
Kohei Marumo∗ and Rodney C. Wolff†

On optimal smoothing of density estimators obtained from orthogonal
polynomial expansion methods‡

July 9, 2015

Abstract

We discuss the application of orthogonal polynomial to estimation
of probability density functions, particularly for accessing features of
a portfolio’s profit/loss distribution. Such expansions are given by
the sum of known orthogonal polynomials multiplied by an associated
weight function.

However, näıve applications of expansion methods are flawed. The
shape of the estimator’s tail can undulate, under the influence of the
constituent polynomials in the expansion, and can even exhibit regions
of negative density.

This paper presents techniques to redeem these flaws and to improve
quality of risk estimation. We show that by targeting a smooth density
which is sufficiently close to the target density, we can obtain expansion-
based estimators which do not have the shortcomings of equivalent näıve
estimators. In particular, we apply optimisation and smoothing tech-
niques which place greater weight on the tails than the body of the
distribution.

Numerical examples using both real and simulated data illustrate
our approach. We further outline how our techniques can apply to a
wide class of expansion methods, and indicate opportunities to extend
to the multivariate case, where distributions of individual component
risk factors in a portfolio can be accessed for the purpose of risk man-
agement.
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1 Introduction

The measurement of risk in financial portfolios is critical in the current reg-
ulatory (Basel Committee, 2013) and operating (McAleer et al., 2013) envi-
ronments. From a statistical point of view, methods of quantifying such risk
amount to estimating quantiles, or similar, of the profit or loss (PL) distribu-
tion for the portfolio. Specifically, the two most commonly used risk measures,
Value at Risk (VaR) and Expected Shortfall (ES), are defined, respectively, as
a quantile of the PL distribution, and the expected loss given that the loss
exceeds the VaR.

In practice, methods for risk measurement can be classified into two cate-
gories. One is the use of parametric models for risk factors, and the other is
the non-parametric methods, typically the Historical Simulation (HS) method.
See, for example, Jorion (2007), Mina and Xiao (2001) and Duffie and Pan
(1997). A range of academic literature is devoted to discussing parametric
models for expressing the dynamics of risk factors and their distributions, as
well as methods for estimating the relevant parameters, while the articles dis-
cussing HS and other non-parametric methods are relatively limited. This is
an interesting contrast to the strong popularity of the HS method among com-
mercial banks pointed out by Pérignon and Smith (2010). They attribute this
popularity of the HS method over the parametric methods to the following:
Firstly, risk aggregation is much easier with the HS method than with para-
metric models; secondly, the HS method, which implicitly uses the empirical
distribution of the risk factors, is less likely to be exposed to large estimation
error and model risk; and third, since the HS method is concerned with the un-
conditional distribution of risk factors, the risk measures calculated using the
HS method are less volatile than when using parametric models that consider
the conditional distributions. The third point can be understood as a dislike
of the practical difficulty in allocating the capital to a volatile risk measure,
even when the underlying model is considered to be ‘good’ in some sense.

Despite its popularity, however, the HS method can suffer from insufficiency
of historical observations, especially in the tails of the distribution, where the
observations are sparse. This often causes striking discreteness in the empirical
distribution function which is undesirable in risk measurement. Hence, we
desire a smooth function that approximates the empirical distribution function.
This is one of the motivations in this paper.

Having mentioned the popularity of the HS method, we are aware of the
importance of the parametric methods. For instance, some financial products
may not have enough historical data for the HS method, due to the illiquidity of
the market or short history of the products. In such cases, we may need to turn
to parametric models that allow us to fill the insufficiency in the information
by model assumptions. Further, it is often pointed out that the HS method
does not have a solution for the time aggregation problem: this problem can
be addressed by using parametric models.

Among many parametric models, the use of the Normal distribution is still
common in practice1, despite its shortcomings such as the thin tails pointed

1In fact, many recent text books mention the use of the Normal distribution. See, for
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out by many authors. The reason can be its tractability; rough approximations
for risk aggregations can be obtained by the Delta-Normal method.

In the present paper, we examine Hermite expansions as a method which
not only can produce a smooth function that approximates the empirical distri-
bution function but is also capable of approximating the distribution function
in the case of parametric models. Specifically, they can be used for approxi-
mating empirical distributions as well as distributions from parametric models,
such as the Delta-Gamma-Vega-Normal model. Thus, Hermite expansion can
do most of the things that the Normal approximations can do, and moreover,
it is capable of handling heavy tails. Details will be reviewed in the following
sections.

There are other competitive methods besides Hermite expansions which de-
serve comment. If our purpose is limited to smoothing empirical distribution
functions then the first candidate is the kernel methods (Silverman, 1986). Its
unfavourable characteristics, however, include the difficulty in dealing with the
bias-variance tradeoff and the heavy computational load in calculating quan-
tiles. These seriously inhibit its successful application to risk measurement.

The method based on classical extreme value theory is often discussed in the
context of risk measurement (McNeil et al., 2005, chap.7). Its premise is that
the tails of most of the distributions can be approximated by the generalised
Pareto distribution, and thus the tails can be approximated by fitting the
distribution. It is not necessarily straightforward to apply this idea to the risk
aggregation. The tail of the aggregated risk can be largely affected by the
bodies of individual risk factors, while the extreme value theory is focused on
dealing with the tails of distributions, ignoring the bodies.

If we are to concentrate on only the first four moments — the mean, vari-
ance, skewness and kurtosis — Simonato (2011) and Leccadito et al. (2014)
propose the use of the Johnson distribution and a non-linearly transformed
Normal variable, respectively. They demonstrate that their methods can re-
produce risk measures close to those of the jump-diffusion model, which is
chosen as the target. Their results encourage us to limit the input from the
market to the first four moments and to use their methods, when we know
that the market dynamics is reliably described by the jump-diffusion model.
However, for other general situations where we do not know the market dy-
namics, their results suggest that we need more information in order to obtain
more reliable estimators for the risk measures. In particular, Simonato (2011,
Exhibit 10) points out that the risk measures calculated by the Gram-Charlier
series are different from the target by more than 10%, given the same first four
moments. Hence, risk measures can vary by more than 10% depending on the
method employed. Further information such as higher order moments might
reduce this variation. With respect to this point, methods using the Hermite
expansions are capable of handling the higher order moments.

The Hermite expansion expresses a probability density function (pdf) as
an infinite sum of Hermite polynomials multiplied by an associated weight
function, assuming that the infinite sum converges. See Szegö (1975), Jackson

example, Baker and Filbeck (2014, p.267), Bessis (2015, chap.13). Barrieu and Scandolo
(2015) also mention the use of the Delta-Normal method in practice.
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(1963), Freud (1971) and Takahashi (2006) for the theoretical background
of Hermite expansions. Loosely speaking, the Hermite expansion modifies
a Normal approximation to the target distribution by including successive
adjusting terms. Under expectation, the Hermite polynomials in those terms
are linear combinations of moments of the target distribution, assuming that
they exist. The validity of expansion methods depends only on the existence
of moments of the target distribution up to some finite degree.

One of the biggest drawbacks of Hermite expansion methods, however, is
poor approximation quality. The presence of polynomials in the approxima-
tions usually leads to oscillation of the density estimators in the tails, including
exhibiting regions of negative density. This, of course, is a serious issue for ex-
treme quantile estimation, and not least is statistically nonsensical. Further,
the infinite sum can be divergent, or convergence can be very slow, and there-
fore approximation quality can be sensitive to the choice of the order of expan-
sion. Due to these kinds of difficulties, application of expansion methods has
been rather limited. For instance, Marumo and Wolff (2007) apply univariate
expansion methods to approximating the pdfs of asset return distributions.

In the present paper, we introduce techniques to improve the approximation
quality of expansion methods, in terms of addressing both tail behaviour and
convergence. We present an automated procedure which jointly optimises (a)
the fit of the distribution, where greater weight is put on the tails than the
body of the distribution, and (b) smoothness of the estimator, in terms of
curvature. We present numerical examples which show the effectiveness of
these methods, even in adverse cases, using both simulated and real data. Our
approach is a unified method for both smoothed approximations for empirical
distributions (of particular relevance to the HS method) and for distributions
from parametric models. This has application in such situations as where a
bank wishes to use a parametric model for measuring the risk of a certain
asset class — in cases where sufficient historical data are not available — and
to incorporate it into HS-method-based risk measurement.

We acknowledge that greater insight would be obtained by focusing on
multivariate estimation. In the case of PL distributions, obtaining the joint
distribution of possibly dependent and non-linear risk factors would give far
greater insight into how risk is aggregated across component risk factors to
render PL risk. For simplicity of the present exposition, though, we focus on
the univariate case, and note that the extension to multivariate estimation is
described in an as yet unpublished manuscript by Marumo and Wolff (2015).

We further point out that our treatment can easily apply to other expan-
sion methods, such as the Laguerre expansion, whose weight function is the
gamma distribution pdf, and the Chebychev expansion, whose weight func-
tion is the uniform distribution pdf. Thus, respectively, our method can deal
with distributions with semi-infinite and bounded support, as well as doubly-
infinite support. We expect that these expansions can be applied to credit and
operational risk measurement, and to firm-wide risk aggregation. Again, for
simplicity of exposition, we focus on the Hermite expansion.

The structure of this paper is as follows. In Section 2, we review the Hermite
expansion for univariate cases. We describe in Section 3 the methodology to
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improve the approximation quality, in terms of targeting the fit in the tails and
optimising smoothness of the estimator. Numerical examples are presented in
Section 4 and an exposition in the context of risk management is in Section 5.
Concluding remarks are given in Section 6.

2 Background

2.1 Hermite expansions

The series of Hermite polynomials {Hek(x)} is defined as

Hek(x) =
1√
k!

e
x2

2
dk

dxk
e−

x2

2 , k = 0, 1, 2, . . . . (1)

The most important property of this series is that it satisfies∫ ∞
−∞

φ(x)Hek(x)He`(x)dx =

{
0 (k 6= `)

1 (k = `)
, (2)

where φ(x) = e−x
2/2/
√

2π, the pdf of the standard Normal distribution, is the
associated weight function. This property is called orthonormality with respect
to φ. There are some variations for the definition of the Hermite polynomials,
including Hek(x) = ex

2 dk

dxk
e−x

2
, which are orthogonal but may not be necessar-

ily orthonormal. We employ the one expressed in Equation (1) for simplicity,
but parallel discussions can be made with other definitions.

Now consider a pdf f . Assume that f satisfies∫ ∞
−∞

{f(u)− φ(u)
∑∞

k=0 ckHek(u)}2

φ(u)
du = 0 (3)

for some real coefficients c = (c0, c1, . . .). Condition (3) is satisfied if and only
if f is bounded and

f(x) = φ(x)
∞∑
k=0

ckHek(x), (4)

for almost everywhere x, using a standard Lebesgue-type argument. For such
f that satisfies Equation (3), we call the right hand side of Equation (4) the
Hermite expansion of f , and denote it by f(·|c).

For a real function f , the infinite sum in f(x|c) is known to be convergent
for every x if ∫ ∞

−∞

{f(u)}2

φ(u)
du <∞, (5)

that is, if f(x)/
√
φ(x) is square integrable. See, for instance, Takahashi (2006,

p.243). Roughly speaking, such f has to be bounded and have ‘thin’ tails.
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Using Equations (2), (3) and (4), it can be shown that, when the Condition
(5) is satisfied, we have the Hermite expansion f = f(·|c) and that∫ ∞

−∞

{f(u)}2

φ(u)
du =

∞∑
k=0

c2k <∞, (6)

which corresponds to the Parseval identity for the Hermite system. See again
Takahashi (2006, p.244).

For pdfs f whose Hermite expansion is convergent, the coefficients {ck} can
be determined using Equation (2):

ck =

∫ ∞
−∞

Hek(u)f(u)du, k = 0, 1, . . . . (7)

Note that He0(x) ≡ 1 and therefore c0 = 1 is required so that
∫∞
−∞ f(u|c)du = 1

is satisfied.
Let X be a random variable with pdf f . Then, from Equation (7) we have

ck = E(Hek(X)), which is a linear combination of moments of X up to kth
order. This implies that, given the moments E(X), . . . ,E(Xn), Equation (4)
can be approximated by a sum up to finite n:

f(x) ' fn(x|cn) = φ(x)
n∑
k=0

E(Hek(X))Hek(x), (8)

where cn = (E(He0(X)), . . . ,E(Hen(X))). We call such approximation meth-
ods based on Equation (8) expansion methods. As noted in the Introduction,
besides using the Hermite expansion, the Laguerre expansion is sometimes ap-
plied to densities with non-negative support. See Marumo and Wolff (2007)
and Marumo (2007).

2.2 Difficulties in applying expansion methods

One of the biggest drawbacks of the expansion methods is their poor approxi-
mation quality. It is pointed out by Gordy (2002) that näıve use of the Hermite
expansion — plugging the moments of a risk factor into Equation (8) directly
— can result in a very poor approximation.

In fact, expansion methods allow the approximations to take negative val-
ues. Such negative density can become large, especially in the tails, where the
pdf is close to 0.

For cases where the Hermite expansion is convergent, and where conver-
gence is reasonably fast, we increase the order of expansion n in Equation
(8). The Hermite expansion, however, is often divergent or, its convergence
can be very slow. In such cases, the approximation quality is sensitive to the
order of the expansion. Marumo and Wolff (2007) and Jaschke (2002) study
the relationship between the order and the approximation quality; however,
general criteria for determining an optimal order of expansions have not been
proposed, as far as we can determine.

In the remainder of this section, we firstly consider these difficulties care-
fully using an example where we approximate the empirical distribution, and
then introduce techniques to deal with them.
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2.3 Näıve application to approximating empirical dis-
tributions

We outline here the mathematical issues which determine convergence or oth-
erwise of Hermite expansions. These will guide us in constructing our method-
ology in the next section.

Assume that we have i.i.d. samples X1, . . . , XN from a distribution with an
unknown pdf f . A näıve idea would be to use the sample moments to obtain
the coefficients for the expansion. That is, we use the coefficients

ĉk =
1

N

N∑
i=1

Hek(Xi), k = 0, . . . , n

to obtain the estimator of f ,

fn(x|ĉn) = φ(x)
n∑
k=0

ĉkHek(x), (9)

where ĉn = (ĉ0, . . . , ĉn). This approximation often results in a poor quality,
as mentioned above. As shown later, using the sample moments implicitly
assumes that our target distribution is the empirical distribution, whose pdf
can be expressed using the Dirac delta function δ as

fN(x) =
1

N

N∑
i=1

δ(x−Xi).

Since fN(x)/
√
φ(x) is not square integrable, the expansion in Equation (9) is

divergent as n→∞. This means that
∑∞

k=0 ĉ
2
k is also divergent.

To get a clearer view on this point, we consider the distribution function
(df), and verify that it has a convergent Hermite expansion. Using Equations
(1) and (9), we have

Fn(x|ĉn) =

∫ x

−∞
fn(u|ĉn)du = Φ(x) + φ(x)

n∑
k=1

ĉk√
k

Hek−1(x), (10)

where Φ is the df of the standard Normal distribution. Note that c0 = 1. This
corresponds to the näıve approximation for the empirical df.

For the empirical distribution, we have

FN(x) =

∫ x

−∞
fN(u)du =

1

N

N∑
i=1

1{Xi≤x},

where 1{} denotes the indicator function. Now

I0 =

∫ ∞
−∞
{FN(u)− Φ(u)}2/φ(u)du <∞. (11)

To see this, split the integral into three parts: (
∫ −a
−∞+

∫ a
−a +

∫∞
a

){FN(u) −
Φ(u)}2/φ(u)du, for some large a. It is trivial to show that the second integral
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is bounded. For large enough a, we have FN(x) = 0 for x ≤ −a. Since
Φ(x)−φ(x) is decreasing for x ≤ −1 with limx→−∞(Φ(x)−φ(x)) = 0, we have
Φ(x) < φ(x) for x ≤ −1. Therefore,

∫ −a
−∞{0−Φ(u)}2/φ(u)du <

∫ −a
−∞ φ(u)du =

Φ(−a) < ∞ for large a. This proves that the first integral is bounded. By
symmetry, the third integral can be shown to be bounded. Consequently,
FN(x)− Φ(x) has a convergent Hermite expansion of the form

FN(x)− Φ(x) = φ(x)
∞∑
k=1

dkHek−1(x), (12)

where {dk} are real coefficients. We show that these coefficients are given by
dk = ĉk/

√
k as follows.

By applying Equation (7) to FN(x)− Φ(x), for fixed N , we have that

dk =

∫ ∞
−∞

Hek−1(u)
{
FN(x)− Φ(x)

}
du

=

∫ ∞
−∞

Hek−1(u)
1

N

N∑
i=1

{
1{Xi≤u} − Φ(u)

}
du

=
1

N

N∑
i=1

∫ ∞
−∞

Hek−1(u)
{
1{Xi≤u} − Φ(u)

}
du,

where Fubini’s condition∫ ∞
−∞

N∑
i=1

∣∣∣∣∣Hek−1(u)
N∑
i=1

{
1{Xi≤u} − Φ(u)

}∣∣∣∣∣ du <∞
is satisfied. Now∫ ∞

−∞
Hek−1(u)

{
1{Xi≤u} − Φ(u)

}
du

=

∫ Xi

−∞
Hek−1(u) {−Φ(u)} du+

∫ ∞
Xi

Hek−1(u) {1− Φ(u)} du

=

[
Hek(u)√

k
Φ(u)

]Xi

−∞
−
∫ Xi

−∞

Hek(u)√
k

φ(u)du

+

[
−Hek(u)√

k
{1− Φ(u)}

]∞
Xi

−
∫ ∞
Xi

Hek(u)√
k

φ(u)du

=
Hek(Xi)√

k
−
∫ ∞
−∞

Hek(u)√
k

φ(u)du

=
Hek(Xi)√

k
− 0,

where we use the identity Hek−1(u) = −He′k(u)/
√
k. These verify that

FN(x) = Φ(x) + φ(x)
∞∑
k=1

ĉk√
k

Hek−1(x) = lim
n→∞

Fn(x|ĉn). (13)

8



Therefore, the näıve approximation for the df in Equation (10) is convergent,
and we have

I0 =

∫ ∞
−∞

{
FN(u)− Φ(u)

}2
/φ(u)du =

∞∑
k=1

ĉ2k
k
<∞,

whereas
∑∞

k=0 ĉ
2
k is divergent, as shown previously. Further, it can be easily

verified that the choice of coefficients dk = ĉk/
√
k, k = 1, . . . , n <∞ minimises

the WISD ∫ ∞
−∞

{
Φ(u) + φ(u)

n∑
k=1

dkHek−1(u)− FN(u)

}2

/φ(u)du.

Therefore, the näıve approximation Fn(·|ĉn) is the best approximation of FN

within {Fn(·|cn); cn ∈ Rn} in the sense that it has the smallest WISD.

3 Methodology

In the previous section, we recalled näıve approximations for empirical distri-
butions and their convergence properties: the approximation for dfs is con-
vergent, while the approximation for pdfs is divergent. As we shall see in the
numerical examples, the convergence of the approximation for dfs, however,
is very slow and it may not be suitable for use in practice. An intuitive rea-
son for this slow convergence is the large order of the polynomial required to
approximate functions with discontinuities.

Instead of using saddlepoint approximations, we introduce three techniques
— standardisation, smoothing, and optimisation — which, in combination
with expansion methods, result in a better practical approximation quality in
a wider range of examples than investigated to date. Smoothing and optimi-
sation have not been considered in the literature as far as we can determine.
Standardisation is a very common technique, though.

A similar technique to optimisation for approximating a discrete distribu-
tion is found in Hall (1983). He considers a case with a different expansion
formula from the present paper.

The advantage of our techniques over the saddlepoint approximations is
that they only require the moments of the target distribution up to some finite
degree.

3.1 Standardisation

We can view Equation (8) as approximating the target pdf by the pdf of the
standard Normal distribution along with correction terms involving polynomi-
als. If the target pdf is close to that of the standard Normal, then the correction
is small and therefore we expect that the expansion method provides a good
approximation.

One obvious way to make the target pdf closer to that of standard Normal
is to standardise the variable so that the first and second moments of the
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target pdf are equal to 0 and 1, respectively. Actually, this technique is used,
sometimes implicitly, in most existing applications.

Let µ = E(X), σ2 = E(X2) − µ2, X ′ = (X − µ)/σ and fX
′

be the pdf
of X ′. We apply the Hermite expansion in Equation (8) to X ′ to obtain its
approximation fX

′
n (·|cn). The pdf of X can be approximated by fn(x|cn) =

fX
′

n

(
x−µ
σ

∣∣ cn)/σ.
Note that c1 = c2 = 0 is assured by such standardisations.
We apply standardisation to all of the examples in this paper, and hereafter

we call an expansion to which only standardisation is applied a näıve expansion.

3.2 Smoothing

As discussed above, poor approximation quality can be due to the divergence
or slow convergence of the Hermite expansion. Instead of approximating the
target distribution itself, we change our target to a smooth function which is
close to the original target. We expect that the convergence is accelerated by
this change.

One way of doing this is to use the curvature of the target function; that
is, we can seek a function which is ‘near’ the target function and whose second
derivative is ‘small’ in some sense.

As an example, we consider smoothing the approximation for the empirical
distribution FN in Equation (13). Assume that a function F (·|cS) has the
convergent Hermite expansion

F (x|cS) = Φ(x) + φ(x)
∞∑
k=1

cSk√
k

Hek−1(x),

for some real coefficients cS = (cS0 , c
S
1 , . . .), and is near FN , in the sense that

the weighted integrated squared difference (WISD),∫ ∞
−∞

{
F (u|cS)− FN(u)

}2
/φ(u)du,

is small. Using Equation (1), the second derivative of F (·|cS) is given by

F ′′(x|cS) = φ(x)
∞∑
k=0

√
k + 1cSkHek+1(x).

We can use the weighted integrated square curvature (WISC),∫ ∞
−∞

{
F ′′(u|cS)

}2
/φ(u)du,

as a measure of curvature.
In the two integrals, the WISD and WISC, the weight 1/φ works in two

ways. One is to put more importance on both the difference and curvature
in the tails than those of the centre of the distribution. The other is that it
makes the integrals tractable. In fact, using the Parseval identity, we have

WISD =
∞∑
k=1

(cSk − ĉk)2

k
and WISC =

∞∑
k=0

(k + 1)(cSk )2.
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Now, let us consider the average of two integrals, weighted by 0 ≤ q ≤ 1,

ISq = (1− q)WISD + qWISC

= (1− q)
∞∑
k=1

(cSk − ĉk)2

k
+ q

∞∑
k=0

(k + 1)(cSk )2

=
∞∑
k=1

(
1− q + qk(k + 1)

k
(cSk )2 − 2

1− q
k

cSk ĉk

)
+ (1− q)I0 + q,

where the weight q determines the relative importance of curvature over fi-
delity. Then ISq is minimised when

cSk = ĉSk =
1− q

1− q + qk(k + 1)
ĉk.

Thus, we use the these values to obtain the finite expansion

Fn(x|ĉSn) = Φ(x) + φ(x)
n∑
k=1

ĉSk√
k

Hek−1(x).

Let us call this expansion the smoothed approximation for FN .
Since ĉSk has k(k + 1) in the denominator, the convergence of the weighted

square integral, ∫ ∞
−∞

{
Fn(u|ĉSn)− Φ(u)

}2
/φ(u)du =

n∑
k=1

(ĉSk )2

k

is much faster than that of Fn(·|ĉn); that is, the convergence Fn(·|ĉSn) →
F (·|cS) is much faster than that of Fn(·|ĉn)→ FN . Clearly, F (·|cS) is not the
target itself, but we expect that it is a smooth function near FN , especially
when q is small. The choice of q will be discussed briefly in Section 3.8.

Other than its fast convergence, Fn(·|ĉSn) has a favourable property. The
derivative of Fn(·|ĉSn) is given by

d

dx
Fn(x|ĉSn) = fn(x|ĉSn) = φ(x)

n∑
k=0

ĉSkHek(x),

and we have that ∫ ∞
−∞

{fn(u|ĉSn)}2

φ(u)
du =

n∑
k=0

(ĉSk )2. (14)

Since
∑∞

k=1 ĉ
2
k/k is convergent, and from the fact that (ĉSk )2 < ĉ2k/k for large

enough k,
∑∞

k=0(ĉ
S
k )2 is also convergent. This suggests that the approximation

for the pdf is convergent.
In this example, we smooth the df. However, for the cases where the

Hermite expansion for the pdf is available, we can smooth the pdf in a similar
manner. An example is given later in Section 3.4.
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3.3 Optimisation

Similarly to the previous example, consider a situation where we use a random
sample X1, . . . , XN from the unknown pdf f to obtain the natural estimators
ĉk =

∑N
i=1 Hek(Xi)/N . We further assume that f has the converging Hermite

expansion f = f(·|c), where c = (c0, c1, . . .) are not known.
We consider a class of estimator

fn(x|αn, ĉn) = φ(x)
n∑
k=0

αkĉkHek(x), (15)

and search for the coefficients αn = (α0, . . . , αn), so that the estimator of the
weighted mean integrated square error (WMISE)

E

(∫ ∞
−∞

{fn(u|αn, ĉn)− f(u|c)}2

φ(u)
du

)
(16)

is minimised. (Hall (1983) considers a different expansion formula, in which
the MISE is not weighted.) The weight 1/φ in Expression (16) works in two
ways, similarly to the previous example: one is to put more importance on the
error in the tail than at the centre of the distribution, and the other is that
it makes Expression (16) tractable. It can be shown by using the Parseval
identity that the WMISE in Expression (16) is equal to

n∑
k=0

α2
kE
(
ĉ2k
)
− 2

n∑
k=0

αkc
2
k +

∞∑
k=0

c2k. (17)

Now we estimate the WMISE in Expression (17). Obviously, ĉ2k is an unbiased
estimator of E (ĉ2k). An unbiased estimator for c2k is given by

Nĉ2k − b̂2k
N − 1

,

where b̂2k = N−1
∑N

i=1 {Hek(Xi)}2, however, this estimator can take negative
values, while the true value of c2k is non-negative. Therefore, we use a biased
estimator (

Nĉ2k − b̂2k
)
+

N − 1
,

where (x)+ = max{x, 0}, instead. We consider this estimator to be better, in
that it is non-negative.

Hence, an estimator for the WMISE is given by

n∑
k=0

α2
kĉ

2
k − 2

n∑
k=0

αk

(
Nĉ2k − b̂2k

)
+

N − 1
+
∞∑
k=0

(
Nĉ2k − b̂2k

)
+

N − 1
. (18)

Now we consider αn which minimises Expression (18). Firstly, α0 = 1 is
required so that

∫∞
−∞ fn(u|αn, ĉn)du = 1 is satisfied. If the variable is already

12



standardised so that the first and second moments are identical to those of φ,
we have c1 = c2 = 0, and therefore we set α1 = α2 = 0. For k = 3, . . . , n,
Expression (18) is minimised when

αk =

(
Nĉ2k − b̂2k

)
+

(N − 1)ĉ2k
.

Note that this method can be regarded as implicitly using shrinkage esti-
mators.

3.4 Optimisation with smoothing

For the approximation in the form of Equation (15), the second derivative is
derived using Equation (1) as

f ′′n(x|αn, ĉn) =
d2

dx2
fn(x|αn, ĉn) = φ(x)

n∑
k=0

√
(k + 1)(k + 2)αkĉkHek+2(x).

(19)

We define a weighted mean integrated square curvature (WMISC) by

E

(∫ ∞
−∞

{f ′′n(u|αn, ĉn)}2

φ(u)
du

)
,

which can be simplified to

n∑
i=0

(k + 1)(k + 2)α2
kE(ĉ2k).

An unbiased estimator for this quantity is

n∑
i=0

(k + 1)(k + 2)α2
kĉ

2
k.

Then we search for {αk} which minimises

(1− q)WMISE + qWMISC

=
n∑
k=0

α2
k{1− q + q(k + 1)(k + 2)}ĉ2k − 2

n∑
k=0

αk

(
Nĉ2k − b̂2k

)
+

N − 1
+
∞∑
k=0

(
Nĉ2k − b̂2k

)
+

N − 1
,

(20)

for some 0 ≤ q ≤ 1, where q determines the relative importance we put on
smoothness.

From a similar discussion to that in Section 3.3, we can set α0 = 1, α1 =
α2 = 0, and

αk =

(
Nĉ2k − b̂2k

)
+

{1− q + q(k + 1)(k + 2)}(N − 1)ĉ2k
,

13



for k ≥ 3.
Since we have a factor of order k2 in the denominator of this smoothed αk,

the sum

n∑
k=0

(αkĉk)
2 =

∫ ∞
−∞

{fn(u|αn, ĉn)}2

φ(u)
du (21)

converges much faster than that without smoothing, as n→∞.

3.5 Asymptotics in N

We make the following comments in relation to asymptotics in N . For

FN(x) =
1

N

N∑
i=1

1{Xi≤x}

we have that FN(x)→ F (x) in probability as N →∞, from the Law of Large
Numbers, where F is the true df of X. Further, for fixed N ,

Fn(x|ĉn) = Φ(x) + φ(x)
n∑
k=1

ĉk√
k

Hek−1(x)→ FN(x)

as n→∞, almost everywhere x. However, Fn(x|ĉn)→ F (x) is not true when

∞∑
k=1

ĉ2k
k

diverges or, equivalently, when∫ ∞
−∞

{F (x)− Φ(x)}2

φ(x)
dx =∞.

To summarise: FN
n → FN as n → ∞, and FN → F as N → ∞, but

FN
n → F as N →∞ and n→∞ only when∫ ∞

−∞

{F (x)− Φ(x)}2

φ(x)
dx <∞.

3.6 Approximating distributions from parametric mod-
els

We often wish to obtain distributions from parametric models. However, this
is sometimes a tricky problem. For instance, a situation as common as deriving
the distribution of a call option premium using the plain Black and Scholes
formula, and assuming that the risk factors have a log Normal distribution,
can be problematic, whereupon we might turn to Monte Carlo methods or a
first order approximation. Expansion methods have the potential to be applied
to such cases as long as the moments of the target distribution are available.
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Indeed, we treat an example of the distribution of a call option premium in
Section 5.

However, näıve applications of expansion methods are unlikely to work
when either the target function is not bounded, or the target function has
heavy tails. For the former, we can smooth the target, as considered for
empirical distributions. For the latter, for instance, we can truncate the tails
at some large but finite points, so that f(x)/

√
φ(x) is square integrable. One

obvious drawback here is the challenge of deriving the truncated moments.
Developing techniques for applying expansion methods in such situations

is our next task.

3.7 Choice of order of expansion n

Suppose that

fn(x|cn) = φ(x)
n∑
k=0

ckHek(x)

converges to f as n→∞. Since we have∫ ∞
−∞

{fn(u|cn)− fn−1(u|cn−1)}2

φ(u)
dx = c2n,

we can view c2n as ‘the amount of change in the shape of the function’ when
we increase the order from n− 1 to n. Therefore, we expect that c2n converges
to 0 as fn(·|cn) converges to f .

Based on these facts, an obvious idea would be that we stop the expansion
at some n∗ for which

∑∞
k=n∗+1 c

2
k is ‘much smaller’ than

∑n∗

k=0 c
2
k. However, this

idea is not practical since it requires evaluating an infinite sum. As an alterna-
tive, we observe the series c20, . . . , c

2
N for some large N , and see if c2n+1, . . . , c

2
N

are ‘small enough’ compared to c20, . . . , c
2
n. We expect such n can be found

easily if convergence is fast.

3.8 Choice of smoothness weight q

In the smoothing techniques introduced above, the weight for smoothness q is
an arbitrary parameter. Obviously, q = 0 is equivalent to not smoothing, and
q = 1 is equivalent to approximating the target by the Normal distribution. For
0 < q < 1, the approximation lies in between these two cases. Considering the
fact that q determines the difference between the original target function and
the smoothed target, a smaller q might be more desirable; however, a general
criterion for choosing an optimum in some sense has not been developed.

As we see in the numerical examples, we can obtain fair approximation
quality for the range q = 0.005 ∼ 0.01. The examples will further show that
this range for q has a strong impact on our method, despite it being located
apparently near to the boundary of the theoretical range for q.
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4 Numerical examples

From the discussion so far, it is obvious that approximations using the Hermite
expansions are likely to perform well when the target distribution is close to
the Normal distribution. Here, in contradistinction, we consider three adverse
cases and examine the success or otherwise of expansion methods. The first
and second cases apply expansion methods to empirical distributions. The
third case applies expansion methods to approximating the Gamma density as
an example of application to a parametric model.

By way of metrics in our numerical studies, we use the popular risk mea-
sures used in the finance industry, VaR and ES (Basel Committee, 2013). As
already mentioned, VaR is defined as a quantile of a financial assets distribu-
tion, and ES is defined as the expected loss given that the loss exceeds VaR,
respectively. If the random variable Z denotes the financial asset in question,
then the VaR with a confidence level of α is defined as

VaRα = − sup{z|P (Z ≤ z) ≤ 1− α},

and the corresponding ES is defined as

ESα = −E(Z|Z ≤ −VaRα).

For instance, if Z has a continuous df FZ and a pdf fZ , then the 99% VaR is
derived as −z that satisfies FZ(z) = 0.01, and the 99% ES is given by

−E(Z|Z ≤ −VaR0.99) = −
∫ −VaR0.99

−∞
ufZ(u)du/0.01. (22)

For the cases where Z denotes loss, the VaR and ES can be defined as VaRα =
inf{z|P (Z ≤ z) ≥ α} and ESα = E(Z|Z ≥ VaRα), respectively. In the
numerical examples, we use these definitions for the risk measures on the right
tails.

4.1 Random samples from the Gamma distribution

We take our first example from an empirical distribution generated from the
Gamma distribution, which is skewed and has long right tail and non-negative
support. The shape and scale parameters are set to be 7 and 1, respectively,
with a skewness of 0.756 and an excess kurtosis of 0.857. We generate a set
of 1,000 pseudo-random samples from this Gamma distribution and apply the
expansion methods to its empirical distribution using the techniques described
above . The empirical distribution, which is the target of the approximation,
is fairly skewed (sample skewness of 0.915), and heavy-tailed (sample excess
kurtosis of 1.447), compared to the Normal distribution. The order of expan-
sion is n = 10, and the weight for smoothness is q = 0.01, where used. Figure
1 shows the shapes of the target pdf and df, and Table 1 compares the risk
measures of VaR and ES, as discussed in Section 5, for the target distribution
and those of approximation.
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Figure 1: The pdfs (upper) and the magnified right tails of dfs (lower):
the näıve expansion (solid curves), the smoothed expansion (dashed curves),
the optimised expansion (dotted curves), and the optimised and smoothed
expansion (dot-dashed curves), respectively. The order of expansions is n = 10
and the weight for smoothness is q = 0.01. The ‘+’ symbols show the 1,000
pseudo-random samples from the gamma distribution with shape parameter
7 and scale parameter 1. The thick grey curves show the pdf and df of the
Normal approximation.

We find from Figure 1 that the näıve expansion is erratic and shows negative
density, while other expansions show fair approximation quality, even in the
tail. This confirms that smoothing and optimising can redeem the fragility of
the näıve expansion in an adverse example.

The minus signs in Table 1 shows that approximations underestimate the
risk in most cases, however, the relative errors are much smaller with expan-
sion methods than with the Normal approximations. We are aware that under
estimations are unfavourable; however, considering the fact that the Normal
distribution is still in use in practice,2 the reduction in underestimation can
be considered as a motivation for using expansion methods instead of Nor-

2 See Barrieu and Scandolo (2015), Bessis (2015, chap.13) and Baker and Filbeck (2014,
p.267).

17



Level 99% 99.5%
Measure VaR ES VaR ES
Empirical 15.16 16.10 15.78 17.35
Normal -12.84% -14.43% -12.04% -15.14%
Smoothed -5.03% -4.29% -2.82% -3.33%
Optimised -0.55% -2.59% 0.28% -3.58%
Opt+Smth -2.13% -3.73% -0.94% -4.50%

Table 1: The absolute values of risk measures of the empirical distribution and
relative errors of the approximations. The order of expansion is n = 10 and
the weight for smoothness is q = 0.01. The minus signs in the body of the
table indicate that the approximations underestimate the risk. Figure 1 shows
that the näıve expansion exhibits negative density at around x = 11 and is
not reliable at 99% and 99.5% levels, and hence there is no merit in reporting
those results.

mal based methods. Further, we can comment that the approximations by
expansions can approach the target as we increase n.

4.2 Empirical distribution from market observations

As a real world example, we approximate the empirical distribution of 500 daily
log-differences of the European call option implied volatility (three-month, at-
the-money, hereafter denoted IV) on the S&P 500. The reason why we employ
this example is that this data set is not close to the Normal distribution;
it has sample skewness of −0.251 and sample excess kurtosis of 1.782. We
only comment here that the return series of S&P 500 itself is much closer
to the Normal distribution and naturally all of its approximations performed
well. Other summary statistics are shown in Table 5. We apply the expansion
methods to this empirical distribution (Figure 2). Although, we are aware that
the risk measures of the IV itself do not entirely make sense, we calculate them
to demonstrate the performance of the approximations (Table 2). The order
of expansion is n = 10 for all approximations, and the weight for smoothness
is q = 0.01.

This example shows similar features to the previous one: the näıve ex-
pansion shows negative density in the left tail, while others approximate the
empirical distribution better than the Normal distribution.

In order to investigate the convergence property, we observe the series of
the squared coefficients of the expansions, {c2n/n} for this example (Figure 3).

The left plots in Figure 3 show that the squared coefficients of näıve and
optimised expansions do not seem to converge toward 0, at least up to order
100, while those of smoothed expansions attenuate rather quickly. The right
plots shows that squared coefficients of expansions with larger q converges
faster. We can use such plots for determining the order of expansion. For
instance, we can stop increasing the order before the squared coefficients are
consistently below, say, 10−4. Since the first few large values are ∼ 10−2, the
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Figure 2: The pdfs (upper) and the magnified left and right tails of dfs (middle
and lower, respectively): the näıve expansion (solid curves), the smoothed
expansion (dashed curves), the optimised expansion (dotted curves), and the
optimised and smoothed expansion (dot-dashed curves), respectively. The
order of expansions is n = 10 and the weight for smoothness is q = 0.01. The
‘+’ symbols show the 500 samples of the daily log-difference of S&P 500 IV.
The thick grey curves show the pdf and df of the Normal distribution.
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Level 0.5% 1%
Measure VaR ES VaR ES
Empirical (×− 10−1) 1.914 2.061 1.528 1.879
Normal -32.29% -29.42% -23.32% -28.64%
Smoothed -6.39% -2.78% -2.13% -2.77%
Optimised -12.44% -7.55% -10.15% -8.71%
Opt+Smth -17.04% -11.21% -14.40% -12.97%

Level 99% 99.5%
Measure VaR ES VaR ES
Empirical (×10−1) 1.169 1.428 1.526 1.654
Normal -0.64% -6.81% -15.69% -12.67%
näıve 4.20% 4.00% -7.47% 0.88%
Smoothed 3.63% 2.41% -8.43% -1.33%
Optimised 10.19% 10.12% -0.72% 6.15%
Opt+Smth 8.25% 6.84% -4.00% 2.62%

Table 2: The absolute values of risk measures of the empirical distribution and
relative errors of the approximations. The risk is measured on the left (levels
0.5% and 1%) and right (levels 99% and 99.5%) tails. The order of expansion
is n = 10 and the weight for smoothness is q = 0.01. The minus signs in
the body of the table indicate that the approximations underestimate the risk.
Figure 2 shows that the näıve expansion exhibits negative density at around
x = −0.14 and is not reliable at 0.5% and 1% levels, and hence there is no
merit in reporting those results.
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Figure 3: Squared coefficients of the expansions up to order 100 (left) and
30 (right). The vertical axes are in a log scale with base 10. The symbols in
the left plots denote näıve (n), smoothed (s), optimised (o), and optimised and
smoothed (+) expansions, respectively. The weight for smoothness is q = 0.01.
The symbols in the right plots denote q = 0.1 ( | ), 0.01 (−), 0.005 (∗), and 0
(n), in the smoothed expansions, respectively.

relative importance of squared coefficients that are below 10−4 is less than 1%
of the large values. The order determined in such way is around 10 to 15 for
smoothed expansions, however, the required order can be much larger for näıve
and optimised expansions.

20



4.3 The Gamma pdf

As an example of an application to a parametric model, we consider approxi-
mating the pdf of the Gamma distribution. We set the shape parameter 7 and
the scale parameter 1, the same as the previous example where we approxi-
mated the empirical distribution. Due to the long right tail, this Gamma pdf
weighted by 1/

√
φ(x) is not square integrable, and therefore does not have

a convergent Hermite expansion. As mentioned previously, one possible solu-
tion to this problem is to truncate the tail so that the Hermite expansion is
convergent. In this example, we truncate the Gamma distribution at x = 30,
which corresponds to 1 − 1.173 × 10−7 quantile. We consider this truncation
point to be sufficiently far to the right. The truncated Gamma distribution
still has adverse features: It has a skewness of 0.75585 and an excess kurtosis
of 0.85638, which are close to those before truncation, a skewness of 0.75592
and an excess kurtosis of 0.85714. Since the optimisation can be applied when
we work on data sets, not on models, we only exhibit the results for näıve and
smoothed expansions.

5 10 15 20

-0.05

0.05

0.10

0.15

0.20

n
nn

nnnnnnnnnnnnnnnn
n

n
n
nnn

nn
nnn

n

nnn

n

n
nn

n

nn
n
n

nn

n

nn
n
n
nn

n

nn

n

nn

s
s
s
ssssssssssssssss

s

s
s
sss

s
s
ss

s

s

sss

s

sss

s

ss
s
s

ss

s

ss
s
s
ss

s

ss

s
ss

10 20 30 40 50

-8

-6

-4

-2

2

Figure 4: The pdfs (upper) and the squared coefficients {c2k} up to order 60
(lower). In the upper plots, the truncated Gamma distribution (thin gray),
näıve expansion (solid), the smoothed expansion (dashed), the Normal distri-
bution (thick gray), are shown. The order of expansions is n = 30 and the
weight for smoothness is q = 0.005. In the lower plots, the symbols ‘n’ de-
note the näıve expansion and the symbols ‘s’ denote the smoothed expansion,
respectively. The vertical axis in the right plots is in a log scale with base 10.
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Level 99% 99.5%
Measure VaR ES VaR ES
Gamma 14.57 16.10 15.66 17.15
Normal -9.72% -12.27% -11.78% -14.55%
Smoothed -1.63% -2.75% -2.37% -3.42%

Table 3: The absolute values of risk measures of the empirical distribution
and relative errors of the approximations. The order of expansion is n = 30
and the weight for smoothness is q = 0.005. The minus signs indicate that
the approximations underestimate the risk. Figure 4 shows that the näıve
expansion exhibits erratic shape and is not reliable, and hence there is no
merit in reporting those results.

The upper plots in Figure 4 show that the approximation quality of the
näıve expansion is very poor while smoothed expansion has much better qual-
ity, at least for the order of expansion n = 30. From Table 3 we find that
the relative error of the risk measures with the smoothed expansion is at most
3.42%, which is much smaller than those with the Normal approximations.

From the lower plots in Figure 4, we find that the convergence of the näıve
expansion is very slow, while the smoothed expansion converges much faster
with smoothness weight q = 0.005. This example suggests that truncating
and smoothing can make the expansion methods applicable to some adverse
cases. One obvious drawback is, as mentioned previously, that obtaining the
truncated moments may be a tricky task in some cases.

5 Application to risk measurement

5.1 Risk measurement and risk aggregation

We consider now VaR and ES in respect of obtaining risk measures for a PL
distribution. Let Z denote the loss of the portfolio. Theoretically, the process
of aggregating multiple of risk factors and deriving a PL distribution can be
described as follows.

Assume that our portfolio is exposed to K risk factors, X1, . . . , XK , in such
a way that Z, the PL of our portfolio, is expressed using a K variate function
ψ as

Z = ψ(X1, . . . , XK).

Then the PL distribution function is given by

FZ(z) = P (Z ≤ z) =

∫ z

−∞
dP (ψ(X1, . . . , XK) ≤ u).

Even in those cases where we have complete information on the joint distribu-
tion of the risk factors, performing this integration can be a tricky task when ψ
is not a linear function, or when X1, . . . , XK do not have the K-variate Normal
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distribution. (Jorion (2007) describes current practice for coping with these
problems.) Further, it is rather exceptional that the joint distribution of the
risk factors is completely known.

5.2 Applying expansion methods

We demonstrate how FZ can be approximated by the expansion methods. We
impose two assumptions:

• The function ψ can be approximated by a finite Taylor expansion; that
is, ψ has an approximation of a form

ψ(x1, . . . , xK) '
∑

i1+···+iK≤n

ai1,...,iKx
i1
1 · · · x

iK
K ,

where {ai1,...,iK} are known constants.

• The cross-moments of the risk factors up to some finite order,

mi1,...,iK = E(X i1
1 · · ·X

iK
K ),

exist and are available. We only require the availability of cross-moments,
regardless of whether or not we know the joint distribution.

Then, it is straightforward that the moments of Z can be approximated by
linear combinations of the cross-moments of risk factors, and therefore ck =
E(Hek(Z)) can be approximated. Thus, we can use the formula

FZ(z) ' Fn(z|cn) = Φ(z) + φ(z)
n∑
k=1

ck√
k

Hek−1(z)

for calculating the VaR. The pdf can be approximated by

fZ(z) ' fn(z|cn) = φ(z)
n∑
k=0

ckHek(x),

and further, using Equation (1), we have∫ z

−∞
ufn(u|cn)du = −φ(z) + c1{φ(z)z − Φ(z)}

+ φ(z)
n∑
k=2

ck√
k

{
zHek−1(z)− 1√

k − 1
Hek−2(z)

}
,

which can be used for calculating the ES: see Equation (22).
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5.3 The delta-gamma-vega-Normal model for an Euro-
pean call options

In order to see how expansion methods can be applied to risk measurement,
we apply them to a very common problem: approximating the distribution of
a change in the value (or ‘profit or loss’) of a European call option. We assume
that the underlying asset value and the IV have the log Normal distribution.
The value of a European call option C can be expressed using the plain Black
and Scholes formula,

C(S, σI) = SΦ(d)−KeTΦ(d− σI
√
T ),

d =
log(S/K) + (r + σ2

I/2)T

σI
√
T

, (23)

where S,K, r, σI , T are the value of the underlying asset, strike price, risk free
interest rate, IV, and time to maturity, respectively. Suppose that current asset
value and the IV are S0 and σI0, respectively. Assume that the asset value
and the IV in the time 0 < t(<< T ) ahead can be expressed as S0e

X , and
σI0e

Y , where (X, Y ) has a bivariate Normal distribution, whose parameters
are estimated from the historical observations. Then the PL of the option can
be expressed as

∆C = C(S0e
X , σI0e

Y )− C(S0, σI0). (24)

Deriving the distribution of ∆C is a key problem in measuring the risk of the
option, and this is difficult. Instead of deriving the distribution, in practice,
we often approximate it using the Taylor expansion. We define the derivatives
δ, γ and κ as

δ =
∂

∂S
C(S, σI0)

∣∣∣∣
S=S0

= Φ(d),

γ =
∂2

∂S2
C(S, σI0)

∣∣∣∣
S=S0

=
φ(d)

S0σI
√
T
,

κ =
∂

∂σI
C(S0, σI)

∣∣∣∣
σI=σI0

= S0φ(d)
√
T ,

then the approximation of ∆C, or the delta-gamma-vega model, is given by

∆C ' ∆Cδγκ = δS0X +
1

2
(δS0 + γS2

0)X2 + κσI0Y. (25)

Even with the aid of this Taylor approximation, deriving the distribution
of ∆Cδγκ is not straightforward. However, the moments {E(∆Ck

δγκ)}, k =
0, 1, . . . , can be obtained easily using the assumption that X and Y has bivari-
ate Normal distribution. Therefore, we can apply the expansion methods to
the distribution of ∆Cδγκ using its moments. Figure 5 and Table 4 show ap-
proximations for the PL distribution of a European call option (three months,
at-the-money) on the S&P 500 for t = one day. (See Table 5 for summary
statistics of the data used. In this example, t = 0 is set to 18 Oct. 2006.).
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Figure 5: Magnified left and right tails of approximated dfs of ∆Cδγκ. The
solid curve shows the näıve expansion, and the dotted line shows the smoothed
expansion with the weight for smoothness q = 0.005. The order of the expan-
sions is n = 10. The thick grey curve shows the approximation by the Normal
distribution. The ‘+’ symbols exhibit the distribution of ∆C obtained by
applying the Monte Carlo method with 20,000 trials to Equation (24).

They show that the approximation by the näıve expansion is very close to the
empirical distribution of the 20,000 pseudo-random samples from ∆C, and we
find that the näıve expansion is sufficient in this particular case.

We comment that distributions other than bivariate normal distribution
can be used as long as the moments and cross-moments are available.

6 Discussion

We reviewed the convergence properties of the Hermite expansion and pro-
posed smoothing and optimising techniques to mitigate the fragility of näıve
applications of the Hermite expansion.

Smoothing and optimisation can make the approximation quality sufficient
for many purposes in our particular examples. We proposed truncating the
target distribution for the cases where the Hermite expansion is not conver-
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Level 0.5% 1%
Measure VaR ES VaR ES
Empirical (×− 1) 9.676 10.806 8.777 9.998
Normal 12.11% 13.33% 11.00% 12.45%
näıve 0.91% 0.19% 1.24% 0.56%
Smoothed 1.65% 0.90% 1.91% 1.27%

Level 99% 99.5%
Measure VaR ES VaR ES
Empirical 11.679 13.838 13.077 15.355
Normal -7.03% -10.69% -8.53% -12.98%
näıve 0.18% -2.21% -0.36% -3.83%
Smoothed -0.21% -2.66% -0.78% -4.32%

Table 4: The absolute values of risk measures of the empirical distribution
from the Monte Carlo method and relative errors of the approximations. The
target of the approximations is the distribution of ∆C, which is not available.
We compare the approximations with the empirical distribution obtained from
the Monte Carlo method in this Table. The risk is measured on the left (levels
0.5% and 1%) and right (levels 99% and 99.5%) tails. The order of expansions
is n = 10 and the weight for smoothness is q = 0.005. The minus signs in the
body of the table indicate that the approximations underestimate the risk.

SP500 SP500 IV
Observation period From 25/10/2004

to 18/10/2006
Number of observations 500
Mean (×10−4) −4.425 −5.006
Std. dev. (×10−2) 0.654 5.018
Skewness (×10−1) 0.715 −2.510
Excess Kurtosis 0.376 1.782
Min (×10−1) −0.185 −2.275
Max (×10−1) 0.213 1.910
Correl. coef. −0.7443

Table 5: Summary statistics of the data sets.

gent due to the heavy-tailedness; however, this may not be applicable when
the truncated moments are not available. One possible solution to this is to
optimise MISE subject to a constraint that the density is non-negative: see
Hall and Presnell (1999).

By comparing the techniques, we found the following. For the cases where
random samples are available, the optimised approximations performed better
than the smoothed ones, in terms of their small errors from the target risk
measures. This is due to the fact that the smoothing technique sacrifices
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fidelity to the target in order to accelerate convergence. For some extreme cases
where optimised expansions suffer from the negative densities within realistic
order of expansion, such as the ones we deal with in an as yet unpublished
manuscript by Marumo and Wolff (2015), the smoothing technique is expected
to be a powerful means to deal with this problem.

For approximating the distributions from the parametric models, we found
that the näıve expansion can still be of great use, as in Section 5. The example
in Section 4.3 showed that smoothing may be applied to the cases where näıve
expansions are divergent, once the problem about the truncated moments have
overcome.

The remaining issues include the problem of choosing an ‘optimal’ weight
for smoothness q. This can be similar to the problem of choosing the optimal
bandwidth in kernel density estimation (kde), and we anticipate that an op-
timality criterion in the present case will have a similar character to the kde
case.

In the example we dealt with in Section 5, the dependence structure be-
tween the risk factors was captured via their cross-moments. This implies the
possibility of reconstructing the joint distribution from the cross- and marginal
moments. We further extend this idea in the as yet unpublished manuscript by
Marumo and Wolff (2015) and show that multivariate expansion methods can
be used for capturing non-linear dependence structure between two variables
and approximating copula densities.
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