
 

 

 
 

Improving the utility of genetic markers in fish 

populations. 

 
Gilbert Michael Macbeth 

 

Associate Diploma in Applied Biology 

Bachelor of Applied Science 

Graduate Diploma in Computer Science 

 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at 

The University of Queensland in 2015 

School of Mathematics and Physics 



 ii 

Abstract      
 

A review of the use of genetic markers applied to aquaculture and wild fish populations 

was conducted. The review detailed current knowledge and provided a foundation on 

which to explore new opportunities to improve the utility of genetic markers in fish 

populations. The current use of markers is diverse and includes but is not limited to: 

improvements to genetic selection of captive populations (marker assisted selection, 

genome wide selection, walkback selection), estimation of variance components 

(heritability, genetic correlations), pedigree identification (relatedness, kinship, inbreeding, 

genetic tagging), population studies (stock differentiation, migration rates, species 

identification, invasive species distribution, effective population size, phylogenetics, illegal 

fishing) and survival estimation.  

 

This research was used to build on the utility of existing applications of genetic markers in 

fish populations. In the first application genetic markers were used to identify sires of 

progeny in a novel breeding program using in vitro fertilisation of eggs. Computer 

simulation between family selection at the onset of a breeding program was optimised to 

yield a 40% increase in growth rate for barramundi (Lates calcarifer). Such a large gain is 

of significant economic importance to the barramundi aquaculture industry. The breeding 

program was designed to yield additional genetic gains from long term selection by 

managing inbreeding. 

 

Following on from this related design a new method using a binary threshold model was 

developed to rapidly assess genotype by environmental interactions (GxE) by modelling 

and estimating genetic correlations between environments. The motivation for this study 

was to improve the ability to estimate how much genetic improvement predicted by a 

selective breeding program will be realised in the commercial environment.  As such, rapid 

estimates of genetic correlations are important during the very early stages of breeding 

program investment. The design was suitable for rapid assessment of GxE over one 

generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. 

 

While the first two applications assumed sufficient genetic markers to identify sires, an 

accurate new statistical method was developed to identify individuals using genetic 

markers when Type I and Type II errors occur. The new theory advances the application of 

likelihood methods which were implemented in a new software tool called SHAZA. The 
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methods are useful in wildlife forensic studies where missing data can often occur as a 

result of the breakdown of DNA in field conditions. 

 

The theory developed and implemented in SHAZA was applied to a mark-recapture design 

in a dataset which had many individual genotypes with missing loci. The new theory was 

able to recover 80% more pairwise comparisons of individual genotypes compared to 

discarding missing data. This facilitated the estimation of abundance and proportion of 

Spanish mackerel (Scomberomorus commerson) caught during commercial harvest which 

was determined with finite estimates. The abundance estimate is potentially useful in 

fisheries management and ecological monitoring.  

 

The utility of genetic markers to assess an idealised estimate of the abundance of 

breeding adults was also investigated by estimating effective population size (Ne). In this 

study it was discovered that outlier genotypes on non-conspecific species created a large 

bias in linkage disequilibrium estimation of Ne. Correspondence analysis methods were 

tested using simulation as a means of identifying non-target species.  Simulations showed 

that the identification and removal of these non-target genotypes was successful in 

improving the accuracy of Ne estimation. 

 

A review of the major findings, their implications, caveats and future research ideas are 

discussed in the final chapter. One future area of research would be to investigate the 

utility of estimating the percentage of full sibs in populations that have insufficient genotype 

data collected for individual assignment tests. A new proposed method is based on a 

curve of the cumulative number of false positives plotted against the log likelihood ratio of 

pairwise comparisons. The change in the curve was found to be sensitive to small 

changes in the percentage of full-sibs in a population. 
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The following introduction gives a brief overview on the use of genetic markers applied to 

aquaculture and wild fisheries populations. This overview, together with an understanding of 

the broad scope of genetic marker applications, provided the necessary background in 

which to explore new ideas for further investigation. 

 

1.1 Fish production and exploitation 
Management of fish populations started in the form of farming with the introduction of 

aquaculture in China dating back to 2000-1000 B.C. (Rabanal, 1988). The first 

domesticated fish being common carp Cyprinus carpio (Balon 2004). Today only a few fish 

species can be considered truly domesticated with many aquaculture populations relying on 

wild resources (Teletchea et al., 2014). Together fisheries and aquaculture products are 

now the most traded food commodities worldwide making significant contributions to the 

world’s well-being and prosperity (FAO, 2015) with aquaculture now providing a staggering 

41% of total world fisheries output from a base of only 4% in 1970. Today most wild fish 

populations are fully exploited or have already been overfished (FAO, 2015). This seems to 

be supported by more recent evidence showing that wild fisheries capture has remained 

static since about 1985 (FAO, 2015). The importance of sustainable management practices 

(Fréon et al., 2005), including rebuilding fish populations (Hilborn et al., 2014), will be 

essential to maximize sustainable yields from wild fish populations.  It is here that genetic 

markers can play an important role in monitoring fish populations with the uptake expected 

to grow through new partnerships between fisheries managers and geneticists (Ovenden et 

al., 2015). 

 

1.2 Genetic markers used in fish populations 
Molecular markers in aquaculture and fisheries have been used for over 50 years (Ryman 

and Utter, 1987; Liu and Cordes, 2004) and their use has steadily increased over the last 

two decades (Park and Moran, 1994; Chauhan and Rajiv, 2010; Dichmont et al., 2012; 

Abdul-Muneer, 2014). There are many types of genetic markers which can broadly be 

classed as protein markers such as allozymes and DNA markers such as variable number 

of tandem repeats loci (VNTRs: microsatellites, minisatellites), random amplified 

polymorphic DNA (RAPDs), amplified fragment length polymorphisms (AFLPs), single 

nucleotide polymorphisms (SNPs), single-strand conformation polymorphism (SSCP) 

(Hauser et al., 2011; Dichmont et al., 2012; Abdul-Muneer, 2014) and mitochondrial DNA 

markers (mtDNA) (Gold et al., 1993). 



 3 

 Of all the different types of genetic markers, microsatellite markers are perhaps the 

most widely used in conservation genetics, fisheries management and aquaculture as they 

are highly polymorphic, Mendelian inherited and have co-dominant transmission (Abdul-

Muneer, 2014; Duran et al., 2009). These properties make microsatellites an ideal marker 

and have become a mainstream tool applied to genetic applications in both wild populations 

and in the management of captive aquaculture populations. SNPs are also increasingly 

becoming popular (Fernández et al., 2013) with conclusions based on SNP markers 

analogous to that of microsatellite markers (Coates et al., 2009). 

 

1.2.1 Genetic markers used in closed aquaculture populations 
In managing captive fish populations there is a balance between achieving a response to 

selection and minimizing rates of inbreeding (Macbeth, 2007).  Traditionally, this field has 

been a branch of quantitative genetics with little or no use of genetic markers. More 

recently, however, the development in the application of genetic markers in captive fish 

populations have been steadily increasing. These applications generally focus on four 

areas: 

(i) Selection – to improve the rate of genetic gains,  

(ii) Genetic parameter estimation – to estimate past and future genetic gains,  

(iii) Inbreeding and relatedness – to monitor loss in genetic variance and  

(iv) Family survival – to assist mating strategies.  

 

Examples of some marker applications in aquaculture include: 

Selection 

(i) Quantitative Trait Loci (QTL).  The identification of loci associated with a quantitative 

trait. Putative QTL genes were identified in rainbow trout, Oncorhynchus mykiss (Ozaki 

et al. (2001) with linkage maps constructed in many other aquaculture species (Yue 

2012, Zhanjiang 2007). High density QTL mapping will enble genom-wide-association 

studies with the ability to detect very small marker-trait associations (Yue 2012) making 

genomic selection possible (Goddard and Hayes, 2007).  

(ii) Marker Assisted Selection (MAS). Markers close to quantitative trait loci can be used 

in selection programs to give higher rates of genetic response in traits with low 

heritability (e.g. 0.06) compared to phenotypic selection (Sonesson, 2007). Short-term 

gains of MAS seem to be at the expense of longer term selection responses 

(Meuwissen and Sonesson, 2004; Gibson, 1994) with no known breeding programs 

using this technology (FAO 2007). MAS can however be exploited in a number of ways 
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not offered by traditional selection, i.e. selection of fish at fingerling stage for traits such 

as sexual maturation or meat quality traits, or for selection of mortality traits such as 

disease resistance, salinity or temperature tolerances (Yue 2012). 

(iii) Genome-Wide Selection (GWS). Dense SNP markers have identified a large 

proportion of additive genetic variance (Yang et al., 2010).  Sonesson and Meuwissen 

(2009) and Nielsen et al. (2011) had shown that GWS is potentially promising in 

aquaculture breeding programs with a higher accuracy than best linear unbiased 

prediction and with lower rates of inbreeding per generation. 

(iv) Walk-back selection. The maximum selection response at a given rate of inbreeding 

can be achieved using Walk-back selection (Doyle and Herbinger, 1994). In this 

example genotyping of the heaviest fish are continued until sufficient family structure is 

recovered to manage inbreeding. This application encompasses kinship analysis using 

genotype samples from the heaviest fish to identify pedigree relationships. In fish 

species walkback selection has been proposed by Sonesson (2005) and Robinson et al. 

(2010). 

Genetic parameter estimation 

(i) Genotype by Environmental interaction (GxE). In an application of marker-based 

pedigree assignment GxE effects from growth have been estimated in European sea 

bass, Dicentrarchus labrax (Dupont-Nivet et al., 2008; Le Boucher et al., 2013) and in 

rainbow trout, Oncorhynchus mykiss (Pierce et al., 2008; Le Boucher et al., 2011). As 

outlined in Chapter 3 these GxE effects are implicated in a reduced response to 

selection. 

(ii) Estimation of heterosis. Heterosis is a non-additive component of genetic variation. A 

positive correlation between heterozygosity at microsatellite loci and salinity tolerance 

was observed in guppy populations (Shikano and Taniguchi 2003). 

(iii) Estimation of heritability. Heritability is expressed as the percentage of phenotypic 

variation that has an underlying genetic cause and is of primary importance in 

quantitative genetic studies. Heritability estimates for growth in the tropical abalone 

Haliotis asinina were estimated using parentage assignment from microsatellites (Lucas 

et al., 2006). 

Inbreeding and relatedness  

(i) Kinship analysis. Estimating contribution of parents during mass spawning has been 

estimated using genetic markers in barramundi (Lates calcarifer) (Frost et al., 2006), 

greater amberjack (Seriola dumerili) (Rodriguez-Barreto et al., 2013) and of white 

sturgeon (Acipenser transmontanus) (Rodzen et al., 2003). 
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(ii) Relatedness. Estimating relatedness of fish (Blonk et al., 2010, Kozfkay et al., 2008) 

and relatedness of fish trematode parasites (Ndeda et al., 2013) was determined using 

genetic markers. 

(iii) Inbreeding estimation. Microsatellites have been used as a tool to estimate 

inbreeding in channel catfish (Ictalurus punctatus) (Parra-Bracamonte et al., 2011) and 

in common sole (Solea solea) (Blonk et al., 2009). DNA fingerprinting is also a useful 

tool in estimating rates of inbreeding in aquaculture species during selection (Macbeth 

2005). 

Family survival 

 (i) Survival estimation. Survival estimation in rainbow trout using molecular genetic 

markers (Herbinger et al., 1995) and family survival in oysters (Lind et al., 2009). 
 

 

1.2.2 Genetic markers used in wild fisheries populations 
The use of genetic markers in wild populations is applied to: 

(i) Inbreeding and relatedness,  

(ii) Spatial analysis and tagging,  

(iii) Evolution and species identification and  

(iv) Age determination.  

 

Examples of some marker applications in wild fisheries include:  

Inbreeding and relatedness  

(i) Pedigree analysis. There are a number of methods of pedigree reconstruction 

including numerous likelihood methods (Marshall et al., 1998; Smith et al., 2001; Wagner 

et al., 2006; Kalinowski et al., 2007; Wang, 2004, 2011; Reister et al., 2009) and 

combinatorial reconstruction methods (Sheikh et al., 2010). Pedigree reconstruction has 

been applied to wild fish populations (Koch et al., 2008; Herbinger et al., 2006; Ford and 

Williamson, 2010; Aykanat et al., 2014). Close kin analysis used by Bravington and 

Grewe (2007) is also an application of pedigree analysis. 

(ii) Effective population size. Effective population size is an estimate of the capacity of 

populations to maintain genetic variation and is related to inbreeding. A number of 

methods utilizing genetic markers have been developed to estimate effective population 

size (Wang and Whitlock, 2003; Waples and Do, 2008; Zhdanova and Pudovkin, 2008; 

Wang, 2009; Waples and Waples, 2011). Hatchery supplementation has been found to 

reduce effective population size in wild salmon (Christie at el., 2012). 
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Spatial analysis and tagging 

(i) Genetic tagging. Genetic mark-recapture methods used to estimate abundance and 

distribution have been reviewed by Lukacs and Burnham (2005). Using genetic tags, 

migratory patterns of Northern Atlantic humpback whales have been investigated 

(Palsboll et al., 1997).  In situ genetic tagging has also been applied to Spanish mackerel 

(Buckworth et al., 2012). 

(ii) Detection of escaped aquaculture fish populations. Miggiano et al. (2005) had shown 

in theory that microsatellites could be used to detect gilt seabream escapees. O’Reilly et 

al. (2006), Glover et al. (2009) and Glover et al. (2013) had found escaped farmed 

Atlantic salmon, Salmo salar using genetic markers. The long term introgression of 

farmed salmon in wild populations has been identified as a serious conservation issue 

and has raised global concerns (Glover et al., 2013). 

(iii) Migration rates. The theory to estimate migration rates between populations using 

genetic markers has been developed by Wang and Whitlock (2003) and Paetkau et al. 

(2004). The conservation of isolated populations may need to be managed differently. 

(iv) Spread of invasive fish. Translocation and spread of tilapia has been inferred using 

microsatellite and mitochondrial markers (Ovenden et al., 2014). 

(v) Law enforcement. Illegal fishing (Nielsen et al., 2012). Fish being caught in illegal 

fishing zones e.g. detection of female crabs being sold illegally (Queensland Government 

2010). 
 
Evolution and species identification 
(i) Phylogenetics. The study of evolutionary relatedness among groups has been 

extensively applied to fish populations (Danzmann and Ihssen, 1995; Yue at al., 2009; 

Fauvelot and Borsa, 2011; Tillett et al., 2011). 

(ii) Species identification. 90% of freshwater species from North America can be 

identified using mitochondrial DNA (April et al., 2011). The range of black tipped sharks 

Carcharhinus tilstoni was extended using DNA species recognition (Ovenden et al., 

2010). 

(iii) Hybrid identification. Using genetic markers hybrids have been reported in shark 

populations (Morgan et al., 2011; Morgan et al., 2013) and cichlid populations 

(Salzburger et al., 2002). 

(iv) Stock differentiation. Stock differentiation has implications in stock management and 

has been detected from the variation in mitochondrial DNA (Park et al., 1993) and SNPs 

(Candy et al., 2015). 



 7 

(v) Pathogen identification. DNA identification of virus and bacterial fish pathogens has 

been demonstrated by Meyers et al. (1992) and Lievens et al. (2011). 

Age determination 

(i) Age determination. Determination of age is an important parameter in population 

management in wild fish populations with estimates being difficult to achieve (Campana, 

2001). A novel biomarker for age using telomere length has been identified in crustacean 

species  (Godwin et al., 2011) and the Sydney rock oyster (Godwin et al., 2012).  

 

1.3 Proposed research and development of genetic markers 
 

As listed above, the utility of genetic markers applied to aquaculture and fisheries is a 

diverse area of research and development. Despite the extensive use of molecular genetics 

in aquaculture and fisheries many techniques are still in the early stages of development. It 

is this growth and refinement of applications that are a key focus and motivation of this PhD 

as there are opportunities to expand and improve the existing knowledge base applied 

genetic markers in fish populations. I have carefully chosen five questions to address based 

on my review and my expertise in order to demonstrate an improvement in the utility of 

genetic markers. 
 
1.3.1 How can genetic markers be used to accelerate genetic improvement in fish? 

(This question is addressed in Chapter 2) 
 

Improvements in growth rate of fish during commercial growout is usually the first trait 

considered in breeding programs as it is of high economic importance, easily measured and 

is highly variable and heritable (Macbeth et al., 2002). Selecting the heaviest fish at harvest 

for use as parents to produce the next generation will yield a cumulative response to 

selection. A problem with fish is that they may not spawn at the same time with highly 

variable fertilization rates from parents (Frost et al., 2006) making it difficult to manage 

inbreeding while applying selection pressure to improve economic traits of interest.  

In this study I examine the benefits from using a controlled mating design with artificial 

mating to improve the rate of genetic gain. One solution to this strategy is to use genetic 

markers in a novel breeding program that takes advantage of cryopreserved sperm, artificial 

fertilization and progeny testing to achieve accurate estimated breeding values (EBV) for 

growth rate. Utilising accurate EBV’s, it is thought that large genetic gains can be made by 

applying a high rate of between family selection at the onset of a breeding program followed 
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by a multiplication phase to increase family numbers for long-term management of 

inbreeding.   

 

Figure. 1.1. Proposed breeding program designed to achieve large genetic gains in growth 

rate from accurate estimated breeding values (EBV). 
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The initial phase of the proposed breeding program is illustrated in Figure 1.1. The breeding 

program is novel because it incorporates strain evaluation, progeny testing, and evaluates 

estimated breeding values prior to forming a foundation population. It can also utilize a 

higher between family selection intensity than currently used in conventional programs due 

to the multiplication phase which reduces the rate of inbreeding in subsequent generations. 
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1.3.2 How can genetic markers be used to improve estimates of genotype by 
environmental interactions in aquaculture? 
(This question is addressed in Chapter 3) 
 

In selective breeding programs genotype by environmental interactions (GxE) is a vitally 

important consideration when assessing the economic benefits. The importance of GxE, 

when measured by the genetic correlation between the breeding environment and 

commercial production environment, is that it reflects the proportion of expected genetic 

gain that is expressed in the production sector.  For instance, barramundi (Lates calcarifer) 

may be grown in different environments such as in salt, brackish or sea water, in tropical or 

subtropical temperatures and in ponds, cages or recirculation tank systems. The genetic 

correlations of growth between the selected environment and commercial growout may be 

less than one and therefore not all genetic gains predicted from the selected environment 

will be expressed in the commercial environment.  

 

Figure 1.2. Proposed mating design to estimate genetic correlations between two 

environments. 
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To support a business case in a national fish breeding program the genetic correlation 

between breeding and commercial environments should be determined as soon as 

possible. Unfortunately rapid GxE estimates from data collected during single growout 

period is very difficult to obtain with any precision. I investigated the use of genetic markers 

to identify sires in a controlled mating design using artificial fertilisation to obtain rapid GxE 

estimates (Figure 1.2).  The rapid estimates of genetic correlation between environments 

and their standard errors simulated in this study were compared with recent published 

estimates of genetic correlation as a measure of the usefulness of this methodology. 
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1.3.3 How can genetic marker identification be improved in genotypes with missing 
alleles?   
(This question is addressed in Chapter 4) 

 

In practice the main disadvantages of microsatellites is the existence of null alleles which 

are alleles that are not observed during standard assays. For example a single null allele at 

a co-dominant locus would always create an observed homozygote while two null alleles 

would give missing data at that locus.   

 

This missing genotype data poses a problem when there is insufficient genotype data to 

distinguish between the log likelihood ratio distributions of true recaptures and true nulls 

with an overlap occurring between the two distributions (Figure 1.3). In theory there must be 

a threshold which can minimise the standard error of genotype matches. 

 

Figure 1.3. Distribution of true null and true recaptures based on log likelihood estimates. 

The threshold value LLRV is where recapture estimates are determined. 
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I investigate the use of log likelihood ratios and novel algorithms to estimate the number of 

Type I and Type II errors. The threshold value (LLRV) is optimised to obtain the most 

accurate estimate of recaptures possible by finding a solution that minimises the standard 

error of the estimates.  
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1.3.4 How can genetic markers be used to estimate fish abundance? 
(This question is addressed in Chapter 5) 

 

In a practical application of the theory developed in section 1.3.3 the abundance of wild 

feeding Spanish mackerel (Scomberomorus commerson) below a fishing vessel was 

determined (Figure 1.4). Special lures called “genetag” lures (Buckworth, 2004) were used 

to sample DNA tissue of wild feeding fish. 

 

Figure 1.4.  Schematic diagram showing the number of fish caught and the number of 

marked fish using genetag lures that were subsequently caught or remain in the wild.  

 

Caught 

Wild feeding Genetag 
lures 

 
 

This study takes the form of a continuous mark-recapture study where DNA tissue from 

genetag lures are sampled concurrently with the number caught and landed on board. 

Samples of genotypes from the number caught and the genotypes of genetag lures were 

determined. The standard error of abundance estimation is determined from the error 

associated with genetic identification and that of random sampling.  

 

 

The object of this study was to find finite estimates of abundance when accounting for the 

total sampling error. Finite estimates of abundance determined by genetic sampling will be a 

significant achievement and opens up the potential utility of this method for fisheries 

management. 
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1.3.5 How can genetic marker estimates of effective population size be improved?   
(This question is addressed in Chapter 6) 
 

Two new methods that can estimate effective population size (Ne) without the need for 

different samples separated by time over multiple generations include: (i) linkage 

disequilibrium (LD) estimates (Waples and Do 2008, 2010) and (ii) sibship estimates (Wang 

2009; Waples and Waples, 2011).  

 

The LD method measures the correlation of allele frequencies between loci (Figure 1.5) as 

a measure of genetic drift, which is proportional to effective size (Waples and Do, 2008). 

Recently Waples and England (2011) have shown that LD estimates of Ne are robust to 

equilibrium migration with eN̂  estimating the local effective population size.  Published 

papers utilizing LD to estimate effective population size have generally been applied to 

populations of less than 5000 (Waples and England, 2011; Waples and Do, 2010).  It is not 

known how robust Ne estimates are when migration is not in equilibrium and how accurate 

the estimates can be when applied to populations of large effective population size.  
 
Figure 1.5.  Correlation of two biallelic loci A and B on nine gametes.  
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The object of this study was to find finite estimates of Ne using microsatellite markers of 

Spanish mackerel and to investigate the limitations of the LD Ne estimates as the effective 

population size increases and when non-target genotypes are sampled. 
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2.1 ABSTRACT 
 
Rapid genetic gains for growth in barramundi (Lates calcarifer) appear achievable through a 

breeding program using foundation stock from progeny tested broodstock. The potential 

gains of this novel breeding design were investigated using biologically feasible scenarios 

tested with computer simulation models. This breeding design involves the production of a 

large number of full-sib families using artificial mating which are then compared in common 

growout conditions. The estimated breeding values of their paternal parents are calculated 

using a binomial probit analysis to assess their suitability as foundation broodstock. The 

program can theoretically yield faster rates of genetic gain compared to other breeding 

programs for aquaculture species.  Assuming a heritability of 0.25 for growth, foundation 

broodstock evaluated in two years had breeding values for faster growth ranging from 21% 

to 51% depending on the genetic diversity of stock under evaluation.  As a comparison it 

would take between nine and twenty-two years to identify broodstock with similar breeding 

values in an alternative barramundi breeding program. 
 

 

2.2  Introduction 
 
Barramundi (Lates calcarifer) also known as Asian sea-bass is an increasingly important 

tropical aquaculture species of the Asia-Pacific region and it is inevitable that breeding 

programs for this species will soon commence (Macbeth et al., 2002; Wang et al., 2008). 

Previously published papers showing genetic gains for barramundi could not be identified 

and only one simulated breeding program has recently been reported (Robinson et al., 

2010).  At the onset of any new breeding program in aquaculture there is much to be gained 

by assessing wild genetic diversity as different strains may be more suitable for commercial 

production.  The walk-back selection program for growth rate proposed by Robinson et al. 

(2010) did not attempt to evaluate the potentially diverse strains from different geographic 

locations prior to breeding. In species other than barramundi regional sampling of strains 

has revealed a 52% difference between low and high growth in six strains of Labeo rohita 

(Reddy et al., 2002), a 73% difference in weight in five strains of Onorhynchus mykiss 

(Overturf et al., 2003) and a 104% difference in weight at 105 days between Abbassa and 

Maryout tilapia strains (Elghobashy, 2001).  Differences within lines can also be large with 
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Brody et al. (1976) reporting differences between the means of half-sibs as large as 30% of 

the overall mean in Cyprinus carpio. 

If the breeding values of wild fish from different regions are evaluated prior to 

establishing a breeding program then there is the potential to make significant genetic gains 

in the short term. Common practice in barramundi hatcheries is to source replacement 

broodstock from the wild when required, but some hatcheries are starting to use selected 

commercially grown fish. As with other aquaculture species a breeding program is usually 

initiated with one or perhaps combined strains randomly sampled as foundation parents. To 

address the uncertainty in strain selection a two stage selection approach has been applied 

in the past where strains are first evaluated (Elghobashy, 2001) prior to selection with the 

best strains then selected for a foundation population.  However, this strategy can be costly 

and can take considerably more time than simply forming a synthetic line of mixed strains. 

More recently in barramundi there have been attempts to find genetic markers linked to 

quantitative trait loci (QTL) of economic importance as a potential means of screening 

foundation broodstock (Wang et al., 2007).  However, again this method is costly and is 

restricted to a small number of QTL with large effects and so ignores the potentially largest 

component of genetic variance from cumulative effects of many genes with smaller effects.     

In an alternative strategy the high accuracy of progeny testing (Robertson, 1957) could 

be used to evaluate wild fish. This strategy has been under consideration for many years 

since Wohlfarth et al. (1961) used it to assess growth in carp. Later Brody et al. (1976) 

advocated large scale progeny tests but Gjedrem (1983) suggested it would “increase 

generation interval markedly”. Five years later Gall (1988) mentioned that there was no 

evidence that progeny testing had been successfully implemented in fish breeding and 

since then it has received little attention in aquaculture for testing of quantitative traits such 

as growth rate. 

Barramundi is ideally suited to progeny testing because their high fecundity in both 

females (up to 46 x 106 eggs per female; Davis, 1984) and males (up to 10-15 ml of semen; 

Maneewong, 1986; Palmer, 2000) which allows many progeny to be tested for each parent.  

Artificial fertilisation would be essential, because large numbers of synchronous natural 

spawns are difficult to achieve in practice for this species. Artificial fertilisation can also 

eliminate maternal effects and eliminate age differences which could potentially give fish a 

size advantage they never relinquish (Tave, 1995).  It is proposed to screen potential 

foundation broodstock for growth using genotype identification and phenotypic observations 

in a progeny test framework where families are produced by artificial fertilisation.   
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While copious quantities of semen can be collected from wild males captured on 

spawning grounds, this is generally only possible a short time before spawning in captive 

males (Hogan et al., 1987). The potential to strip-spawn eggs and artificially inseminate 

them with cryopreserved semen from multiple sires has been successfully demonstrated in 

L. calcarifer (Palmer et al., 1993) and enables the progeny of many half-sib families to be 

grown for accurate breeding value determination of sires.  The protandrous sex reversal of 

L. calcarifer, male to female at 3-8 years of age (Moore, 1979; Davis, 1982), offers a novel 

approach in which wild broodstock females can be accurately evaluated prior to selecting 

them as foundation parents from progeny testing of their paternal full-sib families. The 

breeding values of young males can also be determined with relatively high precision by 

combining information from their own phenotype with the relatively accurate breeding values 

of their progeny tested sires.  Thus, young males can also be evaluated as possible 

foundation broodstock providing inbreeding is managed.  

In general, to manage inbreeding to less than 1% per generation (Goddard, 1992; 

Meuwissen and Woolliams, 1994) many more broodstock are needed for a selective 

breeding program compared to the relatively low numbers of broodstock that are needed 

solely to produce fingerlings for industry.  This has been the most important factor that has, 

up to now, inhibited the establishment of a barramundi breeding program in Australia. In 

designing a suitable program for selective breeding in barramundi, as with other large 

aquaculture species, it is important to consider minimising broodstock numbers to manage 

costs while having sufficient numbers to manage inbreeding. 

Minimising broodstock numbers is one method of reducing costs but what is perhaps 

more important is to maximise early genetic gains (Smith, 1978).  An option to improve the 

rate of early genetic gains is explored using a mating plan with intense between-family 

selection of potential foundation stock accurately identified from progeny tested wild 

barramundi.  

Stochastic computer methods were used to evaluate the progeny test scheme 

proposed here under a range of simulated parameter values. It was examined how a 

progeny test scheme could be implemented for barramundi to estimate heritability, to 

assess geographic strains, and to achieve rapid genetic gains while managing inbreeding 

for long term selection. To assist the successful implementation of the scheme a description 

of husbandry methods is also presented in detail. 
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2.3  Methods 
 
The computer simulation study of the general breeding design had five basic stages:  

(i) collection of wild males and their milt for use in the progeny test,  

(ii) evaluation of wild broodstock through a progeny test,  

(iii) selection of foundation stock from the very best progeny test sires (which 

change to females) and the very best young males from the progeny test,  

(iv) multiplication of the best foundation stock to create sufficient families to 

manage long term inbreeding and  

(v) performing ongoing selection in subsequent generations. 

 

2.3.1  Progeny test design 
 

The breeding design involved the stripping of eggs from two hatchery females and artificial 

insemination of multiple sires to initiate a progeny test. The number of progeny tested sires 

simulated (NPT) was either 50, 100 or 200 per dam with no fish between the two progeny 

test groups being related.  In an example with NPT=50 and two dams, sires 1 … 50 were 

crossed with dam one and sires 51 … 100 were crossed with dam two. The number of 

fingerlings reared to 100 mm from each dam was kept constant at 60,000 to emulate a 

small hatchery run with the size of each full-sib family equal to 60,000/NPT.  In practice 

more than 60,000 should be reared to account for mortality from fertilisation to 100mm and 

good husbandry should be used to minimise mortality (see section 2.8.). 

The 60,000 fingerlings from each dam were not mixed at any time. For each dam the 

100 mm fingerlings were then randomly sub-sampled into two replicates each with a 

stocking group size per dam (SGS) of 5,000, 15,000 or 30,000 resulting in 50,000, 30,000 

and none being discarded respectively. The sub-sampling creates some variability in the 

number in each full-sib family between replicates and emulates a realistic on-farm sampling 

event. The two replicates were considered a minimum to reduce the risk of experimental 

failure with only one replicate required to achieve genetic gains.  

While the number of barramundi females used in strip spawning (NFS) can be varied 

to suit a number of experimental designs it was demonstrated how a minimum of two dams 

can be used successfully to achieve large genetic gains.  The reasons why only two dams 

were chosen was that manual stripping of eggs from a female is a demanding task with 

precision timing of egg collection required (Palmer, 2000) and to demonstrate that two dams 

is sufficient to manage long term inbreeding.  
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2.3.2 Simulation of data 
 

Assuming the foundation stock were unrelated, the true breeding value (A) was determined 

using a simulated heritability ( 2
sh ) which was assigned in different simulations as either 0.2, 

0.25, 0.3 or 0.4.  The equations were simplified by expressing phenotypic variance 

1222 =+= eaP σσσ  giving the additive genetic variance 2
aσ = 2

sh  and the error variance 

22 1 ae σσ −= . True breeding values for i=1 . . . (NPT x NFS) progeny test sires were 

determined by ),0( 2
ai NA σ= , and the true breeding values for j=1 . . . NFS dams 

as ),0( 2
aj NA σ= . True breeding values for the kth offspring (k=1 . . . K) from the i th sire and 

j th dam were determined by ijkjiijk MAAA ++= 2/)( with the Mendelian sampling variation 

estimated as )2/,0( 2
aijk NM σ= . The phenotype of the ijkth progeny was determined 

as ),0( 2
eijkijk NAP σ+= .  

The sensitivity of the progeny test was examined with a different number of full-sibs 

(K) within each i th sire and j th dam combination.  Using NPT=50, simulations undertaken 

were (a) even full-sib family size K=1200 yielding 60,000 fingerlings which were randomly 

sorted into two replicates of 30,000, (b) variable full-sib family size using five groups of 10 

progeny tested sires each with K equal to 1920, 1560, 1200, 840 and 480 yielding 60,000 

fingerlings which were randomly sorted into two replicates of 30,000 and (c) variable full-sib 

family survival from 100% to 60% using five groups of 10 progeny tested males each with K 

equal to 1200, 1080, 960, 840 and 720 yielding 48,000 fingerlings prior to random sorting 

into two replicates of 24,000. In option (c) total survival was assumed to be known with 

progeny breeding values determined using SGS=24,000 samples. Due to random sampling 

into two replicate groups the number of full-sibs per family were approximately K/2 in each 

replicate. For each combination of parameters simulated the progeny test was repeated in 

250 computer trials each with two replicates.  
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2.3.3 Geographic sampling 
 

An examination was made of effectiveness of the progeny test to identify superior strains 

collected from genetically isolated populations in the wild. Five strains were simulated with 

populations having mean genetic differences µ equal to -2, -1, 0, 1 or 2 standard deviations 

for growth in a commercial environment.  When modelling regional sampling NPT=50 sires 

were used comprising 10 sires per strain sampled within each of the two spawning groups. 

The genetic value of the ith progeny tested sire was expressed as µσ += ),0( 2
ai NA . 

 

2.3.4 Statistical analysis 
 

Estimation of heritability and estimated breeding values were calculated using a probit sire 

model which is essentially the “threshold” model in animal breeding (Gianola and Foulley, 

1983).  The threshold point was determined by the heaviest number genotyped (NG) using 

either 200, 400 or 800 fish selected on phenotype at final harvest for each replicate within 

each dam. The NG fish were genotyped with sire identified (and thus also assigned to its 

full-sib family) and the record assigned a threshold score of one. Records for all remaining 

fish, the stocking group size (SGS) less the heaviest genotyped (NG), were created and 

assigned a threshold score of zero by assuming each sire contributed to SGS/NPT full-sib 

samples in total. In the case where variable family sizes were modelled equal full-sib 

contributions per sire were assumed when setting up the analysis as the variation in the 

experimental contributions were not known. Variance parameters were estimated by 

residual maximum likelihood (REML) by defining the binary score as the random effect in 

package ASREML (Gilmour et al., 2001) with heritability from the probit analysis calculated 

as:  )1(4 222 += ssh σσ  where 2
sσ is the estimated sire variance. In matrix notation the 

model can be written as eZay +=  where y is a vector containing threshold scores of zero 

or one, a is a vector of additive genetic effects of sires, Z is the incidence matrix relating 

random sire effects to observations and e is a vector of random errors. 

The estimated mean and standard deviation ( 2h
σ ) of 2h were determined from 500 

simulation trials. Assuming the average 2h  estimate was determined from the mean of four 

estimates obtained from each of two dams by two replicate groups, the standard error of the 

mean h2 was determined as: .2/4/ 22 hh
σσ =  
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2.3.5 Evaluation of foundation broodstock 
 

The estimated breeding values from the ith progeny tested sire ( iÂ ) was obtained from the 

sln output file of ASREML (Gilmour et al., 2001).   Pre-stocking tank effects (effects prior to 

100 mm) were not simulated and assumed to be non-significant as fingerlings are in 

practice graded and mixed between tanks up to ten times.  All variation in fingerling weight 

prior to stocking was assumed to be non-genetic with procedures put in place to minimise 

phenotypic variation (section 2.3.8).  As barramundi are protandrous hermaphrodites the 

best wild-captured progeny tested sires, identified as those with the highest iÂ values for 

harvest weight, change sex to functional females.  To speed up selection response young 

males reared from the progeny test as foundation males (first generation sires) were mated 

to the best progeny tested sires which are now females.  Within each dam the estimated 

breeding value of the ikth progeny (kth full-sib from the ith progeny tested sire) was estimated 

as:  )-(1)/-(12/ˆˆ 22 r.hrhiAA ikiik +=  where h2 is the heritability, r=0.5 is the genetic co-

ancestry for full-sibs and iki  is the within-family selection differential in phenotypic standard 

deviation units.  In practice the weight from all offspring from a dam are not individually 

recorded with iki  estimated using 2/ˆ/)( .iPikik APPi −−= σ  where iÂ is the estimated 

breeding value of the ith sire determined from the probit sire model, ikP  is the harvest weight 

of the ikth male and the phenotypic mean (P ) and variance ( 2
Pσ ) of offspring weights 

determined from sampling. For all simulations 0=P  and 0.1=Pσ  with 2/ˆ .iikik APi −= .    

 

2.3.6 Ongoing selection response 
 

After establishment of the progeny test, which is only implemented in the initial generation to 

assess breeding values of foundation broodstock, ongoing selection was deployed in all 

following generations using within-family selection.  This design assumed a selection 

intensity of 1:1000 (i=3.37 standard deviations) with 24 families and a cumulative inbreeding 

rate restricted to 1/(2Ne)=0.52% per generation where effective population size  Ne=2N 

(Falconer 1972) given variance in family size is zero and N=2x24 parents. For illustrative 

purposes long-term genetic improvement was expressed as the improvement in two-year 

harvest weight of 2.5kg, heritability h2=0.25, a coefficient of variation of 25% (consistent with 

19.7% and 27.6% in barramundi; Wang et al., 2008) and a generation length of three years. 
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Using these parameters a deterministic rate of within-family selection response was 

estimated as ).1()1( 22 hrrhi P −−σ  =0.55 genetic standard deviations (Falconer, 1972).  

 

2.3.7 Inbreeding 
 

Coefficients of inbreeding of the different designs were determined using methods 

described in Meuwissen and Luo (1992) implemented in the Animal Breeder’s Tool Kit 

(Golden et al., 1992). 

 

2.3.8 Implementation of progeny test design and husbandry 
 

It is believed a practical design would consist of the collection of at least 100 wild males 

(e.g. NPT=50 for each of two dams) from an assortment of geographic regions and possibly 

including some broodstock males from industry. This collection would be undertaken during 

their summer spawning season, so that semen can be simultaneously harvested and 

cryopreserved in liquid nitrogen. It is suggested that semen be stored in several (at least 

two) separate cryovials per male (0.2 mL per vial: Palmer et al., 1993). In practice males 

should be pit tagged and held in captivity pending estimated breeding value (EBV) 

assessment for each sire using the progeny test scheme. At this stage, males in captivity 

should be screened for noda virus (Parameswaran et al., 2008) by testing semen and blood 

taken at time of capture or other strategic times during transfer and handling. 

Matings for the progeny test are created using the cryopreserved semen of 2NPT wild 

males and strip-spawned eggs from two induced females. These are arranged using a 

controlled insemination process which creates two unrelated groups of NPT full-sib families.  

Two induced females are seen as a minimum for management of inbreeding. The strip 

spawning process is made easier through the use of hatchery females with a track record of 

consistent spawning under repeatable environmental conditions.  Females with oocyte 

diameters of about 0.4 mm can be induced to spawn with single aqueous injections of 

luteinising hormone-releasing hormone analogues (Garcia, 1989; Garrett and Connell, 

1991). Under optimal conditions ovulation generally occurs 36-38 hours after injection, 

which allows stripping times to be predicted.  Using this approach Palmer (2000) achieved 

multiple successful artificial inseminations using a mechanically-assisted approach to the 

mixing of stripped eggs and thawed cryopreserved semen. According to this design 

fertilisation is performed simultaneously in separate chambers each containing one cryovial 

of thawed semen (0.2 ml) and 20 ml of eggs for each full-sib family. The “dry” method of 
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fertilisation is used where semen and eggs are mixed before an equal volume of seawater is 

added to activate the sperm and inseminate the eggs. At 3,000 eggs ml-1 and 50% mortality 

from unfertilised and unhatched eggs, this approach would yield approximately 30,000 

larvae per full-sib family. Using this procedure, two unrelated groups are created with each 

group having a different mother and NPT different fathers.  These two groups are not mixed 

during the progeny test and are reared separately. 

About 10 minutes after mixing with seawater the inseminated eggs are incubated in 

aerated 3 litre hemispherical bowls until the embryos hatch. This approach allows 

fertilisation rates to be assessed during the pre-hatch incubation period.  Subsequent 

viability estimates for each bowl can assist in determining the volumetric stocking that can 

provide approximately equal numbers of hatched larvae from each full-sib family into a 

communal larval rearing facility.  Appropriate biosecurity measures could be applied, such 

as the disinfection of fertilised eggs with ozonated water to reduce the incidence of 

infections including noda-viruses and infectious pancreatic necrosis virus (Grotmol et al., 

2003).   

Barramundi fingerlings typically require grading when they reach a length of 20 mm to 

avoid cannibalism which occurs when size differences are greater than 67% (Parazo et al., 

1991). Gradings may then be required as often as every three to seven days with all fish 

pooled and sorted on size (girth) into about five tanks. As fish grow and during each grading 

process the same five tanks are used to reallocate the separate grades. The variance of 

fingerling size could be minimised by suppressing growth in larger grades using tank 

temperatures lower than their optimum 28oC to 32oC range (Glencross and Felsing, 2006).  

For example Bermudes et al. (2010) reported differential growth rates in fingerlings with 

temperatures below 29oC. The lower phenotypic variance will reduce the need to cull outlier 

fingerlings to retain approximately the same number in each full-sib family group. At 30 mm 

size the fingerlings are transferred to larger grow-out facilities with grading continued where 

necessary until they reach 100 mm. At this length communal stocking for growth 

assessment occurs.  

A final mechanical grading at around 250g to manage competition and cannibalism is 

recommended. The heaviest 20% of individuals are restocked for final growout, preferably 

until a commercial harvest weight of up to 2.5kg (or 2 years), with the remaining fish 

discarded. The heaviest number genotyped (NG), within each of the two dams and two 

replicates, are held in captivity for EBV assessment after being pit-tagged, weighed, and 

tissue sampled for sire identification using genotyping. Caudal fin clips provide non-

destructive tissue samples for this identification procedure (Frost et al., 2006).   
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2.4 Results  
 
2.4.1 Heritability 
 

Heritability (h2) estimates using a binomial probit analysis from genotyping the heaviest 

(largest) NG progeny were consistent with the simulated heritability (Table 2.1).  This 

confirms that the probit analysis is a suitable way of determining heritability for continuous 

traits such as harvest weight and that the simulation was implemented correctly.   

 

Table 2.1.  Average heritability (h2) and (standard deviation) from 500 h2 estimates 

determined by simulating NG=400 genotyped and NPT=50 progeny tested sires. The 

standard error of the mean heritability (+) was determined from four estimates derived from 

two strip spawns each with two replicates. 

 

 

 Simulated heritability ( 2
sh ) 

   0.2   0.3   0.4 

Stocked (SGS) Estimated heritability ( 2h ) 

15,000 0.200 (0.058) 0.302 (0.072) 0.406 (0.094) 

  +0.029  +0.036  +0.048 

30,000 0.199 (0.059) 0.300 (0.076) 0.413 (0.089) 

  +0.030  +0.038  +0.043 

 
 
2.4.2 Genetic gains 
 

The progeny test was used to evaluate potential foundation stock prior to the 

commencement of a breeding program.  It was first determined if a variation in the size of 

each full-sib family (K) has an impact on breeding value estimation. In practice the true 

breeding values are not known but as this is a simulation the true breeding values can be 

determined from the best animals selected on estimated breeding values from the binomial 

probit analysis. The average true breeding values of the best progeny-tested fish ranked on 

( iÂ ) and the best young males within each full-sib family ranked on ( ijkÂ ) from one replicate 

are shown in Table 2.2. The results indicate that the progeny test is a robust evaluation 
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method.  The large variation in full-sib family size (Table 2.2b and 2.2c) had little effect on 

the true breeding values of both young males and progeny tested sires compared to no 

variation in family size (Table 2.2a). In these runs the best progeny-tested (PT) dams 

(originally wild males) had breeding values that were less variable than the best young 

males. The accuracy of breeding value determination for the first generation young males 

were higher than what could be achieved without pedigree information of .55.030.0 ==h  

The phenotype ijkP  of the top eight young males averaged 3.15, 3.10, 3.05, 3.08, 3.02, 

3.02, 3.03 and 2.98 phenotypic standard deviations in the control (Table 2.2a) with 50 full-

sib families of approximately even size of ≈600 at harvest. If the top four of these young 

males were selected the selection intensity would be 3.10 phenotypic standard deviations. 

The phenotypes of young males in models of Table 2.2b and Table 2.2c were similar to 

those of Table 2.2a reported above. If the top four PT dams were selected from the 50 

tested, the selection intensity would be 8%. 

The results from Table 2.2a have common simulated variables that can be compared 

with different stocking group size (SGS), simulated heritability (hs
2), number genotyped (NG) 

and number of progeny tested sires per dam (NPT) presented in Table 2.3.  If foundation 

broodstock were selected from the top four ranked sires (young males grown during the 

progeny test) and top four ranked PT dams within each of the two 30,000 stocked spawning 

groups (Table 2.2a) the 16 breeding values would be superior to the sampled wild 

population by 0.97+0.09 phenotypic standard deviations for weight at harvest (or 

approximately 24% faster growth assuming a coefficient of variation of 25%). In the case 

where each stocking group size (SGS) was reduced to 15,000 the improved broodstock 

from the top four males and females was reduced to 0.89+0.10 phenotypic standard 

deviations (Table 2.3a). 

The breeding values of young males were more sensitive to a reduction in heritability 

than the progeny tested dams.  When 30,000 fingerlings (100 mm) were stocked into the 

growout system and the simulated heritability was reduced from h2=0.30 (Table 2.2a) to 

h2=0.20 (Table 2.3b) the average true breeding values of the top four ranked young males 

were reduced by 27% while the true breeding values of the top four ranked progeny-tested 

dams were reduced by 21%. 
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Table 2.2. Sensitivity of progeny test from three different trials, (a) control – each full-sib 

family of approximate even size of ≈600 at harvest, (b) variable full-sib family size formed 

from five groups of 10 progeny tested sires each with  ≈960, ≈780, ≈600, ≈420 and 

≈240 and (c) simulated variable full-sib family survival of 100% to 60% using five groups of 

10 progeny tested males each with ≈600, ≈540, ≈480, ≈420 and ≈ 360. Ranks indicate 

true breeding values (A) of potential first-generation (G1) broodstock from the best ‘young 

males’ within each full-sib family ranked on ijkÂ  and the best ‘PT dams’ (previously progeny 

tested sires prior to sex reversal) ranked on iÂ .  True breeding values are shown with 

average and standard deviation (in brackets) determined from 500 REML analysis from data 

collected in one replicate of a single strip spawn. All trials assume a heritability h2=0.30, 

heaviest number of fish genotyped NG=400, number of progeny tested sires NPT=50 and a 

stocking group size SGS=30,000. The correlation between true breeding values and 

estimated breeding values ( AA
r ˆ,

) are also listed. 

(a)  

rank 1 2 3 4 5 6 7 8 AA
r ˆ,

 

young 1.11 1.00 0.97 0.90 0.82 0.85 0.82 0.78  

males (0.46) (0.46) (0.45) (0.45) (0.44) (0.44) (0.45) (0.46) 0.62 

PT 1.18 0.97 0.84 0.76 0.70 0.63 0.60 0.52  

dams (0.29) (0.25) (0.23) (0.24) (0.23) (0.23) (0.22) (0.24) 0.87 
 

(b) 

rank 1 2 3 4 5 6 7 8 AA
r ˆ,

 

young 1.12 0.99 0.95 0.92 0.86 0.85 0.81 0.78  

males (0.54) (0.56) (0.56) (0.54) (0.55) (0.53) (0.53) (0.53) 0.62 

PT 1.16 0.97 0.84 0.77 0.68 0.64 0.57 0.54  

dams (0.30) (0.25) (0.24) (0.25) (0.23) (0.23) (0.24) (0.24) 0.87 
 

(c)  

rank 1 2 3 4 5 6 7 8 AA
r ˆ,

 

young 1.11 0.97 0.89 0.86 0.83 0.81 0.80 0.79  

males (0.47) (0.45) (0.45) (0.46) (0.44) (0.45) (0.45) (0.45) 0.61 

PT 1.17 0.93 0.82 0.75 0.66 0.60 0.56 0.52  

dams (0.29) (0.26) (0.24) (0.22) (0.23) (0.24) (0.23) (0.25) 0.86 
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Table 2.3. True breeding values (A) of potential first-generation (G1) broodstock from a 

single dam with the best ‘young males’ within each full-sib family ranked on ijkÂ  and the 

best ‘PT dams’ (previously progeny tested sires prior to sex reversal) ranked on iÂ .  

Average and standard deviation (in brackets) determined from 500 REML analysis at a 

given stocking group size (SGS), simulated heritability (hs
2), heaviest number of fish 

genotyped (NG) and number progeny tested (NPT). The correlations between true breeding 

values and estimated breeding values ( AA
r ˆ,

) are also listed. 

 

(a) Changing SGS with hs
2=0.30, NG=400 and NPT=50. 

SGS rank 1 2 3 4 5 6 7 8 AA
r ˆ,

 

5,000 young 1.03 0.90 0.83 0.80 0.79 0.72 0.73 0.71  

 males (0.46) (0.47) (0.46) (0.47) (0.47) (0.47) (0.46) (0.48) 0.60 

 PT 1.12 0.90 0.79 0.73 0.64 0.61 0.57 0.52  

 dams (0.34) (0.29) (0.28) (0.28) (0.29) (0.27) (0.28) (0.28) 0.83 

15,000 young 1.10 0.95 0.94 0.87 0.83 0.80 0.78 0.74  

 males (0.46) (0.46) (0.45) (0.43) (0.43) (0.43) (0.43) (0.44) 0.62 

 PT 1.16 0.94 0.83 0.74 0.69 0.61 0.56 0.51  

 dams (0.34) (0.27) (0.25) (0.25) (0.24) (0.25) (0.24) (0.24) 0.86 

 

(b) Changing hs
2 with NG=400, NPT=50 and SGS =30,000. 

hs
2 rank 1 2 3 4 5 6 7 8 AA

r ˆ,
 

0.20 young 0.84 0.73 0.68 0.64 0.58 0.59 0.56 0.53  

 males (0.39) (0.37) (0.38) (0.37) (0.39) (0.37) (0.42) (0.39) 0.56 

 PT 0.94 0.77 0.66 0.60 0.54 0.50 0.46 0.41  

 dams (0.25) (0.23) (0.21) (0.21) (0.23) (0.22) (0.22) (0.22) 0.83 

0.40 young 1.42 1.27 1.21 1.17 1.08 1.10 1.08 1.01  

 males (0.52) (0.52) (0.51) (0.52) (0.52) (0.52) (0.51) (0.52) 0.67 

 PT 1.38 1.15 1.00 0.89 0.81 0.74 0.68 0.63  

 dams (0.31) (0.26) (0.25) (0.24) (0.23) (0.23) (0.23) (0.24) 0.89 
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(c) Changing NG with hs
2=0.30, NPT=50 and SGS =30,000. 

NG rank 1 2 3 4 5 6 7 8 AA
r ˆ,

 

200 young 1.11 0.98 0.93 0.89 0.85 0.83 0.82 0.79  

 males (0.45) (0.46) (0.47) (0.47) (0.44) (0.46) (0.46) (0.45) 0.60 

 PT 1.16 0.94 0.81 0.71 0.66 0.61 0.54 0.49  

 dams (0.31) (0.27) (0.26) (0.27) (0.26) (0.25) (0.27) (0.27) 0.81 

800 young 1.12 1.04 0.94 0.91 0.87 0.84 0.85 0.79  

 males (0.47) (0.48) (0.47) (0.46) (0.46) (0.46) (0.45) (0.46) 0.63 

 PT 1.21 1.00 0.88 0.78 0.70 0.64 0.59 0.54  

 dams (0.28) (0.25) (0.22) (0.22) (0.22) (0.21) (0.20) (0.20) 0.92 

 

 (d) Changing NPT with hs
2=0.30, NG=400 and SGS =30,000.  

NPT rank 1 2 3 4 5 6 7 8 AA
r ˆ,

 

100 young  1.15 1.06 1.00 0.98 0.90 0.90 0.88 0.82  

 males (0.44) (0.47) (0.45) (0.44) (0.46) (0.44) (0.47) (0.44) 0.60 

 PT  1.27 1.10 0.97 0.88 0.83 0.79 0.76 0.70  

 dams (0.31) (0.26) (0.26) (0.25) (0.26) (0.26) (0.25) (0.26) 0.80 

200 young  1.15 1.04 0.99 0.96 0.90 0.89 0.91 0.88  

 males (0.48) (0.47) (0.46) (0.46) (0.47) (0.46) (0.46) (0.46) 0.58 

 PT  1.30 1.14 1.04 0.97 0.90 0.87 0.84 0.82  

 dams (0.32) (0.30) (0.31) (0.32) (0.30) (0.31) (0.31) (0.31) 0.69 

 

Increasing the number genotyped per dam (NG) from 200 to 800 increased the 

breeding values of the top four ranked young males and top four PT dams by 3% and 7% 

respectively (Table 2.3c).  

Theoretically more than 50 sires per dam can yield higher genetic gains (Table 2.2a 

and Table 2.3d).  Compared to using 200 sires per dam (Table 2.3d) instead of 50 sires 

(Table 2.2a) the average of the top four young males and top four PT dams improved by 

10%.  

 

2.4.3 Genetic gains from geographic sampling 
 

The true breeding values were significantly higher in Table 2.4 than those in Tables 2.2 and 

2.3 because the genetic merit of superior strains was detected through the progeny test.  

The breeding values of all sires in Table 2.4 were lower than the best geographic region 

(µ = 2) as their mother used in the strip spawn had an average breeding value of zero and 

contributed half her genes to the sires.   Additional genetic response could be achieved by 
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sampling (and possibly re-evaluating) foundation sires from the best performing geographic 

region.  Even though more progeny test sires would theoretically yield a higher response 

(Table 2.3d) the simulations presented in Table 2.4 were derived using a more manageable 

50 sires per dam. 

If foundation broodstock were selected from the top four ranked sires (young males 

grown during the progeny test) and the top four ranked PT dams within each of the two 

spawning groups the 16 breeding values would average 2.12+0.09 phenotypic standard 

deviations better than the average strain (Table 2.4) and be approximately 53% faster 

growing assuming a coefficient of variation of 25% and h2=0.30.  

When simulating a heritability of 0.25 the 16 breeding values averaged 2.05+0.09 

phenotypic standard deviations or 51% faster growth (NPT=50, SGS=30,000, NG=400) with 

AA
r ˆ  equal to 0.86 and 0.92 for young males and PT dams respectively.  

 

Table 2.4. The effect of geographic sampling with five simulated strains. True breeding 

values (A) of potential first-generation (G1) broodstock from a single strip spawn with the 

best ‘young males’ within each full-sib family ranked on ijkÂ  and the best ‘PT dams’ 

(previously progeny tested sires prior to sex reversal) ranked on iÂ .  Average and standard 

deviation (in brackets) determined from 500 REML analysis at a given stocking group size 

(SGS=30,000), simulated heritability (hs
2=0.30), heaviest number of fish genotyped 

(NG=400) and number progeny tested (NPT=50). The correlation between true breeding 

values and estimated breeding values ( AA
r ˆ,

) are also listed. 

rank 1 2 3 4 5 6 7 8 AA
r ˆ,

 

young  1.90 1.78 1.69 1.62 1.56 1.51 1.47 1.39  

males (0.46) (0.45) (0.44) (0.44) (0.46) (0.45) (0.46) (0.47) 0.86 

PT 2.82 2.55 2.35 2.21 2.08 1.98 1.88 1.74  

dams (0.32) (0.29) (0.26) (0.25) (0.24) (0.26) (0.25) (0.27) 0.92 
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2.4.4  Managing inbreeding for long-term selection response 
 

In order to maximise genetic gains it is necessary to balance the need to select the very 

best evaluated fish with the need to minimise inbreeding at below 1% per generation 

(Goddard, 1992; Meuwissen and Woolliams, 1994).  A mating plan that satisfies this 

inbreeding constraint was designed (Figure 2.1). The plan is broken down into five phases 

with a brief description of each phase given below.  

1) Generation 0 (collection phase). Collection of fish for the progeny test which is made 

up of two hatchery females (for use in strip spawning) and 100 males chosen from 

the wild (industry males could also be evaluated from semen collected). 

2) Generation 1 (progeny test phase).  Progeny are created from the eggs of two dams 

artificially mated with semen from 100 wild unrelated males using 50 of these per 

spawn.  Only the best four wild males from each dam (males 1, 2, 3, 4 and 6, 7, 8, 9) 

are selected for future breeding at harvest weight. 

3) Generation 1.5 (foundation phase – 8 families).  At two years of age four young 

males with the highest EBVs are selected within each of the two 50 full-sib family 

groups from first generation (G1 males 11, 12, 13, 14 and 15, 16, 17, 18). The former 

wild males with the highest EBVs, now progeny-tested wild females, (G0) are 

backcrossed to the young males to create a total of 8 foundation families numbered 

19 to 26. The response from the backcross reflects 1.5 generations of selection 

which was called G1.5 with the next generation with both parents from G1.5 called 

G2.5.  

4) Generation 2.5 (multiplication phase – 24 families).  Six animals are selected as 

broodstock replacements from within each of the 8 foundation families in G1.5.  This 

yields 48 broodstock fish (6 x 8=48), or 24 broodstock pairs to produce 24 families for 

ongoing selection.  The families are divided into six groups (A, B, C, D, E, F) each 

containing four families. 

5) Generation 3.5 onwards  (ongoing selection phase  –  24 families).  There are many 

mating designs possible.  An example of how matings can be made between groups 

and also within groups to manage inbreeding and minimise gene flow between 

groups to improve biosecurity risks is illustrated (Figure 2.1).  As indicated one male 

and one female are used from each family (within-family mating design). The mating 

design is flexible; for example, two male parents from one family could be mated to 

two females from other families. This system accrues inbreeding at a rate of 0.52% 

per generation.  
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Figure 2.1.  A possible mating design illustrating how inbreeding can be managed by 

selecting the best progeny test (PT) dams and best young males from the progeny test in 

the first generation (G1) with multiplication of families occurring in the backcross generation 

in year two (G1.5). 
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The mating design uses 16 founding fish comprising four of the best sires and four of the 

best dams from each of the two spawning groups.  This breeding plan is one of many 

alternatives and requires a wild backcross labelled generation G1.5. The progeny from the 

backcross are multiplied into 24 families which are maintained in subsequent generations 

with two offspring per family contributing to each generation. The 24 families are formed 

during the multiplication phase (G2.5) by selecting six parents from each of eight full-sib 

families produced from the 16 founding parents. 

The mating plan illustrated in Figure 2.1 assumes all eight first-generation sires being 

related to the first generation dams.  The simulated results showed that these eight sires will 

only be related to all first generation dams 7% of the time (hs
2=0.30, NG=400, NPT=50, 

SGS=30,000) with this increasing to 21% when genetic strains were modelled.  

Constraining the best first generation sires (young males from the progeny test) so that 

none are related to first generation dams reduced inbreeding.  This also reduced the 

selection response in the first generation by 16% and 7% of gains made with 15,000 and 

30,000 fish stocked respectively with one strain sampled, hs
2=0.30, NG=400 and NPT=50.   

Cumulative inbreeding is expected to lie within the two extremes shown in Figure 2.2 

with long-term inbreeding accumulating at the rate of 0.52% per generation. With 24 families 

inbreeding can be completely avoided up until 3.5 generations where different levels of 

relatedness from the sampling of sires and dams create two divergent patterns (Figure 2.2).  

Figure 2.2 also indicates the extrapolation of the long term inbreeding rate back to 

generation zero which is an estimate of the cost of the progeny test in terms of inbreeding 

and is estimated at 1.0% to 2.5%.  This means that the theoretical asymptotic selection 

response would be 97.5% to 99.0% compared to the response from the within-family 

selection program had the progeny test not been used to evaluate and multiply superior 

foundation broodstock. 
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Figure 2.2. Average inbreeding level over the first 10 generations of selective breeding 

assuming none (Δ ) or all (    ) of the eight sires (young males from the progeny test) in the 

first generation were related to the eight progeny test dams.  The dashed line illustrates the 

long term inbreeding rate at 0.52% per generation showing the cost of the progeny test at 

between 1.0% and 2.5% inbreeding at generation zero. 
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2.4.5 Long-term selection response 
 

The additive components of selective improvement from progeny testing followed by within-

family selection are illustrated in Figure 2.3. The improvement shown in this graph assumes 

a similar mating design to that shown in Figure 2.1 with the top four males and top four 

females from each of the two dams used as foundation stock.  

The genetic contribution of each dam donor is one-eighth of the founding population 

genotypes and one round of selection of these females contributes a small component of 

total genetic gains (Figure 2.3). A large component of the progeny test gains came from the 

ability to identify superior strains from diverse geographic locations.  The foundation 

population had true breeding values for faster growth, shown in year two of Figure 2.3 of 

between 21% (no strain differences) and 51% (with strain differences) of the base 

population. 
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Figure 2.3. Broodstock breeding values for two-year harvest weight from the progeny test 

showing the range of expected improvement from geographical sampling (shaded area with 

dots) and the cumulative improvement from a within-family selection program using a high 

selection intensity of 1:1000 and a generation length of three years. The optional additive 

gains from sourcing strip-spawned donor females from one round of selection (area with 

vertical lines) is included.  Simulated parameters were: hs
2=0.25, NG=400, NPT=50, 

SGS=30,000 and a coefficient of variation of 25%. 
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2.5 Discussion 
 

There is nothing new about progeny testing in aquaculture (Wohlfarth et al., 1961) or in 

using artificial mating to estimate genetic parameters (Dupont-Nivet et al., 2008).  What is 

novel in this study is the combination of strain evaluation, genetic parameter estimation and 

progeny testing to evaluate potential foundation broodstock using a carefully controlled 

mating design.   

The necessity to regularly grade barramundi until they reach a size of about 250 g 

makes traditional genetic parameter estimation challenging.  This problem was overcome by 

sampling only the heaviest animals for genetic parameter estimation and using a binomial 

probit analysis which also enabled an accurate progeny test evaluation of the best sires.  
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Also novel is the way accurately evaluated animals are multiplied to manage 

inbreeding with the object of obtaining rapid genetic gains. Not seen in any other fish 

breeding design is the high between-family selection intensity of 8% achieved in the first 

generation which is much higher than what is conventionally achieved.  

 

2.5.1 Heritability 
 

Using natural matings, where eggs and sperm are released by the fish directly into the 

water column of the spawning tank, Wang et al. (2008) estimated the heritability of harvest 

weight for barramundi as 0.22+0.16 and 0.25+0.18 from two factorial crosses.  These 

heritability estimates could have been underestimated due to selective culling of graded 

fingerlings (Blonk et al., 2010).  Despite the short duration of the progeny test design it gave 

a more precise heritability estimate of 0.30+0.04 from simulated data as many more sires 

could be evaluated in an experimental design that also minimised the variance in sib 

numbers.    

 

2.5.2 Genetic gains 
 

The upper range of genetic gains predicted by the models was due to geographic sampling 

of wild strains. Large differences between strains are possible (Elghobashy, 2001; Overturf 

et al., 2003). Using the difference between two tilapia strains of 87 g and 178 g 

(Elghobashy, 2001) and assuming a 25% heritability, a 25% coefficient of variation and 

estimating the phenotypic standard deviation from the average weight of these strains, the 

difference between the two strains in genetic standard deviations is equal to 5.5.  Similar 

calculations from five strains of Oncorhynchus mykiss (Overturf et al., 2003) revealed 4.1 

genetic standard deviations between the fastest and slowest growing strains fed ad libitum. 

The simulations assumed a maximum strain difference of 4 genetic standard deviations. 

Considering the estuarine spawning of semi-isolated populations of barramundi that occurs 

over 8,000 km along the northern Australian coastline (Shaklee and Salini, 1985; Keenan, 

1994; Chenoweth, 1998), with the species distribution extending across the Indo-Pacific 

region (Norfatimah et al., 2009; Yue et al., 2009), it seems reasonable that the weight range 

in the simulated strains is a realistic upper limit of what could be expected. The magnitude 

of strain differences in barramundi is of course impossible to predict without experimental 

trials. 
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What is known with greater precision is the genetic gains expected from the progeny 

test assuming no strain differences and known heritability.  In an alternative barramundi 

breeding program designed with a different set of constraints Robinson et al. (2010) 

reported a 7.1% gain per generation. The progeny test design (Figure 2.2) is capable of 

identifying in just two years superior broodstock with breeding values that could take 

between, 3.0 and 7.2 generations to achieve with this alternative design, or 9 to 22 years 

assuming a three year generation interval. 

The reason that this program works so well in the first generation is that  

(i) it can manage a much higher between-family selection intensity compared to 

what can be managed in subsequent generations in any other contemporary 

design with little effect on inbreeding when utilised with the mating design,  

(ii) the progeny test is more accurate than first generation phenotypic selection 

used in all other contemporary designs, particularly when the heritability is low, 

and  

(iii) the upper range of genetic response from the progeny test was due to the 

ability to select the most favourable alleles from the best performing strains, 

rather than crossing strains prior to evaluation. In this way an elite foundation 

population from the best wild strains has been formed. 

 

2.5.3 Managing inbreeding for long-term selection response 
 

There are challenges in rearing barramundi in captivity and strip spawning and artificial 

fertilisation is yet another challenge. However, previous work has proven its feasibility 

(Palmer et al., 1993).  It is likely that after the progeny test artificial fertilisation will only be 

used sparingly and only when necessary to manage desired family matings that could not 

otherwise be achieved naturally.  

Perhaps the largest challenge in achieving a desirable long-term response to selection 

is to manage inbreeding through natural mating. A possible mating plan given in the 

Appendix illustrates how inbreeding can be minimised through chosen family matings.  In 

practice more flexibility in mating design may be required. After the multiplication phase 

(see Appendix), the long-term inbreeding can be managed by following two simple rules: 

manage individual matings so that inbreeding is less than 25% and use two different 

parents in each of the 24 families to contribute to the next generation.   

Managing inbreeding using walk-back selection (Sonesson, 2005) may not be practical 

in barramundi due to the difficulty in synchronising spawns and the highly variable sire 
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contribution rate (Frost et al., 2006). The challenge is exacerbated as barramundi are 

cannibalistic (Parazo et al., 1991) and it may not be practical to mix families of ages more 

than one day old as they may have a size advantage they never relinquish (Tave, 1995).  

This is one reason why the simpler within-family selection design seems more practical for 

barramundi which when applied with a very high selection intensity (1:1000) can 

theoretically yield genetic gains of 11.4% per generation (CV=25%, h2=25%).   

 

2.5.4 Managing matings for long term selection with protandry (sex change) 
 

A further improvement to the current design could be achieved if the sex of the protandrous 

broodstock were closely monitored. Assuming 24 families, and perhaps three to four fish per 

family maintained as potential broodstock, matings should be possible as soon as sufficient 

numbers of females are available.  It would not matter if two males (or two females) were 

selected from one family so long as the long term inbreeding rate is minimised by using two 

parents per family to contribute to each generation.  Short term inbreeding can be managed 

by avoiding the mating of close relatives. The advantage of this approach is that it can be 

applied to minimise generation length from 3 years (males 2 years and females 4 years) to 

perhaps 2.5 years, potentially yielding a further 20% improvement in the rate of genetic 

gain. To improve the chances of detecting functional young females more (three or four) 

broodstock per family would be useful in this protandry mating design. 

  

2.5.5 Cost considerations in design 
 

The cost of running aquaculture breeding programs is high, particularly for species with 

large broodstock size such as barramundi, with costs increasing in proportion to the size of 

broodstock facilities required to maintain the program. The progeny test scheme to select 

foundation stock, using high-intensity between-family selection, was designed as a one-off 

procedure.  The scheme continues with a long-term within-family selection program using 

only 24 families.  As such the scheme achieves significant selective gains over few 

generations while minimising the number of broodstock that have to be maintained, hence 

capping the ongoing costs of the breeding program which leads to larger discounted net 

returns.  

As an alternative to long-term within-family selection, it is possible to implement 

between-family selection at a later stage to allow selection for traits that can only be 

recorded on sacrificed fish.  However, this design would increase cost several fold because 



 46 

more broodstock are required. As such, it would require an economic assessment of 

additional costs and projected returns prior to a decision being made on its implementation. 

In comparison with the model proposed by Robinson et al. (2010), which requires 100-200 

broodstock (50-100 full-sib families), the new design described in this chapter would require 

72-96 broodstock assuming three to four broodstock per family were maintained to 

guarantee selection of two offspring from each of the 24 families. Therefore the costs of 

maintaining broodstock in the new program could be as little as half of that proposed by 

Robinson et al. (2010). In addition, after the progeny test phase, this program does not 

require the on-going costs and logistical problems associated with genotyping using walk-

back selection.  

 

2.6 Conclusion 
 

The Lates calcarifer progeny test design described in this chapter theoretically identifies 

superior foundation broodstock in two years. The same level of genetic improvement could 

take nine to 22 years of selection in other proposed barramundi breeding programs.   

Despite the extra effort involved in sourcing potential foundation stock for the progeny test, 

and the challenging nature of the husbandry activities that are required, this scheme 

compares favourably with the risks that accrue over a much longer time frame that would 

otherwise be needed to provide similar benefits in contemporary designs. 

 

 

2.7 Acknowledgements 
 
The progeny test approach was inspired from discussions with Dr Roger Lewer while he 

was an employee of the Queensland Department of Primary Industries and Fisheries. 

Thanks to the many useful comments from referees and reviewers.  Funding support was 

provided by the Department of Employment, Economic Development and Innovation. 
 

 



 47 

2.8 References 
 

Bermudes M, Glencross B, Austen K, Hawkins W (2010) The effects of temperature and 

size on the growth, energy budget and waste outputs of barramundi (Lates calcarifer). 

Aquaculture 306:160-166. 

Blonk RJW, Komen H, Kamstra A, van Arendonk JAM (2010) Effects of grading on 

heritability estimates under commercial conditions: A case study with common sole, 

Solea solea. Aquaculture 300:43-49. 

Brody T, Moav R, Abramson ZV, Hulata G, Wohlfarth G (1976) Applications of 

electrophoretic genetic markers to fish breeding. II. Genetic variation within maternal 

half-sibs in carp. Aquaculture 9:351-365. 

Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) Concordance between dispersal 

and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer 

(Australian barramundi). Heredity 80:187-197. 

Davis TLO (1982) Maturity and sexuality in barramundi, Lates calcarifer (Bloch), in the 

Northern Territory and South-eastern Gulf of Carpentaria. Australian Journal of Marine 

Freshwater Research 33:529-545. 

Davis TLO (1984) Estimation of fecundity in barramundi, Lates calcarifer (Bloch), using an 

automatic particle counter.  Australian Journal of Marine Freshwater Research 35:111-

118. 

Dupont-Nivet M, Vandeputte M, Vergnet A, Merdy O, Haffray P, Chavanne H, Chatain B 

(2008) Heritabilities and GxE interactions for growth in the European sea bass 

(Dicentrarchus labrax L.) using a marker-based pedigree. Aquaculture 275:81-87. 

Elghobashy H (2001) Aquaculture genetics research in Egypt. p. 29-34, In: Gupta,  MV, 

Acosta, BO (Eds.) Fish genetics research in member countries and institutions of the 

International Network on Genetics in Aquaculture. ICLARM Conf. Proc. 64, 179 p. 

Falconer DS (1972) Introduction to quantitative genetics. Oliver and Boyd, Edinburgh. 

Frost LA, Evans BS, Jerry DR (2006) Loss of genetic diversity due to hatchery culture 

practices in barramundi (Lates calcarifer). Aquaculture 261:1056-1064. 

Gall GAE (1988) Heritability and selection schemes for rainbow trout: female reproductive 

performance. Aquaculture 73:57-66. 

Garcia LMB (1989) Spawning response of mature female sea bass, Lates calcarifer (Bloch), 

to a single injection of luteinizing hormone-releasing hormone analogue: effect of dose 

and initial oocyte size. Journal of Applied Ichthyology 5:177-184. 



 48 

Garrett RN, Connell MRJ (1991) Induced breeding of barramundi. Austasia Aquaculture     

5:10-12. 

Gianola D, Foulley JL (1983) Sire evaluation for ordered categorical data with a threshold 

model. Genetic Selection Evolution 15:201-224. 

Gilmour AR, Cullis BR, Welham SJ, Thompson R (2001) ASREML User’s Manual. New 

South Wales Agriculture, Orange Agricultural Institute, Orange, NSW, Australia. 

Gjedrem T (1983) Genetic variation in quantitative traits and selective breeding in fish and 

shellfish. Aquaculture 33:51-72. 

Glencross BD, Felsing M (2006) Influence of fish size and water temperature on the 

metabolic demand for oxygen by barramundi, Lates calcarifer (Bloch), in freshwater. 

Aquaculture Research 37:1055-1062. 

Goddard ME (1992) Optimal effective population-size for the global population of black-and-

white dairy-cattle. Journal of Dairy Science 75:2902-2911. 

Golden BL, Snelling WM, Mallinckrodt CH (1992) Animal breeder’s tool kit user’s guide and 

reference manual. Colorado State Univ. Colorado State University Agriultural 

Experimental Station Technical Bulletin. LTB92-2 

Grotmol S, Dahl-Paulsen E, Totland GK (2003) Hatchability of eggs from Atlantic cod, turbot 

and Atlantic halibut after disinfection with ozonated seawater. Aquaculture 221:245-

254. 

Hogan AE, Barlow CG, Palmer PJ (1987) Short-term storage of barramundi sperm. 

Australian Fisheries 46:18-19. 

Keenan CP (1994) Recent evolution of population structure in Australian Barramundi, Lates 

calcarifer (Bloch): An example of isolation by distance in one dimension. Australian 

Journal of Marine Freshwater Research 45:1123-1148. 

Macbeth GM, O’Brien L, Palmer P, Lewer R, Garret R, Wingfield M, Knibb W (2002) 

Selective breeding in barramundi – Technical Report for the Australian Barramundi 

Farmers Association August 2002 Information Series QI 02067, 37pp. 

Maneewong S (1986) Induction of spawning in sea bass (Lates calcarifer) in Thailand. In: 

Management of wild and cultured sea bass/barramundi (Lates calcarifer): Proceedings 

of an international workshop held in Darwin, N.T. Australia, 24-30 September 1986. 

(Eds. J. W. Copland and D. L. Grey) pp. 116-119. (ACIAR Proceedings No. 20).  

Meuwissen THE, Luo Z (1992) Computing inbreeding coefficients in large populations. 

Genetics Selection Evolution 24:305-313. 

Meuwissen THE, Woolliams JA (1994) Effective sizes of livestock populations to prevent a 

decline in fitness.  Theoretical and Applied Genetics 89:1019-1026. 



 49 

Moore R (1979) Natural sex inversion in giant perch (Lates calcarifer). Australian Journal of 

Marine Freshwater Research 30:803-813. 

Norfatimah MY, Siti Azizah MN, Othman AS, Patimah I, Jamsari AFJ (2009) Genetic 

variation of Lates calcarifer in Peninsular Malaysia based on the cytochrome b gene. 

Aquaculture Research 40:1742-1749. 

Overturf K, Casten MT, LaPatra SL, Rexroad C III, Hardy RW (2003) Comparison of growth 

performance, immunological response and genetic diversity of five strains of rainbow 

trout (Onorhynchus mykiss). Aquaculture 217:93-106.  

Palmer PJ (2000) Gamete storage and culture techniques for the barramundi, Lates 

calcarifer (Bloch). PhD Thesis, The University of Queensland. 

Palmer PJ, Blackshaw AW, Garrett RN (1993) Successful fertility experiments with 

cryopreserved spermatozoa of Barramundi, Lates calcarifer (Bloch) using 

dimethylsulfoxide and glycerol as cryopreservants. Reproduction Fertility and 

Development 5:285-293. 

Parameswaran, V, Rajesh Kumar S, Ishaq Ahmed VP, Sahul Hameed AS (2008) A fish 

nodavirus associated with mass mortality in hatchery-reared Asian Sea bass, Lates 

calcarifer. Aquaculture 275:366-369. 

Parazo MM, Aliva EM, Reyes Jr DM (1991) Size-dependent and weight-dependent 

cannibalism in hatchery-bred sea bass (Lates calcarifer Bloch). Journal of Applied 

Ichthyology 7:1–7. 

Reddy PVGK, Gjerde B, Tripathi SD, Jana RK, Mahapatra KD, Gupta SD, Saha JN, Sahoo 

M, Lenka S, Govindassamy P, Rye M, Gjedrem T (2002) Growth and survival of six 

stocks of rohu (Labeo rohita, Hamilton) in mono and polyculture production systems. 

Aquaculture 203:239-250. 

Robertson A (1957) Optimal group size in progeny testing and family selection. Biometrics 

13:442-450. 

Robinson NA, Schipp G, Bosmans J, Jerry DR (2010) Modelling selective breeding in 

protandrous, batch-reared Asian sea bass (Lates calcarifer, Bloch) using walkback 

selection. Aquaculture Research 41:e643-e655. 

Shaklee JB, Salini JP (1985) Genetic variation and population subdivision in Australian 

barramundi, Lates calcarifer (Bloch). Australian Journal of Marine and Freshwater 

Research 36:203-218.  

Sonesson A (2005) A combination of walk-back and optimum contribution selection in fish: a 

simulation study. Genetics Selection Evolution 37:587-599. 



 50 

Smith C (1978) The effect of inflation and form of investment on the estimated value of 

genetic improvement in farm livestock. Animal Production 26:101-110. 

Tave D (1995) Selective breeding programmes for medium-sized fish farms. FAO Fisheries 

Technical Paper 352. 

Wang CM, Zhu ZY, Lo LC, Feng F, Lin G, Yang WT, Li J,Yue GH (2007) A microsatellite 

linkage map of barramundi, Lates calcarifer.  Genetics 175:907-915. 

Wang CM, Lo LC, Zhu ZY, Lin G, Feng F, Li J, Yang WT, Tan J, Chou R, Lim HS, Orban L, 

Yue GH (2008) Estimating reproductive success of brooders and heritability of growth 

traits in Asian sea bass (Lates calcarifer) using microsatellites. Aquaculture Research 

39:1612-1619. 

Wohlfarth G, Moav R, Lahman M (1961) Genetic improvement of carp. III. Progeny tests for 

differences in growth rate, 1959-60. Bamidgeh 13:40-54. 

Yue GH, Zhu ZY, Lo LC, Wang CM, Lin G, Feng F, Pang HY, Li J, Gong P, Liu HM, Tan J, 

Chou R (2009) Genetic variation and population structure of Asian seabass (Lates 

calcarifer) in the Asia-Pacific region. Aquaculture 293:22-28. 

 



 51 

Chapter 3  

 

Rapid assessment of genotype by environmental 

interactions and heritability for growth rate in 

aquaculture species using in vitro fertilisation and 

DNA tagging. 

 
Macbeth G.M., and Wang Y-G. (2014) Rapid assessment of genotype by environmental 

interactions and heritability for growth rate in aquaculture species using in virtro fertilisation 

and DNA tagging. Aquaculture 434: 397-402. 
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3.1 ABSTRACT 
Commercial environments may receive only a fraction of the expected genetic gains for 

growth rate as predicted from the selection environment. This fraction is the result of 

undesirable genotype-by-environment interactions (GxE) which can be measured by the 

genetic correlation (rg) of growth between the different environments. Rapid estimates of 

genetic correlation achieved in one generation are notoriously difficult to estimate with 

precision. A new design is proposed where genetic correlations can be estimated by 

utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a 

single female. Traditional phenotype analysis of growth was compared to a threshold model 

where only the largest fish are genotyped for sire identification. The threshold model was 

robust to differences in family mortality of up to 30%. The design is unique as it negates 

potential re-ranking of families caused by an interaction between common maternal 

environmental effects and growing environment. The design is suitable for rapid 

assessment of GxE over one generation with a true 0.70 genetic correlation yielding 

standard errors as low as 0.07. Different design scenarios were tested for bias and 

accuracy with a range of heritability values, genetic correlation levels, family survival rates, 

number of half-sib families created, number of progeny within each full-sib family, number of 

fish genotyped and number of fish stocked.  
 

 

3.2   Introduction 

 

Genotype by environmental interactions (GxE) are important in many fish species such as 

barramundi or Asian seabass (Lates calcarifer). For example, the commercial environments 

in which barramundi are grown in after stocking as fingerlings include a combination of:  

(i) ponds, cage and recirculation tanks,  

(ii) fresh water, brackish and sea water growout and  

(iii) tropical and sub-tropical temperatures.  

These GxE interactions, measured by genetic correlations, are important to selective 

breeding as they cause a re-ranking of breeding values expressed in the different 

environments. 

Significant GxE interactions for growth in aquaculture have occurred as a result of 

differences in temperature, salinity, stocking density and between recirculation, pond and 

cage facilities (Sylven et al., 1991; Myers et al., 2001; Ponzoni et al., 2005; Saillant et al., 

2006; Eknath, 2007; Khaw et al., 2009; Mas-Muñoz et al., 2013) with estimates for body 
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weight at harvest in different environments as low as 0.19+0.13 (Sae-Lim et al., 2013). 

There is also an emerging need for GxE assessment of growth rate in newly formulated 

diets with significant re-ranking of family performances between diets observed by Pierce et 

al. (2008), Dupont-Nivet et al. (2009) and Boucher et al. (2011).  

There is a critical point at which the genetic correlation for growth is so low that more 

than one breeding program must be considered. This will principally be an economic 

decision based on the value of production in the different environments. Robertson (1959) 

suggested genetic correlations below 0.80 were significant whereas Ponzoni (2005) 

considered a genetic correlation of 0.58+0.14 for pond and cage growout in tilapia was not 

sufficient evidence to justify separate breeding programs.  From this study the 95% 

confidence interval of the genetic correlation ranged from 0.31 to 0.85. In another study 

Domingos et al. (2013) suggested that GxE interactions were insignificant when the 

estimate was 0.98 even though, due to the large standard error, there was a 5% chance 

that the genetic correlation between fresh and saltwater growth could be as low as 0.55.  If 

more accurate estimates of genetic correlation were available then perhaps a second 

breeding program could become justified. It is clear that minimising the standard error of 

genetic correlations is an important objective that should be achieved at the earliest stages 

of a breeding program and that estimates with large standard errors are clearly not 

informative for decision making. 

Optimum designs for estimating GxE have been reported recently (Sae-Lim et al., 

2010) with a model that assumed equal numbers within each family stocked prior to the 

evaluation. This will require separate spawning and hatching of fingerlings prior to families 

being pooled in different growout environments which will contribute to common family 

environmental effects. In some fish species the maternal common environmental effect (c2) 

for growth can be as high as 0.21 Khaw et al. (2009) but are generally below 0.10 (Dupont-

Nivet et al., 2010; Doupe, 2004; Gall and Huang, 1988). Even with estimates below 0.10, 

omitting maternal or family components can substantially inflate heritability estimates (Tosh 

et al., 2010; Winkelman and Peterson, 1994).  The confounding of common environmental 

effects with additive genetic effects is a statistical problem particularly when only one 

generation of performance measurements are available. 

A new design is proposed for rapid assessment of heritability and GxE using artificial 

fertilisation.  Cryopreserved semen from many males is used to fertilise eggs of a single 

female to create many half-sib families which are identified using DNA tagging.  This design: 

(i) is not influenced by maternal variance as there is only one dam,  
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(ii) is suitable for large fish species as it negates the difficulty and cost of achieving 

multiple synchronised spawns,  

(iii) can be suitable in species where grading of size is required to reduce 

cannibalism and  

(iv) can be utilised when no prior pedigree and production records are available.  

As reported by Macbeth and Palmer (2011) barramundi, L. calcarifer, is ideally suited 

to this design as their high fecundity in both females with up to 46 x 106 eggs per spawn 

(Davis 1984) and males with up to 10-15ml of milt (Palmer, 2000) allows many offspring to 

be tested for each sire. Collection of sperm has now been demonstrated in up to 30 marine 

fish species (Suquet et al., 2000) with egg collection (Sahoo et al., 2008) and artificial 

fertilisation successful in producing multiple sires (Palmer et al., 1993; Quinton et al., 2007; 

Dupont-Nivet, 2008). 

This paper examines the artificial mating design under a range of options to assess the 

impact on the precision and bias of heritability and genetic correlation estimates. 

 

3.3  Methods 

3.3.1  Experimental design 
 
Due to the difficulty of stripping eggs from multiple females simultaneously and to eliminate 

common maternal variance an initial breeding design involving the stripping of eggs from 

one hatchery female (dam) was considered and using artificial mating from cryopreserved 

semen to establish 25 to 400 half-sib families (i.e. 25 to 400 sires). It was assumed each 

family was incubated separately until hatched with equal number of larvae per family pooled 

in a single nursery tank and grown to fingerling stage in a common environment. The 

simulations modelled a total of 60,000 fingerlings with subsamples ranging from 2,000 to 

15,000 randomly allocated fingerlings selected to grow into each of two environments (E1 

and E2). As a result of this subsampling procedure random variation in the number within 

each half-sib family is created to emulate sampling in a field trial. 

Six different design configurations were simulated with parameters of each listed in 

Table 3.1. In these configurations the average number per family in each environment is the 

number stocked divided by the number of sires. For configurations 1 to 5, survival in each 

environment was assumed to be 100%. In configuration 6 the sensitivity of the experimental 

design to differing family survival rates ranging from 60% to 100% was investigated. No 

correlation of survival with growth was assumed. In the first scenario the survival rate of 

each half-sib family in both environments was the same with families 1..50 having a 100% 
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survival rate and families 51..100 having a survival rate chosen between 60% to 90%. The 

second scenario is similar to the first but with families in environment 2 swapped such that 

families 1..50 will have the lower survival rate and families 51..100 with the 100% survival 

rate. This scenario has half-sib families with low survival rates in E1 equal to high survival 

rates in E2 and vice versa emulating a survival by environment interaction.  

 

Table 3.1. List of six configurations of simulation parameters used to estimate heritability 

( 2ĥ ) and genetic correlation ( gr̂ ) from 100 simulations. Simulation parameters include: 

heritability (h2), genetic correlation between environments (rg),  number of unique sires (S), 

the threshold sample size taken from the heaviest fish sampled for DNA parentage analysis 

in each of two environments (nDNA) and the number of fish stocked per environment (Stk) 

taken from a pooled sample of 60,000 fingerlings.  Figures enclosed by brackets indicate 

the range of simulated values. 

Configuration 

          Simulated parameters                                                                  Presented in: 

1 h2=0.30, Stk=15000, nDNA =800, S=50,  

rg ={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.90}.                              (Figure 3.1) 

  

 2 h2=0.30, Stk=15000, nDNA =800,  

S={25, 50, 100, 150, 200, 400}, rg ={0.70, 0.80}.                          (Table 3.2) 

 

3 h2=0.30, Stk =15000, S=50, rg =0.70,  

nDNA ={3200, 1600, 800, 400, 200}.                                            (Table 3.3) 

 

4 h2=0.30, S=50, rg =0.70, 

Stk={15000, 10000, 5000, 2000}, nDNA ={1600, 800}.                (Table 3.4) 

 

5 Stk=15,000, rg=0.80, S=50, nDNA ={400, 800}, 

h2={0.1, 0.2, 0.3, 0.4,0.5}.                                                             (Table 3.5)                                                                     

  

6 h2=0.30, Stk=15,000, rg =0.70, S=50, nDNA =800.  

Variable family survival rates.                                                       (Table 3.6) 
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3.3.2 Simulation of genetic parameters 
Phenotypes of progeny were generated using artificial mating formed by mixing eggs from a 

single female (dam j=1) with semen from unrelated males (ith sire 1..S) to create S half-sibs. 

The phenotypic variance was modelled as 12
1

2
1

2 =+= eaP σσσ  giving the additive genetic 

variance in environment one 2
1aσ = 2h  and the error variance in environment one 

2
1

2
1 1 ae σσ −= . True breeding values ),0( 2

1ai NA σ=  for the ith sire of each half-sib family were 

determined by sampling a normal distribution with mean 0 and variance 2
1aσ . The true 

breeding value of the only dam j was determined as ),0( 2
1aj NA σ= . True breeding values for 

the kth full-sib offspring (k=1…K) within the ith sire and dam j were determined by 

ijkjiijk MAAA ++= 2/)(  which accounts for half of the additive genetic variation each 

generation being derived from Mendelian sampling with )2/,0( 2
1aijk NM σ= . The phenotype 

of the ijkth progeny was determined as ),0( 2
1eijkijk NAP σ+= .  

Sire, dam and offspring genotypes in environment two ( Aʹ′) were simulated using a true 

genetic correlation ( gr ) as ))1(,0( 22
1 gaigi rNArA −+=ʹ′ σ , ))1(,0( 22

1 gajgj rNArA −+=ʹ′ σ  and 

!Aijk = ( !Ai + !Aj ) / 2+Mijk respectively giving the correlation of offspring breeding values !Aijk and 

Aijk equal to rg . This assumed the additive genetic variance in environment two ( 2
2aσ ) was 

the same as that in environment one with 2
2aσ = 2

1aσ = 2h  and error variance 2
1

2
2 ee σσ =  with 

the phenotype of fish ijk in environment two defined as ),0( 2
2eijkijk NAP σ+ʹ′=ʹ′ .  For modelling 

purposes the same Mijk for both environments was used as each of the ijkth fish could only 

be grown in one environment. 

 

3.3.3  Statistical analysis 
The analysis was achieved using a probit model which is equivalent to the “threshold” model 

in animal breeding (Gianola and Foulley, 1983).  The binary threshold point was determined 

from the largest nDNA fish from H fish harvested in each environment. The nDNA fish were 

genotyped for sire identification and assigned a threshold score of one. A threshold score of 

zero was assigned to all the remaining (H- nDNA) fish that were not genotyped. Due to 

random sampling the exact number of fish per sire represented in each environment was 

unknown and therefore an equal number of offspring per sire (H/S) was assumed in the 

analysis so that each sire, 1..S, had the same sum of ‘zero’ and ‘one’ threshold scores.  
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Variance-covariance parameters were estimated using the generalised linear model 

procedure glmmPQL in R (R Development Core Team, 2011). As expected from the 

simulation model preliminary results revealed no significant differences in the heritability 

between the two environments (P>0.05). It was therefore assumed the variances 2
2

2
1 aa σσ =  

and 2
2

2
1 ee σσ =  leading to a computationally efficient univariate model: E(B)=Φ (sire/E+r) 

where B is the binary threshold score indicated by 1 for above the threshold or 0 for below 

the threshold, the function Φ  is the cumulative standard normal distribution, sire is the 

random sire effect nested within environment (E) and r is the residual error. Note that E(B) 

is also the probability of B=1. The generalised linear model implemented in R had the form:  

glmmPQL(B~ 1, random= ~1|sire/E, data=yy, family=binomial(link=“probit”)). For 

comparison it was assumed all animals were weighed and DNA fingerprinted for sire 

identification using the statistical model W=sire/E + r  where W is the phenotypic weight, sire 

is a random sire effect nested within environment (E) and r is the residual error. The R 

implementation of the model was: 

 glmmPQL(W ~ E, random= ~1|sire/E, data=yy, family=gaussian) where W is the 

phenotypic weight. The fixed effect of environment (E) in this model accounts for the 

phenotypic scaling caused by the interaction between the maternal genetic effect of the dam 

and the two environments. 

The glmmPQL model partitioned three variance components:  

(i)      the residual variance ( 2/ˆ1ˆ 22
ar σσ −= ) which in the sire model includes the 

Mendelian variance component and is therefore different from the simulated error 

variance,  

(ii)      the additive genetic sire variance shared in common between the two 

environments ( 4/ˆˆˆ 22
_ agbetweens r σσ = ) and  

(iii)      the additive genetic sire variance not shared between the two environments 

( 4/ˆ)ˆ1(ˆ 22
_ agwithins r σσ −= )  

giving the total sire variance 4/ˆˆˆˆ 22
_

2
_

2
abetweenswithinss σσσσ =+= .  This gave heritability equal to 

ĥ2 = σ̂ a
2 (σ̂ s

2 + σ̂ d
2 + σ̂ r

2 ) =4σ̂ s
2 (2σ̂ s

2 + σ̂ r
2 )  assuming the dam variance ( 2ˆ dσ ) equals the sire 

variance, and the genetic correlation equal to 22
_ ˆˆˆ sbetweensgr σσ= . The procedure used to 

estimate gr̂  above was computationally efficient as it negates the need to determine the 

numerator relationship matrix required by standard bivariate analysis. 
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The standard error (s.e.) of gr̂ and 2ĥ was determined from the standard deviation 

(s.d.) their estimates from 100 simulation runs. The only exception was in Figure 1 where 

s.e. = s.d. / 2  which assumed each environment was replicated twice using a different set of 

sires to illustrate what could realistically be achieved in one growth period. Bias was 

determined from the difference between true gr and 2h  values and the means of their 

estimates gr̂ and 2ĥ  from 100 simulation runs using a t-test.  

 

3.4 Results  
3.4.1 Variable genetic correlations with 50 sires (Configuration 1). 
 
A list of simulation parameters for configuration 1 is provided in Table 3.1. This configuration 

consists of 50 different sires with the heaviest 800 genotyped for sire identification from 

15000 fish stocked in each of two environments. Average estimates of genetic correlations 

from this configuration are shown in Figure 3.1 with standard errors assuming configuration 

1 was replicated twice. The lowest standard error occurred when the true genetic correlation 

was high (e.g. 0.90+0.04) with standard errors generally increasing as the genetic 

correlation decreased.  Over the nine points the genetic correlation deviated from the 

expected simulated value by -0.008 (standard error s.e.=0.004). This bias was small relative 

to the standard errors depicted graphically by the deviation from the grey regression line 

(Figure 3.1).  

If the predicted genetic correlation was 0.80 then it could be determined using a 95% 

confidence limit that the true genetic correlation should be above 0.68 which was calculated 

as 0.80 less twice the standard error (Figure 3.1).  

The true heritability in this design was 0.30 with mean estimates ( 2ĥ ) and standard 

errors of 0.30+0.04, 0.30+0.05, 0.30+0.05, 0.30+0.05, 0.31+0.05, 0.30+0.05, 0.31+0.06, 

0.30+0.05 and 0.31+0.05 for simulated genetic correlations of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8 and 0.9 respectively. In this configuration the average heritability estimates were 

biased higher at 0.004 (s.e.=0.001).  In an analysis similar to configuration 1, by doubling 

the number of sires to 100 and doubling nDNA to 1600, no significant increase in the 

precision of genetic correlation estimates were detected (P>0.05). 
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Figure 3.1. Simulated versus estimated genetic correlation (rg). Standard errors assume 

configuration 1 was replicated twice. See configuration 1 simulation parameters Table 3.1: 

(h2=0.30, Stk=15000, sires S=50, nDNA=800). 
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3.4.2 Variable number of sires (Configuration 2). 
 
See Table 3.1 for list of simulation parameters for configuration 2. The main differences 

from configuration 1 were that two values of rg (0.70 and 0.80) were used and the number of 

sires per dam was increased at five levels from 25 to 400 (Table 3.2).  The general trend 

was for the standard error of both gr̂  and 2ĥ  to decrease with increased number of sires. 

Interestingly an increase in the number of sires of 200 and above did not improve precision 

with 2ĥ  being significantly underestimated. There was also a trend for gr̂  to be 

underestimated as the number of sires increased.. This result suggests that when there are 

too few full-sibs per family, the family means are determined with less precision by the 

binomial threshold method, which in turn caused a bias in the genetic parameter estimates.  
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Table 3.2. Variable number of sires giving average genetic correlation ( gr̂ ) and average 

heritability ( 2ĥ ) with standard errors (s.e.) at two genetic correlation levels ( gr ). See 

configuration 2 simulation parameters Table 3.1: (h2=0.30, Stk=15000, nDNA=800).  
 

 gr =0.70  gr =0.80  

Sires (S)  gr̂      (s.e.)  2ĥ    (s.e.)  gr̂       (s.e.)   2ĥ    (s.e.) 

     25 0.70 (0.13)  0.29 (0.07) 0.77 (0.10)  0.30 (0.07) 

     50 0.68 (0.10)  0.31 (0.05) 0.78 (0.09)  0.30 (0.05) 

   100 0.67 (0.10)  0.31 (0.04) 0.77 (0.08)  0.31 (0.05) 

   150 0.66    (0.09)  0.33 (0.04) 0.74 (0.09)  0.33 (0.04) 

   200 0.63 (0.09)  0.33 (0.04) 0.73 (0.08)  0.33 (0.04) 

   400 0.56 (0.09)  0.39** (0.04) 0.66 (0.08)  0.38** (0.04) 
** (P<0.01) different from simulated h2. 

 

3.4.3  Variable number DNA tagged per dam (Configuration 3). 
 

As the number DNA tagged from the heaviest fish harvested was increased there was a 

general trend for a reduction in the standard error of gr̂  values (Table 3.3).  The large bias in 

gr̂  when 200 were DNA tagged of 0.70-0.63=0.07 was not significantly different from the 

true simulated value of 0.70 due to the large standard error of these estimates from the 

simulation runs. It appears that at least 400 DNA samples should be taken to reduce the 

risk of estimation bias with little gain in precision and accuracy above 800 DNA samples.  
 

Table 3.3. Sensitivity of threshold sample size (nDNA) on average genetic correlation ( gr̂ ) 

and average heritability ( 2ĥ ) with standard errors (s.e.). See configuration 3 simulation 

parameters Table 3.1: (h2=0.30, rg=0.70, Stk=15000, sires S=50). 
 

nDNA 
gr̂           (s.e.) 2ĥ       (s.e.) 

     200   0.63 (0.16) 0.32 (0.07) 

     400   0.69 (0.12) 0.31   (0.05) 

     800   0.69 (0.10) 0.31 (0.05) 

   1600   0.69 (0.09) 0.30 (0.05) 

   3200   0.69 (0.09) 0.29 (0.05) 
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3.4.4  Variable number stocked (Configuration 4). 
 

In the binomial analysis a general increase in the precision and accuracy of gr̂  and 2ĥ  

occurred as the number stocked in each environment increased (Table 3.4). As expected 

the estimated genetic parameters from the phenotypic analysis was consistently more 

accurate than the binomial analysis. Individual weighing and genotyping all 2000 fish gave a 

similar standard error of rg=0.09 compared to grading and genotyping the heaviest 400 with 

a larger number of fish stocked. When comparing both methods to 2000 genotyped the 

binomial design could be replicated five times to produce the same number genotyped. If 

the binomial design was replicated five times with different sires the standard error of rg 

would reduce to 0.09 / 5 = 0.04 . There was no apparent advantage in stocking over 10000 

fish when the binary threshold nDNA was 400. 

 

Table 3.4. Sensitivity of the number of fingerlings stocked per environment (Stk) on 

estimates of average genetic correlation ( gr̂ ) and average heritability ( 2ĥ ) with standard 

errors (s.e.).  Results from a binomial analysis with threshold size nDNA=400 or a 

phenotypic analysis requiring all individual fish to be weighed and genotyped for sire 

identification. See configuration 4 simulation parameters Table 3.1: (h2=0.30, rg=0.70, sires 

S =50). 

  Binomial analysis  Phenotypic analysis 

     Stk 
gr̂          (s.e.) 2ĥ      (s.e.) gr̂            (s.e.) 2ĥ       (s.e.) 

2000 0.58 (0.17) 0.34 (0.07) 0.71 (0.09) 0.30 (0.04) 

5000 0.69 (0.09) 0.32 (0.05) 0.70 (0.07) 0.30 (0.03) 

    10000 0.68 (0.09) 0.31 (0.06) 0.70 (0.06) 0.30 (0.03) 

    15000 0.68 (0.09) 0.31 (0.06) 0.68 (0.06) 0.29 (0.04) 

 

 

3.4.5. Variable heritability (Configuration 5). 
 
Variable heritability was examined with 50 sires and sampling either the largest 400 or 800 

for DNA genotyping of sires (Table 3.5). A general increase in accuracy was observed when 

estimating genetic correlations as the true heritability increased in magnitude. The converse 



 62 

was true for heritability with accuracy increasing as the true heritability decreased from 0.5 

to 0.1.  In all cases the estimated genetic correlations were equal to or slightly lower than 

the simulated gr value of 0.80 but not significantly different from that value (P>0.05). These 

results confirm that the binomial threshold model is a robust method of estimating genetic 

correlations within the realistic range of heritability from 0.1 to 0.5 for growth rate. 

 

Table 3.5. Sensitivity of heritability on estimates of average genetic correlation ( gr̂ ) and 

average heritability estimates ( 2ĥ ) with standard errors (s.e.) at two threshold sizes (nDNA). 

See configuration 5 simulation parameters Table 3.1: (rg=0.80, Stk=15000, sires S=50). 

 nDNA=400 nDNA=800 

Heritability  
gr̂          (s.e.) 2ĥ        (s.e.) gr̂          (s.e.) 2ĥ      (s.e.) 

0.1 0.77 (0.18) 0.10 (0.02) 0.77 (0.13) 0.10 (0.02) 

0.2 0.78 (0.13) 0.20 (0.05) 0.78 (0.10) 0.20 (0.04) 

0.3 0.79 (0.11) 0.30 (0.06) 0.79 (0.07) 0.31 (0.05) 

0.4 0.80 (0.08) 0.41 (0.07) 0.80 (0.07) 0.40 (0.07) 

0.5 0.77 (0.10) 0.51 (0.09) 0.78 (0.07) 0.50 (0.08) 

 
 
3.4.6  Variable family survival (Configuration 6). 
 
In this configuration the sensitivity of the binomial threshold model to differences in family 

survival was investigated. The experimental design was sufficiently robust to estimate 

genetic correlations with variable survival rates of 60% and 100% provided the survival 

rates of each half-sib family were the same across both environments (Table 3.6). The 

design was sensitive to interaction survival rates where families having good survival rates 

in one environment had poor survival rates in the other environment and vice versa. In this 

worst case interaction survival rates of 60% and 100% had significantly lower genetic 

correlation estimates than the simulated value of 0.70 (Table 3.6).  
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Table 3.6. Sensitivity of survival on average genetic correlation ( gr̂ ) and average heritability 

( 2ĥ ) with standard errors (s.e.).  The percentage family survival across 100 full-sib families 

indicated by sires 1..50 and sires 51..100 (see Table 3.1 configuration 6: h2=0.30, rg=0.70, 

Stk=15000, sires S=100, nDNA=800). 

Environment 1 

Sires 

1..50      51..100 

Environment 2 

Sires 

1..50    51..100 

 

gr̂   (s.e.) 

 

2ĥ  (s.e.) 

Control 

100 100 100    100 0.70 0.09 0.32 0.05 

Same family survival in each environment (no interaction) 

100   90 100      90 0.69 0.10 0.32 0.04 

100   80 100      80 0.68 0.10 0.32 0.04 

100   70 100      70 0.70 0.09 0.34 0.04 

100   60 100      60 0.72 0.09 0.36 0.04 

Different family survival in each environment (with interaction) 

100   90 90    100 0.67 0.09 0.32 0.05 

100   80 80    100 0.61 0.10 0.33 0.04 

100   70 70    100 0.52 0.11 0.33 0.04 

100   60 60    100 0.42** 0.10 0.37 0.05 
** (P<0.01) different from simulated rg. 

 

 

3.5. Discussion 
 
The results in this study demonstrate that it is feasible to estimate genetic correlations using 

a binomial threshold model. In this design there may be families not represented in the top 

threshold of fish sampled and therefore it is important to understand the limitations and also 

advantages of this design as reflected by the precision and bias of estimating both genetic 

correlations and heritability.  

One advantage of this design is the absence of maternal common variance which is 

expressed as a proportion of total phenotypic variance and denoted as c2 (Montaldo et al., 

2012). The existence of c2 and potential re-ranking of families due to an interaction between 

c2
 and environment is ignored in studies estimating genetic correlations (Fishback et al., 

2002; Ponzoni, 2005; Sae-Lim et al., 2010). This non-genetic re-ranking of families in 
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different environments will ultimately cause an underestimate of GxE. As there is no c2 

effect in the design presented in this study the genetic correlations are potentially less 

biased than other proposed designs.  

The drawback with no c2 effect is that the heritability estimates are potentially inflated 

by (1+c2) if applied to selection environments where c2 is present. However in other 

experimental designs where c2 is present genetic variances tend to be overestimated when 

c2 has been unaccounted in statistical models (Tosh et al., 2010). Dupont-Nivet et al. (2009) 

went to the extent of creating maternal clones for genetic variance component assessment 

to minimise maternal effects. Other strategies include reducing the age span of 

experimental fish (Pierce et al., 2008) or by minimising the size range of eggs between 

spawns (Dupont-Nivet et al., 2009). The potential source of bias caused by differences in 

maternal effects is simply eliminated in this design because c2 is equal to zero as only one 

dam is used. One potential concern using a design with a single dam is that genotype by 

genotype interactions could inflate the sire variance. Generally genotype by genotype 

interactions are of little concern but could be alleviated in species where eggs from multiple 

females can be collected simultaneously. In this case equal weights of eggs from each 

female may be mixed prior to fertilization in order to average the effect of c2 from multiple 

dams for each sire. 

Another source of experimental variation is the common tank effect, which is 

equivalent to a paternal effect in this design. This tank effect was minimised using in vitro 

fertilisation allowing fertilization of all half-sib families to occur within minutes of each other 

and by mixing families soon after hatching (Macbeth and Palmer, 2011). This protocol 

minimises the potential for any paternal tank effects. If in practice, fingerlings cannot be 

reared in the same tank then significant tank effects could be included in the statistical 

model. Small tank effects are unlikely to affect h2 and rg estimates as families can be mixed 

immediately after hatching prior to rearing in different tanks. The estimates are also 

reasonably robust to environmental changes affecting family representation in the heaviest 

group of fish genotyped as inferred by the survival sensitivity analysis. 

There are many similarities between the results of Sae-Lim et al. (2010) and the 

present study. For example,  

(i) a reduction in the standard error of rg occurs as h2 increases,  

(ii) a interaction of family survival and environment can cause a bias and a 

reduction in the accuracy of rg  and  

(iii) there is an optimised family size that minimises the standard error of rg.  



 65 

The design can give similar standard errors of rg to that reported by Sae-Lim et al. (2010). 

When only 2000 are stocked it is recommend all animals are genotyped and weighed with 

an analysis performed on phenotypic data. The binomial analysis, with larger number of fish 

stocked, is expected to perform well in aquaculture species where commercial grading on 

size is required during the experimental trial period, as practiced in species such as L. 

calcarifer (Macbeth and Palmer, 2011). 

A uniform family survival is desirable in the probit analysis as all families were 

assumed to be represented in equal stocking proportions. As there is no dam variance 

expressed in this design and with all eggs exactly the same age, and sampled from the 

same size distribution, it is unlikely that there will be a large variation in family survival. 

Additionally due to one dam used in the design only three quarters of the total additive 

genetic variation is available to contribute to survival variation between the half-sib families 

produced. It is also less likely that significant family survival by environment interaction will 

occur due to both the reduction in total genetic variance and elimination of c2 variance 

components. Overall the analysis appeared robust to differing family mortality rates up to 

30% although an interaction between family survival and environment seemed to cause 

more bias in rg and h2 estimates. 

Designs using synchronous spawning are difficult to achieve in practice (Dupont-Nivet 

et al., 2008; Quinton et al., 2007; Boucher et al., 2011) making it necessary to pool spawns 

over a period of more than one day (Pierce et al., 2008). Mixing fish born more than one day 

apart is undesirable as older fish may maintain a size advantage they never relinquish 

(Tave, 1995) causing biased estimates of genetic parameters.  Also if batch spawning is 

used the highly variable fertilisation rates among males and females in mating tanks (Frost 

et al., 2006; Nissling et al., 2002) may cause many half-sib families to be over-represented 

with the downstream risk of increasing the standard errors of genetic parameter estimates. 

With controlled artificial mating the design is less variable and is therefore achieved with 

less risk of experimental failure.   

In many of the simulated designs with rg=0.70 a standard error of 0.09 could be 

achieved which would reduce to 0.09 / 2 = 0.06  if two replicates of each environment were 

evaluated with a different set of sires. This standard error is better than published estimates 

of rg reported within the range of 0.5 to 0.8 including: 0.51+0.19 for Dicentrarchus labrax 

(Salliant et al., 2006), 0.56+0.34 for  Solea solea (Mas-Muñoz et al., 2013), 0.58+0.14 for 

Oreochromis niloticus (Ponzoni et al., 2005), 0.70+0.10 for  D. labrax (Dupont-Nivet et al., 

2008), 0.73+0.13 for Oncorhynchus mykiss (Pierce et al., 2008), 0.75+0.09 for 

Oncorhynchus mykiss (Dupont-Nivet et al., 2010), 0.82+0.21 for Coregonus lavaretus L. 
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(Quinton et al., 2007), 0.67+0.12 Oncorhynchus mykiss Walbaum (Boucher et al., 2011) 

and 0.74+0.21 to 0.84+0.15 for Oreochromis niloticus (Khaw et al., 2009). 

The experimental design used here to estimate genetic correlations is also suitable for 

a novel design which can achieve rapid genetic gains during the establishment phase of a 

breeding program (Macbeth and Palmer, 2011).  In existing breeding programs the design 

could be used to compare the ranking of nucleus breeding sires to other sires outside the 

breeding program as part of a screening program to increase genetic gains and or reduce 

inbreeding. 

 

3.6. Conclusion 
 

Both threshold and phenotypic weight analysis are a viable option to estimate the heritability 

and genetic correlations for growth rate using multiple half-sib families created from artificial 

fertilisation of eggs from a single female. The threshold model was robust to differences in 

family mortality of up to 30%. The advantages include:  

(i)      the elimination of bias from family re-ranking caused by c2 by environmental 

interaction,  

(ii)      the standard errors from this design are on average better than published 

estimates using natural mating designs,  

(iii)      rapid assessments of genetic parameters over one growing period can be 

obtained,  

(iv)      tighter mating control reducing the risk of unequal representation of families,  

(v)      families can be mixed and reared immediately after hatching to reduce fixed tank 

effects and 

(vi)      threshold analysis suitable for species that are graded during commercial 

operations. 
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Chapter 4 
 

Likelihood-based genetic mark–recapture estimates 

when genotype samples are incomplete and contain 

typing errors.   

 
Macbeth G.M., Broderick D, Ovenden J.R., Buckworth R.C. (2011) Likelihood-based genetic 

mark–recapture estimates when genotype samples are incomplete and contain typing 

errors.  Theoretical Population Biology 80:185-196.  
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4.1 ABSTRACT 

Genotypes produced from samples collected non-invasively in harsh field conditions often 

lack the full complement of data from the selected microsatellite loci. The application to 

genetic mark-recapture methodology in wildlife species can therefore be prone to 

misidentifications leading to both ‘true non-recaptures’ being falsely accepted as recaptures 

(Type I errors) and ‘true recaptures’ being undetected (Type II errors). A new likelihood 

method is presented that allows every pairwise genotype comparison to be evaluated 

independently. This method was applied to determine the total number of recaptures by 

estimating and optimising the balance between Type I errors and Type II errors. It was 

demonstrated through simulation that the standard error of recapture estimates can be 

minimised through new algorithms. Interestingly, the precision of recapture estimates 

actually improved when individuals with missing genotypes were included, as this increased 

the number of pairwise comparisons potentially uncovering more recaptures. Simulations 

suggest the method is tolerant of per locus error rates of up to 5% and can theoretically 

work in data sets with as little as 60% of loci genotyped. The methods can be implemented 

in data sets where standard mismatch analyses fail to distinguish recaptures. Finally, it was 

also demonstrated that by assigning a low Type I error rate to the matching algorithms a 

dataset of individuals of known capture histories could be generated that is suitable for 

downstream analysis with traditional mark recapture methods.  
 

4.2. Introduction 
The objective of DNA-based mark-recapture studies is to accurately determine if two 

samples are either from the same individual or different individuals (Paetkau and Strobeck, 

1994).  Even well designed studies that theoretically achieve objectives may in practice 

have genotype profiles that are not always correct or complete (Taberlet et al., 1996; 

Gagneux et al., 1997) which result in biased recapture estimates. While it is laudable to 

avoid such problems in the first place, the reality is that they exist in all datasets to varying 

degrees.  

An a posteriori approach to handle missing loci and genotype errors based on 

likelihood methods of Kalinowski et al. (2007) is evaluated. When assessing the hypothesis 

that a recapture exists between two genotype samples there are two sources of 

misidentification. The first source of misidentification is a Type I error where two samples 

from different individuals are incorrectly identified as a recapture. This is a known problem in 

genetic mark-recapture studies and when two individuals have identical genotypes they are 

called ‘shadows’ (Mills et al., 2000). In the case when genotyping errors are present in the 
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data, Type I errors can also occur. Type II errors are manifested by genotyping errors when 

two observed genotypes from the same individual are concluded to be from two individuals.   

 The presence of Type I and Type II errors are an important challenge to genetic 

mark-recapture studies and are more likely in datasets that comprise of individuals with 

incomplete or ‘partial’ genotypes. This lack of genotype information is further exacerbated 

when comparisons are attempted to be made among individuals with partial genotypes that 

have few loci or even no loci in common. In studies where partial genotypes are rare, 

individuals or loci can be culled (Paetkau, 2003) until pairwise comparisons can be made at 

enough loci for individual identification (Rudnick et al., 2008). However this approach may 

not be workable if few individuals are fully genotyped (e.g. Chu et al., 2006; Chaline et al., 

2004). When partial genotypes are common, the removal of too many individuals reduces 

the chances of detecting recaptures and inflates the variance in population size estimates, 

whereas the removal of too many loci increases the prevalence of miss-identification.  

Type I errors cause underestimates of population size from mark-recapture studies if 

too many individuals are falsely assessed as recaptures (Waits and Leberg, 2000). The 

prevalence of Type I errors in a mark-recapture study is determined by:  

(i) the allelic diversity of the microsatellite loci used for genotyping,  

(ii) the relatedness of individuals in the population as Type I errors are also more 

likely to occur between pairs of siblings or other first order relatives (Evett and 

Weir, 1998) and  

(iii) sample size of the study. While a genetic mark-recapture study may be 

designed in the first instance to minimise miss-identifications, unforeseen 

increases in sample size (e.g. augmentation of historical data) can scuttle best 

laid plans. Progressively adding more samples will exponentially increase the 

number of pairwise comparisons and will increase the incidence of Type I 

errors.  

Type II errors cause inflated estimates of population size from mark-recapture 

studies when genotyping errors among recaptures are inadvertently identified as new 

individuals (Creel et al., 2003). Common genotyping errors include allelic drop out, scoring 

of artefact peaks, misinterpretation of allele banding patterns and those from DNA 

contamination (Fernando et al., 2003; Hoffman and Amos, 2005; Wright et al., 2009). Some 

loci are more susceptible to genotyping errors than others (Hoffman and Amos, 2005) and 

poor DNA quality is more error prone (Creel et al., 2003; Taberlet ,1996). It should still be 

born in mind that even high quality DNA can have surprisingly high error rates with allelic 

dropouts of 21-57% (Soulsbury et al., 2007). Repetitive PCR amplification of error-prone loci 
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(Taberlet et al., 1996) will go a long way to detecting errors but it will not eliminate them 

completely. Close scrutineering of the genotyped data is necessary and suspect genotypes 

can be detected using mismatch techniques as potential recaptures match at all or almost 

all loci (Paetkau, 2003; McKelvey and Schwartz, 2005; Kalinowski et al., 2006). However 

these methods are generally not suitable in data where missing loci are common.   

To obtain reliable biological information from mark-recapture studies using genotype 

data, the prevalence of both Type I and Type II errors should be quantified and their effect 

on downstream analyses minimised. For example, Creel et al. (2003) described a threshold 

based on probability of identity (PID) which effectively accepts a given level of Type I errors 

for population size estimation, but as the authors note, the difficulty with this approach is in 

determining the appropriate PID threshold. Knapp et al. (2009) used PID to estimate 

population size while accounting for genotyping errors and Type I errors, but it is not clear 

how robust these methods are when applied to data with missing loci as each non-missing 

locus combination will have a different Type I error distribution based on PID. Wright et al. 

(2009) explicitly modelled allelic dropout errors from repeated genotyping to adjust 

estimates of population parameters and while individuals with missing loci were evaluated 

the problem of Type I errors was not addressed. An alternative approach using likelihood 

ratios based on the methods of Kalinowski et al. (2007) offer the most promise for 

addressing the issue of misidentifications when a proportion of genotypes in a dataset have 

missing data.   

The objective in this paper was to evaluate the robustness of a new approach that 

uses likelihood ratios to maximize the accuracy of estimating the number of recaptures in 

the presence of partial genotypes and genotype errors. The new method achieves this by 

simultaneously accounting for Type I and Type II errors in a stochastic optimisation 

procedure which minimises the estimated variance of recapture estimates. The 

mathematical theory of the approach is described and tested through stochastic simulation 

by examining the effect of partial genotypes, genotype errors and sample size in both bi-

allelic and multi-allelic genotypes. Also investigated was how the methods could be applied 

in related populations such as those with full-sibs. 
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4.3. Materials and methods 

4.3.1 Overview of mathematical theory: 
 

The model is based on the classical multiple hypothesis testing model (Figure 4.1).  

 

Figure. 4.1.  True null and true alternative multiple hypothesis distributions. To the right of 

the Log Likelihood Ratio threshold (LLRV) are S the number of true positives (recaptures) 

and V the number of false positives (Type I errors) and to the left of LLRV are U the number 

of true negatives and T the number of false negatives (Type II errors). The total number of 

true nulls VUm +=0  and the total number of true alternatives TSm +=1  with the Type I 

error rate 0/mV=α  and the Type II error rate 1/mT=β . 

 
The Log Likelihood Ratio (LLR) distribution of all the true nulls ( 0m ) are from 

individuals randomly selected from the population. The number of pairwise matches found 

to the right of the Log Likelihood Ratio threshold (LLRV) in Figure 4.1 is defined as M . For 

a given value of LLRV, M is determined directly from D samples in the reference data with 

Note: The height of the null curve divided by m0 forms a density distribution with the total 

area under the curve equal to unity. In this case the area to the right of LLRV equals α . 

Similarly the height of the alternative curve divided by m1 forms a density distribution with 

the area to the left of LLRV equal to β  as shown in Figure 1.3. 
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the total estimated number of Type I errors (V̂ ) determined by simulation. The estimated 

number of ‘sample recaptures’ found to the right of LLRV is then estimated as:  VMS ˆˆ −= . 

The estimate of the total number of true alternatives ( 1m ) is the number of ‘corrected 

recaptures’ ( R̂ ) calculated from D, Ŝ and a new estimated term Ê  called the ‘effective 

sample size’. 

 

4.3.2 Processes detailing mathematical theory: 
 

Using the nomenclature (Section 4.10, Appendix I) the general strategy for estimating R̂  is 

portrayed in ten different processes of which processes one to nine are shown in Figure 4.2.  

 

Figure. 4.2.  Flow chart showing the process of estimating corrected matches ( R̂ ) when 

accepting V Type I errors.  Each process is numbered and referenced in the text.  Dashed 

lines represent the additional steps to estimate standard error ( R̂ ) for a single genotype file. 

 

 
 

 

After collecting the genotype data the relationship between log likelihood ratios (LLR) 

and the total number of Type I errors (V) is determined so that the number of genotype 
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Estimate standard error of  R̂   

 

Find (M) matches  

 
2n>  

runs 

 
1n>       

runs 

 

 
    Simulate genotypes 
withR~ =  R̂  
recaptures found in 
reference data     

   Collect  D 
reference 
genotypes  



 77 

matches (M) can be calculated at given fixed levels of V (process 1-4). Sample recaptures 

( Ŝ ) were then estimated (process 5). Using an estimate of effective sample size ( Ê ) 

corrected recaptures ( R̂ ) were then estimated (process 6-7). Simulations were then run to 

determine the standard error around the recapture estimate (process 8-9). The final process 

10 describes how a converged estimate of R̂  is determined from a range of V priors.  A 

detailed description of all the processes is described below. 

 
Process 1: Collect D reference genotypes 

The reference data is a collection of multi-locus diploid genotypes, each representing a 

single sample. The genotypes can be collected from field tissue samples or generated 

through simulation (see below: Testing theory through stochastic simulation). 

 

Process 2: Calculate log likelihood ratios (LLR) to rank genotype matches  

Likelihood ratios to identify genotype matches between pairs of genotype samples a and b 

are developed below using similar methodology to that used by Marshall et al. (1998) and 

Kalinowski et al. (2007). A single locus can be evaluated for the likelihood of the null 

hypothesis (H0), that an alleged match is not a true match such that both samples are from 

individuals randomly selected from the population. This is then tested against the alternate 

hypothesis (H1) that an alleged match is a true match such that a sample with genotype ga 

is from the same individual as the sample with genotype gb using: 

 

P(ga,gb|H0) = P(ga)P(gb) = L(H0|ga,gb) = likelihood of H0 given the observed genotypes, 

P(ga,gb|H1) = I(ga|gb)P(gb) = L(H1|ga,gb) = likelihood of H1 given the observed genotypes, 

where I(ga|gb)= 1 if ga = gb and 0 otherwise. 

 

The likelihood of a true match divided by the likelihood of a random selection is 

L(H1|ga,gb) / L(H0|ga,gb) = I(ga|gb) / P(ga)       (4.1) 

The genotype probabilities, and hence the likelihood ratios, can be calculated from the 

population allele frequencies which may be known or estimated from the reference data 

(Table 4.1). With no genotyping errors, the likelihood ratio is zero if any allele is different 

between two genotypes, making the log likelihood ratio undefined. 

 
 
 
 



 78 

 
Table 4.1 Likelihood ratios of match pairs. X represents any allele that is not B, Y 

represents any allele that is not C and Z represents any allele that is neither B nor C.   The 

frequency of alleles B and C is denoted p and q respectively, where p+q is less than one 

when there are more than two alleles.      

      

Reference   

genotype 

(ga)  

Alleged match 

genotype (gb)  

I(ga|gb) P(ga)  L(H1|ga,gb) / L(H0|ga,gb)

  

BB BB 1 p2 1/( p2) 

BC BC 1 2pq 1/(2pq)       

BB XX  or  BX 0 p2 0 

BC BY  or  CX  or  ZZ 0 2pq 0 

 

Building on equation 4.1, the random genotype replacement model of Marshall et al. 

(1998) and Kalinowski et al. (2007) was modified to model genotype error rates for 

genotype matches. At any given locus the probability of observing genotype g is equal to  

(1-ε )P(g) + ε P(g) where ε is the genotype error rate per locus. The first term is the 

probability that the locus has genotype g and is not in error, while the second term is the 

probability that the locus has genotype g and is in error. Table 4.2 lists the components of 

the likelihood equations when none, one or two genotype errors exist between a pair of 

genotypes being compared. The likelihood ratio (LR) for each locus simplifies to:  

 

)]()([)]()()[1(2)]()([)1(
)]()([)]()()[1(2)]()|([)1(

22

22

bababa

bababba

gPgPgPgPgPgP
gPgPgPgPgPggI

LR
εεεε
εεεε

+−+−

+−+−
=   

         )2()()|()1( 2 εεε −+−= aba gPggI                       (4.2) 
 

When there is a genotype error rate per locus with ε  greater than zero, LR estimates 

are determined from equation 4.2. Log likelihood ratios (LLR) for multiple loci assume 

independence between loci and are calculated from the natural logarithm of the product of 

those LR estimates using equation 4.3 where L* is the number of locus pairs present with 

alleles in both the ga and gb genotypes. Note that L* may be less than the number of loci in 

the genotyping panel (L) as missing loci may be present within each genotype forming 

partial genotypes. All samples in the reference data are compared with each other to give 
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many LLR values. The pairwise matches between genotypes with the highest LLR values 

are those most likely to be a true match pertaining to a recapture in wildlife studies.  

∏
=

=
*

1
ln

L

i
iLRLLR           (4.3) 

 

Table 4.2  The likelihood equations when the error rate per loci isε for: L(H1|ga,gb) the 

hypothesis that a true match exists between the sample a and sample b, and for L(H0|ga,gb)  

the alternative hypothesis that a match occurs by chance, with terms shown in columns two 

and three respectively. Genotype probabilities P(g) resulting in errors are underlined with 

the number of genotype errors within each additive term indicated in column one.   

 

Genotype      L(H1|ga,gb)    L(H0|ga,gb)   

errors                            

        0          )()|()1( 2
bba gPggIε−=   )()()1( 2

ba gPgPε−=   

        1            )()()1( ba gPgPεε −+   )()()1( ba gPgPεε −+   

        1           )()()1( ba gPgPεε −+   )()()1( ba gPgPεε −+  

        2            )()(2
ba gPgPε+    )()(2

ba gPgPε+  

 

Process 3: Determine log likelihood threshold values (LLRV) 

The quantitative relationship between the number of Type I errors (V) and LLR were 

determined by simulating D genotypes without ‘simulated recaptures’ ( 0~
=R ) following 

steps (i) to (iv) of process 8 described below. The D genotypes simulated in this process 

corresponds to D(D-1)/2 pairwise comparisons which was used as an estimator of 0m  as 

)/( 100 mmm +  is assumed to be close to unity. Genotype errors were not modelled in this 

process as the error model assumes the replacement of alleles drawn randomly from 

estimated population allele frequencies and would not contribute to differences in LLRV 

estimates. Partial genotypes in the simulated data were created by selecting missing locus 

combinations chosen by a random draw with replacement of samples in the reference data. 

The simulated data files were replicated 1n times (e.g. 1001 =n ) with the pairwise 

comparisons within each file emulating true nulls. Equation 4.3 was used to determine the 

LLR values of the pairwise comparisons from the 1n  files which were pooled and then 

sorted.  The LLR that yields V Type I errors was determined by choosing the ( Vn1 )th highest 
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ranked LLR value from the sorted LLR values. Using this method, likelihood threshold 

values (LLRV) were determined corresponding to fixed threshold values (V) of 0.01, 0.05, 

0.125, 0.25, 0.50, 0.75, 1.00, 1.25 and from 1.50 up to 50.0 using increments of 0.5.  

 

Process 4: Find the number of matches (M) in the reference data. 

Pairwise comparisons in the reference data were made within the lower diagonal of the D by 

D pairwise matrix. Matching genotypes were defined as those sample pairs with their LLR 

greater than the LLRV threshold value (Figure 4.1). A threshold of LLR0.75 is expected to give 

0.75 Type I errors within M matches. 

 

Process 5: Estimate ‘sample recaptures’ ( Ŝ ) by correcting for Type I errors. 

Pairwise comparisons with LLR values above LLRV are assumed to have )(ˆ VV Ε=  Type I 

errors with the number of matches M corrected for the number of Type I errors using: 

VMS ˆˆ −= . There may be many other recaptures within the data which could not be found 

as their LLR values were either too low, or perhaps too many genotype errors occurred 

between the two samples from the same individual. The total number of Type II errors (T) 

need to be estimated to obtain the number of ‘corrected recaptures’ ( R̂ ). Prior to estimating 

R̂  the effective sample size needs to be determined. 

 
Process 6: Estimate effective sample size (E) 

The effective sample size (E) can be thought of as the maximum theoretical size of the 

dataset satisfying the constraint that the total number of Type I errors does not exceed V  

(Figure 4.1). 

The logic behind estimating E is intuitive. E is deduced by emulating true positives 

from the data and counting the number of pairwise comparisons that did not exceed V Type 

I errors.  The LLR of pairwise comparisons that are above the LLRV threshold are called 

‘enabled’ comparisons with their sum from all pairwise comparisons in the data equal to K. 

With one sample group 1,1kK =  and is calculated from the lower diagonal of all pairwise 

comparisons (Figure 4.3). The method to estimate E starts by initialising K to zero followed 

by five steps: 

 (i) Label the two genotypes being compared as gc and gd. Mimic pairwise comparisons 

between the two samples by only comparing loci that have alleles recorded in both samples 

gc and gd. Count the number of loci in which both genotypes gc and gd have no missing data 
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to define L*. Delete all loci in gc that were missing in gd to create genotype gc*. Delete all loci 

in gd that were missing in gc to create genotype gd*.  

 (ii) Mimic genotype errors between pairwise comparisons.  The intuition behind this 

step is that higher error rates will reduce E which in turn will allow an additional correction 

for the total number of Type II errors caused by genotype errors. In this step copy gc* twice 

to generate two new samples ga and gb, then for both genotypes ga and gb randomly select 

each locus using the per locus error rate (ε " ) and randomly select one of the two alleles 

which is then replaced from an allele drawn randomly from the allele frequencies estimated 

in the population. In this process all random sampling applied a uniform distribution.  

(iii) Calculate log likelihood ratios. Using L* loci calculate the LLR between the new 

genotypes ga and gb using equation 4.2 and 4.3 to give *
1LLR . Repeat step (ii) above by 

replacing gc* for genotype gd* to give *
2LLR . 

(iv) Sum K to estimate total effective size. As two log likelihood ratios are determined 

from a single pairwise comparison in the data K is incremented by 0.5 to count the ‘enabled’ 

pairwise comparisons within the lower diagonal matrix. If *
1LLR  were greater than LLRV  then 

add 0.5 to K, also if *
2LLR  were greater than LLRV  then also add 0.5 to K, thus for each 

pairwise comparison K is incremented by either 0, 0.5 or 1. Repeat the above steps (i) to 

(iv) for every pairwise comparisons in the lower diagonal matrix to find the sum of K.  

(v) Estimate the effective sample size (E) using the quadratic solution of Ê  in 

)1ˆ(ˆ2 −= EEK  as: 

 2/]1)18[(ˆ 5.0 ++= KE         (4.4) 

which is a measure of the size of a square matrix holding the K lower diagonal comparisons.  

 

Process 7: Estimate the number of corrected recaptures ( R̂ ) 

If sample size (D) is equal to the effective size ( Ê ) then the number of ‘sample recaptures’ 

( Ŝ ) is equal to the number of ‘corrected recaptures’ ( R̂ ). If not an additional correction was 

applied to estimate R̂ . Using Ê  and Ŝ , the probability of a recapture by drawing two 

samples at random (PIR) was derived by solving the binomial equation: 

ESPIR E ˆ/ˆ)1(1 ˆ
=−− . The corrected number of recaptures ( R̂ ) was then estimated for the 

total sample size D using equation 4.5 where ])1(1[ DPIR−−  is the probability of a 

match with D samples.  
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         ])1(1[ˆ DPIRDR −−=  

]]))ˆ/)ˆ/ˆ1(nlexp[1(1(1[ DEESD −−−−=                 (4.5) 

 

R̂  includes both the sample recaptures ( Ŝ ) and an estimate of the sum of all Type II errors 

( T̂ ) with the power of the genotype data to identify individual recaptures estimated as:  

β̂1ˆ/ˆ1ˆ/)ˆˆ(1 −=−=−− RTRSR            (4.6) 

 

Process 8: Simulation of genotypes 

As shown in Figure 4.2 the genotype data is simulated with 2n  runs (e.g. 2n =100) so that 

the standard error of R̂  can be evaluated. Simulated recaptures (R~ ) can only be in whole 

numbers whereas the estimate of corrected recaptures ( R̂ ) can contain a fraction. The 

process of determining the number of simulated recaptures (R~ ) in each of 2n  runs is 

described in process 9. The simulated genotype data is created by random sampling from a 

uniform distribution using the following steps: 

(i) generate (D - R~ ) genotypes of L loci by random sampling allele frequencies within 

each locus,  

(ii) add R~  duplicate genotypes by copying them from step (i) to give D total genotypes, 

(iii) add genotype errors in all D samples by randomly selecting each locus using the per 

locus error rate (ε " ) then randomly select one of the two alleles which is then 

replaced from an allele drawn randomly from the allele frequencies in the data, and 

(iv) for every D genotype create missing loci by deleting all loci found missing in a   

randomly selected reference genotype by sampling with replacement.  

 

Process 9: Estimation of the standard error of corrected recaptures ( R̂ ) 

Using simulated data generated in process 8, there were 2n  estimates of corrected 

recaptures from simulated data ( simR̂ ) generated by performing processes 2 to 8 (Figure 

4.2). Where the estimate of recaptures in the reference data ( R̂ ) was not a whole number, a 

random choice was used to determine the recaptures simulated (R~ ) e.g. if R̂=2.2 then on 

average 80% (p1) of simulations will have 1
~R  =2 and 20% (p2) will have 2

~R =3. The 

standard deviation of simR̂  estimates (
simR̂σ ) from 2n  simulated datasets  were used to 
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estimate the standard error of R̂  from the reference data, by removing the variance 

attributed to rounding R~ to whole numbers ( 2
wσ ): 

Standard error of R̂  22
ˆ wRsim

σσ −=        (4.7) 

where ( ) ( )[ ]{ } )1()1(~~~~
221222

2
22112

2
22

2
112

2 −=−+−+= nppnnnRpRpnRpRpnwσ  given 

1~~
21 −= RR  with p1 and p2 determined from those proportions occurring within simulation 

runs. 

 

Process 10: Convergence of R̂  with the smallest standard error. 

Following processes 2 to 7 (Figure 4.2) the reference data yielded a range of R̂  recaptures, 

called VR̂ estimates each from a different fixed threshold value (V) of 0.01, 0.05, 0.125, 

0.25, 0.50, 0.75, 1.00, 1.25 and from 1.50 up to 50.0 using increments of 0.5.  In this final 

process the VR̂  estimate that gives the smallest standard error is called the ‘converged 

solution’ of R̂ .  

Using V=0.75 Type I errors as a prior, R~ = R̂ 0.75 recaptures were estimated from D 

genotypes sampled repeatedly from 2n  simulated datasets (process 8).  From the range of 

fixed threshold values the V value yielding the smallest standard error of corrected 

recaptures (estimated from 
simR̂σ the standard deviation of 2n  simulated datasets) is 

selected as the next V prior with R~ = VR̂ . The process is repeated with convergence defined 

when a new V prior is the same as one of the previous set of V priors used. The converged 

solution of R̂  is set equal to the VR̂  solution which from the set of V priors gave the smallest 

simR̂σ  value. The converged solutions of M, V̂ , Ê  and T̂  are also those solutions 

corresponding to the V prior selected with the smallest 
simR̂σ . 
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Figure. 4.3.  Example of ‘block’ structure for a mark-recapture study through space or time 

containing three groups of samples each of size 6, 6 and 8. Total sample size D=d1+d2+d3.  

Vectors m and k are determined from estimates within the lower diagonal D matrix. The total 

number of matches 3,33,21,23,12,11,1 mmmmmmM +++++=  and total number of enabled 

comparisons 3,33,21,23,12,11,1 kkkkkkK +++++= . 
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4.3.3 Extension of theory to multiple sampling events 
 

The method described so far can only be applied to finding recaptures within a single 

sampling event while an application to traditional mark-recapture studies requires 

recaptures between two or more groups of samples to be determined. Consequently, the 

mathematical theory needs to be extended to the analysis of multiple sampling events. 

Processes 1 to 3 are the same but the remaining processes were modified to determine 

recaptures within and between different groups.  

The number of Type I errors was determined between each ith sampling group (di) to 

account for possible differences in genotype quality between them. Samples can be split 

into f spatial or temporal groups for analysis with pairwise comparisons between the groups 

forming a two dimensional block of individual comparisons (Figure 4.3) with total sample 

size ∑
=

=
f

i
idD

1

and total number of enabled comparisons in the lower diagonal matrix 

∑∑
= =

=
f

i

f

ij
ijkK

1
. The total number of pairwise comparisons that were not enabled is therefore 

KDD −− 2/)1(  with the number not enabled between the ith and jth group equal to 

iiii kdd −− 2/)1(  when i=j, and ijji kdd −  when .ji ≠  It was assumed that the V Type I 

errors, pooled from all pairwise comparisons in the lower diagonal DxD matrix, are more 

likely to occur between the di and dj blocks which had the most number of pairwise 

comparisons that were not enabled. The number of Type I errors within each block ( ijv ) was 

therefore estimated by multiplying V̂  to the proportional contribution of comparisons that 

were not enabled within the ith and jth group, to the total number that were not enabled as 

[ ]
KDD
kddVv iiii

ij −−

−−
=

2/)1(
2/)1(ˆ

ˆ  when ji = , and 
[ ]

KDD
kddV

v ijji
ij −−

−
=

2/)1(

ˆ
ˆ  when .ji ≠  However if by 

chance all pairwise comparisons were enabled with 2/)1( −= DDK  then ijv  was 

partitioned using the proportional contribution of enabled comparisons within each block as 

[ ]
2/)1(
2/)1(ˆ

ˆ
−

−
=

DD
ddV

v ii
ij  when ji = , and 

[ ]
2/)1(

ˆ
ˆ

−
=

DD
ddV

v ji
ij  when .ji ≠  

 

 

 

 



 86 

Table 4.3.  Analysis of multiple sampling events (i.e. groups of spatial or temporal data). 

Given there are ijŝ  sample recaptures and ijk  enabled comparisons within the ith and jth 

groups; the effective block size ( ijb ), effective sample size ( ijê ), probability of an individual 

resample ( ijpir ) and corrected number of recaptures ( ijr̂ ) can be determined from the 

number of samples id  and jd . The Lincoln-Petersen population estimate ( N̂ ) is also 

determined where id  is the number captured on the first visit, jd  is the number captured on 

the second visit and ijr̂  is the number captured on the second visit that were captured on 

the first visit.  
 Diagonal block (i=j) Off-diagonal block (i≠ j) 

=ijb  id  5.0)( ji dd  

=ijê  2/]1)18[( 5.0 ++ijk  5.0
ijk  

=ijpir  ]ˆ/)ˆ/ˆ1exp[ln(1 jiijij ees−−  ]ˆ/)ˆ/ˆ1exp[ln(1 jiijij ees−−  

=ijr̂   ])1(1[ ijb
ijij pirb −−  ])1(1[ ijb

ijij pirb −−  

=N̂   1
1ˆ

)1)(1(
−

+

++

ij

ji

r
dd

 

 

The number of matches between the ijth groups ( ijm ) were determined using the 

LLRV threshold and therefore the total number of matches found in the entire dataset (M) 

 remains the same even if the data is partitioned into f groups with ∑∑
= =

=
f

i

f

ij
ijmM

1
. The 

number of ‘sample recaptures’ within a block ( ijŝ ) was then determined as ijijij vms ˆˆ −= . The 

estimate of ijŝ  is used to determine the probability of an individual recapture between the ijth 

groups ( ijpir ) which is then used to estimate the number of corrected recaptures between 

the same two groups ( ijr̂ ) (Table 4.3). The equation for the Lincoln-Petersen (Serber, 1982) 

population estimate ( N̂ ) is also provided in Table 4.3 which assumes equal catchability of 
individuals between the ith and jth groups.  

With multiple sampling events the method to estimate the standard error of ijr̂ was 

similar to that described in processes 8 and 9. The differences are that missing loci 
combinations were randomly sampled with replacement from those observed within each of 
the reference genotype groups. This allowed Type II errors to be more accurately assessed 
given potential genotype quality differences amongst the groups or sampling sessions.  
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4.3.4 Testing theory through stochastic simulation 
 

Reference data genotypes were simulated to test the robustness of estimating recaptures 

using the methods described here. Genotypes were generated consisting of L loci with 

either (a) multi-allelic frequencies of 0.25, 0.25, 0.2, 0.15, 0.05, 0.05, 0.02, 0.01, 0.01, 0.005 

and 0.005 (Kalinowski et al., 2007) which are thought to be typical for empirical 

microsatellite allele frequencies or (b) with bi-allelic frequencies of 0.45 and 0.55. Loci were 

assumed to be unlinked and individuals unrelated. The reference data files were generated 

using steps (i) to (iii) as described in process 8 with R~ equal to the simulated number of 

recaptures. Step (iv) was performed using uniform random sampling of missing loci from a 

given proportion of loci successfully genotyped (Y). 

The simulation parameters used in this study are listed in Table 4.4.  These are 

selected combinations of parameters used to demonstrate the theory with a focus on testing 

the robustness in extremely challenging data of low quality. When estimating total 

recaptures (R) the solutions presented are those that converged using process 10.  The 

mathematical theory was tested by repetitive sampling of D reference genotypes to create 

3n  reference files for a given set of simulation parameters. The converged solutions of M, V, 

Ê , T̂  and R̂  from the 3n  reference files were collated with means and standard deviations 

determined. Within each of the 3n  datasets standard errors were estimated using 

2n simulation runs (Figure 4.2.). The bias was measured as the difference between the 

mean converged recapture estimates ( R̂ ) and the theoretical expectation of simulated 

recaptures, )~(RΕ , using the formulae: )~(ˆ)~,ˆ( RRRRBias Ε−= . 

The effect of family relationships on recapture estimates was estimated by populating 

the simulated data with five sets of sire and dam pairs each with five full-sib offspring. As 

described above genotype errors were added to the parent and offspring genotypes with 

missing loci created from a given proportion of loci successfully genotyped (Y). 

 

4.4. Results 
4.4.1 Effect of the presence of partial genotypes on recapture estimation 
 

The simulation parameters for each results section are listed in Table 4.4.  Simulations 

using multi-allelic loci were used to examine the relationship between the proportion of loci 

successfully genotyped and its effect on the accuracy of estimating recapture numbers  
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Table 4.4 Summary of simulation parameters used to demonstrate theory with the location 

of each shown within the results section. Parameters include: data type, number of 

simulated datasets to determine the LLR threshold ( 1n ), number of simulated datasets to 

determine the standard error of R̂  ( 2n ),  number of replicated reference data files ( 3n ), 

number of simulated recaptures ( R~ ), genotype sample size (D), number of loci in a 

genotyping panel (L), random proportion of loci successfully genotyped (Y), genotype error 

rate per locus used in equation 4.2 (ε ) and the genotype error rate simulated in the data 

(ε " ). 

(Results section) 
        Location 

Data type 1n  2n  3n  R~  D L Y 
(%) 

ε  
(%) 

ε "  
(%) 

(4.4.1) Figure 4.4 Multi-allelic 100 
100 
100 
100 

100* 
100* 
100* 
100* 

1 
1 
1 
1 

20 
20 
20 
20 

520 
520 
520 
520 

8 
8 
8 
8 

60 
70 
80 
90 

1 
1 
1 
1 

1 
1 
1 
1 

(4.4.1) In text Bi-allelic 100 100* 1 20 520 20 60 1 1 
(4.4.2) Figure 4.5 Bi-allelic 100 

100 
100 
100 

100* 
100* 
100* 
100* 

1 
1 
1 
1 

20 
20 
20 
20 

520 
520 
520 
520 

14 
16 
18 
20 

80 
80 
80 
80 

1 
1 
1 
1 

1 
1 
1 
1 

(4.4.2) In text Multi-allelic 100 
100 

100* 
100* 

1 
1 

20 
20 

520 
520 

4 
6 

80 
80 

1 
1 

1 
1 

(4.4.3) Table 4.5 Multi-allelic 100 
100 
100 

100 
100 
100 

200 
200 
200 

20 
20 
20 

270 
1020 
4020 

8 
8 
8 

80 
80 
80 

1 
1 
1 

1 
1 
1 

(4.4.3) Table 4.5 Bi-allelic 100 
100 
100 

100 
100 
100 

200 
200 
200 

20 
20 
20 

270 
1020 
4020 

20 
20 
20 

80 
80 
80 

1 
1 
1 

1 
1 
1 

(4.4.4) Table 4.6 Multi-allelic 100 
100 
100 
100 
100 

100 
100 
100 
100 
100 

200 
200 
200 
200 
200 

20 
20 
20 
20 
20 

520 
520 
520 
520 
520 

8 
8 
8 
8 
8 

80 
80 
80 
80 
80 

0.1 
1 
5 

0.1 
5 

0.1 
1 
5 
5 

0.1 
(4.4.4) Table 4.6 Bi-allelic 100 

100 
100 
100 
100 

100 
100 
100 
100 
100 

200 
200 
200 
200 
200 

20 
20 
20 
20 
20 

520 
520 
520 
520 
520 

20 
20 
20 
20 
20 

80 
80 
80 
80 
80 

0.1 
1 
5 

0.1 
5 

0.1 
1 
5 
5 

0.1 
(4.4.5) In text Multi-allelic 100 100 100 100 500 7 75 1 1 
(4.4.6) In text           Multi-allelic 100 100 100 20 200 7 100 5 5 
(4.4.7) In text Multi-allelic 1000 100 100 20 520 8 80 1 1 

* Constant value of R~ =20 used in step 8 of Figure 4.2 with the standard deviation of R̂  from 

2n  runs used as an estimate of the standard error of R̂  given a single data set. 
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(Figure 4.4). Reducing the expected number of Type I errors used as a threshold to define a 

match (V) did not lead to a reduced number of estimated recaptures (Figure 4.4a) as this 

was offset by an increased number of Type II errors ( T̂ ).  Figure 4.4a shows that in 

genotype files with as little as 60% of loci genotyped, the number of estimated recaptures 

( R̂ ) were similar to the number of simulated recaptures ( R~=20). The standard error of R̂  

was smallest when 90% of loci were genotyped with V=0.125 (Figure 4.4b). Data that had 

70% fully genotyped had the smallest standard errors when V was between 1.5 and 2.0 

(Figure 4.4b). As expected, as the number of Type I errors (V) increased, the number of 

Type II errors ( T̂ ) decreased (Figure 4.4c). The number of Type II errors was largest when 

only 60% of loci were genotyped (Figure 4.4c). 

Similar trends were observed when loci were simulated to be bi-allelic with a higher 

accuracy in the number of recaptures estimated as the proportion of loci successfully 

genotyped increased (see simulation parameters: Table 4.4). To minimise the standard 

error for bi-allelic data when only 60% of loci were genotyped, it was necessary to set V=5.5 

which resulted in T̂ =12.5 and R̂=20.2 (+7.9 standard error).  
 

Figure. 4.4. Configuration with 60% (o), 70% (Δ ), 80% (× ) and 90% (• ) loci randomly 

genotyped. The relationship between the expected number of Type I errors (V) used as a 

threshold to define a match on (a) average number recaptured ( R̂ ), (b) standard error of R̂  

from a single estimate and (c) average number of Type II errors (T̂ ); determined from 

1002 =n  reference files simulated using eight multi-allelic loci, 1% random genotype errors 

per locus and D=520 genotype samples inclusive of R~=20 recaptures.  

Figure 4.4 (a) 
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Figure 4.4 (b) 
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Figure 4.4 (c) 
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Figure. 4.5.  Configuration with 14 bi-allelic loci (o), 16 bi-allelic loci (Δ ), 18 bi-allelic loci (× ) 

and 20 bi-allelic loci (• ).  The relationship between the expected number of Type I errors 

(V) on (a) average number recaptured (R), (b) standard error of R̂  from a single estimate, 

(c) average number of Type II errors ( T̂ ); determined from 2002 =n   reference files 

simulated using 1% random genotype errors per locus, 80% loci randomly genotyped, 

D=520 genotype samples inclusive of R~=20 recaptures. Allelic frequencies were 45% and 

55% across all loci.  
 
Figure. 4.5 (a) 
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Figure. 5 (b) 
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Figure. 4.5 (c) 
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4.4.2  Effect of number of loci in the genotyping panel on recapture estimation  
 

Simulations were used to examine the relationship between the number of bi-allelic loci and 

the accuracy of estimating recapture numbers when the probability of being genotyped was 

kept constant at 80%. For panels of 14, 16, 18 or 20 loci, the number of estimated 

recaptures ( R̂ ) were similar to the number of simulated recaptures (R~ =20) across a range 

of V values from 0.125 to 10 (Figure 4.5a). For each of the panels there was a definite 

range of V values where the standard error of R̂  was smallest (Figure 4.5b). Genotypes 

consisting of 20 loci gave the smallest R̂  standard errors of between 2.0 and 2.1 for V 

values ranging from 1.0 to 2.5 (Figure 4.5b). As expected, when there were fewer loci per 

genotyping panel, the standard error of R̂  was larger. For genotypes consisting of 14 to 20 

loci, the number of Type II errors (T̂ ) was at least five when V=0.5 (Figure 4.5c). However, 

as V increased, T̂  decreased with T̂  being smaller when the number of loci per genotype 

was 20 compared to 18, 16 or 14. 

Similar trends were observed when loci were simulated to be multi-allelic. When 

recaptures were determined with a six locus panel (see simulation parameters: Table 4.4), 

the smallest standard error of estimated recaptures occurred when V was 1.5 with T̂  equal 

to 6.3 and estimated recaptures R̂ =20.2+(3.1 standard error). With a panel of four multi-

allelic loci, the smallest standard error of estimated recaptures occurred when V was 3.5 

with T̂  equal to 11.1 and estimated recaptures R̂ =19.7+(7.0 standard error). 
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4.4.3  Effect of sample size on recapture estimation  
 

The effect of multi-allelic or bi-allelic loci using different sample sizes was evaluated on the 

accuracy of estimating recapture numbers again assuming 80% of loci per genotype were 

successfully typed (see simulation parameters: Table 4.4). In this example there were 

3n =200 reference genotype files, simulated for each sample size 270, 1020 and 2020, and 

within each data type. Parameters that converged with the smallest standard error of R̂  are 

summarised in Table 4.5. As sample size increased it became more difficult to identify 

individual recaptures with the number of Type II errors increasing together with the larger 

standard deviation of R̂  estimates. No significant bias in estimating the number recaptured 

compared to the number of simulated recaptures (R~ =20) was evident with the number of 

Type II errors increasing with sample size.  

The power to identify individual recaptures (1- β̂ ) decreased from 0.95, 0.80 and 0.70 

in the biallelic data, and 0.93, 0.83 and 0.75  in the multi-allelic data, with D equal to 270, 

1020 and 2020 respectively. 

 

Table 4.5.  The effect of the number of genotype samples (D) on recapture estimation with 

bi-allelic or multi-allelic loci.  Converged results of Ê , M, V̂ , T̂ and  R̂  (mean + standard 

deviation) from 3n =200 simulated genotype files each containing R~=20 recaptures. Other 

fixed parameters included percentage genotyped per locus T=80% and genotype error rate 

per locusε =ε "=1%.   

Number of     

samples     

Effective 

sample 

size 

Matches 

found  

Type I 

errors 

Type II 

errors  

Corrected 

recaptures  

D Ê  M V̂  T̂     R̂      

Bi-allelic data using 20 loci  

270       261+2 20.0+1.5 1.1+0.3 1.1+0.3 20.0+1.4 

1020        909+24 18.4+3.6 2.5+1.1 4.0+0.9 19.9+3.1 

2020      1672+70 17.8+4.5 4.0+1.7 6.1+1.4 19.9+4.0  

Multi-allelic data using 8 loci  

270       261+2 19.3+1.5 0.7+0.2 1.4+0.3 20.0+1.5 

1020         931+14 17.7+2.2 1.2+0.5 3.3+0.6 19.8+2.2 

2020       1754+39 16.4+2.9 1.4+0.7 4.8+0.9 19.8+3.0 
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4.4.4  Effect of genotype errors on recapture estimation  
 

Using parameters listed in Table 4.4, the sensitivity in estimating R̂  was evaluated when 

the error rate in the data (ε " ) was different from the assumed error rate (ε ) used in 

equation 4.2. As expected an increase in error rates from 0.1% to 5.0% (ε =ε " ) caused an 

increase in the standard deviation of R̂  in both bi-allelic and multi-allelic data sets Table 

4.6a.   

 
Table 4.6 The effect of genotype errors per locus on recapture estimation when estimating 

LLR using ε  when the true error rate in the reference data is ε "  and assuming bi-allelic or 

multi-allelic loci.  Converged results of Ê , M, V̂ , T̂  and  R̂  (mean + standard deviation) 

from 3n =200 simulated genotype files each containing R~ =20 recaptures. Other fixed 

parameters included, percentage genotyped per locus Y=80% and number of samples 

D=520. 

Error rate per locus       

(used)       (true) 

Effective 

sample size 

Matches 

found 

Type II 

errors 

Type II 

errors 

Recaptures  

  ε (%)  ε " (%)        Ê       M      V̂  T̂     R̂       

Bi-allelic data using 20 loci  

(a)    0.1 0.1     506+4 20.3+1.8 1.4+0.3 1.4+0.3     19.9+1.6 

       1.0 1.0     490+6 19.2+2.2 1.6+0.5 2.2+0.5     19.8+2.1 

       5.0 5.0        436+15 16.6+3.7 2.7+1.3 3.9+0.6     19.6+3.6 

 

(b)    0.1 5.0        423+25 16.4+5.3 3.9+2.0 5.2+0.9      18.6+4.6* 

       5.0 0.1     494+6  19.5+2.1 1.6+0.5 1.8+0.3     19.8+2.1 

Multi-allelic data using 8 loci  

(a)    0.1 0.1     501+5 19.6+1.7 1.0+0.3 1.0+0.3     20.0+1.6 

       1.0 1.0     493+5 19.1+1.9 1.1+0.4 3.9+0.6     20.1+1.9 

       5.0 5.0     465+7 17.4+2.7 1.5+0.6 5.7+1.3     19.8+2.8 

 

(b)    0.1 5.0     444+8 15.5+2.6 1.4+0.5 6.1+1.7      19.4+3.2* 

       5.0 0.1     495+5 19.1+1.9 1.1+0.4 1.9+0.5     19.8+1.8 

* Average of R̂  from 200 simulated genotypes is lower than 20)~( =Ε R  (P< 0.01). 
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When incorrectly assigning a wrong prior for genotype error (ε ≠ ε " ) the standard 

deviation of R̂  increased when either over-estimating (ε =5%, ε " =0.1%), or under-

estimating (ε =0.1%, ε " =5.0%), the genotype error rate (Table 4.6b) compared to 

simulations when the true error rate was used (Table 4.6a). Over the 200 datasets bias in 

the theoretical estimates was not significant (P>0.05) when over-estimating true genotype 

error rates but a significant bias (P<0.01) was detected when under-estimating them. This is 

a theoretical bias and was not significant when compared to the variation expected in 

estimating R̂  from a single genotype file. 

 

4.4.5  Effect of recapture numbers on recapture estimation  
 

To test the theory with a larger number of recaptures 3n =100 reference files were simulated 

each with 100~
=R  recaptures and D=500 samples using the multi-allelic frequencies with 

only 75% genotyped and error rates ε " =ε  =1% (see simulation parameters: Table 4.4).  

To find individual matches a small expected level of Type I errors were tolerated 

using V=0.25. With this restriction over half the matches with M=57.1+5.1 (s.d.) were 

detected, effective size Ê =379+9 (s.d.) and corrected recaptures R̂ =94.4+7.4 (s.d.).  In 

the 3n =100 datasets there were 0, 1  and 2 Type I errors at respective frequencies of 77, 17 

and 6 and averaged 0.29 which was close to the expected V=0.25 value. 

To find the best population estimate of R̂  the converged estimates of R̂  having the 

smallest variance via process 10 were determined. Over the 100 datasets there was 

improved precision (P<0.01) and accuracy (P<0.01) in estimating the number of recaptures 

with R̂ =98.6+4.9 (s.d.) compared to the first estimate with V fixed at 0.25.  In this case the 

effective size increased to E=449+10 (s.d.) and V averaged 18.0+3.3(s.d.). 

 

4.4.6  Effect of genotype errors on recapture estimation with DÊ   close to unity  

 

Using the multiallelic frequencies of seven loci D=200 genotype samples were generated 

containing 20 recaptures in each simulated dataset. Each dataset had all genotypes 

amplified and a high error rate per locus of 5%. In 3n =100 datasets there were in total 2000 

simulated recaptures of which 1968 were correctly identified when assigning matches from 

the converged solutions of R̂ with the smallest variance (process 10). In each of the 100 
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data sets there were  0, 1 and 2 Type I errors at frequencies of 90, 8, and 2 respectively 

with 99.0ˆ =DE and .98.0)ˆ1( =− β   

The correctly identified recaptures in each of the 100 data sets had 0, 1, 2, 3 and 4 

genotype errors at average counts of 11.4, 6.7, 1.5, 0.06 and 0.01 respectively. A mismatch 

analysis (Paetkau, 2003; McKelvey and Schwartz, 2005) revealed that there was a 

continuous distribution of mismatches with no zero counts between them in 92% of these 

simulations with average mismatches at 0, 1, 2, 3, 4, 5, 6 and 7 loci of  11, 7, 2.1, 9, 145, 

1243, 6024 and 12457 respectively. Therefore, if a mismatch analysis were used in this 

data, it would be possible to infer recaptures only 8% of the time compared to the new 

method which could infer matches 100% of the time with approximately 0.12 Type I errors in 

each sample. This demonstrates that the new methods used to identify recaptures can be 

applied in datasets where other methods fail. 

 

4.4.7  Effect of full-sibs on recapture estimation 
 

In addition to the usual simulation parameters, 20~
=R , 520=D , %80=Y   and %1=ʹ′= εε  

(see simulation parameters: Table 4.4), the reference data was populated with five sets of 

sire and dam pairs each with five full-sib offspring.  In this structure there were 

502/)45(5 =×  pairwise comparisons between full-sibs and 50)52(5 =×  pairwise 

comparisons between parent and offspring giving a total 100 pairwise comparisons each 

with a 50% coefficient of relationship. 

In 100 reference datasets simulated using multi-allelic datatypes, with full-sibs and 

parents as described above, process 10 was used to converge to a recapture estimate with 

the smallest variance.  This resulted in higher than expected recaptures ( )~(RΕ =20.0) with 

mean and standard deviation of R̂ =22.5+2.7 with the bias being significant over the 100 

datasets (P<0.01) but not from a single dataset (P>0.05). Over the 100 datasets there were 

0, 1, 2, 3 and 4 Type I errors, at frequencies of 97, 70, 23, 9 and 2 from full-sib matches, 

and parent-offspring matches with .5491ˆ ±=E  

Another 100 reference datasets were simulated with full-sibs and parents as described 

above. This time recapture numbers were determined from a small fixed level of Type I 

errors by constraining V to a value of 0.01 with the relationship between V and LLR 

determined using 10001 =n  (Figure 4.2).  The total number of Type I errors over the 

1003 =n  reference datasets from full-sib and parent-offspring matches fell to 26 averaging 
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0.26 per dataset. There was no significant bias (P>0.05) in estimating recapture numbers at 

the expense of an increased standard deviation giving R̂ =20.1+4.1 and Ê =402+11. 

The standard deviation of R̂ from 3n  reference files was similar to the average of 3n  

estimated standard errors of R̂  determined from 2n  simulated datasets. This result was 

consistent with other simulations reported.  

In an applied extension to this research the number of full-sibs in genotype data 

produce a signature number of false positives which can be used to estimate the proportion 

of full-sibs (Section 4.11, Appendix II – percentage sibship estimation). 

 

4.5. Discussion 
 
Previous studies could not be identified that defined likelihood equations to rank genotype 

matches with missing data (as described in this chapter), although likelihood equations have 

been previously applied to parent-offspring pedigree relationships (Marshall et al., 1998; 

Kalinowski et al., 2007). While much attention in the molecular literature has been placed on 

genotyping errors (Wang, 2004; Waits and Paetkau, 2005; Beja-Pereira et al., 2009) and to 

a lesser extent shadows (Mills et al., 2000; Paetkau, 2003; Hoyle et al., 2005), no other 

papers addressing the importance of missing data, effective size, Type I errors and Type II 

errors in a mark-recapture framework were found. This may be partly due to genetic mark-

recapture studies often having small sample sizes where the problem of Type I errors is less 

acute. Nonetheless, a survey of the literature shows that while most studies are aware of 

Type I errors, few studies formally take sample size into account such as Paetkau (2003) 

and Hunter et al. (2010).  

Unknown is the number of studies that were abandoned because of a perceived lack 

of statistical power to distinguish between the null and alternative hypothesis. The DÊ  

statistic can be used to determine if all individuals in a dataset are comparable at a given 

number of Type I errors. Even if all individuals cannot be uniquely identified, then it is 

possible to estimate the number of recaptures in a dataset using the method presented 

here. The key to arriving at an accurate estimate of recaptures is appreciating the trade-off 

that exists between Type I and Type II errors and how they influence the effective size of 

the dataset. The a posteriori approach is one option in dealing with missing data. A 

preferable option would be to use sampling methods that would decrease the amount of 

missing data followed by careful laboratory methods to minimise genotyping errors (Taberlet 

et al., 1996; Morin et al., 2001; Paetkau, 2003). 
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The robustness of this method was evaluated against a range of simulated variables. 

It was not practical to test all combinations of these variables with a cross-sectional 

approach used by examining the change in one parameter by holding other parameters 

constant. Adding more loci in the multi-allelic and bi-allelic data types will improve the ability 

to find correct recaptures.   

Datasets of the highest quality, where DÊ  is close to unity at low Type I error 

levels, will be suitable for all analyses including those traditional mark-recapture approaches 

that require unambiguous presence/absence data for each individual. In lower quality 

datasets (E/D < 1) not all pairwise comparisons can be assessed and Type II errors are 

expected to occur. When E/D is less than one the methodology can estimate the total 

number of recaptures more accurately by accounting for Type II errors leading to the 

estimation of biologically important parameters e.g. recapture rate, migration rate and 

population size based on the Lincoln-Petersen (Flagstad et al., 2004; Leigh et al., 2006; 

Seber, 1982) and other methods (e.g. those in MARK; White and Burnham, 1999).  

It is important to realise that even in cases where E/D < 1, standard mark-recapture 

methods such as CAPWIRE (Miller et al., 2005) that require individuals of known re-capture 

histories can be used. In this case a reduced set of pairwise comparisons within the 

effective size can be utilised where all specific genotype pairs are individually identified. 

Operationally this is achieved by setting a low Type I error threshold, such as V=0.25, and 

using the detected matches (mij) and corresponding effective size ( ijê ) instead of the true 

sample size (di) as input into the mark-recapture analysis. This approach is similar to culling 

samples with low number of amplified loci (Paetkau, 2003; Rudnick et al., 2008). In contrast, 

the method culls on individual pairwise comparisons thereby removing less data and 

maximising the chances of finding recaptures.  

It is desirable to estimate the error rate per locus to obtain more accurate and precise 

estimates of recaptures. If there were sufficient numbers of recaptures in a genetic mark-

recapture study, then the methods used here could be used to estimate the genotype error 

rate among recaptures without the need for replication. Finding errors from matches using a 

posteriori approach is attractive especially in large datasets where the multi-tube method 

(Taberlet et al., 1996; Bellemain et al., 2005) can exhaust finite samples and be prohibitive 

in time and cost. Genotying errors can be estimated directly by repeatedly genotyping the 

same sample, but this is an expensive process (Johnson and Haydon, 2007). Error rates 

per locus of between 0.5% and 1% are usual in many laboratories but higher error rates are 
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known to occur especially in studies that involve limited amounts of poor quality DNA 

(Pompanon et al., 2005; Soulsbury et al., 2007).  

The results of this study (Table 4.6) show that estimated recapture numbers were not 

biased when overestimating genotype error rates, however, underestimating prior genotype 

error rates could bias results. Interestingly, there is no requirement using the new approach 

to arrive at an accurate prior for genotyping error rate (ε ), only that the value chosen in 

equation 4.2 is higher than the actual error rate in the data (ε " ). The reason for this is that 

true matches are more likely to be refused when ε " > ε  resulting in smaller than expected 

recapture estimates. Conversely when ε " < ε , Type I errors are inadvertently estimated as 

being more prevalent for a given LLR threshold. This reduces the effective size with the 

number of Type II errors adjusted to yield unbiased recapture estimates at the expense of 

increasing the standard error. 

The theory to estimate recaptures in multiple sampling events was provided, however 

a single sampling event could be divided and analysed as a multiple sampling event.  This 

may be desirable when missing loci among genotypes and mistypings are thought not to be 

independent, for example when a higher mistyping rate is expected among partial 

genotypes compared to complete genotypes. In this case the genotype samples could be 

split into partial and complete genotype datasets and applying a higher error rate to the 

partial dataset.  Alternatively the higher error rate could be used to analyse all the data as it 

is not expected to bias the result as discussed above. If available, different error rates for 

each loci could also be easily implemented in the new methods. 

Kalinowski et al. (2007) reported that the value of increasingly realistic models of 

genotyping error has not been tested against simpler models. The estimation of likelihood 

ratios using equation 4.2 is simple and also computationally efficient. A more complex error 

model could be developed by partitioning genotyping errors into allelic dropouts and other 

false alleles (Wang, 2004). As discussed above, the method is tolerant of the estimated 

frequency of genotyping errors and it is probably less likely that a more complex error model 

could yield a significant improvement in accuracy.  This is supported by Wang (2004) who 

concluded that accurate sibship inference can be obtained using wildly guessed typing 

errors provided sufficient information is provided in the data.   

In practice, the methods can identify allelic dropouts in putative recaptures. Not only 

can the electropherogram be re-examined in putative matches to see if there have been any 

miss-callings, but the methods can also list rejected matches with high likelihood ratios that 

were almost accepted as being a match.  These rejected matches, especially those with 



 100 

one allelic dropout, gives the molecular geneticist a handy tool that could be used to 

shortlist the number of samples to re-examine.  

Mismatch techniques used to identify potential genotyping errors and determine 

whether loci used will discriminate among individuals (Paetkau, 2003; McKelvey and 

Schwartz, 2005) are powerful a posteriori tools because they make few assumptions and 

are not affected by relatedness in the population. They only require the bimodality of the 

mismatch distribution to separate true recaptures from other pairwise combinations. Unless 

an exorbitant number of loci are used this bimodality breaks down quickly when partial 

genotypes are considered, with the methods presenting a favourable means of estimating 

recapture numbers. 

One of the assumptions in the method is that the genotype samples were collected 

from an outbred population. As demonstrated over-estimates of recapture numbers can 

occur in data sets containing samples related by kinship as this introduces a source of Type 

I error that is not identified, nor corrected, by the methods. It was also demonstrated that the 

bias in recapture numbers can be reduced by fixing the number of Type I errors to a 

conservatively low level (e.g. V=0.01). Alternatively, if kinship structures of the population 

are known they could be modelled in the simulated population when determining the 

relationship between the number of Type I errors and LLR so that the additional Type I 

errors caused by kinship can be identified with unbiased estimates of recapture numbers 

determined.  

 

4.6. Software 
 

A program called ‘SHAZA’ (SHAdow Zone Analysis) was specifically developed to conduct 

genotype match analysis using the equations described in this paper. The SHAZA user 

manual and software (including ANSI C source code) are available via the internet from the 

authors on http://molecularfisherieslaboratory.com.au/shadow-zone-analysis-software-

shaza 

SHAZA is a versatile software package that allows users to generate and analyse 

mark-recapture datasets that have missing loci profiles and typing errors derived from either 

pilot or simulated data. Under Hardy-Weinberg assumptions this program provides 

researchers with a realistic framework within which to evaluate the efficacy of a program 

under a range of dataset sizes and marker resolution.  
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4.7. Conclusions 
 

For wildlife studies, where statistical power to distinguish between the null and alternative 

hypothesis is often compromised for a variety of reasons, the methods presented here offer 

a superior means of robustly estimating recapture numbers. This has been demonstrated by 

the application of the methodology to simulated datasets. Bearing in mind of the 

assumptions in the model, the method described here (as implemented in the SHAZA 

software) is recommended for finding and estimating recaptures in a range of scenarios 

where genotype data has one or a combination of the following features:  

(i)      has genotypes with missing locus data,  

(ii)      has genotype errors prevalent and  

(iii)      if the likelihood match/mismatch distributions overlap making recapture inferences 

difficult if not impossible to achieve.  

It is also recommend that the use of SHAZA should be used to assist in the experimental 

design of non-invasive wildlife studies. 
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4.10 Appendix I - Nomenclature 
α    Type I error rate. 

β    Type II error rate. 

bij   Effective block size between the ith and jth sampling events. 

D   Total number of genotype samples from all sampling events. 

di   Total number of genotype samples within the ith sampling event. 

ε    Genotype error rate per locus used in equation 2. 

ε "    Genotype error rate per locus simulated in data. 

E   Effective sample size. 

eij   Effective sample size between the ith and jth sampling events. 

ga   Genotype at a single locus from sample a . 

gb   Genotype at a single locus from sample b. 

I(gs|gm)  Probability of having a genotype identical to the sample genotype (gs ) given the    

alleged match genotype (gm). 

K   Total number of enabled comparisons in D by D matrix. 

kij   Number of enabled comparisons between the ith and jth sampling events. 

L    Number of loci in genotyping panel. 

L*   Number of loci present between two genotypes. 

LR   Likelihood ratio. 

LLR   Log likelihood ratio. 

LLRV    Log likelihood ratio threshold corresponding to V Type I errors. 

M   Number of pairwise matches in the data with their LLR greater than LLRV. 

mij Number of matches between the ith and jth sampling events with less than vij Type I  

errors. 

0m    Number of pairwise comparisons in the reference data that are true negatives. 

1m    Number of pairwise comparisons in the reference data that are true recaptures. 

1n     Number of simulated datasets used to estimate  LLRV. 

2n    Number of simulated datasets used to estimate the standard error of R. 

3n    Number of replicated reference data files used to test theory. 

N   Lincoln-Petersen population estimate. 

PIR   Probability of individual recapture. 

pirij   Probability of individual recapture between the ith and jth sampling events. 

P(g)   Frequency of genotype (g) in population. 

R̂    Corrected number of recaptures based on D samples (can be a fraction). 
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ijr    Corrected number of recaptures between the ith and jth sampling events. 

R~    Number of recaptures used in simulation  – measured in whole numbers. 

sij   Number of true positives between the ith and jth sampling events. 

S   Total number of true positives (‘sample recaptures’). 

T   Total number of false negatives (Type II errors). 

U   Total number of true negatives. 

V   Total number of false positives (Type I errors). 

vij   Number of Type I errors between the ith and jth sampling events. 

Y   Simulated proportion of loci genotyped. 
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4.11 Appendix II – Percentage sibship estimation 
 
Extending on the likelihood theory and the estimation of false positive matches some 

preliminary work to estimate the proportion full sibs in datasets showed promise (Figure 4.6) 

The method appeared to be a very sensitive method of detecting a low percentage of full-

sibs, even in genotype data that was insufficient to determine pedigree assignments of 

individuals (Wang, 2004). The replicate simulations with 0%, 5% and 10% full-sibs 

demonstrated the low variability of the plots. This area of research is worthy of further 

investigation. The results could be implemented within a new version of SHAZA that 

simultaneously estimates recaptures and sibship relationships. 

 

Figure. 4.6  Log likelihood ratio of an individual match (equation 4.3) plotted against the 

natural logarithm of the cumulative number of false positive genotype matches when the 

number of full-sibs (FS) in the data vary between 0% and 10%. Data simulated using 1200 

genotypes with 7 loci using Spanish mackerel allele frequencies* with no missing loci.  

 

 
*For more information on the Spanish mackerel genotype data see, Macbeth et al (2013), 

http://ncbi.nlm.nih.gov/pubmed/23550119.
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Chapter 5 

 
How many fish under the boat? Estimating abundance 

of narrow-barred Spanish mackerel (Scomberomorus 

commerson) using a genetic mark-recapture approach. 

 
Macbeth G.M., Broderick D., Buckworth R.C., Ovenden J.R., Wang Y-G., (2014) A mark-

recapture design using tissue genotypes for estimating abundance of narrow-barred 

Spanish mackerel (Scomberomorus commerson).  
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5.1 ABSTRACT 
Abundance is a key ecological monitoring parameter, and also a highly relevant fisheries 

management parameter, which is difficult to measure in marine fish populations. To 

demonstrate a new technique to estimate abundance Narrow-barred Spanish mackerel 

Scomberomorus commerson was used as an example species. Lures with a specially 

designed hook were used for non-invasive sampling of tissues. Once struck the hook tip 

contained a small sample of DNA tissue that was genotyped and compared to genotypes of 

fish landed during the same fishing trip. This simultaneous mark-recapture design was used 

to estimate the average number of active feeding fish encountered per fishing day which 

was estimated to be 281 fish with a 95% confidence interval ranging from 187 to 312 fish. 

The 95% confidence interval for the percentage of fish caught ranged from 11% to 19% with 

a mean of 17%. Genetic sampling combined with random sampling of fishing transects may 

be useful in monitoring changes to abundance over time.  
 

5.2 Introduction  
 
Changes to abundance over time is a key measure used in ecological monitoring (Pratchett 

et al., 2006; Latimore, 2007; Simin et al., 2012) yet abundance estimation of fisheries 

populations is a difficult task. A fundamental equation used in fisheries modelling to 

estimate fish abundance (N) is given by the relationship C/E=qN where C is the catch, E is 

a unit of fishing effort, q is the catchability coefficient defined as the probability of an 

individual fish being caught by a unit of effort (Pinhorn, 1988; Arreguín-Sánchez, 1996; 

Maunder et al., 2006). The equation has been applied to tag recovery (Hilborn, 1990) but is 

more generally used to infer changes to N, assuming C/E is proportional to N but this 

requires q to be determined. Perhaps the biggest concern to inferring changes to N with C/E 

statistics is that the catchability coefficient (q) may not be independent of N (Harley et al., 

2001; Ellis and Wang, 2007; Maunder et al., 2006) so that C/E is not proportional to N. The 

problem of estimating abundance (N) in fishery populations is that q is not known with 

precision and will not be constant due to various factors including time of day, season of 

year, La Nina and El Nino events, latitude and longitude, lunar cycles, technology creep, 

aggregation behaviour of fish and targeting behaviour of fishers (Li et al., 2013; Marchal et 

al., 2006, Ellis and Wang, 2007).  Linear equations have been used to correct q to account 

for different efficiencies of fishing gear (Arreguín-Sánchez, 1996) while generalised linear 

models (Campbell, 2004) and maximum likelihood methods (Wang, 1999) have also been 

used estimate q. The main point here is that q is required to estimate stock abundance but it 



 110 

is a very difficult parameter to determine with any degree of accuracy as it potentially 

requires many years of catch statistics for assessment (Arreguín-Sánchez, 1996).  

This study demonstrated an alternative method of measuring relative changes in fish 

abundance without the need to directly estimate q. Here genetic tagging was used 

(Buckworth 2004) to sub-sample within a fishing ground an area called a ‘fishing zone’ in 

which fish are landed. Sampling along the fishing zone consisted of in situ sampling of wild 

fish using 'genetag' lures (Buckworth, 2004) and genotype sampling of landed fish. By 

comparing the genotypes collected from the 'genetag' lures and landed fish (Macbeth et al., 

2011) within ‘fishing zones’ it was possible to estimate the abundance of active feeding fish 

encountered per day of fishing effort (N*). It is only after estimating N* that an estimate of 

catchability within the fishing zone using q*=C*/N* was determined where C* is the number 

of fish landed per day of fishing effort. The importance of N* is that it provides a new 

measure of abundance which is directly related to N by a constant factor (a/A) giving N*= 

Na/A where a is the area covered by the ‘fishing zone’ per day and A is the total area of the 

fishery (Arreguín-Sánchez 1996; Ellis and Wang, 2007). 

To demonstrate the feasibility of estimating abundance using in situ genetic sampling 

narrow-barred Spanish mackerel, Scomberomous commerson, was chosen. It is a large 

fast-swimming pelagic predator, found throughout tropical and sub-tropical neritic waters of 

the Indo-West Pacific (Collette and Nauen, 1983). This species within Northern Territory 

waters appear to be from a single genetic population (Macbeth et al., 2013). The Northern 

Territory Spanish Mackerel Fishery uses trolled lures or baited lines. Usually taken in depths 

less than 100 m (McPherson, 1988), S. commerson is often associated with reefs and 

islands, and is targeted in commercial, artisanal and recreational fisheries throughout its 

range. This fish species attains at a caudal fork length of around 80 cm and age of 2 years 

(Devaraj, 1993; McPherson, 1993; Mackie et al., 2003).  

This large species seems to be suited to genetic tagging methods. The challenges and 

feasibility of estimating the abundance of active feeding fish encountered per day of fishing 

effort (N*) and the proportion of these fish caught within the fishing zone (q*) are the focus 

of this study. The hypothesis tested is that N* and q* can be obtained with finite confidence 

limits from real fishing data. 
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5.3 Methods  
5.3.1 Nomenclature 
 

List of terms used: 

B        number of days of fishing effort, 

C        number of fish caught within the fishing zone, 

C*      number of fish caught per day of fishing effort, 

E        unit of fishing effort, 

F        number of fin samples genotyped from C subsample, 

k        the kth fishing trip, 

K        total number of fishing trips, 

L        number of lure samples genotyped, 

M       number of putative genotype matches, 

N       total abundance of population, 

N*      abundance of active feeding fish encountered per day, 

q        population catchability coefficient, 

q*      proportion of fish caught within the fishing zone,  

R̂       corrected number of recaptures,  

S       total number of loci in sample,  

S*      number of loci with a putative error,  

t         the tth time period,  

T        total number of time periods used to solve equation 3,  

V        expected number of false positives genotype matches,  

W       number of wild feeding fish prior to fishing,  

Y        individual estimate of lure to fin recaptures,  

Y*       vector of Y estimates,  

Z        individual estimate of lure to lure recaptures,  

Z*       vector of Z estimates,  

ε        genotype error rate of lure samples,  

ε ʹ′       genotype error rate of fin samples,  

µLLk     mean lure to lure matches,  

µLFk     mean lure to fin matches,  

σ LLk     standard error of lure to lure matches and  

σ LFk     standard error of lure to fin matches. 
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5.3.2 Sample collection from fins 
 

Fin samples from landed fish that were also tissue-sampled by a gene-tag lure represent 

‘recaptures’ in this mark-recapture study. Both lure and fin samples were collected from the 

same boat and fishing session. During the fishing period (e.g. morning, day etc.) fins were 

accumulated in a plastic bag on ice and frozen at the end of the period. Some paired fins 

within bags were split into two separate fins creating two samples from the same individual. 

The number of fin samples (F) was taken from a subsample of the total number of fish 

caught (C).  

 

5.3.3 Sample collection from Lures  
 

Genotypes of lure samples are equivalent to ‘marks’ in a mark-recapture study, which were 

subsequently ‘recaptured’ when the fish was landed, sampled and found to have a 

genotype matching a lure. Wild feeding S. commerson were genetically tagged non-

invasively during commercial fishing operations in northern tropical Australia adjacent to the 

Northern Territory, from 2003 to 2006 (Buckworth et al., 2012). Two fishing lines were 

leased from a commercial fishing operator leaving four to six lines for normal operations. 

The leased lines deployed lures that were each mounted with two ‘genetag’ hooks 

(Buckworth, 2004).  This hook was specially designed with a J-shaped copper tube forming 

the functional hook. The tip of each hook has a hollow stainless steel tip with an interior 

barb. When struck, the hook shaft straightens, releasing the fish but leaving a small tissue 

sample inside the tip. The lure is retrieved as soon as possible after the strike occurs. As 

the hooks have been straightened, there is little chance of tissue being sampled during 

additional strikes from different individuals. As the lures were retrieved, hook-tips were 

removed and placed in separate 80% ethanol vials at 4o C regardless of the visible 

presence of tissue. The number of lure samples that were genotyped is denoted by (L). 

 

5.3.4 Genotype loci and quality control 
 

Detailed genotyping methods are provided in supporting information, File S1, of Macbeth et 

al. (2013). Briefly, DNA was extracted from lure tips using Qiagen DNeasy® tissue kit. The 

tip was placed in a 1.5ml Eppendorf tube and proteinase K solution was added. The tip was 

removed after incubation at 50 oC prior to the column purification of the DNA. Fin samples 

(~3-5mm2) were defrosted and washed in Milli-Q water and air-dried. DNA was extracted 
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using Chelex-100 (Walsh et al., 1991) or salting out (Sambrook et al., 1989) methods. A 

panel of seven polymorphic microsatellite loci were used to genotype tissue from lure tips 

and fin clips (Macbeth et al., 2013). Partial genotypes scoring at four or fewer loci did not 

pass the quality control and were discarded because their genotypes had limited statistical 

power and were likely to be more error prone than those individuals with more complete 

genotypes (Paetkau, 2003).   

 

5.3.5 Molecular genetic analysis 
 

Allele frequencies of both lure and fin samples were pooled for analysis. Genetic mark-

recapture analysis was performed using a specialised program for detecting putative 

matches in genotype data, SHAZA version 1.00 (Macbeth et al., 2011) with non-target 

species removed using correspondence analysis (Macbeth et al., 2013). SHAZA estimates 

the corrected number of genotype matches ( R̂ ) by accounting for genotype error rates and 

missing data. The SHAZA user manual and software (including ANSI C source code) are 

available from the authors on: http://molecularfisherieslaboratory.com.au/shadow-zone-

analysis-software-shaza/.  

 

5.3.6 Determination of genotyping error rate 
 

Genotype error rates per locus were determined separately for lures (ε ) and fins (ε ʹ′ ) as the 

small tissue samples from lures may be more prone to DNA degradation than the larger fin 

tissue samples collected. Two genotypes from the same lure were collected when tissue 

samples were lodged in the tips of both hooks on the lure. These duplicate samples were 

used to estimate the error rate per locus from the lure tissue samples assuming the two 

samples were from a single individual. Error rates per locus in fin samples were determined 

from the fin pairs that split in two within the same sample bag giving two samples from the 

same individual. Genotypes of fin pairs matching between sample bags cannot be from the 

same individual and were known false positives. 

Using program SHAZA (Macbeth et al., 2011), putative genotype matches were 

determined using a prior estimate of the error rate per locus of 1% and by defining a 

threshold of the number of cumulative false positives in the set of putative matches V=1.0 

(default value). The sum of genotype differences between pairs of loci in the list of putative 

matches (S*) were used to estimate a new error rate per locus using 1-(1-S*/S)0.5 where S 

is the sum of loci pairs from all genotypes within the list of putative matches. The process of 
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estimating error rates was performed iteratively until no new putative matches were found. 

As described above, error rates in fin and lure samples were determined separately. The 

putative matches (duplicates) within the fin and lure datasets were removed prior to pooling 

the genotype data to determine lure to fin matches. The likelihood ratio (LR) of a match 

(Macbeth et al., 2011, equation 2) was modified to account for the different error rate per 

locus within lure (ε ) and fin (ε ʹ′ ) samples as 

 

LRlure to fin εεεεεε ʹ′+ʹ′−+ʹ′−−= )()|()1)(1( aba gPggI                           (5.1) 

where )( agP  is the probability of genotype ga and )|( ba ggI  equals 1 if genotype ga is the 

same as genotype gb and equals 0 otherwise. 

 

5.3.7 Estimation of putative recaptures  
 

Eight fishing trips retrieved 10 or more struck lures. Using equation 1, the number of lure to 

fin recaptures was determined using SHAZA (Macbeth et al., 2011). This program 

minimised the variance of estimated putative recaptures by accounting for false negative 

and false positive recaptures. The estimated recaptures were simulated 100 times using 

SHAZA which was set to bootstrap missing locus combinations observed within the fin 

genotype data and within the lure genotype data (Macbeth et al., 2011).  For each fishing 

trip k this procedure gave a mean (µLFk ) and a standard error (σ LFk ) of lure to fin 

recaptures. The same procedure was used to get a mean (µLLk ) and a standard error (σ LLk ) 

of lure to lure recaptures in each trip t. The standard errors σ LFk  and σ LLk represent the 

accuracy of detecting recaptures from the available genotype data and did not include 

random sampling components of error which would be added when pooling recaptures from 

multiple fishing trips. 

 

5.3.8 Pooling recaptures from multiple fishing trips 
 

The general formula for calculating the probability of having m recaptures across a total of K  

fishing trips is given by: 

P(m) = dbinom(xik, sizek, probk )
k=1

K

∏
i=1

I

∑                     (5.2) 
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where I is the number of combinations of xik  satisfying m = xik
k=1

K

∑ , dbinom is the binomial 

probability function in R (R Development Core Team, 2008), xik  is the number of recaptures 

within combination i and trip k, sizek is the sample size within trip k and probk is the 

probability of a recapture within trip k. For example if m=1 and K=2 then there are only two 

possible combinations (I=2) with {x11=0, x12=1} and {x21=1, x22=0}. 

The binomial distribution measured the sampling error, and to include the error in 

genotype assignment of lure to fin recaptures, probk was sampled from the normal 

distribution as probk ~ N(µLFk,σ LFk ) / sizek  where the number of pairwise comparisons 

sizek=nLk.nFk with nFk equal to the number of fin genotypes and (nLk) number of lure 

genotypes within trip k. Each P(m) value was therefore not unique and average values were 

taken from 1000 iterations. Over all m values, the area under the average P(m) curve 

approximated unity. By drawing a random number between zero and one, the cumulative 

distribution under the average lure to fin P(m) curve was used to sample 1000 estimates of 

the number of lure to fin recaptures and stored in vector Y*.  

Similarly, when including the error in the genotype assignment of lure to lure 

recaptures, 1000 iterations of P(m) values were determined by sampling 

probk ~ N(µLLk,σ LLk ) / sizek  where sizek = nLk (nLk -1) as lures were not compared to 

themselves. By drawing a random number between zero and one, the cumulative 

distribution under the average lure to lure P(m) curve was used to sample 1000 estimates of 

the number of lure to lure recaptures and stored in vector Z*. The distribution of estimates in 

vectors Y* and Z* contain both the random sampling error and genotype error components. 

 

 

5.3.9 Feeding and capture model 
 

The fishing model in the form of a subset diagram is shown in Figure 5.1. The number of 

fish caught (C), number of caught fish with fins genotyped (F) and the number of lures 

genotyped (L) were determined directly from sample collection numbers. The number of 

recaptures Y and Z were sampled in sequence from vectors Y* and Z*.  
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Figure 5.1.  Feeding and capture model. Relationships shown are total feeding (W) within 

the fishing zone, number caught (C), captured fish with fins genotyped (F) and the number 

of lures genotyped (L). Genetag fish are partitioned between those caught without a fin 

sample (X), those lure to fin recaptures (Y) and those lures remaining at large (G) with (Z) 

equal to the number of lure to lure recaptures. 

 

 

 

 

 

 

 

  

 

 

 

 

The number of wild feeding fish within the ‘fishing zone’ prior to being caught (W) is of most 

interest. Assuming lures are deployed prior to fins being sampled, then W could be 

estimated using: W=L.F/Y. This equation is equivalent to mark-recapture using the Petersen 

Method (Seber 1982) where the number marked is equivalent to L, the number captured is 

F and the number of animals with a mark that were captured is Y. The Petersen Method 

was modified to account for simultaneous lure deployment and captures. The strike rate of 

'genetag' lures was assumed to be the same as commercial lures used to land fish on 

board. Using this assumption, W was estimated using equation (3) which uses information 

from both lure to fin recaptures as well as lure to lure recaptures. Solutions for W for each 

fishing trip were determined by iteration by arbitrarily subdividing the fishing trips into T=100 

time periods which was sufficiently large to achieve convergence. The number of active 

feeders encountered per day of fishing effort (N*) was determined by the sum of W over all 

fishing trips divided by the total number of days of fishing effort. The derivation of equation 

(3) is detailed in the appendix with solutions for C/W estimating the proportion of active 

feeding fish landed within the ‘fishing zone’ (q*= C/W=C*/N*) where C* is the average catch 

per day of fishing effort. 
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5.4 Results 

5.4.1 Genotype error rate from fin samples 
 

Genotype error rates were determined from 7831 fin genotypes having more than four of the 

possible seven loci. Among these, a total of 113 putative matches were detected by SHAZA 

when setting two parameters (i) a cumulative false positive rate of less than V=1.0 pairwise 

matches amongst them, and (ii) a prior error rate per locus of ε ʹ′=1.0%. Of the 113 putative 

matches 70, 17, 18 and 8 were from genotypes with 7, 6, 5 and 4 loci respectively giving 

S=(70x7+17x6+18x5+8x4)=714 loci in total. There were S*=19 loci having at least one 

allele different between the loci pairs of each fin to fin match. The probability of an error in 

fin to fin genotype matches was determined as ε̂ ʹ′=1-(1-S*/S)0.5=(1-(1-19/714)0.5=1.3%. The 

SHAZA analysis were re-run with ε ʹ′ = ε̂ ʹ′  with no difference in putative matches detected. 

There is a high degree of confidence that the error rate was detected from paired genotypes 

from the same individual, as all of the 113 putative paired matches detected by SHAZA 

were within the same bag, with the first known false positive (between bag match) occurring 

at the 128th highest likelihood ranked match.  

 

5.4.2 Genotype error rate from lure samples 
 

Genotype error rates were determined from 664 lure samples that were genotyped with 

more than 4 loci. There were 59 putative matches detected by SHAZA when setting the 

false positive threshold level to V= 0.01 match and using a prior error rate per locus of 

ε =1.0%. When increasing the total false positive threshold to V= 1.0, twenty more putative 

matches were discovered giving a total of 79 matches. By chance, as defined by V=1.0, one 

of these 79 matches was expected to be a false positive although all the 79 matches were 

used to estimate the error rate. From these matches there were 31 differences between the 

482 loci pairs giving an error rate per locus of ε̂ =3.3%. The analysis was re-run with 

ε =3.3% (‘-e 0.033’ option in SHAZA) resulting in two additional putative matches found 

giving a new error rate ε =3.8% per locus. An additional SHAZA run with ‘-e 0.038’ revealed 

no difference in matches. A chi-squared analysis indicated that the lure error rate was 

significantly higher than the fin sample rate (P<0.01).  
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Table 5.1.  Recapture estimates from eight fishing trips. Number caught (C), number of 

lures sampled (L) and number of fins sampled (F) during fishing trips lasting more than one 

day together with recapture estimates ( R̂ ) between lure and fin samples with standard error 

of genotype assignment. 

Fishing 

trip 

Days of 

fishing  

Sample numbers 

   

 Recaptures + genotype error 

 

 

effort  

(B) 

Caught 

 (C) 

Lures 

 (L) 

Fins 

 (F) 

Lure to Fin 

 (Y) 

Lure to Lure 

     (Z) 

1 4 105 44 74 0.0 2.4+0.7  

2 7 297 87 206 3.2+0.6 1.0+0.4  

3 6 136 30 88 1.1+0.4           0.0      

4 7 452 29 276 5.2+0.6           0.0      

5 4 281 68 244 4.1+0.5 1.0+0.2  

6 10 248 38 208 1.1+0.2           0.0      

7 7 566 11 279 1.1+0.4           0.0  

8 6 306 18 21        0.0            0.0      

Total 51 2391 325 1396      15.8           4.4  

 
5.4.3 Increased pairwise comparisons using SHAZA 
 

There were 5560 fin genotypes and 382 lure genotypes that had all 7 loci detected. Instead 

of discarding partial genotypes, the program SHAZA was capable of selecting individual 

pairwise comparisons while managing a constraint on false positives. The use of SHAZA in 

this way increased the total number of paired genotype comparisons by 80% compared to 

discarding lure and fin genotypes with missing loci.  

 

5.4.4 Estimation of capture rates from fishing trips  
 

Recapture rates were estimated from tagged fish from lure genotypes and from those fish 

subsequently caught and genotyped from fin samples. There were eight fishing trips in 

which at least ten lures were struck. No recaptures were observed between fishing trips. 

Listed in Table 5.1 for each fishing trip are recapture estimates ( R̂ ) together with the 

number of days fishing effort (B), number of fish caught (C), number of lures sampled (L) 

and number of fins sampled (F). Six of these trips had fin to lure recaptures. Three trips had 

lure to lure recaptures indicating the same fish had struck more than one lure. In fishing trip 
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eight there were 306 fish caught but no recaptures detected. The number of recaptures 

were not determined with 100% accuracy with the standard error of these estimates, up to 

+0.7, reflecting the accuracy with which genotype matches could be estimated. The 

estimates in Table 5.1 are a fraction higher than whole numbers due to the net correction 

made by SHAZA for false positives and false negatives.  

 

The estimated recaptures from Table 5.1 were pooled across all trips using equation 5.2 

which included the variance associated with both (i) the accuracy of genotype matching and 

(ii) the binomial random sampling error of lure to fin and lure to lure match estimates (Figure 

5.2).  

 

Figure 5.2. Pooled trip estimates of recaptures.  The two distributions show fin to lure 

recaptures (open circle) and lure to lure recaptures (solid dot) from vectors Y* and Z*.  

 

  
The feeding and capture model was applied using equation 5.3 to estimate the size of the 

pooled feeding aggregates (W) using total captured (C), total number of lures sampled (L) 

and total number of fins sampled (F) tabulated for each trip in Table 5.1. Lure to fin 

recaptures (Y) and lure to lure recaptures (Z) were determined by iterative random 

sampling. Their frequency distribution is shown in Figure 5.2. The average number of active 

feeding fish divided by the total number of days fishing effort is illustrated in Figure 5.3. The 

upper and lower 95% confidence interval for active feeding fish per day of fishing effort 

ranged from 187 fish to 312 fish with a mean of 281 fish. The average percentage of active 

feeders caught was 17% with the 95% confidence intervals between 11% and 19% (Figure 

5.4).  
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Figure 5.3. Number of active feeders encountered per day of fishing effort (N*). Distribution 

of N* determined from equation 4 by sampling fin to lure recaptures (Y) and lure to lure 

recaptures (Z) from 1000 estimates in vectors Y* and Z*. 

  
Figure 5.4. Proportion of fish landed (q*) that were actively feeding. The distribution 

showing the precision of estimation by accounting for both genotype and random sampling 

errors from 1000 iterations.  
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5.5 Discussion 
 

This study demonstrated that it was possible to obtain finite estimates of the number of 

active feeding fish encountered per day of fishing effort (N*) and the proportion of fish that 

were landed (q*). 

In practice there is an instantaneous fishing zone which is constantly changing with 

movement of the fishing vessel. It is assumed mixing of tagged fish within the instantaneous 

fishing zone is sufficient so that the proportion of tagged fish landed is a representative 

random sample of both tagged and untagged fish within the fishing zone. The model can 

give a consistent estimate for W even if the fish are not in equal densities throughout the 

day. It does not matter what proportion of fish are caught in each period as the pooled 

estimate of W will be the same. It is also assumed that marking does not affect catchability 

and there is some evidence from duplicate lure samples that fish are not hesitant to strike 

again after being tagged. Genetic tags are fixed and not lost between sampling occasions 

however the accuracy of identifying genetic matches was not 100% leading to an increase 

in the standard error of parameter estimates. 

Compared to estimates of changing abundance inferred from catch per unit of effort 

data (C/E), the abundance measure (N*) is a more reliable and responsive estimate to 

changes in stock abundance. For example, C/E is determined using catch numbers which 

will increase with improvements in fishing technology causing an upward bias in abundance 

estimates (Marchal et al., 2006). Improved fishing methods will not increase the number of 

active feeders within the ‘fishing zone’ prior to harvest, which N* measures, and is therefore 

not susceptible to many forms of technology creep. Without random sampling of fishing 

zones the method would be prone to technology creep that targets higher fishing density 

and, as a consequence will increase the abundance estimate. 

The ability to detect the instantaneous proportion of stock removed (q*) within ‘fishing 

zones’ is also an advantage over traditional C/E methods and may give early indications of 

depleted abundance over time. For example, it is feasible that C/E estimates remain stable 

over recording periods while q* increases over the same periods. An upward trend in q* 

may in this case provide an early warning signal prior to fishing grounds experiencing lower 

C/E values. If the fishery experiences lower C/E, fishers may move to new grounds to 

maintain C/E and profitability (Rose and Kulka, 1999) and in doing so mask true population 

decline.  

Recent assessments of the Northern Territory stock of narrow-barred Spanish 

mackerel, based on C/E data, indicate that the fishery has recovered from heavy fishing 
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(drift netting) by a distant water fleet during the 1970s and 1980s, and is now fished at 

sustainable levels (Buckworth, 2004; Grubert et al., 2013). The current fishery harvest rate 

on the Northern Territory fishery grounds is estimated as 21% (Grubert et al., 2013). This 

reported harvest rate seems high given the upper 95% confidence limit of q* is 19% and 

that the total fishing zones covered by the fishing fleet each year are likely to be a small 

fraction of the total fishery ground. A possible explanation for the difference would be that 

the concentration of harvesting occurs in fish schools, which congregate in close proximity 

to reefs and islands (McPherson, 1988), and that they are targeted multiple times per year. 

Given that the annual catch of S. commerson in the Northern Territory may be as few 

as 30 000 to 60 000 fish (Buckworth et al., 2012) and the estimate of q* was 17%, then a 

very rough estimate of the wild population over all the ‘fishing zones’ covered annually by 

the fishing fleet would be (30 000+ 60 000)/(2*0.17)= 265 000. The population density (N*/a) 

could also be estimated with a equal to the width of the ‘fishing zone’ multiplied by the 

distance travelled during the eight fishing trips. The challenge in this case would be to 

estimate the width of the fishing zone. 

As a result of this pilot study, it is recognised that there are a number of changes that 

could improve the efficiency of estimating N* and q*:  

(i) genotyping a higher proportion of fins from landed fish, which would increase 

the chance of finding more lure to fin recaptures,  

(ii) implementing a larger number of fishing lines with 'genetag' lures per fishing 

vessel, which would increase the number of lure to lure and lure to fin 

recaptures,  

(iii) record the number and time of commercial fishing lines deployed perhaps 

using video recording to refine the time-series of recaptures,  

(iv) improve the estimate of the percentage of fish caught by correcting for the 

number of lines deployed for 'genetag' lures that replaced the number of 

commercial lines available,  

(v) record more loci to the panel to increase the ability to recover all pairwise 

comparisons and improve on the 80% recovered in this study using SHAZA 

(Macbeth et al., 2011),  

(vi) monitor the speed of the fishing vessel during active fishing periods which may 

be useful in estimating fish density,  

(vii) use random sampling of ‘fishing zones’ (Ellis and Wang, 2007) using a 

dedicated monitoring vessel and  

(viii) estimate N*  and q* at annual intervals.  
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In this study the three years of fishing trips were combined to estimate N* and q*. 

However, with the efficiencies listed above it should be feasible to determine these 

measures annually to be able to detect and respond in a timely manner to any significant 

time series change that may occur. This will in turn improve the ability to manage maximum 

sustainable yield. 

The increased error rates in lure genotypes compared to fins is thought to be related to 

the smaller amounts of tissue sampled from lures; they are likely to degrade more quickly 

than the larger fin samples. Poor DNA quality is generally more error prone than that of high 

quality DNA (Creel et al., 2003; Taberlet et al.,1996). However, the genotype error rates of 

up to 3.8% in this study compared favourably to error rates as high as 21-57% in Soulsbury 

et al. (2007) and 31% in Gagneux et al. (1997). As indicated with simulated data (Macbeth 

et al., 2011) the estimates of the numbers recaptured are somewhat robust to a deviation 

from the true error rate. As in this study it is not uncommon for non-invasive sampling of 

genotypes to result in a large proportion of genotypes with missing loci. It was shown that 

the use of SHAZA was critical for the success of this study. No longer is it required to 

discard genotypes with missing loci as has been suggested (Creel et al., 2003). 

In summary, the number of active feeding fish encountered per day of fishing effort 

within the fishing zone (N*) and the percentage of those active feeding fish landed (q*) 

provide a baseline for future ecological comparisons measuring changes due to naturally 

occurring events or due to exploitation pressure. The methods deployed are unique and 

introduce a new tool for monitoring line-caught commercial fish populations.  
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5.10 Appendix – estimating wild feeding school 
 

Estimating wild feeding school (W) from fin samples and 'genetag' lures. 

 

The proportion of lures captured can be expressed in terms of total number captured or as 

a subsample from fins DNA sampled:  

FYCYX //)( =+                            (i) 

where during a fishing session of duration T there are: C caught fish with a subsample of F 

fish with fins genotyped, Y captured fish with both a fin genotype and a lure genotype and, 

X captured fish with a lure genotype but not a fin genotype sampled. Given the number of 

lures below the boat is changing over time the ratio in (i) can be expressed as:  
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where Pt is the proportion of active feeding fish with a 'genetag' lure sampled at time t.  The 

number of active feeders at time t, )( tCW − , is determined from the number of wild feeders 

before , (W), less the number of captued fish at time t, (Ct), giving: 
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where TCtCt /.=  is the number of fish caught up to time t, TLtLt /.=  is the number of 

lures struck up to time t and L is the total number of lures struck during a fishing period of T 

time units. By substituting equation (iii) in equation (ii) it follows that:  
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Using C, L and the ratio Y/F the size of the feeding school (W) can then be determined from 

equation (iv) which is solved by iteration using T increments in time. 

 

Equation (iv) was developed further to include additional information from the number of lure 

by lure recaptures during a fishing session (Z). Assuming random sampling the expectation 

is that FYLZ // ≈  with a combined estimate of these ratios giving )/()( LFZY ++  which 

from equation (iv) leads to:  
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The size of the feeding school (W) can then be determined as above by iteration using T 

increments in time. 

 

Proof that FYLZ // ≈  is as follows: The expectation of Z is the product of lures sampled at 

time t, )( 1−− tt LL , by the proportion of lures in active feeders sampled at time t, ( tP ), 

summed over time T giving: 
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Chapter 6  

 

Linkage disequilibrium estimation of effective 

population size in Spanish mackerel (Scomberomorus 

commerson) with immigrants from divergent 

populations. 

 
Macbeth G.M., D Broderick, Buckworth R.C, Ovenden J.R. (2012) Linkage disequilibrium 

estimation of effective population size in Spanish mackerel (Scomberomorus commerson) 

with immigrants from divergent populations. Genes Genomes and Genetics 

http://ncbi.nlm.nih.gov/pubmed/23550119 
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6.1 ABSTRACT 

Estimates of genetic effective population size (Ne) using molecular markers are a potentially 

useful tool for the management of endangered through to commercial species. But pitfalls 

are predicted when the effective size is large as estimates require large numbers of 

samples from wild populations for statistical validity.  Simulations showed that linkage 

disequilibrium estimates of Ne up to 10,000 with finite confidence limits can be achieved 

with sample sizes around 5000. This was deduced from empirical allele frequencies of 

seven polymorphic microsatellite loci in a commercially harvested fisheries species, the 

narrow barred Spanish mackerel (Scomberomorus commerson). As expected, the smallest 

standard deviation of Ne estimates occurred when low frequency alleles were excluded. 

Additional simulations indicated that the linkage disequilibrium method was sensitive to 

small numbers of genotypes from cryptic species or conspecific immigrants. A 

correspondence analysis algorithm was developed to detect and remove outlier genotypes 

that could possibly be inadvertently sampled from cryptic species or non-breeding 

immigrants from genetically separate populations. Simulations demonstrated the value of 

this approach in Spanish mackerel data. When putative immigrants were removed from the 

empirical data, 95% of the Ne estimates from jackknife resampling were above 24,000.  

 
 
6.2 Introduction 
 

The effective number in a breeding stock was defined by Wright (1930) as an idealised 

number of parents in a population that cause a given level of inbreeding, or given change in 

allele frequencies. This effective number “is much smaller as a rule than the actual number 

of adult individuals” (Wright, 1930) but is an important parameter in ecological studies as 

any change over time indicates underlying changes in population structure. The mean 

squared correlation of alleles at different loci is a measure of linkage disequilibrium which 

can be used to estimate genetic effective population size (Ne) of diploid individuals. In small 

populations there is a higher correlation of alleles between loci compared to larger 

populations (Hedgecock et al., 2007; Pudovkin et al., 1996; Zhdanova and Pudovkin, 2008) 

and hence there is a relationship with genetic effective population size (Waples, 2006). It 

was suggested by Waples and Do (2010) that strong assortative mating would lead to 

biases in eN̂ . Later, Waples and England (2011) investigated migration between 

populations and concluded that the linkage disequilibrium method was robust to equilibrium 
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migration with eN̂  reflecting that of the local subpopulation. Waples and England (2011) 

also showed that pulse migration of strongly divergent individuals was found to depress 

estimates of local Ne. 

The effect of pulse migration is an important finding, as related factors could also lead 

to depressed Ne estimates. These factors could include inadvertent sampling of non-target 

species and sampling of the same species but from populations that have become 

genetically divergent over many generations. Some fish species are known to exhibit natal 

philopatry where individuals have home spawning grounds, but later disperse. Examples 

include herring, cod, sharks, swordfish and anadromous salmonids (Bekkevold et al., 2007; 

Svedang et al., 2007; Jorgensen et al., 2009; Smith and Alvarado-Bremer, 2010; Beacham 

et al., 2005). Under this model, samples from a single location taken when the species was 

in the dispersed phase could represent several genetically distinct (i.e. mixed) stocks. The 

samples would not represent a panmictic population causing deviations from the expected 

linkage disequilibria and a bias in the linkage disequilibrium estimation of Ne. For example, 

a downward bias in Ne estimates ( eN̂ ) was simulated by Palstra and Ruzzante (2011) when 

divergent populations were pooled.  

The frequency of natal philopatry is poorly known across marine species and virtually 

unknown in Australian fisheries species (Tillet et al., 2012; Blower et al., 2012). A species of 

considerable fisheries interest in Australia, and much of the Indo-West Pacific, is the 

narrow-barred Spanish mackerel, Scomberomorus commerson. It is a large, fast-swimming 

pelagic predator found throughout tropical and sub-tropical neritic waters of the Indo-West 

Pacific (Collette and Nauen, 1983). If S. commerson exhibit natal philopatry, the mixing of 

genetically distinct populations within the sample collection area could depress eN̂  in a 

similar manner suggested by pulse migration (Waples and England, 2011). Seasonal 

aggregation for spawning followed by dispersal is supported by several lines of evidence;  

(a)     seasonal variations in the availability of S. commerson (Buckworth et al., 2007),  

(b)     a tag release study in northern Australia showing dispersal of recaptured fish 

with 12% over 600 nautical miles away (Buckworth et al., 2007),  

(c)     movement of fish on the eastern Australian coast southwards in summer 

presumably for feeding (McPherson, 1988) and  

(d)     multiple genetically distinct stocks in south-east Asia (Fauvelot and Borsa, 2011).  

The species is under active management throughout its range in Australia and 

accurate estimates of effective population size have the potential to assist (Hare et al., 

2011; Luikart et al., 2010; Ovenden et al., 2007; Palstra and Ruzzante, 2008).  
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This paper documents a case study of the pitfalls associated with the estimation of Ne 

in S. commerson when large samples of genotypes (S>5000) were taken from a single 

location in northern Australia. The estimated Ne determined from empirical data was 

compared from simulated populations. The estimates of Ne were critically reviewed by 

testing hypotheses that the sampled population is a mixed stock. In addition a method of 

screening and removing individuals likely to be from non-target populations or species was 

developed. 

 

6.3 Methods 

6.3.1 Linkage disequilibrium estimation of effective population size ( N̂e ) 

 
Linkage disequilibrium estimation of effective population size is derived from the correlation 

of alleles between loci. The correlation is determined from allele frequencies and has the 

general form of the phi correlation coefficient  

]ˆ)ˆ1(ˆ][ˆ)ˆ1(ˆ[

ˆ
ˆ

kkkjjj

kj

kj

BBBAAA

BA

BA
DppDpp

r
+−+−

Δ
=    (Weir, 1996; p137) 

where 
kjBA

r̂  is the estimated correlation between the jth allele in locus A and kth allele in 

locus B given 
jA

p̂ is the empirical frequency estimation of allele j in locus A, 

kB
p̂ is the empirical frequency estimation of allele k in locus B, 2ˆ)(ˆ

jj AjjA pAAfD −=  and  

2ˆ)(ˆ
kk BkkB pBBfD −=  represent the additional variance in allele frequencies due to 

deviations in Hardy Weinberg equilibrium where ()f  in the above formulae denote the 

observed homozygote frequencies. When diploid genotypes are sampled the gametic 

phase is unknown with linkage disequilibrium determined by the Burrows estimate 

kjkj BAkjBA ppBAp ˆˆ2)(ˆˆ −=Δ  (Schaid, 2004). In this equation 
kjBA

Δ̂ is the deviation from the 

estimated probability of kj BA  gametes, )(ˆ kj BAp , from their expected probability 
kj BA pp ˆˆ2 . 

The value )(ˆ kj BAp  had to be determined indirectly from the count of kj BA combinations 

within biallelic genotypes (Table 6.1) as the gamete frequencies kj BA  were unknown.  In 

Table 6.1 the ‘#‘ indicated that there were no kj BA  gametes present within the genotype 

thus the expected number of kj BA  gametes given the genotype ** kkjj BBAA  is equal to 

2/
** ,,, kkjj BBAAX  where 

** ,,, kkjj BBAAX  is the number of observed ** kkjj BBAA  genotypes. The  
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‘estimated observed’ frequency of kj BA  gametes summed from both intra and inter gametic 

loci is [ ] GXXXXBAp
kkjjkkjjkkjjkkjj BBAABBAABBAABBAAkj /2/2)(
**** ,,,,,,,,,,,, +++=  

with X  being the count of each genotype and G  is the total number of gametes (Schaid, 

2004). 

 

Table 6.1  Count of AjBk pairs within genotypes created from parental gametes at locus A 

and B where j* (or k*) is not allele j (or k).  

  Female gametes 

  kj BA  *kj BA  kj BA *  ** kj BA  

Male gametes kj BA  2 1 1 1 

 *kj BA  1 0 1# 0 

 kj BA *  1 1# 0 0 

 ** kj BA  1 0 0 0 

The ‘#’ indicates where AjBk combinations occur in genotypes but not gametes. 

 

 

Under the assumption of unlinked and neutral loci effective population size was 

estimated using linkage disequilibrium by correcting second order terms for sampling error 

 
'ˆ2

'ˆ76.29131ˆ
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r
r

eN
++

=                     (6.1) 

where )ˆ(ˆ'ˆ 222
samplerErr −=  given 2r̂  is the observed r-squared component calculated as the 

mean 2ˆ
kj BA

r  between all alleles over L(L-1)/2 pairwise comparisons of L loci, and 
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SS
rE sample  is the term correcting upward bias due to sampling S individuals 

(Waples, 2006). The derivation of these equations were the subject of a full paper (Waples, 

2006). Briefly eN̂  is a quadratic solution (equation 6.1) for Ne formed by equating 'ˆ 2r  to 

2

69.0
3
1

NeNe
−  where 

Ne3
1

is the drift term assuming loci are unlinked in a random mating 

population and 
2

69.0
Ne

−  is a second order correction determined by Waples (2006) using 

simulations. 
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The jackknife method was used to estimate the upper and lower 95% confidence 

intervals of eN̂  (Waples and Do, 2008).  Large undefined Ne  estimates occur when the 

correction due to finite sample size 2
ŝampler  is greater than 2r̂  resulting in a negative Ne  

estimate. Negative estimates are plausible and indicate that the sample size S is too small 

with the correction for sample size being larger than the 2r̂  value determined from the data. 

Ne  estimates were determined using program LDNE where the lower 95% confidence 

intervals of eN̂  were determined by the jackknife method (Waples and Do, 2008). 

Built into the program of Waples and Do (2008) is a threshold called Pcrit, which is used 

to exclude 2ˆ
kj BA

r  from the average 2r̂  if 
jA

p̂ or 
kB

p̂ are below the Pcrit threshold. Allele 

frequencies close to zero can bias 2ˆ
kj BA

r  (Waples, 2006). The study investigated N̂e  across 

a range of Pcrit values as low frequency alleles are more common in large datasets. While 

the theory of Waples (2006) was tested using diallelic loci it applies equally well in 

polymorophic data sets (Waples and Do, 2010). 

 

 

6.3.2 Collection of empirical data 
 

Effective population size was estimated from genotypes of S. commerson individuals 

collected from a defined area, largely within 500km north-west of Darwin, Northern Territory 

(for more details see: Supplementary genotype methods).  

 

6.3.3 Simulations with different effective population sizes 
 

Ten thousand replicate linkage disequilibrium Ne estimates were determined each for a 

range of population sizes N from 3000 to 60000. The genotypes in each simulated 

population were generated using program SHAZA  

http://molecularfisherieslaboratory.com.au/shadow-zone-analysis-software-shaza/ 

(Macbeth et al., 2011). This program simulated N first generation diploid genotypes by 

random sampling alleles within loci from the empirical allele frequencies of S. commerson in 

the Darwin population. The first N/2 genotypes were defined as females and the remainder 

males. Each individual in the next generation was simulated by random selection of a male 

and female with replacement. For each parental genotype and for all seven loci a single 
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allele was randomly selected to create an individual diploid genotype. Following this process 

a total number of N individuals was created in four discrete generations. 

In this design N is approximately equal to Ne (Waples, 2006). In each replicate, Ne 

was estimated from 5413 generation four genotypes using a plan 2 sampling procedure 

(Waples 1989). Generation four was used to estimate Ne as this was sufficient for 2r̂  to 

approach an asymptotic value (Sved, 1971; Waples, 2006). For example, the expectation of 
2r̂  in the first generation of simulated genotypes will be zero resulting in upwardly biased 

estimates of Ne . Simulated genotypes had no missing loci therefore prior to estimating Ne  

missing loci were introduced to emulate the empirical data structure which had missing loci. 

The missing loci were introduced for each and every genotype in the simulated data by 

randomly drawing with replacement a genotype in the empirical data and deleting all loci in 

the simulated genotype that were found to be missing in the empirical genotype sampled. 

 

6.3.4 Ne estimates from empirical data with outlier genotypes removed 
 

Putative ‘outlier’ genotypes, defined as genotypes not originating from the focal population 

under investigation, were identified and removed from the empirical data using a 

correspondence analysis (CA). The CA algorithm used here was developed in a pilot study 

by visual assessment of simulated outliers from plots of the first two principal components of 

a singular value decomposition. Up to ten CA iterations were performed with iterations 

continuing until no further outliers were found. In each iteration, outlier genotypes were 

defined when principal components PC1 and PC2 (Appendix A) satisfied a threshold 

(PC12 +PC22 ) > 2  which removed outliers furthest from the central cluster.  

 

6.3.5 Ne estimates from empirical data with outlier genotypes removed and 
genotypes from non-target species added 
 

To test the sensitivity of Ne estimates in genotype samples containing non-target species, a 

test was conducted by adding one hundred genotypes of a non-target species (grey 

mackerel, Scomberomorus semifasciatus) to the ‘cleaned’ S. commerson data.  It was 

anticipated that adding foreign genotypes will increase eN̂  bias and indirectly show that 

cleaning the data could reduce bias in empicical data estimates.  Scomberomorus 

semifasciatus genotypes amplified at five of the seven S. commerson loci with alleles at loci 

SCA47 and SCA49 marked as missing. 
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6.3.6 Simulation of genetically divergent populations 
 

To further test the efficiency of the CA algorithm for detecting outlier genotypes, ten 

simulated populations were considered that diverged from a founding population across 

numerous generations. The allele frequencies of the founding population matched those 

from empirical S. commerson samples. Population size was set at N=10000 and after 100, 

200, 500, 1000 or 2000 generations the population was sampled (sample size of 5413 

genotypes). As described above, program SHAZA was used to generate N genotypes of the 

founding population. This was followed by creating N genotypes each successive 

generation from random sampling of parental alleles as described previously using an equal 

sex ratio. Pairwise FST  values were determined between divergent simulated populations 

using Genetix 4.05 software (Belkhir et al., 1996-2004). For each of the ten populations, 100 

samples were randomly removed and replaced by 100 random genotypes selected from 

one of the other nine populations. Following this procedure there were n=90 populations 

with 100 immigrant genotypes from non-target populations and n=10 populations with no 

immigrants. Ne was estimated before and after the data was cleaned using correspondence 

analysis.  

The ability of the CA algorithm to identify immigrants was compared to the Bayesian 

clustering approach of STRUCTURE version 2.3.3 (Pritchard et al., 2000). STRUCTURE 

analysis was applied to the 90 populations that contained 100 immigrants after diverging 

2000 generations. Runs were performed by specifying: k=2 clusters, an admixture ancestry 

model with allele frequencies correlated and a burn in length of 100 000 iterations followed 

by 100 000 MCMC iterations. One sample location was assumed with no location prior 

possible. 

 

6.4 Results 
6.4.1 Empirical data 
 

The majority of the 5413 S. commerson samples were genotyped with all seven loci (71%), 

but some samples were genotyped with either six (12%), five (10%) and four (7%) 

polymorphic microsatellite loci. The numbers of alleles per microsatellite locus varied from 

24 (90RTE) to 38 (SCA8) with 65% of alleles across all loci having frequencies less than or 

equal to 0.01 (Table 6.2). These low frequency alleles were selectively removed from data 

used to estimate Ne by the LDNe software depending on the chosen Pcrit thresholds (for 

more details see: Supplementary genotype results). 
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Against expectations, LDNE estimates ( eN̂ ) from empirical data varied systematically 

across Pcrit values (Table 6.3). As the Pcrit threshold decreased in magnitude so too did the 

magnitude of non-negative estimates of Ne. This covariance raised doubts about setting Pcrit 

to 1/(2S)= 1/(2x5413)~0.0001, where all singleton alleles would be removed, and the 

general effectiveness of removing low frequency alleles for the estimation of Ne. The lower 

confidence interval of eN̂  was more stable than the mean estimates, but still varied widely 

from 406 to 24728 and as such provided no informative value of the lower bound of eN̂ . 

 

Table 6.2   Locus and allele frequency summary. Sample size at each locus (SL) and 

number of alleles (Na) for microsatellite loci used to genotype S. commerson with the 

maximum frequency and number of alleles within loci having frequencies less than or 

greater than the range shown. 

Locus SL Na Maximum 

allele 

frequency 

Number of alleles with frequencies: 

greater 

than 0.10 

between 0.01  

and 0.001 

less than 

0.001 

SCA30 5210 36 0.178 2 17 8 

SM3 5206 32 0.183 4 8 13 

SM37 4611 37 0.127 2 16 9 

SCA47 4781 27 0.486 3 4 14 

SCA49 4829 25 0.248 5 5 8 

90RTE 5266 24 0.735 1 6 11 

SCA8 5139 38 0.216 4 12 11 

 

Table 6.3   Estimates of LDNE effective population size ( eN̂ ) in S. commerson. eN̂  at 

different Pcrit thresholds with the upper and lower 95% confidence intervals. 
  

 Pcrit 

0.05 

 

0.02 

 

0.01 

 

0.001 

 

0.0005 

 

0.0001 

 

0.0000 

eN̂  -40163a -799447 79842 17503 3584 503 418 

lowereN̂      19595    24728 22209 12759 3290 489 406 

uppereN̂  Infinite Infinite Infinite 27158 3921 517 428 

a Negative eN̂  estimates indicate a large undefined Ne . 
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6.4.2 Simulations with different effective population sizes 
 
Simulations indicated that 5413 genotype samples should be sufficient to estimate effective 

population size if the true size was 3000 and 10000 (Section 6.10 – Supplementary 

information: Figure 6.1 and Figure 6.2).  Simulations with N=3000 (Figure 6.1) had no 

extreme estimates of Ne , whereas simulations with N=10000 (Figure 6.2) had a small 

number of outlier estimates that were greater than 40000 or less than minus 20000.  In 

Figures 6.1 and 6.2, Pcrit values between 0.01 and 0.001 gave the smallest standard 

deviation of eN̂ , illustrating the importance of removing the majority of low frequency alleles. 

As expected, simulations with N=100 and N=1000 (Figure 6.S1 and Figure 6.S2) gave 

more precise estimates of Ne  than with N=3000 (Figure 6.1). Increasing N from 10000 to 

30000 and 60000 (Figures 6.S3, 6.S4 and 6.S5) resulted in a lower precision of eN̂  with a 

greater number of negative and extremely large estimates of Ne .  An interesting finding was 

that, at large N values such as 60000, the lower 95% confidence interval (Figure 6.S5) was 

more precise than the expected mean value (Figure 6.S4) particularly at Pcrit  values around 

0.01. The results indicate that there was sufficiency in the data to detect the lower 95% 

confidence interval if N was equal to 60000 with the mean lower confidence interval being 

22,188 (Pcrit=0.01).  

It is important to note that the smallest 1% of eN̂  using Pcrit =0.0000 determined from 

the 100th ranked positive value was 4134, 5308 and 5846 when N was 10000, 30000 and 

60000 respectively, which revealed an anomaly between the simulation results and 

empirical data estimates of eN̂ .  If the true Ne  was larger than 10000 then the smallest eN̂  

estimate expected at Pcrit =0.0000 would be greater than 4134 (P< 0.01) which differs from 

the empirical estimate of 418. Conversely, if the true Newas smaller than or equal to 10000 

then simulations indicated that no negative estimates of eN̂  would be expected at Pcrit =0.02 

(P< 0.0001) which was contrary to that observed from empirical data with eN̂ =-799447 

(Table 6.3).  This highlighted that there was a significant difference between the empirical 

and simulated data, which was subsequently investigated by examining ‘outlier’ genotypes.  
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Figure 6.1   Frequency of 10000 Ne estimates when simulating a population size of N=3000 

at different Pcrit values. 
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Figure 6.2   Frequency of 10000 Ne estimates when simulating a population size of 

N=10000 at different Pcrit values. The frequency of all Ne estimates less than 20000 and 

greater than 40000 were pooled and are indicated on the x-axis limits of each graph.  

 
 
 

6.4.3 Ne estimates from empirical data with outlier genotypes removed 
 
The removal of putative outlier genotypes from empirical S. commerson data took nine CA 

iterations before there were no genotypes exceeding the (PC12 +PC22 ) > 2  threshold 

(Figure 6.S6). An order of magnitude increase in eN̂  (Table 6.4) was observed after the first 

iteration, which removed just 33 outliers (0.6% of total number of genotypes). This indicated 

that putative outlier genotypes can significantly bias Ne estimates in empirical data.  
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Table 6.4   Estimates of Ne in S. commerson after CA iterations. The removal of putative 

outliers from nine sequential correspondence analysis (CA) iterations with the cumulative 

number of genotypes removed indicated in brackets and the following estimates of Ne at 

different Pcrit thresholds.  

CA 

iteration 

(removed) 

Pcrit 

0.05 

 

0.02 

 

0.01 

 

0.001 

 

0.0005 

 

0.0001 

 

0.0000 

0 (0) -40163a -799447 79842 17503 3584 503 418 

1 (33) -32062 -117650 90318 112421 55074 4968 5051 

2 (38) -33926 -114426 91549 104569 53546 8082 7947 

3 (51) -34571 -104127 93996 105937 48611 8838 9495 

4 (60) -37447 -99305 86818 113630 51105 133636 171370 

5 (90) -38487 -86051 89982 302878 -448815 -51226 -36471 

6 (119) -35678 -76242 120453 302946 -146528 -38189 -30685 

7 (153) -38909 -75672 101714 610512 -69972 -16082 -16082 

8 (170) -32038 -65015 296541 -795394 -58191 -14132 -14132 

9 (174) -32371 -67105 550582 -420513 -48637 -14059 -14059 
a Negative eN̂  estimates indicate a large undefined Ne . 

 

After the nine CA iterations, 3.2% of samples were removed. Subsequent Ne 

estimates on the cleaned data were negative at all Pcrit thresholds, except when Pcrit was 

0.01 ( eN̂ =550582). This indicated that a Pcrit of 0.01 provided the highest accuracy as it had 

the smallest confidence interval assessed by the fact that it was the only Pcrit value where 

the correlation of alleles between loci was greater than that expected from sampling error. 

At this Pcrit value eN̂  was relatively stable at around 80000 to 100000 until the last two 

iterations with eN̂  increasing to 550582.  When Pcrit  was 0.01, the harmonic mean of eN̂  

across all nine iterations was 110000.  

The lower 95% confidence interval of the Ne  estimates ( lowereN̂ ) from Table 6.4 is 

reported in Table 6.5. The lower confidence intervals appeared to be more stable than the 

estimates provided in Table 6.4 when the Pcrit values were equal to or greater than 0.001. 

The range of lowereN̂ estimates when Pcrit = 0.01 were within 21% of each other with a 

harmonic mean of 24000.  
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Table 6.5   Lower 95% confidence interval ofNe  from S. commerson genotypes. The 

removal of putative outliers from nine correspondence analysis (CA) iterations with the 

cumulative number of genotypes removed indicated in brackets and the following estimates 

of the lower 95% confidence interval ( lowereN̂ ) at different Pcrit thresholds. 

CA 

iteration 

(removed) 

Pcrit 

0.05 

 

0.02 

 

0.01 

 

0.001 

 

0.0005 

 

0.0001 

 

0.0000 

0 (0) 19595 24728      22209 12759      3290 489       406 

1 (33) 22540 30509 22943 26461 17594 1988 2046    

2 (38) 21571 30713 23011 26119 17498 2849 2913 

3 (51) 21232 31541 23144 33737      25337 7606 8131 

4 (60) 20110 31970 22720 26879 16904 16696 14799 

5 (90) 19615 33487 22809 42238 60094 -271390 a     -83353    

6 (119) 20379 35118 24305 29804 53307 -98902     -59311   

7 (153) 19174 34947 23471 31098 80748 -35452 -35453 

8 (170) 21646 37832 27703 36446 151392 -23066 -23066 

9 (174) 21445 37064 28922 35858 -615338 -23260 -23260 
a Negative eN̂  estimates indicate a large undefined Ne . 

 

6.4.4 Ne estimates from empirical data with outlier genotypes removed and 
genotypes from non-target species added 
 
Adding non-target species (grey mackerel, S. semifasciatus) to the ‘cleaned’ S. commerson 

data significantly reduced Ne estimates (Table 6.6).  Considering the total sample size was 

5413, the results clearly show that only a small proportion of non-target species can have a 

large impact on linkage disequilibrium estimates of Ne. For example, adding as few as eight 

(0.15%) S. semifasciatus genotypes resulted in a 5.7 fold reduction in eN̂  when Pcrit =0.01. 

All of the 200 non-target grey mackerel genotypes were identified and removed by the first 

iteration of CA analysis compared to the nine iterations that were required with the empirical 

data (Table 6.4). This suggests that the putative outliers in the empirical data were more 

similar to S. commerson than S. semifasciatus.  

 The S. semifasciatus samples did not amplify at loci SCA47 and SCA49. Removing all 

genotypes in the empirical data that did not amplify at these two loci produced a similar eN̂  
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profile to Table 6.3, indicating that S. semifasciatus cannot be solely implicated in the 

anomaly between the simulated and empirical data. 

 

Table 6.6   Effect of S. commerson Ne estimates when adding non-target species. Starting 

with S. commerson data with 174 outliers removed by nine CA iterations, Ne  estimates at 

different Pcrit thresholds were determined after progressive addition of grey mackerel (S. 

semifasciatus) genotypes.   

Grey	
  

mackerel	
  

genotypes	
  

added	
  

Pcrit	
  

0.05	
  

	
  

0.02	
  

	
  

0.01	
  

	
  

0.001	
  

	
  

0.0005	
  

	
  

0.0001	
  

	
  

0.0000	
  

0	
   -­‐32371	
  a	
   -­‐67105	
   550582	
   -­‐420513	
   -­‐48637	
   -­‐14059	
   -­‐14059	
  

1	
   -­‐32382	
   -­‐67686	
   566612	
   -­‐410564	
   -­‐48310	
   1303	
   1303	
  

2	
   -­‐32315	
   -­‐67583	
   719220	
   -­‐356551	
   -­‐47594	
   1031	
   1031	
  

4	
   -­‐35620	
   -­‐70777	
   159027	
   -­‐966684	
   -­‐50839	
   1138	
   1138	
  

8	
   -­‐36871	
   -­‐79371	
   95957	
   206370	
   3930	
   1179	
   1179	
  

16	
   -­‐37624	
   -­‐94247	
   43218	
   2030	
   1088	
   1238	
   1238	
  

32	
   -­‐45964	
   -­‐1040355	
   16140	
   1104	
   985	
   1233	
   1233	
  

64	
   626218	
   5420	
   2896	
   700	
   776	
   974	
   1014	
  

100	
   23439	
   5946	
   813	
   553	
   654	
   806	
   862	
  

200	
   2189	
   418	
   233	
   376	
   455	
   547	
   620	
  

a	
  Negative	
   eN̂ 	
  estimates	
  indicate	
  a	
  large	
  undefined	
  Ne .	
  

	
  

	
  

6.4.5 Simulation of genetically divergent populations 
 
Ten populations simulated after divergence from a common founder population had average 

pairwise FST values of 0.004, 0.010, 0.027, 0.048 and 0.091 after 100, 200, 500, 1000 and 

2000 generations respectively. With no mixing of the populations during genotype sampling, 

Ne estimates approximated the simulated population size (N=10000, Table 6.7).  
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Table 6.7   Harmonic mean of eN̂  before and after outlier genotypes removed. Harmonic 

mean of eN̂  at two Pcrit thresholds in simulated populations with N=10000 and sample size 

S=5413 containing no immigrants or with 100 genotypes drawn from a single immigrant 

population.  The immigrants are from populations diverging after a different number of 

generations from a common population. The harmonic mean in each column was based on 

n separate eN̂  estimates before and after outlier genotypes were removed using the CA 

algorithm. 

	
   Before	
  outlier	
  genotypes	
  

removed	
  

	
  	
  	
  After	
  outlier	
  genotypes	
  removed	
  

	
   No	
  immigrants	
  

n=10	
  

With	
  immigrants	
  

n=90	
  

No	
  immigrants	
  

n=10	
  

With	
  immigrants	
  

n=90	
  

Generations	
   	
  

Pcrit=0.000	
  

	
   	
   	
  

	
  	
  	
  100	
   9896	
   	
  	
  6236	
   13911	
   17100	
  

	
  	
  200	
   10543	
   	
  	
  3037	
   11947	
   13973	
  

	
  	
  500	
   10029	
   	
  	
  1282	
   11151	
   11558	
  

1000	
   97734	
   	
  	
  	
  	
  571	
   10548	
   11049	
  

2000	
   11834	
   	
  	
  	
  	
  176	
   12359	
   12295	
  

	
   Pcrit=0.010	
   	
   	
   	
  

	
  	
  100	
   10732	
   11096	
   10841	
   11267	
  

	
  	
  200	
   10557	
   10932	
   10670	
   11094	
  

	
  	
  500	
   10211	
   	
  	
  9420	
   10217	
   10003	
  

1000	
   	
  	
  9595	
   	
  	
  7629	
   	
  	
  9691	
   	
  	
  9736	
  

2000	
   10407	
   	
  	
  4456	
   10508	
   10564	
  

	
  

 
Ninety populations with 100 immigrants were created from pairs of the ten divergent 

populations. Across these 90 populations CA analysis found an average (standard 

deviation) of 7 (4), 18 (8), 44 (12), 74 (12) and 93 (6) immigrants after 100, 200, 500, 1000 

and 2000 generations respectively. The average number of CA iterations required before no 

more immigrants could be detected were 3.4, 3.6, 3.6, 3.1, 3.0 after 100, 200, 500, 1000 

and 2000 generations respectively. As a comparison, the program STRUCTURE was not 

able to distinguish the immigrants, even after 2000 generations of divergence. When two 
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populations were specified in STRUCTURE ninety-seven of the 100 immigrants and 47.3% 

of the remaining 5313 samples were partitioned into the same population. This indicated 

that there was not sufficient genetic divergence between the populations to cluster the small 

proportion of immigrants into a separate population. 

In the presence of 100 immigrants, there was a downward bias in eN̂  of the focal 

population for Pcrit values of 0.00 and 0.01 (Table 6.7) as the number of generations of 

divergence increased. After outlier genotypes were removed Ne estimates were more 

consistent with an expected value of N=10000. After outlier (i.e. immigrant) genotypes were 

removed by CA, the smallest bias and highest accuracy of Ne occurred when Pcrit =0.01. 

 

	
  

6.5 Discussion 
 

Palstra and Ruzzante (2011) urged further theoretical developments in order to avoid a 

downward bias in estimating linkage disequilibrium Ne in naturally-occurring 

metapopulations. The results have demonstrated that under certain circumstances even 

estimates for focal populations can be downwardly biased. It is believed that this bias 

amongst the samples taken for estimation could be due to the presence of 1) non-target-

species and 2) immigrant genotypes from diverged populations. Importantly, only a few 

‘contaminant’ genotypes can severely bias Ne estimates. The contaminant genotypes are 

not at equilibrium in the recipient population, so the results from this study are not in 

disagreement with a study showing that linkage disequilibrium estimates of effective 

population size are robust to equilibrium migration (Waples and England, 2011).  

The correspondence analysis algorithm (CA) performed well in identifying and 

removing non-target genotypes that were added to simulated population samples. Standard 

methods of population clustering such as STRUCTURE (Pritchard et al., 2000), were 

incapable of identifying the simulated immigrants. The threshold value of 2 used in the CA 

algorithm was developed by trial and error as a reasonable threshold to exclude outlier 

genotypes without removing too many target population genotypes. A series of scatter plots 

on principal coordinates is shown after each iteration of removing outliers on the threshold 

(Figure 6.S6).  The pattern in this series was typical for many of the simulation runs where a 

final cluster of points becomes clearly visible. As expected, as the FST between non-target 

and the target populations decreased, it was more difficult to detect the non-target 

genotypes. Further development is required to test and refine the CA algorithm under a 
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broader range of allele frequencies and number of loci. The general message is that it is 

worthwhile to detect and remove putative non-target genotypes prior to LDNE analysis. 

The simulated divergent populations were implemented using a simple Wright-Fisher 

model with mating modified such that gametes were chosen from populations having equal 

numbers in each sex. This model was used by Waples (2006) however many other models 

could have been used including those with mutation and selection (Der et al., 2011). These 

additional processes would cause a larger divergence at the same number of generations 

compared to the simple genetic drift model used in the study.  

The investigation suggests that mackerel genotypes collected around Darwin 

contained a small proportion from genetically divergent S. commerson population(s) or from 

congeneric species.  It is possible that tissue samples of closely related species were taken 

inadvertently thus mimicking an admixed S. commerson population. The 100 grey mackerel 

(S. semifasciatus) samples amplified at 5 of the 7 loci used in this study, while another 

closely related endemic species (Scomberomorus queenslandicus) amplifies at all the 7 loci 

(unpublished data). The fact that all grey mackerel genotypes were successfully removed by 

the correspondence analysis method does indicate that the method works well when non-

target species are implicated. It would be expected to have intermediate results when 

populations are at varying levels of population divergence as indicated by simulations in this 

study.  

No genotyping errors were assumed when estimating linkage disequilibrium, although 

pre-screening of the data resulted in one locus being removed due to a deviation from 

Hardy Weinberg equilibrium. While this deviation might indicate the presence of a null allele 

error there could be other errors such as allelic dropout errors. Random dropout errors are 

not expected to change the expectation of linkage disequilibrium estimates nor the outcome 

of the expected Ne estimate.  

Assuming that all samples represented S. commerson, it is likely that the population 

adjacent to Darwin is an admixed population containing small numbers of individuals from 

genetically distinct populations. These individuals could also have been transient vagrants 

of genetically distinct populations of S. commerson (Sulaiman and Ovenden, 2010; Fauvelot 

and Borsa, 2011) that were sampled in the same geographical region. The hypothesis that a 

small (rather than large) number of immigrant genotypes were present in the empirical 

genotypes is supported by the observations that (a) most adults in a mark-recapture study 

were found to move less than 100km per year parallel to the shore (Buckworth et al., 2012)   

and (b) isotope signatures in the sagittal otolith carbonate of S. commerson indicated spatial 

separation across northern Australia (Newman et al., 2009). 
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In the S. commerson data it was very difficult to get a precise estimate of eN̂ . Before 

‘cleaning’ the data with CA, Ne estimates varied at different Pcrit levels including some 

negative estimates of Ne. Using a Pcrit value of 0.01 the likely eN̂  seems very large with an 

estimate of 110000 from empirical data. This estimate was believed to be unreliable as 

inferred from the lack of sufficiency of the data when estimating the mean Ne with 

N=600000 (Figure 6.S4).   

Negative estimates of Ne  are counter-intuitive and indicate that the true Ne is large 

and undefined.  Waples and Do (2010) point out that even if the Ne  estimate is negative, if 

adequate data is available the lower bound of the confidence interval may be finite and can 

provide useful information. This finding was also supported by the simulations with large N 

values where the lower 95% confidence interval for S. commerson appears to be much 

more stable than the estimate and upper limits. Using a Pcrit value of 0.01, the lower 95% 

confidence interval gave a harmonic mean of eN̂ =24000 from empirical data. More loci 

could be used to achieve more precise estimates of Ne. However there was sufficiency in 

the data to detect Ne when N=30000 (Figure 6.S3, Pcrit=0.01). There was also sufficiency in 

the data when estimating the lower 95% confidence of Ne with N=60000 giving 

lowereN̂ =22188 (Figure 6.S5, Pcrit =0.01). It was concluded from these simulations that the 

empirical lowerNe  estimate of 24000 is reasonably reliable. In ecological terms 24000 

represents a large and stable genetic population size and it would be expected to reach a 

similar conclusion with the addition of more loci. 

This study was primarily focussed on the bias in the linkage disequilibrium estimation 

of Ne when a population may include genetically divergent conspecifics. There are many 

other approaches used to estimate Ne that have different underlying assumptions (Barker, 

2011) and which should be evaluated as being suitable for the estimation of Ne in large, 

naturally-occurring populations. A natural progression in this area of research is to develop 

inferences of census population sizes based on effective size estimates (Palstra and 

Ruzzante, 2008) and how these could be used to assist management of natural resource 

species. 

 

6.6 Conclusion 
 
Realistic simulations have shown that it is possible to make effective population size 

estimates using the linkage disequilibrium method with finite confidence limits up to several 

thousand depending on the number of loci and genotypes assayed. Estimates of effective 
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size made from samples taken from naturally occurring populations need to be treated with 

caution. It is recommend that screening of outliers of the sampled genotypes should be 

undertaken, particularly if the population being studied is sympatric with closely-related 

species, or is possibly receiving immigrants from adjacent populations.  
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6.9 Appendix A – Correspondence analysis 
 

Correspondence analysis R script: The genotype file is presented as a matrix Z having 

columns for each allele within every locus e.g. L1A1, L1A2, L1A3, L2A1, L2A2 indicates the 

data has 5 columns with locus one (L1) having three alleles (A1..A3) and locus two having 

two alleles (A1..A2). For each and every genotype a single row marking the number of 

alleles at each locus and at each allele with values ‘0’ for no alleles, ‘1’ for one 

heterozygous allele or ‘2’ for homozygote alleles. The total count within each locus across 

all alleles should sum to two. 

 

For illustrative purposes only a small Z file with four genotypes will have a format like: 

L1A1, L1A2, L1A3, L2A1, L2A2 

1,0,1,0,2 

1,1,0,1,1 

0,2,0,1,1, 

0,1,1,2,0 

 

The R code modified from Nenadic and Greenacre (2006) converts the incidence matrix to a 

format that can be read and manipulated by R (R Development Core Team 2011) with the 

first two principal components PC1 and PC2 determined as: 

 

Z   <-  data.matrix(Z)                   # convert to matrix   

P   <- Z / sum(Z)                        # proportional contribution 

rm  <- apply(P, 1, sum)                  # sum rows 

cm  <- apply(P, 2, sum)                  # sum columns 

eP  <- rm %*% t(cm)                      # multiply by transpose  

dec <- svd((P - eP) / sqrt(eP))          # singular value decomposition 

PC1 <- dec$u[,1] * dec$d[1] / sqrt(rm)   # Principal component 1       

PC2 <- dec$u[,2] * dec$d[2] / sqrt(rm)   # Principal component 2 
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6.10 Supplementary information 

6.10.1 Genotype methods 
 
Tissue samples were taken from fish and stored in 90% ethanol or a saturated NaCl2 

solution containing 20% dimethyl sulphate. In total, 5413 genotypes from seven polymorphic 

microsatellite loci were collected between 2003 and 2006. 

Samples were genotyped with seven di-nucleotide microsatellite loci; 90RTE (Van 

Herwerden et al., 2000), SCA8, SCA30, SCA47, SCA49 (Gold et al., 2002), SM3 (GenBank 

AY700810.1) and SM37 (GenBank AY700844.1). Genomic DNA was extracted using the 

salting-out method (Sambrook et al., 1989). Microsatellite amplifications for the seven loci 

were performed in four multiplexed reactions in 96-well plates using Perkin Elmer (Waltham, 

MA, U.S.A.) 9600 and 9700 series thermocyclers. The PCR volume per well was six 

microliters with QIAGEN®  (Hilden, Germany) master mix (containing Taq polymerase and 

magnesium chloride) and QIAGEN®  (Hilden, Germany) Q-solution was used to facilitate 

multiplexing. Mineral oil was used to control evaporation during cycling. Cycling conditions 

consisted of denaturation at 95°C for 15 min, followed by 37 cycles of 94°C for 30 sec at 

56°C for 45 sec and 72°C for 1 min 30 sec. A final extension at 72°C for 45 min was used to 

ensure complete addition of adenine to the PCR product. Microsatellite gel separation and 

scoring was performed on a Life Technologies™ (Carlsbad, CA, U.S.A.) ABI™ 3130xl 

Genetic Analyser. Life Technologies™ Genemapper™ 3.7 software was used to score 

alleles, to assign them to bin classes and export genotype information for subsequent 

analyses.  

Empirical data was tested for deviations from Hardy-Weinberg equilibrium (HWE) and 

linkage disequilibrium using Genepop-on-the-web v4.0.10 (Rousset, 2008). For HWE tests, 

all locus x population combinations were tested. Tests for linkage disequilibrium considered 

all combinations of locus pairs for each population. Tests were made with successively larger 

batch sizes in Genepop until a stable result was obtained. Bonferroni corrections for 

simultaneous tests were applied commencing with an α level of 0.05. The software 

Microchecker (Van Oosterhout et al., 2004) was used to examine cases of deviation for 

Hardy-Weinberg equilibrium for microsatellite data. Microsatellite data was analysed in blocks 

of less than 500 samples to avoid the upper limit of the Microchecker software. 
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6.10.2 Genotype results 
 
Average observed heterozygosity across seven microsatellite loci was 0.762 and the 

average expected heterozygosity was 0.802. Tests for Hardy-Weinberg equilibrium rejected 

the null hypothesis for all seven loci. Locus-by-locus analysis with Microchecker showed 

that for some alleles there was a difference in the observed and expected number of 

homozygotes, inferring null alleles may be present. Nulls were predicted by the software at 

loci Sca49 and Sca47 at frequencies ranging from 0.03 to 0.09, and nulls were detected at 

lower frequencies at some other loci. Graphical representation by Microchecker of the 

observed and expected frequency of heterozygotes, plotted against the number of base 

pairs separating the two alleles, revealed a deficit in heterozygotes when alleles were 

separated by two base pairs and a compensatory increase in the observed number of 

homozygotes (Figure 6.S7). This could be explained by a slight scoring error, which may 

have been responsible for the null allele predictions made by Microchecker and which may 

have been compounded by large sample sizes in the HWE tests. Wakefield (2010) confirms 

that rejection of the null hypothesis using conventional p-values is more likely when sample 

sizes are large and recommends a Bayesian framework in these cases. Thus, a small 

proportion of heterozygote genotypes were underrepresented in the microsatellite data. 

There was unlikely to be a systematic bias in the microsatellite data, as the controlling factor 

in their omission was similarity in allele size, which should occur evenly across alleles 

independent of their frequency or size, and across samples independent of biological 

factors.  

 

6.10.3 Simulation Results 
 
Figures 6.S1 to 6.S6 are refered to within the main manuscript. Briefly the frequency 

distribution of Ne estimates is a good indicator of the precision obtained from the seven 

polymorphic loci used in this study. Ideally a tight cluster of Ne estimates is desirable 

(Figure 6.S1, Pcrit=0.01). When there is insufficient genotype data negative and or very 

large estimates can occur (Figure 6.S4). The lower 95% confidence interval of Ne (Figure 

6.S5) was less variable than the mean expectation (Figure 6.S5).  
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Figure 6.S1   Frequency of 10000 Ne estimates when simulating a population size of 

N=100 at different Pcrit values.  
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Figure 6.S2   Frequency of 10000 Ne estimates when simulating a population size of 

N=1000 at different Pcrit values.  
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Figure 6.S3   Frequency of 10000 Ne estimates when simulating a population size of 

N=30000 at different Pcrit values.  The frequency of all Ne estimates less than 100000 and 

greater than 100000 were pooled and are indicated on the x-axis limits of each graph. 
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Figure 6.S4   Frequency of 10000 Ne estimates when simulating a population size of 

N=60000 at different Pcrit values.  The frequency of all Ne estimates less than 100000 and 

greater than 100000 were pooled and are indicated on the x-axis limits of each graph. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 160 

Figure 6.S5   Frequency of lower 95% confidence interval of eN̂  from 10000 estimates when 

simulating a population size of N=60000 at different Pcrit values.  The frequency of all Ne 

estimates less than 100000 and greater than 100000 were pooled and are indicated on the 

x-axis limits of each graph. 
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Figure 6.S6   Correspondence analysis plots after nine iterations of removing outliers in the 

empirical mackerel data that satisfied the threshold (PC12 +PC22 ) > 2  where PC1 and PC2 

are the first and second principal components. Iterative steps are from top left to right 

moving down rows. The last plot shows a cluster ball of genotypes after removing 116 

genotypes from 5413 genotypes. One more iteration (not shown) removed 4 additional 

points. 
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Figure 6.S7. Graphical output from Microchecker software showing observed (X) and 

expected (red vertical bars) frequency of homozygotes (left panel) and heterozygotes (right 

panel) for 500 genotypes from 2004 collected adjacent to Darwin. 
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Chapter 7 
 

Discussion - genetic markers applied to fish 

populations 
 

 

Macbeth GM  
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The research results have been discussed in detail and compared with relevant literature at 

the end of Chapters 2 to 6.  More broadly genetic markers have been usefully applied and 

their utility extended by this research. During the course of this PhD I have been able to 

explore new and novel ways of applying genetic markers to solve practical problems. I 

believe the future role of genetic markers applied to monitoring wild fishery stocks and 

domesticating stocks for aquaculture will expand even further to support global food 

security.  

 

7.1 Major findings and implications 
 

The major findings and implications discussed in this thesis on improving the utility of 

genetic markers in fish populations include: 

• Genetic markers can be used at the onset of a fish breeding program to improve 

genetic gains for growth by an impressive 40% during a two year implementation 

phase.  This improvement in growth is commercially significant and would take an 

estimated nine to 22 years to achieve in barramundi (L. calcarifer) using traditional 

selection methodology. 

• Genetic markers can be used to determine rapid estimates of genotype by 

environmental (GxE) interactions in aquaculture populations. Rapid estimates of GxE 

are essential for the economic evaluation of national fish breeding programs where 

fish are grown under a different set of growing conditions. Rapid estimates of GxE 

are also useful in assessing new feed formulations.  

• Genetic markers can be used to determine individual matches which are facilitated 

by the simultaneous estimation of Type I and Type II errors. The number of pairwise 

comparisons can increase by 80% compared to discarding genotypes with missing 

data. Wildlife forensic studies can now utilise more data in their studies as a result of 

this significant development. 

• Genetic markers can be used to determine finite estimates of the number of wild fish 

in a fishing zone and the proportion of those fish caught (catchability). Catchability 

estimates have been used in stock assessment but the estimation of this parameter 

has been difficult to achieve using traditional catch data statistics. As many wild fish 

populations are increasingly being over-exploited this improved methodology offers a 

new effective monitoring tool for fisheries management. 

• Effective population size is a measure of the health of breeding populations and is 

related to abundance. Genetic markers can be used to estimate effective population 
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size in wild fish populations.  The simulations conclusively demonstrated that the LD 

method was highly sensitive to low numbers of transient individuals from spatially 

and genetically distinct populations being sampled within the local population being 

studied. Methods were devised to remove transient genotypes from Spanish 

mackerel data which then enabled finite estimates of the lower confidence limit of 

effective population size to be determined.   

 

7.2 Caveats and future research 
7.2.1 Caveats and future research - Chapter 2 

A novel breeding program for improved growth in barramundi Lates 

calcarifer (Bloch) using foundation stock from progeny-tested parents. 
 

Genetic markers were used in this study as a means of identifying the sires of progeny 

genotyped.  While the method of genotype analysis was not specified it is likely that 

microsatellite markers or SNP markers would be used for sire identification. Microsatellite 

markers have been extensively used for parentage assignment (Webster et al., 2000; 

Visscher et al., 2002). More recently SNP markers are gaining interest due to their 

abundance, low genotype error rates and potential for automation (Heaton et al., 2002; 

Fernandez et al., 2013; Anderson and Garza 2006). Other emerging genetic marker 

technologies may be used to identify the sires as this will have no bearing on the outcome 

of this study. As the dam and all sires can be genotyped it is a relatively straight forward 

task to identify the sires of each fish genotyped. 

The quantitative genetic theory used in this study is well understood, proven over time 

and robust. Using a binary threshold to estimate breeding values for growth rate may have 

some critics. For example, not getting sufficient family representation in the top fish 

genotyped is one such criticism. This is not seen as a problem as only the best sires need 

to be identified for the proposed rapid genetic gains to be realised. 

One assumption in the model is that all sires are unrelated. In reality when collecting 

and storing semen from wild males no guarantee can be made that the males are all 

unrelated. To reduce the risk of relatedness between samples the males could be collected 

over multiple spawning seasons during which milt from males can be harvested and at 

different locations (Figure 7.1). The locations were based on different estuary systems with 

evidence of genetic divergence (Jerry et al., 2013) with the locations also having vehicle 

access for transport of live fish.  As reviewed in Chapter 1 the use genetic markers for 

relationship estimation may improve the accuracy of variance component estimation. 



 166 

Likewise in trials that include semen from existing breeding programs the pedigree structure 

should be included in the analysis. This would mean that a program like ASREML (Gilmour 

2001) would be required which utilises the numerator relationship matrix for variance 

component estimation. 

 

Figure 7.1 Suggested locations for wild males and milt to be collected within Australia. 
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In practice, one difficulty in setting up a breeding program in barramundi is controlling 

sex reversal from males to females. In caged barramundi 45% had changed sex within 3 

years of age (Guiguen et al., 1994) while sex reversal may occur as early as two years of 

age (Davis, 1982; Moore, 1979). With adequate redundancy in breeding stock rapid gains 

through selective breeding may be a challenge but achievable. The potential risks inherent 

to the managment of a distinct breeding strategy, such as male broodstock changing sex to 

females prior to contributing to the next generation, must be carefully considered, and are 

ideally accompanied by a risk management strategy which might for example foresee to 

keep cryopreserved milt of stock from current generations.  

A current focus of research is controlling sex reversal in barramundi. As more data 

becomes available on sex reversal in barramundi under different environments it may, in 

future, be possible to calculate the necessary redundancy that may be required to ensure 

the required crosses between given family lines can be achieved. These mating designs are 
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important to sustain low levels of inbreeding to ensure continued genetic progress can be 

made in future generations. 

 

7.2.2 Caveats and future research - Chapter 3 

Rapid assessment of genotype by environmental interactions and 

heritability for growth rate in aquaculture species using in vitro 

fertilisation and DNA tagging. 
 

Similar to Chapter 2 genetic markers to identify sires of fish from an artificial mating design 

using cryopreserved sperm to fertilise eggs from a single female is simulated. In this design 

however fish are randomly allocated in two different environments to assess genotype by 

environmental interactions (GxE).  These GxE interactions are important. For example if fish 

are selected for breeding (e.g. for fast growth rate) in one environment and the fish from the 

breeding program are commercially grown in a second environment then the GxE will 

determine what proportion of genetic gains expected from the breeding program are 

expressed in the second environment. 

The design which assumed equal heritability between environments allowed a simple 

univariate model which improved computer performance compared to bivariate analysis 

requiring the numerator relationship matrix (Faux and Gengler, 2013). This significant 

improvement in speed allowed simulations to be conducted in a timely manner. When 

analysing real experimental data a bivariate analysis would be recommended so that any 

potential difference in heritability between environments could be assessed. 

The univariate analysis created an unforseen problem when analysing phenotypic 

data. For example in a design with only one dam and multiple sires it was important to 

include a scaling effect term in the statistical model. If the fixed term for environment is not 

in the statistical model the genetic sire variance between environments is inflated by the 

differences in the maternal genetic effect in each environment. As a test when using a full-

factorial design with 50 dams no scaling effect was necessary as the average expectation of 

the maternal genetic effects within each environment were approximately equal. In practice 

the scaling effect of growth performance between environments can also be caused by non-

genetic environmental effects. The caveat is that the univariate analysis of phenotypic data 

should always include a fixed effect term for environment in the model even if multiple dams 

are used. The fixed effect term for environment is not required in binomial data as scaling 

effects of performance are not observed.  
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Rapid estimates of GxE interactions have practical applications in assessing the effect of 

selection response not only in different physical environments but also to new formulated 

feeds. The replacement of fishmeal with land-based feeds is an important area of research 

(Rossi et al., 2013) not only for economic reasons but to reduce the environmental impact of 

fishmeal replacement. This study has the potential to assist in future research to improve 

the environmental sustainability of aquaculture. 

 

 

 7.2.3 Caveats and future research - Chapter 4 

Likelihood-based genetic mark–recapture estimates when genotype 

samples are incomplete and contain typing errors.   
 

As applied in Chapters 2 and 3 the use of genetic markers to identify sires is relatively 

straight forward. A difficulty arises when genotype samples are collected in the field under 

harsh tropical conditions with degraded DNA. Microsatellite markers are prone to loosing 

data in the form of null alleles artificially increasing the number of homozygotes where one 

allele drops out or in the case of two allele dropouts at a given locus forming a missing data 

point at that locus. The motivation for this study was to determine recaptures in Spanish 

mackerel (S. commerson) from microsatellite markers (Chapter 5) but before that could be 

achieved the mathematical theory had to be developed.  

Testing of the theory led to the development of the program called SHAZA (Macbeth et 

al., 2011) where the writer’s skills in computer programming were employed. In wildlife 

forensics budgets are typically constrained so all data should be utilised whenever possible. 

Unless there are valid statistical reasons, missing data should not be disregarded. The new 

methodology implemented in SHAZA allows all genotypes available to be implemented in 

genetic identification studies. 

There are two potential caveats in SHAZA. The first is the assumption of an outbred 

population. As mentioned earlier this could be alleviated by fixing the number of Type I 

errors to a conservatively low level (e.g. V=0.01). It was also mentioned that if a kinship 

structure of a population is known then the ratio of Type I and Type II errors could be 

adjusted to provide unbiased estimates of recaptures. Knowing that false positives increase 

with an increased relationship structure in populations it is probably worthy of further 

research to investigate a new method that can estimate the proportion of full-sibs and 

possibly the proportion of half-sibs in genotype data (4.11 Appendix II – Percentage sibship 
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estimation). This area of research seems rewarding as sibship estimates can be determined 

from genotype data which does not have sufficient genotype information to assign individual 

relationships which standard sibship analysis require (Wang, 2004).  

The second caveat is that SHAZA corrects for missing data assuming an underlying 

binomial distribution using equation 4.5. This has shown to work extremely well when the 

chance of finding a recapture is low. For example the total number of pairwise comparisons 

with given sample size in D is: D(D-1)/2. When the number of recaptures is greater than D 

the binomial assumption starts to break down as clusters of recaptures form. This aspect 

needs more research and in practice has occurred in a study involving scat samples where 

genetic matches (‘recaptures’) were common. 

 
7.2.4 Caveats and future research - Chapter 5 

How many fish under the boat? Estimating abundance of narrow-

barred Spanish mackerel (Scomberomorus commerson) using a 

genetic mark-recapture approach. 
 

The theory developed in Chapter 4 is applied with real data using narrow-barred Spanish 

mackerel (S. commerson) genotypes. The microsatellite genotypes were collected in harsh 

field conditions where null alleles were common. The program SHAZA retrieved 80% more 

pairwise markers than what would have been achieved by disregarding genotypes will null 

alleles. 

As a caveat of this study an assumption was made that the population was outbred. 

Apart from the large effective population size of Spanish mackerel (Macbeth et al., 2012) 

there is some additional evidence that suggests that the Spanish mackerel population is 

indeed an outbred population with few full-sibs. All of the 113 putative paired matches 

detected by SHAZA were within the same bag with the first known false positive (between 

bag match) occurring at the 128th highest likelihood ranked match. When estimating 

recaptures ( R̂ ) between fins from different collection bags it would be expected that R̂  

would approximate the defined cumulative false positive sum (V). When matching 

genotypes between sample bags and setting the false positive threshold to V=10 or V= 20 

the corrected number of recaptures ( R̂ ) were 10.3 and 21.7 matches respectively. This 

provides support that the model was working as expected with RV ˆ≈  when no true 

recaptures were present. If there were many full-sib relationships in the data the expectation 
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is that R̂  would have been much larger than V and therefore it seems reasonable to 

suggest that Spanish mackerel genotypes were sampled from an outbred population. 

To be more precise the estimate of abundance in this study reflects the abundance of 

wild feeding fish as there is no way of estimating the percentage of non-feeding fish.  

In future it may be possible to estimate fish density however more research is required to 

estimate the width of the swept area during sampling which is currently unknown. 

It remains to be seen if the cumulative cost of estimating abundance using genetic 

mark-recapture methods could be better spent on genome sequencing the commercial 

species of interest so that accurate estimates of linkage disequilibrium effective population 

size can be determined. 
 

 

7.2.5 Caveats and future research - Chapter 6 

Linkage disequilibrium estimation of effective population size in 

Spanish mackerel (Scomberomorus commerson) with immigrants from 

divergent populations. 
 

The limitations of estimating effective population size was tested in real data with seven 

polymorphic microsatellite loci. With the large population size of Spanish mackerel it was 

difficult to find finite confidence limits with the seven polymorphic loci used in this study. 

Although finite estimates of the lower 95% confidence interval were obtained the number of 

polymorphic loci were too few to determine finite estimates of the mean expectation and 

upper 95% confidence interval.  

In future, single base pair mutations at a specific locus, called SNP markers, will be 

more likely to produce finite estimates of effective population size with much larger 

population sizes. This is because SNP markers are more plentiful, despite them not being 

as polymorphic as microsatellite data. The limitations of this study need to be studied further 

with future research investigating the limits of precision when using more loci. It is clear that 

future LD estimates of effective population size will use more markers.  

 

While too expensive for current wildlife studies the future direction can be seen in species 

that have the full genome sequenced with contemporary and historical estimates of effective 
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population estimated. Historical estimates are possible as the crossovers along the 

chromosome during meiosis are less likely to occur close to each other than further along 

the chromosome (Badke et al., 2012; Kim and Kirkpatrick, 2009) with closely linked markers 

likely to be more correlated in large populations (Waples, 2006). Also Hill (1981) suggested 

that linkage disequilibrium estimates of effective population size from closely linked markers 

would reflect ancient population history. Using SNP markers that are different distances 

from each other along the genome it is possible to estimate historical effective population 

over different time periods. This has been demonstrated in dairy cattle (Kim and Kirkpatrick, 

2009; Shin et al., 2013), Swiss cattle (Flury et al., 2010), equine data (Corbin, 2012) and 

humans (Li and Durbin, 2011).  Historical estimates would reflect carrying capacity 

estimates of the fishery ecosystem with future research potentially able to estimate 

maximum sustainable yields under simulated fish stock recovery programs. 

Entire genome sequences are still not feasible in most fisheries applications and 

microsatellite markers are still expected to dominate linkage disequilibrium estimates of 

effective population size in the immediate future.  The prospect of using genome wide 

estimates for fisheries management in high valued fisheries seems inevitable. The caveat is 

that effective population size is not a direct estimate of abundance and the relationship 

between them is still an area of active research (Waples et al., 2014, Dudgeon and 

Ovenden, 2015). 
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7.3 Conclusions 

 

Genetic markers are a versatile tool in aquaculture and fisheries management. In the 

relatively short period of this PhD the utility of genetic markers have been developed and 

improved in a number of practical applications applied to fish populations. These 

applications covering selective breeding, variance component estimation (genetic 

correlations and heritability), improvements in genotype assignment of individuals, new 

methods of wild fisheries abundance estimates and improving the accuracy of effective 

population size estimates. The improvements made in the utility of genetic markers during 

this PhD is evidence that genetic marker research has not matured and that there is much 

scope for future research. This future appears strong as the growing applications of genetic 

markers in aquaculture and fisheries will continue to develop as the cost of genotyping falls. 

 

Some areas where future research can be directed include: 

(i) following up on the theory of achieving a predicted 40% improvement in growth rate 

in barramundi (L. calcarifer) and putting the design into practice,  

(ii) the estimation of the percentage of full sibs, and possibly half sibs, in populations 

using false positive counts from likelihood pairwise matches (Figure 4.6),  

(iii) the development of the SHAZA program to include simultaneous estimates of 

pedigree relationships and recapture estimates by implementing theory developed in 

area (ii) above,  

(iv) investigate the feasibility of estimating fish density using the genetic mark-recapture 

abundance estimates,  

(v) power testing of the linkage disequilibrium estimation of effective population size with 

large population sizes and more genotype data to determine finite upper limits of 

effective population size and  

(vi) using historical effective population size estimates as an estimate of maximum 

carrying capacity with inferences on maximum sustainable yield.  
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