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Abstract 
Design and synthesis of complex polymer architectures is a promising field in polymer 

chemistry to produce new materials with unprecedented macroscopic properties. Recent 

advances in 'living' radical polymerization and polymer coupling chemistries has facilitated 

the fabrication of new polymer topologies. The main goal of this thesis is to develop novel 

methods to fabricate cyclic polymers with pendent functional groups, and use them as 

building blocks in the synthesis of complex polymer topologies. The 'click' reaction used to 

couple the cyclic polymers was by copper-catalyzed azide/alkyne cycloaddition reaction 

(CuAAC). The thermal properties of the resultant complex structures were investigate by 

Differential Scanning Calorimetry to determine the effect of topology on the glass transition 

temperature (Tg).  

First, the combination of RAFT polymerization and CuAAC reaction were used for the 

synthesis of cyclic polymer with pendent hydroxyl group. An alkyne functional RAFT agent 

was used for the synthesis of linear polystyrene (PSTY), in which the RAFT moiety was 

then converted to an azide moiety and a free OH group via a two step synthetic reaction. 

This linear polymer was cyclized in high yield and considered as a highly efficient method, 

and has the potential to be applied to a wide range of polymers made by RAFT. Although 

the monocyclic polymer was synthesized in high yield, we observed ester cleavage during 

the synthesis of more complex topologies from the monocyclic precursor building blocks. A 

detail degradation study was conducted using different catalyst/ligand complexes, and 

finally the methodology for the synthesis of different topologies of cyclics was amended to 

reduce this degradative side reaction. However, for the fabrication of more complex 

topologies, the synthetic methodology was redirected towards a more stable synthetic 

approach. 

 A modular approach was followed for the synthesis of multifunctional linear polymer 

precursors through modulating the Cu(I) activity towards the click reaction over radical 

formation. The post-modification approach allowed for the synthesis of α, ω-

heterotelechelic linear polymer precursors which was cyclised by using a modified CuAAC 

cyclization reaction in which the hydroxyl functional groups were equally spaced. The 

hydroxyl groups were converted to azides or alkynes and then further coupled together 

through the CuAAC reaction to produce complex structures, including a spiro tricyclic and 

1st generation dendritic structures. All these structures were produced in high yields with 

good 'click' efficiencies. The purity and ‘click’ efficiencies were calculated by fitting the 

experimental SEC traces with a log-normal distribution (LND) model based on fitting 
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multiple Gaussiun functions for each polymer species. The crude polymer was purified by 

preparative SEC that essentially removes all the unreacted species and by-products. 

In the follow up work, a range of different topologies of cyclic homo and copolymers were 

synthesized by combining of ATRP, SET-LRP and CuAAC coupling reactions. The 

homopolystyrene architectures ranged from di-block to 3-armed star polymers, consisting 

of both linear and cyclic polymer building blocks. Additionally, the di-block, AB, miktoarm 

AB2 and A2B type of amphiphillic copolymers consisting of PSTY and polyacrylic acid 

(PAA) and their cyclic analogues were successfully synthesized. All these topologically 

diverse polymers were purified by preparative SEC to remove any impurities formed during 

‘click’ reaction. To investigate the topology effect on thermal property such as Tg, the 

polymers were characterized by differential scanning calorimetry (DSC). The results 

revealed that the topologies which possessed higher number of cyclic units (i.e., lower 

number of chain ends) showed higher Tg values. The thin film self-assemblies of block 

copolymers of both linear and cyclic analogues were also characterized by AFM to 

investigate the effect of cyclic topology on the morphology. The thin film domain spacing of 

cyclic block copolymer decreased by ~50% compared to the linear analogue due to the 

structural compactness.  

Finally, a range of complex polymer architectures such as linear, cyclic, spiro di and 

tricyclic, star tricyclic, G1 star tetracyclic and dendrimer pentacyclic were used to 

investigate the effect of placing knots in different locations in a cyclic polymer on the glass 

transition temperature. The molecular weight of all these polymers was kept essentially the 

same to avoid the influence of molecular weight effect on Tg. To form a knot, we used 

covalent linkages that produce irreversible knots. The experimental results revealed that 

the Tg for this series of polymers was not only affected by the number of knots but also the 

type and location of the knots. 
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Chapter 1 - Introduction 

The opportunity to build complex polymer architectures from linear polymer building 

blocks has driven the potential to design new materials with unprecedented 

macroscopic properties. Polymers with controlled topology and chemical 

functionality are an essential component in the design of materials in biomedical 

applications, including drug and vaccine delivery, tissue engineering and medical 

imaging.1-4 New polymerization methods coupled with highly efficient coupling 

reactions are providing Polymer Scientists the tools to create polymers with precise 

molecular engineering that in the near future could mimic the function of proteins.  

There are many types of polymeric architectures that can now be made by coupling 

linear polymers to produce, for example, rings, grafts, branched, star-shaped, cross-

linked network, and dendrimers. Cyclic (or ring) polymers are the most intriguing due 

to the absence of chain ends,5-11 in which the conventional reptation theory for linear 

systems is no longer applicable.  

The most recent methods to create well-defined complex architectures with a range of 

macromolecular characteristic features include combining 'living' radical 

polymerization (LRP) with 'click' quantitative reactions. 'Living' radical 

polymerization produces macromolecules with predetermined molecular weights, 

narrow molecular weight distributions, and high chain-end functionality (essential for 

the fabrication of complex polymer architectures). The most used LRP techniques are 

reversible addition-fragmentation chain transfer (RAFT)12-16 polymerization, atom 

transfer radical polymerization (ATRP)17-22, nitroxide-mediated polymerization 

(NMP)23-25 and single electron transfer living radical polymerization (SET-LRP).26,27  

 

1.1 Reversible Addition-Fragmentation Chain-Transfer 

Polymerisation (RAFT)  
Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation was 

developed simultaneously by the Commonwealth Scientific and Industrial Research 

Organization (CSIRO) in 199812 and French company (Rhodia )28 in 1997. RAFT 

polymerisation is the most versatile ‘living radical polymerisation’ technique due to 

the large range of monomers that can be polymerised while still maintaining control 
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over molecular weight, polydispersity and end-group control.29  The RAFT 

polymerisation technique has been widely accepted due to its broad synthetic scope 

such as polymerization in bulk, in both aqueous and organic solvents over a wide 

range of temperature.30-32  

A typical RAFT polymerisation mixture contains monomer, radical initiator and a 

RAFT chain transfer agent. Initiation, propagation and termination events occur 

similarly to conventional free-radical polymerisation. After propagating, macro-

radical add to the carbon sulfur-double bond of the RAFT agent (with a rate constant 

of addition kadd, see Scheme 1.1), the radical adduct that is formed undergoes β-

scission and either yields back the reactants (k_add) or releases another initiating 

(macro) radical (with a rate constant of fragmentation, kβ). In this way, equilibrium 

between dormant and active species is established. The structural diversity of RAFT 

agents is considerably larger, which ultimately allows for greater control over a wider 

range of monomers.33 Both the R and Z groups of a RAFT agent should be carefully 

selected to provide appropriate control.34 In order to efficiently fragment and initiate 

polymerization, R· should be more stable than Pn·. The stability of dormant species 

and rate of addition of R· to a given monomer depends on the proper selection of the 

R group and this is important for a successful RAFT polymerization. 

 

Scheme 1.1 Mechanism for RAFT polymerisation.35 
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Although RAFT is a versatile tool in polymer synthesis, it also has some 

disadvantages. The synthesis of RAFT agent typically requires a multistep procedure 

and laborious purification; additionally RAFT agents decompose gradually, yielding 

sulphur compounds that are undesirable for many applications. 

 

1.2 Atom Transfer Radical Polymerisation (ATRP)  
Atom transfer radical polymerization (ATRP) was developed in 1995 independently 

by Matyjaszewski and Wang36,37 and Kato et al38 as an expansion of transition metal 

catalysed atom transfer radical addition (ATRA). This technique has become the most 

widely applied LRP technique. ATRP produces well-defined polymers with low 

polydispersity and allows post-polymerisation synthetic diversity due to the resulting 

halogen end-group.  

The polymerization mechanism is based on the reversible abstraction of the halogen 

atom from the polymer chain-end by a transition metal complex. The mechanism is 

illustrated in the Scheme 1.2. Homolytic cleavage of the halide occurs to form a 

carbon-centred radical on the polymer chain-end (P·).37 For a successful ATRP 

reaction, a low concentration of propagating radical intermediates (Pn·) must be 

maintained and their fast but reversible transformation into the dormant species (Pn-X, 

where X is a halide group) via deactivation. In order to create a low concentration of 

propagating radicals, the deactivation rate must be significantly higher than the 

activation rate, and the concentration dormant species must be significantly greater 

than the dormant species. If the deactivation rate slows or becomes non-existent, 

bimolecular radical termination will dominant, resulting in poor control of molecular 

weight and high polydispersity.39  

 

Scheme 1.2 Mechanism for ATRP polymerisation. Mtm = transition metal species in 

oxidation state m, L = ligand.17  

ATRP is strongly influenced by the values of the rate constants, kact,40 and kdeact,41 and 

their ratio, KATRP.40,42 Rates of ATRP increase with catalysts activity (KATRP) but 
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under some conditions may decrease due to radical termination and a resulting low 

[Mtm/L]/[ X−Mtm+1/L] ratio, and build-up in the concentration of deactivator via the 

persistent radical effect.43 The low concentration of radicals, along with a build-up of 

Mtm+1 deactivator suppresses the radical termination side reactions, maintaining 

control over the molecular weight distribution. These key rate parameters produce 

polymers with halide end groups in high quantitative yields. ATRP is thus the most 

convenient way to introduce an chemical functional groups on the polymer chain-end, 

which can be used as macro-initiator for further polymerization or post functional 

modification. 

 

1.3 Single-Electron Transfer (SET) LRP 
Compared to other metal catalysed LRP techniques, SET-LRP mediates an ultrafast 

polymerization of acrylates, methacrylates and vinyl chloride under mild reaction 

conditions (e.g. at room temperature or below).26,27 Favourable solvent and ligand 

selection is required to mediate the disproportionation of Cu(I) to Cu(0) activator and 

Cu(II) deactivator. SET LRP allows the preparation of unprecedented high molecular 

weight polymer rapidly with excellent control over the molecular weight distribution 

and near perfect retention of halide chain-end functionality.44,45 The heterogenous 

Cu(0) activator and homogenous Cu(II) deactivator are formed simultaneously by 

disproportion of Cu(I)/L produced in-situ during the generation of radicals from alkyl 

halides (Scheme 1.3).26  

 
Scheme 1.3 Mechanism of SET-LRP 26 
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The main mechanistic difference between SET and ATRP is the formation of 

deactivator Cu(II)/L. The deactivator Cu(II) forms in SET through the disproportion 

of Cu(I) via a self-regulated mechanism, whereas in ATRP, deactivator forms from 

the abstraction of halide from the polymer chain-end. The build-up of Cu(II)/L 

deactivator proceeds without the usual need for bimolecular termination in SET. On 

the other hand, the formation of Cu(II)/L undergoes bimolecular termination to 

generate persistent radical effect in ATRP.46 This mechanistic feature enables the 

synthesis of polymers with essentially near perfect retention of chain-end 

functionality, and no detectable structural defects even at very high monomer 

conversions. The ultrafast activation of alkyl halides occurs due to the extreme 

reactivity of nascent Cu(0), generated by disproportionation of Cu(I) in appropriate 

solvent and ligand conditions. This facilitates faster polymerization compared to other 

techniques. 

The main advantages in SET are the use of copper wire as the catalyst, which allows 

for a simpler experimental setup and ease of purification of copper catalyst from the 

reaction mixtures. Although there are number of advantages in the synthetic utility 

and final polymer products from SET-LRP, the mechanistic features are complex and 

are still being investigated. 
 

1.4 Cu-Catalysed Azide/Alkyne Click (CuACC) Reaction 

Building new macromolecular architectures by connecting readily accessible building 

blocks in the presence of other functional groups under a wide range of conditions is a 

challenge in synthetic polymer chemistry. In recent years, a number of reactions have 

been developed, exemplified as ‘click’ chemistry, which enables the efficient 

formation of a specific covalent linkage by addition reaction, even within a highly 

complex chemical environment.47-53 Among these reactions, the Huisgen 1,3-dipolar 

cycloaddition reaction of organic azides and alkynes54,55 has gained considerable 

attention due to the near quantitative yields, highly regio-selectivity, robustness, 

insensitivity, and most importantly, the lack of by-product formation. The triazole 

ring formed in the reaction is essentially chemically inert to reactive conditions, e.g. 

oxidation, reduction, and hydrolysis.56 The ‘click’ reaction most often utilised with 

polymers typically proceeds through a Cu(I) catalysed 1,3-dipolar cycloaddition 
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between an azide and an alkyne (Scheme 1.4). The Cu(I) catalyst used in ‘click’ 

reaction lowers the activation barrier by 11 kcal/mol, which is sufficient to rapidly 

drive the reaction forward with high selectivity.57,58 The reaction is quite insensitive to 

reaction conditions as long as Cu(I) is present and can be performed in an aqueous59-62 

or organic63 environment. 

 
Scheme 1.4. Generalised scheme for copper catalysed alkyne-azide click (CuAAC) 

reaction. 

In the field of polymer chemistry, combination of LRP and ‘click’ reactions provide 

powerful tools in tailoring macromolecular architectures through the coupling of 

different functional polymer chains.64 The highly efficient CuAAC reaction has 

become a powerful tool in macromolecular engineering because azide and alkyne 

moieties can easily be introduced at different locations in the polymer chains.65-69 

Despite the excellent reaction kinetics, high specificity, and bio-orthogonality, 

CuAAC reaction has some limitations. The reaction has been used to a far lesser 

extent in the cellular context because of toxicity caused by the metal catalyst. 

Recently, strain-promoted copper free cyclooctane-azide addition reaction was 

introduced for more sensitive biologic systems.70-73 Due to the presence of inherent 

halide functional polymer chain ends after ATRP or SET-LRP polymerizations, the 

conversion of halide to azide in the presence of NaN3 in DMF is usually quantitative 

under mild condition. Therefore, the combination of ATRP or SET-LRP and CuAAC 

is the most used and successful method for synthesis of complex polymer 

architectures. 

 

1.5 Cyclic Polymers 
One of the most interesting fields of polymer chemistry is tailoring architecture from 

conventional linear structures to nonlinear and complex topologies to understand their 

properties. Remarkable progress has been achieved in the synthesis of different 

complex topologies, intriguing researchers as they exhibit different physical and 

mechanical properties in dilute solution or bulk conditions. Among the various types 

of topologies, cyclic polymers show very different distinct properties compared to 
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their linear counterparts. In bulk conditions, linear polymers diffuse through a 

polymer matrix via reptation (i.e., they move in a snake-like manner) due to their 

chain-ends; as chain-ends explore a much greater volume than the interior of the 

chain.74,75 On the other hand, cyclic polymers that have no chain ends and cannot 

reptate like their linear analogues, rather they move with an amoeba-like motion.11 

The different conformation and internal chain dynamics of cyclic polymers to their 

linear analogues result in different properties, such as a higher density,76 lower 

intrinsic viscosity,77 higher glass transition temperatures,77 lower translational friction 

coefficients,78 higher critical solution temperature,79 increased rate of crystallization,80 

and higher refractive index.81 In dilute solution, cyclic polymers show a more 

compact nature than their linear analogues. Theory82 predicts that the ratio of the 

radius of gyration for a cyclic to linear polymer of the same MW (i.e., 

<Rg
2>C/<Rg

2>L) equals to 0.5 in a theta solvent and 0.526 in a good solvent, and have 

found to agree with experimental values.83 The more compact nature of cyclic 

polymers compared to their linear analogues was also found from their smaller 

hydrodynamic diameters. This characteristic feature is typically used to identify the 

presence of cyclic polymers by size exclusion chromatography (SEC).84  

Significant progress has been made in producing a wide variety of single cyclic 

polymers using different methods in order to assess how these changes affect their 

properties. However, the first and foremost difficulty was to synthesise absolutely 

pure cyclic polymer as even trace amount of linear contaminants in the cyclic polymer 

influences the properties significantly.85 This impurity may be present when carrying 

out cyclization reactions in a good solvent under dilute conditions. In addition, one 

cannot ignore the dependence of polymer concentration during cyclization, especially 

when it exceeds the critical overlap concentration (c* or c**). This could lead to 

catenane or Olympic ring-type structures. Therefore, the synthetic strategy plays a 

vital role in determining the purity and types of cyclic topologies. For the application 

of cyclic polymers, one must have the capability to make cyclic structure in large 

scale and high purity.      

 

1.6 Synthetic Strategies towards the Macro-cyclization 
Macrocyclic polymers were suggested to be theoretically possible in 1950,86 and the 

first observation for the synthesis of macrocyclic has been tested for poly(dimethyl 
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siloxane) (PDMS) in 1965.87 A series of publications78,88,89 on the preparation and 

characterisation of cyclic PDMS was  followed by the reporting of cyclic polystyrene 

by Gieser and Hocker in 1980.90,91 However, the above methods encounter difficulties 

in purifying pure cyclic product from crude sample due to the polydispersity of 

product and inability to isolate corresponding linear precursors and high molecular 

weight by-products. To date several procedures have been developed for the synthesis 

of cyclic polymers based on end-to-end coupling, i.e., ring closure techniques92-99 as 

well as on an alternative ring-expansion polymerization.100-107 The ring closure 

techniques involve the coupling of a linear polymer’s two chain ends to yield a cyclic 

polymer. The key step of this method is to select highly efficient coupling reactions to 

afford the well-defined monocyclic polymer under ultra-dilute conditions to prevent 

intermolecular coupling reaction. On the other hand, the ring-expansion technique 

involves the insertion of cyclic monomer units into an activated cyclic chain through a 

cycle-chain equilibrium process.  

 

1.6.1 Ring Closure Techniques 

Ring-closer technique was the first successful approach for the preparation of 

relatively pure cyclic polymers. Cyclization via ring closure technique depends on the 

end-to-end distance between the two chain ends in random coil conformation of 

polymer.77 To occur a chemical reaction, the chain ends have to diffuse within a 

capture volume with a rate constant Kc1, a covalent bond can form through a chemical 

reaction at k2, or the chain ends can diffuse apart at k-1 (Scheme 1.5). This kinetic 

scheme is equivalent to that of an “encounter-pair” model. Two important cases for 

the model are diffusion controlled and activation controlled reaction. If k2>>k-1, i.e., 

the activation energy of the reaction is very small or if the diffusion of chain ends 

apart is difficult, the kinetics will be dominated by kc1 which is termed as diffusion 

controlled reaction. In the reverse case (k2<<k-1), the activation energy of the reaction 

dominates the kinetics, and the reaction is controlled by its equilibrium kinetics. This 

concept allows us to use the well-known Jacobson–Stockmayer86 equation to 

determine the probability of cyclization at a given polymer molecular weight. As the 

rate of chemical reaction, k2, to form a monocyclic species via an intra-molecular 

process is equal to that for the formation of multi-block by intermolecular process, the 

percentage of monocyclic species only depends on the probability of a chain end 
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being within the capture volume, νs with its other chain end (PC) over that of another 

chain end (PL). According to Jacobson and Stockmayer theory for Case II type 

condensation, the relative probabilities are as follows:  
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Where νs is the capture volume, Pc is the probability when the two ends of the same 

chain are within the capture volume, PL is the probability when chain ends from other 

chains are within the capture volume, <r2> is the mean-square end-to-end distance of 

the chain, N is the total number of polymer molecules in total volume V, NA is 

Avogadro’s number, M is the molecular weight of the polymer, and c is the 

concentration of polymer in g mL-1. The ratio between monocyclic and other 

condensed species is given by108  

[ ] [ ]Pk
k

PNrP
P

l

c

AL

c =







〉〈

=
2000

2
3

2/3

2π
……………………… (3) 

So that 

Al

c

Nrk
k 2000

2
3 2

3

2 







〉〈

=
π

………………………………… (4) 

and therefore the theoretical % monocyclic is derived by 

% cyclic 100×
+

=
Lc

c
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P
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Where [P] is the concentration (mol L-1) of starting linear polymer in solution. From 

equation 3, if the polymer concentration decreases in batch condition, percent of 

monocyclic formation will increase. Another way to reach high percentages of 

monocyclic would be through a feed of linear polymer into a solution already 

containing the catalyst (semi-batch condition). In any ring closure type cyclization 

reaction, the polymer concentration should be maintained in such a way that the rate 

of cyclization will be closer to or greater than the feed rate to maintain the 

corresponding instantaneous concentration to meet the minimum requirement of 

desired percent of monocyclic. 
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Scheme 1.5. Encounter pair model for a chemical reaction.109 

 

1.6.2 Ring Expansion Techniques 
Cyclization by ring-expansion techniques are based on the insertion of monomer units 

into an activated cyclic chain, typically involve a catalyst or initiator that yields a 

growing cyclic polymer chain. The critical advantage of ring expansion technique is 

that it does not require high dilute condition to yield cyclic polymers. As a result, the 

synthetic condition can easily be optimised on the large scale synthesis. Unlike ring 

closure technique, ring expansion techniques do not require linear precursors to form 

cyclic that greatly reduce linear by-products formation. Another advantage of this 

technique is that the high molecular weight cyclic polymers can easily be prepared 

without the entropic penalty associated with the “ring-closure” approach, as the cyclic 

structure is maintained throughout the propagation process. Although the method has 

few advantages over ring-closure technique, the main challenges include severe 

polymerization condition, limited types of suitable monomers, and time-consuming 

process for synthesizing cyclic initiator along with their sensitivity to functional 

groups.  

 
Scheme 1.6 Schematic representation of the ring-expansion technique for the 

synthesis of cyclic polymers.7  
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1.7 Synthetic routes towards the macrocyclic structures 
 The main challenge in preparing macrocyclic polymers using a CuAAC cyclization is 

to find a suitable polymer that has structurally well-defined architecture, narrow 

molecular weight distribution and amenable to efficient end-group modification. In 

this regards, living ionic polymerization methods such as anionic and cationic 

polymerization are very efficient.110-112 One of the first cyclization techniques used 

historically was the quenching of α, ω-homo-difunctional anionic polymers with a 

difunctional electrophilic agent. Roovers et al. pioneered this field; they synthesised 

cyclic polystyrenes through anionic polymerization from a difunctional initiator and 

quenching with a dimethyl dichlorosilane under extreme dilute conditions.113 Deffieux 

and Schappacher have used this technique extensively for the synthesis of a number 

of cyclic architectures including monocyclic polymers, bi-cycle figure 8's, and even 

tri-cyclic compounds from the polymer precursors by anionic polymerization.114-116 

The main drawback for this technique is that to synthesise polymer precursors, it 

requires rigorously controlled conditions, involving stringent drying and very low 

reaction temperatures (< -70°C).46  

 
Scheme 1.7. Synthetic route for the preparation of cyclic polystyrene from linear 

precursors made by living anionic polymerization.114  

Recently, nitroxide-mediated radical polymerization (NMP) was combined with 

Huisgen 1, 3-dipolar cycloaddition reaction to prepare a range of cyclic polymers. 

First, linear precursor polymer was synthesised by NMP method followed by post-

modification to achieve α, ω heterotelechelic functional goups. Then, cyclization was 

achieved via a CuAAC under high dilution.97 In another approach, α, ω-

heterotelechelic functional linear polymer with alkoxyamine functional group was 

prepared by ATRP. After cyclization by CuAAC, the polymer was further chain 

extended by NMP method to afford cyclic polymer with extended degree of 
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polymerization.117,118 Lepoittevin et al. also utilised NMP to form a linear polystyrene 

precursor which contained an alcohol functionality from the stable nitroxide radical 

(4-hydroxy-TEMPO) and an carboxylic acid from the initiator 4,4´-azobis(4-

cyanovaleric acid).119 Esterification reaction between carboxylic acid and hydroxyl 

chain ends followed the procedure of Kubo et al.,120 enabled the ring-closure to yield 

the macromolecular lactone. However, this procedure was only efficient for the 

production of low molecular weight cyclic polystyrene (<4 kDa) and yielded 

increasing amounts of oligomeric contaminants in larger polymers. This was 

attributed to the thermal instability of the nitroxide group present in the backbone of 

the cyclic polymer. 

 
Scheme 1.8. Synthesis of cyclic polymers via a combination of ATRP and ATRC and 

subsequent ring expansion by NMP.117  

 

Nowadays, a significant effort has been directed toward the reversible addition-

fragmentation chain transfer (RAFT) polymerization to prepare cyclic 

polymer.79,121,122 Winnik et al. were pioneer in this area who utilised RAFT technique 

to prepare linear precursor and subsequently synthesised cyclic PNIPAM in aqueous 

solution.123 An azide functional RAFT agent was used to prepare linear polymer 

precursor. The propargyl group was introduced by a one-pot aminolysis/Michael 

addition sequence.  The polymer was then cyclised in the presence of CuSO4 and 

sodium ascorbate in aqueous media at dilute condition. Monteiro and co-workers used 

a difunctional RAFT agent in the polymerization of styrene with subsequent 

conversion of the dithioester groups to thiols, in which monocyclic polymers were 

produced under dilute conditions in high yields through the oxidation reaction to form 

disulfide linkages.92 Shi et al.122 reported the synthesis of amphiphilic ‘‘tad-pole’’ 

shaped block copolymers having polystyrene and PNIPAM blocks via a post-
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polymerization CuAAC approach. Alkyne functional RAFT macro CTA was treated 

with maleic anhydride resulting in the introduction of a single maleic anhydride unit. 

Chain extension with NIPAM yielded the target amphiphilic block copolymer in 

which the two blocks were ‘‘linked’’ by a single maleic anhydride unit in the 

interface. Finally, intramolecular cyclization was achieved via CuAAC coupling 

reaction generating the target tadpole shaped copolymer with the polystyrene block 

formed the head and PNIPAM the tail. 

 
Scheme 1.9. Synthesis of cyclic PNIPAM via a combination of RAFT and CuAAC.130  

 

The present thesis was aimed to synthesise a range of complex polymer architectures 

using LRP and click reaction to investigate their properties. In the first attempt, we 

successfully synthesised monocyclic polymer by combining RAFT and CuAAC 

reaction.124 An alkyne functional RAFT agent was used for the synthesis of 

polystyrene, in which the RAFT moiety was then modified to an epoxide group in 

one-pot through aminolysis followed by the Michael-addition of glycidyl 

methacrylates. The epoxide end group of the polymer chain was then directly 

converted to an azide and an alcohol groups using NaN3 and NH4Cl in DMF at 50 °C. 

This linear polymer was cyclised by efficient CuAAC in high yield following our 

previous method.84 The above synthetic methodology was thought to be highly 

potential as the cyclic possess free alcohol group that can be further modified to 

prepare a range of cyclic polymers with different topologies. However, we observed 

an unforseen degradation profile while building up complex topologies and required 

to circumvent the strategy by following a more suitable and reliable technique.  

In the past few years, significant efforts were paid for the synthesis of macrocyclic 

polymers by combining ATRP and CuAAC reaction using intramolecular ring closure 
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approach. While the bromide end group of an ATRP polymer presents an ideal 

substrate for a nucleophilic displacement with an azide, incorporation of an alkyne 

within the ATRP initiator provides the requisite functional groups at opposite (i.e., α, 

ω) ends of the polymer chain for subsequent cyclization via CuAAC reactions. A 

strategy to prepare macrocyclic polymer via the combination of ATRP and CuAAC 

chemistry was reported by Grayson et. al.95 Linear polymer precursors were prepared 

by ATRP of styrene, using propargyl 2-bromoisobutyrate as an initiator, followed by 

nucleophilic substitution of the terminal bromide group by an azido group. The 

cyclization reaction was conducted under high dilute conditions, with Cu(I)/L 

complexes as catalyst. The functionalization and the cyclization were essentially 

quantitative, eliminating the need for purification. This approach was subsequently 

extended to the synthesis of cyclic poly (N-isopropylacrylamide)125 (PNIPAM) and 

cyclic poly(methyl acrylate)-b-polystyrene (PMA-b-PSTY) block copolymers.99 

However, in the latter case, the alkyne moiety of the ATRP initiator had to be 

protected with a trimethylsilyl group, which added an additional deprotection step to 

the synthesis. Recently, a rapid and effective synthetic methodology was developed 

by our group to prepare a high purity monocyclic polymer in less than 9 min in non-

dilute condition.84 The higher solubility of Cu(I)Br/PMDETA complex in toluene 

facilitated the catalytic activity which is the key for making such a high purity 

monocyclic polymer. The technique allowed introducing a pendant functional group 

on the cyclic chain which is a promising candidate to build up complex architectures 

by the post-modification approach. 

 
Scheme 1.10. Synthesis of cyclic polystyrene via a combination of ATRP and 

CuAAC.95 

 

1.8. Complex Topologies from Monocyclic Polymers 
The advances for the synthesis of well-defined monocyclic polymers has now made 

great opportunities to synthesise more complex polymer topologies based on 
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cyclic polymers of different segment components that have specific functional groups 

at designated position. At very low concentration, a variety of spiro and bridged-type 

multicyclic polymer, and fused polymer topologies have been constructed mainly 

electrostatic self-assembly and covalent fixation process, in some cases with the 

combination of CuAAC ‘click’ reaction.126-129 Nevertheless, cyclization under very 

dilute condition and limited chemical variations are the major drawback of the method 

for the practical application. Mostly, monocyclic polymers bearing a pendant 

functional group provide opportunities for building different complex polymer 

topologies through post cyclization modification.93,124,130-133 Therefore, elaboration of 

synthetic methodologies to generate multiple chemical functionalities in the cyclic 

polymer is appealing for the synthesis of a wide range of complex cyclic topologies. 

In the present thesis, we have synthesised a range of different polymer topologies and 

studied their glass transition temperature and also we employed a novel strategy for 

the synthesis cyclic polymers having mono, di and trihydroxy functional groups in the 

predetermined position. The post-modification of these multifunctional cyclic and 

subsequent click reaction allowed preparing different unusual cyclic topologies. 

 

1.9 Cyclic Polymer Topologies and Their Properties 
The fundamental goal in polymer science is to achieve precise control over the 

structure and properties of macromolecules and investigate their special properties 

and function. A significant success in introducing the function in the complex 

polymer system specially arises from the unique cyclic topology effect has been 

reported recently.134-137 The amphiphillic mikto-arm stars, AB2 (where A is 

hydrophobic cyclic polystyrene and B is hydrophilic linear poly(acrylic acid)) showed 

4-fold increase in the aggregation number, resulting in a highly compact hydrophobic 

core and a densely packed hydrophilic corona compared with linear analogue.131 Due 

to the smaller hydrodynamic volume and higher packing parameter of cyclic than 

linear counterpart can significantly enhance the aggregation number. The outstanding 

topology effect substantially enhances the properties of polymeric materials which is 

impossible through the conventional process. Recently, Tezuka et. al., investigated the 

self-assembly behaviour of amphiphillic block copolymers of both linear and cyclic 

analogues and they found that cyclic exhibited a dramatic elevation (40 °C) of cloud 

point temperature (Tc) than the linear analogue.135 Furthermore, they found a 
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significant salt and thermal stability of self-assembled micelles which led the control 

of the performance of polymeric materials for designing highly functional 

materials.134  

A significant amount of research has been carried out to understand and control the 

complex polymer system in solution but the basic structural properties play a major 

role in determining bulk physical properties of the polymer which is almost ignored in 

material science. Bulk properties describe how the chains interact through various 

physical forces in nano-scale, how the bulk polymer interacts with other chemicals 

and solvents in macro-scale. In the present thesis, we have demonstrated the synthesis 

of unusually different cyclic topologies and investigate their glass transition 

temperature in bulk state. 

 

1.10. Objectives and Outlines of this thesis 
The main objective of this thesis is to develop a facile strategy to synthesise different 

polymer topologies based on cyclic polymers by combining 'living' radical 

polymerization such as RAFT, ATRP and high efficient CuAAC reaction. The 

thermal properties (i.e. the glass transition temperature by DSC) for a range of cyclic 

topologies were determined. The objective is subdivided into the following chapters: 

Chapter 2 describes the facile synthesis of cyclic polymer topologies by CuAAC from 

the linear polymers made by RAFT polymerization. Unexpected degradation 

behaviour was observed and the degradation profile has been investigated extensively 

in three different CuAAC ‘click’ reaction conditions. 

A novel synthetic protocol was employed to synthesise different complex polymer 

topologies in Chapter 3. The multi-functional cyclic polymers were synthesised first 

by combining modular approach and CuAAC reaction. The post-modification and 

further click reaction allowed synthesizing different complex polymer topologies. 

Topology effect on the glass transition temperature has been studied thoroughly in the 

Chapter 4. Different topologies of both homo and block polymers (total 18 polymers) 

were synthesised and studied their glass transition temperature by DSC. 

In Chapter 5, a series of polymeric architectures were used to investigate the knots 

effect on the glass transition temperature in cyclic system. The hydrodynamic volume 

and chain segment stiffness of these polymeric knots (which have the same molecular 
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weight) on their thermal property (i.e. glass transition temperature-Tg) have been 

studied. 
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Chapter 2 

Cyclic polystyrene topologies via RAFT and CuAAC  

 

Cyclic polymer have attracted interest due to their different self-assembly behaviour and physical 

properties compared to their linear counterparts with the same molecular weight. This chapter 

describes a facile and efficient synthesis of cyclic polymers by combining RAFT and CuAAC 

reaction followed by post-modification for the fabrication of complex topologies. There are only a 

few examples of using polymer made by RAFT to create cyclic polymers, and no reports of 

coupling these cyclic polymers together to form stars. In this work, we have demonstrated a novel 

approach to produce cyclic polymers by RAFT with the required functionality for further coupling 

to form 2- and 3- arm stars. Cyclization of a chemically modified linear RAFT polystyrene (PSTY) 

using the copper catalyzed azide–alkyne cycloaddition (CuAAC) gave cyclic polystyrene (c-PSTY) 

with a purity of 95% as determined by simulating the experimental molecular weight distribution 

using the log-normal distribution (LND) method. The –OH group on c-PSTY was converted to an 

azide via a two-step procedure, allowing the cyclic polymers to be coupled together using propargyl 

ether or tripropargylamine via the CuAAC reaction to form 2- and 3-arm stars, respectively. When 

the conventional ligand complex and solvent was used (i.e. CuBr–PMDETA in toluene), the linkage 

between the cyclic arms degraded fully after 24 h due to base cleavage. We overcame this by 

changing the ligand to a triazole or carrying out the reaction in ligand-free conditions (i.e. CuBr in 
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DMF). These latter experimental conditions gave ‘click’ efficiencies of greater than 82% without 

degradation of the final structures. Our methodology for producing cyclic polymers by RAFT will 

not only extend to other monomers but allow one to utilise these cyclic polymers as building blocks 

in the formation of more complex polymer architectures.  

2.1 Introduction 
Considerable interest has been paid to the synthesis of cyclic polymers.1-5 The different diffusion 

process of cyclic polymers in a concentrated matrix compared to their linear counterparts was 

postulated to result in very different physical properties.6 Cyclic polymers are more compact and 

thought to move with an amoebae-like motion.7 This results in a higher density,8 lower intrinsic 

viscosity,9 lower translational friction coefficients, higher glass transition temperatures,9 higher 

critical solution temperature,10 increased rate of crystallization,11 higher refractive index12 and 

enhancement of fluorescence.13 Cyclic polymers have been self-assembled in water to display 

similar and unique properties to cyclic lipids used by microorganisms to stabilise their cell 

membranes in hot springs.14 The self-assembly of tadpole structures in which the hydrophobic block 

was cyclic produced a dense micelle core with a 4-fold increase in the aggregation number compare 

to their linear counterparts.15  

There have been many reports for the synthesis of cyclic polymers through ring closure using the 

combination of ATRP (atom transfer radical polymerization) and CuAAC (copper catalyzed azide–

alkyne cycloaddition).3-5,16,17 This has eventuated in the production of 2- and 3-arm stars in which at 

least one arm consisted of a cyclic polymer.15,18 We recently showed that ABC 3-miktoarm stars19 

consisting of all cyclic building blocks could be made using ATRP20 or SET-LRP21 in combination 

with CuAAC and NRC22 (nitroxide radical coupling) through modulating the copper activity.23,24 

However, there have been only a few reports using reversible addition–fragmentation chain transfer 

(RAFT) polymerization to construct cyclic polymers.10,25-27 This is surprising as the range of 

polymers, especially the water soluble polymers, can be extended when using RAFT. There are no 

reports to our knowledge that use cyclic polymers made by RAFT and CuAAC and subsequently 

construct more complex architectures such as 2- and 3- arm stars. 

2.1.1 Aim of the Chapter 
 

The aim of the work was to develop a novel strategy to synthesise of different topologies cyclic 

polymer by combining RAFT and CuAAC reactions. An alkyne functional RAFT agent (1) was 

used for the synthesis of polystyrene (2), in which the RAFT moiety was then modified to an 

epoxide group in one-pot through aminolysis followed by the Michael-addition of glycidyl 
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methacrylate to form polymer 3 (Scheme 2.1). The epoxide endgroup of the polymer chain was 

directly converted to an azide and an alcohol group using sodium azide (4).28 This linear polymer 

was cyclised in high yield following our previous method,17 and the alcohol (5) then converted to an 

azide (7). This cyclic polymer was finally coupled with either propargyl ether or tri-propargyl 

amine to form 2- and 3-arm stars under appropriate ligand and solvent conditions for the ‘click’ 

reaction. This method has the potential to be applied to a wide range of polymers made by RAFT. 

 
Scheme 2.1 Synthetic route for the preparation of cyclic polystyrene by combining RAFT and 

CuAAC reactions to form dicyclic (8) and tricyclic PSTY (9). Reaction conditions: (i) AIBN, bulk 

polymerization at 65 °C for 15.5 h, (ii) glycidyl methacrylate, hexylamine, TEA and TCEP in DMF 

at 25 °C (iii) NaN3–NH4Cl in DMF at 50 °C (iv) CuBr, PMDETA in toluene at 25 °C, feed rate = 

0.1 mL min-1 over 4.17 h and then kept for 3 h (v) 2-bromopropionyl bromide, TEA in THF at 0 °C-

RT for 48 h (vi) NaN3 in DMF at 25 °C for 16 h (vii) CuBr in DMF, at 25 °C for 1.0 h and (viii) 

CuBr–triazole in toluene at 25 °C for 12.0 h. 

2.2 Experimental 
 

2.2.1 Materials 

The following chemicals were analytical grade and used as received unless otherwise stated: 

activated basic alumina (Aldrich: Brockmann I, standard grade, ~150 mesh, 58 Å), 
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dimethyl(amino)pyridine (DMAP, Aldrich, 99%), Dowex ion-exchange resin (Sigma-Aldrich, 

50WX8-200), magnesium sulphate, anhydrous (MgSO4: Scharlau, extra pure), potassium carbonate 

(K2CO3: AnalaR, 99.9%), silica gel 60 (230–400 mesh ATM (SDS)), potassium phosphate tri-basic 

(K3PO4: Sigma-Aldrich ≥ 98%), triethylamine (TEA: Fluka, 98%), 2-bromopropionyl bromide 

(BPB: Aldrich 98%), propargyl bromide solution (80 wt% in toluene, Aldrich), propargyl ether 

(Aldrich, 99%), tripropargylamine (TPA: Aldrich, 98%), sodium azide (NaN3: Aldrich, 99.5%), 

N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA: Aldrich, 99%), copper(I) bromide 

(Cu(I)Br: Aldrich, 99.999%), copper(II) bromide (Cu(II)Br2: Aldrich, 99%); tris(2-carboxyethyl) 

phosphine hydrochloride (TCEP, 98%, Aldrich); styrene (Sty, Aldrich, >99%) was purified from 

inhibitor prior to use by passing through a basic alumina column. Azobisisobutyronitrile (AIBN, 

Riedel-de Haen) was recrystallised from methanol twice prior to use. All other chemicals used were 

of at least analytical grade and used as received. 

The following solvents were used as received: acetone (Chem Supply, AR), chloroform (CHCl3: 

Univar, AR grade), dichloromethane (DCM: Labscan, AR grade), diethyl ether (Univar, AR grade), 

ethanol (EtOH: ChemSupply, AR), ethyl acetate (EtOAc: Univar, AR grade), hexane (Wacol, 

technical grade, distilled), hydrochloric acid (HCl, Univar, 32%), anhydrous methanol (MeOH: 

Mallinckrodt, 99.9%, HPLC grade), Milli-Q water (Biolab, 18.2 MΩ cm), N,N-dimethylformamide 

(DMF: Labscan, AR grade), tetrahydrofuran (THF: Labscan, HPLC grade), toluene (HPLC, 

LABSCAN, 99.8%). 

 

2.2.2 Instruments and measurements 

Size Exclusion Chromatography (SEC). 

 For SEC analysis, polymer solution was prepared by dissolving in tetrahydrofuran (THF) to a 

concentration of 1 mg mL-1 and then filtered through a 0.45 mm PTFE syringe filter. A waters 2695 

separations module, fitted with a waters 410 refractive index detector maintained at 35 °C, a waters 

996 photodiode array detector, and two Ultra-styragel linear columns (7.8 × 300 mm) arranged in 

series were used to analyze the molecular weight distribution of the polymers. For all analysis, these 

columns were maintained at 40 °C and are capable of separating polymers in the molecular weight 

range of 500 to 4 million g mol-1 with high resolution. All samples were eluted at a flow rate of 1.0 

mL min-1. Calibration was performed using narrow molecular weight PSTY standards (PDI ≤ 1.1) 

ranging from 500 to 2 million g mol-1. Data acquisition was performed using Empower software, 

and molecular weights were calculated relative to polystyrene standards. 

 

Absolute molecular weight determination by triple detection-SEC.  
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Absolute molecular weights of polymers were determined using a Polymer Labs GPC50 Plus 

equipped with dual angle laser light scattering detector, viscometer and differential refractive index 

detector. HPLC grade tetrahydrofuran was used as eluent at flow rate 1 mL min-1. Separations were 

achieved using two PLGel Mixed C (7.8 × 300 mm) SEC columns connected in series and held at a 

constant temperature of 40 °C. The triple detection system was calibrated using a 4 mg mL -1 PSTY 

standard (Polymer Laboratories: Mw = 110 K, dn/dc = 0.185 and IV = 0.4872 mL g-1). Polymer 

samples of known concentration were freshly prepared in THF and passed through a 0.45 mm PTFE 

syringe filter just prior to injection. 

 

Preparative Size Exclusion Chromatography (Prep-SEC). 

Linear polystyrene was purified using a Varian Pro-Star preparative SEC system equipped with a 

manual injector, differential refractive index detector, and single wave-length ultra-violet visible 

detector. Flow rate was maintained 10 mL min-1 and HPLC grade tetrahydrofuran was used as the 

eluent. Separations were achieved using a PLgel 10 mm 10 × 103 Å, 300 mm × 25 mm preparative 

SEC column held at 25 °C. The dried crude polymer was dissolved in THF at 100 mg mL-1 

concentration and filtered through a 0.45 mm PTFE syringe filter prior to inject. Different fractions 

were collected manually, and the composition of each was determined using the Polymer 

Laboratories GPC50 Plus equipped with triple detection as described above. 
 

1H Nuclear Magnetic Resonance (NMR).  

All NMR spectra were recorded on a Bruker DRX 300 MHz and 500 MHz spectrometer using an 

external lock (CDCl3) and referenced to the residual non-deuterated solvent (CHCl3). Then a DOSY 

experiment was run to acquire spectra presented herein by increasing the pulse gradient from 2 to 

85% of the maximum gradient strength and increasing d (p30) from 1 ms to 2 ms, using 64 scans.  

Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR).  

ATR-FTIR spectra were obtained using a horizontal, single bounce, diamond ATR accessory on a 

Nicolet Nexus 870 FT-IR. Spectra were recorded between 4000 and 500 cm -1 for 64 scans at 4 cm-1 

resolutions with an OPD velocity of 0.6289 cm s-1. Solids were pressed directly onto the diamond 

internal reflection element of the ATR without further sample preparation. 

Matrix-Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-ToF) mass spectrometry. 

MALDI-ToF MS spectra were obtained using a Bruker MALDI-ToF autoflex III smart beam 

equipped with a nitrogen laser (337 nm, 200 Hz maximum firing rate) with a mass range of 600–

400 000 Da. Spectra were recorded in both reflectron mode (2000–5000 Da) and linear mode 

(5000–20 000 Da). Trans-2-[3-(4-tert-butylphenyl)-2- methyl-propenylidene]malononitrile (DCTB; 

http://en.wikipedia.org/wiki/%C3%85
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20 mg mL-1 in THF) was used as the matrix and Ag-(CF3COO) (1 mg mL-1 in THF) as the cation 

source. Samples were prepared by co-spotting the matrix (20 mL), Ag (CF3COO) (1 mL), and 

polymer (20 mL, 1 mg mL-1 in THF) solutions on the target plate. 

 

2.2.3 Synthetic Procedures 
 

2.2.3.1 Synthesis of 4-benzyl-1-(1-phenylethyl)-1H-1,2,3-triazole ligand. 
 

N

NN

 
 

This ligand was synthesised according to our previous method.29  

 

2.2.3.2 Synthesis of prop-2-ynyl-2-(butylthiocarbonothioylthio)-2-methylpropanoate alkyne RAFT 

(1) 

First, 2-(butylylthiocarbonothioylthio)-2-methylpropanoic acid was prepared as follows. Butyl 

mercaptan (1.00 g, 7.35×10-3 mol) was added to a stirred suspension of K3PO4 (1.72 g, 8.09 mmol) 

in acetone (20 mL) and stirring for 1 h. CS2 (1.68 g, 22.06×10-3 mol) was added, and the solution 

turned bright yellow. After stirring for a further 2 h, 2-bromoisobutyric acid (1.26 g, 7.35×10-3 mol) 

was added and KBr instantaneously precipitated. After stirring overnight, the suspension was 

filtered and the cake washed with acetone (2 × 20 mL). After removing the solvent from the filtrate 

under reduced pressure, the resulting yellow residue was purified by column chromatography on 

silica using a petroleum ether (37– 55 °C)–ethyl acetate gradient to yield a bright yellow oil (96%) 

that crystallised on refrigeration. Alkyne RAFT agent (1) was synthesised as follows: 2-

(butylylthiocarbonothioylthio)-2- methylpropanoic acid (2.0 g 7.92×10-3 mol), DCC (1.96 g, 

9.5×10-3 mol) and DMAP (0.049 g, 0.79×10-3 mol) were introduced in a round bottom flask and 35 

mL DCM was added to dissolve all the components. The solution was cooled to 0 °C in an ice bath 

and stirred under argon for 30 min. Propargyl alcohol (0.49 g, 8.77×10-3 mol) was added drop-wise 

and the solution was stirred under argon atmosphere. After 48 h, DCM was removed in vacuum. 

The residue was dissolved in ether and filtered, and the solvent removed by rotary evaporator. The 

organic yellow oil was then further purified by column chromatography (eluent: ethyl acetate (10%) 
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+ petroleum spirit (90%)) using silica as stationary phase. The first fraction was collected and 

solvent was removed by rotary evaporator. The yield was calculated to be 85.5%. 1H NMR (δ, ppm, 

CDCl3): 0.95 (t, 3H, CH3CH2CH2), 1.45 (m, 2H, CH3CH2CH2), 1.65 (2H, p, CH3CH2CH2), 1.69 

(3H, s, SCH3COO) 2.45 (m, H, OCH2C≡CH), 3.28 (t, 2H CH2CH2CH2S), 4.69 (m, 2H, 

OCH2C≡CH).  

 

2.2.3.3 Synthesis of RAFT-PSTY36-≡ (2) by RAFT polymerization. 

Bulk polymerization of styrene was conducted to synthesise alkyne functional polystyrene with a 

targeted molecular weight of 4000. For a typical polymerization, alkyne RAFT (1, 0.5 g, 1.72×10-3 

mol) and AIBN (0.028 g, 0.17×10-3 mol) were dissolved in 20 mL of styrene (18.12 g, 173.98×10-3 

mol). The solution was purged with argon for 30 min, and then placed into a temperature controlled 

oil bath at 65 °C. After 15 h, the conversion was found to be 38% by 1H NMR. The polymerization 

was stopped after 15 h 30 min by quenching reaction in ice bath. The viscous solution was 

dissolved in DCM, precipitated in MeOH and filtered – this was repeated three times to remove 

monomer. The polymer was dried overnight and characterised by SEC, 1H NMR and MALDI-ToF. 

(Mn = 4110, PDI = 1.08 (SEC-RI calibrated using narrow monodisperse polystyrene standards in 

tetrahydrofuran) and triple detection SEC (Mn = 4270, PDI = 1.05). 

 

2.2.3.4 Synthesis of Epo-PSTY36-≡ (3). 

A typical Michael addition reaction was run as follows: RAFT-PSTY36-≡, 2 (6.0 g, 1.5 × 10-3 

mol), glycidyl methacrylates (4.0 mL, 30.0 × 10-3 mol) and TCEP (43 mg, 0.3 × 10-3 mol) were 

dissolved in 40 mL of dry DMF in a 100 mL Schlenk flask. In another flask, TEA (1.0 mL, 4.5 × 

10-3 mol) and hexylamine (1.0 mL, 4.5 × 10-3 mol) were mixed in 5 mL of dry DMF. Both the 

flasks were purged with argon for 30 min and the amine solution was transferred to the polymer 

solution using a double tip needle by applying argon pressure. The reaction was run under argon 

atmosphere for 24 h. The polymer solution was then precipitated in MeOH and filtered, and 

repeated to remove impurities. The polymer was dried overnight and characterised by SEC, 1H 

NMR, ATR-FTIR and MALDI-ToF. (Mn = 4150, PDI = 1.08 (SEC-RI calibrated using narrow 

monodisperse polystyrene standards in THF) and triple detection SEC (Mn = 4060, PDI = 1.05). 

2.2.3.5 Synthesis of N3-PSTY36-≡ (4). 

Epo-PSTY36-≡ 3 (5.0 g, 1.25×10-3 mol), NaN3 (0.81 g 12.5×10-3 mol) and NH4Cl (0.67 g, 12.5×10-3 

mol) were added in 40 mL of DMF. The reaction was carried out under argon atmosphere at 50 °C 

for 24 h. The turbid solution was then added in 300 mL of DCM and filtered to remove salts. The 

volume of DCM was decreased by rotary evaporator and polymer precipitated in MeOH and 
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filtered. The polymer was dried overnight and characterised by SEC, 1H NMR, ATR-FTIR and 

MALDI-ToF. (Mn = 4270, PDI = 1.08 (SEC-RI calibrated using narrow monodisperse polystyrene 

standards in THF) and triple detection SEC (Mn = 4090, PDI = 1.05).  

 

2.2.3.6 Synthesis of c-PSTY36-OH (5). 

A solution of N3-PSTY36-≡ 4 (0.5 g, 0.125×10-3 mol) in 25 mL of dry toluene was purged with 

argon for 30 min to remove oxygen. This polymer solution was added via syringe pump at a flow 

rate of 0.1 mL min-1 to a deoxygenated solution of Cu(I)Br (0.896 g, 6.25×10-3 mol) and PMDETA 

(1.31 mL, 6.25×10-3 mol) in 25 mL toluene at 25 °C. After the addition of polymer solutions, which 

was 4.17 h, the reaction mixture was further stirred for 3 h. At the end of this period (i.e., feed time 

plus an additional 3 h), toluene was evaporated and the copper salts were removed through CHCl3–

water extraction. The residual copper salts were removed by passage through activated basic 

alumina column. The polymer was recovered by precipitation into MeOH (20 fold excess to 

polymer solution) and then by filtration. The polymer was dried in vacuo for 24 h at 25 °C. The 

purity of cyclic polymer was 95%, which was determined from the simulation of the MWD by the 

LND method using the experimental Mn and PDI values of the linear polymer 4 and the 

hydrodynamic change (ΔHDV) of 0.76. The procedure was then repeated. The crude products were 

purified by preparative SEC (Mn = 2910, PDI = 1.06) and triple detection SEC (Mn = 4040, PDI = 

1.04).  

2.2.3.7 Synthesis of c-PSTY36-Br (6).  

c-PSTY36-OH, 5 (1.0 g, 0.25×10-3 mol), TEA (1.74 mL, 12.5×10-3 mol) and 15 mL of dry THF 

were added under an argon blanket to a dry Schlenk flask that has been flushed with argon. The 

reaction was then cooled on ice. To this stirred mixture, a solution of 2-bromopropionyl bromide 

(1.31 mL, 12.5×10-3 mol) in 5 mL of dry THF was added drop wise under argon via an air-tight 

syringe over 5 min. After stirring the reaction mixture for 48 h at room temperature, the polymer 

was precipitated into MeOH, filtered and washed three times with MeOH. The polymer was dried 

for 24 h in high vacuum oven at 25 °C. The polymer was characterised using SEC (both PSTY 

standards and triple detection), 1H NMR, ATR-FTIR and MALDI-ToF. 

2.2.3.8 Synthesis of c-PSTY36-N3 (7). 

c-PSTY36-Br, 6 (1.0 g, 0.25×10-3 mol) was dissolved in 15 mL of DMF in a reaction vessel 

equipped with magnetic stirrer. To this solution, NaN3 (0.163 g, 2.5×10-3 mol) was added and the 

mixture stirred for 17 h at room temperature. The polymer was precipitated into MeOH, recovered 

by vacuum filtration and washed exhaustively with water and MeOH, then dried in vacuo for 24 h 
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at 25 °C. The polymer was characterised using SEC (both PSTY standards and triple detection), 1H 

NMR, ATR-FTIR and MALDI-ToF. 

2.2.3.9 Kinetic studies in the synthesis of dicyclic PSTY by one pot. 

c-PSTY36-N3, 7 (0.02 g, 0.005×10-3 mol), propargyl ether (0.26 µL, 0.0025×10-3 mol; from a stock 

solution prepared by adding 5.2×10-3 mL propargyl ether in 10 mL toluene) and PMDETA 

(5.22×10-3 mL 0.025×10-3 mol) were dissolved in 0.5 mL of dry toluene to a vial. CuBr (0.0036 g, 

0.025×10-3 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 12 min and the polymer solution was transferred to CuBr flask 

using double tipped needle by applying argon pressure. The reaction mixture was purged with argon 

for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After a 

certain time interval, aliquots were taken and analyzed by SEC. Kinetic studies using CuBr in DMF 

and CuBr–triazole in toluene followed the same procedure. 

2.2.3.10 Kinetic studies in the synthesis tricyclic PSTY by one pot. 

c-PSTY36-N3, 7 (0.02 g, 0.005×10-3 mol), tripropargylamine (0.25×10-3 mL, 0.0017×10-3 mol; from 

a stock solution prepared by adding 5.0×10-3 mL tripropargylamine in 10 mL toluene) and 

PMDETA (5.22×10-3 mL, 0.025×10-3 mol) were dissolved in 0.5 mL of dry toluene to a vial. CuBr 

(0.0036 g, 0.025×10-3 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. 

Both of the vessels were purged with argon for 12 min, and the polymer solution was transferred to 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for a further 2 min and the flask was placed in a temperature controlled oil bath 

at 25 °C. After a certain time interval, aliquots were analyzed by SEC. Kinetic studies using CuBr 

in DMF and CuBr–triazole in toluene followed the same procedure. 

 

2.2.3.11 Synthesis of dicyclic and tricyclic PSTY by one pot  

Synthesis of (c-PSTY)2 (8). c-PSTY36-N3, 7 (0.04 g, 0.01×10-3 mol) and propargyl ether (0.62×10-

3 mL, 0.006×10-3 mol; from a stock solution prepared by adding 6.2×10-3 mL propargyl ether in 5 

mL DMF) were dissolved in 0.5 mL of dry DMF to a vial. CuBr (0.007 g, 0.05×10-3 mol) was 

added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the vessels were purged 

with argon for 12 min, and the polymer solution was transferred to CuBr flask using double tipped 

needle by applying argon pressure. The reaction mixture was purged with argon for further 2 min 

and the flask was placed in a temperature controlled oil bath at 25 °C. After 30 min, an aliquot was 

analysed by SEC. The reaction was stopped after 1 h, and the mixture diluted in 2.0 mL of THF. 

The solution was then passed through activated basic alumina column to remove copper. Solvent 
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was removed by rotary evaporator, precipitated in MeOH, filtered and dried overnight. The crude 

product was then purified by preparative SEC. 

 

Synthesis of (c-PSTY)3 (9). c-PSTY36-N3, 7 (0.06 g, 0.015×10-3 mol), tripropargylamine (0.74×10-

3 mL, 0.005×10-3 mol; from a stock solution prepared by adding 7.4×10-3 mL tripropargylamine in 5 

mL toluene) and triazole (0.019 g, 0.075×10-3 mol) were dissolved in 0.5 mL of dry toluene to a 

vial. CuBr (0.011 g, 0.075×10-3 mol) was added in a 10 mL Schlenk flask equipped with magnetic 

stirrer. Both of the vessels were purged with argon for 12 min and the polymer solution was 

transferred to CuBr flask using double tipped needle by applying argon pressure. The reaction 

mixture was purged with argon for further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C. After 10 h, an aliquot was analyzed by SEC. The reaction was stopped 

after 12 h, and the mixture diluted with 2.0 mL of THF. The solution was then passed through 

activated basic alumina column to remove copper. Solvent was removed by rotary evaporator, 

precipitated in MeOH, filtered and dried overnight. The crude product was then purified by 

preparative SEC. 

 

2.3 Results and discussion 

 Synthesis of the precursor linear polystyrene 

A linear polystyrene (PSTY, 2) with an alkyne and trithioester on either end of the polymer chain 

was synthesised using the RAFT technique (Scheme 2.1). The polymerization was carried out in 

bulk at 65 °C and stopped after 15.5 h with a conversion of 38%, number-average molecular weight 

(Mn) of 4110, and polydispersity of 1.08 (Table 2.1). There was no requirement to protect the 

alkyne group during the polymerization as the Mn was close to theory and with a low polydispersity. 

The SEC trace showed no trace of higher molecular weight polymer from alkyne–alkyne coupling 

(see curve a in Fig. 2.1(A)). The next step was to convert the trithioester moiety on the polymer to 

an epoxide in a one-pot reaction to produce 3. A solution of hexylamine in dry DMF was added 

slowly to a mixture of polymer 2, glycidyl methacrylate, and TCEP (to eliminate disulfide 

formation) in dry DMF. After 24 h, the molecular weight distribution (MWD) remained essentially 

unchanged (curve b in Fig. 2.1(A)), and there was no detection of the RAFT end-group at 311 nm 

as shown in Fig. 2.1(B). 

The direct azidation of the epoxide ring is a key feature to make cyclic polymers with an alcohol 

functionality required for further coupling reactions. The ring-opening of the epoxide on 3 (Epo-

PSTY-≡) in the presence of the nucleophile, NaN3, gave near quantitative ring-opening and 

formation of an azide and alcohol after 24 h at 50 °C to give 4 (N3-PSTY-≡). This was supported by 
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1H NMR analysis (Fig. 2.2), in which the signals at 3.23, 2.84, and 2.64 ppm attributed to the 

methine and methylene protons of the epoxide disappeared with the formation of new peaks at 

3.73–4.07 ppm, representing the methylene protons next to the ester groups and the methine proton 

adjacent to the hydroxyl groups (CO2CH2 and CH–OH), and at 3.30 and 3.32 ppm representing 

methylene protons adjacent to azide groups (CH2N3). 

Table 2.1 RI and triple detection molecular weight distributions data for PSTY starting, chain end 

modified and click coupled polymers 

 

Polymer code  RI Detectiona  Triple Detectionb  

Mn  Mp  PDI  Mn  Mp  PDI 

RAFT-PSTY-≡ (2) 4110  4317  1.08  4270  4490  1.05  

Epo-PSTY-≡ (3) 4150  4353  1.08  4060  4190  1.05  

N3-PSTY-≡ (4) 4270  4425  1.08  4090  4210  1.05  

c-PSTY-OH (5) 2910  2930  1.06  4040  4130  1.04  

c-PSTY-Br (6) 3180  3210  1.06  4280  4470  1.03  

c-PSTY-N3 (7) 3230  3350  1.07  4680  4720  1.02  

(c-PSTY)2 (8) 6490  6850  1.05  7830  8300  1.02  

(c-PSTY)3 (9) 8770  9180  1.05  11000  13370  1.05  
 

a The data was acquired using SEC (RI detector) and is based on PSTY calibration curve. b The 

data was acquired using triple detection SEC. 

 
Fig. 2.1 (A) SEC chromatograms for cyclization of (a) RAFT-PSTY-Alk 2 (b) Epo-PSTY-Alk, 3 

and (c) N3-PSTY-Alk, 4, SEC analysis based on polystyrene calibration curve. (B) UV-vis spectra 

(A) (B)

(c)

(a), (b) (a)

(b)
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at 311 nm of (a) RAFT-PSTY-Alk, 2 and (b) the aminolyzed Epo-PSTY-Alk, 3, elution solvent 

THF. 
 
 

 
 

Figure 2.2. 1H-NMR spectra of (A) RAFT-PSTY-Alk 2 (B) Epo-PSTY-Alk 3 (C) N3-PSTY-Alk 4 

and (D) c-PSTY-OH 5 in CDCl3 (* methanol).  

 

Cyclization of linear polystyrene and chain-end modification  

Cyclization of 4 to give 5 (c-PSTY-OH) was carried out by feeding a solution of 4 (0.5 g in 25 mL) 

dissolved in toluene at a feed rate of 0.1 mL min-1 into the reaction mixture containing Cu(I)Br–

PMDETA (as the catalyst for the CuAAC reaction) and 25 mL of toluene at 25 °C. After the feed, 

the reaction was stirred for a further 30 min to ensure complete conversion of starting polymer 4. 

The formation of 5 was evident from a shift to a lower MWD to that of the starting linear species. 

Such a reduction in hydrodynamic volume is typical for cyclic PSTY chains due to their more 

compact topology.17,30 The cyclic purity of 5 was calculated from the ratio of the cyclic product to 

that of all polymer species determined from the normalised weight distribution using the Gaussian 

simulation (Fig. 2.3). The experimental MWD (w(M)) after cyclization was simulated using the 

LND method19,24 using the experimental Mn and PDI values of the linear polymer 4 (N3-PSTY-Alk) 

and the hydrodynamic change (ΔHDV) of 0.76 (curve d in Fig. 2.3). The LND simulation provides 
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a sensitive method to analyze the amount of monocyclic formed after the cyclization reaction. It can 

be seen that the simulated MWD overlaps near perfectly with the MWD after cyclization, allowing 

us to calculate a 95% purity for the monocyclic polymer. Purification of 5 by preparative SEC gave 

essentially pure c-PSTY-OH (Mn = 2950, PDI = 1.06; see Table 2.1) in which all higher molecular 

weight polymers were removed. 

When the purified polymer was subsequently injected into the triple detection SEC (to obtain an 

absolute MWD independent of topology), it gave an essentially identical MWD to that of the 

starting linear species 4, further confirming the production of cyclic polymer. The 1H NMR (Fig. 

2.2(D)) and ATR-FTIR (see appendix A) of purified 5 showed near quantitative loss of azide 

groups. Compared to the linear PSTY precursor 4, new resonance peaks between 4.2 and 4.7 ppm 

were observed with the disappearance of protons adjacent to azide group at 3.3 ppm, suggesting the 

near quantitative loss of starting linear polystyrene due to the formation of a triazole ring. 

 
Figure 2.3: SEC chromatograms of (a) N3-PSTY-Alk 4, (b) c-PSTY-OH, 5 crude, (c) c-PSTY-OH 

5 after purification by preparatory SEC and (d) LND simulation of 5 with hydrodynamic volume 

change of 0.76. SEC analysis based on polystyrene calibration curve.  

 

The –OH functionality on 5 was then converted to cyclic PSTY azide via a two-step reaction 

(Scheme 2.1): first, bromination using excess of 2-bromopropionyl bromide, and second, azidation 

to form 6. The bromo functional cyclic product was confirmed by MALDI-ToF spectroscopy 

acquired in reflectron mode. The molecular weight distribution and expanded spectra between 4100 

and 4500 were given in Fig. 2.4, exhibiting a theoretical value [M + Ag+] of 4335.22 that was 

nearly identical with experimental value [M + Ag+] 4335.02, indicating quantitative conversion of 

(a)

(b),(d)

(c)
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hydroxyl of cyclic PSTY to bromo functional cyclic PSTY 6 (c-PSTY-Br). In addition, there was 

no distinctive change in the SEC traces after functionalization to the bromine and azide groups (see 

Fig. A7 in appendix A), suggesting high end-group functionality. 

 

 
Figure 2.4. MALDI-ToF mass spectrometry of cPSTY-Br, 6 with Ag salt as cationization agent and 

DCTB matrix in reflectron mode: (A) full molecular weight distribution, (B) expanded spectrum;  

calculated [M+Ag+] = 4335.22, DPn = 36. 

 

Synthesis of 2- and 3-arm topologies in one-pot built from cyclic polymer 

The 2-and 3-arm stars were coupled in a one pot using c-PSTY-N3 (7, 20 mg in 0.5 mL, 1 eq.) and 

either propargyl ether (0.5 eq.) or tripropargylamine (0.33 eq.) at 25 °C (Scheme 2.1). Conventional 

experimental CuAAC conditions of Cu(I)Br and PMDETA in toluene were first used in the ‘click’ 

reaction. After 10 min, the SEC trace (curve c in Fig. 2.5(A)) showed the formation of a distribution 

at twice the molecular weight of 7, corresponding to the 2-arm species. However, with time this 

peak decreased and the distribution corresponding to the 7 increased (Fig. 2.5(A)), suggesting the 

susceptibility of the 2-arm species to cleavage. This result was further supported from the coupling 

efficiency which decreased from approximately 80% after 10 min to near full cleavage of the 2-arm 

species after 24 h (curve a in Fig. 2.6(A)). The cleavage of the 2-arm star occurred at the linker 

between the cyclic arms since no linear PSTY was observed in the SEC traces, leaving the c-PSTY 

intact. The presence of base (i.e. PMDETA ligand) most likely cleaves the ester group after 

‘clicking’ with propargyl ether, and has been the cause of degradation in other systems.31,32 A 

similar result was found when 7 was coupled via the CuAAC with tripropargylamine (Fig. 2.5(B) 

and 2.6(B)). 

Exp. [M+Ag+] = 4335.02

(A) (B)
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Figure 2.5: SEC chromatograms for the kinetics of  (A) dicyclic cleavage using CuBr/PMDETA 

in toluene;  (a) Alk-PSTY- N3 4 (b) cPSTY-N3 7; degradation after (c) 10 min (d) 30 min (e) 1 h (f) 

3 h (g) 7 h and (h) 24 h; (B) tricyclic cleavage using CuBr/PMDETA in toluene;  (a) Alk-PSTY-N3 

4  (b) c-PSTY-N3 7; degradation after (c) 10 min (d) 30 min (e) 1h (f) 2 h (g) 5 h and (h) 24 h. SEC 

analysis based on polystyrene calibration curve. 

 Figure 2.6: (A) The percent of di-cyclic formed versus time using (a) CuBr-PMDETA in toluene, 

(b) CuBr in DMF and (c) CuBr-triazole in toluene;  (B) The percent of tricylcic formed versus time 

using (a) CuBr-PMDETA in toluene, (b) CuBr in DMF and (c) CuBr-triazole in toluene.  

 

In the next experiment, we exchanged the PMDETA for the neutral triazole ligand (4-benzyl-1-(1-

phenylethyl)-1H-1,2,3-triazole)29 and carried out the CuAAC reaction in toluene. The results 

showed that the ‘click’ reaction was slower than with PMDETA and reached a coupling efficiency 

of close to 90% (curve b in Fig. 2.6(A) and (B)). The data also showed no degradation of either the 

2- or 3-arm species over time. In another experiment, in which the reaction was carried out in DMF 

without any ligand (i.e. ligand-free), the 2-arm species formed in less than 1 h with approximately 

90% coupling efficiency (curve c in Fig. 2.6(A)). It has been established previously that the click 
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reaction can be quite efficient in the absence of ligand if the solvent (e.g. DMF) can facilitate 

sufficient solubility of copper catalyst.29 In the case of the 3-arm species (curve c in Fig. 2.6(B)), 

the coupling efficiency was close to 50% after 1 h, and increased to 60% after 24 h. This reaction 

was repeated, giving a similar result. The reason for such a low coupling efficiency under these 

conditions is not clear, but could be due to DMF reducing the enhanced CuAAC rates from adjacent 

triazole rings in the linker due to DMF’s preferential binding to CuBr.29 

Based on the kinetic analysis above, we chose the ligand-free conditions of CuBr in dry DMF to 

catalyze the CuAAC coupling reaction between c-PSTY-N3 (7, 0.04 g in 0.5 mL, 1 eq.) and 

propargyl ether to form the 2-arm species 8 (c-PSTY)2 The formation of 8 at 25 °C after 1 h showed 

a molecular weight distribution at twice that of the starting polymer as shown in Fig. 2.7(A) (curve 

b). Fitting a LND (curve c) to the MWD of the crude SEC trace of 8 allowed us to calculate the 

purity and coupling efficiency to be 84% (Table 2.2). This crude polymer was purified using 

preparative SEC (curve d), removing all low molecular weight starting polymer. The formation of 

2-arm polymer structure in a one-pot reaction was further confirmed by 1H NMR (Fig. 2.8) and 

MALDI ToF (see appendix A13). The 1H NMR spectra in Fig. 2.8 showed a near quantitative loss 

of azide group as determined from the loss of the peak for the proton adjacent to the azide moiety 

(denoted as i at 3.82, COCH(CH3)N3) and the appearance of peaks at 4.65 denoted as k for CH2–O 

of propargyl ether. 

 
Figure 2.7: SEC chromatograms of CuAAC coupling reactions by one pot using cPSTY-N3 7 

with (A) propargyl ether in CuBr/DMF to produce (c-PSTY)2 8; (a) c-PSTY-N3 7; (b) (c-PSTY)2-

crude and  (c) LND simulation of 8. (d) (c-PSTY)2 8 after preparatory SEC purification.  (B) 

tripropargylamine in CuBr/triazole to produce (c-PSTY)3 9; (a) c-PSTY-N3 7; (b) (c-PSTY)3-crude 

and  (c) LND simulation of 9 with hydrodynamic volume change of 0.91. (d) (c-PSTY)3 9  after 

preparatory SEC purification. All chromatograms are based on PSTY calibration. 
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Based on the poor coupling efficiency for the 3-arm star (i.e. 0.06 g of 7 in 0.5 mL of DMF and 

tripropargylamine) using CuBr in DMF from the kinetic analysis above, we carried out the CuAAC 

reaction using CuBr–triazole. The kinetic data from Fig. 2.6(B) suggested that the CuAAC reaction 

to form 9 was complete in approximately 10 h. The SEC trace after 10 h showed a molecular weight 

distribution at triple that of the starting polymer as shown in Fig. 2.7(B) (curve b). The full 

experimental MWD of crude 9 was fit using the LND method (curve c), giving a 3-arm star purity 

of 82% (Table 2.2) and a small amount of 2-arm (dicyclic, 11%) resulting in a coupling efficiency 

of close to 90%. Purification of the crude 9 by preparative SEC gave near pure 3-arm star as shown 

in curve d (Fig. 2.7(B)). The 1H NMR spectra in Fig. 2.8 showed a nearly quantitative loss of azide 

group as determined from the loss of peak for the proton adjacent to the azide moiety (denoted as i 

at 3.82, COCH(CH3)N3). 

 
Figure 2.8. 500 MHz 1H 1D DOSY NMR spectra of (A) c-PSTY-N3 7 (B) (c-PSTY)2 8  and (C) (c-

PSTY)3 9. 
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Table 2.2 Click efficiency and molecular weight data for synthesis of dicyclic and tricyclic PSTY 

 

a Maximum purity by theory. b Purity determined using LND by Gaussian simulation. c Coupling 

efficiency calculated as follows: purity (SEC)b/max. puritiya × 100. d The data acquired using SEC 

(RI detector) based on PSTY calibration curve. e Data acquired using triple detection SEC. f  ΔHDV 

= Mp(RI)/Mp (triple detection). 

 

2.4 Conclusions 
In conclusion, we have demonstrated a novel approach to produce cyclic polymers by RAFT with 

functionality required for further coupling to form 2- and 3-arm cyclic stars. Cyclization of the 

linear RAFT polymer gave cyclic with a purity of 95% as determined by simulating the 

experimental MWD using the LND method. This method has been found to be accurate for 

determining the purity of the product and relative amounts of side products and reactants. The 

alcohol moiety on the cyclic polymer (c-PSTY-OH) was then converted to an azide and ‘clicked’ 

together using the CuAAC reaction to form either 2- or 3-arm stars. The cyclic arms of the 2- and 3-

arm stars degraded to the starting monocyclic polymers when CuAAC coupling was attempted 

using CuBr–PMDETA in toluene. The best condition to form the stars without degradation was to 

carry out the CuAAC reaction in either CuBr in DMF solvent or CuBr–triazole in toluene. Our 

approach to build stars from cyclic RAFT polymers will allow many chemically different polymers 

to be cyclised, and may provide a new tool to design polymer architecture with greater function. 

 

 

 

Product  Before purification by prep SEC  After purification by prep SEC Δ HDVf  

Max. 
Puritya  % 

Purity by 
SECb 

Coupling 
efficiencyc 

RI (PSTY calibration)d Absolute MW (triple detection)e 

Mn Mp PDI Mn Mp PDI 

(c-PSTY)2 (8) 100 84.0 84.0 6490 6850 1.05 7830 8300 1.02 0.83 

(c-PSTY)3 (9) 100 82.0 82.0 8770 9180 1.05 11000 13370 1.05 0.69 
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Chapter 3 
 

Complex Polymer Topologies Built from Tailored Multifunctional Cyclic 

Polymers 

 

Chapter 3 describes the synthesis of complex polymer structures using multifunctional cyclic 

polymer combining ATRP and CuAAC reaction. Complex polymer structures, including a spiro 

tricyclic and 1st generation dendritic structures, were constructed from cyclic polymer building 

blocks. We described a new method to produce mono-cyclic polymers with hydroxyl groups 

equally spaced along the polymer backbone. A key synthetic feature was carrying out the CuAAC 

reaction of telechelic polymer chains in the presence of a bromine group through modulating the 

Cu(I) activity towards the 'click' reaction over radical formation. This allowed the precise control 

over the location of the OH-groups. Azidation of the bromine groups and cyclization using a 

modified feed approach resulted in multifunctional cyclics in high amounts and high purity of 

greater than 99% of multifunctional mono-cyclic after fractionation. Conversion of the OH-groups 

to either azide or alkyne functionality produced the central core macromolecule from which the 
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more complex topologies were built. All four complex topologies, including a spiro tricyclic, and 

dendritic structures consisting of a G1 pentacyclic, G1 tertacyclic, and a G1 heptacyclic were 

produced in high amounts with good 'click' efficiencies. 

 

3.1 Introduction 
Building complex polymer topologies from polymer building blocks is now possible through the 

combination of 'living' radical polymerization (LRP) 1 and 'click' 2-4 reactions. This advance in 

synthetic polymer chemistry has led to the precise control over the architecture to form stars, 5 

dendrimers, 6-8 hyperbranched polymers, 9 multiblock copolymers, 10 and bioconjugates. 11, 12 Such 

synthetic protocols enabled the synthesis of the more intriguing cyclic and multicyclic polymers, 13-

17 which through their different diffusion mechanisms and greater compact topology have very 

different properties to linear polymers.18 Linear polymers diffuse through a matrix via reptation, in 

which its path is determined by the chain-ends. In the case of a cyclic polymer with the absence of 

chain-ends, diffusion is faster with an amoeba-like motion; 19 although the true mechanism of 

diffusion is yet to be elucidated. Cyclic polymers also have a more compact topology, resulting in a 

lower hydrodynamic volume (by a factor of ~0.71 for polystyrene) compared to a linear polymer of 

the same molecular weight.20, 21 This shift in hydrodynamic volume is a characteristic feature used 

to identify the formation of cyclic polymers by size exclusion chromatography (SEC), and can also 

be used to quantify and separate cyclic polymer species from linear polymer precursors made by the 

ring-closure method.22  

The ring-closure method represents a straightforward synthetic protocol to link functional chain-

ends together on the same polymer chain, forming cyclic or ring polymers.23-27 The advantages of 

this method include the preparation of monodisperse cyclics, a wide variety of cyclic compositions, 

and predetermined location of functional groups on the cyclic. It should be noted that other efficient 

methods for making cyclic polymers have been described.28-32 'Living' radical polymerization has 

been widely used to form chemically functional telechelic polymers that can then be coupled 

through 'click' chemistry to form the cyclics. It was recently reported that cyclic polymers with a 

single chemical functionality could be coupled together to form mikto-arm stars.22 The more 

complex bridged and fused cyclic topologies could be prepared using a different technique; the 

elegant electrostatic self-assembly and covalent fixation (ESA-CF) process as first exemplify by 

Tezuka and coworkers.33-36 The self-assembly of the chain-ends through the electrostatic process, 

however, requires dilute conditions, followed by a heat treatment to form a covalent bond between 

the chain-ends. 
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Our laboratory has described the optimal conditions for the general 'click' ring-closure method.14, 37 

Utilizing the Jacobson-Stockmayer equation,38 we produced significantly higher concentrations of 

high purity cyclic polymer within less than 9 min under feed conditions, and the cyclic polymer 

could be easily separated and isolated from the linear precursor by preparative SEC. The aim of this 

current work was to develop a new synthetic strategy to produce multifunctional cyclic polymers 

through the LRP/'click' ring-closure method at high concentrations. The functional groups on the 

cyclics were then coupled to other polymer building blocks to produce complex structures. The 

advantage of producing polymers by LRP are the wide range of polymer types and compositions, 

allowing for greater design and control over polymer topology, chemical composition and 

functionality. 

Here, we elaborate a new synthetic approach to form cyclic polymers with two and three functional 

hydroxyl groups equidistant from each other (see polymers 19 and 27 in Scheme 3.1) via the 

LRP/'click' procedure. The hydroxyl groups were converted to azides or alkynes and then coupled 

through the copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction with monofunctional 

cyclic to produce complex structures, including a spiro tricyclic and 1st generation dendritic 

structures (see Scheme 3.1). To produce the precursor linear polymers with equally spaced hydroxyl 

groups, we coupled 7 directly to 15 or 17 without loss of the Br end-group in products 16 or 24. 

This was accomplished through modulating the copper(I) catalytic activity (i.e. by using the 

combination of PMDETA ligand and toluene as solvent) to facilitate a significantly faster CuAAC 

reaction over abstraction of Br end-group by either atom transfer or single electron transfer 

reactions to form the incipient polymeric radicals.39 Our group has demonstrated that the catalytic 

activity of Cu(I) can be modulated by changing ligand and solvent to facilitate or inhibit the 

CuAAC reaction compared to either atom transfer nitroxide radical coupling (ATNRC) or single 

electron transfer-nitroxide radical coupling (SET-NRC).40-43 
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Scheme 3.1. Synthetic methodology to build complex topologies from multifunctional cyclic 

polymers. 

 
 

Conditions: (a) azidation: NaN3 in DMF at 25 °C, (b) cyclization: CuBr, PMDETA in toluene by 

feed at 25 °C, (c) bromination: 2-BPB, TEA in THF; 0 °C- RT, (d) deprotection: TBAF in THF at 

25 °C. (e) CuAAC ‘click’ reaction: CuBr, PMDETA in toluene at 25 °C 

3.1.1 Aim of the Chapter 
The initial aim of the work described in this chapter was to synthesise multifunctional cyclic 

polymers in which the functional groups located in the equally spaced position. Linear polymer 

precursors were synthesised by CuAAC reaction in the presence of a bromine group through 

modulating the Cu(I) activity towards the click reaction over radical formation. The azidation and 

subsequent deprotection of linear polymers reveals α, ω hetero-telechelic linear polymer precursors 

which were cyclised by using modified CuAAC cyclization reaction providing hydroxyl functional 

groups equally spaced from each other.  The multifunctional cyclic polymers were then utilised to 

synthesise different complex topologies such as spiro tricyclic and 1st generation dendritic structures 

by CuAAC reaction.  

O

O

O

OH
Br

OH N3≡

11, c-PSTY25-N3 13, c-PSTY25-≡

N3

OH

Si

15, TIPS- ≡(HO)-PSTY25-N3

N
NN

OHOH

Si Br

16, TIPS- ≡(HO-PSTY25)2-Br

OHHO

N3N3

19, c-PSTY50-(OH)2

31, spiro tricyclic

32, G1 pentacyclic  
N

NN
OHOH

Si N3

N
NN

OHOH

Si BrN
NN

OH

17, TIPS- ≡(HO-PSTY25)2-N3

24, TIPS-≡(HO-PSTY25)3-Br

7

27, c-PSTY75-(OH)3

34, G1 heptacyclic30, c-PSTY75-(≡)6

13

11

33, G1 tetracyclic

21, c-PSTY50-(N3)2

23, c-PSTY50-(≡)4

29, c-PSTY75-(N3)3

13

11

(i) Azidation

(ii) Cyclization

(i) Bromination

(ii) Azidation

linkers

12

(i) Brominatin
(ii) Azidation

22

(i) Azidation
(ii) Deprotection
(iii) Cyclization

(i) Deprotection
(ii) Cyclization

12 22

7, ≡(HO)-PSTY25-Br 9, c-PSTY25-OH

22

OO

O
O

(i) Brominatin
(ii) Azidation

Click

Azidation

CuAAC

O

HO

O

O

n
Br

N3

OH

CuAAC

CuAAC

CuAAC

CuAAC

CuAAC

CuAAC

CuAAC



Complex Polymer Topologies using Multi-functional Cyclic 

 

 49 

3.2 Experimental 

3.2.1 Materials 
The following chemicals were analytical grade and used as received unless otherwise stated: alumina, 

activated basic (Aldrich: Brockmann I, standard grade, ∼150 mesh, 58 Å), Dowex ion-exchange resin 

(sigma-aldrich, 50WX8-200), magnesium sulphate, anhydrous (MgSO4: Scharlau, extra pure) 

potassium carbonate (K2CO3: analaR, 99.9%), silica gel 60 (230-400 mesh ATM (SDS)), pyridine 

(99%, Univar reagent), 1,1,1-triisopropylsilyl chloride (TIPS-Cl: Aldrich, 99%), phosphorus 

tribromide (Aldrich, 99%), tetrabutylammonium fluoride (TBAF: Aldrich, 1.0 M in THF), 

ethylmagnesium bromide solution (Aldrich, 3.0 M in diethyl ether), triethylamine (TEA: Fluka, 98%), 

2-bromopropionyl bromide (BPB: Aldrich 98%), 2-bromoisobutyryl bromide (BIB: Aldrich, 98%), 

propargyl bromide solution (80% wt% in xylene, Aldrich), 1,1,1-(trihydroxymethyl) ethane 

(Aldrich,96%), sodium hydride (60% dispersion in mineral oil), sodium azide (NaN3: Aldrich, 99.5%), 

TLC plates (silica gel 60 F254), N,N,N´,N´´,N´´-pentamethyldiethylenetriamine (PMDETA: Aldrich, 

99%), copper (II) bromide (Cu(II)Br2: Aldrich, 99%). Copper(I)bromide and Cu(II)Br2/PMDETA 

complex were synthesised in our group. Styrene (STY: Aldrich, >99 %) was de-inhibited before use 

by passing through a basic alumina column. Methyl 3,5-bis (propargyloxyl) benzoate 44 (12) and 1,3,5-

tris(prop-2-ynyloxy)benzene 45 (22) linkers were prepared according to the literature procedure. All 

other chemicals used were of at least analytical grade and used as received. 

The following solvents were used as received: acetone (ChemSupply, AR), chloroform (CHCl3: 

Univar, AR grade), dichloromethane (DCM: Labscan, AR grade), diethyl ether (Univar, AR grade), 

dimethyl sulfoxide (DMSO: Labscan, AR grade), ethanol (EtOH: ChemSupply, AR), ethyl acetate 

(EtOAc: Univar, AR grade), hexane (Wacol, technical grade, distilled), hydrochloric acid (HCl, 

Univar, 32 %), anhydrous methanol (MeOH: Mallinckrodt, 99.9 %, HPLC grade), Milli-Q water 

(Biolab, 18.2 MΩ cm), N,N-dimethylformamide (DMF: Labscan, AR grade), tetrahydrofuran (THF: 

Labscan, HPLC grade), toluene (HPLC, LABSCAN, 99.8%). 

3.2.2 Analytical Methods  

Size Exclusion Chromatography (SEC)  

The molecular weight distributions of the polymers was determined using a Waters 2695 separations 

module, fitted with a Waters 410 refractive index detector maintained at 35 oC, a Waters 996 

photodiode array detector, and two Ultrastyragel linear columns (7.8 x 300 mm) arranged in series. 

These columns were maintained at 40 oC for all analyses and are capable of separating polymers in the 
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molecular weight range of 500 to 4 million g/mol with high resolution. All samples were eluted at a 

flow rate of 1.0 mL/min. Calibration was performed using narrow molecular weight PSTY standards 

(PDISEC ≤ 1.1) ranging from 500 to 2 million g/mol. Data acquisition was performed using Empower 

software, and molecular weights were calculated relative to polystyrene standards. 

Absolute Molecular Weight Determination by Triple Detection SEC 

Absolute molecular weights of polymers were determined using a Polymer Laboratories GPC50 Plus 

equipped with dual angle laser light scattering detector, viscometer, and differential refractive index 

detector. HPLC grade N,N-dimethylacetamide (DMAc, containing 0.03 wt % LiCl) was used as the 

eluent at a flow rate of 1.0 mL.min-1. Separations were achieved using two PLGel Mixed B (7.8 x 300 

mm) SEC columns connected in series and held at a constant temperature of 50 oC. The triple 

detection system was calibrated using a 2 mg.mL-1 PSTY standard (Polymer Laboratories: Mwt = 110 

K, dn/dc = 0.16 mL.g-1 and IV = 0.5809). Samples of known concentration were freshly prepared in 

DMAc + 0.03 wt % LiCl and passed through a 0.45 μm PTFE syringe filter prior to injection. The 

absolute molecular weights and dn/dc values were determined using Polymer Laboratories Multi 

Cirrus software based on the quantitative mass recovery technique. 

Preparative Size Exclusion Chromatography (Prep SEC).  

Crude polymers were purified using a Varian Pro-Star preparative SEC system equipped with a 

manual injector, differential refractive index detector, and single wave-length ultraviolet visible 

detector. The flow rate was maintained at 10 mL min-1 and HPLC grade tetrahydrofuran was used as 

the eluent. Separations were achieved using a PL Gel 10 μm 10 × 103 Å, 300 × 25 mm preparative 

SEC column at 25 °C. The dried crude polymer was dissolved in THF at 100 mg mL-1 and filtered 

through a 0.45 μm PTFE syringe filter prior to injection. Fractions were collected manually, and the 

composition of each was determined using the Polymer Laboratories GPC50 Plus equipped with triple 

detection as described above. 

1H Nuclear Magnetic Resonance (1H NMR). All NMR spectra were recorded on a Bruker DRX 500 

MHz spectrometer using an external lock (CDCl3) and referenced to the residual non-deuterated 

solvent (CHCl3). A DOSY experiment was run to acquire spectra presented herein by increasing the 

pulse gradient from 2 to 85 % of the maximum gradient strength and increasing d (p30) from 1 ms to 2 

ms, using 64-128 scans. 

Matrix-Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-ToF) Mass Spectrometry. 

MALDI-ToF MS spectra were obtained using a Bruker MALDI-ToF autoflex III smart beam equipped 
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with a nitrogen laser (337 nm, 200 Hz maximum firing rate) with a mass range of 600-400 000 Da. 

Spectra were recorded in both reflectron mode (500-5000 Da) and linear mode (5000-20000 Da).  

Trans- 2-[3-(4-tert-butylphenyl)-2-methyl-propenylidene] malononitrile (DCTB; 20 mg/mL in THF) 

was used as the matrix and Ag-(CF3COO) (1 mg/mL in THF) as the cation source of all the 

polystyrene samples. 20 μL polymer solution (1 mg/mL in THF), 20 μL DCTB solutions and 2 μL Ag-

(CF3COO) solution were mixed in an ependorf tube, vortexed and centrifuged. 1 μL of solution was 

placed on the target plate spot, evaporated the solvent at ambient condition and run the measurement. 

Gas chromatography/mass spectrometry analsysis (GC-MS) 

Small organic compounds were analyzed by gas chromatography/mass spectrometry (Thermo Fisher 

Trace GC Ultra and DSQ II Quadrupole Mass Spectrometer) in electron ionization mode.  The 

analysis was carried out by introducing methanol solution headspace into the GC/MS system by means 

of direct injection (3×10-3 mL by volume) using a gastight syringe. 

3.2.3 Synthetic Procedures 
The alkyne (hydroxyl) functional initiator 1 (Figure 3.1) was synthesised according to the literature 

procedure previously reported by our group.22 The scheme for the synthesis of 1 was given in Scheme  

B1 in appendix B. 

Figure 3.1. Protected and unprotected alkyne ATRP initiators. 

3.2.3.1 Synthesis of Protected Alkyne (hydroxyl) Functional Initiator (6) 

The synthetic strategy to produce 6 (Figure 3.1) was given in Scheme B2 in appendix B. 

3.2.3.2 Synthesis of 3-(1, 1, 1-Triisopropylsilyl)-2-propyn-1-ol (2) 

A solution of propargyl alcohol (2.847 g, 5.08×10-2 mol) in THF (50 mL) was added drop wise at 

room temperature to a 3.0 M solution of ethylmagnesium bromide (50.78 mL, 15.23×10-2 mol) in 100 

mL THF. The reaction mixture was refluxed for 24 h and allowed to cool to room temperature. 7.24 

mL of 1,1,1-triisopropylsilyl chloride (TIPS-Cl) (6.53 g, 16.92×10-3 mol) in THF (25 mL) was added 

drop wise, and subsequently refluxed for a further 5 h. Formation of the product was observed by TLC 

(petroleum spirit/ethyl acetate = 9:1). The reaction mixture was cooled to room temperature and 

poured into a 10% (m/m) HCl solution (20.27 mL). The aqueous layer was separated and the product 
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was extracted with ether 2 times. The combined organic layers were washed with brine, dried with 

anhydrous magnesium sulphate and the solvent was removed in vacuo. The crude product was isolated 

as yellow oil and used without further purification (yield=57.02 %). 

1H NMR46 (CDCl3, 298K, 500 MHz); δ (ppm)  4.28 (s, 2H Si-C≡C-CH2-OH), 1.06 (s, 3H, ((CH3)2-

CH)3-Si-C≡C), 1.05 (s, 18H, ((CH3)2-CH)3-Si-C≡C) ; 13C NMR (CDCl3, 298K, 500 MHz); δ 105.75 

(Si-C≡C-CH2-OH), 86.95 (Si-C≡C-CH2-OH), 51.88 (Si-C≡C-CH2-OH), 18.65 ((CH3)2-CH)3-Si-

C≡C), 11.23 ((CH3)2-CH)3-Si-C≡C). GC-MS (EI): m/z 212.2 (calcd m/z 212.14 for M+H+), 169.07 

(calcd m/z 170.32 for M1+H+)). 

3.2.3.3 Synthesis of 3-Bromo-prop-1-ynyl 3-(1,1,1-triisopropyl)-silane 3 

A solution of 3-(1,1,1-triisopropylsilyl)-2-propyn-1-ol 2 (6.0 g, 28.25×10-3 mol) and pyridine 

(13.7×10-3 mL, 1.69×10-3 mol) in anhydrous diethyl ether (100 mL ) was cooled to 0 °C in an ice-bath. 

Phosphorus tri-bromide (3.186 mL, 33.9×10-3 mol) was added slowly and the mixture was stirred for 

two hours at 0 oC and then warmed to room temperature. After stirring overnight, ice water was added 

slowly to quench the reaction. The organic layer was separated and the aqueous layer was extracted 

with diethyl ether three times. The combined organic extracts were washed with saturated sodium 

bicarbonate solution, saturated sodium chloride solution and dried over anhydrous magnesium 

sulphate. Solvent was removed in vacuo and the residue was purified by silica gel column 

chromatography to give the product as colorless oil (yield=50.66 %). TLC: Rf (hexane/ethyl acetate, 

4/1) = 0.85. 1H NMR47 (CDCl3, 298K, 500 MHz); δ (ppm) 3.93 (s, 2H, Si-C≡C-CH2-Br), 1.05 (s, 21H, 

((CH3)2-CH)3-Si-C≡C). 13C NMR (CDCl3, 298K, 500 MHz); δ 101.93 (Si-C≡C-CH2-Br), 89.2 (Si-

C≡C-CH2-Br), 18.62 ((CH3)2-CH)3-Si-C≡C), 15.1 (Si-C≡C-CH2-Br),  11.26 ((CH3)2-CH)3-Si-C≡C-), 

GC-MS (EI): m/z 276.5 (calcd m/z 275.3 for M+H+), 231.97 (calcd m/z 233.22 for M1+H+)). 

3.2.3.4 Synthesis of Compound 4 

3.85 g (24.0×10-3 mol) of 2,2,5-trimethyl-1,3-dioxan-5-yl methanol was dissolved in 60 mL dry THF 

in a 250 mL two-neck round bottom flask connected to the argon line, and the solution cooled to 0 oC 

in an ice-bath. 1.0 g (24.0×10-3 mol) NaH (60 % in mineral oil) was added proportionally to the above 

solution over 10 min. The reaction was stirred for 2 h and the reaction vessel cooled to -78 oC in a dry 

ice/acetone mixture.  5.5 g (20.0×10-3 mol) of 3 was added to the solution drop-wise over 30 min. The 

reaction was then allowed to warm to RT and stirred overnight. The reaction mixture was filtered to 

remove the salt and concentrated to remove all the solvent and low b.p impurities at room temperature. 

The crude brown liquid product was purified by silica gel column chromatography to give the product 

as colorless oil (yield = 97%). TLC: Rf (petroleum spirit/ethyl acetate 9:1, v/v) = 0.62. 1H NMR3 
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(CDCl3, 298K, 500 MHz); δ (ppm) 4.16 (s, 2H, Si-C≡C-CH2-O), 3.68-3.7 (d, 2H, J =11.81 Hz, -CH2-

O-C(CH3)2-), 3.50-3.52 (d, 2H, J =11.81 Hz, -CH2-O-C(CH3)2-), 3.5 (s, 2H, Si-C≡C-CH2-O-CH2-), 

1.36-1.4 (d, 6H, J =15.82 Hz, (O-C(CH3)2), 1.05 (s, 21H, ((CH3)2-CH)3-Si-C≡C), 0.87 (s, 3H, C≡C-

CH2-O-CH2-C(CH3)). 13C NMR (CDCl3, 298K, 500 MHz); δ (ppm) 103.77 (Si-C≡C-CH2-O), 97.94 

(O-C(CH3)2), 87.3 (Si-C≡C-CH2-O), 72.66 (C≡C-CH2-O-CH2), 66.7 (-CH2-O-C(CH3)2-), 59.47 (C≡C-

CH2-O-CH2-), 34.27 (C≡C-CH2-O-CH2-C(CH3)), 25.9 (-CH2-O-C(CH3)2-), 21.79 (O-C(CH3)2, 18.67 

((CH3)2-CH)3-Si-C≡C), 18.48 (O-C(CH3)2,  11.25 ((CH3)2-CH)3-Si-C≡C), GC-MS (EI): m/z 339.19 

(calcd m/z 340.62 for M1+H+) 311.16 (calcd m/z 312.52 for M2+H+).  

3.2.3.5 Synthesis of Compound 5 

4.8 g (13.5×10-3 mol) of compound 4 was dissolved in 25 mL dry methanol, DOWEX 2 g was added 

to the solution and stirred at 40 °C overnight. The DOWEX resin was filtered out and the solution was 

concentrated and further applied on high vacuum to remove any trace of methanol. 4.1 g of colorless 

viscous liquid product 5 was obtained with 96.5% yield. The product was directly used for the 

characterization and the next reaction without any further purification. TLC: Rf (petroleum spirit/ethyl 

acetate 3:2, v/v) = 0.7. 1H NMR3 (CDCl3, 298K, 500 MHz); δ (ppm) 4.16 (s, 2H, Si-C≡C-CH2O-), 

3.56-3.58 (m, 4H, -C(CH3)-CH2-OH ), 3.55 (s, 2H, C≡C-CH2O-CH2-) 1.05 (s, 21H, ((CH3)2-CH)3-Si-

C≡C), 0.82 (s, 3H, -C(CH3)-CH2-OH). 13C NMR (CDCl3, 298K, 500 MHz); δ (ppm) 103.15 (Si-C≡C-

CH2-O), 88.3 (Si-C≡C-CH2O-), 74.7 (C≡C-CH2OCH2-), 68.16 (-C(CH3)-CH2-OH), 59.56 (Si-C≡C-

CH2-O), 40.84 (-C(CH3)-CH2-OH), 18.64 ((CH3)2-CH)3-Si-C≡C), 17.3 ((-C(CH3)-CH2-OH), 11.23 

((CH3)2-CH)3-Si-C≡C), GC-MS (EI): m/z 271.12 (calcd m/z 272.46 for M1+H+).  

3.2.3.6 Synthesis of Protected Alkyne Functional Initiator, Comp. 6 

3.13 g (9.95×10-3 mol) of 5 and 1.73 g (12.44×10-3 mol) of TEA were dissolved in 30.0 mL of dry 

THF and cooled to 0 °C in an ice-bath. To the above solution, 1.48 g (11.94×10-3 mol) bromo 

isobutyryl bromide was added drop-wise over 10 min. The reaction was warmed up to room 

temperature and stirred for 24 h. The reaction mixture was filtered to remove the solid, concentrated 

under high vacuum at RT. The brown crude product was purified by column chromatography. Eluent 

ethyl acetate: petroleum spirit = 2:1 (v/v). The fraction with Rf as 0.27 was collected and concentrated. 

6.5 g colorless viscous liquid product 6 was obtained with the yield as 48.5 %. 

1H NMR3 (CDCl3, 298K, 500 MHz); δ (ppm) 4.1-4.2 (dt, J =6.4, 20.55 Hz,  4H, -C≡C-CH2-O-

CH2C(CH3)-CH2OCO-), 3.53 (s, 2H, -C≡C-CH2-O-CH2C(CH3)), 3.48-3.53 (d, 2H, -C(CH3)-

CH2OH, J=5.85 Hz), 1.05 (s, 21H, ((CH3)2-CH)3-Si-C≡C), 0.94 (s, 3H, -C(CH3)-CH2OH). 13C 

NMR (CDCl3, 298K, 500 MHz); δ (ppm) 171.89 (O-CH2C(CH3)-CH2OCO-), 102.98 (Si-C≡C-CH2-
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O), 88.29 (Si-C≡C-CH2-O), 73.9 (C≡C-CH2-O-CH2-), 68.18 (CH2OCO-C(CH3)2-), 67.03 (-C(CH3)-

CH2-OH), 59.62 (Si-C≡C-CH2-O), 55.92 (CH2OCO-C(CH3)2-), 40.67 (-C(CH3)-CH2-OH), 30.89 

(CH2OCO-C(CH3)2-), 18.66 ((CH3)2-CH)3-Si-C≡C), 17.2 (-C(CH3)-CH2-OH),  11.23 ((CH3)2-CH)3-

Si-C≡C), GC-MS (EI): m/z 421.10 (calcd m/z 421.44 for M1+H+). 

3.2.3.7 Synthesis of Linear PSTY by Atom Transfer Radical Polymerization (ATRP) 

Synthesis of ≡(HO)-PSTY25-Br 7 by ATRP 

Styrene (8.11g, 77.86×10-3 mol), PMDETA (0.17 mL, 8.1×10-4 mol), CuBr2/PMDETA (6.4×10-2 g,   

4.05×10-4 mol) and initiator (0.5 g, 1.6277×10-3 mol) were added to a 100 mL schlenk flask 

equipped with a magnetic stirrer and purged with argon for 40 min to remove oxygen. Cu(I)Br (0.12
 

g, 8.1×10-4 mol) was then carefully added to the solution under an argon blanket. The reaction 

mixture was further degassed for 5 min and then placed into a temperature controlled oil bath at 80 

°C. After 4 h, an aliquot was taken to check the conversion. The reaction was quenched by cooling 

to 0 °C in ice bath, exposed to air, and diluted with THF (ca. 3 fold to the reaction mixture volume). 

The copper salts were removed by passage through an activated basic alumina column. The solution 

was concentrated by rotary evaporation and the polymer was recovered by precipitation into large 

volume of MeOH (20 fold excess to polymer solution) and vacuum filtration two times. The 

polymer was dried in high vacuo overnight at 25 °C, SEC (Mn = 2890, PDI = 1.11). Final 

conversion was calculated by gravimetry (53.3%).  The polymer was further characterised by 1H 

NMR and MALDI-ToF. Another batch of ≡(HO)-PSTY25-Br, 7′ was also synthesised by following 

similar procedure.  

Synthesis of ≡(HO)-PSTY25-N3 8 by Azidation with NaN3 

Polymer 7 (2.9 g, 1.0×10-3 mol) was dissolved in 20 mL of DMF in a reaction vessel equipped with 

a magnetic stirrer. To this solution, NaN3 (0.65 g, 10.0×10-3 mol) was added and the mixture stirred 

for 24 h at 25 oC. The polymer solution was directly precipitated into MeOH/H2O (95/5, v/v) (20 

fold excess to polymer solution) from DMF, recovered by vacuum filtration and washed 

exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn = 2880, PDI 

= 1.11). The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

 

3.2.3.8 Cyclization Reaction by CuAAC Using Argon Flow Technique (see Scheme B4 in appendix 

B) 
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Synthesis of c-PSTY25-OH 9 

A solution of polymer 8 (2.0 g, 6.667×10-4 mol) in 80.0 ml of dry toluene and 6.97 mL of 

PMDETA (33.35×10-3 mol) in 80 mL of dry toluene in another flask were purged with argon for 45 

min to remove oxygen. 4.78 g of CuBr (33.35×10-3 mol) was taken in a 250 mL of dry schlenk flask 

and maintained under an argon flow in the flask at the same time. A PMDETA solution was 

transferred to CuBr flask by applying argon pressure using a double tip needle to prepare 

CuBr/PMDETA complex. After complex formation, the polymer solution was added via syringe 

pump using a syringe that is pre-filled with argon. The feed rate of argon was set at 1.24 mL/min. 

After the addition of the polymer solution (after 65 min), the reaction mixture was further stirred for 

3 h. At the end of this period (i.e., feed time plus an additional 3 h), toluene was evaporated by air-

flow and the copper salts were removed by passage through activated basic alumina column by 

adding few drops of glacial acetic acid. The polymer was recovered by precipitation into MeOH (20 

fold excess to polymer solution) and then by filtration. The polymer was dried in vacuo for 24 h at 

25 °C. (Purity by SEC=88.9%). A small fraction of crude product was purified by preparative SEC 

for characterization. SEC (Mn=2140, PDI=1.04), Triple Detection SEC (Mn= 2780, PDI=1.02). The 

polymer was further characterised by 1H NMR and MALDI-ToF. 

 

3.2.3.9 Chain-end Modification of Hydroxyl Functional Cyclic Polymer 

Synthesis of c-PSTY25-Br 10 

c-PSTY25-OH 9 (1.6 g, 5.867×10-4 mol), TEA (1.63 mL, 11.73×10-3 mol) and 30.0 mL of dry THF 

were added under an argon blanket to a dry schlenk flask that has been flushed with argon. The 

reaction was then cooled on ice bath. To this stirred mixture, a solution of 2-bromopropionyl bromide 

(1.23 mL, 11.73×10-3 mol) in 10 mL of dry THF was added drop wise under argon via an air-tight 

syringe over 10 min. After stirring the reaction mixture for 48 h at room temperature, the crude 

polymer solution was added in 300 mL of acetone and filtered to remove salt precipitate. Solvent was 

removed by rotavap and precipitated into MeOH, filtered and washed three times with MeOH. A 

fraction of crude product was purified by preparative SEC for characterization. The polymer was dried 

for 24 h in high vacuum oven at 25 °C. SEC (Mn=2350, PDI=1.04). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

 

Synthesis of c-PSTY25-N3 11 
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 Polymer c-PSTY25-Br 10 (1.5 g, 0.5×10-3 mol) was dissolved in 10 mL of DMF in a reaction vessel 

equipped with magnetic stirrer. To this solution, NaN3 
(0.65 g, 1.0×10-3 mol) was added and the 

mixture stirred for 24 h at room temperature. The polymer solution was directly precipitated into 

MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered by vacuum 

filtration and washed exhaustively with MeOH. A fraction of the polymer was purified by 

preparative SEC and precipitated and filtered. The polymer was dried in vacuo for 24 h at 25 °C, 

SEC (Mn = 2250, PDI = 1.04) and Triple Detection SEC (Mn= 2930, PDI=1.02). The polymer was 

further characterised by 1H NMR and MALDI-ToF.   

Synthesis of c-PSTY25-≡ 13 

 Polymer c-PSTY25-N3 11 (0.4 g, 0.133×10-3 mol), PMDETA (27.87×10-3 mL, 0.133×10-3 mol) and 

methyl 3,5-bis (propargyloxyl) benzoate 12 (0.49
 
g, 1.99×10-3 mol) were dissolved in 3.0 mL 

toluene. CuBr (19.0×10-3 g, 1.33×10-4 mol) was added to a 10 mL schlenk flask equipped with 

magnetic stirrer and both of the reaction vessels were purged with argon for 20 min. The polymer 

solution was then transferred to CuBr flask by applying argon pressure using double tip needle. The 

reaction mixture was purged with argon for a further 2 min and the flask was placed in a 

temperature controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 

fold to the reaction mixture volume), and passed through activated basic alumina to remove the 

copper salts. The solution was concentrated by rotary evaporator and the polymer was recovered by 

precipitation into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The 

polymer was purified by preparative SEC to remove excess linker as well as high MW impurities. 

After precipitation and filtration, the polymer was dried in vacuo for 24 h at 25 °C. SEC (Mn=2440, 

PDI=1.04) and Triple Detection SEC (Mn=3170, PDI=1.02). The polymer was further characterised 

by 1H NMR and MALDI-ToF. 

3.2.3.10 Synthesis of Protected Alkyne Functional Linear PSTY by Atom Transfer Radical 

Polymerization (ATRP) 

 Synthesis of TIPS-≡(HO)-PSTY25-Br 14  

Styrene (5.47 g, 5.3×10-2 mol), PMDETA (1.13×10-1 mL, 5.4×10-4 mol), CuBr2/PMDETA (4.3×10-

2 g, 1.08×10-4 mol) and initiator (0.5 g, 1.08×10-3 mol) were added to a 100 mL schlenk flask 

equipped with a magnetic stirrer and sparged with argon for 30 min to remove oxygen. Cu(I)Br 

(7.7×10-2 g, 5.4×10-4  mol) was then carefully added to the solution under an argon blanket. The 

reaction mixture was further degassed for 5 min and then placed into a temperature controlled oil 

bath at 80 °C. After 4 h an aliquot was taken to check the conversion. The reaction was quenched 

by cooling the reaction mixture to 0 °C, exposure to air, and dilution with THF (ca. 3 fold to the 

reaction mixture volume). The copper salts were removed by passage through an activated basic 
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alumina column. The solution was concentrated by rotary evaporator and the polymer was 

recovered by precipitation into large volume of MeOH (20 fold excess to polymer solution) and 

vacuum filtration two times. The polymer was dried in high vacuo overnight at 25 °C. SEC (Mn = 

2870, PDI = 1.08). Final conversion was calculated by gravimetry (46%). The polymer was further 

characterised by 1H NMR and MALDI-ToF.   

Synthesis of TIPS-≡(OH)-PSTY25-N3 15 by Azidation with NaN3 

Polymer TIPS-≡(OH)-PSTY25-Br 14 (1.3 g, 4.5×10-4  mol) was dissolved in 10 mL of DMF in a 20 

mL reaction vessel equipped with magnetic stirrer. To this solution NaN3 (2.8×10-1 g, 4.5×10-3 mol) 

was added and the mixture stirred for 24 h at 25 oC. The polymer solution was directly precipitated 

into MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered by vacuum 

filtration and washed exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C. 

SEC (Mn=2890, PDI=1.06). The polymer was further characterised by 1H NMR and MALDI-ToF.   

 

Synthesis of TIPS-≡(OH-PSTY25)2-Br 16 by CuAAC 

Polymer TIPS-≡(OH)-PSTY25-N3 15 (1.2 g, 4.2×10-4 mol) and ≡(OH)-PSTY25-Br 7a (1.07 g, 

4.2×10-4 mol) and PMDETA  (8.75×10-2 mL, 4.2×10-4 mol) were dissolved in 20.0 mL of dry 

toluene in a 50 mL reaction vessel equipped with magnetic stirrer. To this solution CuBr (6.0×10-2 

g, 4.2×10-4 mol) was added under argon blanket and the mixture was stirred at 25 oC under argon 

atmosphere. An aliquot was taken to check SEC. The reaction was stopped after 1.5 h and added 3 

fold excess of THF, passed through alumina column to remove copper salts. Solvent was removed 

by rotary evaporator and precipitated in 20 fold excess of MeOH and filtered. The polymer was 

dried in vacuo for 24 h at 25 oC. SEC for 16 (Mn=5510, PDI=1.05). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

 

Synthesis of TIPS-≡(OH-PSTY25)2-N3 17 by Azidation with NaN3 

Polymer TIPS-≡(OH-PSTY25)2-Br  (2.2 g, 4.02×10-4  mol) was dissolved in 10 mL of DMF in a 20 

mL reaction vessel equipped with magnetic stirrer. To this solution NaN3 (2.6×10-1 g, 4.02×10-3 

mol) was added and the mixture stirred for 24 h at 25 oC. The polymer solution was directly 

precipitated into MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered 

by vacuum filtration and washed exhaustively with MeOH. The polymer was dried in vacuo for 24 

h at 25 °C. SEC (Mn=5510, PDI=1.06). The polymer was further characterised by 1H NMR and 

MALDI-ToF. 
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Synthesis of ≡(OH-PSTY25)2-N3 18 by Deprotection with TBAF 

Polymer TIPS-≡(OH-PSTY25)2-N3 17 (1.7 g,  3.08×10-4  mol) was dissolved in 15 mL of dry THF 

in a 50 mL schlenk  flask equipped with magnetic stirrer. To this solution, 3.07 mL of TBAF (1.0 M 

in THF solution, 3.08×10-3 mol) solution was added and the mixture stirred for 24 h at 25 oC under 

argon atmosphere. The polymer solution was directly precipitated into MeOH (20 fold excess to 

polymer solution), recovered by vacuum filtration and washed exhaustively with MeOH. The 

polymer was dried and purified by preparative SEC to remove undesired high and low molecular 

weight impurities. SEC (Mn=5350, PDI=1.06). The polymer was further characterised by 1H NMR 

and MALDI-ToF.  

3.2.3.11 Cyclization Reaction of ≡(OH-PSTY25)2-N3 by CuAAC Using Argon Flow Technique 

Synthesis of c-PSTY50-(OH)2 19 

A solution of ≡(OH-PSTY25)2-N3 18 (0.5 g, 9.5×10-5 mol) in 20.0 mL of dry toluene  and 1.0 mL of 

PMDETA (4.76×10-3 mol) in 20.0 mL of dry toluene in another flask were purged with argon for 45 

min to remove oxygen. 0.68 g of CuBr (4.76×10-3 mol) was taken in a 250 mL of dry schlenk flask 

and maintained argon flow at the same time. PMDETA solution was transferred to CuBr flask by 

applying argon pressure using a double tip needle to prepare CuBr/PMDETA complex. After 

complex formation, polymer solution was added via syringe pump using a syringe that is pre-filled 

with argon. The feed rate of argon was set at 1.24 mL/min. After the addition of polymer solutions 

(16 min), the reaction mixture was further stirred for 3 h. At the end of this period (i.e., feed time 

plus an additional 3 h), toluene was evaporated by air-flow and the copper salts were removed by 

passage through activated basic alumina column by adding few drops of glacial acetic acid. The 

polymer was recovered by precipitation into MeOH (20 fold excess to polymer solution) and then 

by filtration. The polymer was dried in vacuo for 24 h at 25 °C. (Purity by SEC=82.1%). A small 

fraction of crude product was purified by preparative SEC for characterization. SEC (Mn 
= 4110, 

PDI = 1.03). Triple Detection SEC (Mn=5350, PDI=1.02). The polymer was further characterised 

by 1H NMR and MALDI-ToF. 

3.2.3.12 Chain-end Modification of Di-hydroxy Functional Cyclic 

Synthesis of c-PSTY50-Br2 20  

c-PSTY50-(OH)2 19 (1.4×10-1  g, 2.57×10-5  mol), TEA (0.18 mL, 1.285×10-3 mol) and 3.5 mL of dry 

THF were added under an argon blanket to a dry schlenk flask that has been flushed with argon. The 

reaction was then cooled on ice. To this stirred mixture, a solution of 2-bromopropionyl bromide (0.13 
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mL,  1.285×10-3 mol) in 0.5 mL of dry THF was added drop wise under argon via an air-tight syringe 

over 3 min. After stirring the reaction mixture for 48 h at room temperature, the polymer was 

precipitated into MeOH, filtered and washed three times with MeOH. The polymer was dried for 24 h 

in high vacuum oven at 25 °C. SEC (Mn 
= 4350, PDI = 1.03). The polymer was further characterised 

by 1H NMR and MALDI-ToF.   

Synthesis of c-PSTY50-(N3)2 21  

 Polymer c-PSTY50-Br2 20 (1.2×10-1 g, 2.2×10-5 mol) was dissolved in 2.0 mL of DMF in a reaction 

vessel equipped with magnetic stirrer. To this solution, NaN3 
(2.8×10-2 g, 4.4×10-4 mol) was added and 

the mixture stirred for 17 h at room temperature. The polymer solution was directly precipitated into 

MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered by vacuum 

filtration and washed exhaustively with MeOH. A fraction of crude polymer was further purified by 

preparative SEC and recovered by precipitation. The polymer was dried in vacuo for 24 h at 25 °C. 

SEC (Mn=4470, PDI=1.03), Triple Detection SEC (Mn=5850, PDI=1.005). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

Synthesis of c-PSTY50-(≡)4 23 

 Polymer cPSTY50-(N3)2 21 (0.15 g, 2.4×10-5 mol), PMDETA (10.12×10-3 mL, 4.8×10-5 mol) and 

1,3,5-tris(prop-2-ynyloxy)benzene 22 (8.7×10-2  
 
g, 3.6×10-4  mol) were dissolved in 1.0 mL of 

toluene/DMSO (0.8/0.2 mL) mixed solvent. CuBr (7.0×10-3 g, 4.8×10-5 mol) was added to a 10 mL 

schlenk flask equipped with magnetic stirrer and both of the reaction vessels were purged with argon 

for 12 min. The polymer solution was then transferred to CuBr flask by applying argon pressure using 

double tip needle. The reaction mixture was purged with argon for a further 2 min and the flask was 

placed in a temperature controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF 

(ca. 3 fold to the reaction mixture volume), and passed through activated basic alumina to remove the 

copper salts. The solution was concentrated by rotary evaporator and the polymer was recovered by 

precipitation into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The 

polymer was then further purified by preparative SEC to remove undesired high molecular weight 

polymers and residual linker. The polymer was dried in vacuo for 24 h at 25 °C. SEC (Mn=4470, 

PDI=1.04), Triple Detection SEC (Mn=6420, PDI=1.001). The polymer was further characterised by 
1H NMR and MALDI-ToF. 
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3.2.3.13 Synthesis of tri-functional linear PSTY 

Synthesis of TIPS-≡(OH-PSTY25)3-Br 24 by CuAAC 

Polymer TIPS-≡(OH-PSTY25)2-N3 17 (2.7×10-4 g, 4.53×10-5 mol) and ≡(OH)-PSTY25-Br 7 (1.3×10-

1 g, 4.53×10-5 mol) and PMDETA  (9.5×10-3 mL, 4.53×10-5 mol) were dissolved in 3.5 mL of dry 

toluene in a vial. CuBr (6.5×10-3 g, 4.53×10-5 mol)   was added to a 10 mL schlenk flask equipped 

with magnetic stirrer and both of the reaction vessels were purged with argon for 12 min. The 

polymer solution was then transferred to CuBr flask by applying argon pressure using double tip 

needle. The reaction mixture was purged with argon for a further 2 min and the flask was placed in 

a temperature controlled oil bath at 25 °C. After 1.0 h an aliquot was taken to check SEC. The 

reaction was stopped after 1.5 h and added 3 fold excess of THF, passed through alumina column to 

remove CuBr. Solvent was removed by rotary evaporator and precipitated in excess of MeOH and 

filtered. The polymer was dried in vacuo for 24 h at 25 oC. SEC (Mn=8830, PDI=1.06). The 

polymer was further characterised by 1H NMR and MALDI-ToF. 

 

Synthesis of TIPS-≡(OH-PSTY25)3-N3 25 by Azidation with NaN3 

Polymer TIPS-≡(OH-PSTY25)3-Br 24 (0.35 g, 3.9×10-5 mol) was dissolved in 3.5 mL of DMF in a 

20 mL reaction vessel equipped with magnetic stirrer. To this solution NaN3 (3.9×10-2 g, 5.9×10-4 

mol) was added and the mixture stirred for 24 h at 25 oC. The polymer solution was directly 

precipitated into MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered 

by vacuum filtration and washed exhaustively with water and MeOH. The polymer was dried in 

vacuo for 24 h at 25 °C. SEC (Mn=8750, PDI=1.06). The polymer was further characterised by 1H 

NMR and MALDI-ToF. 

 

Synthesis of ≡(OH-PSTY25)3-N3 26 by Deprotection with TBAF 

Polymer TIPS-≡(OH-PSTY25)3-N3 25 (0.33 g, 3.96×10-5  mol) was dissolved in 15 mL of dry THF 

in a schlenk  flask equipped with magnetic stirrer. To this solution, 0.8 mL of TBAF (1.0 M in THF 

solution, 7.9×10-4 mol) solution was added and the mixture stirred for 24 h at 25 oC under argon 

atmosphere. The polymer solution was directly precipitated into MeOH (20 fold excess to polymer 

solution), recovered by vacuum filtration and washed exhaustively with MeOH. The polymer was 

dried in vacuo for 24 h at 25 °C and the polymer was purified by preparative SEC to remove 

undesired impurities. SEC (Mn=8720, PDI=1.05). The polymer was further characterised by 1H 

NMR and MALDI-ToF. 
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3.2.3.14 Cyclization reaction of ≡(OH-PSTY25)3-N3 by CuAAC Using Argon Flow Technique 

Synthesis of c-PSTY75-(OH)3 27 

A solution of ≡(OH-PSTY25)3-N3 26 (0.17 g, 1.87×10-5 mol) in 10 mL of dry toluene  and 0.19 

mL of PMDETA (9.4×10-4  mol) in 10 mL of dry toluene in another flask were purged with argon 

for 45 min to remove oxygen. CuBr (0.13 g, 9.4×10-4 mol) was taken in a 100 mL of dry schlenk 

flask and maintained argon flow at the same time. PMDETA solution was transferred to CuBr flask 

by argon pressure using a double tip needle to prepare CuBr/PMDETA complex. After complex 

formation, polymer solution was added via syringe pump with the help of a syringe that is pre-filled 

with argon. The feed rate was set at 0.25 mL/min. After the addition of polymer solutions, which 

was 43 min, the reaction mixture was further stirred for 3 h. At the end of this period (i.e., feed time 

plus an additional 3 h), toluene was evaporated by air-flow and the copper salts were removed by 

passage through activated basic alumina column by adding few drops of glacial acetic acid. The 

polymer was recovered by precipitation into MeOH (20 fold excess to polymer solution) and then 

by filtration. The polymer was dried in vacuo for 24 h at 25 °C. The purity of cyclic polymer was 

76.5 % by SEC. A small fraction of crude product was purified by preparative SEC for 

characterization. SEC (Mn 
= 6600, PDI = 1.03). Triple Detection SEC, (Mn 

= 8830, PDI = 1.007). 

The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

3.2.3.15 Chain-end Modification of Tri-hydroxy Functional Cyclic 

Synthesis of c-PSTY75-Br3 28  

c-PSTY75-(OH)3 19 (9.0×10-2   g, 1.0×10-5 mol), TEA (85.5×10-3 mL, 6.0×10-4 mol) and 1.5 mL of dry 

THF were added under an argon blanket to a dry schlenk flask that has been flushed with argon. The 

reaction was then cooled on ice bath. To this stirred mixture, a solution of 2-bromopropionyl bromide 

(64.3×10-3 mL,  6.0×10-4 mol) in 0.5 mL of dry THF was added drop wise under argon via an air-tight 

syringe over 3 min. After stirring the reaction mixture for 48 h at room temperature, the polymer was 

precipitated into MeOH, filtered and washed three times with MeOH. The polymer was dried for 24 h 

in high vacuum oven at 25 °C. SEC (Mn 
= 7210, PDI = 1.03). The polymer was further characterised 

by 1H NMR and MALDI ToF. 

Synthesis of c-PSTY75-(N3)3 29  

 Polymer c-PSTY75-Br3 28 (8.0×10-2 g, 9.2×10-6 mol) was dissolved in 1.0 mL of DMF in a reaction 

vessel equipped with magnetic stirrer. To this solution, NaN3 
(1.8×10-2  g, 2.76×10-4  mol) was added 
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and the mixture stirred for 24 h at room temperature. The polymer solution was directly precipitated 

into MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered by vacuum 

filtration and washed exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C and 

the polymer was purified by preparative SEC to remove undesired impurities. SEC (Mn=7070, 

PDI=1.03), Triple Detection SEC (Mn=9250, PDI=1.004). The polymer was further characterised by 
1H NMR and MALDI ToF. 

 

Synthesis of c-PSTY75-(≡)6 30 

 Polymer cPSTY75-(N3)3 29 (1.2×10-1 g, 1.26×10-5 mol), PMDETA (7.92×10-3 mL, 3.8×10-5 mol) 

and 1,3,5-tris(prop-2-ynyloxy)benzene 22 (9.1×10-2  
 
g, 3.6×10-4  mol) were dissolved in 1.0 mL of 

toluene/DMSO (0.8/0.2 mL) mixed solvent. CuBr (5.0×10-3 g, 3.8×10-5 mol) was added to a 10 mL 

schlenk flask equipped with magnetic stirrer and both of the reaction vessels were purged with 

argon for 20 min. The polymer solution was then transferred to CuBr flask by applying argon 

pressure using double tip needle. The reaction mixture was purged with argon for a further 2 min 

and the flask was placed in a temperature controlled oil bath at 25 °C for 1.5 h. The reaction was 

then diluted with THF (ca. 3 fold to the reaction mixture volume), and passed through activated 

basic alumina to remove the copper salts. The solution was concentrated by rotary evaporator and 

the polymer was recovered by precipitation into a large amount of MeOH (20 fold excess to 

polymer solution) and filtration. The polymer was then further purified by preparative SEC to 

remove undesired high molecular weight polymers and residual linker. The polymer was dried in 

vacuo for 24 h at 25 °C. SEC (Mn=7640, PDI=1.03), Triple Detection SEC (Mn=9980, PDI=1.004). 

The polymer was further characterised by 1H NMR and MALDI ToF. 

3.2.3.16 Synthesis of Complex Topologies 

Synthesis of Spiro Tricyclic 31  

Polymer c-PSTY50-(N3)2 21 (3.0×10-2 g, 5.0×10-6 mol), polymer c-PSTY25-≡ 13 (3.4×10-2 g, 

1.0×10-5 mol) and PMDETA (2.13×10-3 mL, 1.0×10-5 mol) were dissolved in 0.5 mL of toluene. 

CuBr (1.5×10-3 g, 1.0×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer 

and both of the reaction vessels were purged with argon for 15 min. The polymer solution was then 

transferred to CuBr flask using double tip needle by applying argon pressure. The reaction mixture 

was purged with argon for a further 2 min and the flask was placed in a temperature controlled oil 

bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was then purified 
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by preparatory SEC to remove undesired high molecular weight polymers and residual reactant 

polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. SEC (Mn=9820, 

PDI=1.05), Triple Detection SEC (Mn=12420, PDI=1.004). The polymer was further characterised 

by 1H NMR and MALDI-ToF.  

 

Synthesis of G1 Dendrimer Pentacyclic 32  

Polymer c-PSTY50-(≡)4 23 (2.5×10-2 g, 3.8×10-6  mol), polymer c-PSTY25-N3 (4.8×10-5   g, 1.6×10-5  

mol) and PMDETA (3.16×10-3 mL, 1.5×10-5 mol) were dissolved in 0.5 mL of toluene. CuBr 

(2.2×10-3  g, 0.015×10-3 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer 

and both of the reaction vessels were purged with argon for 15 min. The polymer solution was then 

transferred to CuBr flask using double tip needle by applying argon pressure. The reaction mixture 

was purged with argon for a further 2 min and the flask was placed in a temperature controlled oil 

bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was then further 

purified by preparatory SEC to remove undesired high molecular weight polymers and residual 

reactant polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. SEC 

(Mn=12890, PDI=1.04), Triple Detection SEC (Mn=18900, PDI=1.005). The polymer was further 

characterised by 1H NMR and MALDI-ToF.  

 

Synthesis of G1 Star Tetracyclic 33 

Polymer c-PSTY75-(N3)3 29 (3.0 ×10-2 g, 3.2×10-6 mol), polymer c-PSTY25-≡ 13 (3.2×10-2 g, 

1.0×10-5 mol) and PMDETA (2.0×10-3 mL, 9.5×10-6 mol) were dissolved in 0.6 mL of toluene. 

CuBr (1.4×10-3 g, 9.5×10-6 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer 

and both of the reaction vessels were purged with argon for 15 min. The polymer solution was then 

transferred to CuBr flask using double tipped needle by applying argon pressure. The reaction 

mixture was purged with argon for a further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the 

reaction mixture volume), and passed through activated basic alumina to remove the copper salts. 

The solution was concentrated by rotary evaporator and the polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was 

then further purified by preparatory SEC to remove undesired high molecular weight polymers and 

residual reactant polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. 
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SEC (Mn=13920, PDI=1.05), Triple Detection SEC (Mn=19680, PDI=1.002). The polymer was 

further characterised by 1H NMR and MALDI-ToF.  

 

Synthesis of G1 Star Heptacyclic 34 

Polymer c-PSTY75-(≡)6 30 (1.9×10-2 g, 2.0×10-6 mol), polymer c-PSTY25-N3 11 (3.8×10-3 g, 

1.3×10-5 mol) and PMDETA (2.54×10-3 mL,1.2×10-5 mol) were dissolved in 0.6 mL of toluene. 

CuBr (1.7×10-3 g, 1.2×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer 

and both of the reaction vessels were purged with argon for 15 min. The polymer solution was then 

transferred to CuBr flask using double tipped needle by applying argon pressure. The reaction 

mixture was purged with argon for a further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the 

reaction mixture volume), and passed through activated basic alumina to remove the copper salts. 

The solution was concentrated by rotary evaporator and the polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was 

then further purified by preparatory SEC to remove undesired high molecular weight polymers and 

residual reactant polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. 

SEC (Mn=18930, PDI=1.05), Triple Detection SEC (Mn=29800, PDI=1.007). The polymer was 

further characterised by 1H NMR and MALDI-ToF.  

3.3 Results and Discussion 
Synthesis of Functional Precursor Linear Polymers. 

The functional alcohol groups can be incorporated directly into the polymer chain by using two 

functional ATRP initiators 1 and 6 (Figure 3.1). Initiator 1 has three different functionalities: an 

alkyne group for the CuAAC coupling, a bromine group that can readily transformed to an azide, 

and an alcohol group for post modification. Initiator 6 was similar but with the alkyne group 

protected with TIPS (1,1,1-triisopropylsilyl moiety); full characterization of 6 was given in 

appendix B. The polymerization in bulk at 80 °C using initiator 1 for styrene in the presence of 

Cu(I)Br and Cu(II)Br2/PMDETA resulted in the production of polystyrene ((≡(HO)-PSTY25-Br, 7) 

with a number-average molecular weight, Mn, of 2890 (Mn, theory = 2651) and polydispersity index 

(PDI) of 1.11 (see Table 3.1). The presence of Cu(II)Br2 in the reaction mixture and stopping the 

polymerization close to 50% conversion should minimise radical termination products. However, 

the molecular weight distribution (MWD) determined by SEC (curve b in Figure 3.2(A)) showed a 

bimodal distribution, in which the peak maximum of the second distribution was approximately 

twice that of the first distribution. This second distribution most probably occurred through alkyne-
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alkyne (i.e. Glaser) coupling rather than radical termination (vide infra). The polymerization using 

initiator 6 with the protected alkyne also gave a polymer (14) with a narrow MWD and an Mn close 

to theory (Table 3.1). In this case, there was no observable bimodal distribution (Figure B25 in 

appendix B), supporting the postulate that Glaser coupling in 7 was dominated over radical 

termination for initiator 1. 

 
Figure 3.2. Molecular weight distributions (MWDs) for starting polymer and products obtained 

from SEC with RI detection. Synthesis of (A) TIPS-≡(OH-PSTY25)2-Br 16 (curve c - crude product) 

from 7 (curve a) and 15 (curve b); and (B) TIPS-≡(OH-PSTY25)3-Br 24 (curve c - crude product) 

from 7 (curve a) and 17 (curve b). Curve d represents the LND fit to the product MWD. 
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Table 3.1: Purity, coupling efficiency, molecular weight data (RI, triple detection and NMR) and 

change in hydrodynamic volume for all starting building blocks and products.  

 

Polymer 

 
Purity by LND (%) 

 
Coupling 

efficiency (%)a 
by LND 

RI detection b Triple detection c Mn by 

NMR Δ HDVd 
Crude Prep Mn   Mp 

 PDI  Mn 
 Mp 

 PDI  

7 84.0   2890 2900 1.11    3120  
8 84.0   2880 2900 1.11    2980  
9 40.3  >99  2140 2180 1.04 2780 2860 1.016 2980 0.76 
10    2350 2400 1.04    3110  
11     2250 2300 1.04 2930` 3090 1.018 3180 0.75 
13     2440 2470 1.04 3170 3320 1.021 3520 0.74 
14     2870 3040 1.08    2960  
15 98.5    2890 2910 1.06    3030  
16 90.8  90.8 5510 5600 1.05    6350  
17 88.3 94.5  5510 5550 1.06    6210  
18 87.0 91.0  5350 5400 1.06    6420  
19 52.7 >99  4110 4170 1.03 5350 5500 1.020 6470 0.76 
20    4350 4370 1.03    6220  
21     4470 4590 1.03 5850 5990 1.005 6250 0.77 
23     4720 4830 1.04 6420 6500 1.001 6840 0.74 
24 82.0  82.0 8830 8990 1.06    9230  
25 82.5   8750 8860 1.06    9400  
26 82.0 86.0  8720 8890 1.05    9660  
27 38.5 >99   6600 6780 1.03 8830 8980 1.007 8930 0.76 
28     7210 7320 1.03    9230  
29     7070 7220 1.03 9250 9390 1.004 8910 0.77 
30     7640 7790 1.03 9980 10120 1.004 9740 0.77 
31 68.5 77.6 70.8 9820 9750 1.05 12420 12720 1.004 12990 0.77 
32 77.8 97.0 80.9 12890 13130 1.04 18900 19400 1.005 18410 0.68 
33 70.5 84.2 73.2 13920 13980 1.05 19680 19800 1.002 18450 0.71 
34 71.2 84.9 74.25 18930 18870 1.06 29800 30310 1.007 29950 0.62 

 

aCuAAC coupling efficiency was determined from the  RI traces of SEC. Coupling efficiency 

calculated as follows: purity (LND)/max. purity by theory×100. bThe data was acquired using SEC 

(RI detector) and is based on PSTY calibration curve. cThe data was acquired using DMAc Triple 

Detection SEC with 0.03 wt% of LiCl as eluent. dΔHDV was calculated by dividing Mp of RI with 

Mp of triple detection. 
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A key synthetic challenge is to place functional groups in desired locations on the cyclic polymer 

chain. It requires that the precursor linear polymer (i.e. before ring formation) should have the 

functional groups in the desired locations. Producing such linear polymer required the coupling of 

two or more functional polymers by using a new strategy as illustrated in Scheme 3.1. This strategy 

involved the coupling of two polymer chains 'clicked' together via the CuAAC reaction, in which 

one of the chains contained a bromine group (which is normally susceptible to form a radical in the 

presence of Cu(I)). Coupling polymers 7 and 15 resulted in the loss of nearly all reactants and 

formation of high purity diblock 16 (TIPS-≡-(HO-PSTY25)2-Br) as shown by the SEC 

chromatograms in Figure 3.2(A). The purity was determined by fitting the experimental SEC trace 

(denoted as crude - i.e. prior to fractionation) with a log-normal distribution (LND) model 48 based 

on fitting multiple Gaussian functions for each polymer species. 22, 49 The purity of 16 using the 

LND method was 90.8 % (Table 3.2). In addition to the main product 16, there was 0.04 and 0.80% 

of the starting polymers 7 and 15, and 8.0% of higher molecular weight polymer. Coupling 7 and 17 

resulted in high purity (82.0%) of 24 (TIPS-≡-(HO-PSTY25)3-Br) and approximately 4.75% of 

remaining starting polymer 17. The reason for the higher amount of unreacted 17 could be a 

consequence of the difficulty in determining the stoichiometry of reactants since neither 16 nor 17 

were fractionated by preparative SEC. It can be clearly seen form Scheme 3.1 that the OH-groups 

are equally spaced and in the desired location for 17 and 24. 

Table 3.2. LND simulation data for the synthesis of TIPS-≡(OH-PSTY25)2-Br (16) and TIPS-≡(OH-

PSTY25)3-Br (24) polymers by LND based on weight distribution (w(M)).  

Polymer Purity 

w(M) 

(%) 

 Unreacted reactants and by-products (%) 

15 15*2 7 7*2 15+7*2 16*2 17 7*2+17 7+17*2 (7+17)*2 

7 Crude 90.3 -- -- 90.3 9.7 -- -- -- -- -- -- 

15 Crude 98.5 98.5 1.5 -- -- -- -- -- -- -- -- 

16 Crude 90.8 0.8 -- 0.4 -- 4 4 -- -- -- -- 

17 Crude 88.3 0.8 -- 0.4 -- 6 4.5 -- -- -- -- 

Prep 94.5 0.5 -- -- -- -- 1 -- 4 -- -- 

24 Crude 82.0 -- -- -- -- --  4.75 4.75 4.5 4 
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The deprotection of the TIPS of the alkyne group from 17 using TBAF gave 18 (≡-(HO-

PSTY25)2-N3) with near complete loss of TIPS as shown from the 1H NMR (i.e. loss of proton a' at 

1.1 ppm in Figure 3.3(B)). In addition, after deprotection the SEC chromatogram showed little or no 

change in the MWD, suggesting minimal Glaser coupling (see Figure B32 in appendix B). 

Azidation and deprotection of 24 to form 26 also showed little or no change in the SEC traces 

(Figures B44 in appendix B) and complete loss of the TIPS (Figure 3.3(D)). The next step involves 

the ring-closure of 18 and 26 via the CuAAC under feed conditions. 

 
Figure 3.3. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (A) TIPS-≡(OH-PSTY25)2-N3 17, 

(B) ≡(OH-PSTY25)2-N3 18,  (C) TIPS-≡(OH-PSTY25)3-N3 25, and (D) ≡(OH-PSTY25)3-N3, 26. 

Cyclization of Multifunctional Precursor Linear Polymers. 

O

HO

O

O

24
O

HO

O

O
N

24
Si NN

O

HO

O

O

24
N

NN
N3

b
c d

e f
g

h′ hb′

(C)

TIPS- ≡(HO-PSTY25)3-N3 , 25

b, b′,h

c, d, e

b′
c d

g
e f

h′

g
f

dc

a′

f, g

s, t

O

HO

O

O
N3

24O

HO

O

O
N

24

Si NN

a′

b
c d

e f
g

h′

h′

hb′

TIPS- ≡(HO-PSTY25)2-N3 , 17 b, b′, h

c, d, e

c d

fe
g

s t s t

h′

f, g
s, ts t s t s t

(A)

f, g

s, t

O

HO

O

O
N3

24O

HO

O

O
N

24

NNb
c d

e f
g

h′

h′

hb′

≡(HO-PSTY25)2-N3 , 18
b, b′, h

c, d, ec d

fe
g

s t s t

(B)

a′

a′

1.01.52.02.53.03.54.04.55.05.5 ppm

O

HO

O

O

24
O

HO

O

O
N

24

NN

O

HO

O

O

24
N

NN
N3

b
c d

e f
g

h′ hb′

(D)

≡(HO-PSTY25)3-N3 , 26

b, b′,h

c, d, e

b′
c d

g
e f

h′

g
f

dc

h′

f, g

s, t
s t s t s t

a

a

a

a



Complex Polymer Topologies using Multi-functional Cyclic 

 

 69 

The most used method for cyclization of polymers using the CuAAC reaction involved, for 

example, feeding a polymer solution (0.02 g of polymer in 1 mL of toluene) at a feed rate of 0.124 

mL/min into a Cu(I)Br/PMDETA solution (in 1 mL of toluene). Such small scales provide high 

purity cyclic polymers in 9 min, and as long as oxygen is excluded the reaction proceeded in accord 

with theory.14, 37 Scaling up to produce significantly more amounts of cyclic polymer required a 

new method to always keep the polymer and Cu(I) solutions under an inert atmosphere (see Scheme 

B4 in appendix B). Diffusion of even a small amount of oxygen into the polymer or Cu(I) solutions 

during the feed process will slow the CuAAC reaction and thus the rate of cyclization with the 

production of greater amounts of multiblock instead of cyclic polymer. This becomes a major 

problem when the gas tight syringe loses its seal after multiple uses, resulting in poor 

reproducibility when the polymer solution is directly fed from the syringe into the Cu(I) solution 

(results not shown). Our new method avoids this problem by injecting a syringe filled with argon 

into a flask filled with polymer solution under argon, in which the pressure drives the polymer 

solution into the next flask (with Cu(I)Br/PMDETA) under argon (Scheme B4 in appendix B). This 

method provided an easy method to scale up to 2 g of polymer (i.e. an increase of two orders of 

magnitude) while maintaining the same feed rate (0.124 mL/min) and high purity of cyclic polymer. 

Cyclization of 8 (≡(OH)-PSTY25-N3) to form 9 (c-PSTY25-OH) using our synthetic strategy 

resulted in nearly complete loss of starting polymer 8 (see curve a in Figure 3.4(A)) and formation 

of large peak at lower molecular weight, indicative of a change of hydrodynamic volume upon 

cyclization (curve b). In addition, a broad high molecular weight peak in curve b suggested 

multiblock formation. The low molecular weight peak (corresponding to the cyclic) could be 

accurately fit via the LND method by implementing a hydrodynamic volume shift of 0.75 to that of 

the linear precursor polymer 8 (curve d). The purity of 9 was determined to be 82.1% (Table 3.1); 

the lower than expected purity was most probably due to the high molecular weight polymer by-

product in 8 (as seen from the high molecular weight shoulder in curve b). Fractionation of the 

crude 9 by preparative SEC gave pure cyclic (>99%, curve c) further supported by the excellent fit 

of the LND SEC trace (curve d). Cyclization of 18 (≡(OH-PSTY25)2-N3) to produce 19 (c-PSTY50-

(OH)2) gave a purity of 85.9% (Table 3.1 and curve b in Figure 3.4(B)). The LND fit showed that 

the apparent low molecular weight peak consisted entirely of cyclic polymer (curve d). 

Fractionation similar to that for 9 gave > 99% purity of 19 cyclic with two OH group located 

equidistant from each other. In the final cyclization, 26 (≡(OH-PSTY25)3-N3) gave a purity of 76.8% 

(curve b in Figure 3.4(C)), and after fractionation a purity of > 99% as supported from the LND fit 

(curve d). 
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Figure 3.4: Molecular weight distributions (MWDs) for starting linear and cyclic polymers. (A) 

(a) 8, (b) crude 9, (c) 9 purified by prep SEC; (B) (a) 18, (b) crude 19, (c) 19 purified by prep SEC; 

and  (C) 26, (b) crude 27, (c) 27 purified by prep SEC. Curve d represents the LND fit to the 

product MWD using a hydrodynamic volume change between 0.75 and 0.76. 

 

The 1H NMR before and after cyclization showed the complete loss of the protons adjacent to the 

alkyne and azide groups (peaks b and h in Figure 3.5) and loss of the alkyne proton a. The MALDI 

0

0.0001

0.0002

0.0003

0.0004

2.8 3.2 3.6 4 4.4 4.8 5.2

w
 (M

)

Log MW

0

0.0001

0.0002

0.0003

0.0004

2.8 3.2 3.6 4 4.4 4.8 5.2

w
 (M

)

Log MW

0

0.0001

0.0002

0.0003

0.0004

2.8 3.2 3.6 4.0 4.4 4.8 5.2

w
 (M

)

Log MW

(a) ≡(HO)-PSTY25-N3, 8

(b) c-PSTY25-OH crude, 9

(d) LND simulation of 9

(A)

a

b

c

(B) (a) ≡(HO-PSTY25)2-N3, 18

(b) c-PSTY50-(OH)2  crude, 19

(d) LND simulation of 19

d

(c) c-PSTY25-OH  after prep

(c) c-PSTY50-(OH)2  after prep

a

b

c

d

(a) ≡(HO-PSTY25)3-N3, 26

(b) c-PSTY75-(OH)3 crude, 27

(d) LND simulation of 27

(c) c-PSTY75-(OH)3 after prep

a

b

c

d

(C)

OH



Complex Polymer Topologies using Multi-functional Cyclic 

 

 71 

(Figure 3.6) acquired in linear mode showed that the distributions (i.e. the full spectrum) were 

similar to that found by SEC, with the main peak corresponding to the expected molecular weight 

of the cyclic polymer product. For example, the experimental peak at m/z = 3086.87 (adduct with 

Ag+) matched closely with the theoretical m/z = 3085.09 for cyclic 9, suggesting complete cyclic 

formation. The other two cyclic products, 19 and 27, also gave similar results. Take together, the 

SEC, NMR and MALDI data support that the cyclic polymer with one, two and three OH groups 

can be prepared with high purity. 
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Figure 3.5. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (A) ≡(OH)-PSTY25-N3 8, (B) c-

PSTY25-OH 9, (C) ≡(OH-PSTY25)2-N3 18, (D)  c-PSTY50-(OH)2  19, (E) ≡(OH-PSTY25)3-N3 26, 

and (F) cPSTY75-(OH)3 27. (*small molecules impurities) 

 
 

Figure 3.6. MALDI-TOF mass spectrum using Ag salt as cationizing agent and DCTB matrix. 

(A) c-PSTY25-OH, 9 acquired in reflectron mode, (B) c-PSTY50-(OH)2, 19 and (C) cPSTY75-(OH)3 , 

27 acquired in linear mode. (i) Full spectra, and (ii) expanded spectra. 

 

Construction of Multicyclic Topologies. 

The hydroxyl groups attached to the cyclic polystyrene (9, 19 and 27) can be converted to azide 

groups as shown in Scheme 3.1 through a reaction with 2-bromopropionyl bromide (BPB) followed 

by azidation of the bromide group with NaN3. The conversion of the OH groups to bromine (via 

reaction with BPB) produced c-PSTY25-Br (10), c-PSTY50-Br2 (20) and c-PSTY75-Br3 (28) in near 

quantitative yields supported by both 1H NMR and MALDI ToF (see appendix B). Further 

conversion of the bromine to azide groups using excess NaN3 in DMF at 25 °C was also near 

quantitative as found by 1H NMR from the complete loss of the methine proton (CH-Br) at 4.2 ppm 

for polymer 10 (see in Figure B17 in appendix B) and the emergence of the CH-N3 peak at 3.9 ppm 
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in 11 (Figure B20 in appendix B). Near complete CuAAC coupling of the azide group on 11 with 

an alkyne PSTY (results not shown) further supported high azide functionality. Similar results were 

found for the formation of 21 and 29. 

Polymers 11, 21 and 29 were then converted to alkyne groups through a CuAAC reaction with 

excess multi-alkyne linker (see Scheme 3.1). Linkers 12 and 22 are less sterrically hindered, 

offering greater coupling efficiency, and in addition the benzyl core provides greater thermal 

stability compared to other linkers (e.g. tripropagyl amine). The product from the CuAAC reactions 

between the polymers and the linkers showed high coupling efficiencies. There was no observable 

alkyne-alkyne coupling product from the MALDI for 13, 23 and 30 (see Figures B24, B41 and B53 

in appendix B) and there was the expected change in Mn values with the addition of the linker 

molecules (see Table 3.1). These three polymers formed the core cyclic structures to prepare four 

complex topologies, 31 to 34. 

 The first structure, a spiro type tricyclic polymer 31, was synthesised by coupling two c-PSTY25-

≡ (13, 2.1 equiv.) and one c-PSTY50-(N3)2 (21, 1.0 equiv.) catalysed by CuBr (2.0 equiv.) in toluene 

for 1.5 h. The SEC trace (curve c, Figure 3.7(A)) of the polymer after the CuAAC 'click' reaction 

showed MWDs corresponding to the starting polymer 13 (3.8%), little or no observed peak of the c-

PSTY50-(N3)2 (0.4%), and a dominant high MWD corresponding to the 31 (69%, and 'click' 

efficiency was calculated to be 70.8% as shown in Table 3.1). The amount (i.e. %) of each species 

was determined by fitting curve c using the LND method. In addition, there was approximately 

12.5% of a product corresponding to the 'click' between one c-PSTY25-≡, 13 and one c-PSTY50-

(N3)2, 21, 1.7% of a glazer coupling product of two 13 polymers, and a high percentage (16.4%) of 

high molecular weight polymer. The mechanism for the formation of this latter high molecular 

weight polymer is unknown but observed in all the complex topologies. Preparative SEC allowed 

the removal of this high molecular weight polymer as observed from curve d in Figure 3.7(A). The 

MALDI of 31 gave a MWD similar to that found by SEC, and the molecular weight was in 

agreement with the theoretical value including Ag+ (see Figure B55 in appendix B). Triple detection 

SEC also showed that the Mn was similar to the theoretically calculated molecular weight value 

(Table 3.1). 
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Figure 3.7. Molecular weight distribution (MWDs) for starting polymers and products. (A) SEC 

RI distribution of (a) c-PSTY25-≡ 13 and (b) c-PSTY50-(N3)2 21 to produce (c) spiro (c-PSTY)3 31, 

(d) purified by preparative SEC. (B) SEC RI distribution of (a) c-PSTY25-N3 11 and (b) c-PSTY50-

(≡)4 23 to produce (c) G1 (c-PSTY)5 32, (d) purified by preparative SEC. (C) SEC RI distribution of 

(a) c-PSTY25-≡ 13  and (b) c-PSTY75-(N3)3 29 to produce (c) G1- (c-PSTY)4 33, (d) purified by 

preparative SEC. (D) SEC RI distribution of (a) c-PSTY25-N3 11 and (b) c-PSTY75-(≡)6 30 to 

produce  (c) G1 (c-PSTY)7 34, (d) purified by preparative SEC. SEC analysis based on polystyrene 

calibration curve. 

The 1st generation pentacyclic dendrimer 32 was formed by coupling four c-PSTY25-N3 (11, 4.2 

equiv.) onto a c-PSTY50-(≡)4 (23, 1.0 equiv.). The SEC trace (curve c, Figure 3.7(B)) after the 

'click' reaction showed MWDs corresponding to the product 32 (78%, and 'click' efficiency of 

81%), 3.8% of the starting polymer 11, little or no of the other starting polymer 23 (< 0.4%), 1% of 

one 11 coupled with 23, 8% of two 11 polymers coupled with 23, and 10% of high molecular 

weight polymers probably formed through glazer coupling of 23. After preparative SEC, 32 was 

found to be 97% pure, which was further confirmed from MALDI (see Figure B57 in appendix B). 

The G1 tetracyclic dendrimer 33 was formed by coupling three c-PSTY25-≡ (13, 3.15 equiv.) and c-

PSTY75-(N3)3 (29, 1.0 equiv.). The SEC trace (curve c, Figure 3.7(C)) after the 'click' reaction 

showed MWDs corresponding to the product 33 (71%, and 'click' efficiency of 73%), 1.5% of the 
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starting polymer 13, little or no of the other starting polymer 29 (<0.4%), 4% of one 13 coupled 

with 29, 0.8% of two 13 polymers coupled with 29, 4% of the glazer coupling product between two 

13 polymers, and 19% of high molecular weight polymers. After preparative SEC, 33 was found to 

be 84% pure. A similar result was also found for the formation of G1 tetracyclic dendrimer 34 by 

coupling six c-PSTY25-N3 (11, 6.3 equiv.) with one c-PSTY75-(≡)6 (23, 1.0 equiv.). The SEC trace 

(curve c, Figure 3.7(D)) after the 'click' reaction showed MWDs corresponding to the product 34 

(71%, and 'click' efficiency of 74%), 3 and 1% of the starting polymer 11 and 30, 3.7% of two 11 

polymers coupled with 30, 2.4% of three 11 polymers coupled with 30, and 19% of high molecular 

weight polymers. After preparative SEC, 34 was found to be 85% pure. The MALDI and triple 

detection SEC data for 33 and 34 showed that the molecular weights corresponded to the theoretical 

values, confirming the formation of these structures in high percentages. The change in 

hydrodynamic volume in Table 3.1 (determined from the ratio of the Mp from RI detection to the 

Mp from triple detection) showed that the value of 0.77 for 31 was similar to the change observed 

after cyclization of a linear polymer (e.g. 9). However, the star-like structures showed a more 

compact conformation, in which the hydrodynamic volume decreased with complexity of the 

dendrimer from 0.68 to 0.62. 
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3.4 Conclusion 
In conclusion, we have described a new method to produce mono-cyclic polymers with hydroxyl 

groups equally spaced along the polymer backbone. Carrying out the CuAAC reaction of telechelic 

polymer chains in the presence of a bromine group through modulating the Cu(I) activity towards 

the 'click' reaction over radical formation produced linear polymers with the OH-groups located at 

each 'click' site. Azidation of the bromine groups and cyclization using a modified feed approach 

resulted in multifunctional cyclics in high amounts and high purity. Fractionation of the low 

hydrodynamic mono-cyclic from the high molecular weight multiblock polymers gave greater than 

99% of multifunctional mono-cyclic. Conversion of the OH-groups on the cyclic polymer to either 

alkyne or azide moieties produced cyclics that would be the core to form complex topologies, in 

which all the building blocks consisted of cyclic polymers. The complex topologies included a spiro 

tricyclic, and dendritic structures consisting of a G1 pentacyclic, G1 tertacyclic, and a G1 

heptacyclic. All these structures were produced in high amounts with good 'click' efficiencies. This 

work demonstrated the utility for the formation of complex polymer topologies from cyclic building 

blocks. The synthetic strategy used here provides a useful methodology for the production of more 

complex topologies with varying copolymer compositions.  
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Chapter 4  
Complex Cyclic Polymer Topologies and Their Glass Transition Studies  

In this chapter, different architectures of polystyrene homopolymers and polystyrene 

(PSTY)/polyacrylic acid (PAA) copolymers were synthesised by combining of ATRP, SET-LRP 

and CuAAC coupling reactions. The architectures of polystyrene homopolymers ranged from di-

block copolymer to 3-arms star polymers, consisting of both linear and cyclic polymer building 

blocks. The diblock, AB, miktoarm AB2 and A2B type of amphiphillic copolymers of both linear 

and cyclic counterparts were also successfully synthesised. These polymers were characterised by 
1H NMR, SEC, MALDI ToF mass spectroscopy and differential scanning calorimetry (DSC). The 

DSC was used to investigate the effect of topology of amorphous PSTY and PSTY/PAA 

copolymers by determining the glass transition temperature (Tg). The results revealed that the 

topologies that possessed higher number of cyclic units (i.e., lower number of chain ends) showed 

higher Tg values. The thin film self-assemblies of block copolymers were also characterised by 

AFM to investigate the morphology of linear block copolymer and its cyclic analogue. The thin film 

domain spacing of cyclic block copolymer decreased by ~50% compared to the linear analogue due 

to the structural compactness.  

4.1 Introduction 
Great attention has been paid for the synthesis of polymers with tailored architectures from 

conventional linear structures to form nonlinear and complex topologies. Combination of 'living' 

radical polymerization and highly efficient 'click' reactions led to a significant breakthrough in the 

synthesis of different complex polymer topologies, including stars, brush, graft, dendrimers, hyper-

branched polymers, multiblock copolymers, gel and networks, polymers conjugated to 

nanomaterials and even more intriguing cyclic and multicyclic polymers. Among the various types 

of topologies, cyclic polymers are unique class of topologies that do not have any chain-ends, and 

show very distinct properties compared to their linear counterparts.1-7 A great deal of effort has been 

paid to understand the macromolecular motion of linear polymers but to a lesser extent to cyclic.7-11 

The conventional theory for diffusion of linear polymers occurs via reptation through the matrix 

while cyclic polymers diffuse via amoeba-like motion.7,8 However, the above theories for cyclic 

polymers do not include the formation of duplex conformations that interpenetrate each other by 

opening up the folded structures. A quantitative theory for interpenetrated duplex structures of 

cyclic has been proposed recently,9 though the true mechanism is yet to found. 
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Before understanding the diffusion processes and deriving a unifying theory, one must first 

synthesise precisely defined cyclic polymers in high purity. Even trace amount of linear 

contaminants in the cyclic polymer can influence the properties.8 Significant progress has now been 

made to produce a wide variety of single cyclic polymers based on end-to-end coupling 

processes,12-20 as well as on an alternative ring-expansion polymerization.21-27 Recently, a rapid and 

effective synthetic methodology was developed by our group to prepare a high purity monocyclic 

polymer in less than 9 min in non-dilute condition.28 The higher solubility of Cu(I)Br/PMDETA 

complex in toluene facilitated the catalytic activity. However, cyclic polymer having a pendant 

functional group is fascinating as the post modification approach allows in building different 

complex polymer topologies.13,29-33 Tezuka et al. pioneered the synthetic strategies to produce a 

variety of single cyclic polymers of different segment components that have specific functional 

groups at designated position.34-36 A variety of spiro and bridged-type multicyclic polymer, different 

polymeric graphs and fused polymer topologies have been constructed through the CuAAC addition 

in conjunction with electrostatic self-assembly and covalent fixation process.37-40 Nevertheless, 

cyclization was carried under very dilute condition, limiting this technique for practical 

applications. Therefore, the elaboration of synthetic methodologies to generate precise chemical 

functionality in the cyclic polymer is appealing for the synthesis of a wide range of complex cyclic 

topologies. 

In this work, a facile and efficient strategy was used to synthesise single cyclic polymer with 

hydroxyl functional group by combining 'living' radical polymerization and effective CuAAC 

reaction. The subsequent functionalization of the hydroxyl group allows the fabrication of a range 

of complex structures through topological and compositional control. Linear polymer precursors for 

the cyclic polymers were herein synthesised by 'living' radical polymerization that essentially 

produce a wide range of polymer with near uniform chain length (i.e. with low polydispersity 

indexes) and high chain-end functionality. After post-modification and subsequent 'click' reaction 

allows preparation of cyclic, linear di-block, tadpole, spiro di-cyclic, linear tri-block star, twin-

tailed tadpole, twin-headed tadpole and cyclic tri-block star and amphiphillic linear di-block, spiro 

di-block, mikto-arm linear and analogous cyclic architectures that are illustrated in the Scheme 4.1. 

The molecular weights of linear and cyclic analogues in all the topologies were almost the same to 

avoid the any effect from the chain length. All the structures were purified using preparatory SEC, 

which allowed most if not all linear and intermediate species to be removed. The present work is 

designed to study the effect of topologies on glass transition temperature, and the results may be 

useful for the fabrication of new materials.  
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Scheme 4.1. Graphical representation of different architectures homo and amphiphillic block 

copolymers where black and red lines represent the PSTY and PAA segments respectively. 

4.1.1 Aim of the Chapter 

The aim of the work described in this chapter was to synthesise a range of different topologies of 

polymers having both linear and cyclic analogues and investigate their glass transition temperature. 

The chain-ends play a vital role in determining the polymer's bulk properties. The present work 

demonstrates a systematic synthetic protocol that used simple linear polymers to form star tricyclic 

polymers, and showed the influence of topology effects on the Tg. A range of copolymers of PSTY 

and PAA were also synthesised, and the effects of topology of two distinct blocks on the glass 

transition temperature were assessed.  

4.2 Experimental 

4.2.1 Materials 
The following chemicals were analytical grade and used as received unless otherwise stated: alumina, 

activated basic (Aldrich: Brockmann I, standard grade, ∼150 mesh, 58 Å ), dimethyl(amino)pyridine 

(DMAP, Aldrich, 99%), Dowex ion-exchange resin (sigma-aldrich, 50WX8-200), magnesium 

c-PSTY-b-PSTY, 16 (cPSTY)2, 17

PSTY-N3, 3a

cPSTY-b-(PSTY)2, 19 (c-PSTY)3-a, 21(cPSTY)2-b-PSTY, 20

(PSTY)2 15

c-PSTY-OH, 8aPAA-N3 3b c-PAA-OH, 8b

(PSTY)3 18

PSTY-b-PAA, 23 c-PSTY-b-c-PAA, 24

PSTY-b-(PAA)2, 25
c-PSTY-b-(c-PAA)2, 26

(PSTY)2-b-PAA, 27 (c-PSTY)2-b-c-PAA, 28

(c-PSTY)3-b, 22
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sulphate, anhydrous (MgSO4: Scharlau, extra pure) potassium carbonate(K2CO3:analaR, 99.9%), silica 

gel 60 (230-400 mesh ATM (SDS)), triethylamine (TEA:Fluka, 98%), 2-bromopropionyl bromide 

(BPB: Aldrich 98%), propargyl bromide solution (80% wt% in xylene, Aldrich), propargyl ether 

(Aldrich, 99%), tripropargylamine (TPA: Aldrich, 98%), sodium azide (NaN3: Aldrich, 99.5%), 

N,N,N´,N´´,N´´-pentamethyldiethylenetriamine (PMDETA: Aldrich, 99%), copper(I) bromide 

(Cu(I)Br: Aldrich, 99.999%), copper (II) bromide (Cu(II)Br2: Aldrich, 99%). The following monomers 

were de-inhibited before use by passing through a basic alumina column: styrene (STY: Aldrich, >99 

%), tert-butyl acrylate (tBA: Aldrich, >99 %). 1,3,5-tris(prop-2-ynyloxy)benzene41 (13) linkers were 

prepared according to the literature procedure.  All other chemicals used were of at least analytical 

grade and used as received. 

The following solvents were used as received: acetone (ChemSupply, AR), chloroform (CHCl3: 

Univar, AR grade), dichloromethane (DCM: Labscan, AR grade), diethyl ether (Univar, AR grade), 

ethanol (EtOH: ChemSupply, AR), ethyl acetate (EtOAc: Univar, AR grade), hexane (Wacol, 

technical grade, distilled), hydrochloric acid (HCl, Univar, 32 %), anhydrous methanol (MeOH: 

Mallinckrodt, 99.9 %, HPLC grade), Milli-Q water (Biolab, 18.2 MΩ cm), N,N-dimethylformamide 

(DMF: Labscan, AR grade), tetrahydrofuran (THF: Labscan, HPLC grade), toluene (HPLC, 

LABSCAN, 99.8%).   

4.2.2 Synthetic Procedures 
The alkyne (hydroxyl) functional initiator 1 was synthesised according to the literature procedure 

previously reported by our group with a slight modification.32  

1

O O

OH

Br
O  

4.2.2.1 Synthesis of the initiator 3-hydroxy-2-methyl-2-((prop-2-yn-1-yloxy) methyl)propyl 2-

bromo-2-methylpropanoate  (1) 

5.0 g (3.16×10-2 mol) of 2-methyl-2-((prop-2-yn-1-yloxy)methyl)propane-1,3-diol and 6.6 mL 

(4.74×10-2  mol) TEA were dissolved in 60 mL of dry THF and cooled to 0 oC in an ice-bath. To the 

above solution, 4.14 mL (3.95×10-2 mol) of 2-bromopropionyl bromide was added drop-wise in 10 

min. The reaction was stirring overnight at room temperature. The reaction mixture was filtered to 

remove the solid, concentrated and applied under vaccum at room temperature. The brown color 

crude product was purified by column chromatography with EtOAc/petroleum spirit (3/2, v/v) as 
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eluent. The fraction with Rf as 0.30 was collected and concentrated. 3.9 g colorless viscous liquid 

product 1 was obtained with the yield as 42.0 %. 1H NMR (CDCl3, 298K, 500 MHz); δ 4.17 (s, 2H; 

-CH2-OC(=O)-), 4.14 (d, 2H, J=4.04, 2.39 Hz; HC≡C-CH2O-), 3.54 (d, 2H, J=3.41 Hz; HOCH2-), 

3.49 (s, 2H; HC≡C-CH2OCH2-), 2.43 (t, 1H, J=2.33 Hz; HC≡C-CH2O-), 1.82 (d, 3H; methyl 

protons), 0.95 (s, 3H; methyl protons). 

4.2.2.2 Synthesis of PSTY44-Br, 2a by ATRP 

Styrene (4.54 g, 4.4×10-2 
mol), PMDETA (0.05 mL, 2.4×10-4 

mol), CuBr2/PMDETA (19.23×10-3 g,   

4.8×10-5 
mol) and initiator (94.5×10-3 g, 4.8×10-4 

mol) were added to a 100 mL schlenk flask 

equipped with a magnetic stirrer and purged with argon for 30 min to remove oxygen. Cu(I)Br (35.0
 

g, 2.4×10-4 
 mol) was then carefully added to the solution under an argon blanket. The reaction 

mixture was further degassed for 5 min and then placed into a temperature controlled oil bath at 80 

°C. After 4 h an aliquot was taken to check the conversion. The reaction was then quenched by 

cooling the reaction mixture to 0 °C, exposure to air, and dilution with THF (ca. 3 fold to the 

reaction mixture volume). The copper salts were removed by passage through an activated basic 

alumina column. The solution was concentrated by rotary evaporator and the polymer was 

recovered by precipitation into large volume of MeOH (20 fold excess to polymer solution) and 

vacuum filtration. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn= 4670, PDI = 1.07). 

The polymer was further characterised by 1H NMR and MALDI-ToF. 

4.2.2.3 Synthesis of PSTY44-N3, 3a by azidation with NaN3 

Polymer PSTY-Br, 2a (1.0 g, 0.20×10-3 
mol) was dissolved in 7 mL of DMF in a reaction vessel 

equipped with magnetic stirrer. To this solution NaN3 (0.13 g, 0.20 ×10-3 
mol) was added and the 

mixture stirred for 24 h at 25 °C. The polymer solution was directly precipitated into MeOH (20 

fold excess to polymer solution) from DMF, recovered by vacuum filtration and washed 

exhaustively with water and MeOH. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn= 

4650, PDI = 1.07). The polymer was further characterised by 1H NMR and MALDI-ToF. 

4.2.2.4 Synthesis of PSTY44-≡, 4a  

Polymer PSTY44-N3, 3a (0.2 g, 4.0×10-5   mol), PMDETA (8.36×10-3 mL, 4.0×10-5 
mol) and 

propargyl ether (123.5×10-3 mL, 1.2×10-3 
mol) were dissolved in toluene (1.5 mL). CuBr (0.006 g, 

4.0×10-5 
mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer and both of the 

reaction vessels were purged with argon for 12 min. The polymer solution was then transferred to a 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for a further 2 min and the flask was placed in a temperature controlled oil bath 
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at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was re-

precipitated twice to ensure complete purity of the final product from propargyl ether. The polymer 

was dried in vacuo for 24 h at 25 °C, SEC (Mn= 4800, PDI = 1.07). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

4.2.2.5 Synthesis of PSTY44-(≡)2, 5a 

Polymer PSTY44-N3, 3a (0.2 g, 4.0×10-5 
  mol), PMDETA (8.36×10-3 mL, 4.0×10-5 

mol) and 

tripropargyl amine (169.8×10-3 mL, 1.2×10-3 mol) were dissolved in toluene (1.5 mL). CuBr (0.006 

g, 4.0×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer and both of the 

reaction vessels were purged with argon for 12 min. The polymer solution was then transferred to 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for a further 2 min and the flask was placed in a temperature controlled oil bath 

at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was re-

precipitated twice to ensure complete purity of the final product from tripropargyl amine. The 

polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn= 4850, PDI = 1.07). The polymer was 

further characterised by 1H NMR and MALDI-ToF. 

4.2.2.6 Synthesis of PtBA44-Br, 2b by ATRP 
tBA (4.375 g, 3.4×10-5 mol), PMDETA (0.04 mL, 1.89×10-4  mol), CuBr2/PMDETA (15.04×10-3 g, 

3.7×10-5 mol), initiator (74.2×10-3 g, 3.7×10-4  mol) and 2.0 mL of acetone were added to a 100 mL 

schlenk flask equipped with a magnetic stirrer and purged with argon for 30 min to remove oxygen. 

Cu(I)Br (27.2×10-3 g, 1.89×10-3 mol) was then carefully added to the solution under an argon 

blanket. The reaction mixture was further degassed for 5 min and then placed into a temperature 

controlled oil bath at 50 °C. After 4 h an aliquot was taken to check the conversion. The reaction 

was quenched by cooling the reaction mixture to 0 °C, exposure to air, and dilution with THF (ca. 3 

fold to the reaction mixture volume). The copper salts were removed by passage through an 

activated basic alumina column. The solution was concentrated by rotary evaporator and the 

polymer was recovered by precipitation into large volume of MeOH/water (50/50) and vacuum 
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filtration. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn= 5660, PDI = 1.10). The 

polymer was further characterised by 1H NMR and MALDI-ToF. 

4.2.2.7 Synthesis of PtBA44-N3 3b by azidation with NaN3 

The PtBA44-Br, 2b polymers were azidated in a similar way to PSTY polymer (in DMF, with x 10 

NaN3 mole excess to polymer chain-end, 24 h, at 25 oC) with the exception of the 

precipitation/polymer collection procedure. The azidated polymers were precipitated into cold water 

(20 fold excess to polymer solution) from DMF. Polymers PtBA44-N3, 2b were collected via 

vacuum filtration and washed with H2O. The viscous polymer PtBA44-N3 was collected via 

decanting of the solution, re-dissolving in DCM, drying with MgSO4, filtration and rotary 

evaporation of DCM. All polymers were dried in vacuo for 24 h at 25 oC, SEC (Mn= 5540, PDI = 

1.10). The polymer was further characterised by 1H NMR and MALDI-ToF. 

4.2.2.8 Synthesis of PtBA44-(≡)2, 5b 

Polymer PtBA44-N3 2b (0.2 g, 3.3×10-5   mol), PMDETA (6.89×10-3 mL, 3.3×10-3 mol) and 

tripropargyl amine (140.1×10-3 mL, 9.9×10-4 mol) were dissolved in toluene (1.5 mL). CuBr 

(0.0047 g, 3.3×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer and 

both of the reaction vessels were purged with argon for 12 min. The polymer solution was then 

transferred to CuBr flask using double tipped needle by applying argon pressure. The reaction 

mixture was purged with argon for a further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the 

reaction mixture volume), and passed through activated basic alumina to remove the copper salts. 

The solution was concentrated by rotary evaporator and the polymer was recovered by precipitation 

into a large amount of MeOH/water (50/50) and filtration. The polymer was re-precipitated twice to 

ensure complete purity of the final product from tripropargyl amine. The polymer was dried in 

vacuo for 24 h at 25 °C, SEC (Mn= 5770, PDI = 1.09). The polymer was further characterised by 1H 

NMR and MALDI-ToF. 

4.2.2.9 Synthesis of ≡(OH)-PSTY47-Br, 6a 

Styrene (18.18 g, 1.75×10-1 mol), PMDETA (0.2 mL, 87.5×10-3 mol), CuBr2/PMDETA (0.077 g, 

1.94×10-4 mol) and initiator (0.57 g, 1.94×10-3 mol) were added to a 100 mL schlenk flask equipped 

with a magnetic stirrer and purged with argon for 30 min to remove oxygen. Cu(I)Br (0.139
 
g, 

87.5×10-3 mol) was then carefully added to the solution under an argon blanket. The reaction 

mixture was further degassed for 5 min and then placed into a temperature controlled oil bath at 80 

°C. After 3.5 h an aliquot was taken to check the conversion. The reaction was quenched by cooling 
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the reaction mixture to 0 °C, exposure to air, and dilution with THF (ca. 3 fold to the reaction 

mixture volume). The copper salts were removed by passage through an activated basic alumina 

column. The solution was concentrated by rotary evaporator and the polymer was recovered by 

precipitation into large volume of MeOH (20 fold excess to polymer solution) and vacuum 

filtration. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn= 5220, PDI = 1.10) and 

Triple Detection SEC (Mn 
= 4890, PDI = 1.05). The polymer was further characterised by 1H NMR 

and MALDI-ToF. 

4.2.2.10 Synthesis of ≡(OH)-PSTY47-N3, 7a 

Polymer ≡(OH)-PSTY47-Br, 6a (3.0 g, 6.0×10-4 mol) was dissolved in 20 mL of DMF in a reaction 

vessel equipped with magnetic stirrer. To this solution, NaN3 
(0.390 g, 6.0×10-3 mol) was added and 

the mixture stirred for 17 h at room temperature. The polymer was precipitated into MeOH, 

recovered by vacuum filtration and washed exhaustively with water and MeOH, then dried in vacuo 

for 24 h at 25 °C, SEC (Mn= 5070, PDI = 1.10) and Triple Detection SEC (Mn 
= 4920, PDI = 1.05). 

The polymer was further characterised by 1H NMR and MALDI-ToF. 

4.2.2.11 Cyclization reaction of ≡(OH)-PSTY47-N3, 7a by CuAAC reaction 

Synthesis of c-PSTY47-OH 8a 

A solution of ≡(OH)-PSTY47-N3, 7a (0.5 g, 1.0×10-4 mol) in 25 ml of dry toluene was purged with 

argon for 30 min to remove oxygen. This polymer solution was added via syringe pump, at a flow 

rate of 1.24 mL/min, to a deoxygenated solution of Cu (I) Br (0.703 g, 5.0×10-3 mol) and PMDETA 

(1.02 mL, 5.0×10-3 mol) in 25 ml toluene at 25 °C. After the addition of polymer solutions, which 

was 20.16 min for feed rate 1.24 ml/min, the reaction mixture was further stirred for 3 h. At the end 

of this period (i.e., feed time plus an additional 3 h), toluene was evaporated by air-flow and the 

copper salts were removed through CHCl3/water extraction. The residual copper salts were removed 

by passage through activated basic alumina column. The polymer was recovered by precipitation 

into MeOH (20 fold excess to polymer solution) and then by filtration. The polymer was dried in 

vacuo for 24 h at 25 °C (Purity by number distribution LND f(N) =81.46%). The crude products 

were fractionated by preparative SEC. SEC (Mn=3780, PDI=1.06), Triple Detection SEC (Mn= 

5450, PDI=1.04). The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

4.2.2.12 Chain-end modification of functional cyclic polymers 

Synthesis of c-PSTY47-Br, 9a  
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Polymer c-PSTY47-OH, 8a (0.5 g, 1.0×10-4 mol), TEA (0.273 mL, 2.0×10-3 mol) and 8.0 ml of dry 

THF were added under an argon blanket to a dry schlenk flask that has been flushed with argon. 

The reaction was then cooled on ice. To this stirred mixture, a solution of 2-bromopropionyl 

bromide (0.21 mL, 2.0×10-3 mol) in 2 mL of dry THF was added drop wise under argon via an air-

tight syringe over 3 min. After stirring the reaction mixture for 48 h at room temperature, the 

polymer was precipitated into MeOH, filtered and washed three times with MeOH. The polymer 

was dried for 24 h in high vacuum oven at 25 °C, SEC (Mn=3870, PDI=1.05). The polymer was 

further characterised by 1H NMR and MALDI-ToF. 

Synthesis of c-PSTY47-N3, 10a 

 Polymer c-PSTY47-Br, 9a (0.4 g, 8.0×10-5 mol) was dissolved in 5 mL of DMF in a reaction vessel 

equipped with magnetic stirrer. To this solution, NaN3 
(0.052 g, 8.0×10-4 mol) was added and the 

mixture stirred for 17 h at room temperature. The polymer was precipitated into MeOH, recovered 

by vacuum filtration and washed exhaustively with water and MeOH, then dried in vacuo for 24 h 

at 25 °C, SEC (Mn=3920, PDI=1.05). The polymer was further characterised by 1H NMR and 

MALDI-ToF.  

Synthesis of c-PSTY47-≡, 11a 

 Polymer c-PSTY47-N3, 10a (0.1 g, 2.0×10-5 mol), PMDETA (4.18×10-3 mL, 2.0×10-5 mol) and 

propargyl ether (61.8×10-3 mL, 6.0×10-3 mol) were dissolved in toluene (0.8 mL). CuBr (0.003 g, 

2.0×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer and both of the 

reaction vessels were purged with argon for 12 min. The polymer solution was then transferred to 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for a further 2 min and the flask was placed in a temperature controlled oil bath 

at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was re-

precipitated twice to ensure complete purity of the final product from propargyl ether. The polymer 

was dried in vacuo for 24 h at 25 °C, SEC (Mn=3920, PDI=1.05). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

Synthesis of c-PSTY47-(≡)2-A, 12a 

 Polymer c-PSTY47-N3, 10a (0.1 g, 2.0×10-5 mol), PMDETA (4.18×10-3 mL, 2.0×10-5 mol) and 

tripropargyl amine (84.89×10-3 mL, 6.0×10-4 mol) were dissolved in toluene (0.8 mL). CuBr (0.003 

g, 2.0×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer and both of the 

reaction vessels were purged with argon for 12 min. The polymer solution was then transferred to 
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CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for a further 2 min and the flask was placed in a temperature controlled oil bath 

at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was re-

precipitated twice to ensure complete purity of the final product from propargyl ether. The polymer 

was dried in vacuo for 24 h at 25 °C, SEC (Mn=3820, PDI=1.06). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

 

Synthesis of c-PSTY-(≡)2-B, 14 

Polymer c-PSTY47-N3, 10a (0.1 g, 2.0×10-5 mol), PMDETA (4.18×10-3 mL, 2.0×10-5 mol) and 

1,3,5-tris(prop-2-ynyloxy)benzene, 13 (0.144 g, 6.0×10-4 mol) were dissolved in toluene (1.5 mL). 

CuBr (0.0035 g, 2.0×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer 

and both of the reaction vessels were purged with argon for 10 min. The polymer solution was then 

transferred to CuBr flask using double tipped needle by applying argon pressure. The reaction 

mixture was purged with argon for a further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the 

reaction mixture volume), and passed through activated basic alumina to remove the copper salts. 

The solution was concentrated by rotary evaporator and the polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was 

re-precipitated twice to ensure complete purity of the final product from 13. The polymer was dried 

in vacuo for 24 h at 25 °C, SEC (Mn=4420, PDI=1.05). The polymer was further characterised by 
1H NMR and MALDI-ToF. 

4.2.2.13 Synthesis of ≡(OH)-PtBA44-Br, 6b  

tert-Butyl Acrylate (tBA) (12.36 g, 9.6×10-2  mol), Me6TREN (0.67 mL, 2.4×10-3 mol), 

CuBr2/Me6TREN (0.49 g, 10.82×10-4 mol), initiator (0.70 g, 2.39×10-3 mol), DMSO (1.2 mL) and 

acetone (8.4 mL) were added to a 50 mL Schlenk flask equipped with a magnetic stirrer. The 

reaction mixture was cooled down to 0 °C and purged with argon for 30 min to remove oxygen. Cu 

(0) (0.15 g, 2.39 x 10-3 mol) was then carefully added to the solution under an argon blanket. The 

reaction mixture was further degassed for 5 min at 0 °C and then placed into a temperature 

controlled water bath at 23 °C. After 30 min, an aliquot was taken to check the conversion. The 

reaction was quenched by cooling in liquid nitrogen, exposure to air, and dilution with THF (ca. 3 

fold to the reaction mixture volume). The copper salts were removed by passage through an 
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activated basic alumina column. The solution was concentrated by rotary evaporator and the 

polymer was precipitated into cold MeOH/water mixture (40:60 v/v, 20 fold excess to polymer 

solution) twice. The polymer (viscous glassy solid) was dried in vacuo for 24 h at 25 °C, SEC 

(Mn=5890, PDI=1.13). The polymer was further characterised by 1H NMR and MALDI-ToF. 

4.2.2.14 Synthesis of ≡(OH)-PtBA44-N3, 7b  

Polymer ≡(OH)-PtBA44-Br, 6b (10.00 g, 1.667×10-3 mol) was dissolved in 50 mL of DMF in a 100 

mL reaction vessel equipped with magnetic stirrer. To this solution NaN3 (1.08 g, 16.67×10-3 mol) 

was added and the mixture stirred overnight at room temperature. The polymer solution was then 

directly precipitated into cold MeOH/water mixture (20:80 v/v, ~15 fold excess to polymer 

solution) from DMF. All liquid was decanted and the polymer (viscous solid) was then dried in 

vacuo for 24 h at 25 °C, SEC (Mn=6080, PDI=1.13), and Triple Detection SEC (Mn= 6040, PDI = 

1.09). The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

4.2.2.15 Cyclization reaction of ≡(OH)-PtBA44-N3, 7b by CuAAC reaction 

A solution of ≡(OH)-PtBA44-N3, 7b (0.50 g, 8.30×10-5 mol) in toluene (25 mL) was purged with 

argon for 40 min to remove oxygen. This polymer solution was added via syringe pump, at a flow 

rate of 1.240 mL/min, to a deoxygenated solution of Cu(I)Br (0.6 g, 4.15×10-3 mol) and PMDETA 

(0.87 mL, 4.15×10-3 mol) in toluene (25 mL) at 25 °C. After the addition of the polymer solution 

the reaction mixture was stirred for further 3 h. At the end of this period, toluene was evaporated 

and the copper salts were removed through CHCl3/H2O extraction. The residual copper salts were 

removed by passage through activated basic alumina column with THF and the solvent was then 

removed by rotary evaporator. (Purity by number distribution LND f(N) =71.6 %). The crude 

products were fractionated by preparative SEC and fractions combined. SEC (Mn = 4890, PDI = 

1.05) and Triple Detection SEC (Mn= 6260, PDI = 1.04). The polymer was further characterised by 
1H NMR and MALDI-ToF. 

 

4.2.2.16 Chain-end modification of functional cyclic polymers 

Synthesis of c-PtBA44-Br, 9b  

Polymer c-PtBA44-OH, 8b (0.5 g, 8.30×10-5 mol), TEA (0.232 mL, 16.6×10-4 mol) and 20.0 ml of 

dry THF were added under an argon blanket to a dry schlenk flask that has been flushed with argon. 

The reaction was then cooled on ice. To this stirred mixture, a solution of 2-bromopropionyl 

bromide (0.173 mL, 16.6×10-4 mol) in 5 mL of dry THF was added drop wise under argon via an 

air-tight syringe over 5 min. After stirring the reaction mixture for 48 h at room temperature, the 
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polymer solution was directly precipitated into cold MeOH/water mixture (20:80v/v, ~15 fold 

excess to polymer solution) from DMF. The polymer was dried for 24 h in high vacuum oven at 25 

°C, SEC (Mn = 4930, PDI = 1.05). The polymer was further characterised by 1H NMR and MALDI-

ToF. 

Synthesis of c-PtBA44-N3, 10b  

 Polymer c-PtBA44-Br, 9b (0.35 g, 5.83×10-5 mol) was dissolved in 3.0 mL of DMF in a reaction 

vessel equipped with magnetic stirrer. To this solution, NaN3 
(0.038 g, 5.83×10-4 mol) was added 

and the mixture stirred for 17 h at room temperature. After stirring the reaction mixture for 48 h at 

room temperature, the polymer solution was directly precipitated into cold MeOH/water mixture 

(20:80 v/v, ~15 fold excess to polymer solution) from DMF, recovered by vacuum filtration, then 

dried in vacuo for 24 h at 25 °C, SEC (Mn = 4940, PDI = 1.05). The polymer was further 

characterised by 1H NMR and MALDI-ToF.  

 

Synthesis of c-PtBA44-(≡)2, 12b 

 Polymer c-PtBA44-N3 10b (0.12 g, 2.14×10-5 mol), tripropargylamine (0.09 mL, 6.4×10-4 mol) and  

PMDETA (4.47×10-3 mL, 2.14×10-5 mol) were dissolved in toluene (1.0 mL). CuBr (0.003 g, 

2.14×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer and both of the 

reaction vessels were purged with argon for 12 min. The polymer solution was then transferred to 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for a further 2 min and then flask was placed in a temperature controlled oil bath 

at 25 °C for 1.0 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporation to near-dryness and the polymer was re-dissolved in MeOH (2.0 

mL). The polymer solution was then transferred to dialysis bag (presoaked in water, Pierce 

Snakeskin, MWCO 3.5 K) and dialyzed against a large volume of MeOH for 3 days  (replacing the 

large volume of MeOH twice a day). The final purification was performed by Preparative SEC to 

ensure complete purity of the final product from tripropargyl amine. The polymer was finally dried 

in vacuo for 24 h at 25 °C, SEC (Mn =4940, PDI = 1.07). The polymer was further characterised by 
1H NMR and MALDI-ToF. 
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4.2.2.17 Synthesis of complex architectures via CuAAC Reaction 

Synthesis of (PSTY44)2 15 by CuAAC 

PSTY44-≡, 4a (0.03 g, 6.0×10-6 mol), PSTY44-N3, 3a (0.03 g, 6.0×10-6 mol) and PMDETA 

(1.25×10-3 mL, 6.0×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr (0.86×10-3 g, 

6.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 5 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the mixture was 

diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina column 

to remove copper. The solution was concentrated by rotary evaporator and the crude product was 

further purified by preparative SEC. The polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum filtration. The 

polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 9710, PDI = 1.03) and Triple Detection 

SEC (Mn= 9820, PDI = 1.02). The polymer was further characterised by 1H NMR and MALDI-ToF.  

Synthesis of c-PSTY47-b-PSTY44, 16 by CuAAC 

PSTY44-≡, 4a (0.03 g, 6.0×10-6 mol), c-PSTY47-N3, 10a (0.03 g, 6.0×10-6 mol) and PMDETA 

(1.25×10-3 mL, 6.0×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr (0.86×10-3 g, 

6.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 5 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the mixture was 

diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina column 

to remove copper. The solution was concentrated by rotary evaporator and the crude product was 

further purified by preparative SEC. The polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum filtration. The 

polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 8400, PDI = 1.03) and Triple Detection 

SEC (Mn= 10180, PDI = 1.03). The polymer was further characterised by 1H NMR and MALDI-

ToF. 

Synthesis of (c-PSTY47)2 17 by CuAAC 

Polymer c-PSTY47-≡, 11a (0.03 g, 6.0×10-6 mol), c-PSTY47-N3 10a (0.03 g, 6.0×10-6 mol) and 

PMDETA (1.25×10-3 mL, 6.0×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr 
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(0.86×10-3 g, 6.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. 

Both of the vessels were purged with argon for 5 minutes and the polymer solution was transferred 

to CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for further 2 min and the flask was placed in a temperature controlled oil bath at 

25 °C. After 30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the 

mixture was diluted with 3.0 mL of THF. The solution was then passed through activated basic 

alumina column to remove copper. The solution was concentrated by rotary evaporator and the 

crude product was further purified by preparative SEC. The polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum 

filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 7630, PDI = 1.02) and 

Triple Detection SEC (Mn= 10230, PDI = 1.03). The polymer was further characterised by 1H NMR 

and MALDI-ToF. 

Synthesis of (PSTY44)3 18 by CuAAC 

PSTY44-(≡)2, 5a (0.02 g, 4.0×10-6 mol), PSTY44-N3, 3a (0.04 g, 8.0×10-6 mol) and PMDETA 

(1.67×10-3 mL, 8.0×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr (1.15×10-3 g, 

8.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 5 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the mixture was 

diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina column 

to remove copper. The solution was concentrated by rotary evaporator and the crude product was 

further purified by preparative SEC. The polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum filtration. The 

polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 13170, PDI = 1.03) and Triple Detection 

SEC (Mn= 15110, PDI = 1.04). The polymer was further characterised by 1H NMR and MALDI-

ToF. 

Synthesis of c-PSTY47-b-(PSTY44)2 19 by CuAAC 

c-PSTY47-(≡)2 12a (0.02 g, 4.0×10-6 mol), PSTY44-N3 3a (0.04 g, 8.0×10-6 mol) and PMDETA 

(1.67×10-3 mL, 8.0×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr (1.15×10-3 g, 

8.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 5 minutes and the polymer solution was transferred to CuBr 
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flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the mixture was 

diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina column 

to remove copper. The solution was concentrated by rotary evaporator and the crude product was 

further purified by preparative SEC. The polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum filtration. The 

polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 12410, PDI = 1.03) and Triple Detection 

SEC (Mn= 15550, PDI = 1.04). The polymer was further characterised by 1H NMR and MALDI-

ToF. 

Synthesis of (c-PSTY47)2-b-PSTY44 20 by CuAAC 

PSTY44-(≡)2, 5a (0.02 g, 4.0×10-6 mol), c-PSTY47-N3, 10a (0.04 g, 8.0×10-6 mol) and PMDETA 

(1.67×10-3 mL, 8.0×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr (1.15×10-3 g, 

8.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 5 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the mixture was 

diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina column 

to remove copper. The solution was concentrated by rotary evaporator and the crude product was 

further purified by preparative SEC. The polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum filtration. The 

polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 10750, PDI = 1.04) and Triple Detection 

SEC (Mn= 15580, PDI = 1.03). The polymer was further characterised by 1H NMR and MALDI-

ToF. 

Synthesis of (c-PSTY47)3-A 21 by CuAAC 

c-PSTY47-(≡)2, 12a (0.02 g, 4.0×10-6 mol), c-PSTY47-N3, 10a (0.04 g, 8.0×10-6 mol) and PMDETA 

(1.67×10-3 mL, 8.0×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr (1.15×10-3 g, 

8.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 5 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the mixture was 
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diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina column 

to remove copper. The solution was concentrated by rotary evaporator and the crude product was 

further purified by preparative SEC. The polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum filtration. The 

polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 9910, PDI = 1.03) and Triple Detection 

SEC (Mn= 15800, PDI = 1.03). The polymer was further characterised by 1H NMR and MALDI-

ToF. 

Synthesis of (c-PSTY47)3-B 22 by CuAAC 

c-PSTY47-(≡)2-B, 14 (0.025 g, 4.8×10-6 mol), c-PSTY47-N3, 10a (0.05 g, 9.6×10-6 mol) and 

PMDETA (2.0×10-3 mL, 9.6×10-6 mol) were dissolved in 0.5 ml of dry toluene in a vial. CuBr 

(1.37×10-3 g, 9.6×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. 

Both of the vessels were purged with argon for 5 minutes and the polymer solution was transferred 

to CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for further 2 min and the flask was placed in a temperature controlled oil bath at 

25 °C. After 30 min, an aliquot was taken to check SEC. The reaction was stopped after 1.5 hr and 

the mixture was diluted with 3.0 mL of THF. The solution was then passed through activated basic 

alumina column to remove copper. The solution was concentrated by rotary evaporator and the 

crude product was further purified by preparative SEC. The polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and then recovered by vacuum 

filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 10490, PDI = 1.03) and 

Triple Detection SEC (Mn= 16100, PDI = 1.03). The polymer was further characterised by 1H NMR 

and MALDI-ToF.  

Synthesis of PSTY44-b-PtBA44 23  

PSTY44-≡, 4a (0.05 g, 10.0×10-6 mol), PtBA44-N3, 3b (0.06 g, 10.0×10-6 mol) and PMDETA 

(4.18×10-3 mL, 20.0×10-6 mol) were dissolved in 1.0 ml of dry toluene in a vial. CuBr (0.0029 g, 

20.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 15 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the mixture was 

diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina column 

to remove copper. The solution was concentrated by rotary evaporator and the crude product was 
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further purified by preparative SEC. The polymer was recovered by precipitation into a cold 

solution of MeOH/H2O (20/80 v/v, 15 fold excess to polymer solution) and then recovered by 

vacuum filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 10630, PDI = 1.04) 

and Triple Detection SEC (Mn= 10450, PDI = 1.03). The polymer was further characterised by 1H 

NMR and MALDI-ToF. 

Synthesis of c-PSTY47-b-c-PtBA44, 24  

Polymer c-PSTY47-≡, 11a (0.03 g, 6.0×10-6 mol), c-PtBA44-N3, 10b (0.034 g, 6.0×10-6 mol) and 

PMDETA (2.5×10-3 mL, 1.2×10-5 mol) were dissolved in 1.0 ml of dry toluene in a vial. CuBr 

(0.0017 g, 1.2×10-5 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both 

of the vessels were purged with argon for 15 minutes and the polymer solution was transferred to 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for further 2 min and the flask was placed in a temperature controlled oil bath at 

25 °C. After 30 min, an aliquot was taken to check SEC. The reaction was stopped after 1 hr and the 

mixture was diluted with 3.0 mL of THF. The solution was then passed through activated basic 

alumina column to remove copper. The solution was concentrated by rotary evaporator and the 

crude product was further purified by preparative SEC. The polymer was recovered by precipitation 

into a cold solution of MeOH/H2O (20/80 v/v, 15 fold excess to polymer solution) and then 

recovered by vacuum filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 8790, 

PDI = 1.06) and Triple Detection SEC (Mn=12050, PDI=1.06). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

Synthesis of PSTY44-b-(PtBA44)2, 25 

PSTY44-(≡)2 5a (0.04 g, 8.0×10-6 mol),  PtBA44-N3 3b (0.12 g, 16.0×10-6 mol) and PMDETA 

(6.689×10-3 mL, 32.0×10-6 mol) were dissolved in 1.0 ml of dry toluene in a vial. CuBr (0.0046 g, 

32.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 15 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1.0 hr and the mixture 

was diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina 

column to remove copper. The solution was concentrated by rotary evaporator and the crude 

product was further purified by preparative SEC. The polymer was recovered by precipitation into a 

cold solution of MeOH/H2O (20/80 v/v, 15 fold excess to polymer solution) and then recovered by 

vacuum filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 14730, PDI = 1.07) 
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and Triple Detection SEC (Mn=17510, PDI=1.06). The polymer was further characterised by 1H 

NMR and MALDI-ToF. 

Synthesis of c-PSTY47-b-(c-PtBA44)2, 26 

c-PSTY47-(≡)2, 12a (0.02 g, 4.0×10-6 mol),  c-PtBA44-N3, 10b (0.045 g, 8.0×10-6 mol) and 

PMDETA (3.34×10-3 mL, 1.6×10-5 mol) were dissolved in 1.0 ml of dry toluene in a vial. CuBr 

(0.0023 g, 1.6×10-5 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both 

of the vessels were purged with argon for 15 minutes and the polymer solution was transferred to 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for further 2 min and the flask was placed in a temperature controlled oil bath at 

25 °C. After 30 min, an aliquot was taken to check SEC. The reaction was stopped after 1.0 hr and 

the mixture was diluted with 3.0 mL of THF. The solution was then passed through activated basic 

alumina column to remove copper. The solution was concentrated by rotary evaporator and the 

crude product was further purified by preparative SEC. The polymer was recovered by precipitation 

into a cold solution of MeOH/H2O (20/80 v/v, 15 fold excess to polymer solution) and then 

recovered by vacuum filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 

12210, PDI = 1.07) and Triple Detection SEC (Mn=17070, PDI=1.05). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

Synthesis of (PSTY44)2-b-PtBA44 27 

PSTY44-N3 3a (0.05 g, 10.0 x 10-6 mol), PtBA44-(≡)2, 5b (0.03 g, 5.0×10-6 mol) and PMDETA 

(4.18×10-3 mL, 20.0×10-6 mol) were dissolved in 1.0 ml of dry toluene in a vial. CuBr (0.0029 g, 

20.0×10-6 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both of the 

vessels were purged with argon for 15 minutes and the polymer solution was transferred to CuBr 

flask using double tipped needle by applying argon pressure. The reaction mixture was purged with 

argon for further 2 min and the flask was placed in a temperature controlled oil bath at 25 °C. After 

30 min, an aliquot was taken to check SEC. The reaction was stopped after 1.0 hr and the mixture 

was diluted with 3.0 mL of THF. The solution was then passed through activated basic alumina 

column to remove copper. The solution was concentrated by rotary evaporator and the crude 

product was further purified by preparative SEC. The polymer was recovered by precipitation into a 

cold solution of MeOH/H2O (20/80 v/v, 15 fold excess to polymer solution) and then recovered by 

vacuum filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 13460, PDI = 1.06) 

and Triple Detection SEC (Mn=16530, PDI=1.06). The polymer was further characterised by 1H 

NMR and MALDI-ToF. 
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Synthesis of (c-PSTY47)2-b-c-PtBA44, 28 

Polymer, c-PSTY47-N3, 10a (0.058 g, 4.0×10-6 mol), c-PtBA44-(≡)2, 12b (0.045 g, 8.0×10-6 mol) and 

PMDETA (3.34×10-3 mL, 1.6×10-5 mol) were dissolved in 1.0 ml of dry toluene in a vial. CuBr 

(0.0023 g, 1.6 x 10-5 mol) was added in a 10 mL Schlenk flask equipped with magnetic stirrer. Both 

of the vessels were purged with argon for 15 minutes and the polymer solution was transferred to 

CuBr flask using double tipped needle by applying argon pressure. The reaction mixture was 

purged with argon for further 2 min and the flask was placed in a temperature controlled oil bath at 

25 °C. After 30 min, an aliquot was taken to check SEC. The reaction was stopped after 1.0 hr and 

the mixture was diluted with 3.0 mL of THF. The solution was then passed through activated basic 

alumina column to remove copper. The solution was concentrated by rotary evaporator and the 

crude product was further purified by preparative SEC. The polymer was recovered by precipitation 

into a cold solution of MeOH/H2O (20/80 v/v, 15 fold excess to polymer solution) and then 

recovered by vacuum filtration. The polymer was dried in vacuo for 48 h at 25 °C, SEC (Mn = 

11120, PDI = 1.06) and Triple Detection SEC (Mn=15900, PDI=1.06). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

4.2.2.18 Deprotection of tBA from 23-28– General Procedure 

The hydrolysis of tBA side groups on the polymer architectures to acrylic acid (AA) was carried out 

following a literature procedure.3 TFA (5 times excess to the tert-butyl groups) was added drop-

wise to a solution of polymer in DCM. The reaction mixture was stirred at room temperature for 24 

hours. The organics were removed using N2 flow and the residue re-dissolved in a minimum 

amount of THF. The polymer was recovered by precipitation in hexane to afford a white solid. The 

polymers were dried in vacuo for 24 h at 25 oC. 

 

4.2.2.19 Thin Film Studies 

 Thin films of the amphiphillic cyclic block copolymers and their linear analogues were prepared by 

spin coating 2 wt% of polymer (23 and 24) solutions in THF onto silicon wafer substrates. The 

concentration of the polymer solutions and spin speed were kept constant for direct comparison of 

thin films with all films having essentially the same thickness, and all were thermally annealed at 

130 °C overnight. The resulting nanophase-separated thin films were characterised by atomic force 
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microscopy (AFM) in order to determine the effect of macromolecular architecture on nanophase-

separated polymer thin films.  

 

4.2.3 Analytical Methodologies 

Size Exclusion Chromatography (SEC)  

For SEC analysis, polymer solution was prepared by dissolving in tetrahydrofuran (THF) to a 

concentration of 1 mg mL-1 and then filtered through a 0.45 μm PTFE syringe filter. A water 2695 

separations module, fitted with a water 410 refractive index detector maintained at 35 °C, a water 996 

photodiode array detector, and two Ultrastyragel linear columns (7.8×300 mm) arranged in series were 

used to analyse the molecular weight distribution of the polymers. For all analysis, these columns were 

maintained at 40 °C and are capable of separating polymers in the molecular weight range of 500 to 4 

million g mol-1 with high resolution. All samples were eluted at a flow rate of 1.0 mL min-1. 

Calibration was performed using narrow molecular weight PSTY standards (PDI ≤ 1.1) ranging from 

500 to 2 million g mol-1. Data acquisition was performed using Empower software, and molecular 

weights were calculated relative to polystyrene standards. 

Absolute Molecular Weight Determination by Triple Detection SEC 

Absolute molecular weights of polymers were determined using a Polymer Labs GPC50 Plus equipped 

with dual angle laser light scattering detector, viscometer and differential refractive index detector. 

HPLC grade tetrahydrofuran was used as eluent at flow rate 1 mL min-1. Separations were achieved 

using two PLGel Mixed C (7.8 x 300 mm) SEC columns connected in series and held at a constant 

temperature of 40 °C. The triple detection system was calibrated using a 4 mg/mL PSTY Standard 

(Polymer Laboratories: Mwt =110 K, dn/dc = 0.185 and IV = 0.4872 mL g-1). Polymer samples of 

known concentration were freshly prepared in THF and passed through a 0.45 μm PTFE syringe filter 

just prior to injection.  

Preparative Size Exclusion Chromatography (Prep SEC).  

Linear polystyrene was purified using a Varian Pro-Star preparative SEC system equipped with a 

manual injector, differential refractive index detector, and single wave-length ultraviolet visible 

detector. Flow rate was maintained 10 mL min-1 and HPLC grade tetrahydrofuran was used as the 

eluent. Separations were achieved using a PL Gel 10 μm 10 × 103 A°, 300 × 25 mm preparative SEC 

column held at 25 °C. The dried crude polymer was dissolved in THF at 100 mg mL-1 concentration 
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and filtered through a 0.45 μm PTFE syringe filter prior to use. Different fractions were collected 

manually, and the composition of each was determined using the Polymer Laboratories GPC50 Plus 

equipped with triple detection as described above. 

 

1H Nuclear Magnetic Resonance (NMR).  

All NMR spectra were recorded on a 300 MHz and Bruker DRX 500 MHz spectrometer using an 

external lock (CDCl3) and referenced to the residual non-deuterated solvent (CHCl3). Then a DOSY 

experiment was run to acquire spectra presented herein by increasing the pulse gradient from 2 to 85 

% of the maximum gradient strength and increasing d (p30) from 1 ms to 2 ms, using 64 to 128 scans. 

Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR)  

ATR-FTIR spectra were obtained using a horizontal, single bounce, diamond ATR accessory on a 

Nicolet Nexus 870 FT-IR. Spectra were recorded between 4000 and 500 cm-1 
for 64 scans at 4 cm -1 

resolution with an OPD velocity of 0.6289 cm/s. Solids were pressed directly onto the diamond 

internal reflection element of the ATR without further sample preparation. 

Matrix-Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-ToF) Mass Spectrometry. 

MALDI-ToF MS spectra were obtained using a Bruker MALDI-ToF autoflex III smart beam equipped 

with a nitrogen laser (337 nm, 200 Hz maximum firing rate) with a mass range of 600-400 000 Da. 

Spectra were recorded in both reflectron mode (2000-5000 Da) and linear mode (5000-20000 Da).  

Trans- 2-[3-(4-tert-butylphenyl)-2-methyl-propenylidene] malononitrile (DCTB; 20 mg/mL in THF) 

was used as the matrix and Ag-(CF3COO) (1 mg/mL in THF) as the cation source of all the 

polystyrene samples. For poly (t-butylacrylate) Na-(CF3COO) (1 mg/mL in THF) was used as the 

cation source in the same matrix. Samples were prepared by co-spotting the matrix (20 μL), Ag 

(CF3COO) or Na-(CF3COO) (2×10-3 mL) and polymer (20×10-3 mL, 1 mg/mL in THF) solutions on 

the target plate. 

Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) was carried out on a Mettler Toledo DSC1 STARe System 

calorimeter. For the DSC measurements, samples of 3−5 mg were first heated from 20 to 150 °C at a 

heating rate of 5 °C/min under nitrogen atmosphere, followed by cooling to 20 °C at a rate of 5 °C/min 

after stopping at 150 °C for 3 min, and finally heating to 150 °C at the rate of 5 °C/min. The mid-point 

of inflection of the obtained DSC curves in final heating process was used to determine the glass-

transition temperature. 
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Determination of glass transition temperature (Tg) 

Tg of amphiphillic copolymers were evaluated using differential scanning calorimetry (DSC). Each 

sample (3–5 mg) was loaded onto a DSC aluminium crucible cell (40 μL, Mettler Toledo 

International Inc.), heated under nitrogen at a constant heating rate of 5 °C /min from 20° C up to 

150° C, cooled back down to 20° C, and heated back up again to 150° C. Tg values of all samples 

for both PSTY and PAA blocks were chosen from the second heating cycle. 

Atomic Force Microscopy 

A Cypher atomic force microscope (Asylum Research) was used for all the measurements. The 

cantilevers used were HA_NC (Etalon) from NT-MDT, Russia having a nominal resonant 

frequency of 145 kHz. The images were obtained by employing the Tapping Mode of the AFM in 

air.  

4.3 Results and Discussion 
Synthesis of c-PSTY47-OH and c-PtBA44-OH by CuAAC 

Cyclic polystyrene (c-PSTY) and polybutyl acrylate (c-PtBA) were prepared with a single OH 

group on each chain. c-PSTY47-OH, 8a and c-PtBA44-OH, 8b were synthesised according to our 

previously described literature procedure.32 Highly functional linear polymer precursors ≡(OH)-

PSTY47-Br, 6a and ≡(OH)-PtBA44-Br, 6b were synthesised by ATRP and SET-LRP using an 

alkyne-functional initiator, 1, producing a polymers with number-average molecular weights (Mn) 

of 5220 and 5890, and PDI values of 1.10 and 1.13, respectively (see Table C1 in appendix C). The 

Br chain-end functionalities of 6a and 6b were calculated by 1H NMR integration as 96 and 97%, 

respectively. However, the LND simulation42 based on weight distribution (w(M)) of 6a and 6b 

gave ~12 % of double molecular weight products. The formation of double molecular weight 

products can occur by radical termination or alkyne-alkyne coupling reaction during or after 

polymerization. The Br chain-ends of two polymers were converted to azide groups quantitatively, 

and the linear polymers then cyclised using CuAAC reaction.43 The general synthetic route to 

produce different functional linear and cyclic polymers and their complex architectures is shown in 

Scheme C1 in Appendix C. 

An effective and rapid cyclization procedure was followed to prepare monocyclic polymer with 

high yield and purity. The linear polymer solution in toluene, was fed into a toluene solution of an 

excess of Cu(I)Br and PMDETA at a feed rate of 1.24 mL min−1 at 25 °C over 20.16 min and then 

stirred for 3 h, following a procedure shown to be highly effective in producing monocyclic 
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polymer. The reason for using the [Cu(PMDETA)Br] complex to activate the CuAAC reaction in 

toluene is that the complex forms a neutral, distorted square planar structure and is more soluble 

and thus more reactive in toluene than other ionised and partially soluble copper complexes.44 The 

monocyclic polymers 8a and 8b under these feed conditions gave conversions of 85.0 and 78%, 

respectively, as determined from SEC distributions. SEC traces for cyclization of PSTY and PtBA 

are shown in Figure 4.1. 

 

Figure 4.1. SEC chromatograms for cyclization of (A) (a) ≡(OH)-PSTY47-N3 7a (b) c-PSTY47-OH 

crude, 8a (c) c-PSTY47-OH purified by prep and (d) LND simulation of 8a crude with 

hydrodynamic volume change of 0.75; (B) (a) ≡(OH)-PtBA44-N3 7b (b) c-PtBA44-OH crude, 8b (c) 

c-PtBA44-OH purified by prep and (d) LND simulation of 8b crude with hydrodynamic volume 

change of 0.78 SEC analysis based on polystyrene calibration curve. 

The resultant crude cyclic polymer was purified by prep SEC to remove any unreacted starting 

polymers and high-molecular-weight by-products formed through either alkyne-alkyne coupling or 

multi-block formation from CuAAC reactions. The Mn of 8a after prep was 3780 (PDI = 1.06) and 

8b was 4890 (PDI = 1.05) as determined by RI detection alone and was in accord with a reduced 

hydrodynamic volume of more compact cyclic topology 0.75 and 0.78 respectively. Analysis of the 

purified cyclic polymers by triple-detection SEC (to obtain an absolute MWD independent of 

topology) gave Mn = 5450 (PDI = 1.04) for 8a and Mn= 6260 (PDI=1.04) for 8b are almost identical 

to the starting linear polymers. For detailed characterization of 8a and 8b using 1H NMR and 

MALDI-ToF, see appendix C.  

Functionalization of 8a and 8b 

 The free OH group on the cyclic polymers, was then further functionalised using  2-

bromopropionyl bromide to obtain c-PSTY47-Br, 9a and c-PtBA44-Br, 9b and subsequent azidation 

using NaN3 gave c-PSTY47-N3 10a and c-PtBA44-N3 10b in near quantitative yields, as confirmed 

by 1H NMR and MALDI analysis shown in appendix C. These polymers were further 
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functionalised to mono-alkyne moiety (11a) using excess propargyl ether and di-alkyne moieties 

(12a, 12b and 14) using excess tripropargyl amine and 1, 3, 5-tris(prop-2-ynyloxy)benzene, 13 as 

small linkers. The mono and di-alkyne functionalised polymers were characterised by SEC, NMR 

and MALDI, see appendix C. 

Coupling reaction for complex topologies 

The mono-alkyne, di-alkyne and azide functional linear and cyclic polymers were utilised to form a 

variety of complex architectures using the CuAAC 'click' coupling reaction (see Scheme C1 in 

Appendix C). First, topologies 15-17 (MW~10K) were prepared by a simple CuAAC reaction 

between two blocks, one having an alkyne and another with azide functional group. For example, c-

PSTY47-N3, 10a was coupled with PSTY44-≡, 4a, to produce a tadpole like di-block 16 by CuAAC 

reaction in 1.0 h at 25 °C with 89.7% product purity as determined from the LND simulation based 

on weight distribution (Figure 4.2 (B)). The 'click' efficiency for the formation of the coupled 

products was 89.7 % from the ratio of purity determined by LND to that of the maximum 

theoretical purity expected from the stoichiometric ratios of the reactants. The MW data and 'click' 

efficiency are summarised in the Table 4.1.  Preparative SEC gave essentially pure 16 in which 

most of the higher molecular weight polymers was removed. When the purified polymer was 

subsequently injected through the triple detection SEC (to obtain an absolute MWD independent of 

topology), it gave a near identical MWD to that of the sum of Mp of starting reactants 10a and 4a 

and with a polydispersity index 1.03 (see Table 4.1 and Figure C26 in appendix C). These results 

demonstrate the isolation of a well-defined and essentially pure structure. The 1H NMR of purified 

16 (Figure C27 in Appendix C) showed a near quantitative loss of CH2 protons adjacent to alkyne 

moiety (denoted as f, δ=4.12 ppm) from 3a and appearance of a CH proton near triazole moity 

(denoted as i, δ=4.12 ppm) as determined by integration suggested quantitative click reaction 

without any unreacted reactants left. The purified product was further characterised by MALDI ToF 

mass spectroscopy that produced a MWD that could only result from the coupling of 10a and 4a 

(see Figure C28 in Appendix C). The calculated [M+Ag+] value (9765.8) in expanded spectra was 

nearly identical to the experimental value (9764.34), suggesting that after purification there was 

little or no reactant species left. Similarly, the CuAAC of 3a with 4a produced 15 with 92.9 % 

product purity and coupling efficiency and the coupling of 11a with 10a produced 17 with 89.5 % 

product purity and coupling efficiency. 15 and 17 were also further characterised by NMR and 

MALDI as shown in Appendix C.  
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Figure 4.2: SEC of molecular weight distributions (MWDs) for the synthesis of (A) (PSTY44)2 15 

by CuAAC of (a) PSTY44-≡, 4a, and (b) PSTY44-N3 , 3a; (c) (PSTY44)2 15, crude, (d) (PSTY44)2 

prepped and (e) LND simulation of crude, (B) c-PSTY47-b-PSTY44, 16 by CuAAC of (a) PSTY44-≡, 

4a and (b) c-PSTY47-N3, 10a; (c) c-PSTY47-b-PSTY44, 16, crude, (d) c-PSTY47-b-PSTY44, prep and 

(e) LND simulation of crude and (C) (c-PSTY47)2, 17 by CuAAC of (a) c-PSTY47-≡, 11a and (b) c-

PSTY47-N3, 10a; (c) (c-PSTY47)2, 17 crude, (d) (c-PSTY47)2, prep and (e) LND simulation of crude.  

SEC analysis based on polystyrene calibration curve. Simulation was achieved by adding Mps of 

reactants (RI SEC) to fit with the crude products (RI SEC).  

Likewise, the topologies (MW~ 15.0 K) 18, 19, 20 and 22 were produced by CuAAC from alkyne 

and azide precursors with the yield of 94.5, 85.8, 83.5, and 92% product purity and the crude 

products were further purified by preparative SEC essentially gave 98.0, 99.0, 95.3 and 99.5% 

product purity respectively. The SEC traces for the synthesis of 18, 19, 20 and 22 were shown in 

Figure 4.3. The purified polymers were further characterised by 1H NMR and MALDI as shown in 

Appendix C. 
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Figure 4.3: SEC of molecular weight distributions (MWDs) for the synthesis of (A) (PSTY44)3 18 

by CuAAC of (a) PSTY44-(≡)2, 5a, and (b) PSTY44-N3 , 3a; (c) (PSTY44)3 18, crude, (d) (PSTY44)3 

prepped and (e) LND simulation of crude, (B) c-PSTY47-b-(PSTY44)2, 19 by CuAAC of (a) 

PSTY44-(≡)2, 4a and (b) c-PSTY47-N3, 10a; (c) c-PSTY47-b-PSTY44, 16, crude, (d) c-PSTY47-b-

PSTY44, prep and (e) LND simulation of crude and (C) (c-PSTY47)2, 17 by CuAAC of (a) c-

PSTY47-≡, 11a and (b) c-PSTY47-N3, 10a; (c) (c-PSTY47)2, 17 crude, (d) (c-PSTY47)2, prep and (e) 

LND simulation of crude.  SEC analysis based on polystyrene calibration curve. Simulation was 

achieved by adding Mps of reactants (RI SEC) to fit with the crude products (RI SEC). 

The di-block (23, 24) and mikto-arm star (25-28) copolymers were also synthesised by the CuAAC 

reaction from the azide, mono and di-alkyne functional polymer precursors. First, mono-alkyne 

functional polymer precursors, PSTY44-≡, 4a and c-PSTY47-≡, 11a, were coupled to an equimolar 

ratio of PtBA44-N3, 4b, and c-PtBA44-N3, 10b, to produced PSTY44-b-PtBA44, 23, and c-PSTY47-b-

c-PtBA44, 24, respectively. The 'click' efficiency for the formation 23 was 92.3%, which was much 

higher than that of formation of 24 (83%). The reason can be attributed to the higher functionality 

of 4b compared to 10b, as the later one undergoes multiple reaction steps that may decrease the 

chain-end functionality. The crude products 23 and 24 were purified by preparative SEC to remove 

all starting polymers and undesired coupling products. When the purified polymers were injected in 

triple detection SEC, the Mp of 24 increased to 12270, while it was 8490 on RI detection (Table 

4.1). On the other hand, there was no apparent change of Mp in product 23 observed. The 

significant difference in hydrodynamic volume of 24 is a consequence of the change in 
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hydrodynamic volume from the combination of individual cyclic polymers and the formation of a 

di-cyclic block copolymer, resulting in a hydrodynamic shift of 0.73. The LND model was used to 

fit RI traces for 23 and 24 with Mps of 10890 and 12270 from triple detection and multiplied by the 

factor of hydrodynamic volume changes of 1 and 0.73 respectively. The fits were excellent, 

suggesting that 23 and 24 were pure with no remaining starting polymers left.  The peak maximum 

(Mp) of the polymers after purification by prep SEC were also similar to theoretical Mps, which 

were calculated from the addition of the Mps of the starting compounds. The di-alkyne functional 

polymers PSTY44-(≡)2, 5a, and c-PSTY47-(≡)2 12a were coupled with two equivalents of PtBA44-

N3, 4b, and c-PtBA44-N3, 10b, to produce mikto-arm stars PSTY44-b-(PtBA44)2, 25, and c-PSTY47-

b-(c-PtBA44)2, 26, respectively. Topologies 27 and 28 were also synthesised by coupling di-alkyne 

functional polymers, PtBA-(≡)2, 5b, and c-PtBA-(≡)2, 12b, with two equivalents of PSTY44-N3, 3a, 

and c-PSTY47-N3, 10a, respectively. The higher coupling efficiency and product purity were 

observed in the formation of all the topologies except 28. The lower product purity of 28 might be 

due to the lower chain end functionality of 12b from the multiple reaction steps and subsequent 

purification. The crude products 25-28 were purified by preparative SEC to remove all starting 

polymers as well as undesired coupling products. The purified polymers were injected in triple 

detection SEC to measure the absolute MW, and it was observed that the Mps of products 25-28 

were almost identical to the theoretical Mps calculated by adding corresponding reactants Mps. 

These results supported that the products 25-28 were essentially pure with no remaining starting 

polymers left. The significant change in hydrodynamic volume for 25, 26, 27 and 28 of 0.82, 0.62, 

0.79 and 0.59, respectively, suggested that the products were topologically constrained. All the SEC 

results for the synthesis of 23-28 are shown in Figure 4.4. The products were further characterised 

by 1H NMR as shown in Appendix C.  
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Figure 4.4: SEC of molecular weight distributions (MWDs) for the synthesis of (A) PSTY44-b-

PtBA44 23 by CuAAC of (a) PSTY44-≡, 4a, and (b) PtBA44-N3 , 3b; (c) PSTY44-b-PtBA44 23, crude, 

(d) PSTY44-b-PtBA44 prepped and (e) LND simulation of crude, (B) c-PSTY47-b-c-PtBA44, 24 by 

CuAAC of (a) c-PSTY47-≡, 11a and (b) c-PtBA44-N3, 10b; (c) c-PSTY47-b-c-PtBA44, 24, crude, (d) 

c-PSTY47-b-c-PtBA44, prep and (e) LND simulation of crude, (C) PSTY44-b-(PtBA44)2, 25 by 

CuAAC of (a) PSTY44-(≡)2, 5a and (b) PtBA44-N3, 3b; (c) PSTY44-b-(PtBA44)2, 25 crude, (d) 

PSTY44-b-(PtBA44)2, prep and (e) LND simulation of crude, (D) c-PSTY47-b-(c-PtBA44)2, 26 by 

CuAAC of (a) c-PSTY47-(≡)2, 12a and (b) c-PtBA44-N3, 10b; (c) c-PSTY47-b-(cPtBA44)2, 26 crude, 

(d) c-PSTY47-b-(PtBA44)2, prep and (e) LND simulation of crude.  (E) (PSTY44)2-b-PtBA44, 27 by 

CuAAC of (a) PSTY44-N3, 3a and (b) PtBA44-(≡)2, 5b; (c) (PSTY44)2-b-PtBA44, 27 crude, (d) 

(PSTY44)2-b-PtBA44, prep and (e) LND simulation of crude. (F) (c-PSTY47)2-b-c-PtBA44, 28 by 

CuAAC of (a) c-PSTY47-N3, 10a and (b) c-PtBA44-(≡)2, 12b; (c) (c-PSTY47)2-b-c-PtBA44, 28 crude, 

(d) (c-PSTY47)2-b-c-PtBA44, prep and (e) LND simulation of crude.   SEC analysis based on 

polystyrene calibration curve. Simulation was achieved by adding Mps of reactants (RI SEC) to fit 

with the crude products (RI SEC). 
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Deprotection of tertiary butyl acrylate (tBA) groups in the polymers (23-28) to acrylic acid (AA) 

using TFA gave amphiphillic architectures in which the chain length of the PSTY (n=44 for linear 

and n=47 for cyclic) and PAA (n=44 for both linear and cyclic) were nearly identical in all the 

equivalent architectures.   

Table 4.1. Click efficiency and molecular weight data for the synthesis of complex topologies (15-

28). 

Polymer 

 

Purity by LND (%) 

 

Coupling 

efficiency 

(%)a 

 

RI detection b Triple detection c 
Mn by 

NMR Δ HDVd 
Crude Prep Mn   Mp 

 PDI  Mn 
 Mp 

 PDI  

15  92.9 99.5 92.9 9710  9950  1.03  9820  10030  1.02  9890  0.99 
16  89.7  96.0  89.7 8400  8880  1.03  10180  10480  1.03  10290  0.85 
17  89.5  > 99.0  89.5 7630  7660  1.02  10230  10530  1.03  11000  0.73 
18  94.5  98.0  94.5 13170  13500  1.03  15110  15720  1.04  14560  0.86 
19  85.8  99.0  85.8 12410  12710  1.03  15550  16170  1.04  15380  0.79 
20  83.5  95.3  83.5 10750  11290  1.04  15580  16200  1.03  15890  0.70 
21  90.7  97.5  90.7 9910  10060  1.03  15800  16270  1.03  15930  0.62 
22  92.0  99.5  92.0 10490  10410  1.03  16100  16580  1.03  17020  0.63 
23  92.3  98.5  92.3 10630  10900  1.04  10450  10890  1.03  10600  1.00 
24  83.0  98.5  83.0 8790  8920  1.06  12050  12270  1.06  11950  0.73 
25  90.0  97.0  90.0 14730  15930  1.07  17510  19400  1.06  16540  0.82 
26  85.5  98.5  85.5 12210  12300  1.07  17070  19710  1.05  17830  0.62 
27  83.8  95.5  83.8 13460  14380  1.06  16530  18220  1.06  14970  0.79 
28  68.8  97.7  68.8 11120  11000  1.06  15900  18770  1.06  16700  0.59 

 

a
CuAAC coupling efficiency was determined by dividing the purity calculated by LND over the 

maximum theoretical purity expected from the stoichiometric ratios of the reactants. 
b
The data was 

acquired using SEC (RI detector) and is based on PSTY calibration curve. 
c
The data was acquired 

using Triple Detection SEC. dΔHDV was calculated by dividing Mp of RI with Mp of triple 

detection. 

Topology effect on glass transition temperature 

The homopolystyrene of different architectures were divided by two series based on molecular 

weight or no. of block. Series 1 polymers included architectures, 15-17, with di-blocks (MW~10K), 

and Series 2 polymers included architectures, 18-22, with tri-blocks (MW~15K) polymers. DSC 

thermograms of Series 1 polymer 15, 16 and 17 are shown in Figure C45 in Appendix C. An 

increase (11.0 °C) of Tg was observed from linear di-block, 15, to tadpole, 16, of the similar 

molecular weight (see Table 4.2). A simple linear polymer consists of two free chain-ends that play 
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a role on the free volume. Chain-ends require more free volume to move than the segment in its 

interior chain. When, thermal energy is applied, the chain ends rotate or translate more readily than 

the rest of the chain and the more chain-ends a sample has the greater the contribution to the free 

volume. Therefore, polymers having higher number of chain ends contribute greater degree of 

configurational freedom that resulted lowering the Tg of 15 than 16. However, the topology effect 

on Tg is more significant than molecular weight effect as it is observed that the cyclic 8a (MW~5.0 

K) shows higher Tg than both 15 and 16 (MW~10.0 K). An increasing trend of Tg vs no. of cyclic 

unit (or no. of chain-ends) in different topologies of polymer are shown in Figure 4.5. 

The DSC thermo-grams of 3 arms star 18, twin-tailed tadpole 19, twin-headed tadpole 20, tri-cyclic 

star with amine core, 21 and benzene core, 22 are shown in the Figure C46 in Appendix C. As can 

be seen in topologies 15-17, decreasing the number of chain end leads to the increase of glass 

transition temperature at same molecular weight. Cleavage (see Figure C51 in Appendix C) was 

observed for the amine core based 21 during the running of the DSC and did not show any specific 

glass transition. The reason can be attributed by the ester cleavage for the restricted segmental 

mobility in highly compact core. Therefore, we synthesised topology 22 using a benzene based tri-

alkyne core, and the topology showed a higher value of glass transition than the other topologies of 

similar molecular weight. Thus, the polymer having multiple cyclic units tethering in a single point 

restrict their mobility due to the compactness of polymer chains to the tethering point.  

 

Figure 4.5. The change of glass transition temperature with the increase of no of cyclic unit, Series 

1 polymers: 15, 16, 17 and series 2 polymers: 18, 19, 20 and 22).  
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A number of amphiphillic cyclic block copolymers and their linear counterparts were also 

investigated to study the effect of polymer topology of block copolymers on the glass transition 

temperature. Generally, most polymer blends, as well as their graft and block copolymer and 

interpenetrating polymer networks, phase-separate, in which each phase exhibits their own 

characteristic chain mobility.45 From the thermo-grams in Figure C48 in Appendix C, two clear and 

separated glass transitions were observed for both blocks in 23 and 24, which corresponded to the 

Tgs of the PSTY and PAA phases, respectively. The PSTY block in 23 shows a 10 °C higher Tg 

than 3a homopolystyrene, which suggested that the segmental mobility of the PSTY blocks was 

influenced by the increasing restrictions of the PAA blocks at the block changing point46 and the 

PAA block segment also shifted to a slight higher Tg presumably due to more effective hydrogen 

bonding when PAA blocks are phase separated by PS block.47 

Table 4.2. DSC results of linear, cyclic and their complex topologies and amphiphillic block and 

mikto-arm star copolymers. 

Polymer 
 

Polymer code 

 

Type of topology 

Glass transition temp. (°C) 

PSTY segment PAA segment 

3a  PSTY44-N3 
 Linear   85.4  --  

8a  c-PSTY47-OH  Mono-cyclic  99.8  --  
15  (PSTY44)2 

 Linear di-block  86.6  --  
16  c-PSTY47-b-PSTY44 

 Tadpole  97.6  --  
17   (c-PSTY47)2 Spiro di-cyclic  101.5  --  
18  (PSTY44)3  3-arms linear star  87.8  --  
19   c-PSTY47-b-(PSTY44)2 

 Twin-tailed tadpole  99.6  --  
20  (c-PSTY47)2-b-PSTY44 Twin-headed tadpole  102.2  --  
21  (c-PSTY47)3-A  Tri-cyclic star-A  --  --  
22  (c-PSTY47)3-B Tri-cyclic star-B 105.7 --  
2b  PAA44-N3 

 Linear  --  113.3  
8b  c-PAA44-OH  Mono-cyclic  -- 115.1  
23  PSTY44-b-PAA44 

 Linear di-block-AB  95.5  118.7  
24  c-PSTY47-b-c-PAA44 

 Cyclic di-block-AB  108.5  120.9  
25  PSTY44-b-(PAA44)2 Mikto-arm linear-AB2 

 93.8  126.5  
26 c-PSTY47-b-(c-PAA44)2 Mikto-arm cyclic-AB2 109.0  128.4  
27 (PSTY44)2-b-PAA44 Mikto-arm linear-A2B  96.5  118.9  
28 (c-PSTY47)2-b-c-PAA44 Mikto-arm cyclic-A2B  109.5  123.2  

 

The property enhancement of these block copolymers can also be explained in terms of domain 

concept illustrated schematically in Figure 4.6. The block with higher Tg tends to aggregates in 

domains that act as both cross-linking points and filler particles. These aggregated regions serve to 

anchor the lower Tg block and act as effective cross-linking points, thereby increasing Tg to the 
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second block. The Tg of polystyrene segments in cyclic block copolymer, 24 shows 13 °C higher 

than that of linear counterparts, 23. So the increase of Tg can be attributed to the topological 

constraints conferred by cyclic moieties anchoring to aggregated domains. 

 

Figure 4.6. Schematic representation of AB di-block copolymers, showing areas (the dotted circles) 

of aggregation of the higher Tg blocks (red), joined by the lower Tg block (black). 

 The block copolymer phase separation was further confirmed by the formation of self-assembled 

thin films by thermally annealed above 130 °C. The resulting nanophase-separated thin films were 

characterised by atomic force microscopy (AFM) in order to determine the effect of 

macromolecular architectures on the thin films. AFM height images of the linear 23 and cyclic 

analogue, 24 are shown in Figure 4.7. The cyclic block copolymer, 24 displays a considerable 

(~50%) decrease in domain spacing than linear analogue. Hawker and co-workers,48 have also 

demonstrated a decrease in domain spacing by ~30% for cyclic polystyrene-b-polyethylene oxide 

(c-(PSTY-b-PEO)) over the corresponding linear polymers (PSTY-b-PEO). Compared with their 

work, our result was consistent with the more compact structure (c-PSTY47-b-c-PAA44, 24) than the 

linear analogue (PSTY44-b-PAA44, 23) and additional constraints resulting from the folding of two 

opposite chain ends to a common junction point that forms spiro bi-cyclic type topology. 
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Figure 4.7. Atomic force microscopy height images for (a) PSTY44-b-PAA44, 23 and (b) c-PSTY47-

b-c-PAA44, 24. 

Compared to the Tg (Tg(PAA)=118.7 °C) of di-block (AB) 23, mikto-arm star (AB2) 25 shows higher 

Tg (Tg(PAA) =126.5 °C).  This result is contradictory to the free volume theory as the higher number 

of chain end possess more free volume which results low Tg value. The reason of higher Tg of PAA 

in 25 can be explained by the fact that the hydrogen bond between the two PAA chains of 25 help to 

squeeze them together that restrict the segmental mobility and may lead to higher glass transition 

temperature.49 Furthermore, a little change in Tg value of the topologies 23 and 27 was observed 

although the number of PS chains were higher in 27. In addition, PS segment in topology 26 and 28 

has pronounce effect on Tg compared with their linear analogues, but this effect is less in case of 

PAA segments. 

4.4 Conclusion 
In summary, we have demonstrated the synthesis of different homopolystyrene and amphiphillic 

architectures, including di-block and miktoarm star copolymer of both linear and cyclic 

counterparts by combining ATRP, SET-LRP and CuAAC coupling reactions. The products were 

then further purified using preperative SEC to remove any starting polymers and other polymeric 

species from side reactions. All the PtBA arms on the structures were deprotected to the hydrophilic 

PAA using TFA, producing amphiphillic macrocyclic structures. The effect of topology of homo 

and copolymers was investigated by measuring the glass transition temperature using DSC. The 

topology having higher no. of cyclic units (or lower no. of chain end), provides higher glass 

transition temperature, than the topology with the lower no. of cyclic units of same molecular 

weight. The tricyclic star homopolymer, thus having no chain end showed relatively higher Tg than 

the other topologies. Phase-separated block copolymers also showed the enhance glass transition 

(a) (b)
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temperature due the influence of segmental mobility of one block to another. Hydrogen bonding in 

PAA segments also play important role in the glass transition temperature.  
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Chapter 5 
Polymeric Knots on Glass Transition Temperature: A Model Study 

In this chapter, different topological conformations using polystyrene cyclic building blocks were 

constructed all with the same molecular weight. The cyclic building blocks were coupled together 

by combining ATRP and the high efficient CuAAC 'click' reaction. A series of topologies such as 

linear, monocyclic, spiro dicyclic, star tricyclic, spiro tricyclic, G1 pentacyclic, and a G1 tetracyclic 

were built from the multifunctional polymeric cyclic blocks (see Scheme 5.1). A modular approach 

was used for the synthesis of linear polymer precursors to make cyclic polymers with a different 

number of chemical functionalities. The configurations could represent the many types of knots 

found when preparing cyclic polymers via the ring closure method, and the change in the glass 

transition temperature (Tg) could provide some insight into the affect of chain restriction on chain 

dynamics. 

5.1 Introduction 
Among the various type of topologies, cyclic polymers have very different properties compared to 

their linear analogues due to the absence of chain end.1 Significant progress has now been achieved 

to produce a wide variety of single cyclic polymers based on the end-to-end coupling processes2-10 

as well as on an alternative ring-expansion polymerization.11-17 Tezuka et al.18-20 have pioneered the 

synthesis of multifunctional cyclic polymers, including spiro and bridged-type multicyclic polymer, 

and a variety of polymeric grafts and fused polymer topologies constructed through CuAAC 

addition in conjunction with electrostatic self-assembly and covalent fixation process.21-24 This 

work inspired us to build similar topologies to investigate the effect of predesigned knots on Tg. 

Knots and links play a prominent role in biological systems and polymer processing.25 Knotting is 

involved in chromosomes during cell replication.26 Knots are also observed in bacterial DNA27, or 

in the native states of proteins28. Long (or high molecular weight) polymer almost certainly form a 

wide range of knots that correlate to that found from theory.29  

In this work, a facile and efficient strategy was followed to produce a range of polymer 

architectures starting from a simple linear to dendrimer-like complex topologies in which each link 

corresponded to an irreversible knot. A facile modular approach in conjunction with post 

modification and effective CuAAC reaction was used for the synthesis of multi-hydroxy functional 

cyclic polymers in which the locations of hydroxyl groups were precisely designated. The 

subsequent functionalization of these hydroxyl groups allows the fabrication of new structures 

through topological and compositional control. Our strategy as shown in Scheme 5.1 allows the 
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fabrication of multi-functional cyclic polymers that upon post-modification are coupled with other 

cyclic polymers to produce the desired topologies. The molecular weight of all these polymers was 

kept essentially the same to avoid the contribution from the effect of molecular weight on any the 

glass transition temperature. All the topologies except linear polymer can be exemplified by knotted 

from monocyclic polymer. For example, formation of spiro di-cyclic via click between two 

functional cyclic is equivalent to a single knot in a monocyclic. In this chapter, we have investigated 

the effect of knot on the glass transition temperature and observed that placing knots in different 

locations within a cyclic polymer has a direct correlation with the glass transition temperature. 

Scheme 5.1. General Synthetic Strategy for the Construction of Spiro Tricyclic, G1 Star 

Tetracyclic, G1 Dendrimer Pentacyclic and G1 Star Heptacyclic Topologies. 

 
Conditions: (a) Azidation: NaN3 in DMF at 25 °C, (b) Cyclization: CuBr, PMDETA in toluene 

by feed at 25 °C, (c) Bromination: 2-BPB, TEA in THF; 0-25 °C, (d) Deprotection: TBAF in THF 

at 25 °C. (e) ‘Click’: CuBr, PMDETA in toluene at 25 °C. 
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5.1.1 Aim of the Chapter 

The aim of the work described in this chapter was to synthesise a range polymeric architectures 

having irreversible knots placed in different places of a cyclic polymer, and investigate their effect 

on the glass transition temperature. Spiro, di and tricyclic polymers, star tricyclic, G1 tetracyclic 

polymers and G1 dendrimeric architectures were successfully synthesised by combing ATRP and 

CuAAC reaction. 

5.2. Experimental 

5.2.1 Materials 

 The following chemicals were analytical grade and used as received unless otherwise stated: alumina, 

activated basic (Aldrich: Brockmann I, standard grade, ∼150 mesh, 58 Å), Dowex ion-exchange resin 

(sigma-aldrich, 50WX8-200), magnesium sulphate, anhydrous (MgSO4: Scharlau, extra pure) 

potassium carbonate (K2CO3: analaR, 99.9%), silica gel 60 (230-400 mesh ATM (SDS)), pyridine 

(99%, Univar reagent), 1,1,1-triisopropylsilyl chloride (TIPS-Cl: Aldrich, 99%), phosphorus 

tribromide (Aldrich, 99%), tetrabutylammonium fluoride (TBAF: Aldrich, 1.0 M in THF), 

ethylmagnesium bromide solution (Aldrich, 3.0 M in diethyl ether), triethylamine (TEA: Fluka, 98%), 

2-bromopropionyl bromide (BPB: Aldrich 98%), 2-bromoisobutyryl bromide (BIB: Aldrich, 98%), 

propargyl bromide solution (80% wt% in xylene, Aldrich), 1,1,1-(trihydroxymethyl) ethane 

(Aldrich,96%), sodium hydride (60% dispersion in mineral oil), sodium azide (NaN3: Aldrich, 99.5%), 

TLC plates (silica gel 60 F254), N,N,N´,N´´,N´´-pentamethyldiethylenetriamine (PMDETA: Aldrich, 

99%), copper (II) bromide (Cu(II)Br2: Aldrich, 99%). Copper(I)bromide and Cu(II)Br2/PMDETA 

complex were synthesised in our group. Styrene (STY: Aldrich, >99 %) was de-inhibited before use 

by passing through a basic alumina column. Methyl 3,5-bis (propargyloxyl) benzoate30 (12) and 1,3,5-

tris(prop-2-ynyloxy)benzene31 (13) linkers were prepared according to the literature procedure. All 

other chemicals used were of at least analytical grade and used as received. 

The following solvents were used as received: acetone (ChemSupply, AR), chloroform (CHCl3: 

Univar, AR grade), dichloromethane (DCM: Labscan, AR grade), diethyl ether (Univar, AR grade), 

dimethyl sulfoxide (DMSO: Labscan, AR grade), ethanol (EtOH: ChemSupply, AR), ethyl acetate 

(EtOAc: Univar, AR grade), hexane (Wacol, technical grade, distilled), hydrochloric acid (HCl, 

Univar, 32 %), anhydrous methanol (MeOH: Mallinckrodt, 99.9 %, HPLC grade), Milli-Q water 

(Biolab, 18.2 MΩ cm), N,N-dimethylformamide (DMF: Labscan, AR grade), tetrahydrofuran (THF: 

Labscan, HPLC grade), toluene (HPLC, LABSCAN, 99.8%). 
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5.2.2 Analytical Methods  
Size Exclusion Chromatography (SEC) 

All polymers were dried under vacuum for at least 24 hr before analysis. Water 2695 separations 

module, fitted with a Water 410 refractive index detector maintained at 35 °C, a Waters 996 

photodiode array detector, and two Ultrastyragel linear columns (7.8 x 300 mm) arranged in series 

were used to determine the molecular weight distribution. These columns were maintained at 40 oC for 

all analyses and are capable of separating polymers in the molecular weight range of 500 to 4 million 

g/mol with high resolution. All samples were eluted at a flow rate of 1.0 mL/min. Calibration was 

performed using narrow molecular weight PSTY standards (PDISEC ≤ 1.1) ranging from 500 to 2 

million g/mol. Data acquisition was performed using Empower software, and molecular weights were 

calculated relative to polystyrene standards. All SEC chromatograms were weight normalised and then 

replotted as w(M) versus Log (MW). 

 

Absolute Molecular Weight Determination by Triple Detection SEC 

Absolute molecular weights of polymers were determined using a Polymer Laboratories GPC50 Plus 

equipped with dual angle laser light scattering detector, viscometer, and differential refractive index 

detector. HPLC grade N,N-dimethylacetamide (DMAc, containing 0.03 wt % LiCl) was used as the 

eluent at a flow rate of 1.0 mL.min-1. Separations were achieved using two PLGel Mixed B (7.8 x 300 

mm) SEC columns connected in series and held at a constant temperature of 50 oC. The triple 

detection system was calibrated using a 2 mg.mL-1 PSTY standard (Polymer Laboratories: Mwt = 110 

K, dn/dc = 0.16 mL.g-1 and IV = 0.5809). Samples of known concentration were freshly prepared in 

DMAc + 0.03 wt % LiCl and passed through a 0.45 μm PTFE syringe filter prior to injection. The 

absolute molecular weights and dn/dc values were determined using Polymer Laboratories Multi 

Cirrus software based on the quantitative mass recovery technique. 

 

Preparative Size Exclusion Chromatography (Prep SEC).  

Crude polymers were purified using a Varian Pro-Star preparative SEC system equipped with a 

manual injector, differential refractive index detector, and single wave-length ultraviolet visible 

detector. The flow rate was maintained at 10 mL min-1 and HPLC grade tetrahydrofuran was used as 

the eluent. Separations were achieved using a PL Gel 10 μm 10 × 103 Å, 300 × 25 mm preparative 

SEC column at 25 °C. The dried crude polymer was dissolved in THF at 100 mg mL-1 and filtered 

through a 0.45 μm PTFE syringe filter prior to injection. Fractions were collected manually, and the 

composition of each was determined using the Polymer Laboratories GPC50 Plus equipped with triple 

detection as described above. 
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1H Nuclear Magnetic Resonance (NMR). 

 All NMR spectra were recorded on a Bruker DRX 500 MHz spectrometer using an external lock 

(CDCl3) and referenced to the residual non-deuterated solvent (CHCl3). A DOSY experiment was run 

to acquire spectra presented herein by increasing the pulse gradient from 2 to 85 % of the maximum 

gradient strength and increasing d (p30) from 1 ms to 2 ms, using 64-128 scans. 

 

Matrix-Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-ToF) Mass Spectrometry. 

MALDI-ToF MS spectra were obtained using a Bruker MALDI-ToF autoflex III smart beam equipped 

with a nitrogen laser (337 nm, 200 Hz maximum firing rate) with a mass range of 600-400 000 Da. 

Spectra were recorded in both reflectron mode (500-5000 Da) and linear mode (5000-20000 Da).  

Trans- 2-[3-(4-tert-butylphenyl)-2-methyl-propenylidene] malononitrile (DCTB; 20 mg/mL in THF) 

was used as the matrix and Ag-(CF3COO) (1 mg/mL in THF) as the cation source of all the 

polystyrene samples. 20 μL polymer solution (1 mg/mL in THF), 20 μL DCTB solutions and 2 μL Ag-

(CF3COO) solution were mixed in an ependorf tube, vortexed and centrifuged. 1 μL of solution was 

placed on the target plate spot, evaporated the solvent at ambient condition and run the measurement. 

5.2.3 Synthetic Procedures 

5.2.3.1 Synthesis of Alkyne (hydroxyl) Functional Initiator (1) 

The alkyne (hydroxyl) functional initiator 1 was synthesised according to the literature procedure 

previously reported by our group.32 

1

O O

OH

Br
O  

5.2.3.2 Synthesis of Protected Alkyne (hydroxyl) Functional Initiator (6) 

The detailed synthesis of protected alkyne (hydroxyl) functional initiator 6 was explained in the 

chapter 3. 
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Scheme 5.2. Synthetic scheme for protected alkyne (hydroxyl) functional initiator. 
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Reactants and conditions: (i) EtMgBr, THF, reflux at 76 °C, (ii) PBr3, pyridine, diethyl ether 0~ 25 

°C (iii) NaH/ THF, -78 °C - 25 °C (iv) DOWEX resin in MeOH at 40 °C (v) 2-bromoisobutyryl 

bromide, TEA in THF at 0 °C-25 °C for 24 h. 

 

5.2.3.3 Synthesis of ≡(HO)-PSTY25-Br 7a by ATRP 

Styrene (8.11g, 77.86×10-3 mol), PMDETA (0.17 mL, 8.1×10-4 mol), CuBr2/PMDETA (6.4×10-2 g,   

4.05×10-4 mol) and initiator (0.5 g, 1.6277×10-3 mol) were added to a 100 mL schlenk flask 

equipped with a magnetic stirrer and purged with argon for 40 min to remove oxygen. Cu(I)Br (0.12
 

g, 8.1×10-4 mol) was then carefully added to the solution under an argon blanket. The reaction 

mixture was further degassed for 5 min and then placed into a temperature controlled oil bath at 80 

°C. After 4 h an aliquot was taken to check the conversion. The reaction was quenched by cooling 

to 0 °C in ice bath, exposed to air, and diluted with THF (ca. 3 fold to the reaction mixture volume). 

The copper salts were removed by passage through an activated basic alumina column. The solution 

was concentrated by rotary evaporation and the polymer was recovered by precipitation into large 

volume of MeOH (20 fold excess to polymer solution) and vacuum filtration two times. The 

polymer was dried in high vacuo overnight at 25 °C, SEC (Mn = 2890, PDI = 1.11). Final 

conversion was calculated by gravimetry 53.3%.  The polymer was further characterised by 1H 

NMR and MALDI-ToF.  

 

 5.2.3.4 Synthesis of ≡(HO)-PSTY25-N3 8a by Azidation with NaN3 

Polymer 7a (2.9 g, 1.0×10-3 mol) was dissolved in 20 mL of DMF in a reaction vessel equipped 

with a magnetic stirrer. To this solution NaN3 (0.65 g, 10.0×10-3 mol) was added and the mixture 

stirred for 24 h at 25 oC. The polymer solution was directly precipitated into MeOH/H2O (95/5, v/v) 

(20 fold excess to polymer solution) from DMF, recovered by vacuum filtration and washed 

exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn = 2880, PDI 

= 1.11). The polymer was further characterised by 1H NMR and MALDI-ToF. 
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5.2.3.5 Synthesis of c-PSTY25-OH, 9a 

A solution of polymer 8a (2.0 g, 6.667×10-4 mol) in 80.0 ml of dry toluene and 6.97 mL of 

PMDETA (33.35×10-3 mol) in 80 mL of dry toluene in another flask were purged with argon for 45 

min to remove oxygen. 4.78 g of CuBr (33.35×10-3 mol) was taken in a 250 mL of dry schlenk flask 

and maintained argon flow in the flask at the same time. PMDETA solution was transferred to CuBr 

flask by applying argon pressure using a double tip needle to prepare CuBr/PMDETA complex. 

After complex formation, polymer solution was added via syringe pump using a syringe that is pre-

filled with argon. The feed rate of argon was set at 1.24 mL/min. After the addition of polymer 

solutions (65 min), the reaction mixture was further stirred for 3 h. At the end of this period (i.e., 

feed time plus an additional 3 h), toluene was evaporated by air-flow and the copper salts were 

removed by passage through activated basic alumina column by adding few drops of glacial acetic 

acid. The polymer was recovered by precipitation into MeOH (20 fold excess to polymer solution) 

and then by filtration. The polymer was dried in vacuo for 24 h at 25 °C. (Purity by SEC=88.9%). A 

small fraction of crude product was purified by preparative SEC for characterization. SEC 

(Mn=2140, PDI=1.04), Triple Detection SEC (Mn= 2780, PDI=1.02). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.6 Synthesis of c-PSTY25-Br 10a 

c-PSTY25-OH, 9a (1.6 g, 5.867×10-4 mol), TEA (1.63 mL, 11.73×10-3 mol) and 30.0 ml of dry THF 

were added under an argon blanket to a dry schlenk flask that has been flushed with argon. The 

reaction was then cooled on ice bath. To this stirred mixture, a solution of 2-bromopropionyl bromide 

(1.23 mL, 11.73×10-3 mol) in 10 mL of dry THF was added drop wise under argon via an air-tight 

syringe over 10 min. After stirring the reaction mixture for 48 h at room temperature, the crude 

polymer solution was added in 300 mL of acetone and filtered to remove salt precipitate. Solvent was 

removed by rotavap and precipitated into MeOH, filtered and washed three times with MeOH. A 

fraction of crude product was purified by preparative SEC for characterization. The polymer was dried 

for 24 h in high vacuum oven at 25 °C. SEC (Mn=2350, PDI=1.04). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.7 Synthesis of c-PSTY25-N3 11a 

 Polymer c-PSTY25-Br 10a (1.5 g, 0.5×10-3 mol) was dissolved in 10 mL of DMF in a reaction 

vessel equipped with magnetic stirrer. To this solution, NaN3 
(0.65 g, 1.0×10-3 mol) was added and 

the mixture stirred for 24 h at room temperature. The polymer solution was directly precipitated into 

MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered by vacuum 
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filtration and washed exhaustively with MeOH. A fraction of the polymer was purified by 

preparative SEC and precipitated and filtered. The polymer was dried in vacuo for 24 h at 25 °C, 

SEC (Mn = 2250, PDI = 1.04) and Triple Detection SEC (Mn= 2930, PDI=1.02). The polymer was 

further characterised by 1H NMR and MALDI-ToF.   

 

5.2.3.8 Synthesis of c-PSTY25-≡ 14a 

 Polymer c-PSTY25-N3 11a (0.4 g, 0.133×10-3 mol), PMDETA (27.87×10-3 mL, 0.133×10-3 mol) 

and methyl 3,5-bis (propargyloxyl) benzoate 12 (0.49
 
g, 1.99×10-3 mol) were dissolved in 3.0 mL 

toluene. CuBr (19.0×10-3 g, 1.33×10-4 mol) was added to a 10 mL schlenk flask equipped with 

magnetic stirrer and both of the reaction vessels were purged with argon for 20 min. The polymer 

solution was then transferred to CuBr flask by applying argon pressure using double tip needle. The 

reaction mixture was purged with argon for a further 2 min and the flask was placed in a 

temperature controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 

fold to the reaction mixture volume), and passed through activated basic alumina to remove the 

copper salts. The solution was concentrated by rotary evaporator and the polymer was recovered by 

precipitation into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The 

polymer was purified by preparative SEC to remove excess linker as well as high MW impurities. 

After precipitation and filtration, the polymer was dried in vacuo for 24 h at 25 °C. SEC (Mn=2440, 

PDI=1.04) and Triple Detection SEC (Mn=3170, PDI=1.02). The polymer was further characterised 

by 1H NMR and MALDI-ToF. 

 

5.2.3.9 Synthesis of ≡(HO)-PSTY58-Br 7b by ATRP 

Styrene (3.7 g, 35.53×10-3 mol), PMDETA (0.034 mL, 1.63×10-4 mol), CuBr2/PMDETA (1.3×10-2 

g,   0.32×10-4 mol) and initiator (0.1 g, 3.2×10-4 mol) were added to a 50 mL schlenk flask equipped 

with a magnetic stirrer and purged with argon for 40 min to remove oxygen. Cu(I)Br (0.023
 
g, 

1.63×10-4 mol) was then carefully added to the solution under an argon blanket. The reaction 

mixture was further degassed for 5 min and then placed into a temperature controlled oil bath at 80 

°C. After 4 h an aliquot was taken to check the conversion. The reaction was quenched by cooling 

to 0 °C in ice bath, exposed to air, and diluted with THF (ca. 3 fold to the reaction mixture volume). 

The copper salts were removed by passage through an activated basic alumina column. The solution 

was concentrated by rotary evaporation and the polymer was recovered by precipitation into large 

volume of MeOH (20 fold excess to polymer solution) and vacuum filtration two times. The 

polymer was dried in high vacuo overnight at 25 °C, SEC (Mn = 6470, PDI = 1.08). Final 
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conversion was calculated by gravimetry 53.1%.  The polymer was further characterised by 1H 

NMR and MALDI-ToF.  

  

5.2.3.10 Synthesis of ≡(HO)-PSTY58-N3 8b by Azidation with NaN3 

Polymer 7b (1.0 g, 1.6×10-4 mol) was dissolved in 10 mL of DMF in a reaction vessel equipped 

with a magnetic stirrer. To this solution NaN3 (0.16 g, 2.4×10-3 mol) was added and the mixture 

stirred for 24 h at 25 oC. The polymer solution was directly precipitated into MeOH/H2O (95/5, v/v) 

(20 fold excess to polymer solution) from DMF, recovered by vacuum filtration and washed 

exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn = 6390, PDI 

= 1.08). The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.11 Synthesis of c-PSTY58-OH, 9b 

A solution of polymer 8b (0.75 g, 1.19×10-4 mol) in 37.5 ml of dry toluene and 1.24 mL of 

PMDETA (5.95×10-3 mol) in 37.5 mL of dry toluene in another flask were purged with argon for 45 

min to remove oxygen. 0.854 g of CuBr (5.95×10-3 mol) was taken in a 100 mL of dry schlenk flask 

and maintained argon flow in the flask at the same time. PMDETA solution was transferred to CuBr 

flask by applying argon pressure using a double tip needle to prepare CuBr/PMDETA complex. 

After complex formation, polymer solution was added via syringe pump using a syringe that is pre-

filled with argon. The feed rate of argon was set at 0.5 mL/min. After the addition of polymer 

solutions (75 min), the reaction mixture was further stirred for 3 h. At the end of this period (i.e., 

feed time plus an additional 3 h), toluene was evaporated by air-flow and the copper salts were 

removed by passage through activated basic alumina column by adding few drops of glacial acetic 

acid. The polymer was recovered by precipitation into MeOH (20 fold excess to polymer solution) 

and then by filtration. The polymer was dried in vacuo for 24 h at 25 °C. (Purity by LND (based on 

number distribution) =80.0%). A small fraction of crude product was purified by preparative SEC 

for characterization. SEC (Mn=4690, PDI=1.04), Triple Detection SEC (Mn= 6220, PDI=1.005). 

The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.12 Synthesis of c-PSTY58-Br, 10b 

c-PSTY58-OH, 9b (0.15 g, 2.4×10-5 mol), TEA (0.066 mL, 4.8×10-4 mol) and 2.0 ml of dry THF were 

added under an argon blanket to a dry schlenk flask that has been flushed with argon. The reaction was 

then cooled on ice bath. To this stirred mixture, a solution of 2-bromopropionyl bromide (0.05 mL, 

4.8×10-4 mol) in 1 mL of dry THF was added drop wise under argon via an air-tight syringe over 2 

min. After stirring the reaction mixture for 48 h at room temperature, the crude polymer solution was 

precipitated into MeOH, filtered and washed three times with MeOH. The polymer was dried for 24 h 
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in high vacuum oven at 25 °C. SEC (Mn=4580, PDI=1.04). The polymer was further characterised by 
1H NMR and MALDI-ToF. 

 

5.2.3.13 Synthesis of c-PSTY58-N3 11b 

 Polymer c-PSTY58-Br 10b (0.134 g, 2.12×10-5 mol) was dissolved in 1.5 mL of DMF in a reaction 

vessel equipped with magnetic stirrer. To this solution, NaN3 
(0.028 g, 4.25×10-4 mol) was added 

and the mixture stirred for 24 h at room temperature. The polymer solution was directly precipitated 

into MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered by vacuum 

filtration and washed exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C, 

SEC (Mn = 4750, PDI = 1.04) and Triple Detection SEC (Mn= 6420, PDI=1.01). The polymer was 

further characterised by 1H NMR and MALDI-ToF.   

 

5.2.3.14 Synthesis of c-PSTY58-≡, 14b 

 Polymer c-PSTY58-N3 11b (0.1 g, 1.59×10-5 mol), PMDETA (3.32×10-3 mL, 1.59×10-5 mol) and 

methyl 3,5-bis (propargyloxyl) benzoate 12 (0.039
 

g, 1.59×10-4 mol) were dissolved in 

toluene/DMSO (0.75 mL/0.05 mL) mixed solvent. CuBr (2.28×10-3 g, 1.59×10-5 mol) was added to 

a 10 mL schlenk tube equipped with magnetic stirrer and both of the reaction vessels were purged 

with argon for 25 min. The polymer solution was then transferred to CuBr flask by applying argon 

pressure using double tip needle. The reaction mixture was purged with argon for a further 2 min 

and the flask was placed in a temperature controlled oil bath at 25 °C for 1.5 h. The reaction was 

then diluted with THF (ca. 3 fold to the reaction mixture volume), and passed through activated 

basic alumina to remove the copper salts. The solution was concentrated by rotary evaporator and 

the polymer was recovered by precipitation into a large amount of MeOH (20 fold excess to 

polymer solution) and filtration. The polymer was purified by preparative SEC to remove excess 

linker as well as high MW impurities. After precipitation and filtration, the polymer was dried in 

vacuo for 24 h at 25 °C. SEC (Mn=4930, PDI=1.04) and Triple Detection SEC (Mn=6520, 

PDI=1.004). The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.15 Synthesis of c-PSTY58-(≡)2, 15b 

Polymer c-PSTY58-N3, 11b (0.09 g, 1.42×10-5 mol), PMDETA (2.98×10-3 mL, 1.42×10-5 mol) and 

1,3,5-tris(prop-2-ynyloxy)benzene, 13 (0.034 g, 1.42×10-4 mol) were dissolved in 0.5 mL toluene. 

CuBr (2.0×10-3 g, 1.42×10-5 mol) was added to a 10 mL schlenk flask equipped with magnetic 

stirrer and both of the reaction vessels were purged with argon for 15 min. The polymer solution 

was then transferred to CuBr flask using double tipped needle by applying argon pressure. The 
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reaction mixture was purged with argon for a further 2 min and the flask was placed in a 

temperature controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 

fold to the reaction mixture volume), and passed through activated basic alumina to remove the 

copper salts. The solution was concentrated by rotary evaporator and the polymer was recovered by 

precipitation into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The 

polymer was further purified by preparative SEC to remove residual linker as well as high MW 

impurities. After precipitation and filtration, the polymer was dried in vacuo for 24 h at 25 °C, SEC 

(Mn=5020, PDI=1.03) and Triple Detection SEC (Mn=6500, PDI=1.004). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.16 Synthesis of ≡(HO)-PSTY84-Br 7c by ATRP 

Styrene (4.23 g, 40.7×10-3 mol), PMDETA (0.026 mL, 1.2×10-4 mol), CuBr2/PMDETA (9.68×10-3 

g,   2.4×10-5 mol) and initiator (0.075 g, 2.4×10-4 mol) were added to a 50 mL schlenk flask 

equipped with a magnetic stirrer and purged with argon for 40 min to remove oxygen. Cu(I)Br 

(0.018
 
g, 1.2×10-4 mol) was then carefully added to the solution under an argon blanket. The 

reaction mixture was further degassed for 5 min and then placed into a temperature controlled oil 

bath at 80 °C. After 4 h an aliquot was taken to check the conversion. The reaction was quenched 

by cooling to 0 °C in ice bath, exposed to air, and diluted with THF (ca. 3 fold to the reaction 

mixture volume). The copper salts were removed by passage through an activated basic alumina 

column. The solution was concentrated by rotary evaporation and the polymer was recovered by 

precipitation into large volume of MeOH (20 fold excess to polymer solution) and vacuum filtration 

two times. The polymer was dried in high vacuo overnight at 25 °C, SEC (Mn = 9130, PDI = 1.08). 

Final conversion was calculated by gravimetry 46.0%.  The polymer was further characterised by 
1H NMR and MALDI-ToF.  

  

5.2.3.17 Synthesis of ≡(HO)-PSTY84-N3 8c by Azidation with NaN3 

Polymer 7c (1.0 g, 1.1×10-4 mol) was dissolved in 10 mL of DMF in a reaction vessel equipped 

with a magnetic stirrer. To this solution NaN3 (0.14 g, 2.2×10-3 mol) was added and the mixture 

stirred for 24 h at 25 oC. The polymer solution was directly precipitated into MeOH/H2O (95/5, v/v) 

(20 fold excess to polymer solution) from DMF, recovered by vacuum filtration and washed 

exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn = 9020, PDI 

= 1.08). The polymer was further characterised by 1H NMR and MALDI-ToF. 
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5.2.3.18 Synthesis of c-PSTY84-OH, 9c 

A solution of polymer 8c (0.5 g, 5.5×10-5 mol) in 25 ml of dry toluene and 0.575 mL of PMDETA 

(2.75×10-3 mol) in 25 mL of dry toluene in another flask were purged with argon for 45 min to 

remove oxygen. 0.394 g of CuBr (2.75×10-3 mol) was taken in a 100 mL of dry schlenk flask and 

maintained argon flow in the flask at the same time. PMDETA solution was transferred to CuBr 

flask by applying argon pressure using a double tip needle to prepare CuBr/PMDETA complex. 

After complex formation, polymer solution was added via syringe pump using a syringe that is pre-

filled with argon. The feed rate of argon was set at 0.5 mL/min. After the addition of polymer 

solutions (50 min), the reaction mixture was further stirred for 3 h. At the end of this period (i.e., 

feed time plus an additional 3 h), toluene was evaporated by air-flow and the copper salts were 

removed by passage through activated basic alumina column by adding few drops of glacial acetic 

acid. The polymer was recovered by precipitation into MeOH (20 fold excess to polymer solution) 

and then by filtration. The polymer was dried in vacuo for 24 h at 25 °C. (Purity by LND (based on 

number distribution) =74.5%). A small fraction of crude product was purified by preparative SEC 

for characterization. SEC (Mn=6890, PDI=1.04), Triple Detection SEC (Mn= 9190, PDI=1.005). 

The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.19 Synthesis of c-PSTY84-Br, 10c 

c-PSTY84-OH, 9c (0.2 g, 2.2×10-5 mol), TEA (0.092 mL, 1.1×10-3 mol) and 3.0 ml of dry THF were 

added under an argon blanket to a dry schlenk flask that has been flushed with argon. The reaction was 

then cooled on ice bath. To this stirred mixture, a solution of 2-bromopropionyl bromide (0.069 mL, 

1.1×10-3 mol) in 1 mL of dry THF was added drop wise under argon via an air-tight syringe over 2 

min. After stirring the reaction mixture for 48 h at room temperature, the crude polymer solution was 

precipitated into MeOH, filtered and washed three times with MeOH. The polymer was dried for 24 h 

in high vacuum oven at 25 °C. SEC (Mn=6670, PDI=1.04). The polymer was further characterised by 
1H NMR and MALDI-ToF. 

 

5.2.3.20 Synthesis of c-PSTY84-N3 11c 

 Polymer c-PSTY84-Br 10c (0.195 g, 2.12×10-5 mol) was dissolved in 2.0 mL of DMF in a reaction 

vessel equipped with magnetic stirrer. To this solution, NaN3 
(0.041 g, 6.4×10-4 mol) was added and 

the mixture stirred for 24 h at room temperature. The polymer solution was directly precipitated into 

MeOH/H2O (95/5, v/v) (20 fold excess to polymer solution) from DMF, recovered by vacuum 

filtration and washed exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C, 
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SEC (Mn = 6880, PDI = 1.04) and Triple Detection SEC (Mn= 8900, PDI=1.006). The polymer was 

further characterised by 1H NMR and MALDI-ToF.   

 

5.2.3.21 Synthesis of c-PSTY84-≡, 14c 

 Polymer c-PSTY84-N3 11c (0.12 g, 1.3×10-5 mol), PMDETA (2.72×10-3 mL, 1.3×10-5 mol) and 

methyl 3,5-bis (propargyloxyl) benzoate 12 (0.031
 

g, 1.3×10-4 mol) were dissolved in 

toluene/DMSO (0.75 mL/0.05 mL) mixed solvent. CuBr (1.86×10-3 g, 1.3×10-5 mol) was added to a 

10 mL schlenk tube equipped with magnetic stirrer and both of the reaction vessels were purged 

with argon for 25 min. The polymer solution was then transferred to CuBr flask by applying argon 

pressure using double tip needle. The reaction mixture was purged with argon for a further 2 min 

and the flask was placed in a temperature controlled oil bath at 25 °C for 1.5 h. The reaction was 

then diluted with THF (ca. 3 fold to the reaction mixture volume), and passed through activated 

basic alumina to remove the copper salts. The solution was concentrated by rotary evaporator and 

the polymer was recovered by precipitation into a large amount of MeOH (20 fold excess to 

polymer solution) and filtration. The polymer was purified by preparative SEC to remove excess 

linker as well as high MW impurities. After precipitation and filtration, the polymer was dried in 

vacuo for 24 h at 25 °C. SEC (Mn=7050, PDI=1.04) and Triple Detection SEC (Mn=9040, 

PDI=1.007). The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.22 Synthesis of ≡(HO)-PSTY163-Br 7d by ATRP 

Styrene (5.76 g, 55.3×10-3 mol), PMDETA (0.018 mL, 8.5×10-5 mol), CuBr2/PMDETA (6.78×10-3 

g,   2.4×10-5 mol) and initiator (0.075 g, 2.4×10-4 mol) were added to a 50 mL schlenk flask 

equipped with a magnetic stirrer and purged with argon for 40 min to remove oxygen. Cu(I)Br 

(0.018
 
g, 1.7×10-5 mol) was then carefully added to the solution under an argon blanket. The 

reaction mixture was further degassed for 5 min and then placed into a temperature controlled oil 

bath at 80 °C. After 4 h an aliquot was taken to check the conversion. The reaction was quenched 

by cooling to 0 °C in ice bath, exposed to air, and diluted with THF (ca. 3 fold to the reaction 

mixture volume). The copper salts were removed by passage through an activated basic alumina 

column. The solution was concentrated by rotary evaporation and the polymer was recovered by 

precipitation into large volume of MeOH (20 fold excess to polymer solution) and vacuum filtration 

two times. The polymer was dried in high vacuo overnight at 25 °C, SEC (Mn = 17110, PDI = 1.09). 

Final conversion was calculated by gravimetry 33.3%.  The polymer was further characterised by 
1H NMR and MALDI-ToF.  
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 5.2.3.23 Synthesis of ≡(HO)-PSTY163-N3 8d by Azidation with NaN3 

Polymer 7d (1.0 g, 5.6×10-5 mol) was dissolved in 10 mL of DMF in a reaction vessel equipped 

with a magnetic stirrer. To this solution NaN3 (0.11 g, 16.8×10-4 mol) was added and the mixture 

stirred for 24 h at 25 oC. The polymer solution was directly precipitated into MeOH/H2O (95/5, v/v) 

(20 fold excess to polymer solution) from DMF, recovered by vacuum filtration and washed 

exhaustively with MeOH. The polymer was dried in vacuo for 24 h at 25 °C, SEC (Mn = 17300, 

PDI = 1.06). The polymer was further characterised by 1H NMR and MALDI-ToF. 

 

5.2.3.24 Synthesis of c-PSTY163-OH, 9d 

A solution of polymer 8d (0.1 g, 5.5×10-6 mol) in 10 ml of dry toluene and 0.116 mL of PMDETA 

(5.5×10-4 mol) in 25 mL of dry toluene in another flask were purged with argon for 45 min to 

remove oxygen. 0.08 g of CuBr (2.75×10-3 mol) was taken in a 50 mL of dry schlenk flask and 

maintained argon flow in the flask at the same time. PMDETA solution was transferred to CuBr 

flask by applying argon pressure using a double tip needle to prepare CuBr/PMDETA complex. 

After complex formation, polymer solution was added via syringe pump using a syringe that is pre-

filled with argon. The feed rate of argon was set at 0.2 mL/min. After the addition of polymer 

solutions (50 min), the reaction mixture was further stirred for 3 h. At the end of this period (i.e., 

feed time plus an additional 3 h), toluene was evaporated by air-flow and the copper salts were 

removed by passage through activated basic alumina column by adding few drops of glacial acetic 

acid. The polymer was recovered by precipitation into MeOH (20 fold excess to polymer solution) 

and then by filtration. The polymer was dried in vacuo for 24 h at 25 °C. (Purity by LND (based on 

number distribution) =73.4%). A small fraction of crude product was purified by preparative SEC 

for characterization. SEC (Mn=13430, PDI=1.04), Triple Detection SEC (Mn= 18330, PDI=1.003). 

The polymer was further characterised by 1H NMR and MALDI-ToF. 

The detail synthesis and characterization of multi-functional cyclic polymers such as c-PSTY-(N3)2, 

23, c-PSTY-(≡)4, 24 and c-PSTY-(N3)3, 30 were explained in chapter 3.  

 

5.2.3.25 Synthesis of Complex Topologies 

Synthesis of spiro dicyclic, (c-PSTY84)2 31  

Polymer c-PSTY84-N3 11c (2.97×10-2 g, 3.2×10-6 mol), polymer c-PSTY84-≡ 14c (3.0×10-2 g, 

3.2×10-6 mol) and PMDETA (6.7×10-4 mL, 3.2×10-6 mol) were dissolved in 0.5 mL of toluene. 

CuBr (4.6×10-4 g, 3.2×10-6 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer 

and both of the reaction vessels were purged with argon for 20 min. The polymer solution was then 

transferred to CuBr flask using double tip needle by applying argon pressure. The reaction mixture 
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was purged with argon for a further 2 min and the flask was placed in a temperature controlled oil 

bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was then purified 

by preparatory SEC to remove undesired high molecular weight polymers and residual reactant 

polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. SEC (Mn=13320, 

PDI=1.04), Triple Detection SEC (Mn=19140, PDI=1.003). The polymer was further characterised 

by 1H NMR and MALDI-ToF. 

 

Synthesis of star tricyclic, (c-PSTY58)3, 32  

Polymer c-PSTY58-N3 11b (4.9×10-2 g, 7.68×10-6 mol), polymer c-PSTY58-(≡)2, 15b (2.5×10-2 g, 

3.8×10-6 mol) and PMDETA (1.6×10-3 mL, 7.68×10-6 mol) were dissolved in 0.5 mL of toluene. 

CuBr (1.12×10-3 g, 7.68×10-6 mol) was added to a 10 mL schlenk flask equipped with magnetic 

stirrer and both of the reaction vessels were purged with argon for 20 min. The polymer solution 

was then transferred to CuBr flask using double tip needle by applying argon pressure. The reaction 

mixture was purged with argon for a further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the 

reaction mixture volume), and passed through activated basic alumina to remove the copper salts. 

The solution was concentrated by rotary evaporator and the polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was 

then purified by preparatory SEC to remove undesired high molecular weight polymers and residual 

reactant polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. SEC 

(Mn=12850, PDI=1.04), Triple Detection SEC (Mn=19700, PDI=1.017). The polymer was further 

characterised by 1H NMR and MALDI-ToF. 

 

Synthesis of spiro tricyclic, (c-PSTY)3 33  

Polymer c-PSTY50-(N3)2 23 (2.0×10-2 g, 3.2×10-6 mol), polymer c-PSTY58-≡ 14b (4.4×10-2 g, 

6.77×10-6 mol) and PMDETA (1.35×10-3 mL, 3.2×10-6 mol) were dissolved in 0.5 mL of toluene. 

CuBr (9.25×10-4 g, 3.2×10-6 mol) was added to a 10 mL schlenk flask equipped with magnetic 

stirrer and both of the reaction vessels were purged with argon for 25 min. The polymer solution 

was then transferred to CuBr flask using double tip needle by applying argon pressure. The reaction 

mixture was purged with argon for a further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the 

reaction mixture volume), and passed through activated basic alumina to remove the copper salts. 
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The solution was concentrated by rotary evaporator and the polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was 

then purified by preparatory SEC to remove undesired high molecular weight polymers and residual 

reactant polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. SEC 

(Mn=14050, PDI=1.06), Triple Detection SEC (Mn=19080, PDI=1.001). The polymer was further 

characterised by 1H NMR and MALDI-ToF.   

 

Synthesis of G1 Dendrimer Pentacyclic (c-PSTY)5, 34  

Polymer c-PSTY50-(≡)4 24 (2.5×10-2 g, 3.8×10-6  mol), polymer c-PSTY25-N3, 11a (4.8×10-2   mg, 

1.6×10-5  mol) and PMDETA (3.16×10-3 mL, 1.5×10-5 mol) were dissolved in 0.5 mL of toluene. 

CuBr (2.2 mg, 0.015 mmol) was added to a 10 mL schlenk flask equipped with magnetic stirrer and 

both of the reaction vessels were purged with argon for 15 min. The polymer solution was then 

transferred to CuBr flask using double tip needle by applying argon pressure. The reaction mixture 

was purged with argon for a further 2 min and the flask was placed in a temperature controlled oil 

bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the reaction mixture 

volume), and passed through activated basic alumina to remove the copper salts. The solution was 

concentrated by rotary evaporator and the polymer was recovered by precipitation into a large 

amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was then further 

purified by preparatory SEC to remove undesired high molecular weight polymers and residual 

reactant polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. SEC 

(Mn=12890, PDI=1.04), Triple Detection SEC (Mn=18900, PDI=1.005). The polymer was further 

characterised by 1H NMR and MALDI-ToF.  

 

Synthesis of G1 Star Tetracyclic (c-PSTY)4, 35 

Polymer c-PSTY75-(N3)3 30 (3.0 ×10-2 g, 3.2×10-6 mol), polymer c-PSTY25-≡ 14a (3.2×10-2 g, 

1.0×10-5 mol) and PMDETA (2.0×10-3 mL, 9.5×10-6 mol) were dissolved in 0.6 mL of toluene. 

CuBr (1.4×10-3 g, 9.5×10-6 mol) was added to a 10 mL schlenk flask equipped with magnetic stirrer 

and both of the reaction vessels were purged with argon for 15 min. The polymer solution was then 

transferred to CuBr flask using double tipped needle by applying argon pressure. The reaction 

mixture was purged with argon for a further 2 min and the flask was placed in a temperature 

controlled oil bath at 25 °C for 1.5 h. The reaction was then diluted with THF (ca. 3 fold to the 

reaction mixture volume), and passed through activated basic alumina to remove the copper salts. 

The solution was concentrated by rotary evaporator and the polymer was recovered by precipitation 

into a large amount of MeOH (20 fold excess to polymer solution) and filtration. The polymer was 
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then further purified by preparatory SEC to remove undesired high molecular weight polymers and 

residual reactant polymers. The polymer was dried in vacuo for 24 h at 25 °C and characterised. 

SEC (Mn=13920, PDI=1.05), Triple Detection SEC (Mn=19680, PDI=1.002). The polymer was 

further characterised by 1H NMR and MALDI-ToF. 

5.3 Results and Discussion 

Synthesis of c-PSTYn-OH by CuAAC 

c-PSTYn-OH, 9a-d, were synthesised according to our previously described literature procedure.32 

Highly functional linear polymer precursors ≡(OH)-PSTYn-Br were synthesised by ATRP using 

alkyne-functional initiator, 1, with number-average molecular weights (Mn) of 2890 (7a), 6470 

(7b), 9130 (7c) and 17300 (7d), and PDI values 1.11, 1.08, 1.08 and 1.06, respectively (see Table 

D1, Appendix D). The Br chain-end functionality of 7a-d were determined, by using the 1H NMR 

integration, to be 97, 95, 96 and 95%, respectively. The LND simulation33 based on weight 

distribution (w(M)) gave ~12 % of double molecular weight products. The formation of double 

molecular weight products can occur by radical termination or alkyne-alkyne coupling reaction 

during or after polymerization. The Br chain-ends of polymers 7a-d were converted to azide groups 

quantitatively, and the linear polymers then cyclised using CuAAC34 reaction. The general synthetic 

route to produce different functional linear and cyclic polymers and their complex architectures is 

shown in scheme 5.1. 

An effective and rapid cyclization procedure was followed to prepare monocyclic polymer with 

high yield and purity. The linear polymer solution in toluene, was fed into a toluene solution of an 

excess (50 equiv. to polymer conc.) of Cu(I)Br and PMDETA at a feed rate of 1.24 mL min−1 for 7a 

0.5 mL min−1 for 7b-c and 0.2 mL min−1 for 7d at 25 °C respectively and then stirred for further 3 h, 

following a procedure shown to be highly effective in producing monocyclic polymer. The reason 

for using the [Cu(PMDETA)Br] complex to activate the CuAAC reaction in toluene is that the 

complex forms a neutral, distorted square planar structure and is more soluble and thus more 

reactive in toluene than other ionised and partially soluble copper complexes.35 The monocyclic 

polymers 8a-d under these feed conditions gave conversions of 84.0, 84.8, 81.1 and 79.8% 

respectively, as determined from SEC distributions. SEC traces for cyclization of 8a-d to produce 

9a-d are shown in Figure 5.1. 
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Figure 5.1. SEC chromatograms for cyclization of (A) (a) ≡(OH)-PSTY25-N3 8a (b) c-PSTY25-OH 

crude, 9a (c) c-PSTY25-OH purified by prep and (d) LND simulation of 9a crude with 

hydrodynamic volume change of 0.75; (B) (a) ≡(OH)-PSTY58-N3 8b (b) c-PSTY58-OH crude, 9b 

(c) c-PSTY58-OH purified by prep and (d) LND simulation of 9b crude with hydrodynamic volume 

change of 0.75; (C) (a) ≡(OH)-PSTY84-N3 8c (b) c-PSTY84-OH crude, 9c (c) c-PSTY84-OH purified 

by prep and (d) LND simulation of 9c crude with hydrodynamic volume change of 0.76; (D) (a) 

≡(OH)-PSTY163-N3 8d (b) c-PSTY163-OH crude, 9d (c) c-PSTY163-OH purified by prep and (d) 

LND simulation of 9d crude with hydrodynamic volume change of 0.765; SEC analysis based on 

polystyrene calibration curve. 

The resultant crude cyclic polymers were purified by prep SEC to remove any unreacted starting 

polymers and high-molecular-weight by-products formed through either alkyne-alkyne coupling or 

multi-block formation from CuAAC reactions. The Mns of 9a-d after prep were 2140 (PDI = 1.04), 

4690 (PDI=1.04), 6890 (PDI=1.04) and 13430 (PDI=1.04) as determined by RI detection alone and 

was in accord with a reduced hydrodynamic volume of more compact cyclic topology 0.75, 0.75, 

0.76 and 0.765 respectively. Analysis of the purified cyclic polymers by triple-detection SEC (to 

obtain an absolute MWD independent of topology) gave Mn = 2780 (PDI = 1.016) for 9a, Mn= 6220 

(PDI=1.005) for 9b, Mn= 9190 (PDI=1.005) for 9c and Mn= 18330 (PDI=1.004) for 9d were almost 

identical to the starting linear polymers. For detailed characterization of 9a-d using 1H NMR and 

MALDI-ToF, see appendix D.  
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Functionalization of 9a-d 

 The free OH group on the cyclic polymers, were then further functionalised using  2-

bromopropionyl bromide to obtain c-PSTY-Br, 10a-c and subsequent azidation using NaN3 gave c-

PSTY-N3 11a-c in near quantitative yields, as confirmed by 1H NMR and MALDI analysis shown 

in appendix D. These polymers were further functionalised to mono-alkyne moieties (14a-c) using 

excess methyl 3,5-bis (propargyloxyl) benzoate, 12 and di-alkyne moieties (15b) using excess 1, 3, 

5-tris(prop-2-ynyloxy)benzene, 13 as small linkers. The mono and di-alkyne functionalised 

polymers were characterised by SEC, NMR and MALDI, see appendix D. The detailed synthesis 

and characterization of multi-functional cyclic polymers 23, 24 and 30 were explained in the 

chapter 2.  

 

Coupling reaction for complex topologies 

The alkyne and azide functional polymers were utilised to form a variety of complex architectures 

using CuAAC click coupling reaction (see Scheme 5.1). c-PSTY84-≡, 14c was coupled with 1.0 

equivalent of c-PSTY84-N3, 11c and c-PSTY58-(≡)2, 15b was coupled with  2.0 equivalents of c-

PSTY58-N3, 11b to produce spiro di-cyclic, 31 and star tricyclic, 32 by CuAAC reaction in 1.5 h at 

25 °C gave 92.2% and 91.4 % product purity respectively as determined from the LND simulation 

based on weight distribution (Figure 5.2 (A)). The click efficiency of formation the coupled 

products were also calculated as 92.2 and 91.4% from the ratio of purity determined by LND to that 

of the maximum theoretical purity expected from the stoichiometric ratios of the reactants. The MW 

data and click efficiency are summarised in the Table D1 in appendix D.  Preparative SEC gave 

essentially pure 31 and 32 in which most of the higher molecular weight polymers were removed. 

When the purified polymers were subsequently injected through the triple detection SEC (to obtain 

an absolute MWD independent of topology), it gave an essentially identical MWD to that of the 

sum of Mp of starting reactants and with narrow polydispersity index. These results demonstrate the 

isolation of a well-defined and essentially pure structure. The 1H NMR of purified 31 and 32 

(Figure D37 and D38 in appendix D) showed a nearly quantitative loss of CH2 protons adjacent to 

alkyne moiety (denoted as k, δ=4.6-4.7 ppm) from 14c and 15b and appearance of CH proton near 

triazole moieties (denoted as i, δ=5.0-5.2 ppm) as determined by integration suggested quantitative 

click reaction without any unreacted reactants left. The purified product was further characterised 

by MALDI ToF mass spectroscopy gave MWD that could only result from the coupling of their 

starting polymers together (see Figure D42 and D43 in appendix D). The calculated [M+Ag+] 

values (18061.16 for 31 and 18215.25 for 32) in expanded spectra were nearly identical with the 

experimental values (18061.86 for 31 and 18217.79 for 32), suggesting that after purification there 

was little or no reactants species left.  
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Similarly, the CuAAC of 3a with 4a produced 15 with 92.9 % of product purity and coupling 

efficiency and coupling of 11a with 10a produced 17 with 89.5 % of product purity and coupling 

efficiency. 15 and 17 were also further characterised by NMR and MALDI as shown in appendix D.  

 
Figure 5.2: SEC of molecular weight distributions (MWDs) for the synthesis of (A) (c-PSTY)2 31 

by CuAAC of (a) c-PSTY84-≡, 14c, and (b) c-PSTY84-N3 , 11c; (c) (c-PSTY)2 31, crude, (d) (c-

PSTY)2 prepped and (e) LND simulation of crude, (B) (c-PSTY)3, 32 by CuAAC of (a) c-PSTY58-

(≡)2, 15b and (b) c-PSTY58-N3, 11b; (c) star (c-PSTY)3, 32, crude, (d) (c-PSTY)3, prep and (e) LND 

simulation of crude, (C) spiro (c-PSTY)3, 33 by CuAAC of (a) c-PSTY58-≡, 14b and (b) c-PSTY50-

(N3)2, 23; (c) spiro (c-PSTY)3, 33 crude, (d) spiro (c-PSTY)3, prep and (e) LND simulation of 

crude, (D) den (c-PSTY)5, 34 by CuAAC of (a) c-PSTY50-(≡)4, 24 and (b) c-PSTY25-N3, 11a; (c) 

den (c-PSTY)5, 34 crude, (d) den (c-PSTY)5, prep and (e) LND simulation of crude and (D) G1 star 

(c-PSTY)4, 35 by CuAAC of (a) c-PSTY75-(N3)3, 30 and (b) c-PSTY25-≡, 14a; (c) G1 star (c-

PSTY)4, 35 crude, (d) G1-star (c-PSTY)4, prep and (e) LND simulation of crude.  SEC analysis 

based on polystyrene calibration curve. Simulation was achieved by adding Mps of reactants (RI 

SEC) to fit with the crude products (RI SEC). 
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The topologies 33 and 35 were produced by coupling of c-PSTY50-(N3)2, 23 and c-PSTY75-(N3)3, 

30 with 2.1 equivalents of c-PSTY58-≡, 14b and 3.15 equivalents of c-PSTY25-≡, 14a respectively. 

Two and three cyclic polymers attached in two and three distinct positions of same cyclic formed 

spiro tricyclic, 33 and G1-star like tetracyclic, 35 topologies. The product purity of 33 and 35 were 

calculated by LND as 83.8 and 70.5 % for crude and 91.2 and 84.1% after prep purification 

respectively. The changes in hydrodynamic volume by RI to triple detection SEC were observed as 

0.74 and 0.71 for 33 and 35 respectively. The purified polymers were further characterised by 1H 

NMR and MALDI as shown in appendix D.  

G1 dendrimer pentacyclic topologies 34 was synthesised by coupling of c-PSTY50-(≡)4, 24 with  4.2 

equivalents of c-PSTY25-N3, 11a by CuAAC in 1.5 h gave 77.8% product purity. Preparative SEC 

allowed isolation of remarkably high purity (97%) product. The change in hydrodynamic volume by 

RI to triple detection SEC was 0.677. The peak MW (Mp) value of 34 from triple detection SEC 

was nearly identical (19400) to the sum of the Mps (18860) of starting reactants 11a and 24. The 

purified 32 also showed low PDI values in both RI (1.04) and triple detection (1.005), strongly 

suggested the formation of the desired structure with high purity. The NMR analysis showed a 

quantitative loss of alkyne proton (denoted as l, δ=2.47 ppm), methylene protons (denoted as k, 

δ=4.6 ppm) near alkyne of 24 and methene proton (denoted as i, δ=3.9 ppm) near azides of 11a (see 

appendix D). The methylene proton (denoted as j, δ=5.1 ppm) were suppressed for sterric 

compactness of three triazole rings around a benzene ring. The product was further characterised by 

MALDI-ToF as shown in appendix D. 

 

Effect of knots on glass transition temperature 

The differential scanning colorimetry (DSC) was used to investigate the effect of knots on the glass 

transition temperature for polymers 8d, 9d and 31-35 as shown in Table 5.1. The MWs for all the 

topologies were close to 18 K to avoid any effects of molecular weight on Tg. It was previously 

shown that above a certain MW the Tg plateaus and becomes independent of the molecular 

weight.36 In our system, we use covalent linkages to form a knot, making such knots into an 

irreversible. Therefore, it may be expected that the Tg for this series of polymers was not only 

affected by the number of knots but also the type and location of the knots.  

Compared to the linear PSTY, 8d, the cyclic PSTY, 9d, has a higher Tg of 3.4 °C due to the absence 

of chain-ends. The introduction of one knot (i.e. structure 31 with two sub-cyclics) produced only a 

slight increase in Tg from 103.2 to 103.4 oC. One knot with three sub-cyclics (structure 32) led to an 

increase in the Tg to 106.0 oC. Structure 32 has the most compact structure (i.e. ∆HDV = 0.65) in 

dilute solute for all the topologies made, suggesting that the higher Tg is a function of the decrease 

in free volume. The inclusion of two knots equally spaced and with three sub-cyclics (structure 33) 
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gave a Tg of 104.4 oC, which was slightly greater than the Tg of 31 but lower than that for 32. 

Increasing the number of sub-cyclics to five with just two knots (structure 34) gave the highest Tg 

of 108.2 oC with a moderate decrease in ∆HDV of 0.71 compared to all other compounds. Structure 

35, with three knots and four sub-cyclics had a Tg of 104.5 oC, which was lower than 34 and similar 

to 33. In addition, there seems to be no correlation between the values of Tg and the change in 

hydrodynamic volume.  

Taken together, the data suggests that configurationally entropy instead of free volume effects play 

the dominant role in influencing the Tg. The core (or middle sub-cyclic) in dendrimer 34 has quite a 

restricted mobility, this together with the steric restriction of the outer sub-cyclics results in a lower 

entropy and thus higher Tg. In the case of 35, the steric restriction is removed for the outer sub-

cyclics even though the central sub-cyclic is considerably restricted.  

 

Table 5.1: Molecular weight data and Tg results for the products (8d, 9d and 31-35).  

No Polymer code Graphical 

Structures 

RI detection Triple detection ΔHDVa  Tg (°C) 

Mn  Mp PDI Mn Mp PDI 
8d  ≡(OH)-PSTY-N3  17300  17970  1.06  18300  18660  1.004  1 99.8 
9d  c-PSTY-OH  13430  13760  1.04  18330  18580  1.003  0.78 103.2 
31  (c-PSTY)2  13320  13590  1.04  19140  19440  1.003  0.72 103.4 
32  st-(c-PSTY)3  12850  12940  1.04  19700  20400  1.017  0.65 106.0 
33  sp-(cPSTY)3  14050  14280  1.06  19080  19330  1.001  0.74 104.4 
34  G1-den-(c-PSTY)5  12890  13130  1.04  18900  18400  1.005  0.71 108.2 
35  G1-st-(c-PSTY)4  13920  13980  1.05  19680  19800  1.002  0.74 104.5 

 

aThe change in hydrodynamic volume ∆HDV was calculated from Mn,RI/Mn,Theory. 

5.4 Conclusion 

A range of cyclic knot topologies with precisely controlled linkage among cyclic units were 

synthesised by combining 'living' radical polymerization and the highly efficient CuAAC 'click' 

reaction. The topologies that were synthesised included spiro-type di and tri-cyclic, star tricyclic, 

G1 dendrimer pentacyclic and star tetracyclic. Preparative SEC was used to purify the final 

products from unreacted reactants and high molecular weight impurities. The DSC was used to 

measure the glass transition temperatures to investigate the effect of linkage, i.e knots on their glass 

transition. Generally, we found that the more subcycles on one knot, the higher Tg of the structures. 

In this library of polymer knots, the knots number (i.e. 1, 2 and 3 in these cases) did not affect the 
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Tg dramatically if there were only two subcycles tethered on one knot (i.e. structure 31, 33 and 35). 

As such, structure 32 gave Tg as 106.0 oC and 35 as 108.2 oC which is a remarkable change (i.e. ~6-

9 oC increase) comparing to their linear precursor 8d or even monocyclic 9d. These results 

suggested that with the same chemical composition and molecular weight, the Tg of the polymers is 

significantly affected by their topologies. 
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Chapter 6 
 

Summary 
The objective of this thesis was to synthesise complex polymer topologies by combining LRP and 

the CuAAC reaction. Although monocyclic polymer was efficiently synthesised by RAFT and 

CuAAC, an unforseen degradation profile was observed. To overcome the unexpected degradation, 

we combined ATRP and CuAAC cyclization to synthesise a range of different architectures of 

cyclic polymers. Furthermore, a new methodology was developed to synthesise multifunctional 

cyclic polymers by combining ATRP and modular 'click' approach followed by CuAAC cyclization 

reaction. Linear polymer precursors were synthesised by the CuAAC coupling of azide from one 

polymer and alkyne from another. The reaction occurred in the presence of a bromine end-group, 

which was not affected by the Cu(I) catalyst due to the modulation of Cu(I) activity primarily 

towards the 'click' reaction over radical formation. Mono, di and tri-functional cyclic polymers were 

successfully synthesised, which upon post modification gave different and equally spaced 

functionalities in the precise location. These functional polymers allowed the synthesis of a variety 

of highly complex polymer topologies.  

6.1 Cyclic polystyrene topologies via RAFT and CuAAC 
The initial thesis aim was to develop a novel method to synthesise complex polymer topologies 

from cyclic made by combining RAFT and CuAAC reaction. The linear precursor to the cyclic was 

prepared using a functional RAFT agent, in which the R-group on the RAFT consisted of an alkyne 

moiety. This produced a telechelic polymer with an alkyne group on one end and a RAFT group on 

the other. The RAFT group was converted, via a two-step reaction, to an azide and OH group. High 

yielding OH-functional cyclics were prepared by coupling the azide and alkyne groups using the 

CuAAC coupling reaction. This method for forming a monocyclic was successful, and has the 

potential to be used for a wide range of polymer (which can be made by RAFT). However, the ester 

linkages were susceptible to cleavage by PMDETA (the ligand for Cu(I)) when attempting to use 

the OH-group as a handle to produce more complex structures. Changing the ligand to a triazole, 

degradation was not observed. In the next chapter we changed from the RAFT/CuAAC to the atom 

transfer radical polymerization (ATRP)/CuAAC to make complex topologies that were stable in a 

wide range of environments, thus allowing us to study the effect of topology on the glass transition 

temperature. 
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6.2 Multifunctional Cyclic Polymers and Their Complex Topologies 

Atom transfer radical polymerization (ATRP) was used for the synthesis of linear precursors 

polymers with near uniform chain length (i.e, low polydispersity index values) and high chain-end 

functionality with bromine groups. We then used a modular synthetic strategy to fabricate 

multifunctional linear polymer precursors by modulating copper (Cu(I)) activity to favour the 

CuAAC 'click' reaction over bromine abstraction. In addition to this new synthetic procedure, we 

modified the feed process to produce cyclic polymer on a large scale, and further carry out the 

reaction under an inert atmosphere to avoid oxidation of the Cu(I) catalyst. This method provided a 

high percent of cyclic polymer with high efficiency in the synthesis of mono, di and trihydroxy 

functional cyclics. Bromination of the OH-groups and then azidation generated cyclic azides and 

alkyne building blocks. These building blocks could be coupled in desired ways to produce a range 

of different architectures, including spiro type tricyclic, G1 dendrimeic pentacyclic, G1 star tetra 

and hepta-cyclic. The purity of the products were determined by fitting the experimental SEC traces 

with log-normal distribution (LND) model based on fitting multiple Gaussian functions for each 

polymer species. The structures were produced in high yields with good click efficiency, and  

further purified by preparatory SEC to remove any unreacted building blocks or by-products formed 

during ‘click’ reaction. The purified products were further characterised by 1H NMR and MALDI 

ToF.   

 

6.3 Complex Polymer Topologies and Their Glass Transition Studies 

In the next step, a range of different topologies of cyclic homopolystyrene, polystyrene 

(PSTY)/polyacrylic acid (PAA) copolymers and their linear counterparts were successfully 

synthesised by combining ATRP, SET-LRP and CuAAC coupling reaction. The architectures of 

different topologies included cyclic, linear di-block, tadpole, spiro di-cyclic, linear tri-block star, 

twin-tailed tadpole, twin-headed tadpole and cyclic tri-block star homopolymers and amphiphillic 

linear di-block, spiro di-block, mikto-arm star copolymers (AB2/A2B) of both linear and cyclic 

analogues. All the topologies were synthesised in high yields and were purified by preparatory SEC. 

The homopolystyrene topologies were characterised by 1H NMR, SEC and MALDI ToF mass 

spectroscopy. We investigated the topology effect of all the complex polymers on the glass 

transition temperature determined by differential scanning calorimetry (DSC). The DSC results 

revealed that the topologies which possessed higher number of cyclic units (i.e., lower number of 

chain ends) showed higher Tg values. The chain ends play a significant role to increase the free 



Summary 
 

 

141 

volume and lower the Tg. The self-assembled thin films of both linear and cyclic block copolymers 

were also characterised by AFM to investigate their morphology. The thin film of cyclic block 

copolymer was observed a dramatic decreased (~50%) in domain spacing compared with linear 

analogue due to the structural compactness arise by cyclic polymers. 

In the final step of the thesis, we used different architectures of homopolystyrene - linear, cyclic, 

spiro di and tricyclic, star tricyclic, G1 star tetracyclic and dendrimer pentacyclic - to investigate the 

knot effect on glass transition temperature. Through our novel synthetic methods, we could place 

the knot and the number of knots within a cyclic structure. The knots through this process are 

considered irreversible.  The experimental data revealed that the Tg depends not only the number of 

knots but also the types and location of the knots. Furthermore, the configurational entropy plays a 

dominant role in controlling the thermal response of the polymer instead of free volume. 

 

6.4 Future Perspective of the Thesis 
The synthetic approach outlined in the thesis will allow in building well-defined polymeric 

architectures with varying functionality and copolymer compositions. The future perspective of the 

thesis is to demonstrate the synthesis of well-defined functional complex topologies having cyclic 

polymer as building block that will help in the fabrication of slippery surface and polymeric 

nanostructures with tailored size, shape, conformation, and functionality. 
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Appendix A 

Table A1: Summary of kinetic analysis data for the synthesis of 2-arm c-PSTY under three 

different conditions at 25 °C. Reactants; c-PSTY-N3 (7) + propagyl ether. 

 

Table A2: Summary of kinetic analysis data for the synthesis of 3-arm c-PSTY under three 

different conditions at 25 °C. Reactants; c-PSTY-N3 (7) + tripropagylamine. 

 

 

Figure A1. Prop-2-ynyl-2-(butylthiocarbonothioylthio)-2-methylpropanoate alkyne RAFT, 

chain transfer agent 1 in CDCl3 (* H2O).  
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Figure A2: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to RAFT-

PSTY-≡ 2 ; calculated [M+Ag+] = 3981.4 for the fragmentation of RAFT polymer , DPn = 

36. 

 
Figure A3: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to Epo-PSTY-

≡ 3; calculated [M+Ag+] = 4157.63, DPn = 36. The another fragmentation peak was 

unknown. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2
5x10

In
te

ns
. [

a.
u.

]

2000 2500 3000 3500 4000 4500 5000 5500
m/z

 

3982.12 4086.23

Calculated [M1+Ag+ ]: 3981.4

3996.49

Calculated [M2+Ag+ ]: 3995.42

[M2+Ag+]

[M1+Ag+]

MALDI
O

O

35
O

O

3535S S

S

O

O

0.0

0.2

0.4

0.6

0.8

1.0
5x10

In
te

ns
. [

a.
u.

]

2500 3000 3500 4000 4500 5000 5500 6000
m/z

Calculated: 4157.63

S
O

O

O

O

O
35

 

[M+Ag+]
4158.54 4263.17



144 
 

 
Figure A4: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY-

OH 5; calculated [M+Ag+] = 4200.66, DPn = 36. 

 
Figure A5. ATR-FTIR analysis of (A) RAFT-PSTY-≡ 2 (B) Epo-PSTY-≡ 3 (C) N3-PSTY-≡ 

4 and (D) c-PSTY-OH 5. 
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Figure A6: 500 MHz 1H 1D DOSY NMR spectra of (A) c-PSTY-OH 5 (B) c-PSTY-Br 6 and 

(C) c-PSTY-N3 7 (*methanol). 

 
Figure A7: SEC chromatograms for cyclization of (A) c-PSTY-OH –prepped purified 5 (B) 

c-PSTY-Br 6 and (C) c-PSTY-N3 7. SEC analysis based on polystyrene calibration curve. 
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Figure A8. ATR-FTIR analysis of (A) c-PSTY-Br 6 (B) c-PSTY-N3 7. 

 

Figure A9: SEC chromatograms for the degradation studies in the synthesis of di-cyclic 

PSTY by one pot using CuBr/DMF; (a) N3-PSTY-≡ 4 (b) c-PSTY-N3 7; degradation after (c) 

10 min (d) 45 min (e) 3 h (f) 7 h  and (h) 24 h.  
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Figure A10: SEC chromatograms for the degradation studies in the synthesis of di-cyclic 

PSTY by one pot using CuBr/triazole in toluene; (a) N3-PSTY-≡ 4 (b) c-PSTY-N3 7; 

degradation after (c) 10 min (d) 2.5 h (e) 5h (f) 12 h and (g) 24 h.  

 

Figure A11: SEC chromatograms for the degradation studies in the synthesis of tri-cyclic 

PSTY by one pot using CuBr/DMF; (a) N3-PSTY-≡ 4 (b) c-PSTY-N3 7; degradation after (c) 

10 min (d) 45 min (e) 3h (f) 7 h and (g) 24 h.  
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Figure A12: SEC chromatograms for the degradation studies in the synthesis of tri-cyclic 

PSTY by one pot using CuBr/triazole in toluene; (a) N3-PSTY-≡ 4, (b) c-PSTY-N3 7; 

degradation after (c) 10 min (d) 2.5 h (e) 5 h (f) 12 h and (g) 24 h.  

 

Figure A13: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (c-PSTY)2 8 ; 

calculated [M+Na+] = 8496.86, DP n = 72.  
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Figure A14: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (c-PSTY)3 9; 

calculated [M+Ag+] = 12808.66, DP n = 108.  
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Appendix B 

Scheme B1: Synthesis of alkyne (hydroxyl) functional Initiator (1) 

 

 

 

 

 

Reactants and conditions: i) Acetone, p-TsOH, RT,16h; ii) THF, NaH, propargyl bromide, -78 
oC, 16 h; iii) DOWEX, Methanol, R.T. 16 h; iv) THF, 2-bromoisobutyryl bromide, 0 °C - RT, 

16 h.  

Scheme B2: Synthesis of protected alkyne (hydroxyl) functional Initiator (6) 

 

 

 

 

Reactants and conditions: (i) EtMgBr, THF, reflux at 76 °C, (ii) PBr3, pyridine, ether 0 ~ 25 

°C (iii) NaH/ THF, -78 °C ~ 25 °C (iv) DOWEX resin in MeOH at 40 °C (v) TEA in THF at 0 

°C ~ RT for 24 h.  
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Scheme B3: General scheme for the synthesis of mutltifunctional cyclic. 

 

 

Conditions: (i) Polymerization: Styrene, CuBr, PMDETA, CuBr2/PMDETA in bulk at 80 

°C. (ii) Azidation: NaN3 in DMF at 25 °C, (iii) Cyclization: CuBr, PMDETA in toluene by 

feed at 25 °C, (iv) Bromination: 2-BPB, TEA in THF; 0 °C- RT, (v) Click: CuBr, PMDETA 

in toluene at 25 °C. (vi) Deprotection: TBAF in THF at 25 °C. 
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Scheme B4. Schematic illustration for the cyclization by argon feeding technique. 

 

Figure B1: (a) 1H NMR and (b) 13C NMR of 2, recorded in CDCl3 at 298K (500 MHz).  
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Figure B2: (a) 1H NMR and (b) 13C NMR of 3, recorded in CDCl3 at 298K (500 MHz). 

 

Figure B3: (a) 1H NMR and (b) 13C NMR of 4, recorded in CDCl3 at 298K (500 MHz). * 
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Figure B4: (a) 1H NMR and (b) 13C NMR of 5, recorded in CDCl3 at 298K (500 MHz).  

 

Figure B5: (a) 1H NMR and (b) 13C NMR of 6, recorded in CDCl3 at 298K (500 MHz). 
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Figure B6: 2D COSY NMR spectra of 6 in CDCl3.  

 

 Figure B7: 2D HSQC NMR spectra of 6 in CDCl3.  
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Figure B8: 2D HMBC NMR spectra of 6 in CDCl3.  

 

Figure B9: SEC trace of ≡(OH)-PSTY25-Br, 7. SEC analysis based on polystyrene calibration 

curve.   
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Figure B10. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of  ≡(OH)-PSTY25-Br 7.  

 

Figure B11: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-

PSTY25-Br, 7. 
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Figure B12: SEC trace of ≡(OH)-PSTY25-N3 8. SEC analysis based on polystyrene 

calibration curve.   

 

Figure B13: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of ≡(OH)-PSTY25-N3 8.  
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Figure B14: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-

PSTY25-N3 , 8. 

 

Figure B15: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY25-

OH , 9.  

 

 

Figure B16: SEC trace of c-PSTY25-Br, 10. SEC analysis based on polystyrene calibration 

curve.   
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Figure B17: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY25-OH 9.  

 

Figure B18: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY26-

Br, 10. 
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Figure B19: SEC trace of c-PSTY25-N3, 11. SEC analysis based on polystyrene calibration 

curve. 

 

Figure B20: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of  c-PSTY25-N3 11. 
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Figure B21: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY-

N3, 11.  

 

Figure B22: SEC trace of c-PSTY25-≡, 13. SEC analysis based on polystyrene calibration 

curve.  
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 Figure B23. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY25-≡ 13.  

 

Figure B24: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY25-

≡, 13.  
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Figure B25: SEC trace of TIPS-≡(HO)-PSTY25-Br,  14. SEC analysis based on polystyrene 

calibration curve.   

 

Figure B26: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of TIPS-≡(HO)-PSTY25-Br, 14. 
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Figure B27: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to TIPS-

≡(HO)-PSTY25-Br, 14.  

 

Figure B28: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to TIPS-

≡(HO)-PSTY25-N3, 15. 
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Figure B29: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to TIPS-≡(HO-

PSTY25)2-Br, 16.  

 

Figure B30: SEC trace of TIPS-≡(OH-PSTY25)2-N3, 17. SEC analysis based on polystyrene 

calibration curve.   
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Figure B31: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to TIPS-≡(HO-PSTY25)2-

N3, 17. 

  

Figure B32: SEC trace of ≡(OH-PSTY25)2-N3, 18 before and after prep. SEC analysis based 

on polystyrene calibration curve. 
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Figure B33: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO-PSTY25)2-N3, 

18. 

 

    
Figure B34: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY-(OH)2 19. 
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Figure B35: SEC trace of c-PSTY50-Br2, 20. SEC analysis based on polystyrene calibration 

curve. 

 

Figure B36: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY50-Br2, 20.  
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 Figure B37: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY50-

Br2, 20.  

 

Figure B38: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY-(N3)2, 21.  
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Figure B39: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY50-(N3)2, 21.  

 

Figure B40: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY-(≡)4, 23. 
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Figure B41: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY50-(≡)4, 23.  

 

Figure B42: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to TIPS-≡(OH-PSTY25)3-

Br,  24.  
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Figure B43: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to TIPS-≡(OH-PSTY25)3-

N3,  25. 

 
Figure B44: SEC of molecular weight distributions (MWDs) for TIPS-≡(OH-PSTY25)3-N3 

crude, 25. SEC analysis based on polystyrene calibration curve. 
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 Figure B45: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to ≡(OH-

PSTY25)3-N3, 26.  

 

Figure B46: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY75-(OH)3,  27.  
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Figure B47: SEC of molecular weight distributions (MWDs) for c-PSTY75-Br3, 28. SEC 

analysis based on polystyrene calibration curve. 

    

Figure B48: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY75-Br3, 28. 

0

0.0001

0.0002

0.0003

0.0004

3 3.5 4 4.5 5

w
 (M

)

Log MW

(a) c-PSTY-Br3, 28

1.01.52.02.53.03.54.04.55.05.5 ppm

28
.4

7

23
5.

53

13
.5

6

6.
00

2.
63

6.
27

3.
06

NO

O

O

ONN

O

O

24

N

O

O

N
N

O

O
O

O

N
N

N

24

24

Br

Br

BrO
O

O

e

c

d

b

h f

g

t

s
t

c

f

e

g

s

h

b

c

b

h

s t

e

d

f

d

i
i

i

c-PSTY75-Br3, 28

c, d

f, g

h

s, t

b, i
e



176 
 

 
Figure B49: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY75-Br3, 28. 

  

Figure B50: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY75-(N3)3, 29. 
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Figure B51: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY75-(N3)3, 29. 

  

 Figure B52: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY75-(≡)6, 30.  
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Figure B53: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY75-(≡)6,  30.  

 

Figure B54: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY75-(≡)6, 31.  
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Figure B55: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to Spiro (c-PSTY)3,  31.  

 

Figure B56: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of dendrimer (c-PSTY)5,  32. * 
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Figure B57: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to Spiro (c-PSTY)5,  32.  

 

Figure B58: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of G1 (c-PSTY)4,  33.  
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Figure B59: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to Spiro (c-PSTY)4,  33.  

 

Figure B60: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of G1 (c-PSTY)7,  34.  
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Figure B61: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to Spiro (c-PSTY)7,  34.  
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Appendix C 

 
Scheme C1: Synthetic route for the preparation of functional linear and cyclic polymers and 

their complex architectures. 

 

 
Figure C1: SEC chromatograms of functional linear PSTY (a) PSTY44-Br, 2a; (b) PSTY44-

N3, 3a, (c) PSTY44-≡, 4a and (d) PSTY44-(≡)2, 5a. All chromatograms are based on PSTY 

calibration curve.  
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Figure C2. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (a) PSTY44-Br, 2a. (b) 

PSTY44-N3, 3a, (c) PSTY44-≡, 4a and (d) PSTY44-(≡)2, 5a. *small molecule impurities.  
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Figure C3: MALDI-ToF mass spectrum acquired in reflectron and linear mode with Ag salt 

as cationizing agent and DCTB matrix. The full and expanded spectra correspond to (a) 

PSTY44-Br, 2a, (b) PSTY44-N3, 3a, (c) PSTY44-≡, 4a and (d) PSTY44-(≡)2, 5a. 

 
Figure C4: SEC chromatograms of functional linear PtBA (a) PtBA44-Br, 2b; (b) PtBA44-N3, 

3b, (c) PtBA44-(≡)2, 5b. All chromatograms are based on PSTY calibration curve.  
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Figure C5. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (a) PtBA44-Br, 2b. (b) PtBA44-

N3, 3b, (c) PtBA44-(≡)2, 5b. 
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Figure C6: MALDI-ToF mass spectrum acquired in linear mode with Na salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (a) PtBA44-Br, 2b. (b) 

PtBA44-N3, 3b, (c) PtBA44-(≡)2, 5b. 
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Figure C7: SEC chromatograms of (a) ≡(OH)-PSTY47-Br, 6a; (b) ≡(OH)-PSTY47-N3, 7a (c) 

LND simulation of 6a. All chromatograms are based on PSTY calibration curve.  

 
Figure C8. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (a) ≡(OH)-PSTY47-Br, 6a and 

(b) ≡(OH)-PSTY47-N3, 7a. 
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Figure C9: MALDI-ToF mass spectrum acquired in reflectron (5a) and linear (6a) mode 

with Ag salt as cationizing agent and DCTB matrix. The full and expanded spectra 

correspond to (a) ≡(OH)-PSTY47-Br, 6a and (b) ≡(OH)-PSTY47-N3, 7a. 
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Figure C10: SEC chromatograms of (a) c-PSTY47-OH, 8a, (b) c-PSTY47-Br, 9a, (c) c-

PSTY47-N3, 10a. All chromatograms are based on PSTY calibration curve.  

 
Figure C11. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (a) c-PSTY47-OH, 8a, (b) c-

PSTY47-Br, 9a and (c) c-PSTY47-N3, 10a.  
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Figure C12: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (a) c-PSTY47-OH, 8a, 

(b) c-PSTY47-Br, 9a and (c) c-PSTY47-N3, 10a.  
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Figure C13: SEC chromatograms of (a) c-PSTY47-≡, 11a, (b) c-PSTY47-(≡)2-A (amine 

functional core), 12a and (c) c-PSTY47-(≡)2-B (benzene functional core), 14. All 

chromatograms are based on PSTY calibration curve.  
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Figure C14. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (a) c-PSTY47-≡, 11a, (b) c-

PSTY47-(≡)2-A, 12a and (c) c-PSTY47-(≡)2-B, 14. * Small molecules impurities.   
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Figure C15: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to (a) c-

PSTY47-≡, 11a, (b) c-PSTY47-(≡)2-A, 12a and (c) c-PSTY47-(≡)2-B, 14. 
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 Figure C16: SEC chromatograms of (a) ≡(OH)PtBA44-Br, 6b, (b) ≡(OH)PtBA44-N3, 7b and 

(c) LND simulation of 6b. All chromatograms are based on PSTY calibration curve.  

 
Figure C17. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (a) ≡(OH)-PtBA44-Br, 6b and 

(b) ≡(OH)-PtBA44-N3, 7b.  
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Figure C18: MALDI-ToF mass spectrum acquired in linear mode with Na salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (a) ≡(OH)-PtBA44-Br, 

6b and (b) ≡(OH)-PtBA44-N3, 7b. 

 
Figure C19: SEC chromatograms of (a) c-PtBA44-OH, 8b, (b) c-PtBA44-Br, 9b, (c) c-PtBA44-

N3, 10b and (d) c-PtBA44-(≡)2, 12b. All chromatograms are based on PSTY calibration curve.  
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Figure C20. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (a) c-PtBA44-OH, 8b, (b) c-

PtBA44-Br, 9b, (c) c-PtBA44-N3, 10b and (d) c-PtBA44-(≡)2, 12b. 
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Figure C21: MALDI-ToF mass spectrum acquired in linear mode with Na salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (a) c-PtBA44-OH, 8b, 

(b) c-PtBA44-Br, 9b, (c) c-PtBA44-N3, 10b and (d) c-PtBA44-(≡)2, 12b. 

Table C1. Molecular weight data for linear and cyclic polymers to build up complex 

architectures. 

Polymer 

 

Purity by LND (%) 
RI detection a Triple detection b 

Mn by 

NMR Δ HDVc 
Crude Prep Mn   Mp 

 PDI  Mn 
 Mp 

 PDI  

2a    4670  5010  1.07     4670  
3a    4650  4990  1.07     4740  
4a    4800  5050  1.07     4940   
5a    4850  5060  1.07     4870   
2b    5660  6080  1.10     5830   
3b    5540 5960 1.10    5800   
5b    5770  6190  1.09     5800  
6a  87.7  5220 5245  1.10  4890  4860  1.05  4980  
7a  87.0  5070  5130  1.10  4920  4900  1.05  4940  
8a

d
  81.46  81.46  3780  3970  1.06  5450 5550 1.04 5250 0.71 

9a    3870  4080  1.05     5390  
10a    3850  4030  1.05     5140   
11a    3920  4080  1.05     5650   
12a    3820  3900  1.06     5380   
14    4420  4470  1.05     5690   
6b  88.1  5890  6400  1.13     6060  
7b  89.3  6040  6480  1.13  6040  6210  109  5640  
8b

d
  71.63  71.63  4890  5130  1.05  6260 6570 1.04 6150 0.78 

9b    4930  5080  1.05     6290   
10b    4940  5080  1.05     6500   
12b    4940  5120  1.07     6380   
aThe data was acquired using SEC (RI detector) and is based on PSTY calibration curve. 
b
The data was acquired using Triple Detection SEC. 

 cΔHDV was calculated by dividing Mp of RI with Mp of triple detection. 
dPurity was calculated by using LND simulation based on number distribution (f(N)). 
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Figure C22. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (PSTY)2 15. 

 
Figure C23: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (PSTY)2, 15. 

 

 
Figure C24. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY47-b-PSTY44, 16. 
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Figure C25: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY47-b-PSTY44, 

16. 

 

 

 

 

 
Figure C26. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (c-PSTY47)2, 17.  
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Figure C27: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (c-PSTY47)2, 17. 

 

 

 

 

 

 
Figure C28. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (PSTY44)3 18. * small 

molecules impurities. 
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 Figure C29: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to (PSTY44)3 

18. 

 

 
Figure C30. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY47-b-(PSTY)2 19.  
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Figure C31: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY47-(PSTY44)2 

19.  

  

 

 
Figure C32. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (c-PSTY47)2-PSTY44, 20. 
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Figure C33: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (c-PSTY47)2-PSTY44, 

20.  

 
Figure C34. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (c-PSTY47)3-A, 21, * 

acetone. 
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Figure C35: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond (c-PSTY47)3-A, 21. 

 
Figure C36. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (c-PSTY47)3-B, 22, * Small 
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Figure C37: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (c-PSTY47)3-B, 22.  

 

 
Figure C38. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of PSTY44-b-PtBA44, 23.  
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Figure C39. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY47-b-c-PtBA44, 24. 

 
Figure C40. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of PSTY44-b-(PtBA44)2 25.  
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Figure C41. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of c-PSTY44-b-(cPtBA44)2, 26.  

 

 

 
Figure C42. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (PSTY44)2-PtBA44 , 27.  
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Figure C43. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of  (c-PSTY47)2-b-c-PtBA44, 28. 

 

 

 

 

 
Figure C44. Differential scanning calorimetry (DSC) thermograms recorded for (a) PSTY44-

N3, 3a and (b) c-PSTY47-OH, 8a. Samples were first heated from 20 to 150 °C at a heating 

rate of 5 °C/min under nitrogen atmosphere, followed by cooling to 20 °C at a rate of 5 
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°C/min after stopping at 150 °C for 3 min, and finally heating to 150 °C at the rate of 5 

°C/min. 

 
Figure C45. Differential scanning calorimetry (DSC) thermo-grams recorded for (a) 

(PSTY44)2, 15 and (b) c-PSTY47-b-PSTY44, 16 and (c) (c-PSTY47)2, 17. Samples were first 

heated from 20 to 150 °C at a heating rate of 5 °C/min under nitrogen atmosphere, followed 

by cooling to 20 °C at a rate of 5 °C/min after stopping at 150 °C for 3 min, and finally 

heating to 150 °C at the rate of 5 °C/min. 

 
Figure C46. Differential scanning calorimetry (DSC) thermograms recorded for (a) 

(PSTY44)3, 18 and (b) c-PSTY47-b-(PSTY44)2, 19, (c) (c-PSTY47)2-PSTY44, 20, (d) (c-
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PSTY47)3-A, 21 and (e) (c-PSTY47)3-B, 22. Samples were first heated from 20 to 150 °C at a 

heating rate of 5 °C/min under nitrogen atmosphere, followed by cooling to 20 °C at a rate of 

5 °C/min after stopping at 150 °C for 3 min, and finally heating to 150 °C at the rate of 5 

°C/min. 

 

 
Figure C47. Differential scanning calorimetry (DSC) thermograms recorded for (a) PAA44-

N3, 3b and (b) c-PAA44-OH, 8b. Samples were first heated from 20 to 150 °C at a heating 

rate of 5 °C/min under nitrogen atmosphere, followed by cooling to 20 °C at a rate of 5 

°C/min after stopping at 150 °C for 3 min, and finally heating to 150 °C at the rate of 5 

°C/min. 
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Figure C48. Differential scanning calorimetry (DSC) thermograms recorded for (a) PSTY44-

b-PAA44, 23 and (b) c-PSTY47-b-c-PAA44, 24. Samples were first heated from 20 to 150 °C 

at a heating rate of 5 °C/min under nitrogen atmosphere, followed by cooling to 20 °C at a 

rate of 5 °C/min after stopping at 150 °C for 3 min, and finally heating to 150 °C at the rate 

of 5 °C/min.  

 
Figure c49. Differential scanning calorimetry (DSC) thermograms recorded for (a) PSTY44-

b-(PAA44)2, 25 and (b) c-PSTY47-b-(c-PAA44)2, 26. Samples were first heated from 20 to 150 
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°C at a heating rate of 5 °C/min under nitrogen atmosphere, followed by cooling to 20 °C at a 

rate of 5 °C/min after stopping at 150 °C for 3 min, and finally heating to 150 °C at the rate 

of 5 °C/min. 

 
Figure C50. Differential scanning calorimetry (DSC) thermograms recorded for (a) 

(PSTY44)2-b-PAA44, 27 and (b) (c-PSTY47)2-b-c-PAA44, 28. Samples were first heated from 

20 to 150 °C at a heating rate of 5 °C/min under nitrogen atmosphere, followed by cooling to 

20 °C at a rate of 5 °C/min after stopping at 150 °C for 3 min, and finally heating to 150 °C at 

the rate of 5 °C/min. 
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Figure C51: SEC traces of (c-PSTY)3-A-prep, 21 for polymer cleavage (a) before and (b) 

after DSC analysis. 
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Appendix D 

Synthesis of Alkyne (hydroxyl) functional Initiator (1) 

 

 

 

 

 

Scheme D1: Synthetic scheme for Alkyne (hydroxyl) functional initiator. 

Reactants and conditions: i) Acetone, p-TsOH, RT,16h; ii) THF, NaH, propargyl bromide, -78 
oC, 16 h; iii) DOWEX, Methanol, R.T. 16 h; iv) THF, 2-bromoisobutyryl bromide, 0 °C - RT, 

16 h.  

 

 

Figure D1: SEC trace of (a) ≡(OH)-PSTY25-Br 7a and (b) LND simulation. SEC analysis 

based on polystyrene calibration curve.  
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Figure D2: SEC trace of (a) c-PSTY25-OH, 9a, (b) c-PSTY25-Br, 10a, (c) c-PSTY25-N3, 11a 

and (d) c-PSTY25-≡, 14a. SEC analysis based on polystyrene calibration curve.  

 

Figure D3: SEC trace of (a) ≡(OH)-PSTY58-Br 7b and (b) LND simulation. SEC analysis 

based on polystyrene calibration curve.  
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Figure D4: SEC trace of (a) c-PSTY58-OH, 9b, (b) c-PSTY58-Br, 10b, (c) c-PSTY58-N3, 11b, 

(d) c-PSTY58-≡, 14b and (e) c-PSTY58-(≡)2, 15b . SEC analysis based on polystyrene 

calibration curve. 

 

 

Figure D5: SEC trace of (a) ≡(OH)-PSTY84-Br 7c and (b) LND simulation. SEC analysis 

based on polystyrene calibration curve.  
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Figure D6: SEC trace of (a) c-PSTY84-OH, 9c, (b) c-PSTY84-Br, 10c, (c) c-PSTY84-N3, 11c 

and (d) c-PSTY84-≡, 14c. SEC analysis based on polystyrene calibration curve. 

  

 

Figure D7: SEC trace of (a) ≡(OH)-PSTY164-Br 7d and (b) LND simulation. SEC analysis 

based on polystyrene calibration curve.  
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 Figure D8. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (a) ≡(OH)-PSTY25-Br 7a, (b) 

≡(OH)-PSTY25-N3 8a,  (c) c-PSTY25-OH  9a. 
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Figure D9. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (a) c-PSTY25-Br  10a, (B) c-

PSTY25-N3  11a, (C) c-PSTY25-≡  14a. 
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Figure D10. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (a) ≡(OH)-PSTY58-Br 7b, 

(b) ≡(OH)-PSTY58-N3 8b,  (c) c-PSTY58-OH  9b. 
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Figure D11. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (a) c-PSTY58-Br  10b, (B) c-

PSTY58-N3  11b, (C) c-PSTY58-≡  14b and (D) c-PSTY58-(≡)2  15b. 

 

 

Figure D12. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (a) ≡(OH)-PSTY84-Br 7c, 

(b) ≡(OH)-PSTY84-N3 8c,  (c) c-PSTY84-OH  9c. 
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Figure D13. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (a) c-PSTY84-Br  10c, (B) c-

PSTY84-N3  11c and (C) c-PSTY84-≡  14c. 
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Figure D14. 500 MHz 1H  1D DOSY NMR spectra in CDCl3 of (a) ≡(OH)-PSTY164-Br 7d, 

(b) ≡(OH)-PSTY163-N3 8d,  (c) c-PSTY164-OH  9d. 
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Figure D15: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-

PSTY25-Br, 7a.  

 

Figure D16 : MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-

PSTY25-N3 , 8a.  
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Figure D17: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY25-

OH, 9a.  

 

 Figure D18: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY25-

Br, 10a. 
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Figure D19: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY25-

N3, 11a. 

 

Figure D20: MALDI-ToF mass spectrum acquired in reflectron mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY25-

≡, 14a.  
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 Figure D21: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-

PSTY58-Br, 7b.  

 

Figure D22: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-PSTY58-N3, 8b. 
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Figure D23: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY58-OH, 9b. 

 
Figure D24: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY58-Br, 10b.  
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 Figure D25: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY58-

N3, 11b. 

 
Figure D26: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY58-≡, 14b. 
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 Figure D27: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY58-

(≡ )2, 15b. 

 

Figure D28: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-PSTY84-Br, 7c. 
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 Figure D29: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as 

cationizing agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-

PSTY84-N3 , 8c. 

  

Figure D30: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY84-OH, 9c. 
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Figure D31: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY84-Br, 10c.  

 

Figure D32: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY58-N3, 11c.  
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Figure D33: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY84-≡, 14c.  

 

Figure D34: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-PSTY163-Br, 

7d.  
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Figure D35: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to ≡(HO)-PSTY163-N3, 

8d.  

 

Figure D36: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to c-PSTY163-OH, 9d. 
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Figure D37. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of (c-PSTY84)2, 31. 

 

 Figure D38. 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of st-(c-PSTY58)3, 32.  
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Figure D39: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of sp-(c-PSTY)3, 33. 

 

Figure D40: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of dendrimer (c-PSTY)5, 34. 
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Figure D41: 500 MHz 1H 1D DOSY NMR spectra in CDCl3 of G1 (c-PSTY)4, 35.  

 

Figure D42: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to (c-PSTY84)2, 31. 
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Figure D43: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond (c-PSTY58)3, 32.  

 

Figure D44: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to Spiro (c-PSTY)3,  33.  
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Figure D45: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to G1-den-(c-PSTY)5,  

34. 

 

Figure D46: MALDI-ToF mass spectrum acquired in linear mode with Ag salt as cationizing 

agent and DCTB matrix. The full and expanded spectra correspond to G1-st-(c-PSTY)4,  35.  
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Figure D47. Differential scanning calorimetry (DSC) thermograms recorded for (a) ≡(OH)-

PSTY163-N3, 8d, (b) c-PSTY163-OH, 9d, (c) (c-PSTY)2, 31, (d) st-(c-PSTY)3, 31, (e) sp-(c-

PSTY)3, 33, (f) G1-den-(c-PSTY)5, 34 and (g) G1-st-(c-PSTY)4, 35. Samples were first 

heated from 20 to 150 °C at a heating rate of 5 °C/min under nitrogen atmosphere, followed 

by cooling to 20 °C at a rate of 5 °C/min after stopping at 150 °C for 3 min, and finally 

heating to 150 °C at the rate of 5 °C/min. 
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Table D1: Molecular weight and simulation data for the starting building blocks and their 

products.  

Polymer 

 
Purity by LND (%) 

 
Coupling 
efficiency 

(%)a 

 

RI detection b Triple detection c 
Mn by 
NMR Δ HDVd 

Crude Prep Mn   Mp 
 PDI  Mn 

 Mp 
 PDI  

7a    2890 2900 1.11    3120  
8a    2880 2900 1.11    2980  
9a 84.0 > 99.0  2140 2180 1.04 2780 2860 1.01

 
2980 0.76 

10a    2350 2400 1.04    3110  
11a     2250 2300 1.04 2930 3090 1.01

 
3178 0.74 

14a     2440 2470 1.04 3170 3320 1.02
 

3520 0.74 
7b     6470 6450 1.08    6240  
8b     6390 6440 1.08    6310  
9b 84.8 > 99.0  4690 4900 1.04 6220 6390 1.00

 
6310 0.77 

10b    4580 4670 1.04    6340  
11b    4750 4850 1.04 6420 6670 1.01 6200 0.73 
14b    4930 5030 1.04 6520 6660 1.00

 
6650 0.75 

15b    5020 5100 1.03 6500 6650 1.00
 

6860 0.77 
7c     9130 9240 1.08    9580  
8c     9020 9130 1.08    9540  
9c 81.1 > 99.0  6890 7100 1.04 9190 9400 1.00

 
8910 0.76 

10c    6670 6950 1.04    9150  
11c    6880 7100 1.04 8900 9100 1.00

 
9220 0.78 

14c     7050 7280 1.04 9040 9240 1.00
 

9460 0.79 
7d     17110 17730 1.09    17490  
8d     17300 17970 1.06 18300 18660 1.00

 
17770 0.96 

9d 79.8 > 99.0   13430 13760 1.04 18330 18580 1.00
 

17770 0.74 
16    2870 3040 1.08    2960  
17    2890 2910 1.06    3030  
18 90.8  90.8 5510 5600 1.05    6350  
19    5510 5550 1.06    6210  
20  91.0  5350 5400 1.06    6420  
21 82.1 > 99.0  4110 4170 1.03 5350 5500 1.02

 
6475 0.76 

22    4350 4370 1.03    6220  
23    4470 4590 1.03 5850 5990 1.00

 
6250 0.77 

24    4720 4830 1.04 6420 6520 1.00
 

6830 0.74 
25 82.0  82.0 8830 8990 1.06    9230  
26    8750 8860 1.06    9400  
27  86.0  8720 8880 1.05    9660  
28 76.5 > 99.0  6600 6780 1.03 8830 8980 1.00

 
8930 0.75 

29    7210 7320 1.03    9230  
30    7070 7220 1.03 9250 9390 1.00

 
8910 0.77 

31 92.2 98.5 92.2 13320 13590 1.04 19140 19440 1.00
 

18580 0.7 
32 91.4 99.0 91.4 12850 12940 1.04 19700 20400 1.01

 
19250 0.63 

33 83.8 91.23 86.6 14050 14280 1.06 19080 19330 1.00
 

19030 0.74 
34 77.75 97.02 80.9 12890 13130 1.04 18900 19400 1.00

 
18400 0.68 

35 70.53 84.15 74.25 13920 13980 1.05 19680 19800 1.00
 

18450 0.71 
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aCuAAC coupling efficiency was determined from the  RI traces of SEC. Coupling efficiency 

calculated as follows: purity (LND)/max. purity by theory×100. bThe data was acquired using 

SEC (RI detector) and is based on PSTY calibration curve. cThe data was acquired using 

DMAc Triple Detection SEC with 0.03 wt% of LiCl as eluent. dΔHDV was calculated by 

dividing Mp of RI with Mp of triple detection.  
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