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Abstract 

The release of carotenoids from fresh fruits or vegetables is determined by the encapsulating plant tissue 

matrix, intracellular carotenoid location within the cell, and the mastication process. The objectives of this 

study were to assess the particle sizes obtained after mastication of mango fruit tissue, and how the resulting 

degree of plant tissue rupture affects carotenoid bioaccessibility. A fine and a coarse chewer were selected 

after screening 20 healthy volunteers for in vivo human mastication, and the collected chewed boluses were 

subjected to wet sieving fractionation, followed by an in vitro gastric and small intestinal digestion model. 

Confocal micrographs show that the smallest particle size fraction (0.075 mm) consists mostly of fragmented 

cells and the largest size fraction (2.8 mm) contains bulky clusters of whole cells and vascular fibres. Higher 

amounts of total carotenoids (211-320 µg/100g) were observed in the larger particle size fraction (2.8 mm) 

relative to the 1 mm (192-249 µg/100g) and 0.075 mm fractions (136-199 µg/100g). Smaller particles 

showed a greater % release of total carotenoids after in vitro digestion. Xanthophyll derivatives are more 

bioaccessible than β-carotene for all particle sizes. The effects of particle size or degree of fine vs coarse 

chewing are unexpectedly small (p>0.05) but the process of chewing substantially reduced the release of β-

carotene and xanthophylls by 34% and 18% respectively. Whilst there is a (small) particle size effect, this 

appears to not be the primary factor controlling bioaccessibility for soft tissues such as mango, in contrast to 

previous reports that a single cell wall appears to be enough to prevent bioaccessibility of carotenoids in 

more robust carrot tissues. 

 

Keywords: bioaccessibility; mango; carotenoids; digestion in vitro; chewing; plant cell wall 
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1. Introduction 

Epidemiological studies have shown an inverse correlation between consumption of carotenoid-rich fruits 

and vegetables, and the incidence of cancers of the gastrointestinal tract (Kant, Block, Schatzkin, & Nestle, 

1992; Kiokias & Gordon, 2004; Mayne, 1996; Rock & Swendseid, 1992), cardiovascular diseases (Krinsky, 

1998; Murr et al., 2009), diabetes (Yeum & Russell, 2002), some inflammatory diseases (Perera & Yen, 

2007), as well as age-related macular degeneration (Snodderly, 1995). The most documented function of β-

carotene is its provitamin A activity, with consequent health benefits, such as maintenance of epithelial 

function, embryonic development, and immune system function (Diplock, 1991). Xanthophylls are only 

present in human retinal pigment epithelia, in contrast to other body sites where all other carotenoids occur 

(Bone, Landrum, Hime, Cains, & Zamor, 1993), and probably function as blue light filters and singlet oxygen 

quenchers (Seddon et al., 1994). 

 

Human studies are most appropriate to predict nutrient bioavailability, but these studies have technical and 

ethical limitations (Netzel et al., 2011). Metabolic and physiological factors have been reported to influence 

the absorption, distribution and elimination of carotenoids (Bowen, Mobarhan, & Smith, 1993; Johnson, Qin, 

Krinsky, & Russell, 1997; Kostic, White, & Olson, 1995), resulting in inter-individual variability in plasma 

concentrations. In addition, host-related factors such as gut health, nutritional status or discrepancies, and 

genotype are typically encountered in most laboratory rodent models (Van Buggenhout et al., 2010). 

However, these factors can be avoided through the use of in vitro models. In vitro models are relatively easy 

to apply to large sample numbers, and are suitable for studying the effects of various digestion conditions or 

other factors linked to nutrient bioaccessibility (Fernandez-Garcia et al., 2012). In vitro digestion models can 

be used to simulate the physiological conditions of gastric and intestinal digestion. In addition, nutritional 

recommendations are often based on intakes or concentrations present in extracts of raw plant material, not 

taking into account bioaccessibility and any changes during gastrointestinal digestion. This could result in 

nutrient overestimation, and emphasises the importance of estimating bioaccessibility.  

 

Current in vitro digestion procedures have proven useful for the analysis of carotenoid release and/or 

bioaccessibility (Castenmiller & West, 1998; Tydeman et al., 2010a). However, the reliability of the two-

phase (stomach and small intestine) in vitro digestion model would be expected to be improved by including 

a ‘real’ chewing phase, or a phase that more closely mimics actual chewing behaviour and mechanics, which 

has been excluded in most digestion studies. Mastication is often the first step of food digestion, where the 
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process of breaking down solid foods into smaller particle sizes and mixing with saliva takes place. During 

simulated or real oral chewing, the physical barriers to the release of nutrients from plant cells may be 

ruptured. Therefore, the degree of cellular intactness could be indicative of their potential bioaccessibility, 

particularly as cell breakage is likely to be a major requirement for carotenoid bioaccessibility (Lemmens, 

Van Buggenhout, Van Loey, & Hendrickx, 2010; Tydeman et al., 2010b). Ideally, the structural properties of 

a food product digested in vitro should be similar to that of a chewed food bolus, since mastication varies 

subjectively between individuals, which impacts on food matrices and the structural properties of food 

boluses. Currently, simulated oral chewing has been mimicked using techniques such as pulverising, 

sieving, chopping or mincing (Woolnough, Monro, Brennan, & Bird, 2008), and the occasional inclusion of 

(salivary) α-amylase for starch digestion (Bornhorst, Hivert, & Singh, 2014; Miao et al., 2014). However, such 

mechanical steps do not adequately reflect the heterogeneous nature of chewed food. Epriliati, D’Arcy and 

Gidley (2009) demonstrated the importance of the simultaneous punch and gentle squash action of teeth, 

while Hoerudin (2012) found that mastication has a considerable effect on the cellular architectures of 

vegetables. In addition, mastication involves lubrication, softening and dilution with saliva (Lucas et al., 2006; 

Prinz & Lucas, 1995), and the formation of a cohesive bolus (Barry et al., 1995). 

 

Mangoes are the second most important tropical fruit in terms of production and consumption, and have high 

carotenoid contents, particularly of β-carotene (Chen, Tai, & Chen, 2004; Yahia, Soto-Zamora, Brecht, & 

Gardea, 2007), which is responsible for the yellow-orange colour of ripe mango flesh (Pott, Breithaupt, & 

Carle, 2003). Current carotenoid studies have focused on the compositional profile or content (de la Rosa, 

Alvarez-Parrilla, & Gonzalez-Aguilar, 2010; Manthey & Perkins-Veazie, 2009; Mercadante & Rodriguez-

Amaya, 1998; Robles-Sanchez et al., 2009), the impacts of ripening stages (Ornelas-Paz, Yahia, & Gardea, 

2008), the presence of fat (Veda, Platel, & Srinivasan, 2007), and effects of processing (dried, fresh, juice) 

(Epriliati, D'Arcy, & Gidley, 2009). However, mastication effects on carotenoid gastrointestinal release from 

mango fruit have not been reported. Comparisons of the carotenoid content before and after in vitro 

digestion can provide information on their stability during gastrointestinal digestion. In vitro digestion models 

can be adapted to estimate the bioaccessibility of carotenoids by quantifying the fractions of phytonutrients 

transferred from the food matrix into the aqueous digesta or micellar phase, which then represents their 

potential for absorption or bioavailability. Studies have shown that the bioaccessibility of carotenoids can be 

as inefficient as 1.7% or as high as 100% (Tydeman et al., 2010a) depending on the type of carotenoids, as 

well as raw versus cooked conditions. The different solubility of polar xanthophylls and apolar carotenes can 
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also affect their ability to be incorporated into micelles and thus, affect both release and absorption 

efficiency. 

 

It is hypothesised that the mechanism limiting carotenoid release involves intact cell walls (Tydeman et al., 

2010a), which prevent the passage of carotenoids into lipid-soluble components or micelles, thus affecting 

bioaccessibility. The objective of this study was to investigate how the degree of mastication results in 

varying size distributions of ready to swallow bolus particles, and how this affects subsequent simulated 

gastrointestinal release of carotenoids from masticated mango tissue. 

 

2. Materials and Methods 

2.1. Plant material 

Fully ripe mangoes (cv. Kensington Pride) were purchased from local stores in St. Lucia, Brisbane (Australia) 

2-3 days before each of three chewing sessions, in the month of November 2012. Mango ripeness was 

selected based on typical eating maturity at stage 6 when the peel is yellow with pink-red blush and the flesh 

is slightly firm, according to the Department of Agriculture, Fisheries and Forestry (Queensland Government) 

mango-ripening guide (Primary Industries & Fisheries, 2012). Mangoes were stored at 4-6°C prior to the 

chewing sessions. 

 

2.2. Chewing, blending, and bolus collection 

Chewing experiments were approved by the Medical Research Ethics Committee at The University of 

Queensland (Ethical clearance No. 2012000683). Twenty healthy participants (aged 18-55) were recruited 

on the basis of frequent mango consumption and all gave informed consent to the study for mastication of 

fresh fruit. Individual mastication profiles from all the participants were studied for the selection of a fine and 

coarse chewer. Three independent chewing sessions were carried out on three different days of each 

consecutive week to account for inter-day variation. The chewing sessions were held between 9 and 11 am, 

after the chewers had consumed a light breakfast meal. 5-6 mangoes (300-600 g each) were cut into cubes 

and 300 g of cubes were randomly selected from the sample pile, and given to each of the fine and coarse 

chewer. The remaining cubes were combined and blended (Rocket blender DJL-1017, Cafe
TM

 Essentials, 

China) for 1 min to a puree to determine the carotenoid composition of the fresh mango. The chewers were 

instructed to chew the mango as per their habitual chewing behaviour, and to expectorate when they desired 

to swallow. The expectorated boluses were collected, washed with 70% ethanol to prevent further 
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biochemical changes, and fractionated via a wet sieving method, where water was flushed through a stack of 

sieves of apertures 5.6, 2.8, 1, 0.5 and 0.075 mm (Fig 1). The sieved particles were drained and collected for 

in vitro digestion. Chewing, fractionation, in vitro digestion and blending processes were carried out in a 

single day. 

 

2.3. In vitro gastrointestinal digestion 

Gastrointestinal conditions were modified from Hoerudin (2012). Gastric digestion (1 h) of puree and bolus 

samples (2±0.05 g) was initiated with 10 mL of emptying gastric secretion (130 mM NaCl, 5 mM KCl, 5 mM 

PIPES), followed by addition of 1 M HCl to reduce the pH to 2, and 1 mL porcine pepsin (1:2500 U/mg 

protein, Sigma-Aldrich, NSW, Australia) solution. Subsequently, transition from gastric to small intestinal 

phase was reflected by raising the pH to 6 with 1 M NaHCO3. Small intestinal digestion (1 h) was mimicked 

by adding 5 mL pancreatin (lipase activity ≥8 USP U/mg, protease and amylase ≥4 USP U/mg, Chem 

Supply, Adelaide, Australia)-bile (Sigma-Aldrich, NSW Australia) extract, adjusting the overall pH to 7, and 

diluting with 5 mL intestinal salt secretion (120 mM NaCl, 5 mM KCl). To simulate physiological movement, 

the mixtures were incubated in a shaking water bath at 37°C, 55 rpm. Digesta samples were then 

centrifuged at 3000 g, 10 min (Centrifuge 5702R, Eppendorf, USA) to separate the bioaccessible fraction 

from residual pellet, flushed with nitrogen and stored at -80°C. 

 

2.4. Carotenoid extraction 

Carotenoid extractions of the puree, digesta and residual pellets were carried out the very next day after 

chewing and digestion, as modified from Ornelas-Paz et al., (2008). Puree (0.8 g) and digested pellets were 

vortex mixed with 2.5 mL and 1.5 mL PBS respectively. Digesta supernatants were homogenized three times 

with an Ultra-Turrax® at 4200 rpm with 20 mL petroleum ether:acetone (2:1) containing 0.1% BHT, or until 

the digesta pellets turned white. In between each homogenization step, samples were centrifuged at 3000 g 

for 5 min. Organic fractions were collected, combined, evaporated under nitrogen, dissolved in 

methanol:tetrahydrofuran (1:1) with 0.1% BHT and filtered through 0.22 µm PTFE membrane. The extracts 

were flushed with nitrogen and stored at -80°C prior to HPLC analysis.  

 

Care was taken to evaporate just to dryness, to prevent degradation and preferential adhesion of 

carotenoids to vial walls (Emenhiser, Englert, Sander, Ludwig, & Schwartz, 1996). Sample preparation and 

extraction procedures were performed under reduced light, and all glassware and tubes were wrapped in 
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aluminum foil to avoid contact with light. Extracts were analyzed within three days of extraction, or after one 

freeze-thaw-cycle (frozen storage at -20 
o
C). 

 

2.5. HPLC-PDA analysis 

Separation and quantification of carotenoids were carried out on a Waters Acquity
TM

 UPLC-PDA system, 

using an existing method developed by the Analytical Services unit, School of Agriculture and Food 

Sciences, The University of Queensland (J. Waanders, personal communication, March 2012). Isocratic 

elution was performed at 2 mL/min on a Hypersil® OBS C18 (250 x 4.6 mm, 5 um i.d.) RP column 

(ThermoQuest) using a mobile phase of methanol:tetrahydrofuran:water (67:27:6). The column temperature 

was maintained at 25C. An injection volume of 5 µL was used, and UV-Vis spectra of column eluent were 

recorded from 210-498 nm.  

 

β-carotene was identified by comparing the retention time and UV-Vis absorption spectrum with all-trans-β-

carotene reference standard (>98% purity, Sigma-Aldrich, NSW, Australia) and xanthophylls were tentatively 

identified by comparing to those of published literature data. Xanthophylls concentrations were calculated as 

β-carotene equivalents. β-Carotene calibration curve for quantification was constructed by plotting peak area 

against concentration (µg) (r
2
=0.999). β-Carotene working standards (0.2, 0.5, 1, 5, 10, 25, 50 µg/mL) were 

prepared fresh on a daily basis from a β-carotene stock (50 µg/mL) in methanol:tetrahydofuran (1:1) with 

0.1% BHT, and injected daily. β-Carotene standard concentration was calculated using spectrophotometric 

absorbance at 453 nm and a molar absorption coefficient of 2592. β-Carotene stock solution was found to be 

stable for two months at -20°C (<5% loss). A typical HPLC chromatogram of KP mango is shown in Fig 2. 

 

2.6. Moisture analysis 

Moisture contents of the pureed mango and chewed particles (2-5 g) were determined by vacuum oven 

drying (65°C for 24 h). 

 

2.7. Confocal laser scanning microscopy (CLSM) 

Autofluorescence of carotenoids was detected using CLSM (LSM 700, Carl Zeiss, Germany), differential 

interference contrast (DIC) and Zen (Black) 2011 software. Observations of carotenoid chromoplasts were 

carried out under 10x, 20x and 63x objective lens, at an excitation  of 488 nm, emission  below 488 nm, 
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and laser power intensity of 2%. Fluorescence of cell walls was observed at excitation  of 355 nm and 

emission  from 300-440 nm, after staining with Calcofluor. 

 

2.8. Statistical analysis 

Significant differences between mean values of carotenoid quantification were tested using one-way 

ANOVA, while differences between chewers and particle sizes were determined using Tukey’s HSD multiple 

rank test (p<0.05) (Minitab v.16, USA). 

 

3. Results and Discussion 

 

3.1. Carotenoid composition and content 

 

A typical HPLC carotenoid profile of Kensington Pride (KP) mango contains 12 peaks (Fig 2). Peaks 1-4, 6, 

8-10, and 5, 7, 11 were tentatively identified as all-trans-violaxanthin and 9-cis-violaxanthin, and/or their 

derivatives respectively. The absorption spectra of all-trans-violaxanthin (λmax 416, 441, 472 nm) and 9-cis-

violaxanthin (λmax 413, 436, 465 nm) are similar to those reported by Ornelas-Paz, Failia, Yahia and Gardea 

(2008). The 9-cis-violaxanthin isomer was distinguished from the all-trans isomer based on a characteristic 3 

nm hypochromic shift (Ornelas-Paz, Yahia, & Gardea, 2007). The identification of trans and cis-violaxanthins 

is based on comparison to published absorption spectra, and has not been characterized as free 

xanthophylls or xanthophyll esters so in this study, they are collectively termed as xanthophylls. Peak 12 was 

identified as β-carotene by comparing elution time and spectral maximum (λmax 453, 481 nm) to an authentic 

standard (λmax 453, 481 nm). 

 

KP mango carotenoid composition is reported for the first time, and is comprised principally of all-trans-β-

carotene (54%), followed by all-trans-violaxanthin (34%) and some 9-cis-violaxanthin (12%). Similar 

compositions have been recorded for Tommy Atkins, Manila, Ataulfo, Haden and Taiwanese cultivars (Chen 

et al., 2004; Manthey & Perkins-Veazie, 2009; Ornelas-Paz et al., 2007), with β-carotene being the 

predominant carotenoid in mangoes, although β-carotene as a percentage of total carotenoids can vary from 

48 to 84% (Godoy & Rodriguez-Amaya, 1989) depending on the cultivar or fruit physiological maturity stage. 

The β-carotene content in KP mango (1282-2081 µg/100 g FW) is higher than in most other cultivars (de la 

Rosa et al., 2010), where it ranges from 191 to 1340 µg/100 g, with the exception of Ataulfo cultivars.  
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In contrast, all-trans-violaxanthin (930-1150 µg/100 g FW) and 9-cis-violaxanthin (318-425 µg/100 g FW) 

was present in lower concentrations to those reported for other cultivars (Mercadante & Rodriguez-Amaya, 

1998; Mercadante, Rodriguez-Amaya, & Britton, 1997; Ornelas-Paz, Failla, et al., 2008). β-Carotene shows 

~40% variability between individual mangoes, reflecting fruit to fruit variation (Hewavitharana, Tan, Shimada, 

Shaw, & Flanagan, 2013), which is large even for fruits from the same source. Keitt mangoes grown in 

different regions of Brazil also had a two-fold difference in β-carotene content (Mercadante & Rodriguez-

Amaya, 1998), indicating that environmental effects may have a similar influence on carotenoid content as 

cultivar-related differences. 

 

3.2 Mastication, blending, particle size and carotenoid locations  

 

Carotenoids are observed within globules in the cells of mango flesh (Fig 3 A), supporting similar 

observations from other chromoplast morphology studies (Schweiggert, Mezger, Schimpf, Steingass, & 

Carle, 2012; Vasquez-Caicedo, Heller, Neidhart, & Carle, 2006). During blending to a puree, the high shear 

rate and sharp blade breaks up both cell walls and globules to an almost homogenous mixture (Fig 3 B). The 

puree consists of 5-10 µm cell components, with some containing carotenoids as evidenced by their color 

(Fig 1 B(i)) and autofluorescence (Fig 1 B(ii));  however, most structural cell walls are no longer present.  

 

Mastication confers actions that are not replicable with a cutting blade such as compression, compaction, 

squashing, and lubrication of food material with saliva to form a cohesive bolus. While these actions 

collectively encapsulate carotenoids, teeth cutting or slicing can be considered a prerequisite for releasing 

cell contents, where the physical barriers of plant cell walls are ruptured. In larger chewed fractions (captured 

on 5.6 and 2.8 mm sieves), clusters of intact and stacked cells encapsulating carotenoids are held tightly 

together by vascular fibre strands (Fig 4A, 4B). The 1 mm tissue fraction comprises single cells and cell 

fragments, while a reduction in cell size is observed (Fig 4C). In the 0.075 mm fraction, the cells are more 

sparsely dispersed with empty pockets of ruptured cells (Fig 4D); additionally, ‘free’ carotenoids are 

detected, indicating release from the broken mango cells (Fig 4D(ii)). 

 

Hutchings and Lillford (1986) proposed that boluses should reach a degree of structure and lubrication 

before swallowing, and so information on the bolus water content before and after chewing could give a 
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measure of saliva incorporated into the masticated matrix. The moisture content of masticated fractions 

(96±1%, 98±0.2%, 99±0.3% in 2.8, 1, and 0.075 mm fractions respectively) was always higher than in fresh 

mango (84±1%), showing a considerable portion of saliva is retained by the boluses during chewing. 

 

3.3 Release of carotenoids from solid particles is dominated by small intestinal digestion 

 

Most in vitro digestion studies ignore oral mastication or replace it with mechanical processing, and only a 

few studies have investigated the effects of mastication on nutrient bioaccessibility (Bornhorst et al., 2014; 

Epriliati et al., 2009; Hoerudin, 2012; Ranawana, Monro, Mishra, & Henry, 2010). Thus, carotenoid release 

from solid chewed fractions as a starting material was of particular interest in this study. Relating the release 

of carotenoids in the fresh mango tissue to that of the expectorated boluses posed an initial challenge due to 

the constant production and dilution of saliva during chewing. Therefore, the bioaccessibility of each particle 

size fraction was determined as the bioaccessible fraction in the supernatant relative to the sum of combined 

contents in the digesta supernatant and bolus pellet following digestion, rather than to the absolute content 

of fresh mango. As such, the fraction of carotenoids readily lost to the aqueous environment, i.e. the liquid 

phase in the mouth during chewing and washing during the wet sieving process, is not taken into account, in 

contrast to the puree, which still contains the liquid phase. 

 

After simulated gastric digestion (1 h), mango cells and vascular fibres were still intact (Fig 5A, 5C), and 

apparently encapsulating the carotenoids, indicating that acidic hydrolysis did not have a major role in 

breaking down the cell walls or releasing the carotenoids. This is consistent with a relatively low level of 

release from chewed bolus particles under these conditions (Fig 6). In contrast, the effect of the emulsifying 

activity of bile salts on carotenoid aggregation was evident after subsequent small intestinal digestion in vitro. 

Cellular-trapped and ‘free’ carotenoids are shown as assorted clusters of globular aggregates (Fig 5B, 5D), 

which are consistent with a significant increase in release of β-carotene from 8% to 33% (Fig 6A), and 

xanthophylls from 20% to 57% (Fig 6B) in the chewed solid fractions following in vitro small intestinal 

digestion. This illustrates the critical importance of bile salts for carotenoid release into aqueous digesta. 

Being lipophilic, carotenoid dissolution in micelles is essential, unlike water-soluble polyphenols that are 

readily dissolved in aqueous digesta. Other studies of carotenoid release, notably from tomato, have shown 

that the presence of triglyceride oils increases bioaccessibility (Colle, Van Buggenhout, Lemmens, Van Loey, 

& Hendrickx, 2012; Huo, Ferruzzi, Schwartz, & Failla, 2007), presumably by facilitating the transfer of 
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carotenoids to the emulsion phase. However, unlike tomatoes, mango fruit is not typically consumed with oil 

so this was not investigated in the current study.  

 

The release of β-carotene from mango puree (67%) following small intestinal digestion is substantially 

greater than from chewed particles (<33%), and likewise for xanthophylls (puree: 75% and chewed particles: 

<57%). Hedren, Diaz and Svanberg (2002) confirmed that mechanical homogenization leading to carrot cell 

rupture, increased β-carotene release from 3% to 21% with an expansion of surface area. In addition, 

Reboul et al. (2006) reported that for carrots, juicing increased bioaccessibility levels from 3% to 14%. 

However, the absolute values of released carotenoids cannot be directly compared between puree and 

chewed particle forms as the latter is expected to have lost readily released carotenoids during the chewing 

and sieving/washing stages. Due to the relatively low % release following in vitro gastric treatment, 

particularly for β-carotene, we propose that the difference in carotenoid release between puree and chewed 

particles, after in vitro gastric digestion, provides an estimate of the fraction of carotenoids lost during the 

oral processing and isolation of solid chewed particles, as indicated in Fig 6 A. 

  

 

A greater relative % release is observed for the xanthophylls in comparison to β-carotene, presumably due to 

xanthophylls being less hydrophobic. Transfer efficiency seems to be influenced by solubility as reflected in 

the micellarised localisation of different carotenoid types. Carotenes are embedded in the triacylglycerol-rich 

core of micelles, while xanthophylls with more hydroxyl or other functional groups are more polar (Matsuno 

et al., 1986; Tyssandier et al., 2003), and are expected to reside closer to the surface monolayer, together 

with proteins, phospholipids, and partially ionised fatty acids (Canene-Adams & Erdman, 2009). This 

suggests that xanthophylls are more readily incorporated into lipid-bile micelles (Garrett, Failla, & Sarama, 

1999; Van Buggenhout et al., 2010), although this may vary amongst green vegetables containing 

membrane or protein-bound chloroplasts (Failla, Huo, & Thakkar, 2008). 

 

Further to this, there is a fraction of carotenoids that is not released following small intestinal digestion (Fig 

6). There is still a limited extent of bioaccessibility from the solid chewed particles (20-30% for β-carotene 

and 40-50% for xanthophylls) or incomplete bioaccessibility after pureeing (65-75%). We propose that the 

incomplete bioaccessibility of purees is due to the crystallinity of mango carotenoids or residual chromolast 

structure, since there is no evidence for the presence of intact cell wall material. For the chewed particles, 
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additional restrictions on bioaccessibility are proposed to arise from residual embedding in cell wall residues 

(Fig 5D). Pectin from fruit matrices has been suggested to interfere with micelle formation by partitioning bile 

salts and fat in the pectin gel phase (Palafox-Carlos, Ayala-Zavala, & Gonzalez-Aguilar, 2011; Parada & 

Aguilera, 2007; Rock & Swendseid, 1992) that is necessary for the absorption of lipophilic carotenoids. 

 

3.4 Higher carotenoid concentration in particles from coarse chewing and in larger particle size fractions 

  

Larger absolute amounts of β-carotene and xanthophylls were found in equivalent sieve fractions from a 

coarse chewer compared with a fine chewer (p<0.05) (Table 1), for both the bioaccessible carotenoids and 

those trapped in the residual plant material following in vitro small intestinal digestion. This relatively large 

difference (coarse chewed particles typically have about 30% higher carotenoid concentration than fine 

chewed particles – Table 1) suggests that fine chewing causes more carotenoids to be released into the 

solution phase, which in this experiment either remained in the mouth or were removed during sieve capture 

of particles. In contrast, the percentage release of either β-carotene or xanthophylls from all particle sizes 

was very similar for both coarse and fine chewers (Fig 6), apart from xanthophylls from the smallest fraction. 

This illustrates that, in this trial, the type of chewing (coarse vs fine) had a larger impact than the chewed 

particle size in determining total release of carotenoids from mango fruit.  

 

In addition, total carotenoids were present in higher concentrations in larger particles, which suggest a 

distribution effect due to a greater mass of plant cell walls, cell clusters and insoluble fibre network in larger 

particles that entraps more carotenoids. The highest concentration per 100 g (fresh weight) was found in the 

2.8 mm fraction, consisting of bulky cell clusters, followed by the 1 mm fraction containing single cells and 

some cell fragments, while the lowest concentration was found in the 0.075 mm fraction, which consists 

mostly of fragmented cells. 

 

The smallest particle size (< 500 µm, > 75 µm) fraction resembles a fine pulp or ‘mash’ (Fig 1A/B(iv)), for 

which the increased surface area explains the higher % release in the smaller particles (Fig 6), in agreement 

with Lemmens et al. (2010) and Hedren et al. (2002), who reported that smaller particles had a higher 

release or digestibility. Netzel et al. (2011) also showed that disruption of the cell wall matrix led to improved 

release rates, with bioaccessibility of carotenoids in single carrot cells (70-80 µm) increasing two-fold 

compared to 230 µm cell clusters. There is a general trend for smaller particles to be associated with a 
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greater % release of carotenoids, but the differences between particle sizes or fine vs coarse chewing (Fig 6) 

are unexpectedly small. Whilst there is indeed a (small) particle size effect on bioaccessibility, this may be 

secondary to the extent of chewing for soft tissues such as mango, which contrasts with carrot tissues where 

a single cell wall appears to be enough to retain carotenoids (Tydeman et al., 2010a). This contrast with 

carrots is likely to be a consequence of the robustness of the cell wall matrix. In carrots and many other 

vegetables, cell walls are relatively robust and can survive cooking processes. In ripe mango and possibly 

other ripe fruits, chewing and in vitro digestion results in a gel-like solid structure (Fig 5) without a discrete 

wall. Therefore, phytonutrient bioaccessibility may vary amongst fruits, vegetables, grains and legumes due 

to differences in cell wall thickness and structure, which determine how intact cellular structures remain after 

chewing and digestion. 

 

4. Conclusions 

 

This study of mastication effects on carotenoid release emphasises the importance of including chewing in in 

vitro digestion studies. Mastication confers a combination of size reduction and compaction processes as 

part of the digestive process, with plant cell wall structures being one of the limiting factors for carotenoid 

release, and chromoplast location of carotenoids being another. Some carotenoids (25-33%) may be present 

as crystallites or may remain trapped in the residual plant matrix, and could potentially be fermented in the 

large intestine, releasing more carotenoids during degradation of cell walls there. This warrants further 

investigation of carotenoid release following colonic fermentation of in vitro digestion residues. Particle size 

and the type of chewing resulted in differences in the relative amounts of carotenoids in the solid fraction 

after chewing, but had a surprisingly small impact on carotenoid bioaccessibility from the solid particles, 

suggesting that cell wall factors are not necessarily the most important in determining carotenoid 

bioaccessibility in soft tissues in contrast to tissues with more robust cell walls such as carrot. 
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Figure 1. Images of A(i-iv) fractionated and chewed mango boluses particles 

captured on sieves of screen size 2.8, 1, 0.5 and 0.075 mm respectively, and B(i-v) 

magnified view of each fraction. Larger particle clumps and vascular fibres are 

observed in 2.8 mm screen (B(i)) fractions. A finer texture is observed with each 

decreasing sieve size. 
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Figure 2. Representative HPLC chromatogram of ripe KP mango extract with detection at 

453 nm. Peaks 1-4, 6, 8-10 were assigned to all-trans-violaxanthin (and derivatives), and 

peaks 5, 7, 11 were assigned to 9-cis-violaxanthin (and derivatives). Peak 12 was 

identified as all-trans-β-carotene. 
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Figure 3. Brightfield (i) and CLSM (ii) images from mango flesh (A) and 

puree (B) showing orange colour (i) and autofluorescence (ii) of 

carotenoids. Arrows in A(i) highlight carotenoid-containing chromoplasts, 

and ‘CW’ represents cell walls.   
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Figure 4. Effect of in vivo chewing on mango cellular microstructure for particles captured on sieves of 

screen size: (A) 5.6 mm, (B) 2.8 mm, (C), 1 mm, and (D) 0.075 mm. A(i)-D(i) differential interference contrast 

images showing carotenoids (orange) located within residual cellular structures; A(ii)-D(ii) the same fields of 

view showing fluorescence of carotenoids (orange globules) and cell walls (purple-blue). Arrows in A(ii) show 

connective vascular fibres and in D(ii) shows released carotenoids.  
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Figure 5. Effect of in vitro digestion on two sieve size fractions of chewed mango following in vitro gastric 

digestion: (A) 5.6 mm, (C) 0.075 mm, and following small intestinal digestion: (B) 5.6 mm, (D) 0.075 mm; A(i) 

– D(i) differential interference contrast; A(ii)-D(ii) fluorescence of carotenoids (orange globules) and cell walls 

(purple-blue).  
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Figure 6. Percentage release of A) β-carotene and B) sum of total xanthophylls and derivatives, from 

masticated mango fractions and puree following simulated gastric (1 h) and small intestinal (2 h) digestion, 

into the aqueous digesta phase. Solid particles captured on three sieves (2.8, 1, 0.075 mm) from a fine (F) 

and a coarse (C) chewer were studied. For clarity, error bars are only shown for puree and 0.075 mm (F) 

samples. 
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Table 1. Carotenoid concentrations (µg/100 g FW) in each fraction following digestion in vitro 

Chewed 

mango 

fractions 

Bioaccessible fraction Trapped in plant matrix 

Gastric 

digestion 

  Small 

intestinal 

digestion 

β-carotene/ 

xanthophylls
1
 

Small 

intestinal 

digestion 

β-carotene / 

xanthophylls 

Coarse 

2.8 mm 

 

1 mm 

 

0.075 mm 

 

Fine 

2.8 mm 

 

1 mm 

 

0.075 mm 

 

48 ± 27
a
 

 

47 ± 12
a
 

 

50 ± 23
a
 

 

 

44 ± 13
a 

 

24 ± 19
a 

 

34 ± 17
a
 

 

320 ± 96
a 

 

249 ± 28
ab 

 

199 ± 42
ab

 

 

 

211 ± 14
ab 

 

192 ± 18
b 

 

136 ± 18
b
 

 

211 ± 90
a
/127 ± 9

x
 

 

154 ± 13
ab

/115 ± 16
xy 

 

152 ± 42
ab

/93 ± 20
yz 

 

 

131 ± 14
ab

/99 ± 5
xyz

 

 

118  ± 22
ab

/93 ± 3
yz

 

 

87 ± 20
b
/68 ± 4

z
 

 

788 ± 220
a 

 

561 ± 171
abc 

 

397 ± 81
bc

 

 

 

610 ± 108
ab 

 

506 ± 66
abc 

 

216 ± 20
c
 

 

 649 ± 198
a
/159 ± 28

x
 

 

 447 ± 139
abc

/132 ± 35
xy

 

 

 326 ± 58
bc

/ 90 ± 24
yz

 

 

 

  499 ± 79
ab

/129 ± 29
xy

 

 

  404 ± 67
abc

/121 ± 2
xy

 

 

  179 ± 15
bc

/56 ± 10
z
 

 

Values are means±SD of three independent chewing and digestion experiments. Values with different letters 

within each column for each chewer denote significant difference (p<0.05) in carotenoid concentration. 

1
Xanthophylls consist of violaxanthins and derivatives. 
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Highlights 

 

 Effect of particle sizes after chewing on mango fruit carotenoid bioaccessibility studied. 

 Carotenoids are retained within mango cellular structures after chewing. 

 Larger particles contain more carotenoids after chewing and digestion 

 Similar β-carotene and xanthophylls % release for each chewed particle size fraction. 


