
Abstract
!

This review discusses successful strategies and
potential pitfalls to assembling a natural prod-
uct-based library suitable for high-throughput
screening. Specific extraction methods for plants,
microorganisms, and marine invertebrates are

detailed, along with methods for generating a
fractionated sub-library. The best methods to
store, maintain and prepare the library for screen-
ing are addressed, as well as recommendations on
how to develop a robust high-throughput assay.
Finally, the logistics of moving from an assay hit
to pure bioactive compound are discussed.
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Introduction
!

Natural products often possess biological activity
and are a valuable source of drug leads [1–4].
Many natural products occupy unique areas of
chemical space [5] and they often differ from syn-
thetic compounds by the presence of multiple
chiral centers, an abundance of O over N atoms,
and more H-bond donors and acceptors [6–9].
Despite these structural differences and rich his-
tory in drug development, natural product-based
hit discovery is currently almost nonexistent in
large pharmaceutical companies. This is mainly
due to the perception that (i) the time between
isolation and structure elucidation is too long, (ii)
there are diminishing returns due to high derepli-
cation rates, (iii) there is a resupply issue for hit-
to-lead and preclinical studies, and (iv) natural
products are not “drug-like” and make poor leads.
These perceptions can be countered as follows.
Advances in dereplication, isolation techniques,
and structure elucidation have reduced the time
from extract to pure compound to under one
month on average in well equipped, organized,
and experienced labs [1,10,11]. The resupply is-
sue can be resolved by focusing on microorgan-
isms, with other organism types such as marine
invertebrates and plants only screened if there is
well documented collection information and a re-
supply plan. Advances in synthesis have also
solved some supply issues as demonstrated by
the totally synthetic anticancer drug eribulin
mesylate (trade name: Halaven®; launched 2010)
Butler MS et al. N
that was derived from the complex, sponge-de-
rived lead halichondrin B (l" Fig. 1) [12,13]. Natu-
ral product anticancer drugs such as trabectedin
(trade name: Yondelis®; launched in 2007) [14,
15] and homoharringtonine (trade name: Synri-
bo®; launched 2012) [16] are produced semisyn-
thetically for clinical use to overcome resupply
issues (l" Fig. 1).
The concern that natural products are “drug-like”
is paradoxical given that natural products have
been lead structures for many drugs [2,4]. Chris-
topher Lipinski, who introduced the “rule-of-five”
for guiding drug-like properties required for oral
adsorption, suggested that these rules were not
suitable for natural products due to the potential
for active transport [17]. The disconnect with the
rule-of-five and some natural products is demon-
strated in Ganesanʼs analysis of the 24 natural
product drug leads discovered from 1970–2006
that led to a drug approval [18]. In this study, it
was found that half of these leads were inside the
“Lipinski universe” (0 or 1 rule violations) chemi-
cal space, while the other half were in a natural
product “parallel universe”. Revealingly, leads
from the “parallel universe” had an equivalent
chance to leads from the “Lipinski universe” of
producing an oral drug; these leads were Lipin-
ski-compliant in terms of clogP and H-bond do-
nors, as well as potentially being able to access
carrier mediated or active transport mechanisms
[18].
In the 1980s, advances in robotics and computing,
coupled with enhanced access to biological re-
atural Product Libraries:… Planta Med 2014; 80: 1161–1170
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Fig. 1 Structures of the complex, sponge-derived
anticancer lead halichondrin B and its synthetically
inspired drug eribulin produced by total synthesis;
ester hydrolysis of the naturally occurring ester
mixture to give cephalotaxine, which is then esteri-
fied to give the anticancer drug homoharringtonine
(omacetaxine mepesuccinate); the ascidian-derived
anticancer drug trabectedin is semisynthetically
produced from the bacterial-derived cyanosafarin
B.
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agents and proteins, enabled large pharmaceutical companies to
develop high-throughput screening (HTS) capabilities [19–21].
Initially HTS was used to screen modest sized synthetic com-
pound libraries (thousands of compounds) and natural product
extract libraries, but the increased screening capacity created
soon led to an explosion in the number of synthetic compounds
added to screening libraries using combinatorial chemistry (hun-
dreds of thousands of compounds). During this time, HTS has had
an impact on drug discovery leading to the identification of nu-
merous new drugs leads and at least 12 drugs on themarket [22].
For over 20 years, HTS facilities have also been used in academic
settings and smaller biotechnology companies to screen for new
drugs leads. As large pharmaceutical companies retreat further
from natural product-based lead discovery (and basic research),
there are now opportunities for university-based research
groups to be at the forefront of lead discovery in natural prod-
ucts. It is also now feasible for these groups to use in-house re-
sources and contract research organizations (CROs) to validate
these drug leads and undertake preclinical drug development
[23].
In this review, we discuss how to assemble a natural product-fo-
cused library that would consist of structurally diverse extracts,
prefractionated extracts, and pure compounds. Practical meth-
ods to maintain, store and efficiently screen these natural prod-
uct-derived samples are also discussed, as the logistics of moving
from an assay hit to pure bioactive compounds.
Initiating a Natural Product Library
!

Extraction methods
The early years of natural product chemistry research were do-
minated by large scale plant-based studies that often used harsh
extraction methods. These extraction techniques included the
use of boiling solvents, acid-base extraction, and steam distilla-
tion. As isolation techniques and technology have improved, ex-
traction conditions have become milder, and the amount of com-
pound required for structure elucidation has dropped to well be-
low 1mg. Extraction methods [24,25] developed to increase ex-
traction efficiency include the use of ultrasound [26,27], micro-
wave [27,28], pressure (accelerated solvent extraction) [29],
Butler MS et al. Natural Product Libraries:… Planta Med 2014; 80: 1161–1170
supercritical fluid [30,31], ionic liquids [32], and deep eutectic
solvents [33,34]. Although these newer methods can be useful, a
simple method such as extraction with slightly aqueous MeOH
using gentle agitation captures most of the drug-like molecules
and is usually more than adequate for biological screening pur-
poses. Another popular extraction solvent for screening libraries
is EtOAc, which extracts less polar material compared to MeOH,
resulting in cleaner extracts of mid-polarity compounds. Extrac-
tion conditions for the compounds of interest can be subse-
quently optimized upon re-extraction or scale-up studies.

Sources of natural products
Plants: Plants have been used as the basis of medicines for thou-
sands of years and even today these traditional medicines are re-
lied upon for health care inmany parts of theworld [35,36]. Plant
secondary metabolites are often stored inside cells, which need
to be ruptured to increase the extractable yield. The plant mate-
rial is usually dried, either at slightly elevated temperatures or
using freeze drying, and ground to a fine powder before extrac-
tion. The choice of solvent depends upon the desired polarity
range with MeOH or EtOAc being excellent options for a single
solvent-derived extract library as previously discussed. Extracts
can also be generated by successively extracting with nonpolar
to polar solvents such as heptane, CH2Cl2, MeOH, and H2O, while
hot H2O can be used to mimic the administration of many tradi-
tional medicines as infused teas. Before screening, plant extracts
can be passed through a polyamide column (eluent MeOH) or
polyvinylpyrrolidone (PVP) to remove polyphenols that can in-
terfere with various enzyme biological assays [37–39]. Alkaloids
[40] can also be enriched from plant samples using an acid/base
extraction protocol and detected using Dragendorffʼs reagent
and/or using (+)-electrospray (ESI)-MS [37,41].
Microorganisms: Microbes have been the mainstay of industrially
focused natural product research due to their propensity to pro-
duce novel molecules and the use of fermentation as a renewable
source of compound resupply. Fungi and bacteria can be culti-
vated on both solid and liquid media under a variety of condi-
tions; however, bacteria are predominantly grown in liquid me-
dia, while fungi are grown using both solid and liquid media. Im-
portant parameters for secondary metabolite production are the
choice of media, temperature, aeration, and duration of the fer-
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mentation. On a small scale, liquid cultivations can be performed
in test tubes, flasks, or specially designed microtiter plates [42–
44], which can be freeze-dried and extractedwith an appropriate
solvent or directly extracted with an organic solvent that is im-
miscible with the broth [e.g., EtOAc, n-butanol (n-BuOH), methyl
ethyl ketone (MEK), tert-butyl methyl ether (TBME)]. Centrifugal
evaporation is particularly useful for organisms grown in high
salt content media to minimize “bumping” that can occur during
freeze drying. For larger scale liquid cultivations, multiple flasks
or a bioreactor are used with the biomass usually separated from
the broth using centrifugation. The wet biomass can then be ex-
tracted directly, or freeze dried and then extracted. Broth metab-
olites can be concentrated by elution through a resin column
with increasing amounts of organic solvents (usually MeCN or
MeOH) in H2O. Commonly used resins are the brominated-poly-
styrene Sepabeads SP207 (Mitsubishi Chemical Corp), the cross-
linked polystyrene Diaion HP20 (Mitsubishi Chemical Corp), and
the XAD (The Dow Chemical Company) ion exchange resins.
These resins can also be added during cultivation to capture com-
pounds, often in increased yield, and to help with downstream
purification [45]. There have also been reports of larger scale sol-
id fermentations [46,47].
Altering media and cultivation conditions can considerably influ-
ence secondary metabolite profile production. This is exempli-
fied by the OSMAC (one strain many compounds) approach [48],
which is particularly compatible with the number of cultivations
available using the microtiter plate format, and the use of addi-
tives to alter secondary metabolite profiles [49–51] or activate
cryptic biosynthesis pathways [50,52,53].
Marine invertebrates: As a result of potential logistical difficulties
associated with marine invertebrate recollection, gentle extrac-
tion methods are generally used to minimize compound degra-
dation. A commonly used method is to cut the invertebrate in
smaller pieces, place in a plastic container, immerse in EtOH,
and refrigerate until required. EtOH is often used instead of
MeOH to try and distinguish between naturally occurring esters
and artifactual esterification. The Crews Group have reported a
method that they use in the field where specimens are immersed
in anMeOH:H2O (1:1) solution and after approximately 24 h the
liquid is decanted and discarded [54]. The specimen is placed in a
Nalgene container, shipped back to the laboratory at ambient
temperature and then stored at 4°C until further processed [54].
Marine invertebrate specimens can also be freeze dried, pow-
dered and extracted, but care needs to be taken as occasionally
some metabolites can sublime into the cold trap.

Prefractionation and purified NP libraries
One way to reduce the complexity of an extract is to fractionate
before biological testing using column-based [55–63] or liquid-
liquid separation methods [64–66]. The production and the guid-
ing principles behind the generation of prefractionated libraries
have been recently reviewed [67,68]. Prefractionated extracts
are considerably less complex than crude extracts, which enables
screening at a high concentration and simplifies dereplication.
Although enriched extracts allow the detection of minor compo-
nents during screening, it is not possible to remove all interfering
or frequent hitting compounds that will also be enriched. Pre-
fractionated extracts also facilitate the unmasking of active com-
pounds from cytotoxic compounds and agonists from antago-
nists.
The ultimate prefractionated library is a pure natural product li-
brary that has a structurally diverse set of natural products with
known structures and physicochemical properties and > 95% pu-
rity. Pure natural product libraries are assembled in an iterative
manner from in-house isolated compounds and natural products
purchased from commercial sources. The largest commercial
player in this area is AnalytiCon Discovery GmbH (Potsdam, Ger-
many; http://www.ac-discovery.com/). AnalytiCon have as-
sembled a 25000 pure natural product library over the last 20
years based on about 2000 different chemotypes that are avail-
able in a ready-for-screening format [69,70]. The only other de-
scription [71] of a pure natural product library was a plant-based
library from MolecularNature Ltd., which is now available via
PhytoQuest Ltd. (Aberystwyth, United Kingdom; http://www.
phytoquest.co.uk/). Screening of this type of library is especially
attractive for groups not interested in bioassay-guided isolation
that still want to access natural product diversity.
A few words of caution: although it may seem attractive to gen-
erate large numbers of pure natural products and prefractionated
extracts for screening, there is considerable effort and monetary
investment required to generate, store and undertake quality
control analyses [1]. There is also an increase in screening costs
for each extra screening point and, as a consequence, the optimal
number of fractions needs to be carefully considered. There also
can be a loss in biodiversity coverage when screening prefrac-
tions, especially if the screening capacity is limited. To achieve
optimal metabolite coverage in the minimum number of screen-
ing points, organism taxonomy studies along with robust assess-
ments of the extract quality and chemical diversity must be
undertaken before generating fractions [72–75].
Before assembling the library, a decision is required about
whether samples will be tested at equivalent µg/mL concentra-
tions, which requires the weighing of each extract or prefraction,
or at equivalent doses relative to a broth volume or amount of
material extracted. Both methods have their advantages and dis-
advantages.
Maintaining and Storing a Natural Product Library
!

Organism storage
Dried plant material is usually stored at room temperature as a
finely ground powder tominimize storage space and enhance ex-
traction. Plant samples, especially intact plant parts, need to be
periodically inspected for microorganism growth to identify con-
tamination. Microorganism stock cultures are usually stored fro-
zen (liquid nitrogen and − 80°C freezer) [76,77] as glycerol stocks
or freeze-dried [78]. It is prudent to duplicate the microorganism
collection in two separate locations in case of a catastrophic
event that would destroy the freezer contents. It is also prudent
to keep multiple stock copies of each microorganism to give the
best chance of revival. Marine invertebrate samples can be stored
in a − 4°C freezer with or without the extraction solvent.

Extract and pure natural product storage and stability
Extracts and pure natural products are usually best stored dried
under a dry, inert atmosphere at − 20°C or below; however, these
solid materials are not easily manipulated for screening pur-
poses. One way around this problem is to aliquot the solid mate-
rial at the desired screening concentrations, remove the solvent
and store ready for screening. This dry plating method also has
its disadvantages: the screening concentration is fixed, there
could be issues with extract dissolution and some assays require
the testing material to be added after the reagents and media. An
Butler MS et al. Natural Product Libraries:… Planta Med 2014; 80: 1161–1170
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alternative method is to dissolve the extracts and compounds in
dry DMSO, which is a hygroscopic liquid that freezes at 18.5°C,
and dispense aliquots of this solution at the desired concentra-
tion. The dispensing is best performed using automated robots
but can also be performed manually on a smaller scale. It has
been shown that storing the DMSO stock solution as a solid can
cause issues with compound stability and solubility that worsens
with each freeze-thaw cycle [79–81]. A stability study of syn-
thetic compound DMSO stocks stored at room temperature
showed that a concentration of 8% of the compounds has signifi-
cantly decreased after 3 months, 17% after 6 months, and 48%
after 1 year [82]. Interestingly, a recent paper has suggested that
compound purity is themost important factor for stability of syn-
thetic compounds [81]. On face value this implies that natural
product extracts could be especially unstable but in reality the
presence of other compounds increases compound solubility
and stability inside the extracts. The presence of antioxidants al-
so helps with compound stability in extracts.
It is almost impossible for the average laboratory to totally ex-
clude H2O from DMSO solutions during the storage and dispens-
ing phases. In this situation, DMSO stocks should be dispensed
and stored for only a limited amount of time (say < 2 months)
and the number of freeze-thaw cycles kept to a minimum. An ex-
ample of a sophisticated compound and extract storage and dis-
pensing facility is the Queensland Compound Library (http://
www.griffith.edu.au/science-aviation/queensland-compound-li-
brary), which is housed at Griffith University (Brisbane, Austral-
ia). In this facility, compounds and extracts have a unique 2D bar-
code, which is used to track samples through the whole process
from the automated weighing station to the plate dispensing for
screening. The solid samples are stored in the dark under an inert
and dry atmosphere at − 20°C [83]. The screening samples are
dissolved in dry DMSO and stored in liquid form under a dry N2

atmosphere for up to 5–6 years. Individual or sets of these
screening samples are then assembled using the 2D barcode and
transferred using an acoustic dispenser [84] in any format re-
quired for screening (e.g., 96-, 384-, or 1356-well microtiter
plates). Periodic analyses of the screening samples using LC‑MS
are undertaken for quality control purposes.
Although state-of-the-art storage, dispensing, and analysis facili-
ties increase the probability of identifying bioactive molecules,
inexpensive and simple procedures like minimizing water in the
DMSO stocks, limiting freeze-thaw cycles, and not using “expired
DMSO stocks” go a long way to improving assay outcomes with-
out significant monetary outlays.
D
o

Practicalities of Screening Natural Product Libraries
!

A natural product extract can contain hundreds to thousands of
compounds that have a wide molecular weight, polarity, and
abundance ranges. Before bioassay-guided isolation can be used
to identify the compounds responsible for the activity, medici-
nally relevant and robust assays need to be developed, which
can be divided into in vitro biochemical and cell-based assays.
The biochemical assays are grouped into two subtypes based on
their complexity and troubleshooting difficulty: binary assays or
direct binding assays involving two partners (ligand and an ana-
lyte or binding partner) or ternary assays (ligand, analyte, and a
ligand-analyte modulator). The use of more complex, more bio-
logically relevant cell-based assays has steadily increased over
the past several years [85], and they can be further divided into
Butler MS et al. Natural Product Libraries:… Planta Med 2014; 80: 1161–1170
reporter, morphometric, and homogenous assays. Reporter
assays use fluorescent and/or luminescent labels to monitor
changes in protein expression or protein-protein clustering or in-
teraction, while morphometric assays involve the measurement
of changes in growth, cytotoxicity, and subcellular morphologic
features using quantitative microscopy and label-free techniques.
Finally, homogenous assays include a lysis step before readout
and could almost be considered as biochemical assays. Electro-
physiology and flow cytometry assays stand on their own as they
involve a cell sorting step and a cell-by-cell readout.

Developing representative screening sets
to interrogate screen robustness
The concept of the natural product matrix effect: An extract is a
complex genus and media specific mixture or matrix that can in-
terfere with the assay dynamic range, signal-to-noise ratio, and
reproducibility. Although a solvent-vehicle can be used as a base-
line control, an inactive extract representative of the libraryʼs
“average” matrix can also be used. It is important that the in-
active extract matrix be representative of the average matrices
of the other extracts. For example, the “generic inactive extract”
for amarine invertebrate n-BuOH extract library can be produced
by pooling whole EtOH extracts from three to five randomly se-
lected library specimens, drying the extracts and partitioning be-
tween H2O and n-BuOH. The n-BuOH layer is dried, weighed and
adjusted to the desired w/v concentration required for the stock
solution. This solution is left on the laboratory bench for one
week under ambient laboratory fluorescent light to generate the
final “generic inactive extract”.
Positive and negative controls: This “generic inactive extract” is
then used as the negative control or baseline for the screening
campaign. If an active small molecule has been previously identi-
fied, positive controls and/or standard curves should be gener-
ated using the same “generic inactive extract” spiked with the
known active compound. Simple positive controls in the solvent
should also be run in parallel to establish the “matrix effect” on
the assay dynamic range, signal to noise ratio, and reproducibil-
ity.
For some biological targets, no active molecules have been iden-
tified. For homogenous assays that use recombinantly expressed
purified proteins or membrane preparations, chaotropic agents
such as guanidine and SDS can be used as positive controls due
their denaturing effect. Care needs to be taken as these types of
positive controls can be misleading when trying to establish as-
say tolerability to the vehicle-solvent concentration, as they can
trigger the expected assay response, even at a high vehicle-sol-
vent concentration, while displaying the hallmarks of a working
assay (e.g., stable baseline, no precipitation, and a large dynamic
range). However, the assay may no longer be able to detect an ac-
tive compound using these conditions. Residual solvent in the
samples such as n-BuOH can also act itself as a chaotropic agent,
disrupting the structure of, or worse, denaturing proteins [86]. A
rule-of-thumb is to assume that there is no tolerance to the sol-
vent in these assays until an active compound has been identified
suitable for use as a positive control.
The solvent effect can be avoided if the vehicle-solvent used to
transfer a library in the assay microtiter plate can be evaporated
and the extract resuspended in assay buffer. Inmost cases, the re-
suspension of extracts/prefractions is straightforward except for
a small number of extracts that can emulsify during the brisk ag-
itation in the assay buffer. The effect of this transfer, drying, and



Fig. 2 Screening at high concentrations (Zone 1) leads to higher hit rates
(continuous line) that identify a predominance of compounds with low
target affinity (dashed line). For example, screening a set of marine inver-
tebrate extracts at 10 µg/mL w/v with compounds at a relative abundance
of 1–10% (average MW of 500) is equivalent to testing pure compounds in
the 0.2 to 2 µM range, which often results in the identification of hits in the
mid- to low µM affinity range. Although mid- to low nM actives can also be
identified when screening in Zone 1, the extract matrix effect and com-
pound interference can also mask the activity. Screening in Zone 1 for cell-
based assays where cytotoxicity often leads to “bell-shaped” dose-response
curves will miss relatively abundant mid- to low nM actives. Screening the
extracts at 10- and 100-fold lower concentrations (Zone 2 and Zone 3) re-
duces the matrix and interference effects leading to identification of ex-
tracts that would have be missed or not prioritized when screening in Zone
1. As a consequence, we recommend screening natural product extracts
and prefractions when practicable using at least two concentrations, espe-
cially for cell-based screening.
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resuspension cycle should also be evaluated on the positive con-
trol (generic inactive extract spiked with active compound).
Assay optimization and pilot study: The experimental conditions
of each assay need to be optimized in regards to parameters such
as reagent and extract concentrations, reagent addition times,
endpoint window to account for different instrument reading
times, replicate reproducibility, and DMSO tolerance. Once these
parameters have been established, a pilot study is undertaken on
a subset of representative extracts and prefractions, and the pure
natural product library. The data from the representative extracts
is then analyzed for assay robustness and from these results,
promising hits are moved to the dereplication stage. These data
can also be extrapolated to give an estimated overall assay hit
rate. The pure natural product library is used to identify com-
pounds of interest and frequent hitters that are flagged for dere-
plication.
For an example of this process, consider the marine invertebrate
n-BuOH extract library, which has already been formatted in a
screening-ready format in deep 96-well plates. The extracts were
formatted at several w/v concentrations (25, 2.5, and 0.25mg/
mL), relative to the initial concentration of the whole extract be-
fore n-BuOH/H2O partition. These concentrations offer flexibility
and accuracy when plating sub-mg tomg amounts in assay wells,
where incubation volumes range from 10 to 250 µL.
Cytotoxicity is not an issue for cell-based assay protocols that use
short incubation times (30–45 minutes) or homogenous assays,
and extracts in the several hundreds of µg/mL can be used in
these assays. For cell-based assays that require longer incubation
times, usually only concentrations less than 10 µg/mL can be used
to avoid observing toxicity. Cell toxicity should be tested with a
large concentration range of “generic inactive extract”, e.g., 0 to
500 µg/mL, using alamarBlue, cytosolic lactose dehydrogenase
release, or similar readouts, in order to estimate the EC50 profile
of the library genus matrix. The incubation duration depends on
the assay type and can vary from 30 minutes for ion channel cell-
based assays [87,88] to 15–18 hours for a lipid droplet formation
assay [89,90], or up to four days for a stem cell commitment assay
that was developed to identify molecules stimulating commit-
ment of neural precursor cells to neuronal lineage [91,92]. Care
needs to be takenwhen using DMSO-containing libraries as most
cell-based assays can only tolerate < 0.5% DMSO.
The next step is to decide whether the natural product library
will be screened at a single concentration or at multiple concen-
trations in singlicate or duplicate experiments. The two extremes
are libraries screened at a single concentration in singlicate and
libraries screened using quantitative HTS (qHTS), in which sam-
ples are screened at multiple concentrations to generate concen-
tration-response curves [93,94]. The limited supply of some nat-
ural product extracts is also a consideration when deciding on
screening numbers. Wewould recommend screening at two con-
centrations when practicable, usually 10- to 100-fold apart
(l" Fig. 2). Besides providing concentration-dependence informa-
tion, these data are useful for ranking hits in order of potency, as
well as identifying extracts that are only active at the lower con-
centration. Extracts not active at the higher concentration could
have their activitymasked by amatrix effect or cell cytotoxicity or
be false positives. Examples of screenings of a natural product li-
brary at low to very low concentrations are starting to appear in
the literature [95]. We recommend that this strategy be used for
cell-based assays, but it can also be used for biochemical assays.
Matrix components that lead to assay interference
Colored or fluorescent compounds: These types of compounds can
interfere with colorimetric and fluorescent assays and result in
both false positives and negatives depending upon the assay
readout. For example, compounds with molecular weights in
the range of 300 to 600 Da can be yellow to red in color, which
can interfere with the colorimetric readouts, or absorb and fluo-
resce in a yellow-green spectrum range similar to fluorescein,
which is commonly used in fluorescence polarization-based
binding competition assays [96]. As these compounds are often
present in the assay in the µM range, which is around 1000-fold
higher than the assay probe present in the nM range, most of the
energy of excitation will be absorbed by the compounds and
probe-derived fluorescence will decrease accordingly. In fluores-
cence polarization-based assays, fluorescence interference will
decrease the total fluorescence (parallel and perpendicular) and
increase the calculated fluorescent polarization ratios. Fluores-
cence interference in these types of assays can be decreased by
using far-red fluorescent probes [96].
Butler MS et al. Natural Product Libraries:… Planta Med 2014; 80: 1161–1170



Fig. 3 Schematic of a typical dereplication process. Up to 1mg of crude
extract or prefraction are separated using HPLC (C18 column) and the eluting
compounds analyzed using a photodiode array detector (PDA). The eluent is
then split with a majority flowing into a microtiter plate and the remainder
analyzed using ESI‑MS and MS/MS. The microtiter plate contents are dried
using centrifugal evaporation and DMSO is added to each well ready for
screening. It is prudent to add the crude extract or originating fraction to the
plate at two concentrations for comparative purposes. The (A) retention time

(RT), (B) UV spectra, (C) MS, and (D) MS/MS of compounds present in the
active fractions are analyzed and compared to in-house databases and com-
mercial software such as the Dictionary of Natural Products (Taylor & Francis
Group), MarinLit (Royal Society of Chemistry), AntiBase (Wiley-VCH), and
SciFinder (American Chemical Society). Work is discontinued on samples
where the activity is accounted by the identified compound or compounds,
while like extracts are grouped for further evaluation.

1166 Review

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 U
ni

ve
rs

ity
_Q

ue
en

sl
an

d,
 U

ni
ve

rs
ity

 o
f Q

ue
en

sl
an

d.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.
Micelle formation and aggregation: Some extracts, prefractions,
and pure compounds can form micelles in assay buffer that can
destabilize a purified system (recombinant protein, membrane
preparation) in a biochemical assay. The micelles can cause toxic-
ity in cell-based assays, while in homogeneous assays they can
trap fluorescent probes, fluorescent chemosensors, or fluores-
cence-tagged reagents leading to a high local concentration that
can interfere with the fluorescence readout (quenching) or pre-
vent functional chemosensing. Micelles are usually formed by de-
tergent-like molecules such as fatty acids and sulfated com-
pounds, but this behavior can also be observed with other types
of molecules. Simple assays are available to measure critical mi-
celle concentration (CMC) and can easily be implemented in 96-
or 384-well plate format [97]. Detergent-like molecules present
can also form colloidal aggregations that cause assay interference
[98–102], which can usually be identified through the addition of
detergent to disrupt aggregation [98,103]. Finally, there have also
been reports of detergent-like molecules being released from the
plasticware that can cause assay interference [104,105].
Media-derived interference: The media used to growmicroorgan-
isms is often a soup of diverse ingredients that include salts, ami-
no acids, proteins, and complex biological products. Some assays
are sensitive to the different salts [106] such as FLIPR assays that
detect Ca2+ flux [107], or assays involving metalloproteases,
which contain cations in their active sites [108]. Other examples
include the production of large amounts of aluminum dioxalate
by some fungi grown using vermiculite-based solid media [109]
and the bacterial biotransformation of soybean-derived glycosy-
lated isoflavones to the biologically active aglycones genistein
and daidzein.
Pan-active bioactive compounds: Broad-spectrum kinase and
protease are pivotal modulators of cell protein-protein interac-
tions and cell signaling. The abundance of these broad-spectrum
cell-signaling modulators in some natural extracts may “para-
lyze” cells, without the usual hallmarks of cytotoxicity, and mask
compounds of biological interest, which need a “functional cell”
to modulate a phenotype, like cell differentiation, secretion, and
trafficking. Examples include bacteria and marine invertebrate
extracts that contain staurosporine-like kinase inhibitors [110],
and marine algae and venom extracts that contain protease in-
hibitors [111,112].
Butler MS et al. Natural Product Libraries:… Planta Med 2014; 80: 1161–1170
Moving from the assay to bioactive compounds
Assay quality control: Z-factor (or Z′ analyses) is a statistical
method used to indicate whether an assay is suitable for HTS
campaigns [113]. Z-factor is an important quality control that
should be calculated for every completed assay microtiter plate.
The value should remain relatively constant during screening,
but if a variation is observed, then there could be issues with the
screen performance. These variations can be caused by poor li-
brary quality, batch-to-batch cell and protein quality differences,
incorrect assay optimization, or instrument issues. The Z-factor
can vary from poor (Z < 0), which can occur if there is too much
overlap between negative and positive controls, marginal (0 <
Z < 0.5), and excellent (0.5 < Z < 1) assay quality. In many instan-
ces, assays cannot be optimized beyond the marginal level, but
this is often sufficient for screening with extra care taken to ana-
lyze the data. For example, for fluorescence polarization assays,
the signal-to-noise ratio is usually in the 1.5 to 4 range leading
to Z-factors of around 0.5, but this assay format is precise, robust,
and reproducible and, in our opinion, the technology of choice for
homogeneous-type assays to screen natural products [114].
The hit rate determined during the pilot study of the various li-
brary subclasses can also be extrapolated to the larger screening
sets. If the hit rates diverge considerably between the pilot study
and the screening campaign, then it is worth further analysis of
the hits as this could be a flag for poor assay performance and ex-
tract quality.
Prioritizing extracts/prefractions for evaluation and bioassay-
guided isolation: During the screening campaign, it is recom-
mended that carefully selected assay hits from the different
screening libraries enter the dereplication [68,70,115,116] stage
to identify commonly occurring active compounds and to get a
head start on identifying new bioactive molecules (l" Fig. 3).
Once the screening campaign is completed, then the overall hit
rate of the screen can be calculated. The hit rate is usually be-
tween 0% to 5% depending upon the assay setup and hit selection
cutoff, but for some screens such as cell line cytotoxicity and
gram-positive bacteria whole cell assays, the hit rate can be up
to 15% depending upon the library.
First, letʼs consider a manageable hit rate of around 0.2 to 0.5%,
which would involve further evaluation of 200 to 500 samples
from screening of a 100000 member library. The active samples
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are first cherry-picked from the library and then retested in the
screening assay to confirm activity. The next stage is to obtain a
4-log fold range dose response on the retested positive samples
and then test in appropriate orthogonal and secondary assays.
An orthogonal assay is the same target as the HTS assay but in a
different screening format that is used to help identify false pos-
itive results. Orthogonal assays are especially important when
screening crude extracts due to the potential for a variety of in-
terference compounds. Frequently run secondary assays include
whole cell cytotoxicity, antifungal, gram-positive and gram-neg-
ative bacteria screening, and protease, kinase, and GPCR panel
profiling to analyze for specificity. The retesting and secondary
screening phases usually take at least 2 weeks depending upon
the amount of secondary screening required. The number of
samples for further evaluation should now have been reduced to
below 50 and after dereplication will result in a reasonable num-
ber for bioassay-guided isolation.
However, what do you do with a hit rate of around 5 to 10%,
which would involve further evaluation of 5000 to 10000 sam-
ples from screening a 100000 member library? An example of a
screen with a potentially high hit rate is the screening of bacteri-
al-derived extracts and prefractions against the gram-positive
bacteria Staphylococcus aureus. The hit rate could be lowered by
raising the cutoff threshold, but this is risky as extracts or pre-
fractions that contain lower abundance actives will not be se-
lected and potential leads not identified. The only practical way
forward with this number of extracts is to undertake considera-
ble secondary screening or cross-referencing with existing
screening data, as well as undertaking considerable dereplica-
tion, either through sheer force of numbers or by rapid analysis
for common hitting compounds by LC‑MS/MS without sample
collection. Extracts can be further clustered by their biological
profiles, dereplication profiles, and taxonomy.
The next step is to undertake bioassay-guided isolation [24,117,
118] to identify the bioactive compounds present in the extract.
Guided by the dereplication profile, a chromatography step is
undertaken, and the fractions are subjected to testing alongside
the crude extract or originating fraction. This process is repeated
until themost active compound or compounds are identified that
account for the activity of the extract or prefraction. For biologi-
cal evaluation, the compound needs to have > 95% purity, espe-
cially for structure-activity studies. Always be on the lookout for
samples where there could be a minor component present that is
significantly adding to, or responsible for, the activity. For exam-
ple, for µM active compounds, the presence < 1% of an nM active
compound could account for the activity and not be able to be
identified by NMR or even LC‑MS. If this is a possibility, then iso-
late related compounds to see if they are active or collect sub-
fractions of the peak and look for fractions that are equally active.
Conclusion
!

The unique chemical structures and biological activities of natu-
ral products make them attractive candidates for drug lead dis-
covery and as chemical probes. Most large pharmaceutical com-
panies have abandoned natural product-based lead discovery,
which has created great opportunities for university-based re-
search groups and small biotechnology companies. Expertise is
often available in these organizations to validate the drug leads
and undertake preclinical drug development using in-house re-
sources and CROs. However, if natural product-based libraries
are going to be efficiently used to screen for new drug leads, they
need to be of the highest quality. To start assembling this type of
library, we first recommend that analysis methods (including
dereplication) to assess metabolite diversity are implemented,
all organisms used to generate the library are taxonomically
identified, and a pure natural product library is assembled to aid
in pilot screening studies and dereplication. The library should be
a balancedmixture of crude extracts, prefractions, and pure com-
pounds to optimize taxonomic and chemical space coverage,
while minimizing the number of screening points. The library
should be subdivided into smaller screening sets based on taxon-
omy, microorganism cultivation conditions, and sample prepara-
tion methods. The library should also be dynamic with extracts
and prefractions added and removed from the library in response
to chemical analyses and screening results. The next step in the
process is to develop (or work out with collaborators) robust as-
says that are suitable for screening natural product samples. Or-
thogonal assays also need to be developed to help identify false
positive results, as well as secondary assays to help select the best
hits for further evaluation. Before full scale campaign screening is
undertaken, a pilot study needs to be completed and the data an-
alyzed. We also recommend that the library is screened at two
concentrations when practicable, especially for cell-based assays.
Active samples are dereplicated, and selected samples then
undergo bioassay-guided isolation to identify the active com-
pound(s) responsible for the activity. With luck, these biologi-
cally active compounds have the potential to be new drug leads
and chemical probes.
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