fibres that ranged from 0.10 m2.g−1 to 2.79 m2.g−1. BET specific surface areas

were also reported on grass fibres with values between 0.81 m2.g−1 and 1.19 m2.g−1 [Cordeiro

et al., 2012].
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Figure 4.4: Optical microscope images of A) BioMid R©, B) Kenaf and C) Flax fibre samples
(Images obtained with an Axio Zoom.V16 microscope by CIC).
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4.1.3.2 Solvent dependence

BET values calculated with different solvents are shown in Table 4.4. For each specimen,

both octane and cyclohexane BET experiments were performed on the same sample column

with a minimum of 2 runs. Both BioMid R© and bast fibres showed a similar trend; BET values

obtained with cyclohexane were lower than those obtained with octane. These results should be

related to molecular orientation. Cyclohexane has predominantly a chair conformation whilst

octane is linear, so the effect of molecular orientation is stronger in the latter. The average

cross sections are 6.3 × 10−19 m2 and 3.9 × 10−19 m2 for octane and cyclohexane respectively,

but octane width cross section is much smaller hence the molecules can access pores that are

“invisible”for cyclohexane. This explains why BET values measured with octane are higher than

those calculated with cyclohexane. The effect of molecular orientation and the consideration of

uncertainties due to average “a”values for the calculation of surface energy have been previously

discussed by Donnet et al. [1992] and Mukhopadhyay and Schreiber [1995].

Note that flax and kenaf fibres showed a large difference between octane and cyclohexane BET

experiment compared to BioMid R© sample (ca. 50% and 15% difference respectively). The

BioMid R© fibres were manufactured using a wet spinning process. These fibres are expected to

be relatively homogeneous and to have relatively smooth surface even at the molecular level.

Natural fibres on the other hand are known to be highly heterogeneous both physically and

chemically (see Figure 4.1). Consequently, their surface might be expected to have asperities

over a range of length scales down to the molecular level. Such features would amplify the effects

of adsorbate orientation on the surface. The more linear octane molecule would have the ability

to pack more densely on the surface giving a higher specific surface area while the cyclohexane

molecule would pack less densely on the surface and generate lower measured specific surface

areas. This is consistent with the observed results.
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Table 4.4: Effect of adsorbate

BET Specific Surface Area (m2.g−1)

Specimen Solvent Mean Std (%)

BioMid R© Octane 0.55 0.1
Cyclohexane 0.47 0.2

Kenaf Octane 0.50 0.5
Cyclohexane 0.27 0.2

Flax Octane 1.41 3.5
Cyclohexane 0.75 0.3

4.1.3.3 Variability within a batch

As expected, the variability within the bast fibre batches was more pronounced than for the

BioMid R© fibres. As illustrated in Fig.4.5, the latter averaged 0.54 m2.g−1 and fell within 0.5

m2.g−1 and 0.58 m2.g−1 i.e. ± 7% variation. Bast fibre BET surface area values spread over

wider range; between 1.22 m2.g−1 and 1.49 m2.g−1 for flax and 0.38 m2.g−1 to 0.63 m2.g−1 for

kenaf batches, hence a variation of ca. ± 10% and ± 25% respectively. This was to be expected

as natural materials have quite variable structure due to growth conditions, position within the

plant, and damage during harvesting and processing. The range of BET surface areas reflects

this phenomenon.
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Figure 4.5: Individual value plots of the BET Surface Area (m2.g−1) with 95% Confidence
Interval (CI).

4.1.3.4 Sample packing

Table 4.5 shows the effect of fibre length on the BET values. The ranges of variation for

BioMid R© (ca. +10%) and kenaf (ca. +20%) fibres agree well with the previous findings on the

variability within a batch and the effect of fibre length could be considered negligible in that

case. However, short flax fibres BET surface area values stepped outside the confidence interval

(95% CI) with a variation of 20% i.e. chopping the fibres induced significant effects. The non

consistency of these results could be related to the physico-chemical differencies between the

fibres. As seen in Figure 4.4, both BioMid R© and kenaf fibre surface were neat and homogeneous

compared to the flax fibres that were unretted. Chopping the latter may have shredded the

fibre ends, i.e. multiplied the accessible surface area. It may also have peeled off some of the

cuticle/epidermis fragments and hence opened access to new surfaces that displayed different

chemistries than the outer layer. Both phenomena likely generated new molecular interactions

with the adsorbate.
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Table 4.5: Effect of fibre length

BET Specific Surface Area (m2.g−1)

Specimen Packing Mean Std (%)

BioMid R© (Octane) long 0.55 0.1
short 0.59 0.4

Kenaf (Octane) long 0.50 0.5
short 0.42 0.1

Flax (Cyclohexane) long 0.75 0.3
short 0.92 1.5

4.1.4 Conclusions

The BET specific surface area of kenaf and flax fibres differed, with an average of 0.51 m2.g−1

vs. 1.35 m2.g−1 respectively and the kenaf fibres showed similar BET value to cellulose fibres

(ca. 0.54 m2.g−1). The high specific area of flax, compared with kenaf and cellulose, was

related to the fibre surface roughness. Bast fibres had larger batch-to-batch variability than

synthesised cellulose fibres, which is a consequence of natural fibre structural irregularities and

heterogeneous properties.

The BET values obtained by IGC SEA showed a noticeable dependence on the elutant prop-

erties. For all specimens, the specific surface areas calculated from octane measurements were

higher than those from cyclohexane. This phenomenon is likely an effect of molecular orien-

tation. Sample packing also affected the BET surface area values but no clear trend could be

established. It is possible that chopping the unretted flax fibres either shredded the fibre ends

or removed lightly adherent cuticle /epidermal material on the surface increasing the accessible

surface area.

Based on these findings, the following protocol for determining the BET specific surface area

of natural fibres by IGC is proposed:

• Pack the chromatography column with the sample as is. Chopping fibres may induce non

negligible effects.

• Consider BET values obtained with the same solvent only for direct comparison.
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• For accurate calculation, consider the linearised BET equation over a coverage range (n/nm)

so that the correlation factor R2 > 0.995.

• Since repeatability is excellent (commercial equipment), two runs per column should be

sufficient to ensure confident results, assuming none of the data is an outlier.

These experimental data highlight the structural heterogeneity between different species of bast

fibres, in term of both chemical and physical singularities. Further data acquisition on natural

fibres is necessary to strengthen these models and extend the database to get consistent refer-

ences. However, the current results have demonstrated the potential of IGC for characterisation

of natural fibre surfaces. The authors encourage the development of inverse gas chromatography

for fibre grading as a complementary technique to traditional methods.
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4.2 Surface Energy of Natural Fibres

In fibre reinforced composites, stress transfer between the fibres and the matrix largely depends

on the adhesion mechanisms. These relate to the fibre physico-chemical properties, the surface

roughness (mechanical interlocking at the interface) and more particularly to its surface energy

[Heng et al., 2007]. In other words, surface energetics governs the fibre/matrix interactions.

Chemical treatment and mechanical processing applied to modify the fibres’ surface affect their

surface energy. Quantification of the fibre surface energy should enable a better appreciation of

the effect of modifications that occur at the fibre surface and to further optimise the fibre/matrix

interactions.

This section introduces first the thermodynamics involved in the determination of surface energy

by IGC, followed by a description of the experimental approach used in the study. The last part

presents two application case studies on natural fibres: a comparison of the fibre surface energy

between different species and an investigation on the effect of alkaline treatment on kenaf fibres’

surface energy.

4.2.1 Theoretical background

4.2.1.1 Surface energy and adhesion mechanisms

By definition, the surface energy is “the energy required to form (or increase the surface by)

a unit surface under reversible conditions”[Thielmann, 2004]. The surface molecules in a solid

have higher energy than the bulk molecules and therefore tend to form bonds to lower their

energetic state. The higher the surface energy, the more reactive the surface.

From a thermodynamic point of view, the concept of surface energy for a solid is analogous to the

surface tension of a liquid. Inverse gas chromatography is based on thermodynamic interactions

between an adsorbate (the gas probe injected in the column) and the adsorbent (the solid sam-

ple under study i.e. the natural fibre). In conditions of infinite dilution, adsorbate-adsorbate
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interactions are negligible and the adsorption takes place in Henry’s law region [Mukhopad-

hyay and Schreiber, 1995]. The Gibbs free energy of adsorption of the gas probe on the solid

stationary phase is then given by :

∆G◦
ads = −RTln(Vn) + C (4.4)

where ∆G◦
ads is the standard free energy of adsorption of the probe on the stationary phase

(J.mole−1), R is the gas constant (8.314 J.K−1.mol−1), T is the column temperature (K), Vn is

the amount of carrier gas required to elute the injected volume of probe molecules through the

column (m3) and C a constant function of the chosen reference state (J.mole−1).

In practice, the net retention volume Vn is measured from the flow rate in the column and is

quantified by:

Vn = J.F (tr − t0)
T

273.15
(4.5)

where J is the James-Martin gas compressibility correction factor, F is the gas volumetric flow

rate (m3.s−1), tr is the retention time (s) and t0 is the dead time (s), which corresponds to the

time required for the reference gas to elute. T is the column temperature (K).

On the other hand, the free energy of adsorption is related to the work of adhesion between

the gas phase and the stationary phase by [Schultz et al., 1987]:

∆G◦
ads = −N.a.Wa (4.6)

where N is Avogadro’s number (Mol−1), a is the molecular surface area of the probe (Å2) and

Wa the work of adhesion between the gas probe and the solid stationary phase (J.mole−1).
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According to Fowkes [1964], the work of adhesion between the adsorbent and the adsorbate can

be described as the sum of the multiple intermolecular interactions involved:

Wa = Σ(γi) (4.7)

where γi represent the energy components due to the dispersion (London) interactions, the ori-

entation (Keesom) interactions also known as dipole-dipole interactions, the induction (Debye)

interactions, the hydrogen bonding etc.

Van Oss et al. [1988] extended Fowkes’ approach and isolated the acid-base contributions so

that the work of adhesion between a solid phase (S) and a liquid phase (L) can be described

as function of γLWS,L and γAB
S,L . γLWS,L represents the physical long range interactions; it includes

the London-, Keesom- and Debye- interactions and is referred to as the Lifshitz- Van der Waals

(LW) component. γAB
S,L represents the chemical interactions; it includes both the Lewis acid-

base interactions and the hydrogen bonding. γAB
S,L is referred to as the Acid-Base (AB) energy

component.

It is worth remembering that the acid-base component is of particular importance when consid-

ering natural fibres for biocomposite applications because the fibres are hydrophilic whereas the

majority of thermoplastics are hydrophobic. For instance, hydrophobisation of the fibre surface

(i.e. lowering the acid-base component) should improve the affinity with non-polar matrices.

Determination of γAB
S,L would provide key information on the efficiency of a fibre treatment to

improve fibre/matrix affinity.

Note nomenclature: γLWS,L is commonly called dispersive component and γAB
S,L is sometimes called

specific component. For the sake of clarity, γLWS,L will be referred to as the dispersive component

and γAB
S,L will be referred to as the acid-base component.
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4.2.1.2 Determination of the dispersive component of the fibre surface energy γLWS

The dispersive component can be determined when the solvent injected through the column is

non-polar (for instance, n-alkanes). When a non-polar adsorbate interacts with a polar solid

surface, the interactions induced by the polar phase contribute to its free energy of cohesion

but do not contribute to the free energy of adhesion between the non-polar and the polar phase

[Dorris and Gray, 1979]. In other words, the dispersive interactions dominate at the interface

and γAB
S,L is negligible. Fowkes [1964] established that, in this condition, the work of adhesion

equals twice the geometric mean of the dispersive components of the solid phase γLWS and the

liquid phase γLWL :

WaS,L = 2(γLWS γLWL )1/2 (4.8)

Combining Eq. (4.4), (4.6) and (4.8):

RTln(Vn) = 2N.a.(γLWS )1/2(γLWL )1/2 + constant (4.9)

Assuming the relation RTln(Vn) vs. (γLWL )1/2 is linear, the dispersive component of the free

surface energy of the fibre γLWS can be deduced from the measurement of Vn [Mukhopadhyay and

Schreiber, 1995]. The Schultz approach [Schultz et al., 1987] and the Dorris and Gray approach

[Dorris and Gray, 1980] are commonly used to determine γLWS from IGC measurement.

The Schultz approach represents RTln(Vn) versus a(γLWL )1/2 and therefore γLWS = (slope/2N)2,

as represented in Figure 4.6a. This method has been questioned for two reasons. Firstly, the

molecular surface area of the probe a is expected to vary with the different conformations of the

molecule, which depend on the types of interactions with the solid surface. Secondly, the probe

conformations may vary with the temperature and so does a [Mukhopadhyay and Schreiber,

1995].
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(a) (b)

Figure 4.6: Common approach to determine γLWS (a) Schultz approach and (b) Dorris and
Gray

Dorris and Gray [1980] proposed a method independent of the molecular area of the probe

and that also includes the temperature. This approach considers the contribution of a single

methylene group (-CH2) to the free energy of adsorption in a series of two successive n-alkane

probes (CnH2n+2 and Cn+1H2n+4), defined as ∆G◦
CH2

(see Figure 4.6b). For each alkane, Eq.(4.9)

gives:

RTln(Vn,CnH2n+2) = 2N.aCh2.(γ
LW
S )1/2(γLWCnH2n+2

)1/2 + constant (4.10)

RTln(Vn,Cn+1H2n+4) = 2N.aCh2.(γ
LW
S )1/2(γLWCn+1H2n+4

)1/2 + constant (4.11)

and therefore

γLWS =

[
RTln

(Vn,Cn+1H2n+4

Vn,CnH2n+2

)]2
4N2.a2Ch2.γ

LW
CH2

(4.12)

with γLWCH2
the surface energy of a methylene group, which is defined at a given temperature T .
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Both Schultz Lavielle and Dorris and Gray methods have shown good agreement [Mukhopad-

hyay and Schreiber, 1995] but the latter is more versatile and therefore usually preferred. Don-

net et al. [1991] and Brendlé and Papirer [1997] developed alternative methods based on the

polarisability of the gas probe and on the geometry of the probe respectively. These methods

have been less frequently applied.

4.2.1.3 Determination of the acid-base component of the fibre surface energy γAB
S

When a polar probe elutes through the column, both dispersive and acid-base interactions

occur at the fibre surface. The acid-base contribution ∆G◦AB
ads to the free surface energy ∆G◦

ads

is deduced by comparison of the retention volume between a polar probe and an alkane (Figure

4.7). Various graphical methods have been developed to determine ∆G◦AB
ads , namely the Schultz

method (represented in Figure 4.7), the polarisation method [Dong et al., 1989], the Saint Flour

and Papirer [1983] method and the Brookman and Sawyer [1968] method. These require the

knowledge of distinct parameters and Panzer and Schreiber [1992] demonstrated that ∆G◦
AB was

independent of the graphical method. Since then, the methods have been considered equivalent.

Figure 4.7: Determination of ∆G◦AB
ads with Schultz method

According to Van Oss et al. [1988], the acid-base free energy of interaction between two phases

S, L in their condensed state can be described as:

∆G◦AB
S,L = −2(γ+S γ

−
L )1/2 − 2(γ−S γ

+
L )1/2 (4.13)
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where γ+ represents the electron-acceptor parameter and γ− the electron-donor parameter of

the surface tension. These constituents are not additive and the total acid-base component of

the surface tension is given by:

γAB
S = 2(γ+S γ

−
S )1/2 (4.14)

In practice, the experiment involves a series of n-alkanes to build the alkane reference line

followed by injection of a mono polar acid probe L1 (γ−L1 = 0) and a basic probe L2 (γ+L2 = 0).

In these conditions, a system of two equations with two unknowns can be established from

Eq.(4.13) to solve γAB
S . Two scales are commonly used for the surface tension components

of the probes, which are based on the surface tension of water. The Van Oss scale considers

the acid-base surface tension of water to be neutral (γ+l = γ−l = 25 mJ.m−2) where as the

Della Volpe scale assumes that water is more acidic (γ+l = 10 mJ.m−2 and γ−l = 65 mJ.m−2)

[Della Volpe and Siboni, 1997]. The latter has shown more accurate results than the Van Oss

scale [Baley et al., 2006, Kondor et al., 2014, Thielmann, 2004].

Finally, the total surface energy of the fibre surface equals the sum of γLWS and γAB
S as these

components are additive [Van Oss et al., 1988]:

γTOT
S = γLWS + γAB

S (4.15)

4.2.2 Experimental procedure

IGC is usually performed at infinite dilution i.e. it involves very small amount of solvent,

typically 10−6 to 10−5 Mol [Belgacem and Gandini, 1999]. In these conditions, only adsorbate-

adsorbent interactions occur and adsorbate-adsorbate interactions are negligible: the retention

volume Vn is independent of the amount of adsorbate injected in the column hence the isotherms

are linear and Henry’s law applies [Ylä-Mäihäniemi et al., 2008]. On the other hand, working at
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infinite dilution implies preferential sampling because high energetic sites contribute more than

low energetic sites and therefore the estimated dispersive component is in the upper range of

the overall energetic sites [Mukhopadhyay and Schreiber, 1995]. In real solids, surface molecules

have different energy levels due to chemical heterogeneity (surface groups, degree of crystallinity,

impurites) and/or structural heterogeneity (porosity etc.). Therefore, the surface of real solids

is energetically heterogeneous. This also explains why IGC data obtained at infinite dilution

are often superior to those obtained by contact angle and other wet studies [Dove et al., 1996].

Ylä-Mäihäniemi et al. [2008] introduced a more realistic approach to the surface energy of solid

samples and proposed a method to establish the surface energy profile by IGC experiment at

finite concentration. The concept walk-through is summarised in Figure 4.8 and detailled in

the following paragraphs.

Figure 4.8: Overview of the calculation method to determine γLWS (adapted from Ylä-
Mäihäniemi et al. [2008])

• Step 1: Determination of alkane adsorption isotherms
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Adsorption isotherms were obtained for a series of n-alkanes (three minimum, ideally four or

five) at different surface coverages. The more data points obtained at different coverages, the

better the precision of γLWS profile. However, the injection range boundaries depend on the

probe and on the sample specific surface area. A series of trial-and-error experiments with the

natural fibre samples suggested that a minimum of six surface coverages from 0.6% up to 15%

should be performed with the C7-C10 alkanes series (heptane, octane, nonane and decane). An

example of isotherms obtained on kenaf fibres as received at 30◦C and 0% RH is given in Figure

4.9.

Figure 4.9: Alkane isotherms obtained with kenaf fibres as received (30◦C, 0% RH)

• Step 2: Calculation of the retention volume for each solvent at the measured concentrations

For all samples, the conditions of linearity for the isotherms were satisfied (R2 ≥ 0.999) and

therefore the classic methods established in infinite dilution [Dorris and Gray, 1980, Schultz

et al., 1987] were assumed applicable. The retention volume Vn was calculated for each solvent

injection according to Eq. (4.5) with the compression correction factor J determined by:

J =
3

2

[1 − (Pi/Pa)
2]

[1 − (Pi/Pa)3]
(4.16)
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where Pa is the atmospheric pressure (760 Torr) and Pi equals Pa plus the pressure drop in the

column (Torr). The flow rate was 10 mL.min−1 and the dead time was measured with methane

(average of four measurements). The monolayer capacity nm was known for each alkane from the

BET measurements and hence the actual surface coverage n/nm was calculated. The retention

volume Vn versus n/nm was plotted for each solvent on the same graph:

Figure 4.10: Retention volume of n-alkane series obtained with kenaf fibres as received (30◦C,
0% RH)

• Step 3: Establish the alkane reference lines for a given surface coverage

The alkane reference line RTln(Vn) vs. C-number was establish by interpolation of Vn from the

curve Vn versus n/nm at each target surface coverage. For all samples, the range of calculation

was within 0.006 to 0.15. The n-alkane series for the kenaf fibres is illustrated in Figure 4.11:
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Figure 4.11: Alkane series obtained with kenaf fibres as received (30◦C, 0% RH)

As seen in Figure 4.11 the conditions of linearity were satisfied for all reference lines. The

condition R2 ≥ 0.999 was verified for all other samples.

• Step 4: Determination of γLWS

For each coverage, γLWS is calculated from the slope of the n-alkane reference line according to

the Dorris and Gray method described previously:

γLWS =
slope2

4N2.a2Ch2.γ
LW
CH2

(4.17)

with aCh2 = 0.06 nm2 [Jacob and Berg, 1994] and γLWCH2
value was estimated based on the surface

tension of a linear polyethylene melt as a function of temperature T (◦C) [Dorris and Gray,

1980]:

γLWCH2
= 35.6 − 0.058(T − 20) (4.18)
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γLWS values were obtained from Eq.(4.17) and Eq.(4.18) for each target surface coverage at a

given temperature (30◦C):

Figure 4.12: γLWS profile of kenaf fibres as received obtained with Dorris and Gray method,
peak CoM (30◦C, 0% RH)

Extrapolation of γLWS profile was obtained by regression with exponential decay in the form:

γLWS = a. exp
[
−b
( n

nm

)]
+ c (4.19)

where a is the amplitude, b the decay constant and c the offset value. The γLWS curve was

extrapolated with MATLAB Curve Fitting Tool. Example of γLWS profile for kenaf fibres as

received:
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Figure 4.13: Extrapolation of γLWS profile

Once γLWS profile established, the dispersive surface energy distribution was obtained by inte-

gration of γLWS over the coverage range (reported to 100%). This procedure is equivalent to a

particle size distribution where γLWS and the surface area increment represent the particle size

and the frequency density respectively. A typical γLWS distribution is shown below:
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Figure 4.14: γLWS distribution profile up to 100% coverage

Note that it is necessary to extrapolate γLWS across the entire coverage (up to n/nm = 1) to get

a complete distribution curve (the area increment tends to zero when γLWS tends to its lower

limit). This also enables the superimposition of data obtained at different maximal coverages

(up to 0.1, 0.12 etc.) to compare various samples.

γAB
S values were obtained by injection of mono polar probes (acid, base) at the same surface

coverages as the alkanes and applying the Van Oss method (Eq. (4.13), Eq. (4.14)). The Della

Volpe scale was chosen for the surface tension components of each polar probe. γAB
S profile

and γAB
S distribution profile were then established following the same procedure as mentioned

above. Finally, the total surface energy profile γTOT
S was established as the sum of both profiles

(Eq. (4.15)).
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4.2.3 Case studies

The first case study discusses the surface energy profiles of cellulose BioMid R© fibres, linseed

flax and kenaf KK60 fibres as received. The second experiment aims to investigate the effect

of water wash and alkaline treatment on the fibre surface energy profile of kenaf fibres.

All IGC surface energy experiments were performed with the same conditions as that of the BET

measurement (see paragraph 4.2.1). The columns were packed with ca. 1 g of fibres (about 10

cm long). Heptane (C7), octane (C8), nonane (C9) and decane (C10) were injected to build the

alkane isotherms, dichloromethane and ethylacetate were injected as the mono polar acid probe

and basic probe respectively. These probes were selected for calculation as they gave better

elution peaks than other polar probes (chloroform, toluene). All solvents were of HPLC grade

(> 99.9%). Heptane, decane, dichloromethane and ethylacetate were supplied by Uniscience

Laboratories (CAN). Octane and nonane were supplied by Sigma Aldrich (CAN). The solvents

were injected over a coverage range within 0.006 to 0.15, the minima and maxima depending

on the sample mass. The BET values obtained earlier were considered for the calculation of

the coverage n/nm. Data was collected with the SMS IGC Control Software and analysed with

Cirrus Plus v.1.2.1.2. Note that the data was replicated manually using the method developed

earlier and matched those obtained with the software, therefore the latter were extracted as is.

Experimental conditions are summarised in Table 4.6.
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Table 4.6: Experimental procedure for surface energy analysis

Samples cellulose BioMid R©, flax linseed, kenaf KK60

Solvents reference: methane

alkanes: heptane, octane, nonane, decane

polar probes: dichloromethane, ethylacetate

Coverage from 0.006 to 0.15

Column conditions conditioning: 40◦C, 0% RH for 1 h

experiment: 30◦C, 0% RH

flow rate: 10 mL.min−1

Calculation method Dorris and Gray

parameter: peak Centre of Mass (CoM)

scale Della Volpe:

dichloromethane: γ+l = 124.6 mJ.m−2, γ−l null

ethylacetate: γ+l null, γ−l = 475.7 mJ.m−2

4.2.3.1 Surface energy profiles of natural fibres

Table 4.7: Surface energy components (mJ.m−2) at 30◦C, 0% RH

γLW
S γAB

S γTOT
S γAB

Smean/γ
TOT
Smean

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

BioMid R© 40.7 42.8 41.1 3.8 4.3 3.9 44.5 47.1 45 0.08 0.09 0.09

Flax 38.6 41 39.1 6.6 8.3 6.9 45.3 49.4 46.1 0.15 0.17 0.15

Kenaf 37.7 43.6 38.8 11.1 18.4 12.5 48.9 62 51.3 0.23 0.3 0.24

Min value corresponds to maximal coverage (n/nm = 1)

Max value corresponds to minimal coverage (n/nm = 0), infinite dilution

Mean value corresponds to 50% coverage (n/nm = 50)
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The distribution profiles represent the surface energy heterogeneity in a similar manner to a

population distribution profile: the wider the curve, the more heterogeneous the surface. γLWS

and γAB
S distribution profiles of the cellulose, flax and kenaf fibres are given in Figure 4.15a and

Figure 4.15b respectively. The cellulose BioMid R© fibre surface was the most homogeneous with

dispersive energy values ranging from 40.7 mJ.m−2 to 42.8 mJ.m−2 and acid-base energy values

comprised between 3.8 mJ.m−2 and 4.3 mJ.m−2. This was expected as the BioMid R© fibres

were produced by spinning process and had a regular smooth surface. The flax fibre surface

appeared more heterogeneous than the BioMid R©, with 38.6 mJ.m−2 6 γLWS 6 41.0 mJ.m−2

and 6.6 mJ.m−2 6 γAB
S 6 8.3 mJ.m−2. The kenaf fibres showed the most heterogeneous surface

with 37.7 mJ.m−2 6 γLWS 6 43.6 mJ.m−2 and 11.1 mJ.m−2 6 γAB
S 6 18.4 mJ.m−2.

The γLWS profile trends suggested that the kenaf fibre surface contained active sites with energy

levels spread more than those of flax fibre surface. The dispersive component heterogeneity

could be due to porosity, defects and asperities on the kenaf fibres. Previously, SEM results

highlighted that the kenaf and flax fibre surface topography clearly differed. The kenaf fibre

surface was covered with patches of an amorphous mixture and the flax fibres were mostly cov-

ered by the epidermal/cuticle layer. Therefore, both surfaces likely contained different energetic

sites with various energy levels. The kenaf fibres’ surface likely contained a mixture of com-

ponents which explains the large dispersion. A ranking based on the mean values (coverage of

50%) gives γLWSmean(kenaf) 6 γLWSmean(flax) 6 γLWSmean(BioMid R©). The flax fibres were unretted

and likely contained more waxy substances than the kenaf fibres (water retted), which could

explain the higher dispersive energy values at higher coverages (waxes are highly non-polar).

The γAB
S distribution profile trends were similar to that of γLWS (Figure 4.15b). As expected,

BioMid R© fibres were the least polar and the most homogeneous i.e. the few polar sites present

on the fibres’ surface had similar energy levels. Flax fibre surface contained polar groups of

lower energy than that of kenaf fibre surface, which is consistent with the assumption that

the former surface was rich in waxes and the kenaf fibres contained various polar components.

Kenaf fibres’ surface likely comprised more Lewis acid-base functional groups than that of flax,

for instance lignins, pectins and extractives.
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(a)

(b)

Figure 4.15: Distribution of the surface energy components: (a) γLWS and (b) γAB
S distribution

profiles for cellulose BioMid R©, kenaf and linseed flax fibres
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According to Eq.(4.15), addition of both distribution profiles gives the total surface energy

distribution profiles (Figure 4.16). Logically, the trends were consistent with the components’

distribution profiles; BioMid R© fibres were the less reactive and had the most energetically

homogeneous surface compared to bast fibres. A ranking based on the mean values gives

γTOT
Smean(BioMid R©) 6 γTOT

Smean(flax) 6 γTOT
Smean(kenaf) i.e. the kenaf fibre surface was the most

reactive after the flax and the BioMid R© fibre surface respectively. In addition, the acid-base

energy component largely contributed to the total surface energy values of the bast fibres and

in particular for the kenaf fibres. This can be expressed with the polarity indexed defined as

(γAB
Smean/γ

TOT
Smean): kenaf fibres had highest polarity index (0.24) compared to flax and BioMid R©

fibres (0.15 and 0.09 respectively) (see Table 4.7).

Figure 4.16: γTOT
S distribution profiles for cellulose BioMid R©, kenaf and linseed flax fibres
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It is worth noting that data interpretation based on energy values obtained at infinite dilution

would be misleading. For instance, all energy components calculated at infinite dilution (en-

ergy values considered at 0% coverage) overestimate the mean values obtained at higher surface

coverage (50% surface coverage). The surface energy values of BioMid R© and flax fibres would

be overestimated by 5% and 7% respectively and by more than 20% for the kenaf fibres. Ylä-

Mäihäniemi et al. [2008] and Mukhopadhyay and Schreiber [1995] previously pointed out this

weakness of traditional IGC experiments. In addition, values obtained at infinite dilution sug-

gest that the kenaf fibres had highest dispersive energy component compared to the BioMid R©

and flax fibres, which differs from measurements at finite concentration. The latter provide a

more accurate representation of the surface and these results highlight the necessity to perform

IGC measurement at finite concentration.

4.2.3.2 Effect of chemical treatment on the fibre surface energy profile

Table 4.8: Surface energy components (mJ.m−2) at 30◦C, 0% RH

γLW
S γAB

S γTOT
S γAB

Smean/γ
TOT
Smean

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Kenaf as

received

37.6 43.6 38.8 11.1 18.4 12.5 48.9 62 51.3 0.23 0.3 0.24

Kenaf

wash

39.5 41.7 39.9 9.2 13.9 10.1 48.8 55.6 50.1 0.19 0.25 0.20

Kenaf

NaOH

39.8 43.1 40.4 7.2 12 8.1 47 55 48.5 0.15 0.22 0.17

Min value corresponds to maximal coverage (n/nm = 1)

Max value corresponds to minimal coverage (n/nm = 0), infinite dilution

Mean value corresponds to 50% coverage (n/nm = 50)

The water wash and alkaline treatments changed both the distribution of the energetic sites and

the energy levels of γLWS and γAB
S and therefore of γTOT

S (Figure 4.17 and Figure 4.18). Both

the water wash and alkaline treatments induced a shift to higher average γLWS values suggesting

that the kenaf fibre surface became more hydrophobic (Figure 4.17a). The evolution of γLWS

profile indicates an increase in number of high energetic sites and/or an increase in energy
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levels of the active sites. This could be due to the removal of polar groups like pectins and

extractives while increasing the cellulose and hemicellulose content on the fibre surface. Mills

et al. [2008] and Mills [2009] previously observed an increase in γLWS with increasing cellulose

content. In addition, the water washed fibres had a smaller distribution of the dispersive

energetic sites than the fibres as received, whilst alkaline treatment rendered the surface slightly

more heterogeneous. The evolution of γLWS distribution was consistent with the SEM analysis:

the water washed fibres appeared smooth and regular whilst the alkaline treated fibres had a

more heterogeneous surface with a visible pattern on the outer layer.

Logically, γAB
S profile shifted to lower values, as the surface became less polar (Figure 4.17b).

The distribution of the polar active sites also diminished, suggesting a reduction in number

of high polar sites and/or a decrease in energy levels of the polar active sites. As mentioned

previously, both phenomena were likely to occur. At higher coverages, γLWS values of kenaf

water washed and kenaf alkaline treated fibres converged whereas the latter showed smaller

γAB
S values than the water wash fibres. This suggested that the alkaline treatment induced

a major change in the polar functional groups and affected to a smaller degree the dispersive

energetic sites.
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(a)

(b)

Figure 4.17: Effect of chemical treatment on (a) γLWS and (b) γAB
S
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Finally, a comparison of the γTOT
S distribution profiles highlights the overall effect of water wash

and alkaline treatment on the surface energy profile (Figure 4.18). The water wash reduced the

total surface energy values and the surface became more homogeneous. The alkaline treatment

further decreased the total energy values but rendered the surface slightly more heterogeneous.

Actually, the surface energy values were similar at high surface coverages: the kenaf as received,

water washed and alkaline treated fibres had a γTOT
Smin = 48.9 mJ.m−2, 48.8 mJ.m−2 and 47

mJ.m−2 respectively. This indicates that both treatments only slightly affected the overall

surface energy of the fibres. On the other hand, the polarity index γAB
Smean/γ

TOT
Smean showed that

both treatments reduced the surface polarity: kenaf fibres as received had a polarity index of

0.24 compared to 0.20 and 0.17 for the water washed and alkaline treated fibres respectively

(see Table 4.8).

As mentioned in the previous case study, a comparison based on measurements at infinite

dilution would overestimate the surface energy values by 20% for the kenaf fibres as received

(γTOT
Sinf = 62 mJ.m−2 and γTOT

Smean = 51.3 mJ.m−2) and by ca. 10% for the kenaf water washed

(γTOT
Sinf = 55.6 mJ.m−2 and γTOT

Smean = 50.1 mJ.m−2) and alkaline treated (γTOT
Sinf = 55 mJ.m−2

and γTOT
Smean = 48.5 mJ.m−2).
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Figure 4.18: Effect of water wash and alkaline treatment on γTOT
S distribution profile of kenaf
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4.3 Conclusions

• IGC is a promising technique to study the surface energy of natural fibres, but IGC applied

to natural fibres is relatively recent therefore systematic studies need to be performed.

• In this study, the critical parameters to determine the BET surface area values were identified

and a protocol applicable to natural fibres was proposed.

• While IGC traditionally involves infinite dilution, surface energy measurements were per-

formed at finite concentration to obtain more realistic values. The surface energy distribution

profiles of the dispersive and the acid-base components provided key complementary informa-

tion to the overall surface energy profile of natural fibres and highlighted their specificity.

• Investigation of the effect of fibre treatment on the surface energy profiles of kenaf fibres

provided new insights, in particular the change in polarity and the distribution of the energetic

active sites. All results agreed well with the SEM and XPS analysis performed.

• IGC results showed that the alkaline treatment rendered the kenaf fibre surface less polar and

more energetically homogeneous. Consequently, the latter is expected to increase the interfacial

interactions with hydrophobic thermoplastics such as polypropylene, polyethylene and polyvinyl

chloride.
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Optimisation of Extrusion Process for

Biocomposites

The research presented in this chapter formed an integral part of the Cooperative Research

Centre for Advanced Composite Structures (CRC-ACS), Project P1.1 “Plant Fibre Biocom-

posites”. The first two sections give a brief synopsis of the CRC-ACS project and relevant

research to provide the reader an appreciation on how the thesis fits within the overall project.

The third section outlines the experimental approach used to design a series of extrusion tri-

als, followed by the results with discussions. The chapter concludes with an overview of the

extrusion trials performed with industrial partners.

5.1 Introduction

The aim of CRC-ACS P1.1 was to develop technology for increased adoption of plant fibre

biocomposites, to provide information and guidelines to the Australian composites industry en-

abling them to increase usage of sustainable composites, and to develop new composites based

on thermoset, thermoplastic and/or biopolymer matrices. Work package 2 “Enhanced Short

Fibre Biocomposites”, in which this project was integrated, had the aim to develop improved

short-fibre natural fibre composites for applications in the building and construction sector and

work towards the commercialisation of these materials by closing the existing gaps in the supply
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chain. A primary focus was devoted to the development of a scalable supply chain where it was

demonstrated that each processing step can be upscaled from laboratory to commercial scale.

In that light, and with the aim to support a local fibre industry, three key industry partners

joined the project. These included Engage Eco Product Co. Ltd, a well-established natural fibre

producer in Thailand, Duromer, a speciality compounder in Sydney and Extrusion Technology

International (ETI), a Brisbane based extrusion company specialised on commodity extrusions

for the horticulture and building & construction sector. The main research partners participat-

ing in work relevant to extrusion and compound development are The University of Queensland

and the University of Auckland. The Centre for Advanced Composite Materials (CACM) at

the University of Auckland, directed by Prof. Debes Bhattacharyya, has a longstanding ex-

pertise in biocomposite materials, in particular the compounding and extrusion domain. Prior

to the commencement of work related to this thesis, The University of Queensland had very

limited experience in the field of natural fibre compounding and extrusion. Establishing this

capability and proving the developed technology on an industrial size is seen as one of the major

contributions of the project.

5.2 Preliminary Work

This section describes a summary of the research undertaken at the University of Auckland

and The University of Queensland. Work performed at the University of Auckland helped

guiding the research presented in this chapter. The work described in this section had little

intellectual input form the author and is at this point only summarised to provide justification

of the starting point of the here presented research. On the other hand, the experimental work

undertaken at The University of Queensland on small scale extrusion was heavily influenced by

the author, either as principle supervisor or associate supervisor of the students involved. Whilst

the research was important in the overall context of the CRC-ACS project, it was decided that

it did not form a core part of the thesis and therefore results are only briefly summarised. The

results have been published elsewhere [Legras et al., a,b, Ziegelaar, 2013]. The lessons learned

from this prior work, however, instructed the thesis work and is summarised in the Section

5.2.3.
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5.2.1 Compound optimisation

Compounding work was undertaken by the University of Auckland with the aim to optimise

the extrusion processes of short kenaf fibre biocomposites. A detailed summary of this research

can be found in CRC-ACS report TR13053 [Rao and Bhattacharyya, 2013]. The experiment

was carried out following the Taguchi approach (L9 fractional factorial) to study the effect of

feeding location (Zone 1, Zone 2, Zone 3), fibre content (15 wt.%, 30 wt.%, 40 wt.%) and barrel

temperature (190◦C, 200◦C, 210◦C). Materials used were polypropylene grade Hopelen J-150

(injection moulding grade, melt flow rate 10 g.10 min−1 at 230◦C) supplied by Lotte Chemical

Corporation and maleic anhydride polypropylene (MAPP) from Clariant (Licocene PP MA

6452, fine grain). Compounding was carried out on a Brabender DSE 25 (40:1 L/D) with a

dispenser to feed the polymer and a side feeder to introduce the fibres and MAPP (4 wt.% of

the total composition) into the barrel. The screw design included four series of kneading blocs

(Figure 5.1) and the screw speed was set up at 70 rpm. Once extruded, the compounds were

pelletised and injection moulded into coupon specimens with an injection moulder (BOY 50A).

Tensile results from this study are shown in Table 5.1.

Figure 5.1: Screw configuration and feeding location on the twin-screw extruder Brabender
DSE 25
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Table 5.1: Tensile properties of kenaf/MAPP/PP composites (ASTM D638)

Run Feeding zone Barrel

temperature

(◦C)

Fibre content

(wt.%)

Average tensile

strength (MPa)

Average

Young’s

modulus (GPa)

1 Zone 2 200 15 34.3 3.1

2 Zone 1 190 15 33.6 2.9

3 Zone 3 210 15 38.3 4.2

4 Zone 2 190 30 39.7 4.0

5 Zone 1 210 30 37.9 3.9

6 Zone 1 200 40 38.9 4.2

7 Zone 3 200 30 40.5 4.3

8 Zone 3 190 40 48.2 6.5

9 Zone 2 210 40 41.6 5.5

Experimental data showed a clear trend towards the effect of fibre content on the compound

properties, more particularly a strong positive correlation between the fibre load and the tensile

properties. The maximum performance was obtained with rear feeding (Zone 3), 40 wt.%

fibre content and low barrel temperature (190◦C). Analysis of Variance (ANOVA) indicated

that the dominant factors were fibre loading and feeding location. Surprisingly, the maximum

performance was obtained with rear feeding, which questions the choice of downstream feeding

as used in many extrusion experiments [Bengtsson et al., 2007, Santos et al., 2007]. The screw

configuration used in these experiments could be classified as mild, therefore, although the

residence time of the fibres was considerable, thermal degradation was limited thanks to low

temperatures and low energy input all along the barrel.

Further work by the University of Auckland investigated the effect of polymer melt flow on

compound properties [Sallih, 2015]. The polymer viscosity behaviour was found to be critical

in the extrusion process. In particular, adding fibres into the polymer increased the viscosity

hence reducing the melt processability. Therefore, it is advised to extrude polymers with high

Melt Flow Index (MFI) in order to achieve efficient fibre wetting. On the other hand, polymers

with low MFI offer better sag resistance and drawability due to their hight melt strength [Lau

et al., 1998]. The purpose of the study was to characterise kenaf/MAPP/PP composite sheets

while varying the die temperature and the MFI. Five PP grades were tested, with an MFI range
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from 1.3 g.10 min−1 to 11 g.10 min−1: HP555G (MFI 1.3), HA899J (MFI 2.5), HP400L (MFI

5.5), HP422M (MFI 8.5) and HP400N (MFI 11). The maximal tensile and flexural mechanical

performance was obtained with the grade HP422M.

5.2.2 Effect of screw speed and screw design

A bench-top study was performed at The University of Queensland under supervision of the

author. The study focused on the influence of processing parameters on the mechanical prop-

erties of kenaf/high density polyethylene (HDPE) compounds. Kenaf fibres were supplied by

Ecofibre Industries Operations Pty Ltd and processed by high velocity air-mill (Aximill) prior

to extrusion. Materials were HDPE grade Cotene 3925 (MFI 3.5 g.10min−1 at 190◦C) supplied

by ICO Polymers and ethylene-maleic anhydride copolymer (PEMA) (licocene PE MA 4351)

supplied by Clariant. The fibres were added to the master batch PEMA (3 wt.%)/HDPE. L9

fractional factorial was performed with a lab-scale co-rotating twin-screw extruder EuroLab

XL16 (25:1 L/D). The Taguchi array involved three factors of three levels each: fibre loading (0

wt.%, 20 wt.%, 40 wt.%), screw speed (70 rpm, 100 rpm, 130 rpm) and various screw designs

(soft, mild, aggressive). The screw mixing zones were altered to modulate the shear input to

the melt flow using sequences of forward, neutral or rearward conveying elements (this will be

explained later in section 5.3). The feeding system comprised a top-mounted vibration plate to

feed the master batch and a Brabender volumetric side feeder to feed the fibres. The samples

were waterjet cut from direct extrusion (strip die) into ASTM D638 type IV tensile coupons.

Tensile data obtained are listed in Table 5.2.
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Table 5.2: Tensile properties of kenaf/PEMA/HDPE composites (ASTM D638)

Run Screw design Screw speed

(rpm)

Fibre content

(wt.%)

Average tensile

strength (MPa)

Average

Young’s

modulus (GPa)

1 Aggressive 100 0 14.0 0.75

2 Aggressive 130 20 14.8 0.95

3 Aggressive 70 40 13.2 1.31

4 Mild 130 0 14.0 0.76

5 Mild 70 20 14.8 0.88

6 Mild 100 40 17.4 2.35

7 Soft 70 0 13.5 0.92

8 Soft 100 20 14.6 0.99

9 Soft 130 40 18.4 1.84

The efficacy of kenaf Aximilled fibres to improve the tensile modulus was considerable whilst

the improvement in tensile strength was marginal: an increase of the Young’s Modulus of up

to 125% and up to 18% for the tensile strength with 40 wt.% fibre content was noted. This

observation is often reported in the literature [Chevali and Ulven, 2012, Oksman et al., 2003,

Puglia et al., 2008] and is thought to be due to the creation of defects during the extrusion

process, particularly the introduction of porosity and surface heterogeneities. Introduction of

porosity during compounding is a typical phenomenon for particle or fibre reinforced plastics

that occurs with moisture release and polymer shrinkage at high cooling rate. Fibre bridging

due to fibre feeding issues constitutes another plausible explanation for the low performance in

tensile strength.

Statistical analysis with ANOVA methods showed a clear trend for the effect of the fibre content

on the compound properties. In comparison, the relative efficacies of screw speed and the screw

configuration to improve the composite performance were of secondary importance. The optimal

configuration was then established based on the calculation of the signal-to-noise ratio for each

variable. The major findings are presented in Table 5.3.
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Table 5.3: Optimal configuration on Eurolab XL16 for kenaf/PEMA/HDPE composites

Design objective Screw design Screw speed (rpm) Fibre content

(wt.%)

Actual tensile

properties

Maximum strength Soft 130 40 Tensile strength:

18.4 MPa

Young Modulus:

1.84 GPa

Maximum modulus Mild 100 40 Tensile strength:

17.4 MPa

Young Modulus:

2.35 GPa

As expected, the highest content (40 wt.%) of kenaf fibres lead to both highest tensile strength

and elastic modulus. This is not the case for the other parameters; the screw speed and the

screw design optimal configurations differ whether the target is to maximise the strength or the

Youngs’ modulus. This has also been observed in the literature [Alvarez and Vázquez, 2006,

Gamon et al., 2013, Mano et al., 2010]. As shown in Table 5.3, there was a compromise between

the screw speed and the screw design. A higher screw speed increases the amount of work put

into the melt, thereby increasing the mixing intensity. An aggressive screw design induces high

shear, hence increases the mixing but also leads to fibre attrition [Giles Jr et al., 2004]. Both

screw speed and screw design are interdependent and it appears that there is not a optimum

configuration for both strength and stiffness.
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5.2.3 Lessons learned

5.2.3.1 Fibre feeding

The first and main lesson learned through the series of experiments performed as part of project

CRC-ACS P 1.1 is the importance of feeding strategy. Feeding natural fibres in an extruder

is more challenging than feeding synthetic fibres. Traditionally, reinforcement elements and

polymer particles are fed as a master batch in compounding extrusion [Giles Jr et al., 2004].

However, feeding natural fibres mixed with the matrix as a master batch is difficult because

the fibres have low density and tend to separate, leading to inhomogeneous distribution in the

barrel. Also, fibres and polymer granules differ in size and hence do not mix easily. Side-feeding

is a preferred option to adjust the feeding rates separately, and it enables the modulation of

the feeding position. Natural fibres tend to bridge in the hopper which generates inconsistent

feeding, obstruction in the barrel and therefore results in compounds with poor mechanical

properties. Bridging is a common issue when feeding low density elements and in particular

wood fibres and natural fibres.

Natural fibre pelletising prior to extrusion process has been recently investigated to palliate

this issue (BioStruct project, Deutsche Bundesstiftung Umwelt project etc.). Following this

approach, the development of a pelletising process for short kenaf fibres was undertaken as an

undergraduate research project [Danks, 2014] at The University of Queensland. Natural fibre

pellets were successfully produced with a lab pellet mill. The best consistency was achieved

when adding 25 wt.% water content to the fibre prior to pelletising with the maximal vertical

roller load, through a 6 mm diameter die hole plate. Further investigation was performed on

the pellets drying behaviour in an oven and it was found that 70% of the additional water was

removed after nine hours at 60◦C. Validation tests were performed to feed fibre pellets with

a Brabender volumetric side feeder. It was found that the fibre pellets fed more consistently

than loose fibre feeding.
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5.2.3.2 Up-scaling

The scale-up process was the second important aspect identified during the multiple extrusion

trials performed. In biocomposite research, a majority of studies are undertaken with small

to medium sized extruders and usually focus on one aspect rather than on the overall process.

A complete production process also encompasses the management of material supply, storage,

material preparation in large volumes and last but not least, extrusion on a large scale i.e.

with large throughput. The scale-up process is challenging, particularly for research groups

with limited facilities, but this procedure is sine qua non for commercialisation of short fibre

biocomposites. It is necessary to study the feasibility of biocomposite extrusion at a large scale

to identify the specific needs and issues that arise.

5.2.3.3 Fibre traceability from the field to the factory

Finally, fibre traceability is key for successful extrusion and product optimisation. Compared to

typical synthetic fibres (E-glass, carbon fibres), handling large volumes of natural fibres requires

better control when it comes to material supply and logistics. This is mainly due to the fact that

plant fibres are natural materials, hence they exhibit a large variation in properties. Although

the plant fibre microstructure is similar to the wood cell, the growth conditions, plant yield

and post processing steps are completely different and only a few techniques can be transferred

from the wood industry to the agro-fibre industry.

As discussed in the previous chapters, natural fibres have already a considerable “history”when

they enter the compounding process. From the field to the factory, the fibres encounter multiple

steps that impact the final properties [Akil et al., 2011, Summerscales et al., 2010]. For example,

the bast fibre properties vary between genera and species, depend on the growing conditions

(chemical input/weather conditions) and on the harvesting time and technique [Mediavilla

et al., 2001]. The retting process and further treatment (chemical or mechanical) also impact

the fibre properties [Paridah et al., 2011].
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Most of the decisive factors are related to agronomy (plant variety, growing conditions) and

the processing conditions (harvesting, retting, treatment). Also, natural fibres display consid-

erable variance and there is currently little control over the “as received”sample properties.

To better manage these uncertainties, a proper traceability scheme should be implemented so

that industry and research entities obtain the maximum relevant information. It is suggested

that each batch is accompanied with a record of the “fibre story”in order to adjust the post

processing parameters (storage, fibre treatment, mechanical processing) i.e. to fully exploit the

fibre potential. Case-by-case material preparation also facilitates the extrusion process (feeding

strategy, control moisture content etc.) and maximises the fibre reinforcing effect.

A typical fibre record should provide at least the following information:

• Genera, specie (variety)

• Plantation location, growth conditions (chemical input)

• Retting process

• Post processing (chemical treatment, mechanical process)

131



Chapter 5

5.3 Experimental Approach

The lessons learned from previous extrusion studies provided a new toolbox to run further

trials en route to industrial commercialisation. A new design of experiment for biocomposite

extrusion was performed at medium scale with well characterised bast fibres (Figure 5.2). The

series of trials comprised direct extrusion and compounding followed by injection moulding.

Figure 5.2: Experimental approach to optimise the extrusion process for short fibre biocom-
posites (image inspired by [Müssig and Haag, 2012])

5.3.1 Materials

The choice of materials was made according to the outcome and lessons learned from the

previous studies. The fibres were supplied by Engage Eco Product Co. Ltd, the company grows

kenaf locally and processes the plant stems on site to produce bast fibres, shives and leaves.

According to the supplier, the crops are processed with environmentally-friendly technologies
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and the products are dust and pesticide-free. The company supplies national and international

customers from diverse industrial sectors (automotive, textile, construction, biocomposites,

animal feed etc.). Therefore, the fibre source met all criteria identified previously: large and

reliable supply, fibres produced and processed according to industrial standards with minimal

chemical input in order to limit the overall carbon footprint and to obtain fibres as “green”as

possible.

Engage Eco Product Co. Ltd grows the kenaf variety Khon Khaen 60 (KK60) from the specie

Hibiscus Cannabinus. Kenaf KK60 is one of the most common varieties produced in Asia and

Indonesia because of its high yield and high quality [Tahery et al., 2013]. The kenaf fibres

were locally water retted and alkaline treated to maximise their mechanical performance and,

in particular, to enhance the fibre/matrix interfacial interactions for biocomposite applications.

A second batch of fibres that had been water retted and water washed was also supplied for

comparison with the chemically treated fibres (see Table 3.2).

Polypropylene grade Moplen HP422M (MFI 8.5 g.10 min−1, LyondellBasell) was selected based

on the findings of Sallih [2015]. MAPP (Licocene PP MA 6452) was used as a coupling agent to

improve the fibre/matrix adhesion. MAPP is a grafted copolymer that has been commonly used

to enhance short fibre reinforced polypropylene compounds. It has been shown that addition of

about 3 wt.% to 5 wt.% MAPP to the compound formulation improved the overall mechanical

properties [Sallih, 2015]. Both the polypropylene and the coupling agent were fed in granulate

form to match the size of fibre pellets (3 mm long). It is advisable to have a formulation

with components of similar size to get good homogeneity and to maximise the mixing during

processing [Giles Jr et al., 2004]. A summary of the materials used for the extrusion trials is

provided in Table 5.4.

Table 5.4: Samples used for extrusion trials

Material Specification Supplier

Kenaf Cultivar KK60 Engage Eco Product Co. Ltd.

Polypropylene Moplen HP422M (MFI 8.5 g.10

min−1)

LyondellBasell Australia

Maleic anhydride polypropylene Licocene PP MA6452 (7% maleic

anhydride)

Clariant Germany
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5.3.2 Fibre characterisation

Kenaf fibre surface properties have been characterised by SEM, XPS and IGC. These results

were reported in the previous chapters and will only be briefly summarised in this section. The

fibres were also characterised by Single Fibre Tensile Testing (SFTT) and X-Ray Diffraction

(XRD) at the Composites Innovation Centre (Canada). In addition, Thermogravimetric Anal-

ysis (TGA) was performed at The University of Queensland. Finally, the fibre morphology

and aspect ratio were determined with the HiRes Fibre Quality Analyser (FQA) developed

by OpTest Equipment Inc. (Canada). These new results are briefly detailed in the following

paragraphs and the overall characterisation results are summarised in Table 5.5 and Table 5.6.
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Table 5.5: Characteristics of kenaf KK60 alkaline treated fibres

Characteristic Technique Findings

Surface morphology SEM Rough surface partially covered with an amorphous layer rich

in lignins and waxes. The surface underneath likely contains

cellulose, hemicellulose and pectins. Traces of extractives also

visible on the surface.

Surface chemistry XPS O/C ratio of 0.44 suggests a surface rich in lignins and poor in

cellulose. Specific peaks of the functional groups (ester group,

methoxy substitution and Pi-Pi* shake up bands) confirm the

presence of lignins, hemicellulose and pectins. Strong C-C

peak confirms the presence of extractives.

Surface energy IGC BET specific surface area = 0.55 m2.g−1

Surface relatively energetically heterogeneous ranging from 47

mJ.m−2 to 55 mJ.m−2 with an average of 48.5 mJ.m−2. Main

contribution from dispersive interactions compared to polar

sites.

Polarity index (Dichloromethane/ Ethylactetate) = 0.17

Fibre dimensions FQA Fibre average length = 3.00 ± 1.79 mm

Average aspect ratio = 75

Crystallinity a XRD Average crystallinity index = 45.4% (Cellulose I)

Thermal properties TGA Temperature of degradation 10 wt.% loss at 234◦C and 20

wt.% loss at 287◦C

Tensile properties a SFTT Youngs’ Modulus = 36.6 ± 15.5 GPa

Tensile strength = 528.2 ± 219.2 MPa

Large standard deviation

a experiment performed on kenaf fibres as received
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Table 5.6: Characteristics of kenaf KK60 water washed fibres

Characteristic Technique Findings

Surface morphology SEM Smooth and relatively homogeneous surface rich in lignins

and waxes. Some inorganic materials loosely attached to the

surface due to milling process.

Surface chemistry XPS O/C ratio of 0.34 suggests a surface containing predominantly

lignins and poor in cellulose. Higher content of fatty acids and

less cellulose than in NaOH treated fibres.

Surface energy IGC BET specific surface area = 0.80 m2.g−1

Surface relatively energetically heterogeneous ranging from

48.8 mJ.m−2 to 55.6 mJ.m−2 with an average of 50.1 mJ.m−2.

Main contribution from dispersive interactions compared to

polar sites.

Polarity index (Dichloromethane/ Ethylactetate) = 0.20

Fibre dimensions FQA Fibre average length = 2.78 ± 1.71 mm

Average aspect ratio = 85

Crystallinity a XRD Average crystallinity index = 45.4% (Cellulose I)

Thermal properties TGA Temperature of degradation 10 wt.% loss at 258◦C and 20

wt.% loss at 298◦C

Tensile properties a SFTT Youngs’ Modulus = 36.6 ± 15.5 GPa

Tensile strength = 528.2 ± 219.2 MPa

Large standard deviation

a experiment performed on kenaf fibres as received

5.3.2.1 Fibre length distribution

Alkaline treated fibres and water washed fibres were analysed with the HiRes FQA, a well-

known commercial hydrodynamic equipment used in the pulp and paper industry to determine

the fibre length distribution (TAPPI T271 and ISO 16065-1 standards). The system comprises

a cytometric flow cell with a built-in analysis software and benefits from a circular polarised

light to improve the measurement accuracy for the fibre length and shape. According to the
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manufacturer, the HiRes FQA has a measurement sensitivity less than 1 µm per fibre and less

than 0.1 µm per test [OpTest, 2010]. Average dimensions are given in Table 5.7 and fibre length

distributions are provided in Figure 5.3.

Table 5.7: Fibre dimension measurements

Fibres Average

weighted

lengtha LW

(mm)

Average width

(µm)

Aspect ratio Curl index Kink index

Water washed 2.78 ± 1.71 32.7 85 0.132 0.885

NaOH treated 3.00 ± 1.79 39.9 75 0.164 1.264

a assumes constant coarsness

Water washed fibres and alkaline treated fibres had similar average weighted lengths of re-

spectively 2.78 ± 1.71 and 3.00 ± 1.79 but the latter had a larger diameter and therefore the

aspect ratio of water washed fibres was about 13% higher than that of NaOH treated fibres.

The curvature index showed that the latter had slightly higher curvature (0.164 vs. 0.132)

and contained almost double the number of kinks (abrupt change in the fibre curvature) than

the water washed fibres. These differences in morphology will most likely affect the composite

mechanical properties. This will be discussed later in the chapter.

Although both batches displayed similar average fibre length, the fibre length distributions were

substantially different (Figure 5.3). The water washed fibre batch contained a large number of

small fibres and a relatively homogeneous distribution of fibres between 0.8 mm and 4.5 mm

length (Figure 5.3a). On the other hand, alkaline treated fibre distribution profile was closer to

a normal distribution with most of the fibres of about 2 mm long (Figure 5.3b). This constitutes

a major difference between both batches which may affect as well the composite properties.
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(a)

(b)

Figure 5.3: Fibre length distribution obtained with the HiRes FQA (a) water washed fibres
and (b) alkaline treated fibres
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5.3.2.2 XRD analysis

The fibres were analysed with an Agilent Technologies SuperNova A (Cu) X-ray diffractometer

combined with an Atlas CCD area detector. The X-ray wavelength was 1.54 Å and the scan

rate was 2 degrees per second. Data acquisition was performed with CrysAlisPro software. The

background X-ray signal was obtained with no fibre in position in order to build the reference

pattern. Five specimens of about 12 mm length were analysed and each data was averaged

from three measurements along the fibre axis. Note that only the kenaf fibres as received were

characterised because the alkaline treated and water washed fibre samples were non suitable

for the XRD analysis (the single fibre strands were too short for the fixation system). Data

analysis was performed with MATLAB and the Crystallinity Index (CI) was calculated from

the XRD radial plot according to Segal’s method [Segal et al., 1959]:

CI =
I002 − Iam

I002
∗ 100 (5.1)

where I002 is the maximum intensity of the 002 lattice diffraction (arbitrary units) and Iam is

the intensity of diffraction at 2θ = 18◦ (same units). I002 peak represents the interferences of

native cellulose (cellulose I) and Iam that of amorphous cellulose. For the kenaf KK60 fibre

sample (as received), I002 and Iam were identified at 22.15◦ and 18.4◦ respectively (Figure 5.4).

The average CI index was estimated at 45.4% ± 0.7.

Although XRD analysis could not be performed on the water washed and alkaline treated fibres,

the latter were expected to contained cellulose II due to the partial conversion of the cellulose

crystal lattice from type I to type II during alkaline treatment [Gassan and Bledzki, 1999a,

O’Sullivan, 1997]. Usually, bast fibres have their CI increased by alkaline treatment due to

the removal of lignins and hemicellulose that enable better packing of the cellulose chains (see

Section 3.1). For instance, the linseed flax and linen flax had their CI increased by respectively

9% and 11% after NaOh treatment (Figure 5.4). However, both alkaline treated and water

washed kenaf fibres were hammer milled which may have slightly reduced their CI.
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5.3.2.3 TGA analysis

TGA was performed with a Mettler Toleda TGA LF1600, at a heating rate of 10◦C.min−1 up

to 400◦C in air. One sample of 6 ± 0.2 mg was tested per batch. The thermal degradation

profiles are provided in Figure 5.5.

Table 5.8: TGA data

Kenaf as received Kenaf water washed Kenaf alkaline treated

T 10 wt.% loss (◦C) 262 258 234

T 20 wt.% loss (◦C) 302 298 287

T 50 wt.% loss (◦C) 344 342 342

A small weight loss was first observed between 50◦C and 100◦C, which corresponds to moisture

release. The degradation temperature corresponding to 10 wt.% loss was similar for the as

received and water washed fibres, at about 262◦C and 258◦C respectively (Table 5.8). Alkaline

treated fibres started to degrade at slightly lower temperature (234◦C) but the degradation

rate was slower than that of the other samples (see Figure 5.5b). This suggested different

degradation mechanisms occurring due to distinct physico-chemical properties, including the

surface chemical composition. The difference in total weight loss between the samples was also

due to the fibres’ different chemical compositions (samples were normalised for calculation).

From a processing point of view, all behaviours suggested that the fibres should not be exposed

to temperatures more than 210◦C to 230◦C to avoid material degradation. The processing

time, for instance, the residence time in the extruder and injection moulding system, may

allow sufficient time for degradation processes to happen. It is therefore advised to keep the

melt temperature under 200◦C - 210◦C to preserve the fibre integrity. Commercial grades of

polypropylene have a Vicat softening point of 143◦C - 164◦C and a melting point of 161◦C -

170◦C (source CES Edupack 2012). PP grade Moplen HP422M Vicat softening point is at

about 154◦C therefore extrusion can be performed with little risk of fibre degradation.
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(a)

(b)

Figure 5.5: TGA curves (a) sample mass and (b) weight loss
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5.3.2.4 Single Fibre Tensile Testing

Single fibre tensile testing was performed on a Dia-Stron system equipped with a linear exten-

someter LEX810 with a 20 N cell load and a high resolution dimensional measurement system

FDAS770. The fibre gauge length was 12 mm. Only the kenaf fibres as received could be

characterised because the alkaline treated and water washed fibre strands were too short for

the fixation system. The cross sectional area, assumed to be an ellipse, was calculated based on

three diameter measurements along the fibre axis. The strain rate was fixed to 0.0096 mm.s−1

in order to meet the failure criteria from ASTM D2256 which assumes the fibre breaks within 20

± 3 s. A cassette of 50 fibres was tested, among which 11 data-points were invalid and therefore

omitted. The histograms of tensile data obtained are shown in Figure 5.6. Kenaf fibres had

an average Young’s Modulus of 36.6 ± 15.5 GPa and average tensile strength of 528.2 ± 219.2

MPa. The standard deviation was considerable as usually observed for natural fibres.
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(a)

(b)

Figure 5.6: Histograms of tensile properties for a batch of kenaf fibres (39 elements): (a)
Young’s modulus and (b) tensile strength
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5.3.3 Design of Experiment towards large scale compounding

Optimisation of the extrusion process was performed at a medium scale (40:1 L/D) to investigate

which variables mostly affect the compound properties when extrusion is performed under

“industrial”conditions. One of the main objectives was to investigate the effect of screw design.

Screw configuration is key to obtaining adequate compound properties, in particular when

adding particulates for polymer reinforcement. Careful design of the screw elements allows

control of the melt pressure and the melt temperature in specific locations in order to obtain

sufficient mixing without degrading the compound [Giles Jr et al., 2004]. Based on the guideline

for extrusion published by Giles Jr et al. [2004], the following criteria were considered for short

kenaf fibres reinforced polypropylene compounding on a twin-screw extruder:

• Polypropylene viscosity is very shear sensitive and less temperature sensitive. Therefore a

high shear screw configuration was used to lower the viscosity and enhance the melt flow.

• Forward, neutral and rearward kneading elements were used to modulate the melt rheological

properties as it progresses in the barrel. For instance, a rearward kneading block creates a melt

seal which helps to completely melt the formulation before it moves downstream and it also

prevents the air from passing through. Configuration of the kneading block sequences affects

as well the residence time.

• Narrow kneading blocks were preferred to wide elements to provide efficient distributive

mixing of the fibres and to limit dispersive mixing that would shorten the fibres.

• Large-pitch conveying elements were placed between mixing zones (high pressure areas) to

create low pressure areas in order to avoid melt degradation due to overheating or too much

shear.

Three screw designs were configured according to the above criteria in order to input a soft,

mild or aggressive work into the melt flow. The soft screw design was based on a sequence of

two single mixing zones located in the first half of the barrel that comprised forward elements

only (M1-M2). The mild screw configuration involved a second sequence of kneading elements

(M3) that included a melt seal. M3 was located in the last third section of the barrel, prior to

compression zone towards the die. Finally, the most aggressive screw design comprised a third

145



Chapter 5

mixing block with a melt seal (M4) located between M1-M2 and M3. Detailed configurations

of the mixing zones are given in Table 5.9 and illustrated in Figure 5.7 with pressure profiles.

Table 5.9: Screw configurations used in the design of experiment

Mixing Zones

Screw design M1-M2 M4 M3

Soft F 30/5/30 / /

C 90 mm

F 30/5/30

F 60/5/30

Mild F 30/5/30 / F 30/5/30

C 90 mm N 90/5/30

F 30/5/30 R 30/5/30

F 60/5/30

Aggressive F 30/5/30 F 30/5/30 F 30/5/30

C 90 mm N 90/5/30 N 90/5/30

F 30/5/30 F 60/5/30 R 30/5/30

F 60/5/30

C: conveying, F: forward, N: neutral, R: rearward

Sequence: stagger angle/number of elements/total block length

Small scale extrusion trials previously highlighted the dominant effect of fibre loading on the

mechanical properties and therefore it was intended to assess as well the impact of fibre content

at larger scale. On the other hand, screw speed was reported as a moderate factor on bench

top extruders but the relative effect of screw speed may become a main factor at larger scale

due to the interdependence of screw speed and screw design. Screw speed affects as well the

residence time of the melt flow in the barrel. Therefore, the influence of screw speed on the

compound resulting properties was also investigated.

Considering the multiple variables involved in the extrusion process, investigating the effect of

each parameter separately would require a significant amount of time and resources. A full

test matrix would consider all the possible situations that can occur with the factors and their

different levels. An L9 fractional factorial was used to streamline the test matrix with three
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factors at three level each: fibre load (0 wt.%, 20 wt.%, 40 wt.%), screw speed (80 rpm, 100

rpm, 130 rpm) and screw design (soft, mild, aggressive). The levels for fibre load and screw

speed were based on the experience from previous experiments and on the extruder capability.

The test matrix is provided in Table 5.10 and Table 5.11.

Table 5.10: Factors and levels used in the design of experiment

Levels

Factors 1 2 3

Screw design soft mild aggressive

Screw speed (rpm) 80 100 130

Fibre load (wt.%) 0 20 40

Table 5.11: L9 fractional factorial used for large scale compounding

Trial Screw design Screw speed (rpm) Fibre content (wt.%)

1 Aggressive 100 0

2 Aggressive 130 20

3 Aggressive 80 40

4 Mild 130 0

5 Mild 80 20

6 Mild 100 40

7 Soft 80 0

8 Soft 100 20

9 Soft 130 40

Extrusion trials were performed on a 27 mm co-rotating twin-screw extruder 40:1 L/D (ENTEK

Emax). The barrel was 1080 mm and included ten individual heating zones (see Figure 5.7).

Kenaf (KK60) alkaline treated fibres were pelletised into 3 mm diameter pellets and then dried

overnight at 85◦C prior to extrusion in an oven (Contherm Thermotec 2000). The fibre pellets

were then mixed manually with the master batch MAPP (3wt.%)/PP and the formulation was

fed into zone 1 with a gravimetric Brabender feeder. The latter was calibrated prior to extrusion

to ensure the feeding rate was accurate and equal to 50 g.min−1. The barrel temperature was

set up for each trial as follow: zone 1 (feed) at 120 ◦C, zone 2-9 at 170◦C/175◦C, zone 10 at
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175◦C/180◦C, zone 11 at 175◦C/185◦C and the die was not heated. Note that the extruder

set-up did not include a venting zone to avoid protrusion of the melt due to the back flow. The

melt was extruded through a strip die (30 mm x 4 mm) for direct extrusion and through a 3 x

∅3 mm rod die plate for compounding. The strips were water-jet cut into ASTM D638 type IV

tensile coupons and tested with an Instron 5884 load frame and Bluehill software v.3 combined

with an Instron Advanced Video Extensometer 2663 (gauge length 25 mm) at a crosshead

speed of 5 mm.min−1 and a 5 kN load cell. A minimum of five coupons were tested for each

combination. The rod extrudates were cut into pellets with a granulator and injection moulded

on a Babyplast 610P into ASTM D638 type IV at 170◦C (the volume of material available was

insufficient for a large scale injection moulding machine). Injection moulded specimens were

tensile tested in similar conditions than the strip extrudates.
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5.4 Results & Discussions

Tensile properties of the extruded compounds are given in Table 5.12 followed by discussions

and statistical analysis with ANOVA methods.

Table 5.12: Tensile properties of kenaf/MAPP/PP composites (ASTM D638)

Trial Screw design Screw speed

(rpm)

Fibre content

(wt.%)

Tensile

strength

[range]∗ (MPa)

Young’s

modulus

[range]∗ (GPa)

1 Aggressive 100 0 26.8 [22.0-29.2] 1.6 [1.4-1.9]

2 Aggressive 130 20 32.0 [32.4-34.4] 2.2 [2.1-2.2]

3 Aggressive 80 40 16.6 [12.3-34.4] 2.0 [1.7-2.5]

4 Mild 130 0 28.4 [27.6-29.5] 1.3 [1.1-1.5]

5 Mild 80 20 25.3 [22.0-27.0] 2.2 [2.1-2.3]

6 Mild 100 40 15.2 [9.8-17.2] 1.7 [1.5-1.9]

7 Soft 80 0 26.7 [25.6-27.8] 1.5 [1.2-1.9]

8 Soft 100 20 25.6 [23.6-27.8] 2.0 [1.8-2.4]

9 Soft 130 40 12.5 [10.9-14.3] 1.5 [1.3-1.7]

∗Insufficient data to calculate the standard deviation

Comparing the average data from Table 5.12, adding kenaf fibres resulted in an increase the

tensile modulus of up to 46% for 20 wt.% fibre content. On the other hand, the improvement in

tensile strength was marginal with an increase of 17% only for 20 wt.% fibres and a reduction

in tensile strength by almost 50% for 40 wt.% fibre load. These trends agreed with short

fibre biocomposite mechanical behaviour and the tensile properties obtained fell well within

the range of values typically published in literature but are considered to be on the lower end

of the range (see Figure 2.3). This was likely due to porosity and/or poor interface. Micro

computed tomography (CT) revealed considerable porosity in all specimens which confirms

this hypothesis (see illustration later in Figure 5.11 and Figure 5.15). Porosity was most likely

created from moisture release in the barrel that could not be completely evacuated because

there was no vacuum port set up on the barrel or insufficient pressure in the die. However, the

average tensile properties achieved with such large porosity suggest a great potential to obtain

better mechanical properties if the compounds had lower porosity. Tensile testing of injection
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moulded specimens from compounded pellets was performed to validate this assumption and

the results will be discussed later.

ANOVA statistical analysis was performed to analyse the relative efficacy of the factors con-

sidered (screw design, screw speed and fibre content) and to determine the optimal extruder

configuration for maximal mechanical performance.

5.4.1 Tensile modulus response

The response means for each control factor on the tensile modulus are given in Figure 5.8.

The main effect plot showed different trends for all factors; screw speed and screw design have

a pseudo linear response whereas the fibre content exhibits a local maxima at 20 wt.%. The

amplitudes of the mean response showed that fibre loading has a main effect whilst screw speed

and screw design affect to a lower degree the final response of the system. This is supported

by the response table for means which shows that the variance induced by the fibre content is

more than twice that of the screw speed and screw design (Table 5.13). The response table for

signal-to-noise (S/N) ratios also suggested that fibre content was the most influential factor to

maximise the S/N ratio for tensile modulus (Table 5.14).

Figure 5.8: Main effect plot of elastic modulus (GPa)
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Table 5.13: Response table for means showing the relative influence on each factor on tensile
modulus

Level Screw design Screw speed Fibre content

1 1.933 1.900 1.467

2 1.733 1.767 2.133

3 1.667 1.667 1.733

Delta 0.267 0.233 0.667

Rank 2 3 1

Table 5.14: Response table for signal-to-noise ratios for tensile modulus

Criterion: larger is better

Level Screw design Screw speed Fibre content

1 5.650 5.464 3.294

2 4.579 4.904 6.573

3 4.355 4.216 4.717

Delta 1.296 1.247 3.278

Rank 2 3 1

The relative importance of each control factor is illustrated in the Pareto chart below which

shows that the fibre content represents over 57% of the total variability whilst screw design and

screw speed contribute to circa 20% each.
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Figure 5.9: Pareto chart of elastic modulus (GPa)

ANOVA methods also enable the analysis of the interdependence of the variables in order to

compare the relative strength of the effects across factors. The interaction plot for tensile

modulus shows a significant interdependence between all factors and particularly between the

screw speed and screw design (Figure 5.10). This was expected as the shear intensity depends

on both factors. The non-linearity between the relative performance of screw speed and screw

design suggests complex interactions. For instance, the tensile modulus obtained with the

soft screw was inferior to that achieved with the mild and aggressive screws at low speed (80

rpm) but the trend reversed at 100 rpm. Poor performance at 80 rpm with the soft screw

configuration could be due to insufficient mixing whilst at 100 rpm more shear was generated,

optimising the rheological behaviour. However, the phenomenon was non-linear and the most

aggressive screw gave the best results at higher screw speed. This was most likely due to the

better consistency obtained with the aggressive screw compared to that obtained with the soft

screw (Figure 5.11). This confirms that the melt seal helps preventing the air to pass through

the last section of the barrel hence reducing porosity. On the other hand, screw speed and screw

design interact to a smaller degree with the fibre content but the phenomenon is amplified at

high fibre load. This can be related to the dominant effect of fibre content: the more the fibres,
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the more the fibre properties affect the compound properties. A similar scenario was observed

in the previous study on kenaf/PEMA/HDPE compounds [Ziegelaar, 2013].

Figure 5.10: Interaction plot of elastic modulus (GPa)
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(a)

(b)

Figure 5.11: Volume rendering showing the porosity and fibre dispersion in kenaf/MAPP/PP
compounds with (a) aggressive screw and (b) soft screw (Micro CT Images kindly provided

by NDSU)
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5.4.2 Tensile strength response

A similar approach was performed to analyse the effect of the control factors on the tensile

strength. The response means for each control factor on the tensile strength are given in Figure

5.12. As for tensile modulus, fibre content appears as the most significant factor on the final

response compared to screw speed and screw design. The latter shows a similar trend to that

observed on tensile modulus with a positive correlation with shear intensity. On the other hand,

screw speed displays a reverse trend with a negative correlation with increasing screw speed.

The fibre content response peaks at 20 wt.% and drastically under-performs with higher fibre

content. The main effect of fibre loading is quantified with the response table for means which

shows that the variance induced by the fibre content is more than seven times that of the screw

speed and more than three times that of the screw design (Table 5.15). The response table for

S/N ratios also suggested that fibre content was the most influential factor to maximise the

S/N ratio for tensile strength (Table 5.16).

Figure 5.12: Main effect plot tensile strength (MPa)
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Table 5.15: Response table for means showing the relative influence on each factor on tensile
strength

Level Screw design Screw speed Fibre content

1 25.13 22.87 27.30

2 22.97 22.53 27.63

3 21.60 24.30 14.77

Delta 3.53 1.77 12.87

Rank 2 3 1

Table 5.16: Response table for signal-to-noise ratios for tensile strength

Criterion: larger is better

Level Screw design Screw speed Fibre content

1 27.69 27.00 28.72

2 26.92 26.79 28.78

3 26.21 27.04 23.33

Delta 1.48 0.25 5.45

Rank 2 3 1

Finally, the relative importance of each control factor is illustrated in the Pareto chart below

which shows that the fibre content represents over 70% of the total variability whilst screw

design and screw speed contribute to circa 20% and 10% respectively. The relative efficacies

are more heterogeneously distributed than for the tensile modulus (see Figure 5.9).
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Figure 5.13: Pareto chart of tensile strength (MPa)

The interaction plot for tensile strength given in Figure 5.14 shows a significant interdependence

between all factors and particularly between the screw speed and screw design, as observed pre-

viously for the elastic modulus (Figure 5.10). As for tensile modulus, the relative performance

of screw speed and screw design were non linear and complex, with maximal performance ob-

tained with high shear and high screw speed. Both the screw speed and screw design behaviours

converged to low performance at higher fibre loading, which confirms the main effect of fibre

content compared to the other factors. It suggested as well a poor interface independently of

the fibre distribution.
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Figure 5.14: Interaction plot of tensile strength (MPa)

The optimal configuration to maximise the tensile properties of kenaf/MAPP/PP composites

were deducted from the main effect plots and response tables. The optimal parameters to

maximise the elastic modulus and the tensile strength differed (Table 5.17). Aggressive shear

benefits both tensile modulus and tensile strength and is likely due to the melt seal effect

that limits the porosity in the final compounds. More surprisingly, moderate fibre content is

preferred to maximise the tensile properties. This could be due to a weak interface and poor

distribution achieved in the current system. Further investigation on the interfacial properties

and quantification of the fibre distribution would bring new information.

Interesting observations come out of the medium scale design of experiment when compared

to previous observations on small scale studies (see section 5.2). ANOVA showed that fibre

content was the main factor for both small and medium scales whilst screw speed and screw

design affected to a moderate degree the overall properties. However, interaction plots revealed

different trends and complex interdependence between screw speed and screw design. Aggressive

screw design was preferred at medium scale to maximise the performance whereas soft and mild

shear were found optimal on a small extruder. Fibre attrition in the barrel is less problematic

on large L/D extruder as there is proportionally more free volume for the melt to flow and

less contact with the walls and the screw flights compared to that of small L/D extruder. In

both cases, high screw speed was required to maximise the tensile strength and medium to low
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screw speed benefited the tensile modulus (Table 5.3, Table 5.17). This could be related to fibre

length reduction that is limited at low screw speed and favoured at high screw speed. Finally,

the optimal fibre content was estimated at 20 wt.% load on large extruder and 40 wt.% load

on a smaller extruder in order to maximise the tensile properties. This inconsistency was due

to the low performance obtained with 40 wt.% fibre load at medium scale, largely attributed

to high porosity. Further optimisation is needed to confirm the trend observed at small scale.

Table 5.17: Optimal extuder configuration to maximise tensile properties

Design objective Screw design Screw speed (rpm) Fibre content (wt.%)

Maximise tensile

modulus

aggressive 80 20

Maximise tensile

strength

aggressive 130 20

5.4.3 Effect of fibre treatment on tensile properties

Finally, a comparison study was performed to assess the effect of alkaline treatment. Two

master batches containing water washed kenaf fibres and alkaline treated fibres were extruded

under the same conditions as the design of experiment and the composites were tensile tested

as extruded. Results are given in Table 5.18. Surprisingly, the biocomposites containing the

water washed fibres performed better than the alkaline treated kenaf/MAPP/PP compounds:

the tensile strength was about 25% higher and the elastic modulus approximately 20% higher.

Overall, the properties obtained with the water washed fibres exceeded all those of composites

characterised previously (see Table 5.12).

Table 5.18: Effect of fibre treatment on tensile properties of kenaf/MAPP/PP extruded
composites (ASTM D638)

Treatment Screw design Screw speed

(rpm)

Fibre content

(wt.%)

Average tensile

strength (MPa)

Average

Young’s

modulus (GPa)

Water washed Aggressive 100 20 31.4 2.5

NaOH treated Aggressive 100 20 25.2 2.1

160



Chapter 5

The micro CT images revealed that the kenaf water washed biocomposites had very few pores

and the fibres were better dispersed compared to the alkaline treated kenaf biocomposites

(Figure 5.15). In other words, water washed fibre pellets separated better than the alkaline

treated fibre pellets. FQA analysis showed previously that alkaline fibres and water washed

fibres had substantially different fibre length distribution (see Figure 5.3). It could also be

related to the fibre surface properties that facilitated dispersion of the pellets into the melt.

Alkaline and water washed fibres displayed dissimilar fibre surface properties and therefore

different interfacial interactions occurred with the polymers in the melting process. TGA data

showed no major difference in the fibre initial moisture content to explain the higher porosity

obtained with alkaline treated fibres but the water washed fibres had slightly higher thermal

resistance than the alkaline treated fibres (see Table 5.8), which would benefit their overall

properties.
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(a)

(b)

Figure 5.15: Volume rendering showing the porosity and fibre dispersion in (a) kenaf water
washed fibres/MAPP/PP composites and (b) kenaf alkaline treated fibres/MAPP/PP com-

posites (Micro CT Images kindly provided by NDSU)
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5.4.4 Effect of injection moulding on tensile properties

In many cases, product manufacturing involves both compounding and injection moulding.

Additional experiments were conducted in order to assess the effect of injection moulding on

the tensile properties of extruded biocomposites. The materials used were the kenaf alkaline

treated fibre pellets (∅3 mm), PP grade HP 422M and Licocene PP MA6452 (3 wt.% of total

composition). Extrusion trials were performed on the medium scale extruder (ENTEK 40:1

L/D) with a rod die (3 x ∅3 mm) and the extrudates were pelletised with a granulator. The

experimental conditions were similar to that of previous trials (see section 5.3.3). All samples

were injection moulded on a Babyplast 610P into dogbone specimens (ISO 527-2:2012, type

1BA) at 175◦C and tensile tested in similar conditions to the extruded samples (see section

5.3.3). A minimum of ten specimens were tested per batch. Details of the test matrix and

results obtained are summarised in Table 5.19. A comparison between the samples as extruded

and injection moulded is given in Figure 5.16.

Table 5.19: Tensile properties obtained after injection moulding

Trial Extrusion set-up Tensile properties

Screw design Screw speed

(rpm)

Fibre content

(wt.%)

Tensile

strength (MPa)

Elastic

modulus (GPa)

HP 422M soft 100 20 27.4 ± 0.3 1.4 ± 0.1

kenaf/MAPP/PP soft 100 20 23.2 ± 2.3 2.4 ± 0.3

kenaf/MAPP/PP aggressive 100 40 25.0 ± 1.0 2.7 ± 0.3
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(a)

(b)

Figure 5.16: Tensile properties of compounds directly extruded vs. injection moulded (a) aver-
age tensile modulus (MPa) and (b) average tensile strength (GPa) Note: error bars represent

the standard deviation when it could be calculated
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Injection moulding had a negligible effect on the polypropylene samples; tensile strength in-

creased by about 3% and the tensile modulus decreased by less than 7%. On the other hand,

the injection moulded biocomposites displayed higher elastic modulus than those tested di-

rectly post extrusion and the effect amplified at higher fibre content: E modulus increased by

20% and by 100% for the 20 wt.% kenaf/MAPP/PP and 40 wt.% kenaf/MAPP/PP samples

respectively (Figure 5.16a). This was most likely due to the loss in porosity during injection

moulding, which may also have enabled better stress transfer from the matrix to the fibres.

The effect on the tensile strength was less consistent: the 20 wt.% kenaf/MAPP/PP samples

showed slightly lower values (by about 10%) whereas that of 40 wt.% kenaf/MAPP/PP in-

creased by 100% but still lower than the pure polymer. The lower tensile strength for 20 wt.%

kenaf/MAPP/PP could result from a change in fibre orientation and fibre distribution due to

injection moulding. On the other hand, at higher fibre load, the loss in porosity meant that

injection moulding most likely compensated for this effect. This explains the increase in tensile

strength for the 40 wt.% kenaf/MAPP/PP injection moulded composites compared to that of

directly extruded composites (see Figure 5.11b).

When compared to polypropylene, the injection moulded biocomposites showed a considerable

increase in elastic modulus whilst tensile strength hardly equalled that of polypropylene. This

trend is similar to that generally observed on extruded biocomposites and highlights the real

challenge for these materials that is to achieve acceptable tensile strength.
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5.5 Industrial Trials

Based on the previous findings and with the experience gained through CRC-ACS P1.1 studies,

extrusion trials were performed with two industrial partners on fully automated processing

lines that included auxiliary equipment (water cooling bath, pullout assembly station, cutting

station etc.). The trials are described in the following paragraphs.

5.5.1 Compounding of kenaf/MAPP/PP with Duromer

Kenaf alkaline treated fibre pellets (∅6 mm) were compounded with polypropylene grade Mo-

plen HP400L (MFI 5 g.10 min−1, LyondellBasell) and Licocene PP MA 6452 (5 wt.% of the

total composition). The fibre load was 20 wt.% of the total composition. Extrusion trials were

performed on a 72 mm co-rotating twin-screw extruder 45:1 L/D. The screw design included

three mixing zones separated by conveying elements: one series of kneading blocks for polymer

mixing, a second sequence of forward kneading blocks (“mild”mixing) and a third series of

kneading blocks with a melt seal (“aggressive”mixing). A vacuum vent was set up after the

last mixing zone followed by a pumping section towards the rod die (12 x ∅4 mm). PP and

MAPP were fed separately in gravimetric feeders at the beginning of the barrel and the kenaf

pellets were fed with a gravimetric side feeder after the first mixing zone. The latter were dried

overnight in a drying hopper at 85◦C prior to extrusion. The barrel temperature was set up at

180◦C, the screw speed was 400 rpm and the total feeding rate was 250 kg.h−1.

The polymers and kenaf pellets were fed consistently without bridging in the hopper and the

extruded compound coming out of the die had an homogeneous texture. As a result, the

composite melt was extruded continuously for about an hour with no issue. The compounded

pellets were then injection moulded and tensile tested in the same conditions as the previous

samples (see section 5.4.4). The results obtained are given in Table 5.20.
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Table 5.20: Tensile properties obtained on industrial extrusion line with Duromer

Properties HP 400L 20 wt.% kenaf/MAPP/PP

E modulus (GPa) 1.78 ± 0.1a 2.1 ± 0.3

Tensile strength (MPa) 36.0 ± 0.2a 23.1 ± 2.8

adata obtained by [Sallih, 2015]

Adding 20 wt.% kenaf to polypropylene increased by 17% the elastic modulus and decreased by

ca. 35% the tensile strength (Table 5.20). These trends agreed well with the previous observa-

tions on medium scale extruder (see Figure 5.16). The loss in tensile strength was attributed to

the biocomposite porosity that occurred despite the venting section (visual qualitative analysis).

5.5.2 Profile extrusion of kenaf/PVC compounded pellets with ETI

In a piece of work undertaken parallel to the project, industrial trials were organised with

ETI to create a demonstration product. First, kenaf/Polyvinyl Chloride (PVC) pellets were

compounded on the ENTEK extruder according to the lessons learned from the design of

experiment. Kenaf alkaline treated fibre pellets (∅3 mm) were compounded with a commercial

PVC formulation which contained additives, impact modifier, UV stabiliser etc. The screw was

designed with one soft mixing zone (30/15/90 forward kneading blocks) in the first section of the

barrel and a second series of kneading blocks that included a melt seal (F30/5/30 - F60/10/60

- R30/5/30) located at 2/3rd of the barrel. The barrel temperature was set up at 170◦C and

the screw speed was 80 rpm. The kenaf pellets and PVC granulates were fed as a masterbatch

at 2 kg.h−1 and extruded through a rod die (3 x ∅5 mm). The compounded pellets were then

pelletised with a granulator.

The second processing stage consisted in extruding the kenaf/PVC compounded pellets through

a profile used for a reflector guide post. This product was selected as it contained key features

including angles, ridges and large flat sections. The biocomposite pellets were extruded on a

large conical counterrotating twin-screw extruder (typical extruder for PVC profile extrusion).

The barrel temperature was set up at 180◦C, the screw speed was 7 r.min−1 and the feeding

rate was synchronised at 7 r.min−1. The composite melt was extruded continuously for an hour
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without issue once the parameters adjusted on the auxiliary equipment. Coupon specimens

were water-jet cut from the central section of the extruded profile and tensile tested in similar

conditions to the previous samples. Tensile data obtained are summarised in Table 5.21.

Table 5.21: Tensile properties obtained on industrial extrusion line with ETI

Properties PVC 20 wt.% kenaf/PVC

E modulus (GPa) 3.5 ± 0.2 4.8 ± 0.5

Tensile strength (MPa) 41.8 ± 0.7 35.5 ± 0.4

Adding 20 wt.% kenaf to PVC increased the elastic modulus by about 37% and slightly re-

duced the tensile strength by 15% (Table 5.21). These trends suggested that the two-stage

manufacturing process (compounding + profile extrusion) benefited the composite properties.

In particular, a visual assessment of the profile cross section revealed smaller porosity than that

previously observed on the kenaf/MAPP/PP compounds.

Figure 5.17: First biocomposite profiles extruded in an Australian industry
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5.6 Conclusions

The design of experiment performed at medium scale confirmed the findings from previous stud-

ies on bench top extruders and brought new insights on the feasibility of large scale biocomposite

extrusion. Statistical analysis with ANOVA methods showed a significant interdependence be-

tween all factors and particularly between the screw speed and the screw design. At both

scales, fibre content was the dominant factor for the tensile strength and elastic modulus whilst

screw speed and screw design affected to a lower degree the tensile properties. Overall, the

performance achieved agreed well with the general trends observed in literature. Considerable

porosity revealed by Micro CT largely contributed to low tensile strength.

The series of experiments performed demonstrated the necessity to work with well characterised

fibres as their surface properties and physical characteristics are determinant for the final com-

posite properties. For instance, the alkaline treated fibre reinforced polypropylene composites

under-performed compared to the water washed fibre polypropylene composites although the

former had a surface more energetically homogeneous and less polar. It is assumed that the

higher fibre aspect ratio of the water washed fibres and their homogeneous fibre length distri-

bution largely contributed to increase the composite performance. Unfortunately, XRD and

SFTT conventional set-ups were unsuitable for the characterisation of short processed fibres.

Capability and methodology development are needed in the future to assess short fibre proper-

ties.

Injection moulding post compounding increased the Youngs’ Modulus and slightly decreased

the tensile strength of biocomposites whereas pure polypropylene compounds maintained their

properties. This trend confirmed the challenge to achieve acceptable tensile strength in short

fibre biocomposites.

The properties achieved on a medium scale extruder were similar to that obtained by Duromer

on an industrial extrusion line. Such results demonstrate that the up-scaling process was

successful and validated the development of biocomposites on a medium scale extruder prior to

industrial extrusion line. Furthermore, fibre attrition and size effects are less problematic on

a large L/D extruder compared to a small extruder where the kneading elements have similar

dimension to the fibres.
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Throughout the trials a significant amount of porosity was noticed in the extruded samples. This

is an aspect which the project failed to overcome and has unfortunately resulted in mechanical

properties lower than expected. Further work is required to overcome this issue, and the author

believes that the two key areas that need to be addressed are the drying of the fibres prior to

feeding and the development of screw configuration which allow moisture extraction by the use

of alternating high/low pressure sections and vacuum venting. The industrial trials have shown

that drying natural fibres is challenging on a industrial scale considering the high humidity

in Queensland, the large volume of fibres to handle and the rapid moisture uptake of natural

fibres. Whilst the porosity detected in the samples questions the industrial-usefulness of some

of the results, the contribution of this thesis to the development of natural fibre compounding

capability at The University of Queensland was immense. The methodology presented in this

chapter and the lessons learned will undoubtedly be used to further optimise the extrusion

process and produce better biocomposite materials.
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Conclusions & Recommendations

This thesis focused on key aspects of biocomposite development for industrial application that

is the triad of natural fibre properties, the techniques for natural fibre grading and the extrusion

process (Figure 6.1). The first objective was to characterise natural fibres with advanced sur-

face techniques in order to resolve the chemistry and physical properties of the fibres’ surface.

This included the evaluation of existing techniques and capability development of inverse gas

chromatography. The second main objective was to optimise the extrusion process for biocom-

posites and to study the feasibility of large volume production by up-scaling. Finally, this thesis

aimed to establish a correlation between the fibre properties and the composite properties with

respect to the fibres’ surface characteristics and the processing variables. Chapter 3 showed

the potential of the in-lens SEM technique to characterise natural fibre surface morphology

and to obtain surface contrast mapping, which is limited with conventional SEM. XPS analysis

has also been pushed further than a comparison based on the average composition, with peak

fitting of high resolution spectra and systematic cross-correlation to ensure coherent data inter-

pretation. Chapter 4 demonstrated the potential of IGC as a grading technique to investigate

the surface energy of plant fibres, in particular, the effect of surface treatment on the energy

profile and the surface polarity. Finally, a feasibility study for large scale production of short

fibre biocomposites was performed via a series of design of experiments from laboratory scale

up to industrial processing lines, and is reported in Chapter 5. This final chapter summarises

the main messages delivered through the thesis followed by recommendations for future work.

171



Chapter 6

Figure 6.1: Triad of natural fibre properties, characterisation techniques and extrusion

6.1 Conclusions

Natural fibres challenge traditional characterisation techniques because of their complex physico-

chemical structure and their large variability of properties. This demands a systematic study

of the common procedures and models implemented in traditional techniques in order to assess

their capabilities to characterise natural fibres. On the other hand, the variability of natural

fibres fosters the development of new characterisation techniques.

• A series of experiments performed with the new generation of FE-SEM with TTL BSE

detectors demonstrated the capability of obtaining good contrast between low atomic number

polymeric species as well as fine topography of the very near surface. The SE and BSE images

of flax and kenaf fibre samples showed clear evidence of the effect of chemical treatment on

the fibre surface properties. Specific UED BSE images provided complementary information to

interpret the physico-chemical mechanisms that occur on bast fibre surfaces during processing.

In particular, SE images of unretted flax fibres showed fibres with a rough surface containing

multiple layers and partially fragmented due to scutching. The outer layer was coated with an

amorphous mixture of organic materials such as lipids, pectins and extractives. BSE images

revealed a clear contrast between the materials and a few bright spots that were most likely

inorganic particles such as silicates. Alkaline treatment removed most of the cuticle/epidermis
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outer layer and revealed kinks and nodes on single fibres’ surface. Some patches scattered on

the surface were most likely residual lignins.

Imaging of field retted kenaf fibres showed fibres covered with an amorphous layer and scattered

with adhering particulates, likely organic compounds. Typical features of the epidermal tissues

were also visible on the surface which suggested that water exposure solely was insufficient to

remove lignins, pectins and waxes from the surface. BSE images confirmed that the surface

contained mostly lignins and waxes, with traces of extractives non dissolved during field retting.

The fibres appeared much cleaner and relatively smooth after water washing. SEI and BSE

images revealed no major contrast except a few bright spots that were most likely inorganic

materials deposited during the water washing or projected when the fibres were milled. Nature

of the surface was similar to field retted fibres which was expected as both batches underwent

water exposure only. Finally, alkaline treated fibres had a rough surface partially covered with

an amorphous layer rich in lignins and waxes. Trace of extractives were still visible on the

surface whilst the surface underneath contained more cellulose, hemicellulose and pectins.

• A set of bast fibres were further investigated by XPS to identify the nature of the compounds

present on the fibres’ surface and to quantify the elemental chemical composition. All fibres

showed O/C ratios much lower than that of theoretical pure cellulose (O/C= 0.83) and that

of bacterial cellulose (O/C = 0.73) that were used as a reference. Hemp fibres had an O/C of

0.32, kenaf fibres had O/C ratios of 0.26 and 0.28 and flax linseed had an O/C of 0.25 and flax

linen of 0.15. Surprisingly, commercial synthesised cellulose fibres BioMid R© displayed similar

values with an average O/C of 0.31. Fibres subject to milling had their O/C ratio increased by

ca. 35% that was assumed to be due to fibre breaking and defibrillation. Chemical treatment

affected as well the surface chemistry. All specimens had an increased O/C of more than 50% on

hemp fibres and up to 125% on flax fibres post alkaline treatment, which confirms the surfaces

contained less amorphous substances such as lignins, pectins, waxes. However the O/C ratios

were still much lower than the theoretical value of cellulose: hemp fibres had an O/C of 0.49

and kenaf 0.44 compared to 0.83 for pure cellulose. This agrees well with the SEM results that

showed in both cases alkaline treated fibre surfaces were still rich in lignins and extractives.

Further analysis was performed with high resolution scans to identify the functional groups

present on the kenaf fibre surface and to investigate the effect of alkaline treatment on the
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surface chemistry. High resolution scans on carbon (C1s), oxygen (O1s) and nitrogen (N1s)

confirmed that the very near surface of alkaline treated fibres was rich in lignins and poor in

cellulose. Specific peaks of the functional groups present in lignins, hemicellulose and pectins

were identified (ester group, methoxy substitutions and Pi-Pi* shake up bands). Strong C-C

peaks confirmed the presence of lignins, waxes and extractives. On the other hand, the fibres

contained proportionally more cellulose and hemicellulose than water washed fibres and fibres

as received. The peaks’ amplitude also suggested that the surface contained less fatty acids

which was expected as NaOH was more efficient in removing fatty acids than water washing.

The experimental data agrees well with SEM analysis and confirmed that the water wash

and alkaline treatment cleaned the fibre surface and removed most of the epidermal tissues.

However, the treatments were too gentle to remove lignins and pectins and the fibres’ surface

remained rich in lignins and oxygenated species, and poor in cellulose.

• IGC proved to be a promising technique for studying the surface energy of natural fibres.

Because it is a relatively new technique for natural fibre characterisation, systematic studies

needed to be performed. In this study, the critical parameters to determine the BET surface

area values were identified and a protocol applicable to natural fibres was proposed. The BET

specific surface area of kenaf and flax fibres differed, with an average of 0.51 m2.g−1 vs. 1.35

m2.g−1 respectively and the kenaf fibres showed similar BET value to cellulose fibres (ca. 0.54

m2.g−1). Bast fibres had larger batch-to-batch variability than synthesised cellulose fibres,

which is a consequence of natural fibre structural irregularities and heterogeneous properties.

The BET values obtained by IGC SEA showed a noticeable dependence on the elutant properties

which was attributed to the effect of molecular orientation. Sample packing also affected the

BET surface area values but no clear trend could be established.

Surface energy measurements were performed at finite concentration to obtain more realistic

values than those obtained in infinite dilution. The surface energy distribution profiles of the

dispersive and the acid-base components provided key complementary information to the over-

all surface energy profile of natural fibres and highlighted their specificity. For instance, γLWS

profiles showed that the kenaf fibres’ surface contained active sites with energy levels spread

more than those of flax and cellulose fibres’ surface. In addition, γLWSmean(kenaf) 6 γLWSmean(flax)
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6 γLWSmean(BioMid R©) which was coherent with the assumption that the unretted flax fibres con-

tained more waxy substances than the field retted kenaf fibres. The γAB
S distribution profiles

were similar to that of γLWS with BioMid R© fibres being the least polar and the most homo-

geneous. Flax fibre surface contained polar groups of lower energy than that of kenaf fibres

which assumed that the latter comprised more Lewis acid-base functional groups, for instance,

pectins, lignins and extractives. The acid-base energy component contribution to the total

surface energy values was significant in particular for the kenaf fibres. The latter had a po-

larity index (γAB
Smean/γ

TOT
Smean) of 0.24 compared to 0.15 and 0.09 for flax and BioMid R© fibres

respectively.

Finally, investigation of the effect of fibre treatment on the surface energy profiles of kenaf

fibres provided new insights, in particular the change in polarity and the distribution of the

energetic active sites. Both the water wash and alkaline treatments induced a shift to higher

average γLWS values suggesting the fibres’ surface became more hydrophobic. The evolution of

γLWS profiles indicated an increase in the number of high energetic sites and/or an increase in

energy levels of the active sites. Logically, γAB
S profile shifted to lower values, as the surface

became less polar. Both treatments only slightly affected the overall surface energy value of

the fibres: γTOT
Smin = 48.9 mJ.m−2, 48.8 mJ.m−2 and 47 mJ.m−2 for the kenaf as received, water

washed and alkaline treated fibres respectively. However, the polarity index showed that both

treatments reduced the surface polarity: kenaf fibres as received had a polarity index of 0.24

compared to 0.20 and 0.17 for the water retted and alkaline treated fibres respectively. Water

wash and alkaline treatment also rendered the surface energetically more homogeneous than

the fibres as received.

These experimental data highlight the structural heterogeneity between different species of bast

fibres, in terms of both chemical and physical properties. Further data acquisition on natural

fibres is necessary to strengthen these models and extend the database to get consistent refer-

ences. However, the current results have demonstrated the potential of IGC for characterisation

of natural fibre surfaces. Combined, XPS, in-lens SEM and IGC offer a unique complementarity

to unravel natural fibre surface properties.
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• Compounding short fibre biocomposites is challenging due to the multiple variables involved

and the specific issues that arise when working with natural fibres. A series of experiments

leading towards large scale processing have been performed and brought new insights on the

feasibility of large scale biocomposite extrusion. Statistical analysis with ANOVA methods

showed a significant interdependence between all factors and particularly between the screw

speed and the screw design. At both bench top and medium scale, fibre content was the

dominant factor for the tensile strength and elastic modulus whilst screw speed and screw design

affected to a lower degree the tensile properties. The composites had higher tensile modulus

than the pure polymer whilst the improvement in tensile strength was marginal. Injection

moulding post compounding increased the composite Youngs’ Modulus and slightly decreased

their tensile strength. These trends agreed well with the published literature and confirmed the

challenge to achieve acceptable tensile strength in short fibre biocomposites.

The series of experiments also demonstrated the necessity to work with well characterised fibres

as their surface properties and physical characteristics determine the final composite properties.

Fibre length distribution is important and may compromise the effect of fibre treatment. For

instance, alkaline treated kenaf fibre reinforced polypropylene composites under-performed the

water washed kenaf fibre polypropylene composites although the former had a surface more

energetically homogeneous and less polar. It is assumed that the higher fibre aspect ratio of

the water washed fibres and their homogeneous fibre length distribution largely contributed to

increase the composite performance.

Finally, extrusion at industrial scale has been successfully performed and represents a major

achievement of the thesis. However, a significant amount of porosity was noticed in the extruded

samples throughout the trials and further work is required to overcome this issue. Whilst the

porosity detected in the samples questions the industrial-usefulness of some of the results,

the contribution of this thesis to the development of natural fibre compounding capability

at The University of Queensland was immense. The methodology and the lessons learned will

undoubtedly be used to further optimise the extrusion process and produce better biocomposite

materials.
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6.2 Recommendations

• Surface Characterisation

The multi-scale characterisation performed in this work demonstrated the complementarity of

advanced surface characterisation techniques. The case studies presented brought new insights

on bast fibre surface properties, in particular on the effect of alkaline treatment on the surface

chemistry and energetic profile. Although the results were consistent and most of the hypothesis

formulated could be confirmed through the thesis, several areas still need to be addressed.

Further experimental work with FE-SEM TTL should be performed to identify the nature of

the amorphous substances on the fibre surface. A method developed by Fromm et al. [2003] that

consists in staining the lignin with potassium permanganate KMnO4 enables the detection of the

presence of lignins on the fibre surface. KMnO4 oxidises lignins and reduces the permanganate

to MnO2. Previous authors successfully labelled lignin with this technique [Day et al., 2005,

Neto et al., 1996, Truss et al., 2015]. In addition, elemental analysis using Energy Dispersive

X-Ray Spectroscopy (EDX) would help identifying the nature of the inorganic compounds.

The main challenge of XPS remains data interpretation. Peak fitting and cross-correlation

enabled the identification of some of the functional groups present on the fibres’ surface but

some peaks remain unsolved. Whilst the complexity of peak fitting is typical of natural fibres

and will unlikely be simplified in the future, building reference spectra could help identifying

the specific functional groups. Recommendations for future work involve XPS analysis of the

different types of lignins (H-lignin, S-lignin, G-lignin) from softwoods and hardwoods to build

the respective XPS high resolution spectra. The spectra of pectins and plant waxes would

also help differentiating some of the functional groups, however, these substances are more

challenging to analyse due to sample preparation. Little work has been reported so far on these

compounds.

Inverse Gas Chromatography is a versatile technique and a palette of experiments should be con-

sidered in a future work in order to extend the knowledge on surface energy of plant materials.

In particular, evolution of the surface energy values with different conditions of temperature

and humidity is of interest to better understand the fibre behaviour in the processing stage
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and to improve fibre storage and conditioning. Investigation of the surface energy profiles of

polymer matrices would enable the study of compatibility between plant fibres and matrices

to be explored allowing optimisation of fibre/matrix systems. Finally, further research should

be performed on natural fibres to extend the database and validate the preliminary findings

presented in the thesis. In particular, the relevance of acid/base properties and the dependence

of surface energy values on the solvents used.

• Compounding

Several areas still need to be addressed to optimise the extrusion process en route to industrial

processing volumes. The next objective is to reduce porosity in the final product. It is also

advisable to include in the formulation a fire retardant, a UV-stabiliser and other additives that

would be necessarily added in commercial formulations such as impact modifiers etc. These

components may change the rheological behaviour of the melt and therefore it is necessary to

integrate them to the formulation as early as possible in the development phase.

Compound characterisation with Micro CT is a promising technique to investigate the fibre

distribution, the fibre orientation and the fibre dispersion in extruded products. Quantification

of these parameters and estimation of the total porosity constitute the next challenges for Micro

CT technology. These involve the development of image numerical processing tools combined

with volume rendering. Finally, evaluation of the long term performances is sine qua non of

the feasibility study. These include durability and biodegradability as well as fire resistance. A

series of design of experiments that integrate all the novelties aforementioned is the next step

towards a real business case.
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B. Mano, J. Araújo, M. Spinacé, and M.-A. De Paoli. Polyolefin composites with curaua

fibres: effect of the processing conditions on mechanical properties, morphology and fibres

dimensions. Composites Science and Technology, 70(1):29–35, 2010.

S. D. Mansfield, H. Kim, F. Lu, and J. Ralph. Whole plant cell wall characterization using

solution-state 2d nmr. Nature protocols, 7(9):1579–1589, 2012.

G. Marsh. Next step for automotive materials. Materials Today, 6(4):36 – 43, 2003. ISSN

1369-7021.
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