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Abstract 

Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and 

plays a major role in neuronal injury following cerebral ischemia. Evidence that inhibition of 

ASIC1a might be neuroprotective following stroke was previously obtained using “PcTx1 

venom” from the tarantula Psalmopeous cambridgei. We show here that the ASIC1a-

selective blocker PcTx1 is present at only 0.4% abundance in this venom, leading to 

uncertainty as to whether the observed neuroprotective effects were due to PcTx1 blockade of 

ASIC1a or inhibition of other ion channels and receptors by the hundreds of peptides and 

small molecules present in the venom. We therefore examined whether pure PcTx1 is 

neuroprotective in a conscious model of stroke via direct inhibition of ASIC1a. A focal 

reperfusion model of stroke was induced in conscious spontaneously hypertensive rats (SHR) 

by administering endothelin-1 to the middle cerebral artery via a surgically implanted cannula. 

Two hours later, SHR were treated with a single intracerebroventricular (i.c.v.) dose of 

PcTx1 (1 ng/kg), an ASIC1a-inactive mutant of PcTx1 (1 ng/kg), or saline, and ledged beam 

and neurological tests were used to assess the severity of symptomatic changes. PcTx1 

markedly reduced cortical and striatal infarct volumes measured 72 h post-stroke, which 

correlated with improvements in neurological score, motor function and preservation of 

neuronal architecture. In contrast, the inactive PcTx1 analog had no effect on stroke outcome. 

This is the first demonstration that selective pharmacological inhibition of ASIC1a is 

neuroprotective in conscious SHRs, thus validating inhibition of ASIC1a as a potential 

treatment for stroke.  
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1.  Introduction 

The severe oxygen depletion that occurs during ischemic stroke compels the brain to switch from 

oxidative phosphorylation to anaerobic glycolysis, which in turn leads to acidosis via increased 

lactate levels. The extracellular pH can fall from ~7.3 to 6.0–6.5 in the ischemic core under 

normoglycemic conditions, and it can drop to below 6.0 during severe ischemia (Isaev et al., 

2008; O'Bryant et al., 2014; Xiong et al., 2004). In vivo studies show that acidosis aggravates 

ischemic brain injury (Xiong et al., 2004) and a direct correlation between brain acidosis and 

infarct size has been demonstrated (Xiong et al., 2007). The pH reached during cerebral acidosis 

can activate acid-sensing ion channels (ASICs) and this activation has been suggested to play a 

critical role in stroke-induced neuronal injury (O'Bryant et al., 2014; Xiong et al., 2007). 

 

ASICs were discovered in the late 1990s, almost 20 years after the observation that sensory 

neurons depolarise in response to a sudden drop in pH (Krishtal, 2003). Although they belong to 

the epithelial sodium channel/degenerin family of receptors, they are distinguished by their 

restriction to chordates, predominantly neuronal distribution, and activation by decreases in 

extracellular pH (Gründer et al., 2010). Alternative splicing of four ASIC-encoding genes leads 

to the expression of six subunits (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4) that 

combine to form hetero- or homo-trimeric channels that differ in their pH sensitivity and tissue 

distribution (Wemmie et al., 2006). 

 

Postsynaptic ASIC1a channels are the dominant ASIC subtype in both human and rodent brain 

(Hoagland et al., 2010; Li et al., 2010). The pH for half-maximal activation (pH0.5) of ASIC1a is 

6.6 in human cortical neurons (Li et al., 2010) and 6.4 in rat Purkinje neurons (Allen et al., 2002) 

and consequently they are robustly activated by the decrease in extracellular pH that occurs 

during cerebral ischemia. Importantly, homomeric ASIC1a channels can mediate the uptake of 

Ca2+ in addition to Na+ and protons (Gründer et al., 2010). Thus, brain ASIC1a can contribute to 

the intracellular Ca2+ overload during stroke and may be at least partly responsible for the 

precipitous drop in intracellular pH from ~7 to as low as 6.15 during cerebral ischemia (Isaev et 

al., 2008). 

 

The most potent and selective blocker of ASIC1a described to date is PcTx1, a 40-residue 
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peptide isolated from the venom of the Trinidad Chevron tarantula, Psalmopeous cambridgei 

(Escoubas et al., 2000). PcTx1 blocks rat ASIC1a (rASIC1a) with an IC50 of ~0.5 nM and 

ASIC1a/2b heteromers with an IC50 of ~3 nM, but it does not inhibit other ASIC homomers or 

heteromers. Several previous studies have claimed that PcTx1 is highly neuroprotective in rodent 

models of ischemic stroke (Pignataro et al., 2007; Xiong et al., 2004). For example, in a rat 

model of transient focal ischemia (middle cerebral artery occlusion; MCAO), i.c.v. injection of 

‘PcTx1 venom’ 30 min before and after induction of ischemia reduced infarct size by 60% 

(Xiong et al., 2004). Consistent with this being an effect mediated by ASIC1a, infarct size was 

similarly smaller by 61% in ASIC1–/– mice as compared to wild-type mice (Xiong et al., 2004). 

These observations have improved our understanding of stroke pathophysiology and highlighted 

ASIC1a as a therapeutic candidate for the development of neuroprotective agents for treatment 

of stroke. 

 

Surprisingly, the aforementioned studies did not use pure PcTx1 but rather the whole venom 

from the spider P. cambridgei, which contains PcTx1. Spider venoms are extremely complex 

chemical cocktails, containing hundreds to thousands of unique peptides (Escoubas et al., 2006). 

The venom of P. cambridgei is no exception and it is known to contain modulators of TRPV1 

and voltage-gated ion channels (Siemens, 2006) in addition to PcTx1. This raises the question as 

to whether the reported neuroprotective effect of ‘PcTx1 venom’ was due to block of ASIC1a by 

PcTx1 or unrelated pharmacological effects mediated by other venom components. Therefore, to 

address this question, we examined the neuroprotective efficacy of pure, recombinant PcTx1 in a 

conscious hypertensive rat model of transient MCAO. We show that a single dose of PcTx1 

delivered 2 h after stroke dramatically reduces infarct size and restores normal levels of 

neurological and motor function. These effects are due specifically to inhibition of ASIC1a, as 

no neuroprotection was observed with a "disarmed" PcTx1 mutant peptide that can no longer 

inhibit the channel. 

 

2. Materials and Methods 

2.1 HPLC analysis of P. cambridgei venom 

Reversed-phase (RP) HPLC analysis of crude P. cambridgei venom was performed using a 

Shimadzu Prominence system. One mg of venom was fractionated on a Zorbax SB300 reversed-
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phase C18 column (4.6 × 250 mm, 5 µm, 300 Å) using a flow rate of 0.8 ml/min and the 

following gradient of solvent B (0.043% trifluoroacetic acid (TFA)in 90% acetonitrile) in solvent 

A (0.043% TFA in water): 10% solvent B for 2.5 min, 10–45% solvent B over 50 min, 45–70% 

solvent B over 5 min. The early eluting fraction was further analysed on a Thermo HyPurity C18 

column (4.6 × 100 mm, 5 µm, 120 Å) using a gradient of 0% solvent B for 5 min then 0–15% 

solvent B over 15 min at a flow rate of 1 ml/min.  

 

2.2 Peptide production 

Recombinant PcTx1 and a double mutant analog were produced using an E. coli periplasmic 

expression system described previously (Klint, 2013). Briefly, synthetic genes encoding wild-

type or mutant PcTx1, preceded by a TEV protease cleavage site, were produced by GeneArt 

(Regensburg, Germany) and subcloned into a variant of the pLicC-His6-MBP periplasmic 

expression vector which enables periplasmic expression of target peptides as fusions to maltose 

binding protein (MBP). The His6-MBP-PcTx1 fusion proteins were expressed in E. coli strain 

BL21(λDE3) and isolated from cell lysates by passage over Ni-NTA Superflow resin (QIAGEN). 

The His6-MBP tag was then removed from the eluted fusion protein by cleavage with TEV 

protease. Recombinant PcTx1 (with an N-terminal serine added to facilitate TEV cleavage) was 

isolated to >95% purity using a final RP-HPLC step. We previously demonstrated that this 

recombinant peptide is equipotent with native PcTx1a (Saez et al., 2011). 

 

2.3 MALDI-TOF Mass Spectrometry 

Peptide masses were confirmed by matrix assisted laser desorption ionisation–time of flight mass 

spectrometry (MALDI-TOF MS) using a Model 4700 Proteomics Bioanalyser (Applied 

Biosystems, CA, USA). Peptide samples were mixed (1:1, v:v) with α-cyano-4-hydroxy-

cinnamic acid matrix (5 mg/ml in 50/50 acetonitrile/H2O) and MALDI-TOF spectra were 

collected in positive reflector mode. All masses given are for the monoisotopic M+H+ ions. 

 

2.4 Electrophysiology 

Two-electrode voltage clamp (TEVC) was carried out using Xenopus oocytes as previously 

described (Schroeder et al., 2014). cRNA encoding rat ASIC1a (rASIC1a) was synthesized using 

an mMessage mMachine cRNA transcription kit and healthy stage V-VI oocytes injected with 4 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4

ng rASIC1a cRNA (40 nL of 100 ng/uL). All experiments were performed at room temperature 

(18–21°C) in ND96 solution containing 0.1% fatty acid free-bovine serum albumin (BSA). 

Changes in extracellular pH were induced using a microperfusion system that allowed local, 

rapid exchange of solutions. HEPES was replaced by MES to buffer the pH 6 stimulus solution. 

Peptides were dissolved in ND96 solution (pH7.45) containing 0.1% BSA to prevent adsorption 

onto tubing. 

 

2.5 Cannulae implantation 

Male spontaneously hypertensive rats (SHR) (~ 20 weeks of age; 300–350g) were anaesthetised 

with ketamine (75 mg/kg; Sigma)/xylazine (10 mg/kg; Troy; i.p). A 23-gauge stainless steel 

guide cannula was stereotaxically implanted to sit 3 mm dorsal to the right middle cerebral artery 

in the piriform cortex. An additional cannula was implanted into the left lateral ventricle (–0.8 

mm anterior, +1.5 mm lateral, and –3.2 mm ventral relative to Bregma) which was left exposed 

to allow a bolus dose of drug to be administered 2 h after stroke. The animals were housed 

individually and were allowed a 5-day recovery period prior to the induction of stroke. All 

animal care and procedures were approved by the Monash University Animal Ethics Committee. 

The minimum number of animals were used and, where possible, an in vitro approach was 

applied. 

 

2.6 Drug treatments 

SHR (~20 weeks of age; 300–350 g) were randomly allocated to one of several treatment groups 

so the experimenter was blind to all treatments. Out of the thirty animals stroked in this study, 

one animal was excluded because it did not reach the appropriate level of stroke. In addition, 

three animals were excluded because they had a stroke that was greater than a grade-4 stroke. All 

excluded animals were humanely sacrificed immediately after the final injection of endothein-1 

(ET-1). The remaining animals received either PcTx1 (1 ng/kg; n = 9), inactive mutant PcTx1 (1 

ng/kg; n = 7), or vehicle (saline) (n = 10). All drugs were administered by intracerebroventricular 

(i.c.v.) injection 2 h after stroke via a previously implanted guide cannula using a 30-gauge 

injector protruding 3 mm into the lateral ventricle. Drugs were dissolved in saline and infused in 

a volume of 3 µl over 3 min. 
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2.7 Stroke induction 

During stroke induction, animals were placed in a clear Perspex box to allow observation. Stroke 

was induced in conscious animals by inserting a 30-gauge injector protruding 3 mm below the 

end of the previously implanted guide cannula and ET-1 (20 pmol/µl in saline; AusPep) was 

injected at a rate of 0.2 µl every 30 s until the animal exhibited behavioural changes associated 

with the desired level of stroke, as described previously (McCarthy et al., 2009; McCarthy et al., 

2012; McCarthy et al., 2014).)Typical behaviors that were observed were continuous 

contralateral and ipsilateral circling; clenching, dragging, or failure to extend the forelimb 

contralateral to the side of ET-1 infusion; chewing and jaw flexing and shuffling with forepaws. 

Each stroke was graded based on these pre-determined behavioral changes using a scale of 1 to 

4, with 1 being a mild stroke and 4 being a severe stroke. Only rats with a grade-4 level of 

stroke, exhibiting at least five of the aforementioned behaviors, were used for the purpose of this 

investigation.  

 

2.8 Assessment of functional outcome 

2.8.1 Ledged beam test 

Stroke-induced changes in motor coordination were examined by assessing the animal's 

dependence on the underhanging wider ledge of a gradually narrowing beam as previously 

described (McCarthy et al., 2012; McCarthy et al., 2009; McCarthy et al., 2014). Naïve rats are 

able to traverse the central portion of the beam without using the underhanging ledges for 

support. Stroked rats rely on the lower ledge for support on the impaired side and take more steps 

on the ledge. Animals were trained to traverse the beam on the day prior to surgical implantation 

of the cannula. The ledged beam test was conducted immediately before stroke induction, at 24 h 

(day 1) and ~70 h after stroke induction (day 3). The number of steps taken on the lower ledge 

(errors) by each foot was recorded and expressed as a percentage of the total number of footsteps 

taken and recorded as percentage error. All values were compared to pre-stroke performance, 

and therefore each rat acted as its own control. 

 

2.8.2 Neurological test 

Postural abnormalities were assessed by grading the severity of thorax twisting and the angle of 

forelimb extension when the rat is elevated by the tail above a flat surface (Yamamoto et al., 
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1988). Thorax twisting was scored on a scale of 0 to 3, with 0 representing no twisting behavior 

and 3 representing severe twisting. Forelimb extension was also scored on a scale of 0 to 3, with 

0 representing full contralateral forelimb extension, and 3 representing a complete failure to 

extend the contralateral forelimb. Both scores were summed to give a total neurological deficit 

score, where the maximum total score an animal could achieve was 6. A total score of zero 

indicated that the animal was normal with no neurological deficit evident, whereas a total score 

of 6 indicated sever neurological deficit. The test was conducted prior to surgery, immediately 

before stroke, and 24 h and 72 h after stroke induction. 

 

2.9 Histology 

2.9.1 Quantification of ischemic damage  

At 72 h after stroke rats were re-anaesthetised with ketamine (75 mg/kg; Sigma)/xylazine (10 

mg/kg; Troy) and transcardially perfused with physiologically buffered saline (0.1 M PBS; pH 

7.4) at a rate of 25 ml/min. Brains were then removed, snap frozen, and sectioned for image 

analysis to determine infarct size, as previously described (Callaway et al., 2000; McCarthy et 

al., 2009; McCarthy et al., 2012; McCarthy et al., 2014). 

 

2.9.2 Immunohistochemical staining 

Neuronal integrity was assessed using a neuron-specific marker, NeuN antibody (1:500 dilution, 

Chemicon), which is a DNA-binding protein that binds to the nucleus of neurons. In addition, 

cells undergoing apoptosis were identified using an antibody against a common mediator in the 

apoptotic pathway, cleaved Caspase-3 (1:200 dilution, AbCAM). Frozen coronal cryostat 

sections (16 µm) were post-fixed using 100% acetone for 10 min. Slides were incubated 

overnight with either the NeuN or cleaved Caspase-3 antibody at 4˚C. Sections were then 

incubated at room temperature for 2 h with a fluorescently labelled secondary antibody: Alexa 

488 was used for NeuN (1:500 dilution, Invitrogen) and Alexa 568 for cleaved Caspase-3 (1:500 

dilution, Invitrogen). The number of immunopositive cells were counted within six 1-mm2 sites 

that were randomly imaged on the ipsilateral and contralateral hemispheres. Data are expressed 

as the average number of immunopositive cells per mm2. 
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2.10 Statistical Analysis 

Results are presented as mean ± standard deviation of the mean (SD). The ledged beam test, 

neurological score, and systolic blood pressure were analysed using a two-way repeated 

measures analysis of variance (ANOVA). Neuronal expression (NeuN-positve cells) and 

apoptosis (caspase-3-positive cells) were analysed by two way ANOVA, while infarct area was 

analysed using a one-way ANOVA. Post hoc testing, corrected for multiple comparisons, was 

performed using Tukey’s test. A P value < 0.05 was considered to be statistically significant. 

Data analysis was performed using GraphPad Prism (Version 6). 

 

3. Results 

3.1 Complexity of P. cambridgei venom (“PcTx1 venom”)  

Venom from P. cambridgei has previously been used as a substitute for PcTx1 in stroke studies 

(Li  et al., 2010; Pignataro et al., 2007; Xiong et al., 2004) due to the lack of a commercial 

supplier. Since spider venoms are extremely complex mixtures of salts, small molecules, 

peptides and proteins (King et al., 2013), we decided to examine the relative abundance of 

PcTx1 peptide in P. cambridgei venom. Fractionation of P. cambridgei venom using RP-HPLC 

yielded a complicated chromatogram with more than 50 peaks, indicative of a highly complex 

venom (black trace in Fig 1A). The peak corresponding to native PcTx1 was confirmed by 

comparison with the retention time of pure, recombinant PcTx1 eluted under the same conditions 

(grey trace in Fig. 1A) as well as MALDI-TOF mass spectrometry (observed M+H+ = 4687.32, 

calculated M+H+ = 4687.21). Integration of each of the peaks in the venom chromatogram 

revealed that PcTx1 constitutes only ~0.4% of the total venom based on absorbance at 214 nm. 

We conclude that PcTx1 is found at very low abundance in P. cambridgei venom, and therefore 

one cannot definitively conclude that the pharmacological effects evoked by "PcTx1 venom" in 

stroke studies are due solely to PcTx1 inhibition of ASIC1a. 
 

3.2 Activity of recombinant PcTx1 and “disarmed" mutant 

In order to examine the neuroprotective effects of pure PcTx1, we produced recombinant PcTx1 

as described previously (Saez et al., 2011) as well as a double mutant version of the peptide that 

was designed to be inactive on ASIC1a. Our previous structure-function studies of PcTx1 (Saez 

et al., 2011) as well as crystal structures of the complex formed between PcTx1 and chicken 
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ASIC1 (Baconguis, 2012; Dawson et al., 2012) indicate that residues Arg27 and Val32 are 

important for PcTx1 inhibition of ASIC1a. Thus, we produced an R27A/V32A double mutant 

peptide (Fig. 1B) and examined the ability of this analogue to inhibit rASIC1a. 

Electrophysiological analysis indicated that recombinant wild-type PcTx1 inhibits rASIC1 with 

an IC50 of 0.82 ± 0.19 nM, consistent with literature values (Escoubas et al., 2000; Saez et al., 

2011), whereas the R27A/V32A mutant is essentially inactive with an IC50 > 10 µM (i.e., 

>10,000-fold lower potency) (Fig. 1C). Thus, the disarmed R27A/V32A mutant PcTx1 provides 

a valuable control to determine whether the in vivo effects of PcTx1 are due to inhibition of 

ASIC1a. 

 

3.3 Effect of PcTx1 on infarct size following MCAO 

A single dose (1 ng/kg) of PcTx1 delivered i.c.v. 2 h after MCAO had a dramatic impact on 

infarct size (Fig. 2). The cortical infarct volume measured 72 h after MCAO was ~70% smaller 

in PcTx1-treated animals (32 ± 30 mm3) compared to control animals (108 ± 71 mm3; P<0.05). 

Striatal infarct volume appeared lower in PcTx1-treated animals (24.0 ± 8.4 mm3) compared to 

control animals (39 ± 27 mm3), but this did not reach statistical significance. In contrast with 

native PcTx1, the disarmed PcTx1 mutant had no effect on the severity of cortical or striatal 

damage. The individual infarct volume areas for each group are also shown in (Fig 2). We 

conclude that PcTx1 treatment reduces infarct size after stroke due to pharmacological blockade 

of ASIC1a. 

 

3.4 Effect of PcTx1 on motor deficits following MCAO 

Compared to pre-stroke measurements, there was a pronounced motor deficit in vehicle-treated 

SHRs at both 1 and 3 days after stroke (i.e., >40% error in the ledged-beam test; Fig. 3A). PcTx1 

treatment (1 ng/kg i.c.v.) significantly reduced the severity of motor deficit at 1 and 3 days after 

stroke compared to control rats (<10 % error in ledged-beam test; P<0.01 versus corresponding 

time points in vehicle-treated group) (Fig. 3A). In accordance with the histological data, the 

inactive PcTx1 mutant had no effect on motor deficits after stroke (Fig. 3A). 
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3.5 Effect of PcTx1 on neurological scores following MCAO 

A significant neurological deficit was observed at 1 and 3 days after ET-1 induced stroke in both 

the control animals (1 day: 4.0 ± 1.9 ; 3 days: 3.3 ± 2.0 ; P<0.01 versus pre-stroke deficit) and 

animals receiving inactive PcTx1 mutant (1 day: 4.9 ± 1.5; 3 days: 3.9 ± 1.3; P<0.01 versus pre-

stroke deficit). Remarkably, there was very little sign of neurological deficit at either time point 

after stroke (1 day: 0.7 ± 1.0; 3 days: 0.7 ± 0.9; P<0.01 versus corresponding time points in 

vehicle-treated group; Fig. 3B) in animals that received PcTx1. 

 

3.6 Effect of PcTx1 on neuronal survival following MCAO  

The number of neurons detected by NeuN-immunopositive staining was lower in the infarcted 

(ipsilateral) hemisphere compared to the non-infarcted (contralateral) hemisphere in both 

vehicle-treated animals and those receiving the inactive PcTx1 mutant (Fig. 4), although only the 

latter reached statistical significance (P<0.01). Loss of NeuN-positive staining was much less 

evident in in the occluded hemisphere of animals treated with PcTx1 (P<0.05), suggestive of 

improved neuronal survival in these animals. 

 

The number of cells undergoing apoptosis in the occluded hemisphere of stroked SHRs 

receiving either vehicle or inactive PcTx1 was higher than in the contralateral hemisphere 

(Fig. 5), in accordance with the decreased neuronal survival in the same hemisphere (Fig. 4). 

Treatment with PcTx1 had an anti-apoptotic effect in the occluded hemisphere as evidenced by a 

blunting of the stroke-induced increase in the number of cells positive for cleaved caspase-3 

(Fig. 5).  

 

4. Discussion 

In the present study, we demonstrated that PcTx1 affords both functional and anatomical 

neuroprotection following induction of stroke in conscious SHR. These protective effects were 

absent in animals treated with a PcTx1 mutant that lacks activity against ASIC1a, thus 

demonstrating, for the first time, that the neuroprotection afforded by PcTx1 peptide is due to 

selective inhibition of ASIC1a. 
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Stroke is the is the second leading cause of death worldwide (Moskowitz et al., 2010; Woodruff 

et al., 2011) and the leading cause of disability in industrialized countries (Liu et al., 2012). The 

use of recombinant tissue plasminogen activator (rtPA) to help restore blood flow to the ischemic 

region is the only approved agent for treatment of acute stroke and it is used in only 3–4% of all 

stroke patients (Besancon et al., 2008) due to its narrow therapeutic window and the risk of 

inducing intracranial hemorrhage (Moskowitz et al., 2010). Thus, there is intense interest in 

developing new approaches for treatment of stroke victims. 

 

Ischemia-induced acidosis causes neuronal injury independently of the activation of voltage-

gated calcium channels and glutamate receptors. Activation of ASICs appears to represent a key 

mechanism by which a reduction in the pH of ischemic tissue leads to calcium influx and 

excitotoxicity (O'Bryant et al., 2014). This distinct mechanism of excitotoxicity might in part 

explain the failure of NMDA receptor antagonists in clinical trials against stroke (O'Bryant et al., 

2014). Infarct size is reduced by ~60% in ASIC1a knockout mice (Xiong et al., 2004) which 

suggests that ASIC1a, the primary ASIC subtype in rodent and human brain (Li et al., 2010), is a 

key contributor to the pathological events induced by ischemic stroke. 

 

Several studies have attempted to demonstrate a causal role for ASIC1a in the neurodegeneration 

induced by cerebral ischemia by employing nonselective small-molecule ASIC1 inhibitors such 

as flurbiprofen (Mishra et al., 2010; Mishra et al., 2011) and aspirin (Wang et al., 2012), "PcTx1 

venom" (Pignataro et al., 2007; Xiong et al., 2004), or genetic ablation of ASIC1a (Xiong et al., 

2004) as a means of reducing ASIC1a function. NSAIDs such as flurbiprofen and aspirin are 

weak, nonselective inhibitors of ASIC1a and they affect a myriad of other biological targets. 

Genetic ablation of an ion channel can give rise to compensatory regulation of related subtypes 

of the target channel with unknown consequences. As shown here, "PcTx1 venom" contains only 

a very small amount of PcTx1 amongst many other venom peptides that likely affect a wide 

array of voltage- and ligand-gated ion channels (King et al., 2013). Thus, none of these 

approaches provides definitive evidence that acute pharmacological inhibition of ASIC1a is 

likely to be neuroprotective in ischemic stroke. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 11

Tarantula venoms are exceptionally complex chemical cocktails dominated by disulfide-rich 

neurotoxic peptides (Herzig et al., 2013; King et al., 2013). The primary molecular targets of 

these peptides are neuronal voltage-gated calcium, sodium and potassium channels (Herzig et al., 

2013). We showed here that PcTx1 constitutes a very minor proportion (~0.4%) of 

P. cambridgei venom, which equates to a concentration of 40–80 µM in crude venom. In 

comparison, the venom of this spider is known to contain modulators of TRPV1 and voltage-

gated potassium channels at concentrations in the 0.2–1.7 mM range (Choi, 2004; Siemens, 

2006). Thus, the in vivo effects of “PcTx1 venom" are likely to be due to the combined effects 

from a wide variety of venom peptides, rather than solely due to PcTx1inhibition of ASIC1a. 

Thus, we strongly recommend against using “PcTx1 venom” as a method to selectively inhibit 

ASIC1a in vivo. 

 

We examined the effect of pure, recombinant PcTx1 using a model of cerebral ischemia that 

closely mimics the clinical setting in that animals are conscious while stroke is induced. This 

avoids the confounding effects of anaesthesia, which are known to be neuroprotective (McCarthy 

et al., 2012; McCarthy et al., 2009; McCarthy et al., 2014). Furthermore, MCAO was performed 

on hypertensive animals, since high blood pressure is an important risk factor for stroke. 

Additionally, the hemodynamic changes induced via targeted application of ET-1 are 

representative of human stroke, with blood flow reduction at the onset of ET-1 administration 

resulting in complete occlusion of the vessel, which begins to resolve over a period of 30–40 min 

after stroke with blood flow returning to normal over the following 16–22 h  (Mecca et al., 

2009). The region of damage resulting from this transient model of stroke is characterised by a 

necrotic core of severely impacted tissue, surrounded by an ischemic penumbra of compromised 

but salvageable neurons, which over time will gradually undergo apoptotic cell death in the 

absence of therapeutic intervention. When administered centrally 2 h after stroke, a single 

nanogram dose of pure PcTx1 almost halved the volume of neuronal damage in SHRs, as 

measured three days post-insult. PcTx1 not only afforded protection in the cortical region 

(ischemic penumbra), but tended to reduce the severity of damage in the striatal core (i.e., tissue 

directly impacted by hypoxia), which is generally considered resistant to therapeutic intervention.  
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In previous studies, "PcTx1 venom" was administered at a dose of 10 ng/kg in mice at 5 h after 

transient MCAO (Pignataro et al., 2007), and immediately before and after stroke induction in 

rats with transient MCAO, with the rat brain concentration estimated at ~50 ng/ml (Xiong et al., 

2004). Given that PcTx1 represents ~0.4% of crude P. cambridgei venom, the estimated brain 

concentration of PcTx1 in these studies (0.2 ng/ml, ~0.03 nM) would have been ~15–30-fold 

lower than the reported IC50 for PcTx1 inhibition of rASIC1a (Escoubas et al., 2000; Saez et al., 

2011). This dose would lead to only minimal inhibition of brain ASIC1a (<5%). Thus, it is 

unclear whether the small amount of PcTx1 administered in previous studies (Pignataro et al., 

2008; Xiong et al., 2004) was solely responsible for the observed neuroprotective effects or 

whether they are due to the combined effect of several venom components. In contrast, the dose 

of PcTx1 used in the current study equates to a brain concentration of ~1.2 nM, which should 

inhibit brain ASIC1a activity by >60%. 

 

Earlier findings (Pignataro et al., 2008; Xiong et al., 2004) showed that, "PcTx1 venom" 

markedly reduced infarct volume when assessed 24 h after stroke, although no functional 

correlates were examined. Notably, in the current study, the preservation of brain tissue by 

PcTx1 was reflected symptomatically, with PcTx1-treated animals experiencing less motor 

impairment and reduced neurological deficit following stroke. Moreover, the absence of 

neuroprotection in animals receiving inactive PcTx1 mutant provides strong evidence that the 

neuroprotection afforded by PcTx1 is due specifically to its ability to inhibit ASIC1a. PcTx1 

(IC50 ~0.5-1 nM) is a considerably more potent inhibitor of ASIC1a than small molecules such as 

amiloride (IC50 ~10 µM) (Gründer et al., 2010), flurbiprofen (IC50 ~350 µM) (Voilley et al., 

2001), and sinomenine (IC50 ~0.27 �M) (Wu et al., 2011), and it is also much more selective. 

Thus, the neuroanatomical and behavioural protection afforded by PcTx1 in the current study 

more convincingly demonstrates the therapeutic potential of ASIC1a blockade as a treatment for 

stroke.  

 

Our immunohistochemical analysis indicated that stroke markedly increased the number of cells 

undergoing apoptosis in the ipsilateral hemisphere, but the number of caspase-3 positive cells 

was reduced in PcTx1-treated animals. In the future, it would be of interest to use other apoptotic 

assays, such as terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), to 
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examine the PcTx1 treatment effect, particularly given that some studies have shown that non-

apoptotic cells such as reactive astrocytes, macrophages/microglia and neutrophils express 

caspase-3 at 72 h after stroke (Nag et al., 2005; Wagner et al., 2011). In any case, the increase in 

caspase-3 immunostaining in the area directly affected by ischemia is consistent with the stroke-

induced loss of neuronal integrity, as identified by NeuN in the vehicle-treated animals, which 

we have consistently reported ( McCarthy et al., 2009; McCarthy et al., 2012; McCarthy et al., 

2014). Furthermore, treatment with PcTx1 blunted the loss of NeuN staining, signifying a 

preservation of neuronal survival. Thus, PcTx1 prevented apoptosis following MCAO, which is 

in keeping with the conservation of neuronal architecture and is reflected by both the histological 

and behavioural data.   

 

The current study provides striking proof-of-principle that inhibition of central ASIC1a 

interrupts the pathological events occurring after MCAO. However, the elucidation of the time 

course of neuroprotection using clinically relevant routes of drug administration in several 

animal models is required before clinical translation of these findings into humans (Fisher et al., 

2009).  

 

Conclusion 

Selective inhibition of brain ASIC1a with pure PcTx1 peptide provides functional- and 

anatomical- neuroprotection following induction of stroke in conscious SHR. These findings 

indicate that ASIC1a is an exciting therapeutic target after an ischemic event.  
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Figure Legends 
 

Figure 1: (A) RP-HPLC chromatograms of P. cambridgei venom (black trace) and recombinant 

PcTx1 (grey trace) highlighting the chemical complexity of the venom and the minor abundance 

of PcTx1. The large inset shows re-fractionation of the early-eluting components on a different 

column in order to reveal the hidden complexity in this region of the chromatogram. The small 

inset is a MALDI-TOF MS spectrum of native PcTx1 (observed M+H+ = 4687.32, calculated 

M+H+ = 4687.21). (B) RP-HPLC chromatogram showing the purity of the recombinant 

R27A/V32A double mutant PcTx1. (C) Concentration-effect curves for inhibition of rASIC1a 

expressed in Xenopus oocytes by recombinant PcTx1 and the R27A/V32A double mutant 

peptide. Calculated IC50 values are listed on the figure. 

 

Figure 2. Infarct volume after MCAO. Histological sections showing typical infarcted region 

(darker area) and non-infarcted region from SHR that were treated with (A) vehicle, (B) PcTx1 

(1 ng/kg i.c.v.), or (C) inactive PcTx1 (1 ng/kg i.c.v.) 2 h after ET-1 induced MCAO. Individual 

infarct volumes, together with mean ± SD, on the ipsilateral side measured 72 h post-stroke are 

shown for (D) cortical and (E) striatal regions for vehicle (n = 10), PcTx1 (n = 9), and inactive 

PcTx1 (n = 7). *P<0.05 versus vehicle (one-way ANOVA).  

 

Figure 3. Behavioural performance after MCAO. The effect of vehicle (saline) (n = 10), PcTx1 

(1 ng/kg i.c.v.; n = 9), and inactive PcTx1 (1 ng/kg i.c.v.; n = 7) on (A) percentage errors made in 

ledged beam test, and (B) neurological score following stroke. Ledged beam test and 

neurological assessment were performed pre-stroke (PS) and at 24 h (24) and 72 h (72) post-

stroke. Data are mean ± SD. ##P<0.01 versus pre-stroke performance; ** P<0.01 versus 

corresponding time in vehicle-treated group (two-way RM ANOVA followed by Tukey post hoc 

tests). 

 

Figure 4. Neuronal survival after MCAO. (A) Effect of vehicle (n = 10), PcTx1a (1 ng/kg i.c.v.; 

n = 9), and inactive PcTx1 (1 ng/kg i.c.v.; n = 7) on neuronal survival measured 72 h post-stroke. 

Data expressed as the number (mean ± SD) of NeuN-immunopositive (NeuN+) cells per mm2 

within the non-occluded (contralateral) and occluded (ipsilateral) hemisphere. #P<0.05 versus 
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vehicle-treated group (ipsilateral side); **P<0.01 versus matched region on non-infarcted 

hemisphere (two-way ANOVA followed by Tukey post hoc tests); (B) Representative 

immunohistochemical brain sections depicting neuronal expression using NeuN neuronal marker 

(green). Images are taken from either the non-occluded or occluded hemisphere from animals 

that were stroked and subsequently treated with vehicle, PcTx1 or inactive PcTx1. 

 

Figure 5. Apoptosis after MCAO. (A) Effect of vehicle (n = 10), PcTx1 (1 ng/kg i.c.v.; n = 9) or 

inactive PcTx1 (1 ng/kg i.c.v.; n = 7) on the number of cells undergoing apoptosis at 72 h post-

stroke. Data expressed as the number (mean ± SD) of cleaved caspase-3-immunopositive 

(caspase-3+) cells per mm2 area within the non-occluded (contralateral) and occluded (ipsilateral) 

hemisphere. **P<0.01 versus matched region on non-infarcted hemisphere (two-way ANOVA 

followed by Tukey post hoc tests); (B) Representative immunohistochemical brain sections 

depicting neuronal expression using a marker for cleaved caspase-3 (red). Images are taken from 

either the non-occluded or occluded hemisphere from animals that were stroked and 

subsequently treated with vehicle, PcTx1 or inactive PcTx1. 
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Highlights 

• The effect of pure PcTx1 to inhibit ASIC1a was tested in a hypertensive model of 
stroke 

• PcTx1 evoked neuroprotection when administered centrally after stroke 

• PcTx1 reduced cortical infarcts and improved motor function tested after 3 days 
• PcTx1 preserved neuronal architecture 
• An inactive PcTx1 analog had no effect on stroke outcome 

 


