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Abstract 

Growth hormone (GH) secretion declines with increased adiposity, culminating in GH 

deficiency in obesity. Dysfunction of the melanocortin 4 receptor (MC4R) results in 

disrupted satiety signaling, resulting in hyperphagia, hyperinsulinemia, rapid weight gain, 

and the development of obesity. Clinically, obese hyperinsulinemic MC4R deficient adults 

demonstrated a partial recovery of GH secretion when compared to healthy body mass 

index (BMI)-matched individuals. Moreover, as with childhood onset obesity, these adults 

present with increased adult height. Consequently, defective MC4R signaling is thought to 

contribute to the recovery of GH release in obesity, and that GH hypersecretion 

contributes to rapid linear growth in hyperphagic MC4R deficient children. Second to this, it 

is thought that activation of MC4R contributes to the suppression of GH secretion during 

weight gain and in obesity. 

 Observations demonstrate a progressive shift in the patterning of GH secretion from 

puberty throughout early adulthood in mice, reflecting the maturation of the GH axis. This 

was characterized by the establishment of regular GH secretory events; reminisce of that 

observed in all adult mammals characterized to date. Relative to pubertal mice at 4 weeks 

of age, pulsatile GH secretion declined at 8 and 16 weeks of age, correlating with the 

progressive slowing in the rate of growth velocity. This change in GH secretion did not 

occur in response to altered somatotropin release inhibitory factor (Srif, the primary 

inhibitor of GH release) mRNA expression, or changes in Srif mRNA distribution 

throughout the periventricular /arcuate nucleus (PeVN/ARC) complex of the hypothalamus. 

When considered alongside published observations, these data suggest that the age-

associated changes in pulsatile GH release in mice likely occur in response to a loss of 

hypothalamic growth hormone releasing hormone (GHRH) neurons and the 

synchronization of the somatotroph network.  

 Based on limited clinical observations, it was anticipated that rapid pubertal growth 

associated with MC4R deficiency occurs alongside hypersecretion of GH. However, 

observations herein confirmed that rapid linear growth in hyperphagic MC4R knockout 

(MC4RKO) mice occurred in the absence of GH hypersecretion. Rather, MC4RKO mice 

were GH deficient by 8 weeks of age. Moreover, the progressive decline in GH secretion 

with age in wild-type (WT) mice was greatly exaggerated in MC4RKO mice, confirming 

that the eventual slowing of growth rate in these mice did not coincide with the gradual 

withdrawal of GH release. In addition, circulating or local insulin-like growth factor 1 (IGF-1) 

remained unchanged throughout rapid linear growth. These observations confirmed that 

GH/IGF-1 hypersecretion does not account for the rapid linear growth in MC4RKO mice. 
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Consequently, altered GH release in MC4RKO mice declined relative with increased 

adiposity. As with rats, immunohistochemistry analysis confirmed that the MC4R does not 

directly contribute to GH release, and thus the loss of MC4R expression does not directly 

contribute to the recovery of GH release in obesity. Rather, changes in GH release 

occurred alongside metabolic alterations following hyperphagia-induced weight gain in 

MC4RKO mice.  

Interestingly, the suppression of GH release and corresponding rapid linear growth 

in hyperphagic MC4RKO mice occurred alongside a progressive elevation in circulating 

levels of insulin. This preceded the development of insulin resistance in adult MC4RKO 

mice. In humans, the progressive rise in circulating insulin levels during hyperphagia is 

necessary to sustain circulating nonesterified free fatty acids (NEFAs) and glucose 

homeostasis, regardless of rapid weight gain and increased adiposity. Moreover, the 

suppression of GH secretion in response to hyperphagia is thought to maintain insulin-

driven NEFAs and glucose clearance relative to calorie intake. To this extent, the 

suppression of GH release in hyperphagic hyperinsulinemic MC4RKO mice occurred 

alongside normal circulating NEFA and glucose levels. Consequently, observations in 

MC4RKO mice reflected metabolic adaptations that sustain NEFAs/glucose homeostasis, 

similar to that observed in humans. Given that insulin interacts with IGF-1 receptor (IGF-

1R) to promote linear growth, it is likely that hyperinsulinemia contribute to sustained rapid 

pubertal growth in hyperphagic GH-deficient MC4RKO mice. Accordingly, rapid pubertal 

growth in MC4RKO mice occur secondary to metabolic alterations in response to 

hyperphagia. 

 To prevent hyperphagia-induced hyperinsulinemia, MC4RKO mice were pair fed 

(PF) to restrict food intake to that observed in age-matched WT littermates (WT LM). 

Observations confirmed that the prevention of hyperphagia-associated hyperinsulinemia 

results in the normalization of rate of linear growth, and a restoration of pulsatile GH 

secretion in PF MC4RKO mice. Thus, the consequential metabolic responses that occur in 

response to hyperphagia promote rapid pubertal growth. Of importance, current data infer 

that metabolic adaptations in response to hyperphagia that are essential to sustain insulin-

driven fatty acid and glucose homeostasis likely mimic the effects of GH in promoting 

pubertal growth. While confirmed in MC4RKO mice, these mechanisms may be conserved 

in pubertal obese children, accounting for rapid pubertal linear growth in this population. 

Findings provide valuable insights underlying altered somatic growth in mouse models of 

pubertal hyperphagia, and set the precedent for future studies that will define mechanisms 
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of growth in the absence of GH/IGF-1, while addressing misconceptions of GH dependent 

growth in obese hyperinsulinemic MC4R deficient adolescence.  
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CHAPTER ONE: LITERATURE REVIEW, AIMS AND HYPOTHESIS 

1. Introduction 

Growth hormone (GH) promotes longitudinal bone and muscle growth during childhood [1]. 

GH deficiency in humans [2-5] and rodents [6-8] results in severe postnatal growth 

retardation, whereas early treatment with recombinant human GH (rhGH) in humans 

increased growth velocity [9, 10]. In this regard, GH is a principal determinant of somatic 

growth during pubertal development [11]. Assessment of GH secretion in hyperphagic 

melanocortin 4 receptor (MC4R) deficient adults demonstrate a partial increase in pulsatile 

GH secretion relative to BMI-matched obese adults. As with childhood obesity, obese 

MC4R deficient individuals present with increased adult height. Consequently, it is thought 

that accelerated linear growth in obese MC4R deficient adults is associated with pubertal 

growth hormone (GH) excess. Second to this, it is proposed that the activation of MC4R 

may, in part, contribute to the suppression of pulsatile GH secretion during obesity. 

Measures of pulsatile GH release during the pubertal growth spurt in MC4R deficient 

humans do not exist, and thus the premise of GH hypersecretion contributing to rapid 

linear growth in obese MC4R deficient adults remains unsubstantiated. Moreover, the 

premise that increased GH release contributes to an increase in linear growth in obese 

MC4R deficient children contradict the anabolic actions of GH and insulin in sustaining 

endogenous fatty acid levels during periods of excess dietary consumption. This thesis will 

review the role of GH and metabolic changes associated with hyperphagia, with regard to 

increased GH secretion in promoting linear growth during excess energy availability. 

Obesity [12, 13] and hyperphagia [14] are associated with impaired GH secretion, 

resulting in GH deficiency. Similarly, pubertal childhood obesity is associated with GH 

deficiency, regardless of increased growth velocity [15]. This suggests that factors other 

than GH may facilitate growth at this time. Of interest, obesity [16-18] and hyperphagia [14] 

are associated with elevated insulin production. Insulin is a potent anabolic growth 

hormone [19], and thus may counter the effects of suppressed GH to promote growth in 

obese children. Furthermore, based on the premise that increased adiposity (and obesity) 

is negatively correlated with GH [12, 13], the recovery of GH secretion in obese MC4R 

deficient adults appears to contradict current pharmacological observations that exclude 

the role of the MC4R as a direct intermediate regulator of GH secretion [20-22].  

Using a novel approach to assess GH secretion from serial samples collected in 

mice, this thesis assessed the role of the MC4R in regulating linear growth and GH release. 

Specifically, this study addressed whether MC4R directly contributes to altered GH release 

during hyperphagia-induced weight gain. Second to this, this thesis investigated whether 
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GH hypersecretion as a consequence of defective MC4R signaling contributes to 

enhanced pubertal linear growth. Finally, the cause for aberrant linear growth in MC4R 

deficient mice was addressed, predominantly focusing on hyperphagia-associated 

hyperinsulinemia. In support of these studies, I first characterized the pattern of GH 

release in mice throughout rapid linear growth, thereby establishing a model for the 

assessment of the role of GH relative to pubertal growth in wild-type (WT) mice. I validated 

changes in GH release throughout pubertal growth in mice. In doing so, I further assessed 

the role of GH in promoting rapid linear growth in MC4R knockout (MC4RKO) mice, while 

briefly addressing the potential mechanisms that may contribute to altered GH release 

during the transition between puberty and adulthood.  

 

1.1 Hypothalamic Control of Energy Balance 

The hypothalamic arcuate nucleus (ARC) regulates feeding and energy expenditure by 

modifying food intake and energy balance through the integration of peripheral factors that 

signal short- and long-term energy status [23]. Orexigenic and anorexigenic neuronal 

populations within the ARC responds to circulating hormones and/or peptides outside the 

blood brain barrier (BBB) [24]. Leptin and insulin change in proportion to the amount of 

energy consumed following food intake and body fat stores, suggesting that both leptin 

and insulin are essential short- and long-term regulators of feeding [25, 26]. In addition, 

peripheral peptides including GH, ghrelin, glucocorticoids, and non-esterified free fatty 

acids (NEFAs) may interact with hypothalamic feeding centers to influence energy balance 

and food intake [27]. Together with leptin and insulin, these peptides may act rapidly to 

modify food intake and thus regulate energy homeostasis. To this extent, the control of 

body composition and metabolism are tightly regulated by multiple, complex interactions of 

central and peripheral pathways. Two distinct leptin/insulin responsive neuronal 

populations within the ARC are critical for appetite regulation. Neurons expressing the 

neuropeptides pro-opiomelanocortin (POMC) and cocaine-and amphetamine-regulated 

transcript (CART) (stimulated by leptin/insulin) suppress food intake, whereas 

neuropeptide Y (NPY) and agouti-related peptide (AgRP) neurons (inhibited by 

leptin/insulin) stimulate food intake. Thus, the balance between these neuronal signals 

regulate energy homeostasis (Figure 1-1) [23, 28].  

 

1.2 The Melanocortin System 

The hypothalamic-melanocortin system is the key regulator of energy homeostasis and 

food intake. The melanocortin system is composed of two sets of leptin-responsive 
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neurons. These neurons are located within the ARC and express NPY/AgRP or 

POMC/CART [29]. The melanocortin system signals primarily via the melanocortin 

receptors to modulate diverse functions in the central nervous system (CNS), the adrenal 

gland and the skin [23, 29, 30]. These receptors respond to endogenous agonists from 

POMC-derived peptides including alpha-, beta-, gamma-melanocyte stimulating hormone 

(-MSH, β-MSH, -MSH), adrenocorticotropic hormone (ACTH), or antagonist including 

agouti or AgRP. The melanocortin 1 receptor (MC1R) is the classical MSH receptor 

expressed primarily in the skin and in hair follicles where it regulates pigmentation [31, 32]. 

The melanocortin 2 receptor (MC2R) is an ACTH receptor expressed in the adrenal cortex 

where it mediates the effects of ACTH on steroidogenesis [31]. Melanocortin 3 receptor 

(MC3R) and MC4R are predominantly expressed in the CNS and are involved in the 

regulation of food intake and energy homeostasis. The melanocortin 5 receptor (MC5R) is 

expressed widely in the skin, skeletal muscle, adrenal gland, adipocytes, ovary and testis, 

and is only known to facilitate exocrine actions [33]. Amongst these, the MC4R is the 

predominant regulator of the melanocortin system, and facilitates energy homeostasis by 

integrating signals from -MSH and AgRP [34]. MC4Rs are abundantly expressed in 

feeding centres of the hypothalamus, within the paraventricular (PVN), dorsal 

hypothalamus (DH) and lateral hypothalamus (LH) [35]. MC4R is a member of class A G-

protein coupled receptor (rhodopsin-like GPCR) with seven transmembrane (TMs) 

connected by alternating extracellular loop (EL) and intracellular loops [34]. The highly 

conserved cysteine residues at the top of TM3 and EL2 in rhodopsin that forms the 

disulfide bond connecting to TM3 and EL2 is lacking in the MC4R, although an intraloop 

disulfide bond exist in EL3 [36]. Thus, MC4R is considered one of the shortest members in 

the GPCR superfamily.  

 Downstream activation of the melanocortin system through the MC4R occurs via 

upstream activation of leptin (Figure 1-1). Leptin is an adipocyte derived hormone which 

relays peripheral signals of adiposity and food intake to regulate energy homeostasis [37]. 

Following feeding, elevated circulating levels of leptin suppress appetite [38]. Conversely, 

during periods of calorie excess, leptin stimulates anorexigenic POMC neurons by binding 

to the leptin receptor (LepR), while inhibiting orexigenic NPY/AgRP neurons (Figure 1-1). 

Activated POMC neurons secrete -MSH to bind to MC4R-expressing neurons, triggering 

a series of anorexigenic signals to reduce food intake and to increase energy expenditure 

through upregulated thermogenesis [39-41]. Accordingly, elevated leptin levels 

(hyperleptinemia) in obese humans or animal models fail to suppress food intake and 

reduce body weight, likely as a consequence of impaired leptin signaling/central leptin 
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resistance [42, 43]. It is however, unknown, whether increased leptin secretion or impaired 

leptin signaling contributes to obesity-related disorders [44, 45]. Conversely, during calorie 

restriction, leptin levels decreases, thus inactivating POMC neurons while stimulating 

NPY/AgRP neurons to increase appetite and conserving energy [46, 47]. In agreement 

with this, the sequential fall in circulating leptin is accommodated by an upregulation of 

Npy/Agrp mRNA expression following 9 hours of fasting, whereas the decline in POMC 

mRNA expression does not occur only until much later (18 hours of fasting) [48]. 

Observations are consistent with previous findings confirming that leptin directly inhibits 

NPY/AgRP neurons [49], and is required to maintain POMC expression [46]. It should be 

noted that although the melanocortin system is the predominant mediator of leptin 

signaling, independent and additive effects of anorexigenic/orexigenic systems have been 

reported [50, 51]. Furthermore, factors such as age, gender and diet may influence the 

interaction between these two systems [52].  

 

 

Figure 1-1: Central and peripheral regulators specific to food intake, mediated through the 
melanocortin system. 
 

Following food intake, increased circulating levels of adipose derived leptin activates first-
order POMC neurons by binding to LepR expressed within the ARC. In turn, activated 
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POMC neurons secrete -MSH to bind to second order MC4R-expressing neurons to 
inhibit food intake. Following feeding, reduced circulating leptin results in the loss of 
inhibition of NPY/AgRP neurons and the consequential inhibition of POMC neurons via 

inhibitory -aminobutyric acid (GABA) inputs from NPY/AgRP neurons. During excess 
calorie intake, elevated pancreatic insulin levels may indirectly regulate blood glucose 
levels by activating POMC neurons in the ARC, thereby inhibiting food intake. Ghrelin is an 
orexigenic hormone secreted from the stomach which activates the NPY/AgRP neurons 
via GHSR-1a, thereby stimulating food intake (the role of ghrelin will be reviewed in 
Chapter 1.8.1). Abbreviations; neuropeptide Y; NPY, agouti-related peptide; AgRP, 
proopiomelanocortin; POMC, melanocortin 4 receptor; MC4R, alpha-melanocyte 

stimulating hormone; -MSH, gamma-aminobutyric acid; GABA, leptin receptor; LepR, 
insulin receptor; InsR, growth hormone secretagogue receptor-1a; GHS-R1a. 
 

1.3 Melanocortin 4 receptor knockout (MC4RKO) mice 

Defects in melanocortin signaling specifically in the POMC, agouti or AgRP gene, MC3R 

and MC4R result in hyperphagia and obesity [53-60]. These observations confirmed that 

hypothalamic melanocortinergic neurons exert a tonic inhibition on appetite, and disruption 

of this functional role accounts for an impairment in energy homeostasis. Of particular 

importance, development of the MC4RKO mouse model confirmed that the MC4R acts as 

the dominant regulator of melanocortin actions on energy homeostasis [58]. 

Targeted deletion of MC4R results in maturity-onset obesity, characterized by 

hyperphagia, hyperinsulinemia and hyperleptinemia [58]. Heterozygous MC4RKO mice 

show an intermediate elevation in body weight compared to wild-type littermates (WT LM) 

and homozygous mice, suggesting that the severity of the obese phenotype of the 

MC4RKO mice is dependent on the degree of loss of MC4R function [60]. Central and 

peripheral administration of leptin decreases food intake and increase energy expenditure 

in rodents [61-64]. In contrast to non-obese WT mice, the inhibitory effects of leptin on 

feeding are not observed in MC4RKO mice [65, 66]. This suggests that the MC4R plays a 

significant role in mediating the inhibitory effects of leptin on food intake. This is consistent 

with the finding that in vivo leptin administration directly activates action-potential firing 

activity of MC4R neurons within the ARC-PVN to regulate energy homeostasis [67]. It 

should be noted, however, that obesity is associated with multiple endocrine impairments, 

and thus hyperleptinemia (seen in MC4RKO mice) associated with obesity may 

desensitize leptin signaling in obese MC4RKO mice. Consequently, the failure of leptin to 

reduce food intake in obese MC4RKO mice may occur in response to obesity-associated 

leptin insensitivity and not solely due to the deletion of the MC4R. Irrespective of this, both 

central and peripheral administration of the MC4R selective -MSH-like agonist, 

melanotan II (MT II) had no effect on food intake and energy expenditure in MC4RKO mice 
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relative to WT LM mice. This suggests that the acute effects of -MSH on energy 

homeostasis are mediated primarily through the MC4R [39, 66]. Thus, irrespective of 

obesity-associated leptin resistance, failure to activate MC4R results in the loss of satiety 

and a decline in metabolic function.  

 

1.3.1 MC4R as a regulator of GH secretion 

Alongside the severe metabolic phenotype as a consequence of MC4R deficiency, the 

obese phenotype of MC4RKO mice is associated with accelerated linear growth, 

suggesting that the melanocortin system may modulate growth by altering GH release. 

This may possibly occur through MC4R-expressing neurons interacting along the GH axis 

to modulate GH release. Accordingly, impaired MC4R signaling in humans results in a 

partially recovery of pulsatile GH release in MC4R deficient patients compared to BMI-

matched controls. This suggests that the increase in adult height in obese MC4R deficient 

individuals may occur in response to pubertal GH hypersecretion, and thus enhanced GH-

mediated pubertal growth [68]. The hypersecretion of GH in these individuals is 

disproportionate to the degree of obesity observed in both rodents and humans [58, 68, 

69]. It should be noted, however, that BMI may not be an accurate representative indicator 

of adiposity, and thus may not account for variations in lean mass between the obese and 

MC4R deficient populations [70]. Given that MC4R deficient adults have increased lean 

mass [68] which may compromise the accuracy of BMI in determining fat mass, and that 

GH secretion declines with increased adiposity [12, 13], comparison of pulsatile GH 

secretion between MC4R deficient individuals to obese individuals with similar BMI may be 

misleading. Moreover, based on the premise that obesity is associated with the 

suppression of GH secretion [12, 13], accelerated linear growth in obese MC4R deficient 

adults as a consequence of GH hypersecretion may contradict the anticipated anabolic 

actions of GH and insulin in sustaining fatty acids flux during energy excess and in obesity 

(this will be reviewed in the following sub-chapters).  

Recent measures demonstrate that impaired pulsatile GH secretion and increased 

insulin secretion in humans precede hyperphagia-induced weight gain [14, 71], and that 

the suppression of GH secretion with increased food consumption improves meal 

tolerance [71]. This suggests that prolonged overeating may influence key endocrine 

profiles to initiate metabolic adaptations that favours energy surplus. Given the opposing 

metabolic actions of GH and insulin in promoting dietary fat storage, impaired GH 

secretion relative to increased adiposity is thought to be a physiological adaptation that 

facilitates the homeostatic balance of circulating fatty acids. Given this, one may assume 
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an inverse relationship between circulating GH and insulin secretion during periods of 

energy consumption. In this regard, the assumption of GH hypersecretion to promote rapid 

linear growth in obese MC4R deficiency individuals may not be valid. This thesis will 

address the hypothesis whether increased GH secretion contributes to rapid linear growth 

associated with MC4R dysfunction. Measures of pulsatile GH release during pubertal 

growth in humans with MC4R deficiency currently do not exist. Considering that GH is the 

key hormone regulator of linear growth in childhood, the incorporation of MC4RKO mouse 

model will address the role of MC4R in regulation of GH secretion, specific to pubertal 

linear growth. Specifically, pulsatile GH secretion will be assessed in pubertal MC4RKO 

mice throughout peak periods of rapid linear growth. This is further discussed in Chapter 5. 

 

1.4 The Hypothalamo-Pituitary Axis  

The hypothalamo-pituitary axis regulates pituitary function by producing stimulatory and 

inhibitory hormones to release or inhibit pituitary hormone production [72]. Classically, the 

pituitary gland is composed of two lobes, the posterior pituitary (known as 

neurohypophysis) and the anterior pituitary (or adenohypophysis). The region lies distance 

between the anterior and posterior lobes of the pituitary is known as the intermediate lobe. 

The intermediate lobe differentiates from the same embryological origin as the anterior 

lobe, and synthesizes POMC peptides including MSH [72]. Despite it close proximity to the 

anterior pituitary lobe, the posterior lobe originates from a downgrowth (infundibulum) of 

the neuroectoderm of the development brain, and secretes anti-diuretic hormone (ADH) 

and oxytocin, which functions independent of the anterior pituitary [72]. In contrast, 

majority of pituitary endocrine cells synthesized in embryonic cells derived from the 

Rathke’s pouch in the anterior lobe of the pituitary gland. These endocrine cells secretes 

specific hormones and are released directly into the blood circulation to promote essential 

homeostatic functions such as reproduction, lactation, stress, growth and metabolism [72]. 

Under the influence of the hypothalamic trophic hormones, the specific cell types and their 

respective pituitary hormones include gonadotrophs (secreting luteinizing hormone (LH)) 

and follicle-stimulating hormone (FSH)), lactotrophs (secreting prolactin (PRL)), 

corticotrophs (secreting ACTH), thyrotrophs (secreting thyroid stimulating hormone (TSH)) 

and somatotrophs (secreting GH) [73]. Amongst these, the somatotrophs are the major 

endocrine cells of the anterior pituitary lobe, constituting approximately 50% of the entire 

cell population [74]. Recent exploration in rodent studies reinforced the concept of the two-

dimensional plasticity of pituitary organization. Advanced high-resolution imaging of 

cellular structures in transgenic mice expressing green fluorescent protein (GFP) in 
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somatotrophs revealed that the functional integration of the anterior pituitary gland is highly 

organized in a three-dimensional network [73, 75]. The dynamic integrity of the anterior 

pituitary lobe adjusts accordingly at varying stages in response to physiological stimuli [76]. 

To this extent, increased clusters of the somatotroph cells correspond to a profound 

increase in GH secretion in pubertal mice [75], suggesting that altered integrity of the 

somatotroph network facilitates coordinated pulsatile GH secretion to encourage pubertal 

growth (further discussed in Chapter 1.5.2). Of importance, the presence of growth 

hormone releasing hormone (GHRH) markedly enhances the assembly of somatotroph 

cells [75, 77], indicating that synchrony of the somatotroph network appears to be 

dependent on hypothalamic GHRH. This is in consistent with previous observations, 

whereby transgenic ablation of hypothalamic GHRH neurons in mice results in severe 

derangement of the somatotroph cluster organization within the pituitary [78]. Thus, 

observations emphasize the importance of synchronized network architecture within the 

anterior pituitary in modulating pituitary GH system (this is further discussed in Chapter 

3.4).  

 

1.4.1 Growth hormone (GH) 

Growth hormone (GH), also known as somatotropin, is synthesized and secreted by 

somatotrophs located within the anterior pituitary gland [79]. The regulation of episodic GH 

secretion from the pituitary gland is predominantly driven by the reciprocal actions of 

hypothalamic hormones, GHRH and somatotropin release inhibitory factor (SRIF or 

somatostatin) [80]. GHRH determines the amplitude of GH secretion, whereas SRIF 

determines trough levels of GH secretion by inhibiting GHRH release and GHRH-induced 

GH secretion [81, 82]. GH exerts a wide range of physiological functions and affects 

substrate metabolism via direct and indirect mechanisms. GH acts by binding to the GH 

receptor (GHR), expressed predominantly in the liver and induces intracellular signaling by 

activating the Janus kinase-signaling transducer and activator of transcription (JAK-STAT) 

pathway [83]. GH stimulates the production of hepatic IGF-1 via GHR, a potent growth and 

differentiation peptide that mediates many growth-promoting actions of GH [84] (discussed 

in Chapter 1.7.3). 

 

1.4.2 Pulsatile mode of GH secretion  

The secretion of GH occurs in a pulsatile manner, characterized by low basal GH levels 

that are dispersed by several dominant pulses that occur at periodic intervals [85, 86]. This 

mode of GH release is sexually dimorphic, and the pulsatile pattern of GH release is 
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conserved across all mammalian species characterized to date [79]. Schematic 

reproduction in Figure 1-2 illustrates the pulsatile pattern of GH secretion in healthy 

humans (Figure 1-2A), rats (Figure 1-2C) and mice (Figure1-2E). During periods of energy 

excess, increased adiposity and weight gain results in a marked suppression of GH 

release in obese humans (Figure 1-2B), in rats (Figure 1-2D) and in mice (Figure 1-2F). 

Pulsatile GH secretion events in healthy men occur approximately every 2 to 3 hours, and 

whilst women tend to have significantly greater GH levels (higher pulse amplitude and 

baseline GH secretion), the pulse frequency is similar to that seen in men [86-88]. In male 

rats, GH secretion occurs in distinct pulses with relatively low interpeak levels at 

approximately 3 to 3.3-hour intervals. By comparison, female rats exhibit lower irregular 

pulses with higher interpeak levels [85, 89, 90]. The regulation of GH secretion between 

males and females differ significantly due to the endogenous estrus cycle associated with 

ovulation [91, 92]. Consequently, differences in gonadal steroid profiles between males 

and females may significantly alter or impair GH release and function, respectively. In this 

regard, an elevation in estrogen in females enhanced GH secretory dynamics [92]. 

Consequently, GH secretion in females is believed to be elevated [92]. To this extent, the 

metabolic role of GH between males and females may differ significantly.  

Observations of pulsatile GH release from mice are limited [93, 94]. Due to their 

small size, prior observations of pulsatile GH secretion in mice were limited to one-off 

measures [93, 94]. This does not accurately reflect overall GH secretion, and thus 

interpretation of the actions of GH based on single measures may be misleading. The 

recent development of methodology to allow the detection of pulsatile GH release in mice 

provided a renewed opportunity to incorporate transgenic mouse lines in research aimed 

at deciphering GH release [95]. This methodology revealed that, as with humans and 

rodents [85, 89, 93, 96], mice display a regular periodicity in GH secretion, characterized 

by peak secretion periods and interpulse stable baseline secretion periods [48, 95, 97-99]. 

Measures of GH secretion in this thesis are assessed based on pulsatile GH secretion 

profiles, and limited to male physiology. 



10 
 

 

 
Figure 1-2: Schematic examples illustrating the pulsatile profiles of GH secretion in normal 
and obese humans (24-hour profile) and rodents (6-hour profile). Pulsatile GH secretions 
of male profiles were reproduced from [13, 88, 97, 100]. 
 

1.5 Physiological aspects of GH 

GH exerts its effect directly via the GHR. During pubertal development, peaks in GH 

secretion activate the GH/IGF-1 axis [1, 11]. The rise in GH levels is necessary to 

stimulate longitudinal bone and skeletal muscle growth during childhood, allowing children 

to grow to a normal adult height [101]. Consequently, GH deficiency (GHD) as a 

consequence of pituitary disease during childhood results in severe growth retardation. In 

GH deficient dwarf rats, treatment with GH promoted femur bone growth [102]. Similarly, 

exogenous infused of GH at the site of epiphyseal growth plate of hypophysectomized rats 

stimulated unilateral growth and restored longitudinal bone growth [103]. Accordingly, 

elevated IGF-1 mRNA expression or local IGF-1 peptide in the epiphyseal growth plate of 

the long bone parallels the administration of GH in hypophysectomized rats [104-106]. To 

this extent, observations support the concept of stimulatory effects of GH in the clonal 

expansion of epiphyseal chondrocytes for bone growth. Subsequent measures 

demonstrated that the infusion of GH in combination with IGF-1 antiserum abolished the 

stimulatory effects of bone growth in response to GH, indicating that the stimulatory effects 

of longitudinal bone growth is dependent on the local effects of autocrine/paracrine actions 

of IGF-1 [107, 108]. Moreover, the loss of liver-derived circulating IGF-1 does not impair 
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postnatal growth following liver-specific deletion of IGF-1 in mice [109, 110]. Thus, 

circulating IGF-1 is thought to modulate long-term changes in GH release through negative 

feedback [111]. Given that the effects of pulsatile GH infusion in stimulating bone and/or 

muscle IGF-1 mRNA expression in hypophysectomized male rats [112] or GH-deficient 

dwarf rats [102] were more pronounced compared to continuous GH administration, the 

autocrine/paracrine mode of IGF-1 actions appears to be dependent on the rhythmic 

release of GH [112]. This suggests that the secretory pattern of GH delivery is a major 

determinant of GH action for optimal linear growth. 

 

1.5.1 Metabolic actions of GH 

The physiological actions of GH change dramatically following the attainment of peak 

linear height following pubertal maturation. In adulthood, GH primarily maintains body 

composition and metabolism [113, 114]. Treatment with rhGH in GH deficient adults 

increased lean muscle mass and muscle strength resulting in improved physical activity 

[115, 116] and decreased abdominal fat mass [117-119]. In contrast, termination of GH 

treatment in GH-deficient adults on long term rhGH replacement therapy results in an 

increase in subcutaneous and visceral fat mass and total waist circumference [120], 

whereas muscle mass and resulting physical activity output were compromised in adults 

with childhood onset GH deficiency [121]. Collectively, observations confirm that 

continuous GH therapy is essential to maintain the lipolytic and therapeutic effects of GH 

on body composition and skeletal muscle profile. As an anabolic hormone, GH may 

enhance fat utilization as the preferential energy substrate to retain lean muscle mass. 

Prior observations demonstrate that GH increases whole-body lipolytic rate in humans 

[122-124], resulting in the augmentation of NEFAs during periods of calorie restriction. 

This suggests that endogenous GH may be the predominant regulator of lipolysis during 

short-term fasting. The elevation of circulating NEFAs represent a physiological adaption 

in response periods of calorie restriction (or metabolic stress), where mobilized NEFAs act 

as the primary source of energy fuel to preserve lean body mass [124, 125]. Unlike 

humans, the fasting-induced release of NEFAs in mice does not occur in response to an 

elevation in GH [48]. While this suggests that the release of NEFAs in response to fasting 

may differ between mammalian systems, current observations do not dismiss the role of 

GH in mediating NEFA release in mice in general. Given that GH is a major regulator of 

lipolysis, long-term changes in endogenous GH are more likely to significantly alter body 

composition. Accordingly, GH excess is associated with decreased body fat mass in 

bovine GH (bGH) transgenic mice, while loss of GH signaling results in the accumulation 
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of subcutaneous fat mass in GHR knockout (GHRKO) mice [126, 127]. Thus, regardless of 

the differential role of GH mediated fasting-induced changes in NEFAs flux in mice, GH is 

a predominant factor that regulates adiposity, and presumably long-term fatty acid flux in 

mice.  

 

1.5.2 Physiological role of GH in regulating Linear Growth 

GH is a major determinant of postnatal longitudinal growth during childhood. In humans, 

the pubertal growth spurt is associated with increased GH secretion [101, 128]. The rise in 

GH is critical in the remodeling of bone formation, and this occurs directly through 

interactions with GHR, or indirectly through autocrine/paracrine effects of IGF-1 to promote 

linear growth [129]. Accordingly, idiopathic childhood onset GHD as a consequence of 

pituitary dysfunction results in decreased bone density and impaired growth height [2, 3]. 

This is restored following early rhGH treatment, allowing these children to achieve adult 

height [9], confirming that GH is critical in promoting optimal bone health and linear growth. 

Defects in the GHR signaling in humans result in an overall short stature [4, 5]. Similarly, 

severe postnatal growth retardation is observed in mouse models with disrupted GHR 

signaling [6-8, 130]. For example, the rate of growth determined by the body length in 

pubertal GHRKO mice was reduced between 2 and 6 weeks of age, and this occurred as a 

consequence of reduced chondrocyte proliferation and cortical bone growth [6]. Thus, GH 

acting via the GHR is important in bone formation and pubertal growth at this time. In line 

with this, the administration of GH to GH deficient hypophysectomized adult [103] or dwarf 

rats [102] restored longitudinal bone growth. Moreover, the correction of bone growth 

mediated by pulsatile GH infusion was more effective than continuous GH therapy [102, 

112], suggesting that pulsatile GH release is critical for optimal linear growth during 

puberty. In this regard, pubertal growth is dependent on the normal pulsatile GH secretion.  

 

1.5.3 Secretion of GH from Puberty throughout Ageing  

In humans, GH production begins early in fetal life [131], rising steadily throughout puberty 

before declining progressively thereafter [101, 132]. During puberty, maximal GH secretion 

increases up to 3-fold [101], and the mass of GH secreted per burst increases between 2- 

to 10-fold [101, 133]. In humans, the augmentation of GH release during puberty is 

attributed to increased GH pulse amplitude as a consequence of an increase in the 

amount of GH secreted per secretory event [101, 128]. Given that GHRH determines the 

amplitude of GH secretion, an elevation in circulating GHRH activity is thought to account 

for peak GH secretion during puberty. In agreement with this, the administration of 
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neonatal monosodium glutamate to mimic GHRH deficiency abolished the pubertal 

increase in Gh mRNA, pituitary GH content and severely impaired growth rate in male and 

females rats [134]. Thus, while not assessed alongside pulsatile GH secretion, 

observations suggest that GHRH may contribute to enhanced pubertal GH secretion at 

this time.  

Following the cessation of pubertal growth, GH secretion declines with age by 

approximately 14% per decade in humans [12]. This is characterized by a reduction in the 

amplitude of GH secretory burst [79]. Furthermore, this age-associated decline in GH 

secretion correlates with decreased gonadal hormone concentrations in men and women 

[135, 136], suggesting that testosterone and estradiol may be important regulators of GH 

secretion. In ageing individuals, the pituitary gland remains responsive to GHRH stimuli, 

regardless of its decreased sensitivity [82, 137]. While this suggest that the GH-releasing 

effect of somatotrophs in response to GHRH may be preserved during ageing, the 

attenuation of GHRH-induced GH secretion in elderly individuals [82, 138] suggest that 

age-associated changes in GH may occur in response to decreased hypothalamic GHRH 

release or diminished somatotroph function. In agreement with human observations, the 

age-associated decline GH secretion in male and female rats is accompanied by a 

decrease in pituitary GH content [139, 140]. Moreover, a reduction in Ghrh mRNA resulting 

in decreased GHRH synthesis was impaired in the hypothalamus of senescent male rats 

[141]. Consequently, alterations in hypothalamic GHRH-induced GH secretion are likely 

one of the primary mechanisms responsible for the age-associated loss of GH release.  

Prior observations in humans suggested that that the age-associated decline in GH 

secretion may occur in response to somatostatinergic hyperactivity. Co-administration of 

arginine enhances the stimulatory effect of GHRH on GH responses in elderly adults by 

suppressing the SRIF release [142]. Similarly, arginine in combination with GH releasing 

peptide (GHRP) hexarelin, a GH secretagogue (GHS), virtually restores stimulated GH 

secretion to levels seen in young adults [143]. This suggests that SRIF excess in 

hyposomatotropism with age contributes to reduced GH release. To this extent, 

pretreatment of pyridostigmine (a cholinergic agonist) to reduce SRIF release and to 

stimulate GHRH release normalized blunted GH secretion and plasma IGF-1 

concentrations in healthy aged men [144]. Collectively, these studies support the notion 

that age-associated changes in GH input may occur in response to a reduction in GHRH 

release, and, not excluding to the contribution of enhanced SRIF input. The role of SRIF in 

modulating age-associated decline in GH secretion from puberty into adulthood, however, 

is less defined. While increased somatostatinergic tone is thought to contribute to the 
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progressive reduction in GH secretion with age, observations of structural changes in SRIF 

expression from ageing rats are conflicting. For instance, the loss in SRIF 

immunoreactivity in aged rats [81, 145] is contradicted by observations showing sustained 

SRIF immunoreactivity regardless of age [81]. Moreover, measures directly assessing the 

role of SRIF in modulating GH secretion alongside pulsatile GH secretion do not exist. 

Consequently, the potential role of SRIF in accounting for age-associated changes in 

pulsatile GH secretion from puberty throughout adulthood remains unsubstantiated. This 

will be addressed in Chapter 4. 

 

1.5.4 Secretion of GH in Obesity 

Obesity reflects the consequence of chronic long-standing positive energy balance when 

energy intake (overeating) exceeds energy expenditure (sedentary physical activity). Such 

a state in humans results in excess calories being stored as body fat, resulting in the 

progressive weight gain culminating in obesity. Thus, prolonged excess calorie intake is 

thought to be the underlying cause for obesity and obesity-associated metabolic disorders. 

In this context, the secretion of GH is directly proportional to the amount of energy 

consumption. In humans, the reduction in GH release is often observed during periods of 

excess calorie intake, including hyperphagia and obesity [12-14]. The degree of GH 

attenuation correlates with the amount of total and visceral adipose mass [12, 13, 146]. In 

support of this, reductions in basal and stimulated GH concentrations are observed in 

obese individuals. This is characterized by a reduction in GH half-life, and reduced peak 

amplitude and frequency of GH secretory pulses [12, 13, 147, 148]. As seen in humans, 

genetically obese rodent models of obesity (including Zucker rats, ventromedial 

hypothalamus-lesioned rats) and obese adult rhesus monkeys exhibit GH deficiency [149-

152]. The underlying mechanisms responsible for the suppression of GH in obesity are not 

completely understood. In humans, the restoration of GH release was observed following 

normalization of body weight [153-155]. Thus, observations suggest that metabolic 

alterations associated with increased adiposity alongside weight gain are major 

determinants of impaired GH secretion, and that these changes are reversible.  

Recent clinical observations demonstrate that impaired pulsatile GH secretion and 

consequently GH deficiency in humans following sustained calorie excess (hyperphagia) 

precedes dietary induced weight gain [14]. Moreover, the suppression of GH secretion 

relative to hyperphagia is thought to ameliorate insulin resistance, thereby improving meal 

tolerance to prevent hyperlipidemia [71]. This suggests that impaired GH release in obese 

individuals occurs prior to the onset of obesity, and while facilitating the removal of lipids 
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from circulation, may predispose hyperphagic adults to the development of obesity. These 

observations present a renewed perspective on the role of GH relative to excess calorie 

consumption. In agreement with this, circulating GH concentrations were suppressed in 

obesity-susceptible rats when compared to obesity-resistant rats [156]. Importantly, 

measures of GH levels in obese-prone rats revealed a deficit in GH secretion that occurs 

prior to weight gain and the onset of obesity [157]. Of interest, the suppression of GH 

release prior to dietary induced weight gain in hyperphagic adults was accompanied by a 

rise in postprandial levels of insulin (hyperinsulinemia) [14]. While not directly assessed, 

hyperphagia-associated hyperinsulinemia may contribute to the progressive decline in GH 

secretion following dietary induced weight gain. The role of insulin in regulating GH release 

relative to food intake and weight gain will be addressed in Chapter 5.  

 

1.6 Regulation of GH release 

The secretion of GH from the anterior pituitary gland is controlled by the stimulatory 

actions of hypothalamic GHRH neurons, and the inhibitory influence of hypothalamic SRIF 

neurons. GHRH and SRIF neurons, released through the hypophyseal portal vessels act 

in concert to regulate the release of GH secretion from the somatotrophs (Figure 1-3). 

Released GH acts upon the liver to stimulate the production of IGF-1, which inhibits GH 

secretion through a negative feedback loop [80]. Circulating IGF-1 inhibits GH secretion 

through negative feedback at the level of anterior pituitary gland and hypothalamus. GH 

also regulates its own secretion via short-loop feedback circuit to inhibit hypothalamic 

GHRH and stimulate SRIF release into the hypophyseal portal circulation (Figure 1-3). 

Furthermore, the hypothalamic regulation of GH release occurs via an ultra-short loop 

feedback exerted by both GHRH and SRIF on their own secretion [79]. The functional 

interactions between principal regulatory neurohormones are supplemented by a host of 

neurotransmitters, neuropeptides and peripheral metabolic parameters (including insulin, 

leptin, ghrelin, NEFAs and glucose) that couple nutritional status with GH secretion [13, 

79]. In this thesis, I will discuss the pathophysiological aspects of these parameters in 

modulating GH secretion relative to energy homeostasis.  



16 
 

            

Figure 1-3: Feedback regulation of the hypothalamic-pituitary-growth hormone (GH/IGF-1) 
axis.  
 

The secretion and release of GH from the anterior pituitary gland is stimulated by GHRH 
and inhibited by SRIF neurons. Released GH limits its own secretion by exerting short-
loop negative feedback to increase SRIF activity in the periventricular nucleus. GH 
stimulates the production of insulin like growth factor 1 (IGF-1) from liver. Peripheral IGF-1 
inhibits GH secretion through negative feedback at the level of anterior pituitary gland and 
hypothalamus. Abbreviations; growth hormone releasing hormone; GHRH, somatostatin 
releasing inhibitory factor; SRIF, growth hormone; GH, insulin-like growth factor-1; IGF-1. 

 

1.7 The GH/IGF-1 axis – Primary (Central) Regulators of GH secretion 

1.7.1 Growth hormone releasing hormone (GHRH) 

GHRH is synthesized and produced by GHRH neurons, located within the ARC of the 

hypothalamus (Figure 1-3). The release of GHRH neurons projects into the hypophyseal 

artery at the base of the median eminence ME to initiate the release and synthesis of GH 

from the somatotrophs within the anterior pituitary gland [158]. GHRH stimulates GH 

secretion by binding to GHRH receptors (GHRH-R) expressed on pituitary somatotrophs 

[159, 160]. The binding of GHRH to GHRH-R (class B (secretin receptor) GPCR 

superfamily), activates the heterotrimeric stimulatory G protein (Gs), composed of a G-, 

and the tightly associated Gβ- and Gγ-subunits. This triggers the dissociation of the Gα 

subunit from the Gβ and Gγ complex, leading to the activation of adenylyl cyclase (AC), 

and thus the production of cyclic adenosine monophosphate (cAMP) (Figure 1-4). The 
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release of GH from somatotrophs is entirely dependent on an increase in intracellular Ca2+ 

following the influx of Ca2+ via voltage-dependent Ca2+ channels [161]. Increased levels of 

cAMP acts as second messenger which activates the protein kinase A (PKA) signaling 

pathway [162]. In addition, the binding of GHRH to GHRH-R also activates the 

phospholipase C/inositol phosphate 3 (PLC/IP3) [161] pathway, leading to the release of 

intracellular Ca2+ from the endoplasmic reticulum to further facilitate GHRH-induced GH 

release from the somatotrophs. 

 The hypothalamic control of GH secretion is governed by the release of GHRH. In 

humans, administration of competitive GHRH antagonists severely impairs spontaneous 

pulsatile GH secretion [163] and blunts the response to GH-releasing stimuli [164, 165]. 

Thus, observations suggest that endogenous GHRH is likely the predominant stimulatory 

regulator of GH secretion. During periods of energy excess, the secretion of GH is 

impaired in response to all pharmacological stimulus acting at the level of hypothalamus 

[166]. In overweight individuals, exogenous pulsatile or continuous GHRH treatment to 

stimulate GH-releasing somatotrophs fails to evoke a rise in GH secretion [167, 168]. In 

line with this, decreased circulating levels of GH coincide with a reduction in hypothalamic 

Ghrh mRNA expression and GHRH protein content in obese Zucker rats, [151, 169]. 

Subsequent findings reported that the blunted GH secretion observed in obese leptin-

deficient mice (Ob/Ob), and dietary induced obese (DIO) mice is accompanied by a 

reduction pituitary Ghrh-r and Gh mRNA expression and GH content [170]. This reduction 

in pituitary GH content is consistent with the GH deficiency observed in obese humans [16, 

155, 171]. Regardless of alterations at the pituitary level, hypothalamic Ghrh mRNA 

expression remains unchanged in DIO mice compared to that seen in lean mice [170]. 

Similar observations demonstrating that obese rats placed on a cafeteria-style diet display 

a reduction in GH secretion alongside normal hypothalamic GHRH expressions, and were 

unresponsive to exogenous GHRH treatment irrespective of the extent of obesity [172].  

While this suggests that obesity-associated GH suppression may be due to a primary 

pituitary defect initiated by systemic factors, the release of GHRH may possibly be altered 

independent of changes in gene expression. Moreover, current observations reflecting 

alterations in pulsatile GH release alongside measures of hypothalamic GHRH output do 

not exist. Regardless, observations suggest that altered GHRH neuronal output may 

contribute to the suppression of GH in response to energy excess. Thus, impaired GH 

secretion in obesity may be due, at least in part, to an overall reduction in pituitary GH 

expression as well as defects in the capacity of somatotrophs to respond to GHRH stimuli. 

This awaits further investigation. 
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1.7.2 Somatotrophin releasing inhibitory factor (SRIF) 

SRIF is abundantly distributed throughout the CNS, as well as peripheral tissues [173], 

SRIF-producing neurons involved in the regulation of GH secretion are predominantly 

found within the periventricular nucleus (PeVN) of the hypothalamus. SRIF neurons within 

the PeVN projects to the ME and release SRIF from neurosecretory terminal, after which is 

transported by the hypophyseal portal system to the anterior pituitary gland to inhibit GH 

release, thereby modulating the amplitude of GH pulses (Figure 1-3) [158]. Although SRIF 

receptors (SSTRs) are widely expressed in the anterior pituitary gland [174], the 

antagonistic actions of SRIF on GHRH-induced GH release from the somatotrophs in 

rodents are primarily mediated through SSTR2 and SSTR5 [174]. SRIF inhibits GH 

secretion either directly by inhibiting somatotroph activity via SSTRs, or indirectly by 

inhibiting GHRH release from the ARC (Figure 1-4). SRIF inhibits GH release from the 

somatotrophs by limiting adenylyl cyclase (AC) activity and reduces cAMP accumulation, 

while opening of the K+ channels. This leads to the hyperpolarization of membrane 

potential and consequently, inhibiting Ca2+ influx through voltage-dependent calcium 

channels (Figure 1-4). This decreases intracellular Ca2+ levels, thereby maintaining basal 

GH release from the pituitary somatotrophs at low levels [175, 176]. 

 The mechanism of decreased GH secretion in obese state is thought to be 

attributed to the hypersecretion of hypothalamic SRIF, given that the administration of 

exogenous pyridostigmine or arginine (to inhibit hypothalamic SRIF release) in 

combination with GHRH or GHRP-6 restored reduced GH secretion in obesity [142, 177, 

178]. However, while treatments in obese adults evoked a GH response, the magnitude of 

GH release following pyridostigmine or arginine treatment in obese adults was not 

completely reversed to that seen in normal weight individuals. Thus, observations suggest 

that SRIF may not solely contribute to the decline in GH secretion in obesity. In this 

context,  the decline in GH secretion in either obese Zucker rats [100, 172] or DIO mice 

[170] may not occur solely in response to alterations in hypothalamic Srif mRNA or protein 

content. Moreover, passive immunization with specific SRIF antiserum fails to restore the 

amplitude of GH release in obese rats [100]. Collectively, observations suggest that central 

SRIF actions may not solely contribute to obesity-associated GH deficiency.  
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Figure 1-4: Schematic regulatory pathways of GHRH and SRIF in pituitary somatotrophs. 
 

The binding of GHRH to GHRH receptor dissociates -subunit from β- and -subunits of 
stimulatory Gs. This leads to the activation of AC to generate cyclic AMP (cAMP) from 
ATP. cAMP activates PKA which phosphorylates and activates nuclear localization of 
CREB. CREB activates transcription factor FOS, and together with activated Pit1, 
activates transcription of GH. To inhibit GH release, SRIF activates inhibitory Gi protein 
which inhibits AC and reduces intracellular calcium levels. Ghrelin or GHS stimulate GH 
release by activating multiple interdependent signal transductions involving PKA, PLC/IP3 
and intracellular calcium systems. Abbreviations: G protein; Gs, adenylyl cyclase; AC,  
cyclic adenosine monophosphate; cAMP, ghrelin secretagogues; GHS, protein kinase A; 
PKA, phospholipase C; PLC, Inositol 1,4,5-trisphosphate; IP3. 
 
 

1.7.3 Insulin-like growth factor-1 (IGF-1) 

IGF-1, otherwise known as somatomedin-C, is a member of the IGF-1 family. This family is 

comprised of ligands (IGF-I, IGF-II and insulin), cell surface receptors for IGF-I, IGF-II and 

insulin and IGF-1 binding proteins (IGFBP1-6) [179]. In circulation, the majority of IGF-1 

binds to high affinity IGFBPs to regulate the actions of IGF-1 on target tissues, thereby 

influencing the secretion of GH. Approximately 90% of IGF-1 in circulation is bound to the 

ternary 150kDa IGFBP complex consisting of IGF-1, IGFBP-3 and an acid-labile subunit 

(ALS, synthesized within the liver), which prolongs the plasma half life of IGF-1, and 

modulates the metabolic actions of IGF-1 [180]. Since IGF-1 and IGFBP-3 are dependent 

on GH release, they are indicators of changes in GH bioavailability and action [111].  



20 
 

 IGF-1 is best known as a GH-dependent peptide that mediates the biological 

effects of GH (Figure 1-5). Circulating IGF-1 is primarily produced within the liver in 

response to GH secretion. The classical theory of IGF-1 regulation originates in the liver 

where the growth promoting actions of GH are enhanced by stimulation of hepatic IGF-1 

[111]. This notion is supported by observations of stimulated body growth following the 

systemic administration of IGF-1 to humans or rodents displaying GH deficiency or 

dysfunction of the GH receptor [181-184]. In line with these observations, systemic 

deletion or disruption of IGF-1 or IGF-1 receptor signaling in mice and humans results in 

severe growth retardation as a consequence of postnatal growth failure [185-188]. Taken 

together, these findings propose that IGF-1 may be essential for normal growth. 

Importantly, while resulting in a 75% reduction in circulating IGF-1 levels, liver-specific 

deletion of IGF-1 in mice does not impair postnatal growth [109, 110, 189]. Thus, while 

confirming that liver is the primary source of circulating IGF-1, these observations suggest 

that liver-derived IGF-1 is not critically involved in promoting linear growth. Of importance, 

liver-specific deletion of IGF-1 in mice results in an elevation of plasma GH levels (based 

on single GH measures), whereas free IGF-1 levels remain unchanged. Thus, sustained 

postnatal growth in liver-specific deletion of IGF-1 mice may occur in response to 

sustained actions of endogenous GH, or via autocrine/paracrine effects of locally 

expressed IGF-1.  

IGF regulates GH secretion via long loop negative feedback at the anterior pituitary 

gland by directly inhibiting GH secretion, and indirectly by stimulating the release of SRIF 

while inhibiting the activity of GHRH neurons (Figure 1-5). Accordingly, a reduction in 

circulating IGF-1 occurs alongside an increase in circulating Gh, Ghrh and Ghs-r mRNA 

expression in the pituitary gland following liver-specific deletion of IGF-1 in mice [109]. In 

somatotroph specific IGF-1 receptor KO (SIGFRKO) mice, Gh mRNA  expression and GH 

proteins are increased, regardless of elevated circulating IGF-1 levels [190]. This occurs 

alongside a decrease in hypothalamic Ghrh and Srif mRNA expression presumably in 

response to the loss of pituitary IGF-1 feedback [190]. While GH is an important regulator 

of linear growth, the modest elevation in circulating GH did not contribute to enhanced 

linear growth in SIGFRKO mice when compared to WT controls. This is presumably as 

pubertal growth may have ceased in these adult SIGFRKO mice [190]. Rather, the 

metabolic effects of elevated GH levels are more pronounced maintaining body fat mass, 

since total body fat mass was decreased in SIGFRKO mice compared to WT controls 

[190]. Although measures of GH in these studies were based on one-off measures that 

may not accurately reflect the pulsatile nature of GH secretion [109, 190], observations 
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confirmed the role for liver-derived IGF-1 in the negative feedback regulation of GH 

secretion at the level of pituitary gland and the hypothalamus.  

In obesity, spontaneous GH secretion is diminished [166]. Thus, circulating levels of 

IGF-1 should be subnormal. However, measurements of total IGF-1 in obese subjects are 

reported to be normal [191-193] or elevated [194-196]. In contrast, measurements of free 

IGF-1 levels, which are thought to be the metabolically active form of IGF-1, are elevated 

in obese patients [191, 192, 197]. Thus, it is proposed that sustained bioavailability of free 

IGF-1 in obesity contributes to the suppression of GH secretion, although a precise 

mechanistic to clarify this has yet to be determined. In contrast, calorie restriction restores 

blunted GH secretion in obese patients and this coincides with a reduction in total and free 

IGF-1 levels [191, 198]. Collectively, observations demonstrate the reciprocal role of total 

and free IGF-1 in the negative feedback loop of GH secretion.  

 

 

Figure 1-5: GH and liver-derived IGF-1 secretion in the hypothalamic-pituitary feedback 
system.  
 

The secretion of GH from somatotrophs is stimulated by GHRH and inhibited by SRIF. GH 
limits its own secretion through a short loop negative feedback to increase SRIF. Local 
IGF-1 is thought to mediate the anabolic effects of GH to promote bone and muscle growth. 
Circulating IGF-1 acts to inhibit GH release through long-loop negative feedback at the 
level of pituitary and hypothalamus. Abbreviations; growth hormone releasing hormone; 
GHRH, somatostatin releasing inhibitory factor; SRIF, growth hormone; GH, insulin-like 
growth factor-1; IGF-1.  
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1.8 Peripheral Regulators of GH secretion  

Calorie restriction or weight loss in obese subjects restores spontaneous and stimulated 

GH release [166]. This suggests that impaired GH secretion in obesity may be associated 

with elevated peripheral factors that occur alongside weight gain. Of importance, increased 

circulating levels of adipose-derived hormones including leptin and insulin are typically 

associated with obesity [23, 26]. Likewise, endogenous ghrelin from the stomach promotes 

food intake, weight gain and adiposity, and is a potent GHS that augments GH release 

[199]. Alterations in these appetite related hormones relative to modest changes in food 

intake are thought to relay signals to the brain to modulate energy homeostasis. While 

contributing to altered metabolic output, these factors may also alter GH release. In this 

regard, metabolic alterations are tightly coupled to the regulation of energy balance, 

involving a complex coordination between peripheral hormones and metabolites. Given 

that the release of GH changes relative to energy balance, altered output of these 

metabolic factors associated with energy balance may contribute to altered GH secretion. 

The interactions between these factors with GH secretion will be discussed below.     

 

1.8.1 Metabolic Hormones as regulators of GH release 

1.8.1.1 Leptin  

Leptin is a 16kDa adipocyte-secreted hormone that circulates in proportion to fat mass 

[200, 201]. Leptin maintains energy homeostasis by increasing energy expenditure and by 

decreasing energy consumption [27]. As discussed above, leptin inhibits appetite and 

promotes energy utilization by regulating hypothalamic POMC and NPY/AgRP neuron 

activity (Figure 1-1) [202-204]. Accordingly, leptin plays a vital role in controlling body fat 

mass through hypothalamic pathways that coordinate appetite and modulate efferent 

signals to the periphery, regulating intermediary metabolism and energy expenditure. 

These effects are mediated via interactions between orexigenic and anorexigenic 

neuropeptides (Figure 1-1) [205]. Central and peripheral administration of leptin decreased 

food intake and increase energy expenditure [206, 207]. While circulating leptin increases 

in proportion to increased adiposity [208], it should be noted, however that, leptin in obese 

individuals does not suppress food intake, suggesting that obesity itself is associated with 

central leptin resistance [209, 210]. 

 The role of leptin in the regulation of GH/IGF-1 axis is well documented. Several 

studies showed that exogenous leptin stimulates GH release from pituitary explants, thus 

demonstrating that GH secretion is directly regulated by leptin [211-213]. Of importance, 

intracerebroventricular leptin infusion in adult rats augments both spontaneous pulsatile 
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GH and GHRH-induced GH release (Figure 1-6) [214-216]. Given that the release of GH 

secretion is facilitated by the episodic release of stimulatory GHRH, and inhibitory SRIF 

during GH trough periods, observations suggest that leptin serves as an important 

hormonal regulator of the GH axis. This notion is supported by the fact that hypothalamic 

GHRH neurons express LepR [217]. Moreover, SRIF is thought to inhibit its own secretion, 

and that of GHRH in vitro [218]. Thus, the facilitatory actions of leptin on GH secretion are 

likely mediated, at least, in part by modulating both GHRH and/or SRIF. Recent studies 

demonstrate that obese mice exhibiting leptin or LepR deficiency showed reduced 

proliferation of somatotrophs [219, 220]. Furthermore, deletion of somatotroph-specific 

LepR in mice results in a reduction in GH immunopositive cells and the consequential 

development of GH deficiency and obesity [221]. These findings suggest that leptin may 

directly regulate GH release and maintain somatotroph activity. In view of this, one may 

anticipate sustained GH release associated with hyperleptinemia during enhanced calorie 

intake. However, decreased GH secretion coexists with elevated leptin levels in obesity. 

This contradicts current opinions regarding the stimulatory effect of leptin on GH release, 

and may be attributed to impaired leptin signaling, and/or the development of central leptin 

resistance [44, 222]. Given that GH replacement therapy reduced adiposity and 

normalized hyperleptinemia in GHD adults [223, 224], presumably as a consequence of 

the lipolytic actions of GH, chronic hyperleptinemia in obesity may impair metabolic actions 

of leptin on GH and adiposity, thus leading to leptin resistance. In contrast, periods of 

calorie restriction in rodents result in a significant reduction in peak GH [48, 95, 225] and 

leptin secretion [95, 226]. Leptin infusion reverses the inhibitory effects exerted by fasting 

on in vivo pulsatile GH release [216, 227], suggesting that leptin acts as a metabolic signal 

to maintain GH secretion. Since the melanocortin system (via activation of POMC neurons) 

is a downstream target of leptin, the possible GH stimulatory actions of leptin may be 

indirectly mediated via interactions with the melanocortin system. Given that obesity is 

associated with altered endocrine profile, altered peripheral factors in modulating GH 

release may override the actions of leptin on GH secretion in obesity. Consequently, 

changes in leptin signaling may not solely account for altered GH release in obesity. These 

factors will be discussed in the following sub-chapters.  
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Figure 1-6: Schematic diagram illustrating the role of leptin in mediating GH secretion. 
Leptin may stimulate GH secretion by acting directly on pituitary somatotrophs and 
hypothalamic GHRH and SRIF neurons via leptin receptors expressed on these neurons. 
Abbreviations; growth hormone releasing hormone; GHRH, somatostatin releasing 
inhibitory factor; SRIF, growth hormone; GH. 

 

1.8.1.2 Ghrelin 

Ghrelin is a 28-amino acid peptide predominantly secreted by the oxyntic glands within the 

stomach, and regulate pituitary GH secretion, where ghrelin acts in a paracrine fashion to 

stimulate the release of GH from the anterior pituitary gland [228, 229]. Ghrelin circulates 

within the body in two forms: des-acyl and acyl ghrelin. Des-acyl ghrelin undergoes 

acylation mediated by ghrelin o-acyl transferase (GOAT) at the serine-3 residue of the 

peptide to produce active biological effects [230]. Circulating ghrelin levels are influenced 

by short-term alterations in energy status. Whereas the rise in ghrelin is observed prior to 

food intake [231, 232] and during periods of calorie restriction [233, 234], ghrelin levels are 

reduced after meals. Moreover, the reciprocity of enhanced ghrelin release before meals 

correlates with low leptin levels, whereas a reduction in ghrelin corresponds to elevated 

leptin levels after food consumption [235, 236]. Observations indicate a role for ghrelin 

(and leptin) in the physiological response to meal initiation and satiety. Additionally, ghrelin 

possess strong GH-releasing activity [237, 238]. Given the effects of ghrelin in driving 
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appetite and GH release, ghrelin is an important hormonal signal that regulates energy 

balance by modulating GH release relative to nutritional status.  

 Compelling evidence indicates that the effects of ghrelin-induced feeding are 

mediated through the ghrelin receptor, GHSR-la (the primary receptor mediating biological 

effects of ghrelin), expressed on NPY/AgRP expressing neurons [239]. Here, the binding 

of ghrelin to GHSR-1a activates orexigenic hypothalamic NPY/AgRP neurons (Figure 1-1) 

[239-242]. Moreover, the detection of GHSR-1a receptors on vagal afferent neurons [243] 

suggests that the orexigenic effects of ghrelin on hypothalamic NPY are transmitted via the 

vagus nerve (Figure 1-7). This is confirmed by previous studies wherein the loss of 

orexigenic effects of ghrelin was observed in rodents following ligation of the vagus nerve 

(vagotomy) [243, 244]. Intravenous administered ghrelin enhanced food take in humans 

[245]. In line with this, central and peripheral administration of GHRPs induced c-fos 

expression (neuronal marker) selectively in hypothalamic NPY/AgRP neurons in rodents 

[246-248]. Observations are also supported by electrophysiological recordings of ex vivo 

hypothalamic slices in which ghrelin directly increase the spontaneous activity of 

NPY/AgRP neurons, and indirectly hyperpolarized (to inhibit) POMC neurons by facilitating 

the pre-synaptic release of -aminobutyric acid (GABA) [249]. Considering that AgRP acts 

as a natural antagonist to MC4R, reduced food intake in response to ghrelin in obese 

MC4RKO mice suggest that the capacity of AgRP to stimulate appetite involves the 

melanocortin system via the antagonistic actions on MC4R [250]. Taken together, these 

findings indicate that the stimulatory effects of ghrelin on NPY/AgRP neurons are 

complementary to reduced leptin-sensitive POMC neuronal activity via inhibitory GABA 

inputs from NPY/AgRP neurons, thus decreasing -MSH, consequently driving appetite 

(Figure 1-1). Ultimately, this suggests that ghrelin acts as a functional opposing antagonist 

to actions of leptin. Previous studies demonstrated that circulating ghrelin levels are 

decreased in obese humans [235, 251], while peripheral ghrelin injections fail to induce 

food intake in obese mice [252]. This suggests that access of ghrelin across the BBB may 

be altered during periods of energy excess. In support of this, obese aged mice showed a 

reduction in the transport intravenous ghrelin across the BBB [253]. Furthermore, Briggs 

and colleagues demonstrated that the suppression of the neuroendocrine ghrelin axis 

during obesity occurs in response to a reduction in circulating acylated and total ghrelin 

levels, decreased stomach ghrelin and Goat, and hypothalamic Ghsr-1a, Npy and Agrp 

mRNA expression. Moreover, central administration of ghrelin does not promote 

hypothalamic expression of NPY/AgRP to stimulate food intake in DIO mice [254]. Overall, 

this suggests that impaired ghrelin transport across the BBB coupled with the reduction in 
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NPY/AgRP responsiveness to ghrelin as a consequence of a disrupted NPY/AgRP 

neuronal circuit may exacerbate the development of ghrelin resistance during obesity. 

 In addition to the influence of ghrelin on appetite and energy balance, acylation of 

ghrelin exert its stimulatory effects on GH release at both the hypothalamus and pituitary 

gland [229]. The binding of acylated-ghrelin to GHSR-1a on pituitary somatotrophs 

activates the PLC/IP3 signaling cascade, resulting in the release of GH (Figure 1-4) [255]. 

GHSR-1a receptors are also expressed on GHRH neurons [256], suggesting that ghrelin 

directly increase hypothalamic GHRH-stimulated GH release. In line with this, peripheral 

infusion of ghrelin potently elicits GH secretion in both humans [237, 257, 258] and rodents 

[229, 259, 260]. Moreover, GHS treatment enhanced GHRH activity and induces c-fos 

expression in GHRH neurons [261, 262]. In addition, the actions of ghrelin in regulating 

GH secretion may occur via peripheral mechanisms. For instance, gastric derived ghrelin 

signals to the hypothalamus via the vagus nerve to augment the release of GHRH [243]. 

Given that ghrelin directly activates NPY neurons [239, 263], ghrelin-induced GH secretion 

may occur, at least in part through hypothalamic actions of NPY. This, however, warrants 

further investigation. 

 In normal weight humans, the co-administration of GHRH with ghrelin or GHS elicits 

a synergistic release of GH, greater than that evoked by GHRH alone [238]. By contrast, in 

obese individuals where ghrelin levels are low [251, 254, 264], combined therapy of these 

peptides induced a lower GH response compared to that observed in lean population [265-

267]. This suggests a diminished capacity of the ghrelin axis in obese state. As discussed 

above, the reduction in circulating ghrelin is coupled with the decline in Ghsr-1a and Ghrh-

r mRNA expression in the pituitary gland, as well as hypothalamic NPY/AgRP in DIO 

mouse [254]. Likewise, the stimulatory effects of ghrelin on GH release and food intake are 

suppressed in DIO mice [254] and obese MC4RKO mice [250], suggesting the 

development of central ghrelin resistance. Accordingly, systemic administration of GHS 

peptide into hypophysectomized adult rat induces c-fos mRNA expression in hypothalamic 

GHRH neurons [256]. Furthermore, the reduction in ARC Ghsr mRNA expression results 

in a decreased in the number of hypothalamic GHRH neurons in transgenic (Tg) rats [268], 

presumably due to the feedback mechanism of the regulation of GH secretion. In this 

context, the hyposecretion of ghrelin coupled with alterations in GHSR distribution may, in 

part, contribute to an overall ghrelin resistance as well as impaired GH secretion in obesity. 

It should be noted, however, that GH measurements in the DIO [254] and MC4RKO [250] 

mouse models were based on one off measurements, and thus do not provide a reliable 

measure of GH release. Furthermore, observations of reduced GH in response to ghrelin 
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were limited to aged female MC4RKO mice [250]. Given that GH release is pulsatile, that 

GH pulsatility may vary considerably between male and female mice (Chapter 1.4.1), and 

that GH release declines with age (Chapter 1.5.1), the role of ghrelin in mediating GH 

secretion relative to disrupted melanocortin system may be misinterpreted in aging female 

MC4RKO mice [250]. Details regarding the role of melanocortin system in the regulation of 

GH will be addressed in this thesis.  

 

 

Figure 1-7: Schematic diagram illustrating the peripheral and central roles of ghrelin in 
mediating GH secretion at the level of the anterior pituitary gland and hypothalamus.  
 

Within the anterior pituitary gland, stomach-derived ghrelin acts directly on somatotrophs 
via GHSR-1a to stimulate GH release. Within the hypothalamus (where GHSR-1a are 
localized on GHRH and NPY neurons), ghrelin stimulates GHRH-induced GH secretion, 
and directly activates NPY neurons via the vagus nerve to regulate feeding. Abbreviations; 
growth hormone releasing hormone; GHRH, somatostatin releasing inhibitory factor; SRIF, 
neuropeptide Y, NPY, growth hormone; GH. 

 

1.8.1.3 Insulin 

Insulin is a pivotal anabolic hormone that regulates blood glucose homeostasis and lipid 

mobilization. This is essential to promote the removal and storage of excess glucose in the 

liver or in muscle via glycogenesis (Figure 1-8) [269, 270]. In addition, insulin plays a 

critical role in lipid mobilization by promoting adipogenesis [270, 271], lipogenesis [272], 

and inhibiting lipolysis, thereby promoting normal lipid metabolism [270]. The release of 
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insulin from pancreatic β-cells occurs in response to a glucose load (following food intake). 

Consequently, pancreatic β-cells would compensate for insulin resistance by 

hypersecretion of insulin (hyperinsulinemia) and increased pancreatic β-cells mass  to 

maintain plasma glucose within normal range [273]. Therefore, increased metabolic 

demand for insulin in the face of insulin resistance (peripherally or systemically in tissues) 

usually precedes the development of hyperglycemia. In this instance, excessive calorie 

intake could lead to pancreatic β-cell dysfunction in the early phase of Type 2 diabetes 

(T2D), culminating in insulin resistance [273].  

Several studies demonstrate that insulin exerts an inhibitory effect on GH release. 

In obese adults, circulating insulin levels are inversely correlated with measures of GH 

when compared to healthy lean individuals [16-18], while circulating levels of insulin 

increase proportionate to the decrease in pulsatile GH secretion in mice during 

progressive weight gain [97, 98]. Similar observations of suppressed GH secretion was 

reported in obese hyperinsulinemic Zucker rats [100]. Importantly, hyperinsulinemia 

associated with excess calorie consumption in healthy individuals impairs GH secretion, 

and this precedes dietary induced weight gain [14]. Anecdotal evidence from Type 1 

diabetes (T1D) patients further demonstrates the inverse relationship between circulating 

GH and insulin secretion, whereby GH release is markedly elevated relative to healthy 

controls [274, 275]. Moreover, intensive insulin treatment reduced excess GH secretion in 

these diabetic patients. Collectively, observations are indicative of the inhibitory role of 

insulin on GH secretion and suggest that elevated insulin in response to hyperphagia may 

potentially contribute to reduced GH output. 

 The mechanisms by which insulin regulates GH release are not completely clarified. 

Given that insulin receptors (InsR) are expressed in the hypothalamus [276], the inhibitory 

actions of insulin on GH release may be mediated through altered hypothalamic pathways. 

Insulin may stimulate the release of catecholamines (neurotransmitters) including 

norepinephrine, epinephrine and dopamine [277], which may in turn activate hypothalamic 

SRIF neurons to inhibit GHRH-induced GH secretion [278]. The direct involvement of the 

hypothalamus in the suppression of GH release during obesity however, has not been 

assessed, and thus the premise that altered GH release in obesity occurs via the 

hypothalamic pathway remains unsubstantiated. Regardless, hypothalamic gene 

expression of GHRH and SRIF is preserved in DIO rats, regardless of pituitary insensitivity 

to GHRH actions [172]. Furthermore, GHRH pretreatment with arginine fail to improve 

somatotroph sensitivity to recover GH release in obese patients [279]. Consequently, 

impaired GH secretion in obesity likely occur independent of alterations in hypothalamic 
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control of GH secretion. Accordingly, compelling evidence demonstrate that insulin may 

act directly on pituitary somatotrophs to inhibit GH release during the obese state. In 

isolated rat pituitary somatotrophs or pituitary tumors, GH secretion is reduced following 

insulin exposure [280-282]. Similarly, insulin acts in the pituitary gland via InsR to inhibit 

GH release from pituitary somatotrophs of DIO mice [170]. This suppression of GH in 

response to insulin is accompanied by a decreased Gh, Ghrh and ghrelin mRNA 

expression in DIO mice. These effects persisted despite the development of systemic 

insulin resistance, suggesting that somatotrophs remain insulin responsive in obesity. 

While not assessed alongside pulsatile GH release, subsequent observations demonstrate 

that the loss of somatotroph-specific InsR in mice resulted in an increase in circulating GH 

levels (based on single measures) [283]. However, the loss of somatotroph-specific InsR 

function could not completely prevent the reduction in GH release during dietary-induced 

weight gain [283]. Thus, suppressed GH secretion in obesity may not occur predominantly 

in response to systemic factors acting directly on somatotrophs. Observations do not 

however, clarify the inhibitory effect of insulin on somatotroph function during obesity. Thus, 

the loss of somatotroph-specific InsR on the recovery of pulsatile GH release during 

obesity warrants further investigation.  

 Impaired insulin sensitivity commonly associated with excessive calorie intake or 

obesity [14, 284] is attributed to several factors including elevated NEFAs and pro-

inflammatory cytokines released from adipose mass [285, 286]. In addition, chronic 

exposure to GH impairs insulin-stimulated glucose uptake and suppresses hepatic glucose 

production, resulting in insulin resistance in both humans [287-289] and rodents [290, 291]. 

A secondary effect of a concomitant rise in NEFAs (usually suppressed by antilipolytic 

actions of insulin) as a consequence of GH-driven lipolysis is thought to further 

compromised insulin sensitivity. In this context, the balance between GH and insulin 

regulation is thought to be essential in sustaining lipid metabolism (Figure 1-7). Recent 

clinical findings confirmed that the suppression of GH secretion following excess calorie 

intake precedes body weight gain [14], and is thought to ameliorate insulin resistance, 

thereby improving meal tolerance [71]. Thus, the maintenance of insulin sensitivity during 

periods of GH deficiency following excess food consumption is believed to be a 

physiological adaptation that promotes insulin-driven lipogenesis to prevent dyslipidemia 

[71]. The relationship between GH and insulin in regulating GH release and fatty acid 

homeostasis in response to excess calorie intake will be addressed in this thesis. 
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Figure 1-8: Schematic diagram illustrating the metabolic roles of insulin in promoting lipid 
mobilization while suppressing GH.  
 

Insulin secreted by the pancreas inhibits the release of GH directly at the level of pituitary 
gland. The balance between GH and insulin overall maintains glucose homeostasis by 
promoting the uptake of glucose into liver and muscle via glycogenesis. Abbreviations; 
growth hormone releasing hormone; GHRH, somatostatin releasing inhibitory factor; SRIF, 
growth hormone; GH. 

 

1.8.2 Metabolites as regulators of GH 

1.8.2.1 Non-esterified free fatty acids (NEFAs) 

The most prominent metabolic effect of GH is the stimulation of lipolysis and release of 

NEFAs [125]. NEFAs in turn exert feedback on GH release by acting at the level of 

pituitary gland and hypothalamus to inhibit GH secretion (Figure 1-9). In rodents, lipid-

heparin infusion confirms that NEFAs suppress GH release by acting directly on pituitary 

somatotrophs [292-294]. This does not, however, reflect the impact of endogenous NEFAs 

on GH release in obesity. Whereas the rise in NEFAs during obesity coincides with the 

suppression of GH, pharmacological blockage of lipolysis (by acipimox) to reduce NEFAs 

concentrations restores spontaneous and stimulated GH release in elderly and obese 

individuals [295, 296]. This occurs alongside the reversal of hyperinsulinemia and 

improved insulin sensitivity [297, 298]. Given the proposed interactions of the inhibitory 

actions of insulin on GH (Chapter 1.8.1.3), the decline in circulating insulin associated with 
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acipimox treatment may alter GH secretion. Thus, the inhibitory effects of NEFAs on GH 

secretion in obesity may be misinterpreted. Moreover, recent observations challenged this 

notion. Observations demonstrated that a chronic reduction in NEFAs levels preceded 

impaired insulin sensitivity in GH deficient humans following excess calorie consumption 

[299]. In addition, a recent meta-analysis reported a relatively stable circulating NEFAs 

regardless of the severity of obesity [285]. Thus, NEFA levels may not directly contribute to 

impaired GH secretion in obesity. Given that chronic elevated NEFA concentrations are 

closely associated with insulin resistance in obesity [285, 300], the associated suppression 

of GH in obesity may reflect counterregulatory response to normalize NEFAs flux to 

ameliorate insulin resistance. In this context, GH deficiency during obesity may be a 

physiological adaptation that sustains insulin sensitivity. The relationship between 

metabolic actions of GH in modulating adiposity and NEFAs will be addressed in Chapter 

5. 

 

Figure 1-9: Schematic diagram illustrating the proposed role of NEFAs in regulating GH 
release.  
 

Under physiological circumstances, the lipolytic action of GH on adipose tissue leads to 
the release of NEFAs flux which may serve as a negative regulator of GH. To suppress 
GH secretion, NEFAs may act directly on somatotrophs to inhibit GH release. 
Abbreviations: non-esterified fatty acids; NEFAs, growth hormone; GH.  
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1.8.2.2 Glucose 

Glucose homeostasis is maintained through complex counterregulatory neuro-hormonal 

systems. The disposal of postprandial or fasting glucose appears to be mediated through 

insulin-dependent and insulin-independent pathways [301]. Following food intake or calorie 

excess, postprandial insulin would preferentially metabolize glucose as glycogen in the 

liver or muscle or as fat in adipose tissue, thus lowering circulating levels of glucose. In 

contrast, the fasting-induced reduction in insulin augments the utilization of lipids (to yield 

NEFAs) and decrease glucose uptake. Given that the metabolic actions of GH are 

antagonistic to the actions of insulin, GH decreases glucose oxidation and promotes lipid 

mobilization in defense against hypoglycaemia [124].  

Perturbations in blood glucose relative to energy balance may impact GH secretion. In 

view of this, insulin-induced hypoglycaemia potently stimulates GH release in humans [164, 

302]. Similar observations are reported in sheep following intravenous insulin infusion to 

mimic hypoglycaemia [303, 304], and this is thought to be mediated via GHRH-induced 

GH release [164, 303]. Although the exact glucoregulatory mechanisms of GH regulation 

are not completely elucidated, findings suggest that neuroregulatory effects of insulin-

induced hypoglycemia GH release in sheep are, somewhat, similar to that observed in 

humans. In contrast, insulin-induced hypoglycaemia or calorie restriction (fasting) 

suppressed pulsatile GH secretion, and perturbates GH response to GHRH stimuli in adult 

rats [85, 225]. This was accompanied by a concomitant increase in Srif mRNA and content 

while hypothalamic Ghrh mRNA remained unchanged [48, 225, 305, 306]. Subsequent 

glucose clamp studies confirmed that hyperglycemia does not impact spontaneous and 

stimulated GH secretion (by GHRH, arginine (to inhibit SRIF), and hexarelin (GHS)) in 

humans [267, 307, 308]. Thus, hyperglycemia appears to have a modest impact on GH 

secretion [305]. Rather, observations suggest that blunted GH release in response to 

hypoglycemia may be attributed to enhanced inhibitory actions of SRIF. This is supported 

by observations demonstrating an increase in hypophyseal-portal SRIF concentrations in 

sheep following systemic insulin injections [304]. Thus, while not directly addressed, the 

effects of indirect stimulation of hypothalamic SRIF may account for the inverse 

relationship between insulin and the suppression of GH release in response to altered 

glucose balance. Unlike observations in rats, limited data demonstrate that insulin-induced 

hypoglycaemia does not alter pulsatile GH secretion in mice [309]. This occurred 

alongside sustained hypothalamic Ghrh and Srif mRNA expression [309], suggesting that 

hypoglycaemia may not directly activate GHRH or SRIF neurons to inhibit GH secretion in 

mice. Rather, the release of counterregulatory glucose-sensitive hormones that defend 
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against hypoglycaemia may be involved in the indirect modulation of GHRH and SRIF 

neurons. To this extent, it appears that the glucoregulatory effects of GH regulation may 

vary considerably between mammalian systems. Thus, neuroendocrine mechanisms 

involving insulin-glucose studies requires concomitant measurements of hypophyseal-

portal GHRH and SRIF outputs awaits further investigation. 

 

1.9 Aims and Hypothesis 

GH is a key regulator of postnatal linear growth during childhood. Given that GH deficiency 

is associated with short stature, it is thought that an upregulation in endogenous GH 

secretion contributes to rapid linear growth in humans associated with dysfunction of 

MC4Rs. Accordingly, assessment of GH secretion in obese hyperphagic MC4R deficient 

adults demonstrated a partial increase in pulsatile GH secretion relative to obese 

individuals of similar BMI, regardless of increased adiposity [68]. While not directly 

assessed, this suggests that rapid linear growth observed in these adults may occur as a 

consequence of pubertal GH excess. In addition, metabolic alterations such as elevated 

insulin secretion in response to excess calorie consumption (including hyperphagia and 

obesity) associated with MC4R deficiency may alter GH release. Given the proposed 

interactions between GH and insulin, the premise that increased GH release contributes to 

enhanced linear growth in hyperphagic MC4R deficient children challenge current opinions 

regarding the impact of obesity on GH release, and the proposed metabolic actions of GH 

in mediating NEFA flux. Thus, it is uncertain whether GH hypersecretion accounts for rapid 

linear growth in MC4R deficient adults. Moreover, observations of pulsatile GH release 

during pubertal growth spurt in MC4R deficient children have not been assessed to date. 

Consequently, the potential role of GH in promoting linear growth in pubertal MC4R 

deficient children remains to be determined. Of interest, insulin may promote growth 

directly by acting through IGF-1 receptors. It is therefore hypothesized that rapid pubertal 

growth associated with MC4R deficiency occur secondary to metabolic changes 

associated with hyperphagia. This may occur at the expense of GH and insulin release in 

response to excess energy consumption. Thus, the main aim of this project is to 

investigate role of melanocortin system in modulating pulsatile GH secretion, relative to 

linear growth during hyperphagia associated weight gain. To address this, the aims of this 

project are:  

1. To characterize the change in pulsatile GH secretion that occurs relative to rapid 

linear growth from puberty throughout adulthood in WT mice (Addressed in Chapter 

3, published data); 
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2. To determine whether changes in inhibitory hypothalamic Srif mRNA distribution 

contributes to altered GH release that occurs between puberty and adulthood in 

mice (Addressed in Chapter 4, published data); 

3. To determine whether increased pulsatile GH secretion contribute to rapid pubertal 

growth associated with MC4R dysfunction in hyperphagic MC4RKO mice 

(Addressed in Chapter 5); 

4. To determine whether MC4Rs are colocalized with the primary regulators of GH 

(somatotrophs and GHRH) to modulate GH release (Addressed in Chapter 5); 

5. To investigate whether the prevention of hyperphagia will normalize rapid linear 

growth and GH secretion in MC4RKO mice (Addressed in Chapter 6). 
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CHAPTER TWO: GENERAL METHODOLOGY 

2. General Methodology 

This section includes general experimental protocols conserved throughout this thesis. 

Detailed information on specific experimental designs will be addressed in relevant 

chapters. 

 

2.1 Animal Care 

WT C57/BL6 male mice were obtained from The University of Queensland Biological 

Resources, Australian Institute for Bioengineering and Nanotechnology (UQBR, AIBN). 

Male transgenic MC4RKO mice on a C57/BL6 background with a targeted deletion of 

functional neuronal MC4R were originally provided by Professor Michael Cowley (Monash 

University, Melbourne, Australia). Male homozygous MC4RKO mice and age-matched WT 

LM were obtained from heterozygote parents breeding pairs. Transgenic adult C57/BL6 

mice expressing GFP in GH-secreting cells (GH-GFP mice) and hypothalamic GHRH 

neurons (GHRH-GFP) were provided by Professor Iain Robinson (MRC National Institute 

for Medical Research, London) and these are maintained on a homozygote breeding 

colony for in vitro experiments. All mice were group housed (n=2-3) in a temperature-

controlled room (22 ± 2°C), maintained on a 12-h light/dark cycle (lights on at 0630 h and 

off at 1830 h). Animals were handled daily and had free access to food and water unless 

otherwise specified. All experiments and procedures were approved by the University of 

Queensland Animal Ethics Committee. 

 

2.2 Genotyping 

Homozygous MC4RKO mice and WT LM used in this project were obtained using a 

heterozygous breeding strategy. To verify the genotype of the MC4RKO animals, the tip of 

the toe (1 mm) was collected and genomic DNA was isolated using the REDExtract-N-

Amp TISSUE PCR kit (XNATR; Sigma, St. Louis, MO, USA). The genotype of MC4RKO 

mice was identified using the following published MC4R primer sequences [250]: (forward) 

5’- GGA AGA TGA ACT CCA CCC ACC -3’, (reversed) 5’- GAC GAT GGT TTC CGA CCC 

ATT -3’ and PGKR3: 5’- TTC CCA GCC TCT GAG CCC AGA -3’. Genotypes were 

confirmed by the presence of 313bp for the WT LM allele and 405bp for the MC4RKO 

allele. 
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2.3 Blood sampling 

2.3.1 Serial blood sampling or assessment of pulsatile GH release 

To assess pulsatile GH secretion, blood samples were collected and processed as 

previously described. Care was taken to minimize potential stress-induced disruption of 

pulsatile GH secretion [95] (Figure 2-1). 36 sequential tail tip blood samples (4 µl) were 

collected from each mouse at 10-minute intervals for a period of 6 hours. Mice were 

handled in a circular cardboard roll, and held by the tail. The distal 0.5 mm of the tail was 

excised using a sterile surgical blade (ProsciTech, Australia). For each sample, 4 μl of 

whole blood was collected using a 10-µl Gilson pipette, and placed directly into 116 μl of 

0.05% PBS-Tween (PBST, w/v). Given an approximate total blood volume of 2.1 ml per 

mouse (based on estimated 7% blood volume relative to body mass [310]), blood loss was 

restricted to less than 5.5% of total blood volume over the 6 hours sampling period. This is 

well below blood loss deemed sufficient to have a physiological impact [311]. Given the 

average size and weight of a 4-week-old mouse, a similar approach could not be 

considered. Therefore, to ensure the welfare of 4-week-old mice, blood collection was 

limited to 2 µl per sample. Following blood collection, gentle pressure was applied to the 

tail-tip to stem blood flow and mice were returned to the cage. For repeated collection, the 

tail-tip was briefly immersed in physiological saline (0.9% sodium chloride, Baxter, 

Australia), and gently wiped dry with a paper towel. If necessary, the dried blood was 

carefully removed using a surgical blade and gentle pressure was applied along the base 

of the tip of the tail to encourage blood flow. Samples were mixed by vortex, immediately 

placed on dry-ice and transferred to -80 °C for storage prior to future batch analysis. 

 

 

Figure 2-1: Illustration demonstrating mouse tunnel handling method and tail-tip blood 
sample collection.  
 

Mice were handled within a cardboard roll and held by the base of the tail. A distal 0.5 mm 
section of the tail end was excised and whole blood samples were collected from the tail 
tip (inset).  
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2.3.2 One-off blood sampling from tail tip sampling for assessment of metabolites 

To assess circulating metabolites (glucose, insulin, NEFAs) from freely moving mice (un-

anesthetized), blood samples were collected from the tail tip as detailed in section 2.3.1. A 

20 µl tail-tip blood sample was collected using a heparinized pipette tip (100 IU/ml), and 

plasma was separated via centrifugation (6000 rpm for 3 mins at room temperature). 

Aliquoted plasma was placed on dry ice, and stored at −80 °C for future batch analysis.  

 

2.3.3 Terminal blood sampling for assessment of metabolites 

Terminal blood samples were collected at the time of sacrifice (between 0700h and 0900 h) 

via cardiac puncture following procedures as described previously [311]. Mice were 

anesthetized with a single intraperitoneal (ip) injection of sodium pentobarbitone (32.5 

mg/ml, 1PO643-1; Virbac Animal Health, Milperra, NSW, AUS), and tested for corneal and 

toe-pinch withdrawal reflex prior to blood collection. Approximate 1 ml of whole blood was 

collected into ethylenediamine tetra-acetate (EDTA) tubes (1.6 mg/ml blood) (D51588; 

Sarstedt Australia Pty Ltd, SA, AUS). Plasma was separated via centrifugation (6000 rpm 

for 3 mins at room temperature). Aliquoted plasma was placed on dry ice, and stored at 

−80 °C for future analysis. 

 

2.4 Assessment of metabolic status by Glucose and Insulin Tolerance Test (GTT/ITT) 

For in vivo assessment of glucose tolerance, mice were fasted overnight for 12 hours 

starting at 1800 h, with free access to water. At 0600 h, mice were injected with glucose (ip, 

1.0 g per kg body weight). During GTT, an additional single 20 μl tail-tip blood sample was 

collected using a heparinized pipette tip (100 IU/ml), and plasma was aliquoted for the 

assessment of insulin at similar time points. For ITT, starting at 0800 h, mice were fasted 6 

hours, with free access to water. At 1400 h, mice were injected with insulin (ip, 0.2 units 

per kg body weight; I9278; Sigma, St. Louis, MO, USA). Immediately prior to the ITT, a 

single 20 μl tail-tip blood sample was collected using a heparinized pipette tip (100 IU/ml), 

and plasma was aliquoted for the assessment of fasting insulin. A tail-tip blood sample 

was collected immediately before the injection and at 15, 30, 45, 60, 90, and 120 mins 

following the injection. Blood glucose concentration in tail-tip blood samples was 

determined using the Accu-Chek Performa blood glucose meter (Roche Diagnostics, 

Indianapolis, IN, USA). A change in blood glucose concentration in response to the 

glucose injection was compared relative to starting blood glucose levels for each mouse. 
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2.5 Analysis of Hormones and Metabolites 

2.5.1 Measurement of GH via in-house GH ELISA 

Analysis of GH was determined using an in-house sandwich ELISA. This assay was 

optimized and validated for measuring GH from 2 µl whole blood samples [95]. A 9-point 

standard curve was generated using a mouse GH (mGH) reference preparation (AFP-

10783B, National Institute of Diabetes & Digestive & Kidney Diseases -NIDDK-NHP) by 

two-fold serial dilution (8 ng/ml to 0.03 ng/ml), diluted in PBST supplemented with bovine 

serum albumin (0.2% BSA-PBST). Briefly, a 96-well plate (Corning Inc., Corning, NY) was 

coated with 50 μl of capture antibody (NIDDK-monkey anti-rat GH (rGH)-IC-1, AFP411S, 

NIDDK-NHPP) at a dilution of 1:40 000 and incubated at 4 °C overnight. To reduce non-

specific binding, each well was incubated with blocking buffer (5% skim milk powder in 

0.05% PBST) for 2 hours at room temperature. Following blocking, standards and samples 

were loaded into a pre-coated plate in duplicates and incubated for 2 hours at room 

temperature. Bound standards and samples were incubated with 50 μl of detection 

antibody (rabbit antiserum to rat GH, AFP5672099, NIDDK-NHPP) at a final dilution of 

1:40 000. Bound complex were then incubated with 50 μl of horseradish peroxidase 

(HRP)-conjugated antibody (anti-rabbit, IgG, GE Healthcare, UK) at a dilution of 1:2000. 

Addition of 100 μl of O-phenylenediamine (OPD, 00.2003, Invitrogen, CA) substrate to 

each well resulted in an enzymatic colorimetric reaction. This reaction was stopped by the 

addition of 50 μl of 3 M hydrochloric acid (HCL, Sigma). The absorbance was read at a 

wavelength of 490 nm (reference wavelength set at 650 nm) on a TECAN Sunrise 96-well 

monochromatic microplate reader (TECAN, Switzerland). The concentration of GH in each 

well was calculated against a non-linear regression of the standard curve. 

 

2.5.2 Measurement of hepatic triglyceride content 

To determine hepatic triglyceride content, liver samples were digested by saponification in 

ethanolic KOH and neutralized with MgCl2 as previously described [312]. Briefly, 100 mg 

of liver tissue were incubated with 350 µl ethanolic KOH overnight at 55 °C. The volume of 

sample mixture was adjusted to 1000 µl with H2O:EtOH (1:1) and centrifuged (6000 rpm 

for 5 mins at room temperature). The resulting supernatant was transferred to a new tube 

and the volume was adjusted with H2O: EtOH (1:1) to a final volume of 1200 µl. 200 µl of 

the new diluted mixture was incubated with 215 µl 1 M MgCl2 for 10 mins at room 

temperature. Following centrifugation, the supernatant was transferred to a new tube for 

assessment of glycerol content. Glycerol content was determined using a glycerol 

standard (G7793, Sigma, St. Louis, MO) and free glycerol reagent (F6428, Sigma). Total 
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liver triglyceride content was derived from the following equation: Liver triglyceride content 

(mg of triglyceride/gram of liver) = Triolein equivalent glycerol concentration 

(mg/dL)*(415/200)*0.012(dL)/weight of liver tissue (g)*standard dilution factor. 

 

2.5.3 Measurement of hepatic and muscle glycogen content 

To determine liver and muscle glycogen content, liver and muscle samples were digested 

in 30% KOH and precipitated in anhydrous ethanol as previously described [313]. 

Glycogen content was determined using a glucose standard (concentration at 1 mg/ml) 

and 0.2% anthrone reagent (0.2 g in 100 ml 98% H2SO4). Briefly, 100 mg of liver/muscle 

tissue were incubated in 500 µl of 30% KOH for 30 mins at 100 °C. The tissue mixture was 

further diluted with 30% EtOH (final volume = 500 µl) (liver samples required higher 

dilutions; 100x dilution for liver and 10x for muscle. Following dilution, 1 ml of 100% EtOH 

was added to the new mixture and centrifuged (6000 rpm for 15 mins at room 

temperature). Following centrifugation, the resulting pellet was resuspended in 500 µl 

deionized water, and incubated in 1 ml 0.2% anthrone reagent for 30 mins at room 

temperature. Glycogen content was derived from the following equation: Glycogen (mg/g 

tissue) = glucose equivalent (µg/ml)*1.11*0.001*dilution factor*0.5 ml/weight of tissue (g).  

 

2.5.4 Measurement of hormones and metabolites using commercial assays 

Assessments of endocrine profiles were performed using commercial ELISA assay kits. 

Assay procedures strictly adhered to methodology supplied with these kits. Commercial 

kits used are listed in Table 2-1. 

 

Table 2-1: Commercial assay kits used to determine circulating hormones and metabolites. 

Hormones/Metabolites Assay Kits Company Catalogue ID 

Leptin Mouse Leptin Millipore EZML-82K 

Insulin Rat/Mouse Insulin  Millipore EZRMI-13K 

IGF-1 Rat/Mouse IGF-1  
R&D 
Systems 

SMG-100 

IGFBPs 
Mouse Metabolic Magnetic 
Bead Panel 

Millipore MIGFBPMAG-43K 

Metabolism Multiplex 
Assay 

Mouse Metabolic Hormone 
Magnetic Bead Panel 

Millipore MMHMAG-44K 

NEFAs NEFAs C Assay Wako 279-75401 

Glucose Glucose Assay Cayman 10009582 



40 
 

2.6 Analysis of hypothalamic GHRH and SRIF expression by quantitative 

polymerase chain reaction (qPCR) 

To quantify the amount of hypothalamic Ghrh or Srif mRNA expression relative to GH 

output throughout pubertal maturation and in adulthood, hypothalamic micropunch 

biopsies containing pooled regions of PVN, PeVN and the ARC were isolated from mice. 

Mice were anesthetized with a single ip injection of sodium pentobarbitone (32.5 mg/ml, 

1PO643-1). The brain from each mouse was immediately removed, snap-frozen on dry ice, 

and stored at -80 °C. Micropunch biopsies were collected from 300 μm thick coronal brain 

sections using fine-gauge needles (23G x 11/4") (Terumo® Syringe) following established 

methodology [48]. Tissue biopsies representative of the PVN, PeVN and ARC located 

between bregma -0.34 and -2.18 (Figure 2-2) were suspended in 1 ml TRIzol (15596-026; 

Invitrogen, Carlsbad, CA). Tissue was stored at -80 °C prior to quantitative polymerase 

chain reaction (qPCR) analysis. Total RNA was isolated using a PureLink RNA Mini kit 

(12183-018A; Invitrogen). Total RNA in each sample was quantified using a 

spectrophotometer (Nanodrop 2000, Thermo Scientific) and treated with DNase (AM2235; 

Invitrogen) to remove possible genomic DNA contamination. 100 ng of RNA were 

transcribed into cDNA using a SuperScript® VILO™ Master Mix (11755050; Invitrogen). 

qPCR was performed using Taq polymerase (Taqman) probes and the following primers: 

Ghrh, assay ID: Mm00439100_m1; Srif, assay ID: Mm00436671_ml; Glyceraldehyde-3-

phosphate  dehydrogenase (Gapdh), assay ID: Mm9999915_gl. All primers were 

purchased from Applied Biosystems (Carlsbad, CA). The experiment was set up according 

to the protocol and reagents provided. Amplification in a 10 μl reaction volume was 

assessed using the QuantStudio 7 system (Applied Biosystems, Australia). Data were 

displayed as an amplification plot and analysis was done by ViiA7 Software v1.2 (Applied 

Biosystems). Changes in cycle threshold of the gene of interest were corrected to the 

housekeeping gene (Gapdh), and expressed relative to their age-matched controls. 
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Figure 2-2: Regions of brain (red) illustrating the collection of micropunch biopsies 
(between bregma -0.34 to -2.18) from mice. Tissue collected was representative of the 
arcuate nucleus, periventricular nucleus and paraventricular nucleus complex.  

 

2.7 Data and statistical analysis 

All data are presented as mean ± SEM unless otherwise stated. Age-related differences 

between WT mice between 4, 8 and 16 weeks of age were analyzed by one-way ANOVA 

with Turkey’s multiple comparison tests. The rate of progressive weight gain and linear 

growth between genotypes were assessed by linear regression. Comparisons between 

genotypes (MC4RKO mice and WT LM) were analyzed by Student's unpaired t-test and 

restricted to age.  All measures (excluding deconvolution analysis) were performed using 

GraphPad Prism 6.0c (GraphPad, Inc., San Diego, CA, USA). The threshold level for 

statistical significance was set at P  0.05. The quantitative features underlying GH 

secretion and clearance associated with the observed concentration profiles were 

determined by deconvolution analysis following parameters established previously [135, 

314]. 

  



42 
 

CHAPTER THREE: EXPERIMENTS TO ADDRESS AIM 1  

3. ALTERED PUBERTAL GROWTH RATE OCCURS ALONGSIDE THE 

ESTABLISHMENT OF ALTERED GH SECRETION PROFILES IN THE MOUSE. 

- This chapter is reproduced from published observations (Tan et al. 2013, Journal of 

Neuroendocrinology) 

 

3.1 Introduction 

The administration of GH to normal or hypophysectomized young rats promote or restore 

growth, respectively [315]. GH is characterized as a key anabolic hormone that promotes 

longitudinal bone and skeletal muscle growth, and thus is a key factor in regulating 

somatic maturation in early adulthood [11]. The secretion of GH is characterized by low 

basal GH levels dispersed by several dominant pulses that occur at periodic intervals [96]. 

In humans, the pubertal increase in spontaneous pulsatile GH secretion is attributed to an 

enhancement of GH pulse amplitude [316-319], a change that coincides with peak periods 

of linear growth [1]. While not directly addressed, the same phenomenon is thought to 

occur in mice throughout puberty. However, due to challenges encountered with frequent 

blood sampling in mice, measures of pulsatile GH release in pubertal mice do not exist. 

Using a novel approach to assess pulsatile GH secretion from serial blood sampling in 

mice [95], this study aimed to determine changes in pulsatile GH secretion relative to 

linear growth in mice.  

An increase in GH secretion is observed following the loss of the MC4R in MC4R 

deficient individuals. It is therefore thought that an elevation in GH release enhance rapid 

linear growth in MC4R deficient children. Measures of pulsatile GH secretion were 

restricted to MC4R deficient adults when linear growth slowed, and thus observed GH 

measures may not accurately define GH secretion during periods of dynamic linear growth. 

This thesis seeks to characterize the role of GH in promoting rapid pubertal growth in 

MC4RKO mice. To do this, it is critical to first establish the release of GH during pubertal 

growth in WT mice. The characterization of pulsatile GH secretion in early puberty 

throughout adulthood in WT mice relative to linear growth will define fundamental 

paradigms critical for the assessment of pubertal changes in GH release relative to rapid 

linear growth in MC4RKO mice (this is further discussed in Chapter 5).    
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3.2 Materials and Methods 

3.2.1 Characterization of rate of linear growth in WT mice from puberty into early 

adulthood 

To monitor the rate of linear growth, weekly body length (nasal-anal distance) of WT mice 

was monitored from puberty (4 weeks of age) to adulthood (20 weeks of age). 

 

3.2.2 Assessment of pulsatile GH secretion from puberty into early adulthood 

Starting at 3 weeks of age, weaned mice were relocated to the procedure room and 

allowed 1 week to acclimate to new housing conditions before the commencement of all 

experiments. Animals remained in the same room for the duration of the experiment. 

Changes in pulsatile GH secretion were assessed in mice at 4, 8 or 16 weeks of age. 

Starting at 0700 h, 36 sequential tail-tip blood samples were collected from mice at 10-

minute intervals (as detailed in section 2.3.1). Given the average size and weight of a 4-

week-old mouse, a similar approach could not be considered. Therefore, to minimize 

potential stress from blood sampling in younger mice, blood collection was limited to 2 µl 

per sample in 4-week-old mice. Following collection of blood samples, mice were returned 

to their home cage and given two days to recover, prior to sacrifice and collection of tissue 

for additional measures.  

 

3.3 Results 

3.3.1 Rate of linear growth peaks between 5 and 10 weeks of age 

The rate of linear growth in WT mice was monitored by assessing weekly body length. 

Measures were collected between 4 and 20 weeks of age. The growth curve of total body 

length throughout this period is illustrated in Figure 3-1. Body length increased rapidly 

between (A) 5 and 8 weeks of age and slowed between (B) 9 and 11 weeks of age at 

which animals reached near adult body length. This was followed by a further slowing in 

linear growth rate between (C) 12 and 20 weeks of age. By 20 weeks of age the average 

body length was 8.20.14 cm. The slope corresponding to rate of growth between (A) 5 to 

8 weeks of age, (B) 8 to 12 weeks of age, and (C) 12 to 20 weeks of age are significantly 

different (P < 0.001). 
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Figure 3-1: Growth curve illustrating weekly rate of linear growth in WT mice from 4 to 20 
weeks of age.  
 

The slopes (corresponding to the rate of growth) was determined by linear regression, 
corresponding to data points between (A) 5 to 8 weeks of age, (B) 9 to 11 weeks of age, 
and (C) 12 to 20 weeks of age. Slopes (A to C) are significantly different (P < 0.001). Data 
are presented as mean ± SEM. A P value < 0.05 was accepted as significant; N=11 per 
group. Abbreviation: wild-type; WT.  

 

3.3.2 Peak pulsatile GH secretion declines alongside the slowing in linear growth 

rate 

Pulsatile GH secretion was assessed at three ages corresponding to the 3 identified 

phases of linear growth; 4 weeks (corresponding to the observed onset of rapid linear 

growth), 8 weeks (during the period characterized by the slowing of linear growth) and 16 

weeks of age (during the period characterized by a further slowing of linear growth as 

animals reach adult body length). Representative secretory profiles illustrating pulsatile GH 

secretion in mice at 4, 8 and 16 weeks of age are presented in Figure 3-2.  

As previously observed [48, 95, 97], peak periods of GH secretion were dispersed by 

periods of low basal levels of secretion. At 4 weeks of age, the pattern of GH secretion 

was characterized by frequent bursts in GH release often approaching 200 ng/ml. Relative 

to 8 and 16 weeks of age, peak GH secretion at 4 weeks of age was greater at 4 weeks of 

age. Consistent with humans observations [1, 11, 128, 317], higher peak GH levels at 4 

weeks of age was characterized by a high pulsatile secretion rate and a high mass of GH 

secreted per burst. Elevated pulsatile GH secretion at 4 weeks of age preceded the peak 

period of linear growth. Relative to 4 weeks of age, deconvolution analysis of pulsatile 

measures of GH release confirmed a significant decline in GH secretion at 8 and 16 weeks 

of age. This was characterized by a reduction in total GH secretion rate (Figure 3-2C; 

472±75.6 ng/ml per 6 h & 306 ± 68.3 ng/ml per 6 h versus 1062 ± 166 ng/ml per 6 h), 
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pulsatile GH secretion rate (Figure 3-2D; 396±64.1 ng/ml per 6 h & 266±62.0 ng/ml versus 

1015± 62 ng/ml per 6 h), the mass of GH secreted per pulse (MPP) (Figure 3-2E; 

148±44.7 ng/ml per 6 h & 68.0±12.8 ng/ml per 6 h versus 186±22.3 ng/ml per 6 h), and the 

number of GH secretory bursts (Figure 3-2F; 3.30±0.42 pulses per 6 h & 3.90±0.41 pulses 

per 6 h versus 5.50±0.50 pulses per 6 h). The mode of GH secretion was not altered 

across all ages. Overall, data demonstrate that rapid pubertal linear growth in mice 

occurred alongside the establishment of altered GH secretion profiles. Second to this, a 

decline in the mass and frequency of GH secretion correlate with the progressive slowing 

of linear growth in mice from puberty into early adulthood. Comparisons of GH secretory 

parameters after deconvolution analysis are summarized in Table 3-1. 

 

Table 3-1: Deconvolution analysis of output values pulsatile GH release in whole blood 
tail-tip samples collected from mice at 4, 8 and 16 weeks of age. Samples were collected 
at 10-minute intervals between 0700 h and 1300 h. 

 4Wks (N=8) 8Wks (N=10) 16Wks (N=10) 

Total GH secretion rate (ng/ml per 6 h) 1062±166 472±75.6* 306±68.3* 

Pulsatile GH secretion rate (ng/ml per 6 h) 1015±162 396±64.1* 266±62.0* 

Basal GH secretion rate (ng/ml per 6 h) 46.5±22.7 75.9±27.9 39.4±7.30 

Mass of GH secreted/burst (MPP, ng/ml) 186±22.3 148±44.7 68.0±12.8* 

Number of secretory burst/6 h 5.50±0.50 3.30±0.42* 3.90±0.41* 

Mode of GH secretion 13.5±1.08 14.4±1.12 13.4±1.03 

Data are presented as mean  SEM by one way ANOVA. A P-value of <0.05 was 
accepted as significant. N=8-10 per group.  
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Figure 3-2: Representative profiles of pulsatile GH secretion of WT mice throughout rapid 
pubertal linear growth.  
 

(A,B) Representative examples of pulsatile GH secretion from WT mice at 4 (blue), 8 
(black) and 16 (grey) weeks of age. Compared to 4 weeks of age, a decline in (C) total GH, 
(D) pulsatile GH, (E) the mass of GH secreted per burst, and (F) the number of GH 
secretory bursts (F) by 16 weeks of age was observed. This was confirmed by 
deconvolution analysis (details summarized in Table 2-1). Data presented as mean±SEM. 
A P value < 0.05 was accepted as significant; N= 8 to 10 per group. Abbreviations: wild-
type; WT, growth hormone; GH.   
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3.4 Discussion 

An elevation in pubertal GH secretion is necessary to sustain rapid linear growth 

characteristics of puberty in humans [1, 317]. While not directly addressed, this observed 

phenomenon is thought to be conserved across all mammalian species including mouse 

models. Given the historical challenges in measuring pulsatile GH secretion in mice, prior 

observations of GH secretion in mice were limited to one-off measures [93, 94]. 

Consequently, measures of pulsatile GH secretion from pubertal mice do not exist. The 

divergence in linear growth rate begins during puberty. Given that GH is primarily 

associated with rapid linear growth, changes in the dynamics of pulsatile GH release may 

contribute to the assessment of enhanced rapid pubertal growth in MC4RKO mice. Thus, it 

is important to determine pubertal changes in pulsatile GH secretion relative to linear in 

normal WT mice. In the present study, 3 phases of linear growth were identified; onset of 

rapid linear growth occurring between 5 and 8 weeks of age, slowing linear growth 

between 9 and 11 weeks of age, and a further slowing in linear growth rate when mice 

reached adulthood between 12 and 20 weeks of age. Given that the maximal GH release 

is critical in promoting the pubertal growth spurt [1, 317], pulsatile GH secretion was 

assessed throughout early pubertal and early adulthood in mice relative to linear growth.  

During pubertal human development, an increase in GH secretion is accompanied 

by a significant increase in GH peak amplitude [128, 320], suggesting that puberty is 

associated with increased GH secretion. Similar observations have been confirmed in rats 

[321], demonstrating that the marked increase in GH secretion during periods of rapid 

pubertal growth occur in response to an elevation in GH pulse amplitude. In agreement 

with these findings, pulsatile GH secretion in pubertal mice at 4 weeks of age was elevated 

when compared to 8 and 16 weeks of age. This coincided with peak periods of linear 

growth (between 5 and 8 weeks of age). This perceived rise in GH secretion at 4 weeks of 

age corresponded to an increase in total, pulsatile GH secretion and the MPP. 

Furthermore, an increase in pulse frequency was observed throughout the sampling period, 

suggesting that increased GH secretion throughout the peak periods of pubertal growth in 

mice may occur as a consequence of increased pulse amplitude and frequency. It should 

be noted, however, that assessment of pulsatile GH release prior to 4 weeks of age was 

not possible, and thus it remains unknown whether pulsatile GH secretion at 4 weeks of 

age in mice rise relative to a younger age.  

Relative to 4 weeks of age, the progressive decline in GH release observed by 8 

and 16 weeks of age corresponded a slowing in the rate of linear growth. This was 

characterized by the overall reduction in total, pulsatile, MPP as well as the number of GH 
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secretory pulses. While observations propose that the synchronization pattern of pulsatile 

GH release established by adulthood and an increase in GH pulse frequency may underlie 

the promotion of rapid linear growth in mice, the decline in pubertal GH secretion 

throughout adulthood may account for the slowing in somatic growth rate into adulthood 

Thus, changes in GH release throughout adulthood, and possibly the role of GH in 

promoting linear growth may be coupled to alterations in GH secretory dynamics. To date, 

measures of pubertal changes in GH secretion are scarce and are limited to rat models 

[321]. Moreover, pubertal changes in GH release relative to growth velocity throughout 

adulthood in mice do not exist, and thus extrapolation regarding the changes in the 

dynamics of GH secretory pattern relative to linear growth requires further exploration. 

While not directly assessed, it has been proposed that the synchronization of the 

somatotroph network at puberty will promote enhanced coordinated pulsatile GH secretion, 

resulting in accelerated pubertal growth [75]. Interestingly, the arrangement of this network 

appears to be dynamic, in that pubertal modifications in the arrangement of somatotrophs 

are reversed by approximately 16 weeks of age in mice [75]. It was anticipated that 

structural changes in the somatotroph network would result in the coordinated secretion of 

GH, and thus reflect an overall elevation in pulsatile GH secretion throughout pubertal 

development and the subsequent decline of GH secretion into early adulthood. Indeed, 

immunocytochemical and morphological observations revealed that the number and/or 

size of GH-secreting cells of the anterior pituitary gland decrease with age in humans [322] 

and in mice [323, 324]. Furthermore, Bonnefont and colleagues confirmed observations of 

altered capacity constituting the somatotroph network, in that the volume of somatotroph 

cells transiently decreased from puberty into early adulthood in mice [75]. To this extent, in 

this study, measures of pulsatile GH secretion in the mouse perfectly complement the 

changes and timing of altered GH secretion proposed by Bonnefont and colleagues, 

confirming that attainment of peak GH secretion and the subsequent decline of GH 

secretion is a product of morphological changes in somatotroph network connectivity. 

Irrespective of its causes, pulsatile GH secretion declines following the attainment of peak 

adult body length. This was characterized by an overall reduction in peak pulsatile GH 

secretion. Given that the functional activity of somatotrophs are directly under the influence 

of hypothalamic factors, it is likely that altered integrity of the somatotroph network and 

subsequent changes in GH secretion from puberty into early adulthood occur in response 

to alterations in central or peripheral mechanisms known to modulate somatotroph activity. 

While evidence exist for the contribution of age-associated changes in GHRH activity to 

modulate the age-associated changes in GH release, the role of SRIF neurons in 
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contributing to pubertal changes in GH release throughout  adulthood remains unclarified. 

Hypothalamic contributions to these age-associated changes in GH release are discussed 

in Chapter 4, wherein the role of SRIF neurons in modulating GH release from puberty 

throughout adulthood was further addressed.  

 Collectively, observations confirmed that the slowing of rapid pubertal linear growth 

into adulthood is accompanied by a decline in total GH secretion. This is characterized by 

an overall reduction in peak GH secretion, as well as the number of GH secretory events. 

Importantly, while GH release declines in adulthood, observations clearly demonstrate that 

rapid pubertal linear growth in mice occurred alongside the establishment of altered GH 

secretion profiles. This pattern of GH release throughout puberty into adulthood is thought 

to be paramount to the changes in linear growth rate. Using these established parameters 

of GH secretion relative to linear growth in mice, observations were extended to evaluate 

the role of GH in promoting rapid pubertal linear growth in MC4RKO mice (addressed in 

Chapter 5).  
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CHAPTER FOUR: EXPERIMENTS TO ADDRESS AIM 2 

4. ALTERED GH RELEASE FROM PUBERTY THROUGHOUT ADULTHOOD IN MICE 

DOES NOT OCCUR ALONGSIDE CHANGES IN HYPOTHALAMIC SOMATOSTATIN 

DISTRIBUTION. 

- This chapter is reproduced from published observations (Tan et al. 2013, Journal of 

Neuroendocrinology) 

 

4.1 Introduction 

Alterations in the pattern of pulsatile GH secretion are thought to occur relative to growth 

and ageing, with the most prominent change characterized between the transition of 

puberty into early adulthood [325]. As discussed previously, the slowing of rapid pubertal 

linear growth in the mouse is accompanied by a gradual decline on peak GH release, 

characterized by a reduction in total and pulsatile GH secretion between 4 and 16 weeks 

of age (Chapter 3, Figure 3-2). Importantly, observations also demonstrate a significant 

change in pulse dynamics, defined by a reduction in pulse irregularity and number, 

resulting in the establishment of characteristic adult GH secretion profiles. These 

observations are in agreement with prior measures, demonstrating that the secretion of 

GH declines progressively with age [12, 97, 326]. While not assessed alongside pulsatile 

GH secretion, existing observations show a rise in circulating levels of GHRH during 

human pubertal development, and a decline during late puberty when linear growth 

ceased [327]. Similar observations were reported in rats, whereby the administration of 

neonatal monosodium glutamate to impair GHRH release abolished the pubertal increase 

in GH mRNA and pituitary GH content and significantly impaired growth rate [134]. These 

observations suggest that GHRH may, at least, in part contribute to enhanced pubertal GH 

secretion, and thus somatic development at this time. Assessment of pulsatile GH release 

relative to pubertal linear growth or advanced age has not been documented in mouse 

models. Consequently, it remains unknown whether enhanced pubertal GH release 

contributes to rapid linear growth in mice. Following pubertal growth, GH secretion 

declines with approximately 14% per decade [12]. Studies in humans and rodents 

demonstrate that the age-associated decrease in GH release is associated with the age-

dependent decrease in endogenous hypothalamic GHRH output, thus resulting in 

decreased GH pulse amplitude [82, 138, 141, 328]. Consequently, alterations in 

hypothalamic GHRH-induced GH secretion, together with differences in GH network 

structure, may be responsible for the age-associated loss of GH release.  
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 The role of SRIF in modulating pubertal or age-associated alterations in GH 

secretion is less defined, and measures of age-related changes in SRIF immunoreactivity 

are limited to the ageing brain. While increased somatostatinergic tone is thought to 

contribute to the progressive reduction in GH secretion with age [329, 330], conflicting 

observations of structural changes in SRIF expression mar efforts to confirm a direct 

involvement. For instance, the observed loss in SRIF immunoreactivity in aged rats [139, 

145] is contradicted by observations showing sustained SRIF immunoreactivity regardless 

of age [81]. Moreover, the assessment of Srif mRNA expression within the brain has not 

been performed alongside assessment of pulsatile GH secretion, while measures directly 

assessing the role of SRIF in modulating pubertal changes in GH secretion do not exist. 

Consequently, no credible information exists to address the potential role of SRIF in 

accounting for changes in pulsatile GH secretion observed from puberty into adulthood. 

Because SRIF inhibits pulsatile GH release, it is important to determine the role of SRIF in 

regulating changes in GH release relative to linear growth from puberty into adulthood. 

Observations in this study will contribute to the assessment of pubertal GH release relative 

to rapid linear growth in MC4RKO mice (Chapter 5).  Thus, this study aims to characterize 

the role of SRIF in modulating the change in pulsatile GH secretion in WT mice throughout 

puberty and into early adulthood.  

 

4.2 Methods 

4.2.1 Assessment of age-related changes in Srif mRNA expression 

Srif mRNA expression was quantified relative to observed pubertal and age-related 

changes in pulsatile GH secretion that reflect altered linear growth (Chapter 3). 

Consequently, mice were sacrificed at 4, 8 and 16 weeks of age. Mice were anesthetized 

with an ip sodium pentobarbitone dosage. Whole brain tissues were rapidly extracted and 

fixed in RNase-free 4% paraformaldehyde (PFA, Sigma-Aldrich, Australia) at 4 °C 

overnight and processed for in situ hybridization (ISH) as detailed below.  

 

4.2.2 Generation of Srif RNA probes 

Primers specific (with T7 and T3 promoter sequences added to each gene specific 

sequences at the 5’ end) for mouse Srif (GenBank accession: NM-009215) mRNA were 

generated. Standard PCR was performed to obtain Srif template cDNA. Briefly, a mouse 

hypothalamus was used to obtain total RNA, which was reversed transcribed and used to 

amplify Srif cDNA amplicons. The amplification protocol was: initial cycle at 94 °C for 1 min, 

38 cycles of 94 °C for 1 min, 66.4 °C for 45 sec and 72 °C for 1 min, followed by a final 
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extension for 10 mins at 72 °C. Correct product size was documented on agarose gel (1%). 

The Srif cDNA template is a 521 base pair (bp) fragment of mouse Srif cDNA, 

corresponding to nucleotides 7-527 of mouse Srif full-length cDNA. For in vitro 

transcription of antisense and sense RNA probes, digoxigenin (DIG)-RNA labeling was 

performed according to the manufacturer’s instructions (Roche, Mannheim, Germany). 

Approximately 200 ng of purified DNA was incubated for 3 hours at 37 °C in a mixture of 

reagents containing 10x transcription buffer, DIG reaction mix, RNase Inhibitor, T3 RNA 

polymerase (sense probe) and T7 RNA polymerase (antisense probe) (Promega, Madison, 

Wisconsin, US). The reaction was stopped with 0.02 M ethylenediaminetetracetic acid 

(EDTA, Invitrogen) followed by the addition of 0.5 M lithium chloride (Sigma-Aldrich, 

Australia) and 2.5 volumes of 100% ethanol, mixed and incubated overnight at -20 °C to 

precipitate the cRNA probes. The mixture was then centrifuged at maximum speed for 20 

mins at 4 °C, the pellet was washed with 70% ethanol, air-dried and resuspended in 20 µl 

RNAse-free water. Due to the incorporation of DIG, DIG-labelled RNA antisense probes 

show a shift in molecular weight. Probes were run on 1% agarose gels to verify size. 

Concentrations of probes were quantified by spectrophotometer (Nanodrop 2000, Thermo 

Scientific, USA) prior to use. RNAse-free conditions were maintained up to post-

hybridization steps. All solutions were made with 0.05% diethyl pyrocarbonate (DEPC, 

Sigma-Aldrich, Australia) treated water. Probes were stored at -80 °C for later use. 

 

4.2.3 Tissue Preparation and In situ Hybridization (ISH) 

PFA (4% in phosphate buffer solution (PBS), pH 7.4, 0.1 M) fixed whole brains were 

washed in PBS and passed through graded sucrose solutions (15% and 30% in PBS) prior 

to embedding in OCT (Tissue-Tek® OCTTM Compound, Sakura Finetek, USA). Sections 

were cut on a cryostat (16 µm, Hyrax C60, Carl Zeiss, Germany), mounted on slides 

(SuperFrost® Plus Microscopic Slides, Menzel-Gläser, Germany), and stored at -80 °C. 

For ISH, sections were re-hydrated in PBS, post-fixed in 4% PFA for 10 mins, treated with 

Proteinase K (10 mg/ml, Roche, Mannheim, Germany) for 6 mins at room temperature, 

acetylated for 10 mins (acetic anhydride, 0.5%; Sigma-Aldrich, Australia), and hybridized 

with DIG-labelled Srif probes overnight at 65 °C. Hybridization buffer contained 1x salt 

(200 mM sodium chloride, 13 mM Tris, 5 mM sodium phosphate monobasic, 5 mM sodium 

phosphate dibasic, 5 mM EDTA), 50% formamide, 10% dextran sulphate, 1 mg/ml yeast 

tRNA (Roche, Mannheim, Germany), 1x Denhardt’s (1% w/v bovine serum albumin, 1% 

w/v Ficoll, 1% w/v polyvinylpyrrolidone), and DIG-labelled probe (final dilution of 1:2000 

from a 20 µl reaction starting with 200 ng template cDNA). Two post-hybridization washes 
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(1x SSC, 50% formamide, 0.01% Tween-20) were carried out at 65 °C for 30 mins, 

followed by two 1x MABT washes (150 mM sodium chloride, 100 mM maleic acid, 0.01% 

Tween-20 – pH 7.5) at room temperature for 30 mins, and 30 mins RNase treatment (400 

mM sodium chloride, 10 mM Tris pH7.5, 5 mM EDTA, 20 μg/ml RNAse A) at 37 °C. 

Sections were blocked in 1 x MABT, 2% blocking reagent (Roche), 20% heat-inactivated 

horse serum at room temperature for 1 hour, and incubated with anti-DIG antibody (Roche) 

diluted in blocking solution (1:2500) at 4 °C overnight. Following four 20-minute 1 x MABT 

washes, slides were rinsed in 1 x NTMT (100 mM sodium chloride, 50 mM magnesium 

chloride, 100 mM Tris – pH 9.5, 0.1% Tween-20) at room temperature for 10 mins, and 

incubated with NBT/BCIP in NTMT containing 100 mg Levamisole (Sigma) according to 

manufacturer’s instruction (Promega). Slides were counterstained with nuclear fast red, 

dehydrated and cleared in xylene, and mounted in cytoseal mounting medium (VWR). 

Probe specificity was confirmed by substitution of antisense RNA probes with an 

equivalent amount of labelled sense RNA probes, and the inclusion of positive and 

negative tissue controls to confirm the specificity of RNA probes 

 

4.2.4 Image acquisition and analysis 

As an anatomical guide, sections were matched using the mouse brain atlas of Franklin 

and Paxinos [331]. Serial sections representing regions throughout the PeVN, ARC and 

PVN at 4, 8 and 16 weeks of age were selected from all mice and analyzed for Srif mRNA 

expression. The juvenile mouse brain is considerably smaller than the adult mouse brain, 

and thus assessment of neuron counts for brain nuclei were collected relative to 

landmarks corresponding to adult bregma, and presented accordingly. For the PeVN, 

assessment was performed according to adult bregma -0.4 to -0.5, adult bregma -0.7 to -

0.8, adult bregma -0.9 to -1.0, and adult bregma -1.3 to -1.4. For the juvenile ARC, 

sections were selected according to adult bregma -1.3 to -1.4, and adult bregma -1.8 to -

1.9. For the juvenile PVN (including areas matching the PaLM, PaMM and PaV), sections 

were selected according to adult bregma -0.7 to -0.8. 

 Sections were imaged on Aperio ScanScope XT slide scanner (Aperio 

Technologies, Vista, CA, USA). Extracted images were processed in ImageJ using the 

following commands: (i) Image > type > 8-bit, (ii) Image > Adjust > Threshold (corrected to 

0/70), (iii) Process > Binary > Watershed. The function of watershed segmentation that 

automatically splits closely touching cells was applied to all counted sections. Thus, Srif 

mRNA expressing cells that cannot be separated by threshold was separated by 

watershed function to avoid counting of overlapping cells. The resulting particles were 
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counted using the particle analysis cell counter option (Analyze > Analyzed Particles). 

Particles smaller than 200 pixels were excluded from the analysis. In general, this limited 

counts of cells to those with a diameter in excess of 5 μm. This counting procedure 

followed guidelines established previously [332].  

 

4.2.5 Real-time quantitative PCR measurement of hypothalamic Srif mRNA 

expression 

To quantify the relative amount of hypothalamic Srif mRNA expression throughout pubertal 

maturation and in adulthood, hypothalamic micropunch biopsies containing pooled regions 

of PeVN, PVN and the ARC were isolated from WT mice at 4, 8 and 16 weeks of age 

detailed in section 2.6. Results were normalized to glyceraldehyde-3-phosphate 

dehydrogenase (Gapdh) mRNA expression, and expressed relative to Srif mRNA 

expression at 4 weeks of age. 

 

4.3 Results 

4.3.1 Distribution of Srif mRNA expression in mouse brain  

To determine whether the changes in pulsatile GH secretion between 4 and 16 weeks of 

age (as confirmed in Chapter 3) correlate with age-related changes in SRIF, Srif mRNA 

expression was assessed within the ARC/PeVN complex. Figure 4-1A illustrates a sagittal 

view along the rostrocaudal axis of the mouse brain (between bregma levels -0.46 to 1.82) 

along which Srif mRNA expression was assessed. Representative coronal sections 

showing the distribution of Srif mRNA at corresponding bregma levels are illustrated in 

Figure 4-1B to D. The specificity of positive Srif hybridization was determined using a 

sense Srif probe, the complimentary probe sequence to Srif, which produced no 

hybridization signal (Figure 4-1E). To further confirm the quality and specificity of 

hybridization Srif mRNA signal, WT mouse spinal cord (Figure 4-1F) and pituitary gland 

tissue (Figure 4-1G) were included as positive- and negative-Srif mRNA expressing 

controls, respectively.  
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Figure 4-1: Distribution of Srif mRNA expression within the WT mouse brain.  
 

(A) Schematic illustrating the sagittal view of the mouse brain at 8 weeks of age (grey 
shading illustrates bregma regions in which Srif mRNA distribution are observed). Images 
are representative of the level of the mouse brain corresponding to regions throughout 
which Srif mRNA distribution observed between bregma levels -0.46 and -1.82. (B) - (D) 
Representative coronal sections showing the distribution of Srif mRNA by ISH using DIG-
labelled Srif RNA probe. (E) Represents Srif-labelled sense control. Representative (F) 
positive and (G) negative expression for Srif mRNA in the mouse spinal cord and pituitary 
gland, respectively. Representative sections illustrating Srif mRNA expression are verified 
across 3 animals. Images were representative of 1x scanned magnification (on the Aperio 
ScanScope XT slide scanner) to capture the entire area of the tissue. Abbreviation: 
Somatostatin; Srif, wild-type; WT, in situ hybridization; ISH, digoxigenin; DIG.  

 

4.3.2 Srif mRNA expression within the PeVN/ARC-ME Complex  

As seen in rats [333], Srif mRNA is widely expressed throughout the mouse brain. While 

majority of the Srif mRNA expressing neurons are found within the PeVN (Figure 4-2D), 

Srif mRNA is also highly expressed in the ARC-ME complex (Figure 4-2H). In addition, Srif 

mRNA expression is apparent in several hypothalamic nuclei including the lateral 
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magnocelluar paraventricular nucleus (PaLM; Figure 4-2A), medial magnocelluar 

paraventricular nucleus (PaMM; Figure 4-2B), ventral paraventricular nucleus (PaV; Figure 

4-2C), hippocampus (HippoC) (Figure 4-2E), central nucleus of amygdala (CeA; Figure 4-

2F) and dorsomedial hypothalamus (DMH; Figure 4-2G). 

 

 

Figure 4-2: Schematic coronal diagrams of mouse brain mapping Srif mRNA distribution 
by ISH between bregma -0.94 and -1.82. 
 

Srif mRNA is expressed in the (A) PaLM, (B) PaMM, (C) PaV, (D) PeVN, (E) HippoC, (F) 
CeA, (G) DMH and (H) ARC-ME. Scale bar = 0.1 mm. Representative images illustrate Srif 
mRNA expression are verified across 3 animals. Abbreviations: Lateral ventricle; LV, 
internal capsule; IC, third ventricle; 3V, lateral magnocelluar paraventricular nucleus; 
PaLM, medial magnocellular paraventricular nucleus; PaMM, ventral paraventricular 
nucleus; PaV, periventricular nucleus; PeVN, hippocampus; HippoC, central nucleus of the 
amygdala; CeA, dorsomedial hypothalamus; DMH, arcuate nucleus-median eminence 
complex; ARC-ME.  
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4.3.3 Changes in Srif mRNA expression within the ARC/PeVN/PVN complex do not 

occur alongside changes in pulsatile GH secretion between 4 and 16 weeks of 

age 

To determine whether the observed decline in pulsatile GH secretion between pubertal 

and early adult mice occur in response to age-related changes in SRIF distribution, Srif 

mRNA expression were assessed in the hypothalamic regions of mice at 4, 8 and 16 

weeks of age. Regions assessed include the PeVN (relative to adult bregma -0.4 to -0.5 

(Figure 4-3B), adult bregma -0.7 to -0.8 (Figure 4-3C), adult bregma -0.9 to -1.0 (Figure 4-

3D), and adult bregma -1.3 to -1.4 (Figure 4-3E)) and the ARC (relative to adult bregma -

1.3 to -1.4 (Figure 4-3F) and adult bregma -1.8 to -1.9 (Figure 4-3G)). Given that Srif 

mRNA expressing neurons located within the PVN may contribute to the neuroendocrine 

regulation of GH release from the pituitary somatotrophs [334], assessment of Srif mRNA 

expression were extended to subnuclei of the PVN (including areas matching the PaLM, 

PaMM and PaV; relative to adult bregma -0.7 to -0.8). Representative Srif mRNA 

expression in the PeVN (top panels) and ARC (bottom panels) regions throughout 4, 8 and 

16 weeks of age are illustrated in Figure 4-4A. The number of Srif mRNA expressing 

neurons within all assessed areas of the PeVN did not change between 4 and 16 weeks of 

age (Figure 4-4B-E). Similarly, the number of Srif expressing neurons within all assessed 

areas of the ARC did not differ significantly between 4 to 16 weeks of age (Figure 4-4F,G). 

A decrease in Srif mRNA expressing neurons in the PVN was observed. This did not reach 

significance until 16 weeks of age (Figure 4-4). No differences in the number of Srif mRNA 

expressing neurons are observed within the PaMM and PaV nuclei between 4 and 16 

weeks of age. Compared to mice at 4 weeks of age, the numbers of PaLM Srif mRNA 

expressing cells were reduced by 16 weeks of age. The collective decline in Srif mRNA 

expressing neurons within the PaLM and PaV contributed to the overall decline in the 

number of cells expressing Srif mRNA within the PVN by 16 weeks of age.  
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Figure 4-3: Representative examples of Srif mRNA expressing cells within the 
periventricular nucleus (PeVN relative to adult bregma -0.7 to -0.8, top panels) and arcuate 
nucleus (ARC relative to adult bregma -1.3 to -1.4, bottom panels) at 4, 8 and 16 weeks 
(Wks) of age.  
 
Corresponding bar graphs show the (A) number of Srif mRNA expressing cells relative to 

the PeVN and ARC at levels corresponding to adult bregma (B) -0.4 to -0.5, (C) -0.7 to -

0.8, (D) -0.9 to -1.0, (E) -1.3 to -1.4 and (F) -1.8 to -1.9. The number of Srif mRNA 

expressing neurons in the PeVN and ARC regions (across all levels of assessment) did 

not differ significantly between 4 (blue), 8 (black) and 16 (grey) weeks of age. Data 

presented as mean ± SEM. A P value < 0.05 was accepted as significant. Scale bar = 0.1 

mm. N=4 per age group. Abbreviations: periventricular nucleus; PeVN, arcuate nucleus-

median eminence complex; ARC-ME.  
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Figure 4-4: Representative sections showing the distribution of Srif mRNA expressing 
cells within the PVN and subnuclei of the PVN (A - PaLM, B - PaMM and C - PaV) at 4, 8 
and 16 weeks of age.  
 

Compared to 4 weeks of age (blue), the number of Srif mRNA expressing neurons within 
the PaLM was reduced by 16 weeks of age (grey). This resulted in an overall decrease in 
the total number of Srif mRNA expressing neurons within the PVN by 16 weeks of age. 
Data presented as mean ± SEM. A P value < 0.05 was accepted as significant. Scale bar 
= 0.1mm. N=4 per age group. Abbreviations: Lateral magnocelluar paraventricular nucleus; 
PaLM, medial magnocellular paraventricular nucleus; PaMM, ventral paraventricular 
nucleus; PaV, ventral paraventricular nucleus; PVN.  

 

4.3.4 Quantitative analysis confirmed that hypothalamic Srif mRNA expression in 

the mouse does not change from puberty to adulthood  

To verify assessment of Srif mRNA expression by ISH, micropunch biopsies of the 

PeVN/PVN/ARC complex were isolated and the abundance of Srif mRNA expression was 

determined by qPCR (as described in section 2.6). No significant changes in Srif mRNA 

expression between 4, 8 and 16 weeks of age (Figure 4-5) were observed. Overall, 

observations confirmed that the alterations in pubertal GH secretion are not matched by an 

overall change in the abundance of Srif mRNA expression within the mouse 

PeVN/PVN/ARC complex. 
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Figure 4-5: Srif mRNA expression from pooled hypothalamic micropunch biopsies from 
mice at 4, 8 and 16 Wks of age.  

Hypothalamic tissues containing the PeVN, PVN and ARC were collected from 300 μm 
thick frozen brain sections. Micropunch biopsies were obtained from brain sections located 
between bregma -0.34 and -1.82 (tissue collected at representative levels corresponding 
to the PeVN, PVN and ARC nucleus complex outlined and shaded in grey). Srif mRNA 
copy numbers were normalized to GAPDH mRNA and expressed relative to mice at 4 
weeks of age. Data presented as mean ± SEM. A P value < 0.05 was accepted as 
significant; N= 6 per age group. Abbreviations: Periventricular nucleus; PeVN, 
paraventricular nucleus; PVN, arcuate nucleus-median eminence complex; ARC-ME. 
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4.4 Discussion 

Alterations in the secretory pattern of pulsatile GH release are thought to occur relative to 

growth and ageing, with the most prominent change characterized between transitions of 

puberty into early adulthood. Following cessation of pubertal growth and the attainment of 

peak adult height, GH secretion declines by approximately 14% per decade [12]. While 

changes in the abundance of hypothalamic GHRH neurons [323, 324], and a 

rearrangement of the clustering of somatotrophs within the anterior pituitary gland [75] are 

thought to contribute to this decline in GH secretion, the exact cause for changes in GH 

secretion during pubertal development throughout adulthood is still under investigation. 

Moreover, the role of SRIF neurons in modulating this change in GH secretion is not well 

defined. 

As discussed above, the release of GH from somatotrophs is regulated primarily by 

stimulatory GHRH and inhibitory SRIF neurons [80]. Observations specific to the pubertal 

maturation of interactions between GHRH and SRIF neurons are limited, and thus 

extrapolation of the interrelationship between the GHRH and SRIF network relative to age-

associated changes in GH release are largely based on observations from the ageing rats 

and primates. Initial observations demonstrated impaired GHRH-stimulated GH secretion 

in aged versus young rats [335], while subsequent studies in humans confirmed that GH 

response following GHRH treatment coupled with arginine (SRIF antagonist to suppress 

endogenous SRIF release) does not differ with age [143, 336, 337]. SRIF inhibits GH 

secretion directly via the suppression of GH release from the somatotroph, or indirectly via 

the inhibition of GHRH induced GH secretion [80]. Thus, it seems that the age-associated 

decline in GH secretion occur independent of SRIF activity. Accordingly, the release of 

GHRH output in aged female rhesus monkeys is three to four times lower compared to 

younger animals while the release of SRIF in aged rhesus monkeys is twofold higher 

compared to young female adults [328]. Consequently, the decline in pulsatile GH release 

throughout early adulthood is thought to be attributed to a substantial decrease in 

hypothalamic GHRH and an increase in SRIF release. To this extent, while not assessed 

alongside pulsatile GH secretion, existing evidence supports the observed age-associated 

decline in GHRH in modulating age-associated decline in GH release. Conversely, the role 

of SRIF relative to altered GH release throughout adulthood remains unclarified. Moreover, 

observations regarding age-related changes in GH secretion are limited to adulthood 

(humans, rats and primates) when pubertal development had ceased. Furthermore, data 

specific to the mouse brain is non-existent. Thus, it is important to decipher the role of 

SRIF in modulating pubertal changes in GH secretion throughout adulthood in mice. 
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Based on the premise that SRIF directly inhibits GH release, alterations in SRIF release 

may mediate changes in GH secretion throughout adulthood. Hence, the assessment of 

SRIF in modulating GH release in mice (Chapter 3, Figure 3-2) further complement 

measures of pulsatile GH output throughout puberty and adulthood.  

Observations in this study confirm that the number of Srif mRNA expressing 

neurons within the PeVN/ARC complex of the mouse does not largely differ throughout the 

transition from puberty into early adulthood. Similarly, the abundance of Srif mRNA 

expression within the PeVN/PVN/ARC complex (as assessed by qPCR) does not vary 

significantly throughout this time. Consequently, changes in pulsatile GH secretion from 

puberty through adulthood may not be mediated by age-related changes in the distribution 

of Srif mRNA expressing neurons throughout the PeVN or the ARC regions. Of interest, a 

decline in the number of Srif mRNA expressing neurons within subnuclei of the PVN 

(predominantly the PaLM) was observed. This coincided with the decline in pulsatile GH 

secretion. To date, the action of SRIF neurons within the PVN relative to the pulsatile 

release of GH has not been assessed. Thus, information to clarify the direct relationship 

between SRIF neurons within the PVN and GH secretion does not exist. Given that SRIF 

neurons located within the PeVN may innervate the PVN [334], changes in the distribution 

of Srif mRNA expressing neurons within the hypothalamic PVN region may contribute to 

alterations of GH release throughout the transition into adulthood. It is however, possible 

that the abundance or morphological changes of Srif mRNA expression may not reflect 

active SRIF neuronal firing to inhibit GH release. Thus, observations might be interpreted 

to mean that age-associated changes in GH release throughout early adult mice may not 

be mediated by age-related changes in SRIF expression. Nonetheless, observations within 

this study are limited to 16 weeks of age. It cannot be excluded, however, that age-related 

changes in SRIF in mice occur with progressively ageing. This requires further 

investigation. 

Collectively, observations suggest that pubertal and adulthood changes in GH 

secretion do not occur alongside changes in the abundance of Srif mRNA expressing 

neurons located within the PeVN/ARC complex, and thus morphological changes in Srif 

mRNA expressing neurons specific to the PeVN and ARC may not contribute to altered 

GH secretion at this time. It should be noted, however, that the abundance of Srif mRNA 

expression does not necessarily reflect overall SRIF release, and that collection of portal 

blood to determine SRIF release into portal circulation in mice is current not available. 

Accordingly, the role of SRIF may not be entirely excluded. Given that SRIF-deficient mice 

exhibit normal pubertal growth in comparison to WT LM [338], altered SRIF release may 



63 
 

not be of critical importance in mediating pubertal and adulthood changes in GH secretion 

relative to linear growth. Observations confirmed in this study were incorporated into the 

assessment of pubertal and adulthood changes in GH release relative to linear growth in 

MC4RKO mice. Given observations, it seems unlikely that changes in hypothalamic SRIF 

would alter pubertal GH release to promote rapid linear growth in MC4RKO mice 

(addressed in Chapter 5). 
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CHAPTER FIVE: EXPERIMENTS TO ADDRESS AIMS 3 AND 4 

5. RAPID PUBERTAL GROWTH ASSOCIATED WITH MC4R DYSFUNCTION DOES 

NOT OCCUR AS A CONSEQUENCE OF GH/IGF-1 HYERSECRETION. 

 

5.1 Introduction 

While GH secretion declines with age (discussed in Chapter 3), the release of GH is 

exacerbated with increased adiposity, resulting in GH deficiency in obesity. It remains 

unknown how metabolic disruptions associated with obesity, contribute to reduced GH 

output. Assessment of GH secretion in obese MC4R deficient individuals demonstrate a 

recovery in pulsatile GH release relative to obese individuals of similar BMI [68], thus 

suggesting that the MC4R may, somewhat, contribute to altered GH release in obesity. 

This may occur through direct interactions with somatotrophs, or indirect interactions with 

GHRH and/or SRIF neurons. To date, there have been no studies on the localization of 

MC4R expression on pituitary GH-secreting cells or hypothalamic GHRH in rodents, and 

evidence for direct mediation of MC4R action on pituitary somatotrophs is lacking. 

Consequently, it remains unknown whether the MC4R directly modulate pulsatile GH 

release. Interestingly, as with childhood onset obesity [339], obese MC4R deficient adults 

present with increased adult height [68]. Thus, while defective MC4R signaling appears to 

contribute to the recovery of GH release in obesity, it is thought that hypersecretion of GH 

in this population may contribute to rapid linear growth during puberty. There is, however, 

no evidence to support this proposed concept. Given the arduous nature of assessing 

pulsatile GH secretion during pubertal growth in children, it remains uncertain whether 

pubertal GH hypersecretion contributes to rapid pubertal linear growth in hyperphagic 

MC4R deficient children. To this extent, the demonstration of a functional GH/IGF-1 axis in 

animal models that emulate the effects of loss of MC4R signaling is of critical importance, 

as this may validate the proposed role of MC4R in mediating GH release relative to 

adiposity and the anticipated role of GH in promoting rapid linear growth. Moreover, such 

studies may provide critical information to define the role of GH and insulin in regulating 

substrate clearance in hyperphagic individuals, while identifying the interrelationships 

between GH, insulin and growth during periods of energy excess.  

 GH secretion declines with increased adiposity in both humans and in mice [12, 97]. 

This loss of GH release is thought to facilitate the actions of insulin, thereby enhancing 

fatty acid uptake and storage [14, 71]. Accordingly, the premise that increased GH 

secretion contributes to increased linear growth in MC4R deficient children contradict 

current conventions regarding the metabolic actions of GH relative to insulin in sustaining 
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endogenous fatty acid and glucose homeostasis. Moreover, as insulin and IGF-1 signal 

through common pathways, insulin may interact with IGF-1 receptors (IGF-1R) to 

potentially promote IGF-1 mediated growth in MC4R deficient individuals. Using the 

MC4RKO mouse model, this chapter aims to address whether MC4R directly contributes 

to altered GH release during hyperphagia-induced weight gain. This study will address the 

hypothesis whether GH hypersecretion contributes to rapid pubertal growth associated 

with loss of MC4R signaling, while briefly addressing the potential mechanisms that may 

contribute to altered GH release and rapid linear growth in MC4RKO mice. Finally, this 

study will demonstrate the inverse relationship between GH and insulin in facilitating fatty 

acid and glucose homeostasis throughout hyperphagia-induced weight gain in MC4RKO 

mice.  

 

5.2 Methods 

5.2.1 Phenotypic characteristics of MC4RKO mice 

To monitor the rate of rapid growth, body weight and body length (nasal-anal distance) of 

WT LM and MC4RKO mice were monitored from puberty (4 and 5 weeks of age, 

respectively) to adulthood (20 weeks of age), on a weekly basis. To monitor the 

development of hyperphagia, food consumption was measured daily starting from 5 weeks 

of age. A pre-weighed amount of food was placed into the food hopper and the remaining 

food was weighed daily. Measurements were conserved for all animals across all 

experiments. 

 

5.2.2 Characterizing the metabolic profile of MC4RKO mice 

To assess in vivo metabolic status following the development of hyperphagia, WT LM and 

MC4RKO mice underwent a glucose tolerance test (GTT) at 6 and 16 weeks of age.  

Following GTT, animals were given free access to food and allowed 2 days to recover 

from fasting before assessment of insulin sensitivity (through ITT, as detailed in section 

2.4). Following recovery from ITT, WT LM and MC4RKO mice were sacrificed between 

0900 and 1000 h as detailed in section 2.3.3. Whole blood was collected into tubes 

containing EDTA, thereby preventing the degradation of peptides including glucagon-like 

peptide-1 (active GLP-1). Tissues and plasma were collected and stored at -80 °C for 

future analysis. To determine the adiposity of mice, gonadal fat pads, inguinal fat pads and 

interscapular fat pads were isolated by dissection and the fat pad mass was determined. 
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5.2.3 Characterizing pulsatile GH secretion in MC4RKO mice 

For measures of pulsatile GH secretion, blood samples were collected and processed as 

detailed in section 2.3.1. For assessment of changes of pulsatile GH secretion from 

puberty into early adulthood, weaned WT LM and MC4RKO mice at 3 weeks of age were 

relocated to the procedure room, individually housed and allowed 1 week to acclimate to 

sampling conditions before the commencement of all experiments. Changes in pulsatile 

GH secretion throughout pubertal growth were assessed in WT LM and MC4RKO mice at 

4, 8 and 16 weeks of age. Following collection of blood samples, mice were returned to 

their home cage and given 2 days to recover before assessment of hormone/metabolite 

profile.  

 

5.2.4 Assessment of IGF-1/Insulin receptor protein expression 

To determine whether altered InsR or IGF-1R expression correspond to periods of rapid 

linear growth, muscle-specific InsR and IGF-1R protein expression were determined at 4, 

10 and 20 weeks of age. Gastrocnemius muscle of WT LM and MC4RKO mice were lysed 

in buffer containing 50 mM Tris-HCl, 150 mM NaCl, 10 mM NaF, 10 mM Na4P2O4, 1 mM 

Na3VO4, 1% Nonidet P-40, and protease inhibitor (Roche, Basel, SUI). 50-70 µg of 

protein were resolved by SDS-PAGE (7-10%) and transferred to nitrocellulose membranes. 

Membranes were blocked in 5% skim milk-Tris buffered solution-0.1% Tween 20 and 

incubated overnight with anti-InsR (SC-711, Santa Cruz, CA, USA) or anti-IGF-1Rβ (SC-

713, Santa Cruz) and detected with donkey anti-rabbit IgG HRP (NA934, Amersham, NJ, 

USA). Blots were stripped and reprobed with anti-GAPDH (MAB374, Millipore) and 

detected with sheep anti-mouse IgG HRP (NA931, Amersham) to verify equal protein 

loading. Protein bands were visualized with enhanced chemiluminescence detection kit 

(Pierce, Thermo Fisher Scientific, PA, USA). Densitometry analyses of immuno-reactive 

bands were performed using ImageJ software (National Institutes of Health, Bethesda, MD, 

USA). The integrated pixel value of each protein band was obtained by multiplying its 

intensity value by its area value. The normalized integrated pixel values of MC4RKO 

bands were compared to WT LM. 

 

5.2.5 Isolation of mouse somatotrophs 

Adult GH-GFP transgenic male mice (8 weeks old) were decapitated and whole pituitary 

glands were collected aseptically into a tissue culture dish (BD Biosciences, CA, USA), 

containing ice cold Ca2+ and Mg2+ free-Hank’s buffered solution (HBSS, 137 mM NaCl, 

5.4 mM KCl, 0.3 mM Na2HPO4, 0.4 mM KH2PO4, 4.2 mM NaHCO3, 1.0 mM d-glucose, 
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pH 7.2). Tissues were digested in pre-warmed filtered protease solution (10 µl/ml, 

Aspergillus Oryzae, Sigma) and incubated at 37 °C for 30 mins. Dissociated tissues were 

incubated in HBSS-supplemented bovine serum albumin (BSA) (Bovogen, VIC AUS) at 

room temperature for 5 mins and filtered using sterile 50 µm nylon gauze, and centrifuged 

at 1300 rpm for 5 mins. The cell pellet was resuspended in 1 ml warmed-Dulbecco's 

Modified Eagle Medium (DMEM, Sigma). Fluorescence activated cell sorting (FACS, BD 

FACS Aria Influx Cell Sorter, BD Biosciences) was used to specifically isolate 

somatotrophs amongst other pituitary cells. Clusters of cells or cell doublets were omitted 

to ensure only GFP-expressing cells were isolated. Cells were collected in TRIzol 

(Invitrogen, CA, USA) and processed immediately for RNA analysis. 

 

5.2.6 Total RNA isolation and reverse transcriptase-polymerase chain reaction 

Total RNA was extracted from freshly dissected hypothalamus, anterior pituitary glands, 

sorted GH-GFP somatotrophs and liver tissues followed methodology detailed in Chapter 

2.5. To generate first-stranded cDNA, 1 µg total RNA was transcribed using an iScript 

cDNA synthesis kit (Biorad Laboratories Inc., CA, USA). The intensity of the PCR bands 

was visualized on a Molecular Imaging GelDoc XR System (Biorad Laboratories Inc., 

AUS). The expression of MC4Rs in the hypothalamus, pituitary gland and somatotrophs 

was determined by conventional RT-PCR using MC4R primers (detailed in section 2.2), 

with GAPDH as an internal control. Mouse hypothalamus and liver tissues were used as 

positive and negative controls respectively. 

 

5.2.7 Perfusion and tissue preparation for Immunohistochemistry 

WT C57/BL6 male mice, transgenic GH-GFP and GHRH-GFP mice were anesthetized 

with a single ip injection of sodium pentobarbitone (32.5 mg/ml, Virbac). Animals were 

flushed with 10 ml of ice-cold saline through the left ventricle, followed by 10 ml of freshly 

prepared ice-cold 4% paraformaldehyde (PFA, Sigma-Aldrich, Australia) in phosphate 

buffer (0.1 M PB, pH 7.4). Whole brain and pituitary glands were collected and post-fixed 

in 4% paraformaldehyde overnight at 4 °C. Fixed tissues were washed and underwent 

graded sucrose hydration in 15% and 30% sucrose respectively. Prior to cutting, whole 

pituitary gland were equilibrated in 100% Tissue-Tek OCT compound (Sakura Finetek, 

Torrance, CA) for 4 h at 4 °C. For immunohistochemistry, coronal sections of pituitary 

glands were cut at a thickness of 8 µm, using a cryostat (Hyrax C60, Carl Zeiss, 

Oberkochen, DEU). Sections were mounted on glass slides (SuperFrost® Plus 

Microscopic Slides, Menzel-Gläser, DEU) and stored at -20 °C. Coronal brain sections of 
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GHRH-GFP mice were cut at a thickness of 30 μm on a cryostat (LEICA CM 1850, USA). 

Serial sections through the hypothalamus was collected and stored in cryoprotectant 

containing 30% sucrose, 1% polyvinyl pyrolidone and 30% ethylene glycol in 0.1M 

phosphate buffer (PB), at -20 °C. Prior to use, sections were warmed to room temperature 

for 30 mins. 

 

5.2.8 Detection of MC4R on somatotrophs or GHRH by Immunofluorescence 

Immunofluorescence was performed to detect the colocalization of MC4R on 

somatotrophs and GHRH neurons from transgenic mice expressing GFP. For 

colocalization of MC4R with somatotrophs, sections were incubated in blocking buffer 

containing 3% normal goat serum (NGS, Sigma-Aldrich, Australia) / 0.5% BSA in 0.1 M 

PB-Tween 20 before incubating in rabbit polyclonal primary MC4R antibody (Abcam, 

Cambridge, ENG) overnight. Following incubation in primary antibody, sections were 

incubated with an Alexa Fluoro® 555-conjugated secondary goat anti-rabbit antibody 

(Invitrogen) at room temperature for 2 h. For colocalization of MC4R with GHRH neurons, 

sections were processed for antigen retrieval containing 10 mM sodium citrate (pH 6.0, 

Sigma) at 80 °C for 30 mins. Sections were incubated with rabbit MC4R (Abcam) and 

mouse GFP (Santa Cruz, SC-9996) diluted in blocking buffer containing 10% normal 

donkey serum (NDS, Sigma) for 72 hours at 4 °C on an orbital shaker. Following 

incubation in primary antibodies, sections were washed and incubated with secondary 

antibodies (Alexa Fluoro® 555-conjugated donkey anti rabbit antibody, and Alexa Fluoro® 

488-conjugated donkey anti mouse 1:800, Invitrogen). Negative controls were treated by 

omitting the primary antibody and replacing with blocking buffer. To visualize 

immunoreactivity, sections were air-dried, mounted with Golden anti-fade reagent with 

DAPI (Invitrogen), and examined under a 60-fold oil immersion objective (numerical 

aperture 1.35) and imaged using a confocal laser-scanning microscope utilizing 488 nm 

laser source for GFP and 555 nm laser source for red fluorescence signals (Olympus 

FluoView™ FV1000 Confocal Microscope, US). 

 

5.3 Results 

5.3.1 Rapid weight gain in pubertal hyperphagic MC4RKO mice occurs alongside 

the progressive accumulation of adiposity and rapid linear growth 

The rate of weight gain in age-matched WT LM and MC4RKO mice was monitored starting 

from 4 weeks of age through to 20 weeks of age. Deletion of MC4R in mice results in 

hyperphagia, starting from a young age (Figure 5-1A). This was observed alongside an 



69 
 

increase in weight gain (Figure 5-1B,C, Table 5-1), and the accumulation of adipose fat 

mass including epididymal (Figure 5-1D), inguinal (Figure 5-1E) and interscapular fat mass 

(Figure 5-1F). Circulating levels of leptin corresponded to increased adiposity, reflecting an 

overall increase in fat mass relative to rapid weight gain (Figure 5-1G).  

As seen in humans [68], impairment of MC4R signaling in mice resulted in an 

increase in linear growth rate (Table 5-1), and the consequential attainment of increased in 

adult height (Figure 5-1H,I). The rate of rapid linear growth velocity between 5 and 8 

weeks and between 8 and 16 weeks of age in MC4RKO mice was significantly greater 

than that of WT LM (Figure 5-1H, Table 5-1). The growth rate in MC4RKO mice slowed to 

that seen in WT LM by 16 weeks of age (Figure 5-1H, Table 5-1), confirming that 

increased linear growth rate in MC4RKO mice is limited to puberty and early adulthood. 

 

Figure 5-1: Loss of MC4R in mice results in hyperphagia, contributing to rapid weight gain 
and increased adiposity, and accelerated rate of linear growth, resulting in increased adult 
length.   

0

5

1 0

4 0 5 0 6 0 7 0 8 0 9 0

A g e  (D a y s )

F
o

o
d

 i
n

ta
k

e

(g
/m

o
u

s
e

/d
a

y
)

*

M C 4R K O

W T  L M

4 1 0 2 0

0 .0

1 .5

3 .0

A g e  (W k s )

E
p

id
id

y
m

a
l 

F
a

t 
(g

)

*

*

W T  L M

M C 4R K O

4 8 1 2 1 6 2 0

0

2 5

5 0

A g e  (W k s )

D
e

lt
a

 B
o

d
y

 W
e

ig
h

t 
( 

g
)

M C 4R K O

W T  L M

4 1 0 2 0

0

3 5

7 0

A g e  (W k s )

T
o

ta
l 

B
o

d
y

 W
e

ig
h

t 
(g

)

*

*
W T  L M

M C 4R K O

4 1 0 2 0

0 .0

1 .0

2 .0

A g e  (W k s )

In
g

u
in

a
l 

F
a

t 
(g

)

*

*W T  L M

M C 4R K O

4 1 0 2 0

0 .0

0 .2

0 .4

A g e  (W k s )

In
te

rs
c

a
p

u
la

r 
F

a
t 

(g
)

*

*

W T  L M

M C 4R K O

4 1 0 2 0

0

1 0

2 0

1 0 0

1 5 0

A g e  (W k s )

L
e

p
ti

n
 (

n
g

/m
l)

*

*W T  L M

M C 4R K O

5 1 0 2 0

0

6

9

1 2

A g e  (W k s )

T
o

ta
l 

B
o

d
y

 L
e

n
g

th
 (

c
m

)

*

*

W T  L M

M C 4R K O

4 8 1 2 1 6 2 0

0

1

2

3

4

A g e  (W k s )

D
e

lt
a

 B
o

d
y

 L
e

n
g

th
 (


c
m

)

M C 4R K O

W T  L M

A B C

D E F

G H I



70 
 

(A) Hyperphagia was documented by 5 weeks of age. (B) Growth curve illustrating 
cumulative weekly body weight gain and (C) total body weight change in MC4RKO mice 
compared to WT LM. Relative to 4 weeks of age, hyperphagic MC4RKO mice show an 
early increase in accumulation of (D) epididymal, (E) inguinal and (F) interscapular fat 
(fueled by hyperphagia) at 10 and 20 weeks of age relative to WT LM. (G) Circulating 
leptin correspond to increased adiposity. (H) Growth curve illustrating cumulative weekly 
body length gain; black arrow heads indicates assessment of pulsatile GH secretion 
relative to rapid linear growth 4, 8 and 16 weeks of age. (I) total body length change in 
MC4RKO mice compared to WT LM. Data are presented as mean ± SEM. A P value < 
0.05 was accepted as significant; WT LM: blue, MC4RKO: red, N=6-8 per group. 
Abbreviations: Melanocortin 4 receptor knockout mice; MC4RKO mice, wild-type 
littermates; WT LM. 

 

Table 5-1: Rate of linear growth (slope) relative to cumulative body weight and body length 
in ad libitum fed WT LM and MC4RKO mice at 4 to 12, and 12 to 20 weeks of age. 

Body Weight 
WT LM 
(slope) 

MC4RKO 
(slope) 

P value 

Wks 4 to 8 2.570.43 4.780.45 <0.001 

Wks 8 to 16 0.830.15 2.290.15 <0.001 

Wks 16 to 20 0.360.32 0.660.49 0.604 

Body Length 
WT LM 
(slope) 

MC4RKO 
(slope) 

P value 

Wks 5 to 8 0.360.04 0.490.05 0.033 

Wks 8 to 16 0.110.02 0.180.02 0.013 

Wks 16 to 20 0.090.06 0.060.07 0.744 

Data presented as meanSEM. N=6-8 per group. 

 

5.3.2 Rapid linear growth velocity in hyperphagic MC4RKO mice does not coincide 

with the hypersecretion of GH release 

Hypersecretion of GH is thought to promote rapid pubertal linear growth in MC4R deficient 

individuals [68]. Given that rapid linear growth velocity in hyperphagic MC4RKO mice 

predominantly occurred between 5 and 8 weeks of age and between 8 and 16 weeks of 

age (Figure 5-1H,I), it was anticipated that hypersecretion of GH would occur at this time. 

Accordingly, pulsatile GH secretion was assessed in WT LM and MC4RKO mice from 

early puberty through adulthood. Assessed ages corresponded to periods associated with 

the initial onset of rapid growth velocity (4 weeks of age), sustained rapid growth velocity 

(8 weeks of age), and the eventual slowing of growth velocity to that seen in adult WT LM 

(16 weeks of age). Pulsatile GH secretory events in WT LM and MC4RKO mice occurred 

at all ages, and were characterized by periods of increased GH secretion flanked by 

periods of low basal GH release. This is in consistent with prior observations from WT 
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mice, demonstrating that rapid pubertal linear growth in WT LM and MC4RKO mice 

occurred alongside the establishment of altered GH secretion profiles throughout 

adulthood. For WT LM, age-associated changes in GH secretion matched secretion 

profiles described previously (Chapter 3, Figure 3-2). As a characteristic of GH release, 

the pattern of GH secretion and timing of the onset of secretory events in mice was highly 

variable between animals, regardless of age and genotype (Figure 5-2A (4 weeks of age), 

Figure 5-2D (8 weeks of age), and Figure 5-2G (16 weeks of age)).  

Representative examples of pulsatile GH secretion in WT LM and MC4RKO mice 

are presented in Figure 5-2. While male mice exhibit pulsatile release of GH, pulsatile GH 

profiles varied amongst mice (Figure 5-2). GH secretion patterns and the amount of GH 

released in 4-week-old MC4RKO mice were comparable to that observed in WT LM 

(Figure 5-2A, Table 5-2). GH secretion in MC4RKO mice was markedly reduced by 8 

weeks of age (Figure 5-2D, Table 5-2), regardless of sustained linear growth at this time. 

This reduction in pulsatile GH secretion preceded the gradual slowing in linear growth, 

suggesting that the absence of GH release is unlikely to sustain rapid linear growth in 

MC4RKO mice relative to WT LM. This was characterized by a significant reduction in total 

(Figure 5-2B) and pulsatile (Figure 5-2E) GH release, and the mean peak of GH release 

per pulse (Figure 5-2H). The suppression of GH release in MC4RKO mice at 8 and 16 

weeks of age are in consistent with changes in pulsatile GH profiles observed in high fat 

diet fed mice showing increased adiposity during weight gain [97, 98]. Of importance, 

independent of alterations in the GH secretory events (Figure 5-2C,F,I), the reduction in 

GH release in MC4RKO was greatly exaggerated relative to WT LM. Given that GH 

declines with increased adiposity [12], and that MC4RKO mice show increased fat mass 

(Figure 5-1D to F), observations suggest that potential peripheral factors in modulating 

adiposity may account for this change. Moreover, the slowing in the rate of linear growth in 

MC4RKO mice between 16 and 20 weeks of age was comparable to that seen in WT LM, 

suggesting that the slowing of growth rate in these mice did not coincide with the gradual 

withdrawal of GH release. Observations suggest that increased linear growth rate in 

hyperphagic MC4RKO mice occur alongside the progressive development of GH 

deficiency. Comparisons of GH secretory parameters after deconvolution analysis are 

summarized in Table 5-2. 
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Figure 5-2: MC4RKO mice developed GH deficiency during sustained periods of rapid 
pubertal linear growth. The magnitude of the reduction in GH release from 8 weeks of age 
was greater in MC4RKO mice compared to WT LM.  
 
Representative examples of pulsatile GH profiles in WT LM and MC4RKO mice at (A) 4, 
(D) 8 and (G) 16 weeks of age. Compared to 4 weeks of age, a decline in (B) total GH 
secretion, (E) pulsatile GH secretion and (H) mass of GH secreted per burst was 
dramatically exaggerated in MC4RKO mice at 8 week of age when compared to WT LM. 
This decline in GH release occurred prior to the slowing of rate of linear growth in 
MC4RKO mice. (C) Basal GH secretion, (F) GH secretory events and (I) Approximate 
entropy (regularity of GH release) in MC4RKO mice remained unchanged throughout 
periods of altered GH release compared to WT LM. Data are presented as mean ± SEM. A 
P value < 0.05 was accepted as significant; WT LM: blue, MC4RKO: red, N=6-8 per group. 
Abbreviations: Melanocortin 4 receptor knockout mice; MC4RKO mice, wild-type 
littermates; WT LM, growth hormone; GH.  
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Table 5-2: Deconvolution analysis of output values of pulsatile GH release in whole blood 
tail-tip samples collected from WT LM and MC4RKO mice maintained on a standard diet. 
Samples were collected at 10-minute intervals between 0700 h and 1300 h. 

4 Wks of age WT LM MC4RKO P value 

Total GH secretion rate  
(ng/ml per 6h) 

711126 880219 0.518 

Pulsatile GH secretion rate 
(ng/ml per 6h) 

621115 794212 0.487 

Mass of GH secreted/burst 
(MPP, ng/ml) 

11719.5 15235.0 0.399 

Basal GH Secretion rate 
(ng/ml) 

90.428.9 86.121.9 0.908 

Number of secretory burst/6h 5.500.56 5.170.31 0.210 

Approximate Entropy (0.35,1) 0.540.07 0.0560.08 0.918 

8 Wks of age WT LM MC4RKO P value 

Total GH secretion rate    
(ng/ml per 6h) 

37529.3 17522.2 <0.001 

Pulsatile GH secretion rate 
(ng/ml per 6h) 

33229.6 13611.9 <0.001 

Mass of GH secreted/burst 
(MPP, ng/ml) 

84.312.6 39.45.99 0.010 

Basal GH Secretion rate  
(ng/ml) 

43.427.1 38.516.2 0.880 

Number of secretory burst/6h 4.330.67 3.830.54 0.574 

Approximate Entropy (0.35,1)   0.550.06 0.660.06 0.200 

16 Wks of age WT LM MC4RKO P value 

Total GH secretion rate    
(ng/ml per 6h) 

32783.4 55.516.1 0.018 

Pulsatile GH secretion rate 
(ng/ml per 6h) 

30072.6 35.39.34 0.009 

Mass of GH secreted/burst 
(MPP, ng/ml) 

10320.4 8.332.63 0.002 

Basal GH Secretion rate  
(ng/ml) 

26.013.3 20.310.9 0.754 

Number of secretory burst/6h 3.130.48 4.500.89 0.169 

Approximate Entropy (0.35,1) 0.6110.04 0.790.012 0.114 

Data are presented as mean±SEM. A P value of  0.05 was accepted as significant. N=6-8 
per group. 
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5.3.3 Hypothalamic Ghrh or Srif mRNA expression is unaltered in MC4RKO mice 

To investigate whether the reduction in GH secretion was due to altered hypothalamic 

control of GH release, hypothalamic tissue of WT LM and MC4RKO mice containing PeVN 

and ARC regions (Figure 5-3A) were isolated for mRNA analysis. Compared to WT LM, no 

discernible changes in Ghrh (Figure 5-3B) or Srif (Figure 5-3C) mRNA expression was 

observed within the PeVN/ARC complex of MC4RKO mice, suggesting that impaired GH 

secretion in MC4RKO mice may occur independent of changes in hypothalamic control of 

GH secretion. The lack of change in hypothalamic mRNA expression may not accurately 

reflect circulating GHRH or SRIF output. Consequently, assessment of Ghrh and Srif 

mRNA expression may not reflect hypothalamic control of GH release. While measures of 

GHRH and SRIF release into the portal circulation to modulate GH release has been 

demonstrated in rhesus monkeys and sheep [328, 340], assessment of GHRH and SRIF 

output in portal blood from mice do not exist. Regardless, observations confirmed that 

suppressed GH release in MC4RKO mice does not correspond to changes in Ghrh or Srif 

mRNA expression, suggesting that factors regulating GH release in MC4RKO mice may 

act independent of the hypothalamus. 

 

Figure 5-3: Hypothalamic Ghrh and Srif mRNA expression in PeVN/ARC complex of 
MC4RKO mice 
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(A) Hypothalamic tissues containing the PeVN, PVN and ARC were collected from 300 μm 
thick frozen brain sections. Micropunch biopsies were obtained from brain sections located 
between bregma -0.34 and -1.82 (tissue collected at representative levels corresponding 
to the PeVN, PVN and ARC nucleus complex outlined and shaded in grey). No differences 
in (B) Ghrh or (C) Srif mRNA expression were observed between WT LM and MC4RKO 

mice. Data are presented as mean±SEM. A P value of  0.05 was accepted as significant. 
WT LM: blue, MC4RKO: red, N=6 per group. Abbreviations: Growth hormone releasing 
hormone; GHRH, somatostatin; SRIF, melanocortin 4 receptor knockout mice; MC4RKO 
mice, wild-type littermates; WT LM, periventricular nucleus; PeVN, paraventricular nucleus; 
PVN, arcuate nucleus; ARC.  
 

5.3.4 Rapid pubertal linear growth velocity in MC4RKO mice does not occur in 

response to increased circulating or local IGF-1 hypersecretion 

GH promotes linear growth indirectly via autocrine/paracrine effects of IGF-1 [129]. This is 

largely dependent on pubertal associated changes in GH secretion [1, 11]. Moreover, IGF-

1 is a major determinant of postnatal growth [185-188]. Thus, increased bio-available and 

tissue-specific IGF-1 expression in the presence of GH deficiency suggests that IGF-1 

may promote growth in MC4RKO mice independent of GH. To determine whether rapid 

linear growth in MC4RKO mice coincide with a parallel rise in IGF-1, total circulating IGF-1, 

IGF-1/IGFBP3 molar ratio (indicator of free IGF-1 bioavailability), and IGF-1 binding 

protein (IGFBPs) were determined at 4, 10 and 20 weeks of age.  

Circulating IGF-1 (Figure 5-4A) levels did not rise alongside rapid linear growth in 

MC4RKO mice relative to WT LM (Figure 5-4D). IGF-1/IGFBP3 molar ratio (Figure 5-4B) is 

elevated at 10 weeks of age however, this did not reach statistical significance relative to 

WT LM (Figure 5-4E). Regardless, IGFBP3, the major carrier for IGF-1, was reduced in 

MC4RKO mice (Figure 5-4C) when compared to that of WT LM (Figure 5-4F). Given that 

the release of IGFBP3 is GH-dependent [341], the gradual decline in circulating IGFBP3 

levels occurred, presumably due to the loss of GH release in MC4RKO mice, although this 

did not reach statistical difference when compared to WT LM. Circulating IGFBP1 (Figure 

5-4G,J) and IGFBP2 levels (Figure 5-4H,K) declined throughout rapid linear growth in 

MC4RKO mice relative to WT LM. Changes in the abundance of circulating IGFBP1 and 

IGFBP2 in MC4RKO mice are usually reflective of their underlying insulin resistance in 

response to their concomitant hyperinsulinemia (Figure 5-5A,B). This is in accordance with 

that seen in humans following extended periods of energy consumption [14, 192, 342]. 

Consequently, it was anticipated that rapid pubertal linear growth in MC4RKO mice may 

be mediated through autocrine/paracrine effects of local IGF-1. Accordingly, a progressive 

loss of muscle (Figure 5-4I) and liver (Figure 5-4L) specific IGF-1 expression was 

observed in MC4RKO mice relative to WT LM. Observations are congruent with the 
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progressive development of GH deficiency in MC4RKO mice (Figure 5-4, Table 5-2). 

Technical limitations prevented the assessment of bone IGF-1 levels, and thus it remains 

unknown whether changes in bone IGF-I content contribute to altered linear growth in 

MC4RKO mice. This warrants further investigation. Collectively, observations demonstrate 

sustained rapid linear growth in MC4RKO mice does not occur in response to increased 

GH/IGF-1 hypersecretion.  

 

Figure 5-4: Rapid pubertal growth in MC4RKO mice does not occur as a consequence of 
increased circulating or local IGF-1 levels.  
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(A) Circulating levels of IGF-1, (B) molar ratio of IGF-1:IGFBP3 and (C) IGFBP3 in 
MC4RKO mice at 4, 10 and 20 weeks of age. (D) Circulating IGF-1, (E) molar ratio of IGF-
1:IGFBP3 and (F) IGFBP3 in MC4RKO mice relative to WT LM. (G) Circulating levels of 
IGFBP1, (H) IGFBP2 and (I) muscle-specific IGF-1 in MC4RKO mice at 4, 10 and 20 
weeks of age. (J) Circulating IGFBP1 and (K) IGFBP2 in MC4RKO mice relative to WT LM. 
(L) Liver-specific IGF-1 in MC4RKO mice at 4, 10 and 20 weeks of age. Data are 
presented as mean ± SEM. A P value < 0.05 was accepted as significant; WT LM: blue, 
MC4RKO: red, N=5-8 per group. Abbreviations: Melanocortin 4 receptor knockout mice; 
MC4RKO mice, wild-type littermates; WT LM, insulin-like growth factor-1; IGF-1, IGF 
binding proteins; IGFBPs.  
 
 
5.3.5 Hyperphagic MC4RKO mice develop hyperinsulinemia and insulin resistance 

while sustaining plasma NEFAs and glucose homeostasis 

Recent observations demonstrate that the progressive rise in insulin levels relative to an 

adipose-specific decline in pulsatile GH secretion [98]. In this regard, reduced GH 

secretion relative to weight gain is thought to aid insulin action, thereby sustaining fatty 

acid flux during periods of excess energy consumption. As in obesity, hyperphagia is 

associated with increased insulin secretion and decreased GH secretion. This is preceded 

by the gain in body weight [14]. Disruption of this GH/insulin balance by pharmacological 

GH replacement to prevent the loss of GH release results in impaired insulin signaling and 

impaired fatty acid and glucose homeostasis [71]. Given similarities between obesity and 

hyperphagia, it is anticipated that the progressive loss of GH release in MC4RKO mice 

may occur alongside the hypersecretion of insulin (hyperinsulinemia), and that this is 

essential for sustained maintenance of fatty acid flux. Assuming this is true, it is anticipated 

that metabolic alterations in response to hyperphagia will result in increased insulin and 

decreased GH release, and that this would serve as a potential mechanism to override the 

traditional role of GH in promoting rapid linear growth.  

 To validate the anticipated role of GH/insulin balance in sustaining fatty acid flux, 

alterations in insulin secretion and insulin sensitivity alongside the progressive 

development of hyperphagia was assessed. Observations demonstrate a striking elevation 

in fed and fasting insulin in MC4RKO mice, with circulating levels of insulin rising between 

6 to 20 weeks of age (Figure 5-5A,B). By comparison, glucose tolerance in MC4RKO mice 

was maintained at 6 and 16 weeks of age (Figure 5-5C,D). Sustained glucose tolerance in 

MC4RKO mice was facilitated by a greater response to glucose-stimulated insulin 

secretion (GSIS) (Figure 5-5C,D). In addition, it is likely that hyperinsulinemia (Figure 5-5A) 

would have sustained glucose tolerance by promoting the corresponding storage of 

muscle and hepatic glycogen (Figure 5-6E,F). MC4RKO mice developed insulin resistance 

by 16 weeks of age, coinciding with a slowing in the rate of linear growth velocity (Figure 
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5-5E,F, 16 weeks of age). To further explore mechanisms underlying sustained glucose 

homeostasis in MC4RKO mice, circulating insulin levels were measured following acute 

glucose challenge (GSIS). In response to glucose administration, the first-phase of peak 

insulin secretion is rapid, occurring between 0 and 15 mins; second-phase release of 

insulin gradually slows from 15 and 60 mins [343]. MC4RKO mice exhibited significantly 

higher insulin levels during the first phase of insulin secretion at 15 mins, and during the 

second phase of insulin secretion at 30 and 45 mins (Figure 5-6A). Therefore, enhanced 

insulin release in response to glucose challenge appears to contribute to enhanced 

glucose clearance in MC4RKO mice. Given the proposed role of GH and insulin in 

maintaining fatty acid flux, circulating levels of NEFAs and storage of liver triglycerides (TG) 

were assessed. MC4RKO mice maintained circulating NEFAs and glucose within a similar 

range as seen in WT LM (Figure 5-6B,C). Presumably, this was in response to increased 

lipid clearance, as demonstrated by the progressive accumulation of hepatic TG content 

(Figure 5-6D) by 10 weeks of age. Amongst these metabolic alterations in response to 

hyperphagia, the rise in insulin is the most dramatic and significant. Given the direct 

association between hyperphagia and rapid linear growth, observations were extended to 

assess insulin co-secreted peptides following the development of hyperphagia. Circulating 

GLP-1 is secreted in response to food ingestion and may increase insulin sensitivity [344]. 

Circulating C-peptide, peptide YY (PYY) and amylin are pancreatic peptides co-secreted 

with insulin. Circulating GLP-1 (representative of active GLP-1) (Figure 5-7A) and PYY 

(Figure 5-7C) did not differ between WT LM and MC4RKO mice throughout hyperphagia. 

Circulating C-peptide in MC4RKO mice did not reach statistical significance following the 

development of insulin resistance at 20 weeks of age when compared to WT LM (Figure 5-

7B). Amylin levels rise alongside insulin (Figure 5-7D). Of interest, amylin promotes linear 

growth in adult mice [345], and this may act to sustain rapid linear growth in MC4RKO 

mice in the absence of GH. Collectively, these observations suggest that alterations in 

GH/insulin balance in MC4RKO mice likely occur in response to hyperphagia, and may 

facilitate the continued blood glucose clearance, the clearance and storage of NEFAs, and 

possibly the promotion of rapid linear growth velocity in the absence of GH.  
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Figure 5-5: Hyperphagic MC4RKO mice developed hyperinsulinemia and insulin 
resistance, however, glucose clearance is sustained.  
 

(A) Circulating measures of insulin in WT LM and MC4RKO mice at 4, 10 and 20 weeks of 
age. (B) Fed and fasting insulin levels in ad libitum MC4RKO mice were elevated by 6 
weeks of age. (C) MC4RKO mice remained glucose responsive at 6 and 16 weeks of age. 
(D) Area under curve for GTT at 6 and 16 weeks of age. (E) Insulin resistance in MC4RKO 
mice did not develop until 16 weeks of age. (F) Area under curve for ITT at 6 and 16 
weeks of age. Data are presented as mean ± SEM. A P value < 0.05 was accepted as 
significant; WT LM: blue, MC4RKO: red, N=6-8 per group. Abbreviations: Melanocortin 4 
receptor knockout; MC4RKO, wild-type littermates; WT LM, area under curve; AUC.  
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Figure 5-6: Altered GH release and hyperinsulinemic MC4RKO mice occurred alongside 
sustained glucose and NEFA flux.  
 

(A) In vivo insulin response during GTT in MC4RKO mice compared to wild-type 
littermates (WT LM). (B) Circulating NEFAs, (C) glucose, (D) hepatic TG, (E) muscle 
glycogen and (F) hepatic glycogen in WT LM and MC4RKO mice at 4, 10 and 20 weeks of 
age. Data are presented as mean ± SEM. A P value < 0.05 was accepted as significant; 
WT LM: blue, MC4RKO: red, N=6-8 per group. Abbreviations: Growth hormone, GH, 
melanocortin 4 receptor knockout; MC4RKO, wild-type littermates; WT LM, glucose 
tolerance test; GTT, non-esterified free fatty acids; NEFA, triglycerides; TG, area under 
curve; AUC.  
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Figure 5-7: Assessment of circulating GLP, C-peptide, PYY and amylin in response to 
hyperphagia in MC4RKO mice.  
 

Circulating levels of (A) GLP-1 and (C) PYY did not differ between genotypes across all 

ages assessed. (B) Circulating C-peptide MC4RKO mice was elevated by 20 weeks. (D) 

Amylin, co-secreted alongside insulin was upregulated in MC4RKO mice and may serve to 

promote growth. Data are presented as mean ± SEM. A P value < 0.05 was accepted as 

significant; WT LM: blue, MC4RKO: red, N=6-8 per group. Abbreviations: Glucagon-like 

peptide; GLP, peptide YY; PYY, melanocortin 4 receptor knockout; MC4RKO, wild-type 

littermates; WT LM. 

 

5.3.6 The MC4R is not colocalized with somatotrophs or GHRH neurons 

To validate the observed changes in altered GH release in MC4RKO mice occur as a 

consequence of hyperphagia rather than a direct effect of the loss of MC4R signaling, 

colocalization of MC4R with somatotrophs and GHRH neurons was performed by 

immunofluorescence. Gene expression of MC4R was examined in the hypothalamus, 

anterior pituitary gland, liver tissue of WT mice, and somatotrophs isolated from pituitary 

glands of transgenic mice expressing GH-GFP (Figure 5-8A,B). MC4Rs are abundantly 

expressed in the hypothalamus of WT mice (Figure 5-8A). Liver do not express MC4Rs 
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and was used as a negative tissue control. RT-PCR results confirmed that MC4Rs are 

expressed in the anterior pituitary gland but not on somatotrophs (Figure 5-8B). 

Accordingly, the hypothalamic-pituitary-thyroid (HPT) axis is involved in the regulation of 

energy homeostasis [346], and thyroid dysfunction is thought to have debilitating 

consequences on appetite and body weight [347, 348]. Thus, while not directly addressed, 

it is possible that the anterior pituitary thyrotrophs [73] express MC4R. To determine if 

MC4Rs regulate GH secretion via direct interaction with the somatotrophs, the 

colocalization of MC4Rs with GH-secreting somatotrophs were examined. 

Immunofluorescence results confirmed that MC4Rs are not expressed on somatotrophs 

(Figure 5-8C to E), confirming that the melanocortin system does not directly modulate GH 

release from somatotrophs through the MC4R. 

 

Figure 5-8: Expression of MC4R in hypothalamus and isolated somatotrophs of the 
anterior pituitary gland of WT mice, and MC4R immunoreactivity in the pituitary gland of 
mice at 8 weeks of age.  

 
(A) FACS of somatotrophs isolated from pituitary glands of transgenic mice expressing 
GH-GFP. (B) Expression of MC4Rs in WT hypothalamus, anterior pituitary gland and 
somatotrophs isolated using FACS in GH-GFP mice at 8 weeks of age. 
Immunofluorescence of MC4R expression in the pituitary gland of transgenic mice 
expressing GFP in somatotrophs (C-E). MC4Rs (red) are not expressed on somatotrophs 

(green, E). Scale bar = 100 m. Representative images illustrate interactions verified 
across 4 animals. Abbreviations: Melanocortin 4 receptor; MC4R, wild-type; WT, 



83 
 

fluorescence-activated cell sorting; FACS, growth hormone; GH, green fluorescent protein; 
GFP. 

The colocalization of MC4Rs with GHRH neurons was examined to determine if 

MC4Rs regulate GH secretion via direct interactions with GHRH. Immunofluorescence 

observations confirmed that the widespread distribution of MC4Rs within the CNS of the 

mouse was similar relative to rodent brains [35, 349]. An aggregation of positive MC4R 

immunoreactivity (identified by neuronal cell bodies) was evident in the cortex (Figure 5-

9C), hippocampus (Figure 5-9D), and thalamus (Figure 5-9E), PVN (Figure 5-9F) and the 

DMH (Figure 5-9G). Although at seemingly lower levels, the ARC demonstrate punctuate 

MC4R immunoreactivity (Figure 5-9H). Observations are in consistent with previous 

studies characterizing MC4R expression in rodents [35]. While GHRH neurons lies along 

the ventral hypothalamus (Figure 5-9I), immunofluorescence assessment demonstrated 

that MC4Rs do not colocalized with GHRH neurons (Figure 5-9K), confirming that the 

melanocortin system does not directly act via MC4Rs to modulate GHRH-induced GH 

secretion. Thus, the observed reduction in GH release in hyperphagic MC4RKO mice 

suggest that altered GH release likely occur in response to metabolic alterations as a 

consequence of hyperphagia.  
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Figure 5-9: Expression of MC4R in 8-week-old transgenic mice expressing GFP in GHRH 
neurons.   
 

(A-B) Schematic coronal diagrams of mouse brain mapping MC4R immunoreactivity at 
bregma between -0.94 and -1.82. MC4R immunoreactivity was detected in the (C) Cx, (D) 
HippoC, (E), Thal, (F) PVN, (G) DMH and the (H) ARC. Immunofluorescence assessment 
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of GHRH-GFP (green, I) and MC4R (red, J) confirmed that MC4R are not expressed on 

GHRH neurons (merge, K). (C-J) Scale bar = 25 µm. (K) Scale bar = 50 m. Inserts 
illustrate a magnified view of the figures (Scale bar = 100 µm). Representative images 
illustrate interactions verified across 5 animals. Abbreviations: Melanocortin 4 receptor; 
MC4R, green fluorescent protein; GFP, growth hormone releasing hormone; GHRH, 
cortex; Cx, hippocampus; HippoC, thalamus; Thal, paraventricular nucleus; PVN, dorsal 
medial hypothalamus; DMH, arcuate nucleus; ARC, lateral ventricle; LV, third ventricle; 3V. 

 
5.3.7 Hyperphagic MC4RKO mice show a reduction in muscle-specific InsR 

alongside the development of insulin resistance 

Current data demonstrate a decline in GH release occurring alongside hyperinsulinemia. 

Moreover, observations confirmed that the suppression of GH release occurred 

independent of direct MC4R-mediated interactions. While this may underlie sustained fatty 

acid flux following extended periods of hyperphagia, it remains unknown how rapid linear 

growth in MC4RKO mice is sustained in the absence of GH. Importantly, insulin and IGF-1 

share a number of major structural homologies [350], and insulin can bind to the IGF-1R 

although at a much lower affinity [351]. Accordingly, hypersecretion of insulin may facilitate 

rapid growth in MC4RKO mice, acting through the InsR or IGF-1R. To address this, 

muscle-specific InsR and IGF-1R expression were assessed in WT LM and MC4RKO 

mice. For insulin and IGF-1, assessment was limited to the expression of intracellular β-

subunit as this is representative of the capacity to facilitate downstream signaling [352]. 

Compared to WT LM, data demonstrate a progressive loss of InsRβ expression, reaching 

significance by 20 weeks of age (Figure 5-10A,B). In contrast, IGF-1Rβ expression in 

MC4RKO mice did not change relative to WT LM, regardless of age (Figure 5-10C,D). 

Observations suggest that altered InsR expression may contribute to the development of 

systemic insulin resistance observed by 16 weeks of age (Figure 5-5E,F). Moreover, 

sustained expression of IGF-1R expression throughout hyperphagia may contribute to 

sustained linear growth velocity in hyperphagic MC4RKO mice in the absence of GH. Thus, 

given the association between hyperphagia and rapid linear growth, sustained 

hyperphagia-induced hyperinsulinemia may contribute to altered GH release in MC4RKO 

mice, and this occurs independent of MC4R-mediated actions. Second to this, sustained 

hyperphagia-induced hyperinsulinemia may promote for rapid linear growth velocity in the 

absence of GH in MC4RKO mice. This will be addressed in Chapter 6.         
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Figure 5-10: Hyperphagic MC4RKO mice show a progressive loss in muscle-specific 
InsRβ expression while maintaining stable IGF-1Rβ expression. 
 

(A-B) A progressive loss of muscle InsRβ expression was observed in MC4RKO mice by 
20 weeks of age. (C-D) The expression of muscle IGF-1Rβ in MC4RKO mice remained 
stable throughout rapid pubertal growth. Data are presented as mean ± SEM. A P value < 
0.05 was accepted as significant; WT LM: blue, MC4RKO: red, N=4 per group. 

Abbreviations: Melanocortin 4 receptor knockout; MC4RKO, insulin-receptor beta; InsR, 

insulin-like growth factor-1 receptor beta; IGF-1R, wild-type littermates; WT LM. 
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5.4 Discussion 

Increased pulsatile GH secretion is observed in obese adults with defective MC4R 

signaling when compared to BMI-matched obese humans [68]. Moreover, defects in 

MC4R signaling in humans [68] and rodents [58] are associated with increased adult linear 

height/body length. While not directly addressed, these observations suggest that 

increased pubertal GH secretion following the loss of MC4R signaling may contribute to 

increased pubertal linear growth. To investigate whether increased pulsatile GH secretion 

contribute to rapid pubertal growth associated with MC4R dysfunction, pulsatile GH 

secretion was determined in MC4RKO mice throughout the period of increased pubertal 

linear growth.  

 As demonstrated previously [58], deletion of MC4R in mice is associated with early 

onset hyperphagia resulting in rapid weight gain, increased adiposity, and rapid linear 

growth. Current data confirms that the rate of linear growth in MC4RKO mice between 5 

and 8 weeks of age, and between 8 and 16 weeks of age was significantly greater to that 

observed in WT LM, confirming that rapid linear growth in MC4RKO mice occurs 

predominantly during pubertal maturation leading into early adulthood. Given this, it was 

anticipated that endogenous GH levels would increase prior to 5 weeks of age to facilitate 

rapid pubertal linear growth. Unexpectedly, the anticipated increase in GH secretion was 

not observed at this time. Observations demonstrated that MC4RKO mice developed GH 

deficiency by 8 weeks of age during peak periods of sustained linear growth. Of 

importance, current observations do not support the original perception of increased GH 

secretion contributing to accelerated linear growth in MC4R deficient adults. Rather, 

sustained rapid linear growth in MC4RKO mice occurs regardless of the loss of GH 

release. GH stimulates the release of IGF-1 [353-355], and thus the loss of pulsatile GH 

secretion may impact circulating measures of IGF-1. However, the progressive loss of GH 

release in MC4RKO mice did not coincide with an elevation in circulating or local IGF-1. 

Rather, circulating IGF-1 levels remained unchanged in hyperphagic MC4RKO mice, 

suggesting that factors other than GH may sustain circulating measures of IGF-1. This 

may occur through increased insulin-mediated hepatic GHR to sustain plasma IGF-1 

production in MC4RKO mice [356]. Although considerable evidence confirms that GH/IGF-

1 mediates linear growth [1, 111], current data do not support the hypothesis that 

increased linear growth rate in MC4RKO mice occur as a direct consequence of increased 

GH/IGF-1 release. Rather, rapid linear growth in MC4RKO mice occurred in the absence 

of GH/IGF-1 hypersecretion.  
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Assessment of GH release in pubertal WT mice demonstrates a progressive decline 

in GH secretion preceding the slowing of linear growth rate (Chapter 3, Figure 3-1). The 

gradual decline in GH secretion is observed in both the WT LM and MC4RKO mice, 

confirming the change in pulsatile GH secretory dynamics throughout adulthood. Of 

interest, the anticipated rise in GH release was not observed alongside rapid linear growth 

rate in MC4RKO mice. Rather, the progressive reduction in GH release relative to age 

occurred much earlier in MC4RKO mice compared to that seen in WT LM (Figure 5-2) and 

WT mice (Chapter 3, Figure 3-2). Based on the premise that pulsatile GH secretion was 

restored in MC4R deficient adults relative to obese controls [68], it is proposed that the 

suppression of pulsatile GH secretion in obesity may partially be mediated through the 

melanocortin system (via activation of MC4R) to inhibit GH release [68]. Prior in vivo 

studies demonstrated that central infusion of MC4R non selective agonist melanotan II 

(MT-II) or antagonist SHU9119 did not impact hypothalamic Ghrh mRNA expression, or 

circulating GH and insulin-like growth factor-1 (IGF-1) in rats, suggesting that antagonism 

of the central melanocortin system has no effect on the somatotrophic axis [20, 21]. In 

addition, acute administration of melanocortin receptor antagonists HS014 or AgRP failed 

to alter the levels of spontaneous GH secretion in rats [22]. Current observations 

demonstrate that MC4Rs are neither expressed on somatotrophs (Figure 5-8) nor on 

GHRH neurons (Figure 5-9), confirming that MC4R does not directly modulate pulsatile 

GH secretion from the somatotroph, or indirectly via GHRH-induced GH release. To this 

extent, observations are in line with findings that exclude the MC4R as an intermediate in 

regulating GH release [20-22], thus providing compelling evidence to further support the 

notion that the melanocortin system (acting via MC4Rs) does not directly modulate the 

release of GH. While it remains unknown whether SRIF neurons express the MC4R, 

current observations confirmed that the decline in GH release did not occur in response to 

altered Srif mRNA expression or changes in Srif mRNA distribution throughout the 

PeVN/ARC complex (Chapter 4). Moreover, the decline in GH secretion in MC4RKO mice 

occur independent of changes in the hypothalamic control of GH release (Figure 5-3C). 

Thus, it appears unlikely that the MC4R impacts SRIF neurons to inhibit GH secretion. 

Collectively, data suggests that altered GH release in MC4RKO mice does not occur as a 

direct consequence of MC4R dysfunction. Rather, the altered endocrine profile associated 

hyperphagia-induced weight gain may exacerbate the suppression of GH release in 

MC4RKO mice. Given current observations, it is likely that the rapid decline in GH 

secretion in MC4RKO mice occurs secondary to hyperphagia-associated metabolic 

alterations.   
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 Observations from humans show that sustained hyperphagia contributes to 

decreased GH release and increased insulin secretion [14, 71]. The reduction in pulsatile 

GH secretion that occurs alongside an elevation in insulin secretion during periods of 

sustained hyperphagia precedes observable changes in weight gain. Moreover, treatment 

with GH to prevent the naturally occurring loss of pulsatile GH release in hyperphagic 

individuals results in impaired insulin action, and disrupted fatty acid and glucose 

homeostasis [71]. In agreement with findings in humans, glucose tolerance remained 

normal in MC4RKO mice, regardless of the developed insulin resistance by 16 weeks of 

age. Moreover, circulating NEFA concentrations in MC4RKO mice was maintained within 

the same range as seen in WT LM, presumably as a consequence of sustained lipid 

uptake in adipose (accounting for the rapid accumulation of fat mass) and within the liver 

(accounting for the accumulation of hepatic triglycerides). Given this, it is likely that the 

suppression of GH release in MC4RKO mice is an essential physiological adaption that 

promotes sustained fatty acid and glucose flux in circulation in response to sustained 

hyperphagia. Presumably, the observed decline in GH release accommodates the rise in 

insulin to facilitate the continued clearance and storage of dietary substrates in 

hyperphagic mice. Given the interaction between GH and insulin in sustaining meal 

tolerance, increased insulin secretion may contribute to the suppression of GH secretion 

following hyperphagia-induced weight gain and in obesity. Accordingly, insulin is proposed 

to act directly at the pituitary gland via the InsR to suppress GH release [170, 280-282]. 

These effects persist despite systemic insulin resistance [170], suggesting that 

somatotrophs responsivity to insulin is preserved. In this context, it is likely that the 

progressive suppression of GH release may occur as a consequence of the progressive 

rise in circulating insulin in response to hyperphagia.  

 Classically, in obesity, the onset of hyperphagia-induced hyperglycemia is thought 

to trigger both β-cell dysfunction and insulin resistance, and the interplay between β-cell 

dysfunction and the development of insulin resistance is highly complex [273]. Accordingly, 

hyperphagia induces hyperglycaemia in MC4RKO mice [58], and consequently the 

demand for insulin increases. In this instance, it was predicted that β-cell mass expansion 

may occur in the face of insulin resistance (following the development of hyperinsulinemia). 

Thus, while not directly addressed, the compensatory hypersecretion of insulin 

(demonstrated by GSIS, Figure 5-6A) would suggest an expansion in β-cell mass, and 

possibly an alteration in profiles of key enzymes in mediating β-cell glucose metabolism. 

Accordingly, observations in hyperphagic MC4RKO mice confirmed that normoglycemia 

was achieved at 16 weeks of age (presumably due to enhanced insulin secretion from β-
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cell), suggesting that β-cell function and insulin signaling in β-cells and/or glucose-sensing 

tissues (in liver and muscle) in maintaining glucose homeostasis may be preserved at this 

time. Observations are in consistent with normal weight patients following short-term 

excess dietary consumption, demonstrating that impaired pulsatile GH release occurs 

alongside sustained circulating glucose levels and elevated insulin secretion. This 

occurred prior to development of insulin resistance [14, 71]. Thus, while definitive 

mechanisms of hyperinsulinemia in suppressing GH release are limited, observations 

support the inverse relationship between insulin and GH (further discussed in Chapter 7). 

It should be noted that current observations in hyperphagic MC4RKO mice are limited to 

16 weeks of age. Furthermore, due to technical limitations, β-cell physiology was not 

addressed in this study. Thus, the potential mechanisms underlying hyperphagia-induced 

hyperinsulinemia in sustaining physiological glucose homeostasis in hyperphagic 

MC4RKO mice warrants further investigation.   

Insulin and IGF-1 act through converging signaling pathways [357]. Thus, it is likely 

that hyperphagia-induced hyperinsulinemia may directly enhance rapid linear growth by 

acting through IGF-1R [339, 358]. Of interest, the slowing in the rate of linear growth 

velocity in MC4RKO mice coincided with the development of systemic insulin resistance 

alongside the reduction in muscle-specific InsR. Conversely, muscle-specific IGF-1R 

expression was preserved throughout periods of rapid linear growth. In addition, insulin 

modulates hepatic production of IGFBPs and IGF-1, thereby increasing the bioavailability 

of IGF-1. Thus, hyperphagia-induced hyperinsulinemia may promote rapid growth via IGF-

1 mediated mechanisms. However, muscle-specific downstream activators of insulin/IGF-1 

signaling were not evaluated throughout rapid linear growth. Moreover, the observed 

sustained IGF-1/IGFBP3 molar ratio throughout rapid linear growth may not reflect the 

bioactivity of IGF-1. Thus, the mechanisms by which insulin directly promote rapid linear 

growth requires further exploration. Regardless, altered GH/insulin balance during periods 

of energy excess that sustain NEFA and glucose clearance may override the physiological 

actions of GH to sustain pubertal linear growth.  

 Collectively, observations confirmed that MC4Rs are not expressed on 

somatotrophs or GHRH neurons, suggesting that MC4R does not directly modulate 

pulsatile GH release at the level of pituitary or hypothalamus. Thus, impaired GH secretion 

in MC4RKO mice does not occur as a direct consequence of loss of MC4R signaling. 

Rather, the progressive suppression of GH secretion is observed alongside hyperphagia-

induced weight gain and hyperinsulinemia. Presumably, altered GH/insulin balance in 

hyperphagic MC4RKO mice reflects metabolic requirements that sustain NEFAs/glucose 
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homeostasis in response to excess energy consumption. Thus, this physiological 

adaptation may mimic the growth-promoting actions of GH to ensure rapid pubertal linear 

growth in the absence of GH actions. Given that GH deficiency in MC4RKO mice occurred 

alongside hyperphagia and increased insulin secretion, suppressed pulsatile GH release 

and altered linear growth in MC4RKO mice likely occur in response to hyperphagia-

induced hyperinsulinemia. The impact of hyperphagia-induced hyperinsulinemia on GH 

release and rapid linear growth will be addressed in Chapter 6. 
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CHAPTER SIX: EXPERIMENTS TO ADDRESS AIM 5 

6. PREVENTION OF HYPERPHAGIA PREVENTS HYPERINSULINEMIA, 

NORMALIZED ABERRANT LINEAR GROWTH AND RESTORE GH/IGF-1 

SECRETION IN MC4RKO MICE. 

 

6.1 Introduction 

Dysfunction of MC4R signaling promotes hyperphagia leading to rapid weight gain and 

accelerated linear growth [68]. As detailed in Chapter 5, current observations suggest that 

rapid linear growth in hyperphagic MC4RKO mice occur independent of a rise in 

endogenous GH release. Rather, MC4RKO mice developed GH deficiency by 8 weeks of 

age (Chapter 5, Figure 5-2). Of interest, the progressive suppression of GH release in 

hyperphagic MC4RKO mice occurred alongside sustained fatty acid and glucose 

homeostasis (Chapter 5, Figure 5-6), presumably as a consequence of increased insulin 

release (culminating in hyperinsulinemia, Chapter 5, Figure 5-5). Given observations 

demonstrating the functional role of GH withdrawal in hyperphagic adults [14, 71], the 

observed withdrawal of GH secretion in hyperphagic MC4RKO mice may act to facilitate 

insulin action to sustain insulin-mediated lipogenesis and glucose homeostasis. Moreover, 

current observations suggest that hypothalamic MC4Rs are not expressed on 

somatotrophs and the GHRH neurons of the somatotrophic axis. Therefore, the 

suppression of GH release in hyperphagic MC4RKO mice may not occur as a direct 

consequence of MC4R dysfunction.  

Hyperphagia is associated with decreased GH and increased insulin secretion [14]. 

The progressive suppression of GH secretion in MC4RKO mice may occur secondary to 

metabolic alterations in response to hyperphagia-associated hyperinsulinemia. Moreover, 

as insulin may directly impact growth, hyperphagia-associated hyperinsulinemia may 

compensate for the suppressed effects of growth-promoting actions of GH. Ultimately, this 

will contribute to rapid linear growth in GH deficient MC4RKO mice. This chapter will 

address the hypothesis that the prevention of hyperphagia-associated hyperinsulinemia 

will restore pulsatile GH release and normalize linear growth in MC4RKO mice.  

 

6.2 Methods 

6.2.1 Pair Feeding (PF) intervention 

Starting at 4 weeks of age, WT LM and MC4RKO mice were individually housed and food 

intake was controlled to limit the amount of food consumed by MC4RKO mice. Pair fed 

MC4RKO (PF MC4RKO) mice were given the equivalent amount of food consumed by 
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age-matched WT LM. To prevent MC4RKO mice from consuming all food within a single 

meal, food was supplied as two meals. Mice are nocturnal animals and may show diurnal 

food anticipatory response. Thus, pair fed MC4RKO mice was compared to WT LM mice 

where provision of food was restricted to two meals. Food pellets were weighed and 

placed inside the cage of MC4RKO mice and WT LM twice a day (at 0800 and 1700 h) for 

a period of 12 weeks. Measures of PF WT LM and PF MC4RKO mice were compared to 

WT LM and MC4RKO mice with ad libitum access to food. Water was provided freely to all 

groups at all times. 

 

6.2.2 Phenotypic characteristics of PF MC4RKO mice 

To monitor body weight and linear growth curves following PF intervention, body weight 

and body length (nasal-anal distance) of ad libitum fed WT LM and MC4RKO mice, and 

PF WT LM and PF MC4RKO mice were monitored from puberty (4 weeks of age) 

throughout early adulthood (16 weeks of age). Measures were collected weekly as 

described in section 5.2.1. Measurements were conserved for all animals across all 

experiments. 

 

6.2.3 Characterizing the metabolic profile of PF MC4RKO mice 

To determine whether PF prevents the development of hyperphagia-associated 

hyperinsulinemia, WT LM, MC4RKO, PF WT LM and PF MC4RKO mice were assessed 

for fed and fasting insulin and glucose levels at 6 and 12 weeks of age. Methodology for 

plasma collection and analysis of circulating insulin levels are detailed in section 2.3.2. 

Assessment of ITT at 6 and 12 weeks of age was performed as described in section 2.4. 

WT LM, MC4RKO, PF WT LM and PF MC4RKPO mice were sacrificed at 8 and 16 weeks 

of age (following 4 and 12 weeks of PF intervention). At the time of sacrifice (between 

0900 and 1000 h), mice were anesthetized as detailed in section 2.3.3 and plasma were 

stored at -80 °C for analysis of NEFAs and glucose. To determine adiposity, gonadal fat 

pads and inguinal fat pads were isolated by dissection and the fat pad mass was 

determined. 

 

6.2.4 Characterizing pulsatile GH secretion in PF MC4RKO mice 

For measures of pulsatile GH secretion, blood samples were collected and processed as 

detailed in section 2.3.1. Pulsatile GH secretion was assessed in PF WT LM and PF 

MC4RKO mice at 8 and 16 weeks of age. Following collection of blood samples, mice 
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were returned to their home cage and given 2 days to recover before assessment of 

metabolite profile.  

 

6.3 Results 

6.3.1 Prevention of hyperphagia reversed hyperinsulinemia in MC4RKO mice 

To assess the effect of prevention of hyperphagia on insulin secretion and insulin 

sensitivity in hyperphagic MC4RKO mice, food consumption by MC4RKO mice was 

restricted to that normally observed in age-matched WT LM. Pair feeding of pubertal 

MC4RKO mice normalized insulin secretion, thus preventing hyperphagia-associated 

hyperinsulinemia (Figure 6-1). Compared to the ad libitum fed MC4RKO mice, fed and 

fasting insulin levels were significantly reduced in PF MC4RKO mice at 6 (Figure 6-1A,C) 

and 12 (Figure 6-1B,D) weeks of age. At 6 weeks of age, fed and fasting insulin levels 

were not significantly different between PF MC4RKO mice and PF WT LM controls, 

suggesting that the development of hyperinsulinemia in MC4RKO mice is a consequence 

of hyperphagia. While remaining lower compared to ad libitum fed MC4RKO mice at 12 

weeks of age, fed (Figure 6-1B) and fasting insulin (Figure 6-1D) measures in PF 

MC4RKO mice were significantly elevated compared to PF WT LM controls, irrespective of 

pair feeding. Fed glucose levels were sustained in MC4RKO mice at 6 and 12 weeks of 

age, regardless of pair feeding. In contrast, the prevention of hyperphagia resulted in lower 

fasting glucose in MC4RKO mice at 6 weeks of age when compared to PF WT LM (Figure 

6-1G). This may likely be due to the fact that PF MC4RKO mice consumed their food more 

rapidly, thus leading to the initiation of fasting state following the depletion of food, and 

consequently decreased fasting glucose levels. Measures of fasting glucose in PF 

MC4RKO mice remained unchanged at 12 weeks of age when compared to PF WT LM 

controls (Figure 6-1H). Collectively, observations suggest that the prevention of 

hyperphagia prevented hyperglycaemia and reduced the severity of hyperinsulinemia in 

MC4RKO mice.  

The reduction in insulin levels in PF MC4RKO mice occurred alongside an 

improvement in insulin sensitivity. MC4RKO mice remained insulin sensitive at 6 weeks of 

age when compared to WT LM, regardless of pair feeding (Figure 6-2A,B). Consistent with 

observations previously described (Chapter 5, Figure 5-5), ad libitum fed MC4RKO mice 

showed a reduction in insulin sensitivity relative to WT LM control at 12 weeks of age 

(Figure 6-2C,D), regardless of increased insulin secretion (Figure 6-1C,D). This suggests 

the progressive development of insulin resistance. By contrast, pair feeding significantly 

improved insulin sensitivity in MC4RKO mice relative to PF WT LM, suggesting that 
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hyperphagia may be a potential mechanism contributing to decreased insulin sensitivity. 

Interestingly, PF WT LM control mice appear to develop partial insulin resistance when 

compared to ad libitum fed WT LM. This may in part reflect the adaptive mechanisms in 

response to altered meal patterning as a consequence of pair feeding intervention.    

 

Figure 6-1: Prevention of hyperphagia by pair feeding prevented the development of 
hyperinsulinemia and normalized fasting glucose in hyperphagic MC4RKO mice relative to 
pair fed WT LM.  
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Fed and fasting insulin in ad libitum fed and PF WT LM and MC4RKO mice at (A,C) 6 and 
(B,D) 12 weeks of age. Assessment of fed and fasting glucose during ITT in ad libitum fed 
and pair fed WT LM and MC4RKO mice at (E,G) 6 and (F,H) 12 weeks of age. Data are 
presented as mean ± SEM. A P value < 0.05 was accepted as significant; WT LM: blue, 
MC4RKO: red, N=5-8 per group. Abbreviations: Pair fed; PF, melanocortin 4 receptor 
knockout; MC4RKO, insulin tolerance test; ITT. 
 

 

Figure 6-2: Prevention of hyperphagia by pair feeding improved insulin sensitivity in PF 
MC4RKO mice relative to PF WT LM.  
 
Assessment of ITT in ad libitum fed and PF WT LM and MC4RKO mice at (A) 6 and (C) 12 
weeks of age, and the corresponding area under curve (AUC) at (B) 6 and (D) 12 weeks of 
age. Data are presented as mean ± SEM. A P value < 0.05 was accepted as significant; 
WT LM: blue, MC4RKO: red, N=5-8 per group. Abbreviations: Pair fed; PF, melanocortin 4 
receptor knockout; MC4RKO, insulin tolerance test; ITT, area under curve; AUC. 
 
 

6.3.2 Prevention of hyperphagia in MC4RKO mice is associated with the prevention 

of aberrant linear growth 

Insulin is thought to promote linear growth in GH deficient obese children [339]. Moreover, 

observations detailed in Chapter 5 suggest that hyperphagia-associated hyperinsulinemia 
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may facilitate rapid linear growth in GH deficient MC4RKO mice. Assuming this is the case, 

the prevention of hyperphagia-associated hyperinsulinemia may contribute to the slowing 

of rapid pubertal growth in MC4RKO mice. Accordingly, the prevention of hyperphagia 

resulted in the slowing of linear growth rate (Figure 6-3A), and a significant reduction in 

final adult body length in PF MC4RKO mice (Figure 6-3B). Unlike the rate of rapid linear 

growth observed in ad libitum fed MC4RKO mice (Figure 6-3C), the rate of linear growth 

between 4 and 8 weeks of age, and between 8 and 16 weeks of age in PF MC4RKO mice 

was not significantly different to PF WT LM (Figure 6-3A, Table 6-1). This suggests that 

excess energy intake may potentially contribute to rapid pubertal linear growth. Regardless 

of the reversal of aberrant linear growth rate, the total body length in MC4RKO mice was 

significantly longer relative to WT LM from 10 and 16 weeks of age (Figure 6-3B, Figure 6-

3D). Presumably, this is associated with the modest increased body length of the pubertal 

MC4RKO mice at 4 weeks of age prior to pair feeding, thus resulting in an overall longer in 

adult body length. 

 
 

Figure 6-3: Prevention of hyperphagia slows the rate of aberrant linear growth in 
MC4RKO mice. 
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Growth curve illustrating cumulative weekly body length gain (A,C) and total body length 
change (B,D) in PF WT LM and PF MC4RKO mice, and ad libitum fed WT LM and 
MC4RKO mice. Data are presented as mean ± SEM. A P value < 0.05 was accepted as 
significant; WT LM: blue, MC4RKO: red, N=5-8 per group. Abbreviations: Melanocortin 4 
receptor; MC4RKO, wild-type littermates; WT LM, pair fed; PF.  
 

Table 6-1: Rate of growth (slope) relative to cumulative body length in PF WT LM and PF 
MC4RKO mice, and ad libitum fed WT LM and MC4RKO mice. 

Body Length 
PF WT LM 

(slope) 
PF MC4RKO 

(slope) 
P value 

Wks 4 to 8 0.350.04 0.410.05 0.359 

Wks 8 to 16 0.120.02 0.080.02 0.218 

Body Length 
WT LM 
(slope) 

MC4RKO 
(slope) 

P value 

Wks 4 to 8 0.330.04 0.430.02 0.027 

Wks 8 to 16 0.140.03 0.200.01 0.016 

Data presented as meanSEM. N=5-8 per group 

 
 

6.3.3 Prevention of hyperphagia does not prevent weight gained and increased 

adiposity in MC4RKO mice 

Prior observations confirmed that ad libitum fed MC4RKO mice gain weight rapidly 

(Chapter 5, Figure 5-1). While the prevention of hyperphagia slowed the rate of linear 

growth in PF MC4RKO mice (Figure 6-4A, Table 6-2), PF MC4RKO mice continue to gain 

a greater amount of body weight relative to PF WT LM (Figure 6-4B). The total body 

weight gain is similar to that observed in ad libitum fed WT LM and MC4RKO mice (Figure 

6-4D). Regardless of pair feeding, the rate of body weight gain between 4 and 8 weeks of 

age, and between 8 and 16 weeks of age was significantly greater in PF MC4RKO mice 

relative to PF WT LM (Figure 6-4A), similar to that seen in ad libitum fed MC4RKO mice 

when compared to WT LM control (Figure 6-3C). This occurred alongside the 

accumulation of epididymal and inguinal fat mass in MC4RKO mice at 8 (Figure 6-4E,F) 

and 16 weeks of age (Figure 6-4G,H). Whereas the amount of adipose mass in PF 

MC4RKO mice was significantly greater when compared to PF WT LM controls, the 

amount of epididymal and inguinal fat mass gain was not diff between ad libitum fed and 

PF MC4RKO mice. Presumably, the gain in body weight and increased adiposity in PF 

MC4RKO mice occur in response to the underlying metabolic defects associated with 

MC4R dysfunction [359].  
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Figure 6-4: Prevention of hyperphagia results in continued weight gain and increased 
adiposity in MC4RKO mice.  

Growth curve illustrating (A,C) cumulative weekly body weight gain and (B,D) total body 
weight change in PF WT LM and MC4RKO mice, and ad libitum fed WT LM and MC4RKO 
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mice. Epididymal and inguinal fat mass of PF WT LM and MC4RKO mice, and ad libitum 
fed WT LM and MC4RKO mice at (E,F) 8 and (G,H) 16 weeks of age. Data are presented 
as mean ± SEM. A P value < 0.05 was accepted as significant; WT LM: blue, MC4RKO: 
red, N=5-8 per group. Abbreviations: Melanocortin 4 receptor; MC4RKO, wild-type 
littermates; WT LM, pair fed; PF. 

 

Table 6-2: Rate of growth (slope) relative to cumulative body weight in pair fed WT LM and 
MC4RKO mice, and ad libitum fed WT LM and MC4RKO mice. 

Body Weight 
PF WT LM 

(slope) 
PF MC4RKO 

(slope) 
P value 

Wks 4 to 8 1.870.20 2.970.30 <0.001 

Wks 8 to 16 0.580.07 1.260.16 <0.001 

Body Weight 
WT LM 
(slope) 

MC4RKO 
(slope) 

P value 

Wks 4 to 8 2.250.28 3.360.37 0.028 

Wks 8 to 16 0.640.16 2.150.25 <0.001 

Data presented as meanSEM. N=5-8 per group 

 

6.3.4 Prevention of hyperphagia restored normal GH/IGF-1 profile in MC4RKO mice  

Observations demonstrate that hyperphagia is associated with decreased GH secretion 

and increased insulin secretion in hyperphagic obese adults. This is preceded by the gain 

in body weight [14]. Moreover, a progressive rise in insulin levels correlates to an adipose-

specific decline in pulsatile GH secretion [98]. Thus, while not directly addressed, this 

suggests that sustained hyperinsulinemia may contribute to the suppression of GH 

secretion. Given that prevention of hyperphagia prevented hyperinsulinemia in PF 

MC4RKO mice (Figure 6-1), it is anticipated that the reversal of hyperphagia-associated 

hyperinsulinemia would result in the recovery of pulsatile GH release. In agreement with 

this, the prevention of hyperphagia resulted in the recovery of pulsatile GH secretion in 

MC4RKO mice at 8 (Figure 6-5A,B, Table 6-3) and 16 weeks of age (Figure 6-5D,E, Table 

6-3) relative to PF WT LM. Unlike the ad libitum fed MC4RKO mice which developed GH 

deficiency, characterized by an overall reduction in GH secretory parameters (Chapter 5, 

Figure 5-2, Table 5-2), the restoration of pulsatile GH release in PF MC4RKO mice at 8 

and 16 weeks of age was reflected by a recovery in total (Figure 6-5C) and pulsatile GH 

secretion (Figure 6-5F), and the mass of GH secreted per burst (Figure 6-5I). 

Observations suggest that immediate metabolic alterations in response to hyperphagia 

may play a role in the suppression of GH release normally seen in MC4RKO mice. 

Furthermore, the restoration of pulsatile GH secretion in PF MC4RKO mice further 

substantiates observations that altered GH release in ad libitum fed MC4RKO mice 



101 
 

(Chapter 5, Figure 5-2) occurred independent of potential direct interactions between the 

MC4R and key components of the GH axis at the level of pituitary (Chapter 5, Figure 5-8) 

and hypothalamus (Chapter 5, Figure 5-9). The normalization of pulsatile GH secretion did 

not impact circulating IGF-1 levels in PF MC4RKO mice (Figure 6-5G). In contrast, 

muscle-specific IGF-1 content was restored in MC4RKO mice relative to PF WT LM 

controls (Figure 6-5H). This is presumably in response to the recovery of peak pulsatile 

GH release. Comparisons of GH secretory parameters from deconvolution analysis are 

summarized in Table 6-3. 

 

Figure 6-5: Prevention of hyperphagia recovered pulsatile GH secretion in MC4RKO mice.  
 

Representative profiles of pulsatile GH secretion in PF WT LM and PF MC4RKO mice at 
(A,B) 8 and (D,E) 16 weeks of age. Deconvolution analysis of recovered (C) total, (F) 
pulsatile GH secretion rate, (I) mass of GH secreted per burst and (F) number of GH 
secretory events in PF WT LM and PF MC4RKO mice at 8 and 16 weeks of age. (G) 
Circulating IGF-1 levels remained unchanged in PF WT LM and MC4RKO mice at 16 
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weeks of age. (H) Muscle IGF-1 was restored in PF MC4RKO mice at 16 weeks of age. 
Data are presented as mean ± SEM. A P value < 0.05 was accepted as significant; WT LM: 
blue, MC4RKO: red, N=5 per group. Abbreviations: Melanocortin 4 receptor; MC4RKO, 
wild-type littermates; WT LM, pair fed; PF, growth hormone; GH, insulin-like growth factor-
1; IGF-1.  

 

Table 6-3: Deconvolution analysis of pulsatile GH secretion patterns in whole blood tail-tip 
samples collected from WT LM and MC4RKO mice pair fed on a standard diet, starting at 
4 weeks of age. Samples were collected at 10-minute intervals for 6 consecutive hours, 
starting at 0700 h. 

8 Wks of age WT LM MC4RKO P value 

Total GH secretion rate    
(ng/ml per 6h) 

406162 64695.2 0.246 

Pulsatile GH secretion rate  
(ng/ml per 6h) 

363156 56974.9 0.280 

Mass of GH secreted/burst  
(MPP, ng/ml) 

62.525.8 87.810.6 0.371 

Number of secretory burst/6h 6.000.71 6.400.60 0.678 

16 Wks of age WT LM MC4RKO P value 

Total GH secretion rate    
(ng/ml per 6h) 

60247.9 47683.1 0.232 

Pulsatile GH secretion rate  
(ng/ml per 6h) 

35036.3 22345.3 0.093 

Mass of GH secreted/burst  
(MPP, ng/ml) 

67.610.6 32.48.03 0.031 

Number of secretory burst/6h 5.600.75 7.000.45 0.156 

Data are presented as mean±SEM. A P value of  0.05 was accepted as significant. N=5 
per group. 
 
 
6.3.5 Prevention of hyperphagia sustains NEFAs and glucose homeostasis 

regardless of increased adiposity  

Impairment in pulsatile GH release in humans precede dietary-induced weight gain, and 

the suppression of GH secretion in response to calorie excess is thought to accommodate 

insulin actions to enhance meal tolerance [14, 71]. In this context, suppressed GH release 

alongside hyperinsulinemia demonstrates the potential role for the GH/insulin axis to 

sustain NEFAs and glucose homeostasis in hyperphagic MC4RKO mice (Chapter 5, 

Figure 5-6). Thus, it was anticipated that the observed recovery of GH release and 

reduced insulin secretion in PF MC4RKO mice will accommodate sustained storage and 

clearance of NEFAs and glucose. Accordingly, prevention of hyperphagia did not impact 

circulating NEFAs (Figure 6-6A,B) or glucose levels (Figure 6-6C,D) in PF MC4RKO mice 
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at 8 and 16 weeks of age relative to PF WT LM controls. It should be noted that circulating 

NEFA levels in the ad libitum fed MC4RKO mice at 8 weeks of age and circulating glucose 

levels at 16 weeks of age in the PF MC4RKO mice appeared to be altered, however these 

were not significantly different (p values indicated). While demonstrating that circulating 

fed glucose levels were sustained, regardless of pair feeding, it should be noted that, 

fasting glucose in PF MC4RKO were decreased at 6 weeks of age when compared to PF 

WT LM controls (Figure 6-1G). This is presumably due to the onset of fasting following the 

rapid consumption of first meal (when food pellet was dropped at 0800 h, prior to the start 

of ITT), and thus resulting in a reduction in fasting glucose. Of interest, pair feeding 

intervention reduced circulating NEFAs in both PF WT LM controls and PF MC4RKO mice 

when compared with ad libitum fed WT LM and MC4RKO mice. This decrease in NEFAs 

levels likely reflects an adaptive response to accommodate altered feeding patterns.  

 

Figure 6-6: Prevention of hyperphagia did not impact plasma NEFAs and glucose levels in 
PF MC4RKO mice relative to PF WT LM following 4 and 12 weeks of pair feeding 
intervention.  
 
Pair feeding of MC4RKO mice did not impact circulating levels of (A-B) NEFAs or (C-D) 
glucose at 8 or 16 weeks of age. Data are presented as mean ± SEM. A P value < 0.05 
was accepted as significant; WT LM: blue, MC4RKO: red, N=5-8 per group. Abbreviations: 
Melanocortin 4 receptor; MC4RKO, wild-type littermates; WT LM, pair fed; PF, non-
esterified fatty acids; NEFAs.  

A d  L ib P a ir -F e d

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

8  W k s  o f A g e

N
E

F
A

 (
m

E
q

/L
)

W T  L M

M C 4R K O

p = 0 .0 6 2

A d  L ib P a ir -F e d

0 .0

0 .1

0 .2

0 .3

0 .4

1 6  W k s  o f a g e

N
E

F
A

 (
m

E
q

/L
)

W T  L M

M C 4R K O

A d  L ib P a ir -F e d

0

1 0 0

2 0 0

3 0 0

4 0 0

8  W k s  o f A g e

G
lu

c
o

s
e

 (
m

g
/d

L
)

W T  L M

M C 4R K O

A d  L ib P a ir -F e d

0

1 0 0

2 0 0

3 0 0

4 0 0

1 6  W k s  o f a g e

G
lu

c
o

s
e

 (
m

g
/d

L
)

W T  L M

M C 4R K O

p = 0 .3 0

A B

C D



104 
 

6.4 Discussion  

Prolonged overeating and consequential weight gain are associated with hyperinsulinemia 

and diminished insulin sensitivity [14, 284, 360]. This may eventually impact insulin-

induced lipogenesis sustained uptake and storage of dietary substrates into insulin-

insensitive adipose tissue, resulting in systemic insulin resistance. The suppression of GH 

release following excess dietary consumption is thought to attenuate insulin resistance, 

thereby enhancing insulin sensitivity to sustain optimal meal tolerance [14, 71]. Thus, the 

reciprocal actions of reduced GH and increased insulin release are vital metabolic 

adaptations that facilitate the homeostatic balance of circulating NEFAs during energy 

excess. To this extent, adipose tissue may serve as an essential storage site for excess 

dietary fat and may act as a buffer for fatty acid exchange [361]. Ultimately, altered 

GH/insulin balance during extended periods of calorie excess reflects a physiologic 

mechanism to cope with prolonged positive energy balance (including hyperphagia and 

obesity), thus preventing adverse metabolic risks associated with elevated circulating 

NEFAs levels [362]. Given the rapid suppression of GH release alongside 

hyperinsulinemia observed in MC4RKO mice, it was anticipated that a similar 

compensatory role of GH actions relative to insulin is observed in hyperphagic MC4RKO 

mice. Second to this, it was proposed that hyperphagia-associated hyperinsulinemia 

contribute to rapid linear growth in hyperphagic MC4RKO mice. 

Observations demonstrate that the prevention of hyperphagia resulted in the 

normalization in the rate of rapid linear growth of MC4RKO mice following pair feeding. PF 

MC4RKO mice were growing linearly at a slower rate compared to the ad libitum fed 

MC4RKO mice. In accordance with anticipated outcomes, the slowing in the rate of linear 

growth in PF MC4RKO mice occurred alongside the reversal of hyperphagia-associated 

hyperinsulinemia. This was demonstrated by a marked reduction in both fed and fasting 

circulating insulin measures. In line with this, exercise-induced normalization of insulin 

levels in MC4RKO mice correlates with a reduction in growth rate and the normalization of 

body length [363]. Exercise may promote lipid metabolism and enhance hepatic glucose 

output, thus improving insulin sensitivity and presumably insulin secretion [364]. 

Consequently, the normalization of linear growth following exercising may occur as a 

consequence of decreased insulin release. As insulin is thought to promote growth [357], 

hyperphagia-associated hyperinsulinemia may contribute to rapid pubertal growth in GH 

deficient MC4RKO mice. Regardless, longitudinal growth is a complex dynamic process 

influenced by several hormones in which their functions are largely interchangeable, 

including GH, IGF-1 and insulin. The reversal of hyperphagia-associated hyperinsulinemia 
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occurred alongside the restoration of pulsatile GH secretion and muscle IGF-1 production 

in MC4RKO mice (Figure 6-5). These factors may act independently or in concert to 

modify the adolescence growth spurt. Consequently, insulin may not solely account for the 

rapid linear growth in MC4RKO mice. Given technical limitations, the effects of insulin-

mediated linear growth at the level of bone were not addressed in this study. Thus, the 

potential role of increased insulin secretion in directly promoting rapid pubertal growth in 

the absence of GH throughout periods of energy excess warrants further exploration.  

As with humans [14, 71, 284], overeating rapidly induces hyperinsulinemia and the 

resultant insulin resistance in rodents [365]. In agreement with this, the prevention of 

hyperphagia-associated hyperinsulinemia significantly improved insulin sensitivity in 

MC4RKO mice, suggesting that enhanced calorie intake is the predominant factor in 

contributing to the onset of hyperinsulinemia. In humans, hyperinsulinemia precedes and 

may initiate insulin resistance [287, 360, 366], and thus is likely a dominant influence to the 

development of T2D during obesity. Moreover, anecdotal evidence from T1D mouse 

model demonstrates that prolonged insulin exposure mediates the development of insulin 

resistance [367]. In this context, it is likely that prolonged excess exposure to insulin 

following excess food consumption may be the primary cause of insulin resistance in 

MC4R deficiency, and presumably in obesity. Of interest, PF WT LM mice developed 

insulin resistance as a consequence of pair feeding. Mice consume food throughout the 

day [368, 369] and, as such, restricted meal frequency following pair feed intervention may 

alter response to anticipation for diurnal feeding [370], and may impact blood glucose. 

Thus, unlike PF MC4RKO mice showing normal insulin sensitivity (presumably as a 

consequence of elevated fasting insulin secretion at 12 weeks of age), PF WT LM may 

show a different response to insulin-stimulated glucose utilization in response to altered 

meal frequency, presumably to sustain blood glucose levels. Feeding was restricted to two 

meals per day in PF WT LM and PF MC4RKO mice. No credible information exists to 

address the potential role of pattern of meal frequency in regulating insulin sensitivity in 

mice. Thus, the effects of pair feeding in regulating insulin sensitivity warrant further 

investigation. 

 Current observations provide substantial evidence suggesting that hyperphagic 

MC4RKO mice developed GH deficiency (Chapter 5, Figure 5-2) regardless of sustained 

rapid linear growth (Chapter 5, Figure 5-1). This reduction in GH secretion occurs 

alongside hyperphagia-associated hyperinsulinemia (Chapter 5, Figure 5-5). Of interest, 

observations confirmed that MC4Rs are not expressed on somatotrophs and GHRH 

neurons, and thus may not directly modulate pulsatile GH release through these cell types. 
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This suggests that the observed suppression of GH release in MC4RKO mice occurs 

secondary to metabolic alterations that develop alongside hyperphagia. Given the 

proposed suppression of GH release by an elevation in insulin secretion [14], hyperphagia-

associated hyperinsulinemia may contribute to the progressive loss of GH release in 

MC4RKO mice. Observations in this study provide compelling evidence demonstrating that 

the reversal of hyperphagia-associated hyperinsulinemia occurred alongside the complete 

restoration of pulsatile GH secretion in MC4RKO mice, and the recovery of muscle-specific 

IGF-1 levels. To this extent, hyperphagia-induced hyperinsulinemia may be a potential 

mechanism that contributes to the suppression of GH release throughout periods of 

energy excess. The mechanisms by which insulin directly regulates GH release are not 

completely understood. Previous studies demonstrate that insulin inhibits GH release from 

pituitary somatotrophs via InsR [170, 280-282]. Thus, elevated insulin may modulate GH 

release directly at the anterior pituitary gland in MC4RKO mice. 

 Consistent with prior observations [359], PF MC4RKO mice were significantly 

heavier and accumulated more adipose mass in comparison to PF WT LM. Moreover, the 

amount of adipose mass was not significantly impacted by the consequence of pair 

feeding. Thus, observations suggest that a functional MC4R is critical in the regulation of 

metabolism and energy expenditure. Consequently, impairments in metabolic defects and 

reduced activity as a consequence of MC4R dysfunction is predominantly the principal 

cause for weight gain in MC4RKO mice. Importantly, the prevention of hyperphagia-

associated hyperinsulinemia occurred alongside the recovery of pulsatile GH release in PF 

MC4RKO mice, regardless of increased adiposity. Based on the premise that pulsatile GH 

secretion declines with increased adiposity [12], observations suggest that altered adipose 

mass may not predominantly account for reduced GH release in obesity. In addition, 

altered GH release in MC4RKO mice did not coincide with changes in circulating IGF-1, 

NEFAs, or glucose that may regulate GH release. Rather, observations demonstrate that 

the progressive suppression of GH secretion relative to an elevation in circulating 

measures of insulin in hyperphagic MC4RKO mice. This physiological adaptation is 

essential to sustain fatty acid flux. In agreement with this, circulating levels of NEFAs and 

glucose in PF MC4RKO mice were maintained within the same range to that seen in PF 

WT LM. This again highlights the concept that altered GH/insulin balance in hyperphagic 

and rapidly growing MC4RKO mice is a metabolic adaptation to sustain fatty acid and 

glucose flux. Of interest, circulating NEFAs levels appears to be reduced in response to 

pair feeding. Accordingly, mice eat intermittently throughout the day, consuming most of 

their calories during the dark phase [368, 369]. Thus, mice may manifest food anticipatory 
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responses prior to their expected meal times [371]. Consequently, WT LM and MC4RKO 

mice may exhibit reprogrammed diurnal food anticipatory activity to restricted schedules of 

pair feeding [370]. In this regard, changes in circulating NEFAs levels may be confounded 

by timing of meal frequency when pair feeding was initiated or the time of sampling relative 

to the meal. No observations exist to demonstrate the anticipatory response relative to the 

circadian release of NEFAs, and thus observations warrant further investigation.     

 In conclusion, prevention of hyperphagia-associated hyperinsulinemia by pair 

feeding normalized the rate of linear growth and recovered pulsatile GH release in 

MC4RKO mice. This occurred alongside sustained circulating NEFAs and glucose 

measures. Thus, altered GH and insulin balance in hyperphagic and rapidly growing 

MC4KRO mice reflect metabolic requirements that sustain fatty acid and glucose flux 

during periods of excess energy consumption. Second to this, metabolic adaptations for 

suppressed GH release may override the traditional role of GH in promoting pubertal 

growth associated with MC4R deficiency, and thus linear growth may occur independent of 

the normal anabolic actions of GH in promoting growth. This may occur in response to 

hyperinsulinemia, or co-secreted factors that facilitate insulin action to maintain optimal 

fatty acid and glucose homeostasis. 
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CHAPTER SEVEN: GENERAL DISCUSSION AND CONCLUSIONS 

Excess calorie intake during childhood is often associated with tall stature [372, 373], 

whereas malnutrition results in stunted growth [374]. The dynamic changes in longitudinal 

growth coupled with changes in energy balance suggest that mechanisms that regulate 

linear growth are tightly controlled relative to food intake. Under normal circumstances, GH 

is the predominant regulator of linear growth during puberty, resulting in the attainment of 

final adult height [1]. This is supported by observations in children with idiopathic short 

stature as a consequence of childhood onset GHD, whereby the administration of GH 

results in the normalization of adult height [9, 375]. Following the attainment of final adult 

height, the anabolic role of GH in driving pubertal linear growth shifts to that of a metabolic 

hormone to primarily regulate body composition and adiposity throughout adulthood. In 

adults, GH deficiency results in reduced bone density and muscle mass and increased 

adipose mass [120, 376]. Early cessation of GH therapy in childhood onset GHD results in 

reduced bone and muscle mass, and a predisposition to the development of obesity as 

adults [377]. In this regard, GH is an important determinant of somatic maturation 

throughout early adulthood.  

The secretion of GH declines with increased adiposity, culminating in GH deficiency 

in obesity [12, 13]. Importantly, the decline in GH secretion in humans precede dietary-

induced weight gain [14]. This suppression of GH secretion following excess calorie intake 

enhances insulin resistance and improves meal tolerance [14, 71]. Thus, the suppression 

of GH secretion during extended periods of food consumption in humans is pivotal to 

accommodate the uptake of dietary fat via insulin-mediated lipogenesis [14, 71]. Insulin 

may modulate GH release relative to food intake including short-term and prolonged 

hyperphagia, and weight gain including dietary-induced weight gain and obesity. Of 

interest, rapid linear growth velocity is observed in pubertal obese children [339], 

regardless of GH deficiency [153]. At this time, the loss of GH release likely reflects the 

conservation of insulin function as seen in adults. Accordingly, rapid linear growth in obese 

children is unlikely attributed to GH-mediated effects, suggesting that factors other than 

GH may facilitate and promote linear growth at this time. 

 Dysfunction of MC4R signaling results in hyperphagia, rapid weight gain, and 

obesity [58, 68]. As with pubertal obese children, defects in MC4R signaling results in 

accelerated linear growth, however, the cause for rapid growth may differ considerably. 

Assessment of GH secretion in MC4R deficient adults confirms a partial recovery of 

pulsatile GH secretion relative to obese individuals [68]. Consequently, it is thought that 

activation of MC4R signaling contributes to the suppression of GH release in obesity, and 
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that GH hypersecretion following the loss of MC4R promotes rapid linear growth in MC4R 

deficient children. As discussed in Chapter 5, pharmacological activation or disruption of 

MC4R signaling does not impact spontaneous GH release in rodents [20-22]. Thus, it is 

unlikely that the MC4R directly modulate pulsatile GH release. Given the proposed actions 

of suppressed GH secretion to accommodate insulin actions in response to calorie excess, 

the proposed recovery of endogenous GH release to promote rapid linear growth in 

hyperphagic obese MC4R deficient children seems physiologically contradictory. 

Importantly, GH secretion during linear growth in pubertal MC4R deficient children has not 

been described. Thus, it remains unknown whether pubertal GH hypersecretion 

contributes to rapid pubertal linear growth in hyperphagic MC4R deficient children. 

Therefore, the demonstration of GH/IGF-1 mediated growth in a transgenic mouse model 

of MC4R deficiency will provide valuable insights regarding the role of MC4R in mediating 

GH release and promoting rapid pubertal linear growth during energy excess.  

 This thesis sought to investigate whether defective MC4R directly contributes to 

altered GH release during hyperphagia-induced weight gain. Second to this, this thesis 

addressed whether GH hypersecretion following the loss of MC4R signaling contributes to 

enhanced pubertal linear growth. In addressing these notions, 4 major findings were 

observed: 1) MC4Rs do not colocalize with somatotrophs and GHRH neurons, confirming 

that MC4Rs do not directly modulate GH release through interactions with somatotrophs or 

GHRH neurons; 2) rapid pubertal growth in hyperphagic MC4RKO mice does not occur in 

response to an elevation in GH/IGF-1 secretion; 3) MC4RKO mice develop GH deficiency 

during periods of rapid linear growth; and 4) prevention of hyperphagia in MC4RKO mice 

restores normal GH/insulin balance. Collectively, these observations clearly demonstrate 

that hyperphagia is the prevailing factor underlying the metabolic disruptions observed in 

MC4RKO mice that results in the suppression of GH release and enhanced linear growth. 

The progressive suppression of GH secretion following energy excess occurs with 

extended periods of overeating. This reduction in GH secretion that corresponds to the rise 

in insulin secretion is likely a consequence of the inhibitory effects of hyperphagia-

associated hyperinsulinemia that occurs to accommodate the continual clearance of 

dietary fat from circulation into storage. Moreover, the physiological adaptations that 

contribute to the suppression in GH release during periods of pubertal hyperphagia likely 

sustain rapid linear growth in the absence of GH. These observations are discussed below 

and summarized in Figure 7-1. 
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7.1 Hyperphagia-associated GH suppression is a metabolic adaptation that 

facilitates insulin action 

Under normal physiological circumstances, circulating GH and insulin act in concert to 

maintain the storage or use of circulating NEFAs relative to metabolic demand [378]. GH 

antagonizes the effects of insulin to regulate lipolysis and glucose oxidation, resulting in 

the rise in circulating NEFAs (Figure 1-9) [124]. In contrast, an elevation in insulin 

secretion following food consumption promotes glucose disposal and lipoprotein 

metabolism by stimulating lipogenesis, glycogen and protein synthesis, and by inhibiting 

lipolysis, glycogenolysis and protein breakdown (Figure 1-8)  [270]. Much of the anti-

lipolytic effects of insulin have been attributed to actions of insulin-induced adenosine 

monophosphate-activated protein kinase (AMPK)-mediated phosphorylation of the 

hormone sensitive lipase (HSL) [378-380], resulting in the regulation of triacylglyceride 

synthesis. In contrast, GH replacement therapy did not alter Hsl mRNA expression in 

adipose tissue in GHD adults [381], thus suggesting that GH may increase whole-body 

lipolytic rate independent of HSL. More recently, lipolysis appears to be primarily initiated 

by adipose triacylglyceride lipase (ATGL) [378], however, the role of GH-mediated ATGL 

activation of lipolysis has not been verified. Thus, it remains unknown whether the 

suppression of GH release relative to energy excess contributes to altered ATGL-mediated 

fatty acid flux. In view of this, excess dietary consumption appears to be associated with 

increased circulating NEFA flux [362]. However, a recent comprehensive assessment of 

NEFA kinetics in obese humans demonstrated that circulating measures of NEFAs are 

maintained [382]. Subsequent meta-analysis further revealed that the rate of NEFA 

exchange in circulation is sustained, regardless of the severity of obesity [285]. Given the 

reciprocal actions of GH and insulin in maintaining NEFAs storage, one may assume the 

inverse relationship between GH and insulin secretion promotes the clearance and storage 

of surplus of dietary fat. Thus, suppressed GH secretion that occurs with increased 

adiposity and alongside the rise in insulin secretion, following excess dietary consumption 

is likely a physiological adaptation that facilitates the homeostatic balance of use or 

storage of circulating NEFAs. Consequently, an increased in circulating NEFAs levels 

should only be observed following a disruption to the GH/insulin balance that sustain 

NEFAs balance. Indeed, recent measures demonstrate that impaired pulsatile GH 

secretion in healthy adults precede dietary-induced weight gain, and occurs alongside an 

elevation in insulin secretion [14, 71]. This suppression of GH release following excess 

food consumption ameliorates insulin resistance, thereby sustaining optimal meal 

tolerance [71]. These observations demonstrate that the suppression of GH secretion 
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alongside enhanced insulin secretion is an essential physiological adaptation to ameliorate 

insulin resistance. An inverse relationship between circulating GH and insulin is further 

illustrated in high-fat diet induced mouse models, whereby a progressive decline in GH 

secretion relative to an adipose-specific elevation in circulating insulin measures was 

demonstrated following dietary-induced weight gain [97, 98]. Observations from these 

studies were limited to relatively short periods of high fat feeding (8 weeks of dietary 

intervention), and thus the relationship between GH and insulin as long-term mediators of 

NEFAs flux remains to be determined.  

Given the proposed interactions between GH and insulin in sustaining NEFAs flux, it is 

anticipated that the shift between circulating GH and insulin secretion is sustained 

throughout extended periods of hyperphagia. As detailed in Chapter 5, impaired pulsatile 

GH release in hyperphagic MC4RKO mice occurred alongside the early development of 

chronic hyperinsulinemia. Moreover, observations demonstrate that circulating NEFAs in 

MC4RKO mice throughout hyperphagia-induced weight gain is maintained within a normal 

range, regardless of increased adiposity. Given that GH may induce insulin resistance 

[383, 384], the removal of GH release during overeating may act to preserve insulin action, 

by reducing insulin resistance induced by lipolysis and GH signaling. Studies in humans 

demonstrate that the infusion of GH decreased the rate of glucose infusion during the 

euglycemic-insulinemic clamp [384-386], suggesting the impairment of insulin actions. 

However, given that GH treatment in humans results in increased rate of lipolysis and 

elevated circulating NEFAs [125], the observed effects of GH on compromised insulin 

actions may, at least in part, be attributed to the rise in circulating NEFAs in response to 

the lipolytic actions of GH, thereby interfering with insulin signaling to induce insulin 

resistance [387]. Consequently, suppressed GH secretion that accompanies increased 

adiposity may attenuate the severity of insulin resistance. To this extent, pharmacological 

reversal of suppressed GH release by GH replacement therapy following hyperphagia 

induced a greater increase in circulating insulin, fasting insulin, and insulin response to a 

meal in hyperphagic adults [71]. Regardless of sustained glucose clearance in response to 

elevated insulin, assessment of insulin function by homeostasis model assessment-

estimated insulin resistance (HOMA-IR) results in reduced insulin sensitivity. Importantly, 

preventing the suppression of GH secretion in hyperphagic adults increased circulating 

NEFAs concentrations that would normally be driven into storage by insulin [71]. In line 

with this, excess GH in circulation severely impaired actions of insulin and lipid metabolism 

despite sustained glucose disposal [388, 389]. Under a normal diet, bGH overexpressing 

transgenic mice develop hyperphagia, insulin resistance and show the accumulation of 
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plasma triglycerides [388, 390]. Due to the inability to sustain the storage and clearance of 

dietary fat, hyperphagic bGH mice finally develop hyperlipidemia and diabetes, indicating 

the complete disruption of insulin function [388, 390]. In support of this interpretation, 

defective GH signaling in GHRKO mice is associated with altered visceral adipose 

distribution and enhanced insulin sensitivity, regardless of increased adiposity [391, 392]. 

Accordingly, the metabolic profiles of visceral adipose may be lipolytically active to 

facilitate the actions of insulin in rechanneling the availability of circulating fatty acid into 

storage [393]. To this extent, it appears that the suppression in GH secretion that normally 

occurs during overeating may protect against insulin resistance and hyperlipidemia that 

typically occurs with overeating. Ultimately, this may prevent adverse pathophysiologic 

sequelae associated with insulin resistance including cardiovascular risk and the eventual 

development of T2D following prolonged periods of excess food consumption [394]. Given 

that MC4RKO mice are hyperphagia, prolonged sustained positive energy intake may 

eventually disrupt the protective actions of suppressed GH secretion following the 

complete removal of GH. Ultimately, this will culminate in insulin resistance, disrupting 

mechanisms to sustain circulating NEFAs exchange. Thus, an extension to assess 

changes in NEFAs balance in MC4RKO mice remains to be determined. The findings by 

Cornford et al (2012) provide compelling evidence that an elevation in circulating NEFAs 

may not contribute to early development of obesity [395]. Rather, altered GH/insulin 

balance may represent an essential metabolic adaptation that sustains NEFAs and 

glucose homeostasis in response to excess dietary intake, regardless of age. Mechanistic 

studies to demonstrate disruption between GH and insulin balance resulting in disrupted 

NEFA flux do not exist. Furthermore, observations in hyperphagic MC4RKO mice were 

limited to 20 weeks of age. Considering that the release of GH declines with age, a further 

extension to confirm GH and insulin as long-term mediators of NEFAs homeostasis 

warrants further investigation. Given that MC4RKO mice developed hyperphagia between 

4 and 5 weeks of age, the physiological requirement for suppressed GH release that 

accommodates the rise in insulin secretion during periods of sustained pubertal 

hyperphagia may in turn favour linear growth. 

 

7.2 Rapid linear growth in pubertal hyperphagic MC4RKO mice occurred in the 

absence of increased GH/IGF-1 synthesis 

Loss of MC4R signaling results in disrupted satiety signals, resulting in hyperphagia and 

rapid weight [58, 68]. Clinical observations demonstrate that pulsatile GH secretion is 

restored in obese hyperphagic MC4R deficient adults, regardless of increased adiposity 
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[68]. Moreover, defects in MC4R signaling results in an increase in adult height/body 

length in humans and rodents [58, 68]. While not directly assessed, observations suggest 

that increased pubertal GH release following the loss of MC4R signaling promotes 

accelerated linear growth, and that MC4R mediates the suppression of GH release in 

obesity. Observations from Chapter 5 demonstrate that rapid linear growth in MC4RKO 

mice occurs between 5 and 8 weeks of age, and while slowing, the rate of linear growth 

exceeds that seen in WT LM between 8 and 16 weeks of age. Therefore, as seen in 

humans with defective MC4R signaling [68], deletion of the MC4R resulted in rapid linear 

growth in MC4RKO mice that occurs predominantly during pubertal maturation leading into 

adulthood. Given that the GH/IGF-1 system is critical for normal growth and development 

during puberty [1], and that the loss of MC4R signaling in humans is thought to contribute 

to GH hypersecretion, it was anticipated that GH hypersecretion would coincide with 

periods of rapid linear growth in MC4RKO mice. However, observations clearly 

demonstrate impaired pulsatile GH secretion occurring in MC4RKO mice by 8 weeks of 

age. At this time, MC4RKO mice are still growing at a greater rate compared to WT LM. As 

detailed in Chapter 3, the slowing of rapid pubertal linear growth is accompanied by a 

decline in total GH secretion throughout adulthood. While this may infer that requirements 

for GH actions is suffice towards the attainment of somatic growth during transition into 

adulthood, the magnitude of GH reduction in MC4RKO mice was greatly exaggerated 

compared to that normally occurring in WT mice (first characterized in Chapter 3). In fact, 

the rapid suppression of GH release in MC4RKO mice by 8 weeks of age preceded the 

slowing of rapid linear growth, which does not occur until 16 weeks of age. Thus, 

observations suggest that the suppression of GH secretion is unlikely to promote rapid 

linear growth in MC4RKO mice relative to WT LM. Based on the premise that GH-deficient 

obese children demonstrate increased growth velocity [327, 339], it was proposed that 

factors other than GH may contribute to rapid linear growth in MC4RKO mice at this time. 

 While rapid linear growth in prepubertal obese children [339] occurs alongside the 

development of GH deficiency [153], circulating levels of IGF-1 appear to remain 

unchanged [153, 192] or are elevated [195]. Given that IGF-1 is a major determinant of 

postnatal growth, sustained IGF-1 actions may therefore exert a GH-independent growth 

stimulating effect to promote rapid linear growth in these children. Of interest, observations 

in liver-specific IGF-I deficient mice demonstrate an approximate 80% reduction in 

circulating IGF-1 levels. The reduction in circulating IGF-I is associated with elevated 

circulating GH (based on single GH measurements) [109, 110] and sustained free IGF-1 

levels [189]. Importantly, the reduction in circulating IGF-1 levels did not impact postnatal 
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growth in liver-specific IGF-I deficient mice [109, 110], suggesting that free IGF-I may 

sustain the normal growth and development in these mice. As discussed above, systemic 

IGF-1 administration in humans and rodents displaying GH deficiency or disrupted GHR 

signaling stimulates linear growth [181-184]. Deletion or disruption of IGF-1 or IGF-1R by 

homologous gene recombinant in mice results in severe intrauterine growth retardation 

and postnatal growth failure [185-188] (Chapter 1.7.3). These studies demonstrate that 

IGF-1 may play a critical role in promoting normal longitudinal growth. However, 

observations do not directly clarify the physiological roles between circulating and local 

production of IGF-1 in promoting linear growth. Thus, it remains unclear how local 

production of IGF-1 may contribute to normal linear growth. In addition, IGF-1 is known to 

exert negative feedback on GH secretion by decreasing GH mRNA and GH release [396-

398]. Thus, while liver-derived IGF-1 appears to play a central role in the feedback 

regulation of GH release, circulating IGF-I levels may not be of critical importance in 

regulating postnatal growth. Rather, normal linear growth in liver-specific IGF-I deficient 

mice may in part be related to sustained autocrine/paracrine actions of IGF-1. As with 

obese MC4R deficient or obese adults [68, 153, 192], circulating IGF-1 levels were normal 

in obese MC4RKO mice compared to WT LM. Because the abundance of circulating IGF-1 

is associated with changes in basal GH secretion, rather than GH pulse amplitude [353], it 

is not unexpected that circulating IGF-1 levels are maintained in hyperphagic MC4RKO 

mice regardless of suppressed peak GH release. Furthermore, insulin may increase 

hepatic GHR expression and enhance post-receptor signaling of GHR to increase IGF-1 

production [356]. Consequently, sustained circulating IGF-1 synthesis may, in part, be 

attributed to the observed chronic hyperinsulinemia in MC4RKO mice. This likely occurs 

via insulin-mediated activation of the hepatic GHR in MC4RKO mice [356], and thus 

warrants further investigation. Regardless, observations suggest that sustained circulating 

IGF-1 concentrations may not contribute to rapid linear growth in MC4RKO mice. Total 

circulating IGF-1 may not adequately reflect IGF-1 bioactivity [192, 399]. In view of this, 

changes in circulating IGFBPs may modify and interfere with interactions between IGF-1 

and IGF-1R, thereby modulating IGF-1 bioavailability [192, 400]. Amongst all IGFBPs 

identified, IGFBP1 and IGFBP2 are proposed to be pivotal in the inhibition of IGF-1 actions 

[401, 402]. IGFBP3 is recognized as the major carrier protein, since approximate 90% of 

circulating IGF-1 is bound to IGFBP3 [180]. Given that IGFBP3 is dependent of the release 

of GH [111], the reduction in circulating IGFBP3 in MC4RKO mice likely occurred as a 

consequence of suppressed pulsatile GH release. Circulating IGFBP1 and IGFBP2 levels 

are primarily mediated by insulin. In agreement with previous findings [14, 192, 341, 342, 
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403], the rapid decline in plasma IGFBP1 and IGFBP2 in obese MC4RKO mice occurred 

alongside the development of hyperinsulinemia. Thus, elevated circulating insulin levels 

may modify IGF-I bioavailability as a result of insulin-mediated changes in IGFBP 

concentrations [192, 341]. In turn, this may indirectly promote IGF-1 mediated growth via 

common insulin/IGF-1 converging pathways [328]. Consequently, observed changes in 

circulating IGFBPs are thought to contribute to altered IGF-I/IGFBP3 molar ratio (marker of 

bioactive IGF-I) and finally an increase in IGF bioactivity to drive rapid linear growth in 

MC4RKO mice. Irrespective of this, a change in IGF-1/IGFBP3 molar ratio that reflects 

increased IGF-1 bioactivity was not apparent in MC4RKO mice, suggesting that bioactive 

IGF-1 may not contribute to rapid linear growth in MC4RKO mice. Changes in IGF-

1/IGFBP3 molar ratio may not accurately reflect IGF-1 bioactivity since direct assessment 

of IGF-1 bioavailability was not performed in this study. Consequently, it remains unknown 

whether free IGF-1 levels promotes rapid growth rate in MC4RKO mice. Of importance, 

increased linear growth in obese adults is associated with elevated circulating free IGF-1 

levels [191, 192, 197]. Moreover, liver-specific deletion of IGF-1 in mice sustained normal 

free IGF-1 levels [189]. Thus, the local production of IGF-1 may account for normal growth 

and development.  

 Collectively, observations demonstrate that rapid linear growth velocity in MC4RKO 

mice does not occur as a direct consequence of increased GH/IGF-1 secretion. Given that 

the rapid suppression of GH secretion preceded rapid pubertal linear growth in 

hyperphagic MC4RKO mice, physiological adaptations needed to cope with prolonged 

positive energy excess would presumably ensure sustained rapid pubertal linear growth, 

independent of GH. This may occur in response to hyperinsulinemia.  

 

7.3 Altered GH/insulin balance in hyperphagic MC4RKO mice contributes to rapid 

pubertal linear growth  

Increased metabolic intake is essential to cope with rapid childhood growth during pubertal 

maturation [404]. Thus, an increase in GH actions at this time may accommodate the 

attainment of adolescence growth spurt, while facilitating the exchange of dietary 

substrates relative to metabolic demand. As discussed above, alterations in GH/insulin 

balance during periods of excess energy intake represent an essential physiological 

adaptation to prevent hyperlipidemia. This is demonstrated by observations of suppressed 

GH/increase insulin secretion that sustained NEFAs/glucose balance in hyperphagic 

MC4RKO mice (detailed in Chapter 5). Consequently, it was thought that altered 

GH/insulin balance during periods of energy excess to promote fat storage in hyperphagic 
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adolescents would result in decreased pubertal linear growth as a consequence of 

reduced GH secretion. Nonetheless, childhood obesity is often associated with rapid 

pubertal linear growth and consequently tall stature [339], regardless of GH deficiency [15]. 

Traditionally, the pubertal increase in linear growth associated with GH has been attributed 

to androgens or estrogens secretion in pubertal children [405]. Irrespective of this, rapid 

linear growth velocity in obese children was achieved prior to the onset of pubarche, 

suggesting that rapid pubertal linear growth may be mediated independent of pubertal 

maturation, and therefore the production and release of gonadal steroids actions [339]. 

Consequently, the physiological balance between GH/insulin that occurs to encourage 

sustained NEFAs and glucose clearance during excess energy consumption may surpass 

the role of GH and steroid hormones, and therefore may represent significant changes in 

the evolution of mechanisms underlying continued pubertal linear growth during excessive 

energy availability. Hyperphagia is a core feature of many obesity models, and the fact that 

current observations in hyperphagic MC4RKO mice merely reflected changes secondary 

hyperphagia associated hyperinsulinemia. Thus, further assessment to validate the 

relationship between GH and insulin balance in other altered somatic growth of 

hyperphagic models per se must be considered. Of importance, decreased NEFA 

concentrations and glucose oxidation and reduced insulin sensitivity is often seen in 

pubertal children. Given the reciprocal actions of GH and insulin in promoting fat storage, 

altered insulin sensitivity and thus perturbed NEFA/glucose exchange in pubertal children 

are likely mediated by elevated GH secretion that coincides with pubertal development 

[406]. To this extent, it seems that the shift between GH/insulin that favors physiologic 

pubertal insulin resistance influence insulin-sensitive fuel metabolism during puberty. 

Presumably, this counters insulin action in reducing glucose oxidation and decreasing lipid 

oxidation to provide energy substrates necessary for growth in pubertal children. This 

pattern of substrate utilization may change relative to energy excess during adulthood. To 

achieve this, the shift between GH and insulin balance must be altered accordingly to 

promote the deposition of dietary fat. This explanation is substantiated by compelling 

evidence demonstrating the disruption in GH/insulin balance and the debilitating 

consequences on NEFA exchange, resulting in profound hyperlipidemia and risks of 

cardiovascular disorders (detailed in Chapter 7.1) [71, 388, 390-392]. Therefore, the 

inverse relationship between GH and insulin in the maintenance of sustained NEFAs and 

glucose flux appears to be conserved, regardless of age. Consequently, one may assume 

the need to suppress GH secretion that sustains NEFAs and glucose homeostasis 
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supersedes the role of GH as a regulator of pubertal linear growth. This may occur in 

response to an elevation insulin secretion. 

 

7.4 Hyperphagia-associated hyperinsulinemia mediates rapid pubertal linear growth 

in MC4RKO mice 

Observations in humans and rodents proposed the potential role of insulin in suppressing 

GH release [14, 97, 98, 283], and this may occur independent of IGF-1 [283]. Moreover, 

insulin is thought to promote growth via common insulin/IGF-1 mediated pathways [358]. 

Thus, hyperphagia-induced hyperinsulinemia may contribute to rapid linear growth in 

MC4RKO mice. Of interest, the slowing in the rate of linear growth in MC4KRO mice 

coincided with the development of systemic insulin resistance, and a reduction in muscle 

specific InsRβ expression. It is thus tempting to speculate that systemic insulin resistance 

contributed to a slowing in growth rate. It should be noted, however, that muscle specific 

IGF-1Rβ expression in MC4RKO mice was preserved throughout all ages assessed 

(Chapter 5, Figure 5-10). Whilst signaling at a reduced binding affinity [351], insulin may 

act via sustained IGF-1R to promote rapid growth in the absence of GH in MC4RKO mice. 

Nonetheless, direct evidence to suggest activation of insulin-stimulated IGF-1R-mediated 

growth does not exist. Given the complexity of the insulin/IGF-1 system (detailed in 

Chapter 1.7.3), it remains unknown how actions of insulin directly facilitate rapid linear 

growth. Considering that circulating insulin rapidly changes with overeating (discussed 

above), observations suggest that hyperphagia-associated hyperinsulinemia is likely 

responsible for the rapid linear growth and the suppression of GH release. Based on the 

premise that obesity and hyperphagia is associated with hyperinsulinemia and GH 

deficiency, the relationship between pulsatile GH secretion and insulin in promoting linear 

growth was further assessed by restricting food intake in pubertal MC4KRO mice to that 

normally consumed by WT LM.  

 Following calorie restriction by pair feeding, the rate of growth in MC4RKO mice 

slowed in parallel to that seen in PF WT LM. This occurred alongside the normalization of 

hyperinsulinemia, the restoration of pulsatile GH secretion and a recovery in muscle-

specific IGF-1 expression (Chapter 6, Figure 6-5; presumably due to the recovery in peak 

GH release [407]). PF MC4RKO mice continued to gain weight and accumulated 

increased adiposity. Activation of the MC4R results in increased energy expenditure 

mediated through upregulated diet-induced thermogenesis [41]. Thus, weight gain and 

increased adiposity in PF MC4RKO mice likely occur in response to metabolic deficits and 

hypometabolism as a consequence of defective MC4R actions [359]. The recovery of GH 
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release in PF MC4RKO mice occurred regardless of increased adiposity, suggesting that 

altered adipose mass may not be the principle cause for impaired GH secretion in obesity. 

This restoration of pulsatile GH release was reflected by a recovery in total, pulsatile GH 

secretion and mass of GH secreted per pulse at 8 and 16 weeks of age. The extent of 

mass of GH pulse recovered in PF MC4RKO mice was significantly lower at 16 weeks of 

age compared to PF WT LM. This may be due, in part, to persistent metabolic effect of a 

modest rise in insulin secretion in PF MC4RKO mice at 12 weeks of age (Chapter 6, 

Figure 6-1). Regardless, prevention of hyperphagia-associated hyperinsulinemia results in 

the restoration of pulsatile GH profiles in MC4RKO mice. In support of these findings, 

weight loss in humans reversed obesity-associated hyperinsulinemia [155, 408], and 

consequently restored impaired GH secretion, [153-155, 171]. Thus, enhanced calorie 

consumption appears to be a key factor that underlies the onset of hyperinsulinemia. 

Given the interactions between GH and insulin in sustaining meal tolerance [71], one may 

speculate that insulin directly contributes to the reduction in GH release in hyperphagic 

MC4RKO mice. Insulin inhibits GH release from isolated somatotrophs via InsR [170, 280-

282]. These effects dominate regardless of the development of systemic insulin resistance 

[170], suggesting that somatotrophs remains insulin responsive during periods of energy 

excess. In this context, it is likely that an elevation in insulin in response to excess dietary 

intake promotes the progressive and sustained suppression in GH release, even in the 

presence of systemic insulin resistance. Furthermore, the inverse relationship between GH 

and insulin is demonstrated in T1D patients, whereby GH secretion is markedly elevated in 

these patients [274, 275]. Intensive insulin treatment in T1D patients results in the 

reduction in GH secretion. Importantly, the suppression of GH release following intensive 

insulin treatment in this population occurred alongside the recovery of circulating IGF-1 to 

within a normal range [274, 275]. This may be explained by insulin-mediated hepatic GHR 

activation to stimulate IGF-1 secretion [356], and thus may feed back to inhibit GH release. 

Therefore, further studies focusing on the pharmacological prevention of hyperphagia-

associated hyperinsulinemia may potentially address the role of insulin in regulating GH 

release during periods of energy excess. Based on the premise that the somatotrophs may 

remain insulin responsive [170], elevated insulin secretion may act via somatotrophs-

specific InsR to inhibit GH secretion in hyperphagic MC4RKO mice. This warrants further 

investigation.  
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7.5 Altered GH release in MC4RKO mice occur in response to hyperphagia-

associated hyperinsulinemia rather than direct MC4R-mediated actions 

Based on the premise of recovered GH pulsatility in obese MC4R deficient adults [68], it 

appears that the suppression of GH secretion in obesity is mediated via activation of the 

MC4R. Despite this association, the restoration of pulsatile GH release in MC4RKO mice 

in the absence of hyperphagia confirmed that the suppression of GH release occurs 

entirely independent of direct effects of the loss of MC4R signaling. As detailed in Chapter 

5, the MC4R is not expressed on somatotrophs or GHRH neurons. This observation 

provides further evidence to suggest that the MC4R does not directly modulate GH release. 

As seen in DIO rodent models [170, 172], hypothalamic gene expression for GHRH and 

SRIF does not change in obese MC4RKO mice. This is in agreement with pharmacological 

observations that exclude MC4R as a direct intermediate regulator of GH secretion, 

whereby hypothalamic GHRH expression or pulsatile GH release remained unchanged in 

response to the activation or disruption of the MC4R signaling by MC4R agonist (MT-II) or 

antagonist (SHU9119), respectively [20-22]. Thus, it is unlikely that suppressed GH 

release would have occurred as a consequence of loss of MC4R signaling in MC4RKO 

mice. Rather, observations suggest that the suppression of GH secretion following dietary-

induced weight gain and obesity is most likely attributed to direct inhibition of hyperphagia-

induced hyperinsulinemia. The mechanisms by which insulin directly inhibits GH release 

are yet to be confirmed, with current observations primarily limited to direct somatotroph-

mediated interactions [190, 283]. As described in Chapter 1.8.1.3, insulin may act centrally 

to stimulate the release of hypothalamic catecholamines [277] to activate SRIF neurons, 

thereby inhibiting GHRH-induced GH secretion [278]. However, hypothalamic gene 

expression of GHRH and SRIF does not change in DIO rodents [170, 172] or in MC4RKO 

mice (Chapter 5). Furthermore, pharmacological inhibition of SRIF activity did not seem to 

recover GHRH-induced GH secretion in obese adults [279]. Therefore, impaired GH 

secretion following hyperphagia and dietary-induced weight gain may not occur in 

response to alterations in hypothalamic control of GH secretion. Accordingly, assessment 

of Ghrh and Srif mRNA expression may not necessarily reflect GHRH and SRIF output, 

and thus measures of gene expression may not accurately reflect hypothalamic control of 

GH release. Furthermore, assessment of GHRH and SRIF output from mice do not exist. 

Thus, the premise that altered hypothalamic GHRH and SRIF activity directly contribute to 

suppression of GH release in MC4RKO mice requires further investigation. Regardless, 

given observations discussed above, it is likely that the suppression of GH secretion occur 
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predominantly in response to elevated insulin as a consequence of hyperphagia-and 

presumably obesity-associated hyperinsulinemia, acting directly on the somatotrophs.  

 

7.6 Future Directions 

Current observations provide a comprehensive overview of the physiological role of the 

MC4R in modulating GH release, and demonstrate an inverse relationship between GH 

and insulin secretion relative to hyperphagia. This metabolic shift in GH/insulin balance 

that sustain fatty acid and glucose exchange appears to be a preferential physiologic 

adaptation to protect against metabolic consequences during prolonged periods of energy 

excess, and thus appears to be conserved regardless of pubertal requirements that 

normally favors growth. Consequently, the metabolic requirements for sustained fatty acid 

and glucose clearance following periods of energy excess may override the role of GH in 

sustaining continued pubertal growth in humans, and this is thought to occur independent 

of GH actions (Figure 7-1). In this context, findings presented herein provide valuable 

insights underlying altered somatic growth in mouse models of pubertal hyperphagia, and 

may clarify the dichotomy of GH-dependent growth in obese-hyperinsulinemic 

adolescence. Furthermore, identification of the metabolic events that maintains optimal 

NEFAs and glucose homeostasis may expand current knowledge regarding the metabolic 

and endocrine consequences preceding the early stages of weight gain. This may in turn 

shed light on the development of obesity-related diseases, and thus offer intervention 

strategies to prevent adverse pathophysiological consequences associated with obesity.  

Based on compelling evidence provided, the suppression of GH secretion in 

response to elevated insulin secretion may be natural occurring metabolic event that 

follows periods of excess energy consumption to facilitate the storage of excess dietary 

substrates. Moreover, observations suggest that hyperphagia-associated hyperinsulinemia 

is mostly responsible for the suppression of GH release, presumably to alleviate potential 

metabolic risks detrimental to health. In contrast, relatively little is known about how 

metabolic adaptations in response to energy excess directly contribute to rapid linear 

growth. A major caveat of the current study is the lack of data to illustrate the interactions 

of GH and insulin secretion with measures of bone-specific IGF-1 levels. Given that 

excess energy consumption may alter linear growth, a chronic elevation in insulin levels 

following overeating may influence IGF-1 bioactivity by insulin-stimulated IGF-1 production 

and suppression of hepatic IGFBPs. This may in turn increase bioavailability of IGF-1 

actions directly on the bone. Accordingly, increased bone mineral density has been 

demonstrated in obese individuals [409], and in humans [60] and rodents [410] with 

http://europepmc.org/abstract/MED/9152736/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=insulin&sort=score
http://europepmc.org/abstract/MED/9152736/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=IGF-1&sort=score
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defects in MC4R signaling. This suggests that elevated bone mass may occur alongside 

rapid longitudinal growth. To this extent, future studies to define the mechanisms of rapid 

linear growth following progressive weight gain is of critical importance, and this requires 

the careful consideration of the potential overlapping direct and indirect actions of GH, 

insulin and IGF-1, since mice retaining either function may not deviate from normalcy to a 

great extent.   
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Figure 7-1: Schematic illustrating the physiological interactions between GH and insulin 
that occurs during energy excess. 
 

Prolonged hyperphagia underlies major metabolic responses (1). Altered GH/insulin 
balance (decreased GH and increased insulin) following excess energy consumption (2) 
results in altered lipid metabolism and decreased lipolysis (3) to promote the storage and 
exchange of dietary fat into adipose, muscle and the liver (4), thereby sustaining 
NEFAs/glucose homeostasis. To maintain this homeostatic balance, a chronic elevation of 
insulin release suppresses GH secretion, presumably by acting directly on the 
somatotrophs located within the anterior pituitary gland (2). Elevated insulin as a 
consequence of excess dietary intake may also act on the liver to indirectly increase IGF-1 
bioavailability, leading to reduced hepatic IGF-1/IGFBPs (5). Thus, during pubertal obesity, 
elevated insulin and IGF-1/IGFBPs may exert direct actions in the muscle as well as 
growth plate via specific receptors to sustain linear growth (5) in the absence of GH. 
Abbreviations; growth hormone; GH, non-esterified fatty acids; NEFAs, insulin-like growth 
factor-1; IGF-1, IGF-1 binding proteins; IGFBPs.  
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