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ABSTRACT 

 

Objective: Quantitative electroencephalographic (QEEG) indices sensitive to 

abnormal slow (relative to faster) activity power seem uniquely informative for clinical 

management of ischaemic stroke (IS), including around acute reperfusion therapies. 

However these have not been compared between IS and control samples. The 

primary objective was to identify the QEEG slowing index and threshold value which 

can most accurately discriminate between IS patients and controls. 

Methods: The samples comprised 28 controls (mean age: 70.4; range: 56-84) and 

18 patients (mean age: 69.3; range: 51-86). Seven indices were analysed: relative 

bandpower (delta, theta, alpha, beta), delta/alpha power ratio (DAR), 

(delta+theta)/(alpha+beta) ratio (DTABR) and QSLOWING. The accuracies of each 

index for classifying participants (IS or control) were analysed using receiver 

operating characteristic (ROC) techniques.  

Results: All indices differed significantly between the samples (p < .001). DAR alone 

exhibited optimal classifier accuracy, with a threshold of 3.7 demonstrating 100% 

sensitivity and 100% specificity for discriminating between radiologically-confirmed, 

acute IS or control. DTABR and relative delta were the next most accurate 

classifiers. 

Conclusions: DAR of 3.7 demonstrated maximal accuracy for classifying all 46 

participants as acute IS or control.  

Significance: DAR assessment may inform clinical management of IS and perhaps 

other neurocritical patients. 

 

 

Keywords: Acute ischaemic stroke; quantitative electroencephalography; delta 

activity; alpha activity. 
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HIGHLIGHTS  

• All QEEG indices (sensitive to power of delta, theta, alpha, and/or beta bands) 

differed highly significantly between acute ischaemic stroke (IS) and control 

samples.  

• Delta/alpha power ratio (DAR) demonstrated maximal accuracy for 

discriminating between acute IS patients and controls.  

• DAR < 3.7 was 100% specific for the absence, and > 3.7 was 100% sensitive 

for the presence, of a radiologically-confirmed IS lesion. 
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INTRODUCTION 

Ischaemic stroke (IS) produces abnormal, slow EEG activity - particularly in the delta 

frequency range (1-4 Hz) - and attenuation of normative, faster activity, particularly in 

the alpha frequency range (8-12 Hz; e.g., Jordan, 2004; Hirsch et al., 2013). A recent 

review (Finnigan and van Putten, 2013) emphasises that particular QEEG indices, 

which are sensitive to such cerebral pathophysiology following IS, can inform clinical 

decision-making including: (1) continuous monitoring to inform about the efficacy of 

acute reperfusion therapies, and; (2) outcome prognostication and clinical 

management decisions based on brief, pre-discharge EEG. As summarised in Table 

1, indices sensitive to the power of delta relative to faster activity which have proven 

particularly informative for these clinical applications are: relative delta power (e.g., 

Claassen et al., 2004; Finnigan et al., 2004; 2007), the delta/alpha power ratio (DAR; 

e.g., Claassen et al., 2004; Finnigan et al., 2007; Leon-Carrion et al., 2009; Schleiger 

et al., 2014; Sheikh et al., 2013), and (delta+theta)/(alpha+beta) power ratio (e.g., 

DTABR; Sheorajpanday et al., 2011 a). The current study investigates the respective 

capacities of these and other bandpower-derived indices to distinguish between 

acute IS versus normative EEG.  

 

Several observations indicate that continuous monitoring of relative delta power or 

DAR can promptly inform bedside assessment of the efficacy (or otherwise) of acute 

reperfusion therapies, such as intravenous alteplase or intra-arterial clot retrieval, 

prior to potential clinical changes (e.g., Finnigan et al., 2006; Finnigan and van 

Putten, 2013; Sheikh et al., 2013). Importantly QEEG can thus inform about potential 

salvage of ischaemic neural tissue (“penumbra”), whereas imaging modalities can 

inform about (re-)perfusion but not the activity of this ischaemic, cerebral tissue. To 

date such studies have relied upon repeated-measures, statistical tests (performed 

retrospectively) to assess the potential significance of delta power or DAR changes 

over time. However such techniques are not particularly feasible in time-critical, 

clinical settings and for this and other reasons, identification of a QEEG threshold 

value for defining abnormal cerebral activity should prove informative and 

translatable. For example reperfusion therapy may be more readily (yet accurately) 

determined to be successful when a pertinent QEEG index (e.g., DAR) normalises 
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and remains below a critical threshold value; whereas maintenance of the QEEG 

index above the threshold would indicate unsuccessful therapy. More broadly, 

identification and usage of a QEEG abnormality threshold for cerebral ischaemia 

might be analogous to, for example, the diagnosis of diabetes based primarily on a 

fasting plasma glucose level ≥ 7.0 mmol/l. Furthermore EEG/QEEG assessment or 

continuous monitoring relative to such a threshold may prove pertinent not only to 

critically informing decisions around acute reperfusion therapies or pre-discharge 

prognoses (and associated decision-making) in IS, but also in other clinical 

applications such as detection of delayed cerebral ischaemia following subarachnoid 

haemorrhage (e.g., Claassen et al., 2004; Foreman and Claassen, 2012). 

 

In general terms, it has been proposed that global DAR and/or DTABR values < 1 

are relatively normative and that values higher than approximately two may be 

considered abnormal (Finnigan and van Putten, 2013). However these are semi-

informed estimates as systematic analyses of such indices from IS patients versus 

controls have not been reported to date, hence normative ranges and precise 

abnormality thresholds for such QEEG indices remain unknown. The primary aim of 

the current study is to address and help resolve these knowledge gaps by 

performing such analyses. In addition several QEEG indices - of the power of slow 

relative to faster activity - have been variously analysed in IS samples (delta power, 

DAR, DTABR; see above) although it remains unresolved as to which is the optimal 

index for defining abnormal slow activity in acute IS and discriminating between the 

latter versus normative state; hence this was a further aim of the current study. 

Addressing these aims would likely help advance the utility of QEEG monitoring in 

acute IS treatment as well as other clinical applications. Our objectives are pursued 

via statistical analyses of numerous bandpower-derived QEEG indices from a 

sample of acute IS patients, compared to those from a sample of age-matched 

control participants. 

 

METHODS 

Participants and recruitment 
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This study was approved by the local hospital and university, human research ethics 

committees, and all participants (or the legally authorised, substitute decision maker 

for severe stroke cases, if appropriate) gave informed consent. 

 

Healthy older adults 

Participants were recruited from an older adult participant panel which was initially 

assembled via newspaper advertisements. All participants completed a detailed 

questionnaire about their own health and current medications, as well as any 

relevant health issues in their family. Participants with a history of anxiety, 

depressive disorders, head injury, stroke, epilepsy, heart attack, neurological 

conditions, major psychiatric disorder, were excluded from the study. Thirty older 

adult participants were thus recruited. 

 

Each participant was administered the Mini Mental State Exam, Wechsler Adult 

Intelligence Scale (3rd edition), Geriatric Depression Scale, Boston Naming Test, 

Alzheimer’s Disease Assessment Scale, cognitive sub-section, the Rey Auditory 

Verbal Learning Test, and letter (F,A,S) and category (animal) fluency tests. All 

participants previously had cranial magnetic resonance imaging (MRI) performed as 

part of a parallel study. On the basis of their outcomes from all screening and 

assessment items detailed above, participants were classified as controls by 

consensus decision between a neurologist and a clinical psychologist. Classifications 

were made with thorough consideration of contemporary diagnostic criteria for mild 

cognitive impairment (e.g., Winblad et al., 2004) and for “delirium, dementia, and 

amnestic and other cognitive disorders” in the Diagnostic and Statistical Manual of 

Mental Disorders, 4th Edition, Text Revision (2000; DSM-IV-TR). Two participants 

(both male, ages 75 and 77) met criteria for mild cognitive impairment (amnestic 

domain; e.g,, Winblad et al., 2004) hence these participants were excluded from the 

analyses. 

 

As summarised in Supplementary Table S1 the normative older adult sample then 

included 28 healthy, cognitively unimpaired individuals (17 females) whose mean 

age was 70.4 years (S.D. = 8.58, Range = 56 - 84). 
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Stroke patients 

Patients with acute focal motor neurological symptoms together with symptoms such 

as speech impairment, inattention or impaired cognition, consistent with ischemic 

cortical stroke, were initially considered for recruitment. All patients underwent acute, 

non-contrast computed tomography (CT) scanning. For patients 1 to 10, magnetic 

resonance imaging (MRI) assessments were also performed, within 6 h of symptom 

onset, and EEG recordings performed as soon as feasible thereafter (and always 

within 24 h of onset) at the bedside, as per a previously-reported protocol (Finnigan 

et al., 2004). Patients 11 to 18 had CT perfusion (CTP) and angiogram (CTA), and 

EEG recordings commenced as soon as feasible thereafter at the bedside. 

Ischaemic stroke and arterial territory affected by same were confirmed via acute, 

multi-modal MRI or CT, and thereby only patients with unilateral, ischaemic lesions 

in the territory of the middle cerebral artery (MCA) were included. Patients were 

excluded if they presented with fever, seizures, a cerebral haemorrhage on CT, a 

pre-existing neurological condition that would confound clinical or neuroimaging 

assessment, such as radiological evidence of previous stroke, EEG abnormalities 

consistent with encephalitis or medications that could confound EEG assessment 

(e.g., benzodiazepines, tricyclics or neuroleptic medications). The National Institutes 

of Health Stroke Scale (NIHSS) was administered by a neurologist following 

enrolment into the study.  

 

Eighteen IS patients (7 males; mean age, 69.3; range, 51 to 86 years) were enrolled. 

Patient demographics, affected vascular territories, admission NIHSS scores, QEEG 

indices and descriptive statistics for same are summarised in Supplementary Table 

S2. (Patients 4, 6, 7 and 15 were administered intravenous alteplase following 

imaging and EEG.)  

 

EEG data acquisition 

An elasticated EEG cap (Quik-Cap, Neuromedical Supplies) was used containing 

nineteen sintered Ag/AgCl scalp electrodes positioned at the sites of the international 

10-20 system (FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 
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O1, O2), except for patients 11 to 18 for whom individual electrodes (Nicolet) were 

used but with all other parameters remaining identical. Vertical and horizontal 

electro-oculograms (EOGs) were recorded from two bipolar channels via electrodes 

placed below and on the supra-orbital ridge of the left eye (VEOG) and on the outer 

canthus of each eye (HEOG). Electrode impedances were predominantly 5-10 

kOhms or less.  The online reference was immediately posterior to Cz. These data 

were acquired using a Neuroscan Synamps2™ amplifier or, for IS patients 11 to 18, 

a NicOne Brain Monitor system (Natus Medical Inc.) with a 500Hz sampling rate and 

were filtered online (bandpass; 0.01-100 Hz). EEG was recorded for at least fifteen 

minutes per participant in resting, awake state with eyes closed. Alertness or 

sleepiness was assessed throughout each recording, primarily via periodic 

behavioural assessments (saying the patient’s name and asking if they were still 

awake, every 3 to 5 minutes). Generally, patients and control participants were 

awake and resting quietly with eyes closed during recording periods from which EEG 

data were analysed quantitatively (i.e., the first 3 to 5 minutes; see below). Two 

patients (3, 18) evidently were dozing by the fifth minute of recording although their 

QEEG data is consistent with previous evidence that in acute IS the capacities of 

global delta power and DAR to inform clinical assessments are robust to sleep state 

(Finnigan et al., 2004) and sedation (Sheikh et al, 2013), at least. That is, if sleep 

were to substantially increase delta power and DAR we would have expected these 

indices to be higher in these, relative to the other participants (see Figure 1 and 

Supplementary Table S2). 

 

EEG signal processing & QEEG computations 

Offline signal processing was performed with Edit 4.5 software (Compumedics-

Neuroscan) using the following methods which we have previously reported (e.g., 

Cummins and Finnigan, 2007, 2008; Finnigan et al., 2007; Finnigan and Robertson, 

2011; Schleiger et al., 2014). EOG artefacts were reduced where appropriate using 

the procedure of Semlitsch et al. (1986). These data were filtered (bandpass; 0.5-40 

Hz, 12dB/octave), then EEG data were re-referenced to the common average 

reference. Each data file was “epoched” into contiguous epochs of 2048 ms (1024 

data points), then epochs in which EEG amplitude exceeded ±100 µv were 
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automatically rejected. From the first 90 epochs of artefact-free data per participant, 

EEG power (µv2) was computed for each electrode using the fast Fourier Transform 

(FFT) with a cosine window (with tapering at beginning and end of each epoch, 

equating to 10% of epoch duration). Hence each QEEG index was computed from a 

total of 184.3 s of artefact-free, EEG data per participant. This process resulted in a 

power value for each 0.488 Hz iteration. From the resulting power spectra for each 

electrode, absolute power was summed across the delta (0.98-3.91 Hz), theta (4.39-

7.32 Hz), alpha (7.81-12.21 Hz), and beta (12.70–29.79 Hz) bands (inclusive) as 

was done in previous studies cited above (e.g., Schleiger et al., 2014). It can be 

assumed that power for any one of these frequency ranges does not significantly 

differ from that for the respective “0.5 Hz iteration” ranges (e.g., 1-4 Hz, 4.5-7.5 Hz, 

etc.). Relative power for each band was computed as the ratio of summed absolute 

band-power to total summed power across the 0.98-29.79 Hz range. DAR and 

DTABR were computed as the ratios of absolute power for the respective frequency 

bands of interest. QSLOWING was computed as the ratio of summed power across 

1.95-7.81 Hz versus summed power across 1.95-24.90 Hz (inclusive; Lodder and 

van Putten, 2013). These indices all were initially computed separately for each 

electrode, then were averaged over all nineteen scalp electrodes to create “global” 

QEEG indices as per previous studies (e.g., Finnigan et al., 2007; Schleiger et al., 

2014; Sheikh et al, 2014). 

 

QEEG statistical analyses 

Statistical analyses were performed using SPSS Statistics (v22; IBM) and Microsoft 

Excel software. The following analyses were performed on all seven QEEG indices, 

albeit the primary foci were the four indices of abnormal slow relative to faster activity 

(relative delta power, DAR, DTABR, and QSLOWING). Initially, for each of these 

indices, descriptive statistics (means and standard deviations) for the healthy older 

adult sample were computed. Various normality tests were conducted, employing Q-

Q and P-P probability plots, both normal and detrended normal, on “raw” as well as 

log-transformed data. The outcomes of these tests generally indicated that the data 

sufficiently satisfied assumptions of normality and moreover, that log transformation 

generally did not substantially alter these scenarios. Each of the seven QEEG 
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indices were then compared statistically between the samples via independent 

groups t-tests, with a Bonferroni correction for multiple comparison also employed 

(thus rendering the critical “alpha” level to be 0.007 or less; i.e., 0.05 divided by 7). 

On the basis of past literature (summarised in Finnigan and van Putten, 2013) we 

hypothesised that indices directly involving and proportional to delta power (relative 

delta, DAR, DTABR) would be significantly greater in the acute stroke sample, 

whereas relative alpha power would be significantly greater in the control sample. 

We did not consider existing literature to be of sufficient quantity and/or equivocality 

to support definitive hypotheses regarding relative theta or beta power, or QSLOWING. 

 

Thereafter a preliminary abnormality threshold for each QEEG index was identified, 

as the “critical z” value representing a z-score of + 1.96 relative to (1.96 standard 

deviations above) the normative mean, for all indices except relative power of the 

“faster” frequency bands, alpha and beta (in which cases z-scores of - 1.96 were 

computed). This is a standard statistical method for defining whether or not an 

individual’s score is significantly different to the mean of a given sample or 

population (using an alpha level of 0.05, two-tailed; e.g., Howell, 2014). Using this 

method an individual is significantly different to a given population if the absolute 

value of the z-score is greater than 1.96. For five of the QEEG indices analysed 

(excluding alpha and beta power), relatively high values are routinely observed in IS, 

indicating abnormal degrees of slow activity. In addition it remains unclear as to 

whether or not a z-score associated with DAR, for example, of – 1.96 might be 

considered abnormal per se. Hence only “upper-end” abnormality thresholds were of 

key interest in the current investigation (with the exception of alpha and beta power, 

for which “lower-end” criteria were considered, secondarily). This is not only a routine 

statistical approach (e.g., Howell, 2014) but also it is analogous to that of a past 

study which computed z-scores from QEEG band-power measures acquired from IS 

patients (and correlated these with functional outcome measures; Cuspineda et al., 

2003).  

 

The respective capacities of the preliminary abnormality thresholds to accurately 

classify participants as ischaemic stroke or control were then analysed using 
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receiver operating characteristic (ROC) techniques. Classifier specificity and 

sensitivity values were first calculated for each preliminary threshold. For cases 

wherein an alternative threshold value for any given QEEG index was associated 

with better classifier performance on the basis of ROC results (a more optimal 

combination of specificity and sensitivity values) relative to the preliminary threshold, 

the latter was revised as appropriate. 

 

RESULTS 

Comparisons between control and acute IS samples 

Descriptive statistics for age and QEEG indices of the control and IS samples are 

summarised in Table 2. Age did not significant differ between the samples. QEEG 

indices for each individual participant are plotted in Figures 1-4 and are listed for the 

control and IS samples in Supplementary Tables S1 and S2 respectively. As 

expected all QEEG indices were higher in the stroke sample, with the exception of 

relative alpha and relative beta power which were higher in the control sample. Mean 

relative delta power was twice as high in the IS sample as in the controls whereas 

mean relative alpha was more than twice as high in controls as in IS and relatedly, 

DAR was much higher in IS. Although relative theta did not differ so markedly (being 

slightly higher in IS), mean relative beta power was more than twice as high in 

controls compared to IS and relatedly, DTABR was much higher in IS. Independent 

groups t-tests demonstrated that all seven QEEG indices differed highly significantly 

between the samples: all between-sample differences were of sufficient magnitude 

to maintain statistical significance even after a Bonferroni correction for multiple 

comparisons (see Table 2).  

 

Receiver operating characteristic analyses 

Preliminary thresholds computed for each QEEG index, corresponding to the values 

at which z = +1.96 or in the case of relative power for the “faster” bands (alpha and 

beta), z = -1.96, are summarised in Table 2. The outcomes of initial ROC analyses of 

classifier performance of these thresholds are summarised in Supplementary Table 

S3. In brief, DAR demonstrated optimal classifier performance as indicated by an 

area under the ROC curve (AUC) value of 1 (the maximum possible AUC value). 
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This result relates to the fact that DAR was the only index for which there was 

separation (i.e., no overlap) in values between the two samples (see Figure 2, 

compared to Figures 3 and 4). The next most accurate classifier indices according to 

their respective AUC values were DTABR (0.996) and relative delta power (0.994), 

while the poorest classifier clearly was relative theta (0.812). None of the preliminary 

thresholds demonstrated maximal classifier accuracy, in terms of both sensitivity and 

specificity measures. Although DAR had maximal performance (AUC of 1) the 

preliminary DAR threshold (3.32) was lower than the DAR values (3.43 and 3.56) of 

two control participants (C17, C26) and these “false positives” are reflected in the 

specificity of this threshold being less than 100% (Supplementary Table S3). 

Assuming these control participants are without occult cerebral infarction or other 

neurological damage, these results suggest that a higher DAR threshold would be 

appropriate. Likewise for all indices except DTABR, revised threshold values were 

found to result in improved sensitivity and/or specificity, compared to the preliminary 

thresholds (see Table 3). A DAR threshold of 3.7 demonstrated 100% specificity and 

100% sensitivity (i.e., maximal accuracy) for classifying all 46 participants as 

(radiologically-confirmed) acute IS or control. As illustrated in Figure 2, this DAR 

threshold is midway between the highest control (3.56) and the lowest IS patient 

value (3.85). Of the six other indices the next most accurate performance was 

provided by the original DTABR threshold of 1.76 (100% sensitivity, 96.4% 

specificity) and relative theta still demonstrated the lowest accuracy as a classifier 

(see Table 3).  

 

DISCUSSION 

These are the first reported analyses of QEEG indices compared between acute 

ischaemic stroke (IS) and age-matched control samples and of DAR and QSLOWING in 

control participants, to our knowledge. All seven QEEG indices analysed - relative 

bandpower, and ratio measures of relative intensity of abnormal slow-wave activity - 

differed significantly between the samples. IS sample EEGs contained greater 

intensity of pathophysiological, slow activity (particularly delta, and also theta) 

relative to faster activity (particularly alpha, and also beta), whereas the converse 

was true for controls. In addition we statistically analysed the capacities of these 
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respective indices to classify EEG as acute IS or normative state. DAR was found to 

be the most accurate index for discriminating between radiologically-confirmed, 

acute IS and age-matched controls and we identified 3.7 as the optimal DAR 

threshold value for this purpose (see Figure 2).  

 

Sheorajpanday et al. (2011b) proposed that DTABR < 1 was 100% specific for the 

absence, and > 3.5 was 100% sensitive for the presence, of a recent, radiologically-

confirmed IS lesion (DAR was not analysed). Those findings do not resolve how to 

interpret DTABR values between 1 and 3.5 and this is salient, for in the current data 

6 IS cases (33%) and 9 controls (32%) were within this range. The current outcomes 

update this scenario by indicating that DAR is a more accurate classifier index; DAR 

< 3.7 is 100% specific for the absence, and > 3.7 is 100% sensitive for the presence, 

of a recent, radiologically-confirmed IS lesion. The sample of middle cerebral artery 

IS patients included several cases with relatively small ischaemic lesions on imaging 

and mild symptoms (cases 1, 2, 6; Table 2) as well as a subcortical lesion (see 

below) suggesting this threshold may apply to all such cases. However analyses of 

data from larger samples may identify a revised threshold and/or thresholds more 

specific to stroke locations (e.g., cortical versus subcortical; anterior versus posterior 

circulation).  

 

The efficacy of DAR compared to other QEEG indices 

These outcomes converge with and build upon other evidence supporting the value 

of DAR, over other QEEG indices, for assessing ischaemic cerebral pathophysiology 

(see Table 1). DAR previously was found to be the most effective of 12 QEEG 

indices in relation to detection of delayed cerebral ischaemia in subarachnoid 

haemorrhage (Claassen et al., 2004). Indices analysed included absolute and 

relative bandpower, power ratios and also alpha and delta coherence. The only 

studies which have compared the prognostic capacities of DAR and DTABR within 

samples have found DAR to be superior (Finnigan et al., 2007; Leon-Carrion et al., 

2009; Table 3). DTABR, relative power indices and, in part, QSLOWING (see below) are 

sensitive to power of all four traditional frequency bands but DAR is computed from 

absolute power of delta and alpha activity only. Theta and beta activity appear 



  

Defining slow EEG abnormality in acute ischaemic stroke 

 

14 

 

relatively less reliable in IS assessments (e.g., Finnigan and van Putten, 2013; 

Sainio et al., 1983). For example beta is more susceptible to contamination by 

electromyogram (EMG) artefacts (e.g., Finnigan et al., 2007) and theta power is an 

unreliable index of IS pathophysiology in part because theta band measures can be 

confounded by slowed alpha activity (Nuwer et al., 1987). Consistent with this, in the 

current analyses relative theta power had the lowest accuracy as a classifier index. 

These factors evidently explain why several studies’ results converge to indicate that 

DTABR is less accurate than DAR, in relation to informing IS assessments and 

prognoses. The optimality of DAR is exemplified by control participant C02 whom 

had abnormal values on all indices except DAR (e.g., higher DTABR and QSLOWING 

than IS Patient 2; Supplementary Table S1, Figure 1) thus only DAR (with threshold 

of 3.7) would correctly classify C02 as non-IS. Evidently these outcomes relate to 

C02 having the lowest relative beta power of the controls, whereas DAR is the only 

index not sensitive to beta, or theta activity. Consequently DTABR had lower 

classifier accuracy and specificity than DAR, albeit DTABR was overall the second 

most accurate index as a classifier. 

 

In contrast to DTABR, relative power measures for delta and alpha are only indirectly 

sensitive to theta and beta power. In IS studies wherein EEG was recorded at 48 h 

or later post-stroke, relative alpha power has demonstrated highly significant 

correlations with functional outcome measures (Finnigan et al., 2007; Schleiger et 

al., 2014). However relative alpha appears less informative in relation to acute (< 24 

h) IS assessment and monitoring. In terms of relative delta there was minor overlap 

between the samples , and the IS mean was double that of the control sample. Delta 

power measures have demonstrated some degree of value in IS monitoring and 

prognostication (Finnigan et al., 2004, 2006, 2007, 2008; Schleiger et al., 2014; see 

Table 1) and according to Foreman and Claassen (2012) “the relative delta (power) 

percentage appears to provide the most robust correlation with CBF and metabolism 

during focal ischemia” (compared to relative power of the other three classical 

frequency bands rather than to ratios such as DAR, evidently). Relative delta had 

similar classifier accuracy to DTABR but with slightly lower sensitivity. In future 
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applications one of these indices could in some cases be considered, as 

supplementary to DAR, for example if DAR were around the threshold.   

 

QSLOWING was a less accurate classifier than DAR, DTABR and relative delta, with 

39% of controls and 33% of patients were within the range of overlap of QSLOWING 

values between samples (Figure 3). Albeit it should be noted that Lodder and van 

Putten initially proposed QSLOWING not for this application, but as one of five indices to 

supplement visual EEG interpretations. In acute IS a “lower delta”  power peak 

(around 1.5 Hz) appears salient and informative for acute IS monitoring (Finnigan et 

al. 2004) yet QSLOWING is not sensitive to this but measures the relative power of 

“upper delta and theta” activity (2-8 Hz). These factors, together with evidence that 

theta power is unreliable in this context (see above) appear to underlie the current 

findings.  

 

Potential clinical applications of DAR abnormality assessment 

Some current clinical systems automatically compute and instantly display QEEG 

indices (as well as conventional EEG), hence the proposed abnormality assessment 

employing a DAR threshold can readily be applied at the bedside. This procedure 

may prove valuable for promptly detecting cerebral ischaemia after subarachnoid 

haemorrhage (Claassen et al., 2004), in other acute brain injury or ICU patients (e.g., 

Foreman and Claassen, 2012; Gaspard et al., 2013; Claassen et al., 2014) or during 

carotid endarterectomy. Pending the outcomes of future studies, it may prove useful 

in other clinical contexts or neurological patient groups, such as distinguishing IS 

versus stroke mimic or medically unexplained symptoms. 

 

Another potential clinical application is continuous monitoring to inform decisions 

regarding reperfusion therapies in acute IS. Identification of a DAR abnormality 

criterion extends previous proposals on this topic (Finnigan and van Putten, 2013). 

Sheikh et al (2013) report longitudinal DAR measures from two patients receiving 

reperfusion therapy. In one case (admission NIHSS score 15) DAR was above 12 

prior to intravenous alteplase administration and remained highly abnormal 

thereafter, accurately indicating lack of successful therapy (discharge NIHSS score 
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11; moderate-severe disability at 3 months). In the other case DAR remained 

abnormal (>7.5) and symptoms severe (NIHSS 19) following unsuccessful, 

intravenous alteplase, but soon after ensuing intra-arterial clot retrieval DAR had 

dropped below 3.7, accurately indicating successful reperfusion (mild symptoms at 

discharge; NIHSS 2). These data indicate that DAR falling below our proposed 

criterion may prognosticate treatment efficacy; whereas lack of prompt DAR 

normalisation following intravenous alteplase (indicating unsuccessful treatment) 

may expedite decisions regarding intra-arterial reperfusion strategies within the 

critical, brief window of opportunity for same. Further data are required to 

systematically evaluate these proposals and identify the precise nature of DAR 

decrease that would reliably indicate efficacy (e.g., 4 to 3.5, versus 12 to 4, etc.). We 

do not suggest that QEEG could replace neuroimaging techniques in clinical 

management of IS, however while imaging can indicate reperfusion it does not 

directly inform about potential response of ischaemic, neural tissue to same. 

Whereas EEG directly measures neural (dys)function and the latter, and DAR may 

constitute a reliable, bedside indicator of success of reperfusion therapy.  

 

Additional considerations 

Several caveats to the current study should be noted. Fifteen (83%) of the IS sample 

had EEG performed within 8 h of stroke symptom onset and three, between 8 and 24 

h. Whereas in our past studies of EEG acquired around 48 h post-onset or thereafter 

(Finnigan et al., 2007; Schleiger et al., 2014) DAR values below 3.7 were not 

uncommon, indicating that this proposed threshold is not directly applicable by this 

time period (albeit this is well beyond the therapeutic window for reperfusion). Future 

studies may further investigate a lower DAR abnormality criterion pertinent to the 

(pre-discharge) days following stroke which, together with other assessments, may 

help inform clinical prognoses and decisions. All patients studied suffered 

radiologically-confirmed, MCA stroke with (partly) cortical lesions in all but one case: 

in patient 12 the lesion was striatocapsular (restricted to the basal ganglia). While 

this single case suggests our proposals might also apply to such cases of IS 

affecting only subcortical regions (e.g., basal ganglia or lacunar strokes) or non-MCA 

arterial territories (see also Finnigan and van Putten, 2013) further investigations are 
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warranted. It is also noteworthy that subtle slowing of the peak alpha frequency can 

occur with ageing (e.g., Finnigan and Robertson, 2011) hence these data from 

participants aged 51 to 86 may possibly differ to those from younger adults. 

Relatedly it is possible that one or more patients had DAR above 3.7 prior to IS due 

to alpha slowing or cognitive impairment linked to cerebrovascular issues, for 

example. Other QEEG indices may also prove informative. Inter-hemispheric voltage 

(a)symmetry has been quantified (across 1-25 Hz) via the pairwise-derived brain 

symmetry index (pdBSI). To date indices relating to delta power, particularly DAR, 

generally have demonstrated greater value in relation to IS assessments (e.g., 

Claassen et al., 2004; Finnigan and van Putten, 2013; Foreman and Claassen 2012; 

Leon-Carrion et al., 2009; Schleiger et al., 2014; Table 1) although subacute pdBSI  

seems informative for outcome prognostication (e.g., Sheorajpanday et al., 2011). 

The only study which has directly compared subacute DAR and pdBSI reported that 

only DAR had highly significant correlations with functional outcomes (Schleiger et 

al., 2014), although future studies may investigate the potential value of pdBSI in 

acute IS.  

 

Assessment of EEG traces remains important, e.g. for verification of artefacts. 

Lodder and van Putten (2013) report several bandpower-derived QEEG indices 

which can support and improve inter-rater reliability of visual EEG interpretation. As 

discussed in detail elsewhere (e.g., Finnigan and van Putten, 2013; Foreman and 

Claassen, 2012) EEG/QEEG may be susceptible to factors including artefacts, 

medications, metabolic conditions and sleep state, although evidence indicates that 

in acute IS the monitoring and prognostic value of global delta power and DAR are 

robust to sleep state (Finnigan et al., 2004) and sedation (Sheikh et al, 2013), at 

least. Nevertheless such factors must be considered, particularly given that some 

artefacts (e.g., those caused by eye blinks) can potentially affect delta power 

measures, and this further emphasises the value of assessing raw EEG traces as 

well as QEEG. It has been proposed that computer-assisted EEG/QEEG monitoring 

can facilitate recognition of common EEG abnormalities by non-expert clinical staff 

(Cloostermans et al., 2011). Using such technology in future, non-experts (e.g., allied 

health professionals) may generally prefer to first assess QEEG information (and 
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perhaps then consult EEG traces, or experts) whereas the converse may generally 

apply for experts (e.g., neurologists). 

 

In summary DAR with a threshold value of 3.7 demonstrated perfect accuracy for 

distinguishing between acute IS pathophysiology and normative state, and 

classifying all 46 participants accordingly. Further investigations are warranted in IS 

and other neurocritical patient groups. 
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FIGURE LEGENDS 

 

Figure 1: Bar graphs plotting relative power values for each of the four classical 

frequency bands in each individual analysed. A: Control participants; B: Acute 

ischaemic stroke cases; C: Mean values for each sample. The sample mean graphs 

illustrate key differences particularly for delta and alpha power. Relative delta power 

was significantly higher in the stroke (M = 0.58) than the control sample (M = 0.29 t = 

11.63, p < 0.0001), whereas relative alpha power was significantly lower in the stroke 

(M = 0.13) than the control sample (M = 0.34; t = 8.06, p < 0.0001). Such outcomes 

also relate to the finding that DAR was significantly higher in the stroke (M = 6.64) 

than the control sample (M = 1.34; t = 7.75, p < 0.0001). 

 

Figure 2: DTABR and DAR values plotted for each individual in the control versus 

stroke samples. There was substantial overlap of DTABR values between the 

samples but no overlap for DAR. The horizontal line represents the proposed DAR 

abnormality threshold value of 3.7.  

 

Figure 3: Relative delta power and QSLOWING values plotted for each individual in the 

control versus stroke samples. There was substantial overlap of QSLOWING values 

between the samples, and some (lesser) overlap of relative delta values. 

 

Figure 4: Relative power values – for theta, alpha and beta bands respectively - 

plotted for each individual in the control versus stroke samples. There was 

substantial overlap between the samples for each of these relative bandpower 

measures. 

 



  

Number Gender Age Delta Theta Alpha Beta DAR DTABR

C01 F 83 0.15 0.15 0.47 0.22 0.35 0.45

C02 F 83 0.52 0.17 0.19 0.12 3.13 2.32

C03 F 65 0.09 0.05 0.52 0.34 0.19 0.17

C04 M 74 0.42 0.12 0.29 0.18 1.88 1.30

C05 F 60 0.32 0.07 0.13 0.47 3.13 0.74

C06 F 76 0.38 0.12 0.24 0.25 1.95 1.16

C07 M 71 0.29 0.11 0.43 0.16 0.85 0.73

C08 F 78 0.24 0.11 0.30 0.34 0.86 0.60

C09 F 65 0.21 0.06 0.53 0.19 0.5 0.44

C10 M 82 0.20 0.16 0.41 0.24 0.62 0.58

C11 M 68 0.38 0.09 0.37 0.16 1.37 1.07

C12 F 84 0.21 0.09 0.56 0.13 0.46 0.49

C13 M 56 0.19 0.11 0.28 0.43 0.69 0.43

C14 M 72 0.19 0.13 0.54 0.15 0.4 0.51

C15 F 67 0.31 0.15 0.28 0.26 1.22 0.97

C16 M 76 0.29 0.19 0.35 0.17 0.98 1.03

C17 M 82 0.47 0.09 0.17 0.26 3.43 1.46

C18 M 70 0.30 0.15 0.33 0.22 1.1 0.94

C19 F 73 0.31 0.09 0.31 0.29 1.35 0.87

C20 F 64 0.22 0.13 0.49 0.15 0.55 0.62

C21 F 74 0.26 0.16 0.46 0.13 0.75 0.85

C22 F 60 0.13 0.10 0.60 0.18 0.27 0.33

C23 M 80 0.36 0.10 0.24 0.31 2.12 1.00

C24 F 66 0.14 0.06 0.24 0.55 0.61 0.26

C25 M 61 0.31 0.08 0.21 0.4 1.83 0.67

C26 F 61 0.44 0.10 0.16 0.3 3.56 1.59

C27 F 63 0.44 0.08 0.24 0.23 2.38 1.30

C28 F 57 0.22 0.09 0.30 0.39 1.05 0.54

MEAN 70.39 0.29 0.11 0.34 0.26 1.34 0.84

SD 8.59 0.11 0.04 0.13 0.11 1.01 0.47

Minimum 56 0.09 0.05 0.13 0.12 0.19 0.17

Maximum 84 0.52 0.19 0.60 0.55 3.56 2.32

zcritical 0.50 0.19 0.09 0.04 3.31 1.75

Table 1: QEEG indices for healthy older adult participants and acute ischaemic stroke cases. Relative band-power measures are shown.

DAR: Delta/Alpha Power Ratio; DTABR: (Delta+Theta)/(Alpha+Beta) Power Ratio; C: Control Participant; SD: Standard Deviation

0% 

20% 

40% 

60% 

80% 

100% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

R
e

la
ti

ve
 B

an
d

p
o

w
e

r 

Control Participants 

A 

Delta Theta Alpha Beta 

0% 

20% 

40% 

60% 

80% 

100% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

R
e

la
ti

ve
 B

an
d

p
o

w
e

r 

Stroke patients 

B 
Delta Theta Alpha Beta 



  

0 

2 

4 

6 

8 

10 

12 

14 
(D

e
lt
a
+

T
h
e
ta

)/
(A

lp
h
a
+

B
e
ta

) 
R

a
ti
o
; 

D
e
lt
a
/A

lp
h
a
 R

a
ti
o

 
Control-DTABR Stroke-DTABR Control-DAR Stroke-DAR 



  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

R
e

la
ti
v
e

 d
e

lt
a

 p
o

w
e

r;
 Q

s
lo

w
in

g
 i
n

d
e

x
 

Control-Delta Stroke-Delta Control-Qslow Stroke-Qslow 



  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

R
e

la
ti
v
e

 B
a

n
d

p
o

w
e

r 
Control-Theta Stroke-Theta Control-Alpha Stroke-Alpha Control-Beta Stroke-Beta



  

Study EEG time Principal EEG/QEEG indices of prognostic value Associated outcome assessment & time-point

Sainio et al (1983) < 48 h Delta power, alpha power Neurological examination; Discharge

Claassen et al (2004) 1- 6 days^ DAR* Delayed cerebral ischaemia; 14 days^

Finnigan et al (2004) < 18 h Delta power change over time* NIHSS; 30 days

Finnigan et al (2006) 0.5 h
# 

Delta power change over time* Efficacy of reperfusion therapy; discharge & 90 days

Finnigan et al (2007) 46-52 h DAR*; relative alpha*; DTABR (ns) NIHSS; 30 days

Finnigan et al (2008) < 25 h Delta power (contralateral hemisphere)* Death; 2 - 10 days

Leon-Carrion et al (2009) < 1 wk DAR*; DTABR (ns); pdBSI (ns) Functional Independence Measure +

Functional Assessment Measure; 6 mths

Sheorajpanday et al < 72 h† DTABR* Modified Rankin scale; dependency, mortality; 6 mths

(2011a) pdBSI* Modified Rankin scale; disability; 6 mths

Sheorajpanday et al < 72 h† DTABR* Modified Rankin scale; 7 days

(2011b) pdBSI* Radiologically-confirmed stroke; < 96 h

Sheikh et al (2013) 2.5 h
# 

DAR change over time* Efficacy of reperfusion therapy; discharge & 90 days

Schleiger et al (2014) 62-101 h DAR*; relative alpha*; pdBSI (ns) Functional Independence Measure +

Functional Assessment Measure; 70-209 days

Table 1: Summary of key detials and results from past studies reporting analyses of respective QEEG indices in stroke patient samples.

* Statistically significant; (ns): non-significant

^Post-subarachnoid haemorrhage

† 96 of 110 of patients had EEG in < 72 h; the remainder in < 7 days



  

Age Delta Theta Alpha Beta DAR DTABR QSLOWING

Control

Mean 70.4 0.29 0.11 0.34 0.26 1.34 0.84 0.36

SD 8.60 0.11 0.04 0.13 0.11 1.01 0.47 0.11

zcritical 0.50 0.19 0.09 0.04 3.31 1.75 0.57

Stroke

Mean 69.3 0.58 0.17 0.13 0.12 6.64 4.25 0.66

SD 9.9 0.06 0.06 0.04 0.05 2.78 1.77 0.09

t 0.37 11.63 3.92 -8.06 -5.66 7.75 8.01 9.98

p 0.71 < 0.0001 < 0.001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 2: Descriptive statistics of the control and stroke samples, and the outcomes of comparisons between these. 

QEEG relative band-power, and power ratio, indcies, and statistical (t and probability [p ]) values are shown.

DAR: Delta/Alpha Power Ratio; DTABR: (Delta+Theta)/(Alpha+Beta) Power Ratio; SD: Standard Deviation



  

Index Threshold AUC Sensitivity Specificity

Delta 0.49 0.994 0.944 0.964

Theta 0.12 0.812 0.889 0.679

Alpha 0.17 0.972 0.889 0.929

Beta 0.16 0.901 0.833 0.821

DAR 3.70 1.000 1.000 1.000

DTABR 1.76 0.996 1.000 0.964

Qslowing 0.54 0.968 0.944 0.964

Table 3: Outcomes of ROC analyses for repsective QEEG indices and their optimised thresholds.

DAR: Delta/Alpha Power Ratio; DTABR: (Delta+Theta)/(Alpha+Beta) Power Ratio; AUC: Area Under Curve.




