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Abstract 

A novel heteroepitaxial growth technique, quasi van der Waals epitaxy, promises the ability to 

deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer 

layer by overcoming the lattice and thermal expansion mismatch. In this study, density 

functional theory (DFT) simulations were performed to understand the interactions at 

GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To 

develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, 

samples were characterized by x-ray diffraction (θ -2θ  scan, ω-scan, grazing incidence XRD and 

pole figure measurement) and transmission electron microscopy. The realizations of smooth 

GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition 

technique is a milestone towards an eventual demonstration of the epitaxial growth of GaAs on 

silicon, and, therefore is suitable for integrated photonics application. 

Introduction 

Since the proposed concept and first experimental realization[1], van der Waals epitaxy (vdWE) 

has gained significant momentum within the research community. Recently, vdWE is viewed as 

a prospective alternative route of heteroepitaxy by which heterostructures even with a lattice 

mismatch of as high as 40% can be grown with reasonably good crystal quality[2]. Although the 

original concept of vdWE was realized using two-dimensional (2D) layered semiconductors, 

such as NbSe2 /MoS2, the growth of three-dimensional (3D) materials on top of a 2D surface is 

an extension of this growth idea[3]. This modification of vdWE is often referred to as 

quasi-van der Waals epitaxy (QvdWE) or 3D-2D heteroepitaxy[4]. 



 

The epitaxial growth of optoelectronic materials, such as GaAs on silicon substrates provides a 

unique opportunity to combine the advantages of superior optical properties with the capabilities 

of matured silicon technologies. Despite extensive efforts over the last 30 years, there has been 

little success in the growth of high-quality GaAs on Si. The main obstacles are lattice mismatch, 

polar-on-non-polar epitaxy, and thermal expansion mismatch between GaAs and Si[5]. Due to 

such intrinsic material-related problems, the grown GaAs thin films on Si are still far below the 

technologically acceptable limit, resulting poor performance in the devices made of such 

materials. In this regard, QvdWE could be considered as a method to overcome such problems. 

This technique employs layered two-dimensional materials as buffer layers which are 

self-passivated and inert, indicating a weak vdW interaction between the 

overlying-3D-semiconductor/2D-layer. 

 

Among the large family of vdW materials, graphene, a single layer of sp2-bonded carbon atoms, 

a thermally-stable material that has a high-decomposition temperature, thus making it an ideal 

material of choice as a buffer layer. Furthermore, due to its excellent optical transparency and 

electrical conductivity, graphene is a promising substrate for GaAs-based optoelectronic 

devices[6,7]. Hence, low-resistive, transparent and flexible ohmic contact could be formed on 

those devices. 

 

A few experimental investigations[4,8,9] have already been reported on the growth of GaAs 

nanowires on Si using graphene. However, successful operation of nanowire-based devices is 

impeded by several intrinsic chalenges which are primarily associated with the cylindrical 



geometry of NWs[10]. Thus far, nanowires still has not turned out to be the proper alternative of 

thin-film, when optical and electrical device characteristics are considered. 

 

Using a 2D graphene buffer layer, the epitaxial growth mode of 3D GaAs materials on silicon 

substrate is shown schematically in Fig. 1 (a) through a covalent bond diagram of the 

corresponding materials, where GaAs with a zinc-blende cubic crystal structure interacts with the 

underlying graphene layer with a honeycomb lattice structure via vdW forces. Figure 1(b) shows 

an SEM image of molecular beam epitaxy (MBE) grown smooth GaAs films grown on gallium-

terminated graphitic flakes lying on silicon substrate. Despite an ultrasmooth morphology of 

such GaAs films, the low adsorption and migration energies of gallium and arsenic atoms on 

graphene result in cluster-growth mode during crystallization of GaAs films at an elevated 

temperature. Details on the growth process and the associated physics can be found elsewhere[11].     

 

Fig. 1 (a) Atomic geometry of GaAs/graphene/Si, where GaAs and graphene are attached to each 

other by van der Waals interactions. (b) SEM plan-view image of the as-grown GaAs thin films 

on graphite flakes exfoliated atop Si(001) substrates, showing a smooth surface morphology.  

 

 



Theoretical investigation 

Density functional theory (DFT) calculations within the Perdew-Burke-Ernzerhof (PBE) type 

generalized gradient approximation (GGA) framework as implemented in the Vienna Abinitio 

Simulation Package (VASP)[12] were performed.  Using a semiempirical correction to the 

Kohn-Sham energies, vdW interactions were accounted for in all calculations.[13] A 

Monkhorst-Pack scheme was adopted to integrate over the Brillouin zone with a k-mesh 

9 × 9 × 1. A plane-wave basis kinetic energy cutoff of 400 eV was used. All structures are 

optimized until the largest force on the atoms is less than 0.01 eV/Å.   

• VdW hetero-interface study 

The interface between zinc-blende (ZB) and wurtzite (WZ) GaAs on graphene is compared using 

ab-initio calculations. A 4 × 4 × 1 graphene supercell is used with a 5 × 5 × 1 GaAs supercell.  

The graphene/GaAs interfaces are Ga terminated.  To saturate the dangling bonds pseudo-

hydrogen atoms with fractional charge of 0.75e were used.  The binding energy Ebinding, is 

calculated using the following expression 

binding graphene/GaAs graphene GaAsE E E E= − −  

where Egraphene/GaAs is the ground state energy of the graphene/GaAs heterostructure , Egraphene is 

the ground state energy of the 4 × 4 × 1 graphene supercell and EGaAs is the ground state energy 

of the GaAs supercell used.    

To understand the nature of the heterointerface, the binding energy between graphene and the ZB 

and WZ GaAs surfaces is calculated. The binding energy describes the strength of the 

interactions at the epitaxial interface. Table 1 summarizes the binding energies between ZB 

GaAs (111) surface and WZ GaAs (0001) surface with graphene. The energies for a pristine 



interface and in the presence of a single point defect are compared. A point defect is introduced 

with the removal of a single Ga atom at the Ga-terminated graphene/GaAs interface. 

Table 1:  Binding energy values of zinc-blende and wurtzite GaAs surfaces on graphene 

 

 

 

 

Calculations of the binding energy indicate the ZB GaAs(111) phase is the preferred orientation 

on graphene; the ground state energy for this configuration is 8.1 meV/C-atom lower than the 

energy of  WZ GaAs phase on graphene.  With the presence of a single point-defect at the 

interface; the ZB GaAs phase remains the preferred orientation.  Prior studies have demonstrated 

the epitaxial relationship formed by GaAs and graphene can be affected by but is not limited to 

the orientation, strain, defect density at the interface.[4]  Further calculations would elucidate 

which of these mechanisms governs the preferred GaAs phase when epitaxially grown atop 

graphene. 

Interfaces dominated by vdW forces are known to lead to turbostratically misoriented interfaces.  

Hence, the effect of misorientation between the graphene-GaAs interface on the binding energy 

is also investigated. The binding energy is maximum for the misoriented structure and is 

minimum for the unrotated graphene/GaAs structure. The binding energies calculated as a 

function of rotation angle in Fig. 2 are the same order of magnitude as the binding energy of 

graphene on Cu(111) surfaces,[14] where the interactions at this interface are also dominated by 

vdW forces. This would also suggest that the graphene-GaAs interface is also governed by vdW 

interactions. The stronger binding energy in the misoriented structure suggests the strain in this 

 Binding Energy/C atom (meV) 

Zinc blende GaAs (111) Wurtzite GaAs 

Pristine -43.21 -35.11 

Ga-vacancy -43.18 -33.98 



structure is minimized. Furthermore, the higher binding energy would also suggest the graphene-

GaAs interface is likely to be misaligned when an epitaxial interface is formed, with an unrotated 

interface being the least preferred orientation configuration. The energy barrier to transition from 

a rotated interface to an unrotated interface in the graphene/GaAs structure can be as large as 

0.13 J/m2. For the supercells simulated, the total energy difference between the unrotated 

structure and the rotated structures is greater than the thermal energy kBT at room temperature.  

This would suggest the interface between graphene and GaAs may remain misaligned at 300 K 

and higher growth temperatures as well. 

 

 

 

 

 

 

 

 

Fig. 2: Binding energy of the graphene/GaAs interface as a function of misorientation angle.  

The calculated binding energies are normalized with the planar area of the supercell used. 

 

• Alternative QvdWE buffer layer materials 

As wafer-scale growth of single monolayers of alternative vdW materials such as h-BN and 

MoS2
[15] approach the same quality as graphene, we consider the possibility of using these 

prototypical vdW materials as a buffer layer for our quasi-vdW epitaxy approach. Adsorption 



energy calculations were used to determine if monolayer and bilayer MoS2 and h-BN would act 

as suitable buffer layers in addition to graphene to achieve QvdWE of GaAs. For calculations of 

the adsorption energy of Ga, Al, In and As on h-BN and MoS2, a 4 × 4 × 1 supercell of 

monolayer (1L) MoS2 and monolayer and bilayer (2L) h-BN was used. For MoS2, the 4p, 5s, 4d 

and 3s, 3p orbitals of Mo and S respectively are treated as valence in the PBE functional. For h-

BN, the 2s, 2p orbitals of B and N are treated as valence. Calculation details for the adsorption 

energy and the Ga, Al, As and In pseudo-potentials used have been detailed in our previous study 

of adsorption energy of these elements on graphene.[11] Our prior studies of Al, Ga, As and In 

adsorption on graphene have shown that each element binds with approximately the same 

binding energy on to single layer and bilayer graphene; the favored binding site on the 

honeycomb lattice of graphene is unique to each element. Hence, the binding energy of the 

defect free GaAs surface is determined by the orientation of the Ga and As atoms above the 

honeycomb lattice. Table 2 summarizes the adsorption energy values for Al, Ga, As and In on h-

BN and MoS2.  

Table 2:  Adsorption energy of Ga, Al, In and As on monolayer (1L) and bilayer (2L) h-BN and 

MoS2. The favored adsorption site for each element and vdW material is listed in parentheses; 

for h-BN the favored site is when the adatom is on top of nitrogen (TN) or on top of the boron-

nitrogen bond (B) and for MoS2 the favored site is when the adatom is on top of the sulfur 

atom (T). 



 

 

 

 

 

 

 

The adsorption energy at each binding site for monolayer MoS

is approximately an order of magnitude lower than the adsorption energies calculated for Ga, Al, 

In and As on graphene.   

Fig. 3:  Projected density of states for Ga adsorbed on the T

density of states (blue), Mo states (red), S states (green) and Ga states (magenta). Inset:  

Schematic of 4 × 4 × 1 MoS2 supercell with Ga adatom over S atom.

 

The strength of the adsorption energy can be characterized by the hybridization of the adsorbant 

elements on the vdW buffer layer material. Figure 3 illustrates the projected density of states of a 

 1L h-BN 

(meV/atom

Ga 131.6 (TN)

Al 135.1 (TN)

In 66.9 (B)

As 296.9 (B)

The adsorption energy at each binding site for monolayer MoS2 and monolayer and bilayer h

is approximately an order of magnitude lower than the adsorption energies calculated for Ga, Al, 

 

Projected density of states for Ga adsorbed on the T-site of the MoS

ity of states (blue), Mo states (red), S states (green) and Ga states (magenta). Inset:  

supercell with Ga adatom over S atom. 

The strength of the adsorption energy can be characterized by the hybridization of the adsorbant 

elements on the vdW buffer layer material. Figure 3 illustrates the projected density of states of a 

Adsorption Energy 

BN 

(meV/atom) 

2L h-BN 

(meV/atom) 

1L-MoS2 

(meV/atom) 

131.6 (TN) 134.3 (TN) 234.6 (T) 

135.1 (TN) 101.1 (TN) 237.4 (T) 

66.9 (B) 85.1 (TN) 573.1 (T) 

296.9 (B) 341.5 (TN) 527.8 (T) 

and monolayer and bilayer h-BN 

is approximately an order of magnitude lower than the adsorption energies calculated for Ga, Al, 

site of the MoS2 supercell, total 

ity of states (blue), Mo states (red), S states (green) and Ga states (magenta). Inset:  

The strength of the adsorption energy can be characterized by the hybridization of the adsorbant 

elements on the vdW buffer layer material. Figure 3 illustrates the projected density of states of a 



Ga atom adsorbed on the T-site of a monolayer MoS2 supercell. The sp2 orbitals of Ga are 

weakly hybridized with the 4d and 3p orbitals of Mo and S respectively. This is evidenced by the 

weak overlap of the Ga orbitals with the Mo and S orbitals of the valence band in MoS2. In 

contrast, strong hybridization between the sp2 orbitals of Ga, with the sp2 orbitals of carbon in 

graphene results in larger adsorption energies. The adsorption of Ga, Al, In and As atoms on 1L 

and 2L h-BN, also results in weak hybridization with the sp2 orbitals of boron and nitrogen 

which leads to lower adsorption energies when compared to graphene. The lower adsorption 

energies of Ga, Al, As and In atoms on the MoS2 and h-BN surfaces would result in these 

adatoms being poorly anchored during the growth process, which in turn would lead to 

degradation in the morphology of the GaAs film. These initial calculations suggest that graphene 

remains an ideal candidate as a buffer material to enable vdW epitaxy when compared to h-BN 

and MoS2. 

  

Experimental Procedure 

X-ray diffraction experiments were performed at room temperature on a Rigaku SmartLab 

diffractometer equipped with a high accuracy/resolution four circle theta-theta goniometer, using 

a Cu Kα radiation and scintillation detector. The nearly parallel incident beam was collimated 

using a parabolic multilayer mirror. Sample was mounted horizontally on a motorized high 

precision Z-stage and Phi attachment. Full pole figure data was collected using an in-plane 

diffraction attachment with the axis β scanned from 0-360 ° at 50 °/min speed at each α angle 

(step size 0.5 ° ranging from 0-90 °). The incident slit (IS), length limit silts (H), and receiving 

slits (RS1/RS2) were 1mm, 5mm, 2mm and 2mm, respectively. For grazing incident x-ray 

diffraction (GIXRD), these slit conditions were used: IS = 0.2 mm, H = 5.0 mm, 



RS1 = RS2 = 20.0 mm. The incident beam angle was fixed at 0.3 °, while the 2-theta arm was 

scanned from 20 ° to 60 ° at speed of 0.3 °/min with its step size of 0.05 °. As for radial 

2theta/omega scan, the measurement conditions were IS=1.0 mm, H=5 mm, RS=20 mm, while 

scan speed was 0.5 ° /min with a step size=0.05 °. For both GIXRD and 2theta/omega 

measurement, Soller slits were used to reduce the axial divergence of the incident and diffraction 

x-ray beam to 5 °, and a 0.5 ° parallel slit analyzer (PSA) was used to improve 2θ  angular 

resolution.   

The cross-sectional specimen was prepared by hand polishing using a tripod technique and final 

thinning using a Gatan precision ion polishing system (PIPS) (Gatan Model 691, operated at 

4 keV). The structural characteristics of as-grown GaAs were then investigated by cross-

sectional transmission electron microscopy (TEM, Tecnai F20, operated at 200 keV). 

 

Experimental Results 

Figure 4(a) shows the out-of-plane XRD θ -2θ  scan pattern for GaAs thin films grown on 

exfoliated graphite flakes over a 2θ  range of 20 °-70 °. The as-grown GaAs films exhibit 

polycrystalline nature, which is confirmed by (111), (220) and (311) diffraction peaks. Apart 

from these three film-generating diffraction peaks, the (002) and (004) silicon substrate peaks are 

observed in the scan. The forbidden Si 002 peak at 2θ  = 32.9 ° is attributed to multiple 

diffraction (Umweganregung). Graphite (002) and (004) reflections are also found as labeled by 

the red-colored text in Fig. 4(a). The crystalline quality of the thin GaAs film on Ga-terminated 

graphene was characterized by XRD rocking-curve scans as shown in Fig. 4(b). The FWHM for 

the rocking curve of the GaAs(111) is 242 arcsec (0.067°), indicating good crystal quality for 

this orientation (and likely epitaxy). We note that the rocking curves of other surface-normal 



planes showed broad peaks which is reasonable since our vdW regions covered only a small 

percentage of an otherwise polycrystalline layer, yielding a strong background signal from the 

(majority) untemplated regions. The low-temperature grown GaAs on the flakes exhibits a strong 

(111) preferred-orientation texture at the least. This is an essential step towards demonstration of 

epitaxy. If larger graphite flakes were used, a clear correlation between the graphene and the 

fiber texture could be confirmed by a featureless Φ-scan for an asymmetric peak, such as (115). 

As shown in the inset of Fig. 4(b), the GIXRD 2θ  scan exhibits peaks at the expected locations 

for GaAs films, corresponding to the GaAs (111), (220), and (311) which indicates that the as-

grown material is randomly oriented polycrystalline. Note that there are two strong unlabeled 

peaks at 2θ  = 53° and 56.3° for these samples which could be due to graphitic regions. 

 

To assess the quality of as-grown film and to benchmark our results, the full width at half 

maximum (FWHM) of the XRD rocking curve could be compared with the prior reports of 

FWHM values obtained from GaAs on Si using conventional direct heteroepitaxy. By employing 

several direct growth approaches [16-19], micron thick buffer layer was deposited on silicon in 

order to obtain a FWHM value as low as 242 arcsec. However, the as-grown GaAs film via 

vdWE achieves the same FWHM with film thicknesses on the order of 25 nm. The two orders of 

magnitude improvement in the quality of our GaAs films can be attributed to the graphene buffer 

layer mitigating lattice and thermal mismatch between GaAs and the underlying substrate. 

 



Fig. 4: XRD analyses of as-grown GaAs on exfoliated graphite flakes, (a)

where multiple peaks corresponds to zincblende (111), (220) and (311) GaAs, confirming 

polycrystallinity of the grown 

double-daggers (‡) indicates the multi-domain graphite layers. The (002) and (004) peaks from 

Si(001) substrate are marked with asterisks (*). (b) The rocking curve of (111) GaAs peak, 

GIXRD 2θ  scan profiles is shown in the inset.
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shown in Fig. 5(a), the θ -2θ  scan is composed of zincblende (111), (200), (220) and (311) GaAs 

peaks with unequal intensities. Therefore, the as

confirmed to be polycrystalline.  
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grown GaAs on exfoliated graphite flakes, (a) HRXRD 

where multiple peaks corresponds to zincblende (111), (220) and (311) GaAs, confirming 

polycrystallinity of the grown films. The (002) and (004) graphite peaks marked with 

double-daggers (‡) indicates the multi-domain graphite layers. The (002) and (004) peaks from 

Si(001) substrate are marked with asterisks (*). (b) The rocking curve of (111) GaAs peak, 

scan profiles is shown in the inset. 
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performed for GaAs films grown on large-area CVD graphene over a 2θ  range of 20 °

scan is composed of zincblende (111), (200), (220) and (311) GaAs 

peaks with unequal intensities. Therefore, the as-grown GaAs film on CVD graphene is 
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the surface normal. Also, the stereographic 

inset in Fig. 5(b). The FWHM of the surface normal peak and the degree of the preferred 

orientation are calculated to be 1.5 ° and 2.2%, suggesting strong fiber texture in the GaAs films. 

In a previous study, it was reported that (111) orientation is highly favored by the underlying 

graphene layer, exhibiting a triangular lattice symmetry. It should be noted that the XRD 

scan and pole figure data reported here were collected from the sample where the GaAs growth 

was performed on a blanket graphene layer sitting on SiO

This clearly suggests that the silicon substrate will have a negligible influence in defining the 

orientation of the grown layer. 

 

Fig. 5: XRD analysis and pole figure of as

scan, where multiple peaks corresponds to zincblende (111), (200), (220) and (311) 

The 3D pole figure of (111) GaAs, showing a preferred orientation of the grown films. The 

stereographic projection of the (111) pole figure is shown as inset.
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grown GaAs on CVD graphene, (a) HRXRD θ -2θ
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Selected area electron diffraction (SAED) patterns obtained from the GaAs layer in 

contain a series of rings, which indicates the presence of a polycrystalline material. Using the 

diffraction pattern of single crystal Si substrate as a reference, the lattice plane spacings of the 

diffraction pattern and the relative intensit

of GaAs is grown in the cubic zincblende phase. Figure 6 shows a high

of an approximately 100 nm thick GaAs layer containing two grains in which a <110> direction 

is aligned close to parallel to the electron beam, (see enlarged areas). The lattice fringe patterns 

observed are consistent with these grains being zincblende in structure which is in good 

agreement with the theoretical findings. Defects such as microtwins and stack

observed within some of the grains. The typical grain size observed in an approximately 100 nm 

think GaAs layer was between 20-60 nm.

Fig. 6: Cross-sectional TEM image near the interface between GaAs film and 

CVD-graphene/SiO2. Magnified TEM images of the solid red

interpretation, the film growth direction is along the vertical direction of images. The 

corresponding SAED ring pattern is shown as inset. 

 

 

 

Selected area electron diffraction (SAED) patterns obtained from the GaAs layer in 

contain a series of rings, which indicates the presence of a polycrystalline material. Using the 

diffraction pattern of single crystal Si substrate as a reference, the lattice plane spacings of the 
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of GaAs is grown in the cubic zincblende phase. Figure 6 shows a high-resolution lattice image 

of an approximately 100 nm thick GaAs layer containing two grains in which a <110> direction 

close to parallel to the electron beam, (see enlarged areas). The lattice fringe patterns 

observed are consistent with these grains being zincblende in structure which is in good 

agreement with the theoretical findings. Defects such as microtwins and stack

observed within some of the grains. The typical grain size observed in an approximately 100 nm 

think GaAs layer was between 20-60 nm. 

sectional TEM image near the interface between GaAs film and 

. Magnified TEM images of the solid red-square areas. To maximize ease of 

interpretation, the film growth direction is along the vertical direction of images. The 

corresponding SAED ring pattern is shown as inset.  

Selected area electron diffraction (SAED) patterns obtained from the GaAs layer in both samples 
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resolution lattice image 

of an approximately 100 nm thick GaAs layer containing two grains in which a <110> direction 

close to parallel to the electron beam, (see enlarged areas). The lattice fringe patterns 

observed are consistent with these grains being zincblende in structure which is in good 

agreement with the theoretical findings. Defects such as microtwins and stacking faults were 

observed within some of the grains. The typical grain size observed in an approximately 100 nm 

 

sectional TEM image near the interface between GaAs film and 

square areas. To maximize ease of 

interpretation, the film growth direction is along the vertical direction of images. The 



Conclusion 

In summary, we have reported the detailed theoretical and experimental characterization of 

MBE-grown GaAs thin films on graphene/silicon substrates using quasi van der Waals epitaxy in 

order to get more material insights. From the theoretical study, we conclude that graphene as a 

buffer layer is more suitable than h-BN and MoS2 in the case of the growth of 3D materials on 

2D layered surfaces. By XRD measurements, it is verified that our as-grown GaAs films on 

graphene/silicon exhibit the polycrystalline nature with a strong [111]-oriented fiber texture. In 

the study of the GaAs/graphene hetero-interface, GaAs ZB crystal structure is experimentally 

found to be more stable than WZ GaAs, providing good agreement with the theoretical 

predictions. Since the CVD-grown graphene itself is polycrystalline, the as-grown materials on 

top of this 2D buffer layer cannot be single-crystalline. Therefore, future efforts will mainly 

focus on using single-domain graphene as a buffer layer, leading to single-crystalline GaAs 

which will serve as a potential and cost-effective route towards heteroepitaxial integration of 

GaAs on silicon in the developing field of silicon photonics. 
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