Author's Accepted Manuscript

NEUROCOMPUTING

A Intornasional Journal

Active Learning via Query Synthesis and
Nearest Neighbour Search

Liantao Wang, Xuelei Hu, Bo Yuan, Jianfeng Lu

NEUROCOMPUTING
LETTERS

www.elsevier.com/locate/neucom

PII: S0925-2312(14)00814-5
DOI: http://dx.doi.org/10.1016/j.neucom.2014.06.042
Reference: NEUCOM14371

To appear in:  Neurocomputing

Received date: 22 August 2013
Revised date: 26 May 2014
Accepted date: 19 June 2014

Cite this article as: Liantao Wang, Xuelei Hu, Bo Yuan, Jianfeng Lu, Active
Learning via Query Synthesis and Nearest Neighbour Search, Neurocomputing,
http://dx.doi.org/10.1016/j.neucom.2014.06.042

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.


http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://dx.doi.org/10.1016/j.neucom.2014.06.042

Active Learning via Query Synthesis and Nearest Neighbour Search

Liantao Wang?®, Xuelei Hu*¢, Bo Yuan<, Jianfeng Lu®®

@School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
b Jiangsu Key Laboratory of Image and Video Understanding for Social Safety, Nanjing University of Science and Technology, Nanjing
210094, China
¢School of Information Technology and Electrical Engineering, University of Queensland, Brisbane QLD 4072, Australia
dIntelligent Computing Lab, Division of Informatics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

Abstract

Active learning has received great interests from researchers due to its ability to reduce the amount of supervision
required for effective learning. As the core component of active learning algorithms, query synthesis and pool-based
sampling are two main scenarios of querying considered in the literature. Query synthesis features low querying time,
but only has limited applications as the synthesized query might be unrecognizable to human oracle. As a result, most
efforts have focused on pool-based sampling in recent years, although it is much more time-consuming. In this paper,
we propose new strategies for a novel querying framework that combines query synthesis and pool-based sampling. It
overcomes the limitation of query synthesis, and has the advantage of fast querying. The basic idea is to synthesize an
instance close to the decision boundary using labeled data, and then select the real instance closest to the synthesized
one as a query. For this purpose, we propose a synthesis strategy, which can synthesize instances close to the decision
boundary and spreading along the decision boundary. Since the synthesis only depends on the relatively small labelled
set, instead of evaluating the entire unlabeled set as many other active learning algorithms do, our method has the
advantage of efficiency. In order to handle more complicated data and make our framework compatible with powerful
kernel-based learners, we also extend our method to kernel version. Experiments on several real-world data sets show that
our method has significant advantage on time complexity and similar performance compared to pool-based uncertainty
sampling methods.

Keywords: active learning, query synthesis, pool-based sampling, kernel function

1. Introduction input space, i.e. the query can be fictitious. By contrast,
active learning based on sampling selects real instances
from the unlabelled set. Note that stream-based sampling
and pool-based sampling can share the same criterion of
value measure (e.g. uncertainty [3], query by committee
[13]), and the only difference is the way they access the un-
labelled data. Concretely, stream-based sampling selects
one instance at a time and decides whether to query it
or not. Pool-based sampling, however, maintains a pool
consisting of unlabelled data. At each iteration, it eval-
uates and ranks the entire collection of unlabelled data
before selecting the most valuable one. Since pool-based
sampling generates queries in a greedy fashion, it is more
effective and has attracted most of the research interests,
while stream-based sampling is only appropriate in some
special situations where memory or processing power is
limited.

Since query synthesis generates a query using a small
amount of labelled data, it is therefore very efficient. How-
ever sometimes synthesized queries are unrecognizable to
human oracle [14]. Pool-based sampling is effective as it
generates a query by evaluating the entire unlabelled set,

Active learning is an important approach to construct-
ing a high performance classifier while keeping the amount
of supervision to a minimum by actively selecting the most
valuable training instances. As an effective way to re-
duce the cost of human labelling, it has been successfully
applied to various applications [1, 2], especially when la-
belling is difficult or time-consuming. In a typical active
learning cycle, the algorithm selects the most valuable (in-
formative [3] or representative [4]) instance and requests
its label. Then the new labelled instance is added to the
training set, and the classifier is retrained. Note that how
to form a query plays a key role in an active learning
algorithm. In terms of query formation, there are two
scenarios of active learning in the literature: query syn-
thesis [5, 6, 7] and sampling, which can be further divided
into stream-based sampling [8, 9] and pool-based sampling
[10, 3, 11, 12] .

In the scenario of query synthesis, the learner may gen-
erate a query in the form of any unlabelled instance in the
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but it is very time-consuming. To make the querying both
fast and effective, we have proposed a framework that com-
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bines query synthesis and pool-based sampling in [15]. In
this paper, we propose a new strategy for query synthesis
and extend the framework to kernel version. The main
idea is that, at each iteration, we synthesize an instance
close to the current classification boundary and search for
its nearest neighbour among the unlabelled instances as
the actual query. Specifically, from the initially labelled
instances, we can obtain one positive instance and one
negative instance. We call these two instances with op-
posite labels an Opposite Pair. According to the initial
Opposite Pair, we first use an efficient method to find an-
other Opposite Pair close to the classification boundary.
After that, we iteratively synthesize a query along the mid-
perpendicular of the previously found Opposite Pair. This
can guarantee that the queries are close to the classifica-
tion boundary and well dispersed.

Since our method synthesizes a query directly, instead
of evaluating every instance in the unlabeled data pool,
it has the advantage of efficiency. Also by using the real
instance nearest to the synthesized one, it can make sure
that the query is recognizable to a human oracle. Our
algorithm can be further accelerated by using various ap-
proximate nearest neighbour search techniques [16].

This strategy can select the instances closest to the
decision boundary, which are most informative. More-
over, instead of only considering the informativeness of
the query, we also take into account the representativeness,
and introduce pre-clustering in our method to exploit the
local structure of the data and construct a compact and
representative unlabelled pool based on local center points.

In order to handle more complicated data and make
our framework compatible with kernel-based learners such
as support vector machine (SVM), we further extend this
framework with the query strategy to kernel version. Queries
can be synthesized in the feature space without knowing
the explicit non-linear mapping function by kernel trick,
which has been exploited in many machine learning meth-
ods [17, 18, 19, 20].

The rest of this paper is organized as follows: In Section
2, we review the work related to our approach. Section 3
introduces our approach in detail. Experimental results
are reported in Section 4. Section 5 concludes this work.

2. Related Work

2.1. Query synthesis

Query synthesis was first proposed in [5], and further
studied in [21]. In this setting, a membership query is
generated in the form of any unlabelled instance in the
input space. Baum [6] used interpolation to synthesize
queries to find separating hyperplane efficiently, but later
demonstrated that this kind of query can not work prop-
erly in vision-based task [14], because the human oracle
can not recognize the query synthesized by the algorithm.
After that, although King et al. [22, 7] found a promising
real-world application of query synthesis, few efforts have

focused on synthesis query since an arbitrary query might
be meaningless and difficult for human to label.

2.2. Pool-based Sampling

Pool-based sampling has been the most prosperous branch

of active learning, due to its effectiveness. It has been
widely used in many real world applications (e.g., text cat-
egorization [23], video search [24], image classification [25]
and action retrieval [26]). Pool-based active learning was
first introduced by Lewis and Gale [10]. The algorithm
maintains a pool consisting of unlabelled instances and se-
lects the most informative one at each iteration. The main
issue with active learning in this scenario is how to mea-
sure the informativeness. The most commonly used strate-
gies are uncertainty sampling [10, 27, 28, 11] and query by
committee [29, 30, 13]. There are also methods aiming at
expected error reduction [31, 32]. Strategies such as un-
certainty sampling and query by committee can select the
instances closest to the decision boundary, which is most
informative. However they only measure the value of a
single instance, as a result they may suffer from querying
similar instances repeatedly. To overcome this limitation,
the local structure of the data can be considered while se-
lecting queries. ~For example, clustering was introduced
into active learning in [33, 34] to select the most repre-
sentative instances. Representativeness is also taken into
account in batch mode active learning [35], where the au-
thors considered an instance’s similarity to the remaining
unlabelled instances. Huang et.al [12] extended this min-
max view of active learning to take into account both the
cluster structure of unlabelled instances and the class as-
signments of the labelled instances. More recently, Zhang
et.al [4] used locally linear reconstruction to exploit the
intrinsic geometrical structure of the data, so as to select
the most representative instances.

3. Methodology

Suppose we have a training data set denoted by D =
LUU, where L is the labelled set with very small size and U
consists of large amount of unlabelled instances. The goal
is to select the most valuable instances for the classifier
training from the unlabelled set.

3.1. Algorithm

Similar to many other active learning algorithms, we
assume the instances close to the classification boundary
are generally more ambiguous and their labels will provide
more information to the classifiers. As a result, we aim to
find instances close to the classification boundary.

Suppose {X4,X_} is an Opposite Pair. We can find
instances on a separating plane with high precision by in-
terpolating iteratively similar to binary search: We always
query the point located in the middle of the closest Op-
posite Pair. Concretely, let X3 = (X4 + X_)/2 and query
its label. If X; is positive (negative), we then query the



midpoint of X; and X_ (X4). Repeating this process b
times, we can guarantee that X; is on a separating plane
with b bits of precision [6]. An illustration of this process
is show in Fig. 1. Since the synthesized query may not
be recognized by the human oracle, in practice we instead
query its nearest neighbour rather than itself.

Figure 1: The binary search process used to find a point very nearly
on the separating hyperplane given {X4,X_}. Queries are always
generated by the midpoint of the closest Opposite Pair. The first
point 1 is positive. The second query thus is the midpoint between
query 1 and X_. After b queries, we have a point on the hyperplane
with accuracy 27°d, where d is the distance between X4 and X_.

If we always use binary search to generate queries, it
can be guaranteed that the queries are close to the bound-
ary with high precision, but the queries will concentrate
in a local neighbourhood. Ideally, we expect the queries
to locate close to the separating plane dispersedly. As a
result, after we find an Opposite Pair {X,,X_} close to
the separating plane, we make the next query by adding
their midpoint with a small vector: X, = (X4 +X_)/24+X,.
Since we want the queries always close to the separating
plane, the small vector X, should be orthogonal to the
connecting line of the Opposite Pair. Similarly, we search
its nearest neighbour denoted by x,. If the label of X, is
positive, we then repeat this process using X, and X_. See
Fig. 2 for a simple example.

Overall, given a dataset with a small labelled set, we
initialize the Opposite Pair with the centroids of positive
labelled set and negative labelled set. Then we find an
Opposite Pair close enough to the separating hyperplane.
After that, we generate queries along the midperpendicu-
lar of newly founded Opposite Pair. We expect that the
queries are distributed in the shape of net on sides of the
separating plane.

We now specify these procedures. Let ¢ and C_ be
the centroids of positive and negative labelled instances.

3 X c_:% 3 X

+

|£ +| Xi€L4 Xi€L_
We then synthesize the first instance X, = (¢4 4c_) and
query its label. Since this is a pseudo instance, it might
not be recognized by the human annotator, especially in
vision-based tasks. Instead, we search its nearest neigh-
bour (denoted by X,) from the unlabelled set and query

Figure 2: A simple procedure for rest queries after finding an Op-
posite Pair {X4,X_} close to the separating hyperplane. We syn-
thesize the next query using a vector starting from the midpoint of
their connecting line and orthogonal to the connecting line. Queries
are always generated by the latest found Opposite Pair.

its label. If positive, we then use the midpoint of X, and
C_ as a new synthesized instance. Repeating this process
b times, we can find an Opposite Pair {X,X_} close to
the classification boundary. See Algorithm 1.

Algorithm 1 Find
separating  hyperplane.
findPair({X%,x°}, £L°,U°,b)

Require: {X9,X°} - Initial Opposite Pair; L° - Current
labeled set; U° - Current unlabeled set; b - Number of
binary search

Ensure: {X,,X_} - Opposite Pair close to separating
hyperplane; £ - Updated labeled set; U - Updated un-
labeled set;

1: for i =1 to b do
Synthesize an instance Xg
X4 ¢ nnSearch(Xs,U)
Query X4
L=LUXg, U=U\X,
if X, is positive then

X4 4 Xq
else
X_ X4

10:  end if

11: end for

12: return {x,,x_}, £, U

Opposite  Pair  close  to
({x4,x-},L,U) =

= (X4 +x-)/2

After we find an Opposite Pair close enough to the
classification boundary, we generate the next query in the
direction of its midperpendicular. This new synthesis can
be obtained by adding an orthogonal vector to the mid-
point. We can find the vector by orthogonalizing a random
vector using Gram-Schmit process and normalize its mag-
nitude to A. See Algorithm 2 for details. Similarly, we
search for its nearest neighbour from the unlabelled set
and query the label. If positive, we then use X, and X_ to



generate the next query. The entire algorithm is shown in
Algorithm 3.

Algorithm 2 Synthesize midperpendicular query for Op-
posite Pair. Xg = getPeTpQuery({X+, X_}, )\)

Require:  {xi,X_} - Opposite Pair; A - Magnitude of
midperpendicular vector;
Ensure: X, - Synthesis
10 Xp = Xg — X
2: Generate a random vector X,
3: Use Gram-Schmit process to make X, orthogonal to
Xoy Xp = Xp— < Xy Xo > [/ < X, X > #X,
4: Set the magnitude to A\, X, = A\/norm(X,) * X,
5: Translate it to the midpoint, X; = X, + (X4 + X_)/2
6: return X;

Algorithm 3 Proposed framework of active learning.
Require: L - Labeled set; U - Unlabeled set; n - Number
of instances to select; b - Number of binary search; A
- Magnitude of midperpendicular vector; Learner -
Learner
Ensure: /- hypothesis
1: Obtain ¢4 and Cc_
2 ({xX4,X_},L,U) = findPair({cy,c_},L,U,b)
:fori=b+1tondo
© Xy = getPerpQuery({X+, x_}, )\)

3

4

5. X4 = nnSearch(Xs,U)
6:  Query X,

7 L=LUXg, U=U\X,
8: if X, is positive then
9

: X4 ¢ Xq
10: else
11: X_  Xq
12:  end if
13: end for

14: h = Learner(L);
15: return h

The proposed approach can overcome the issue of mean-
ingless queries by using their nearest neighbors instead. As
to computational complexity, since query synthesis only
works on a small set of labeled data, most computational
cost of querying is on the nearest neighbor search. The
computational complexity of the linear search is O(kd),
where k is the size of the pool and d is the dimensional-
ity. Our algorithm can be further sped up by using fast
approximate nearest neighbour search.

3.2. Kernel FExtension

In order to extend our framework to kernel version, we
need to address the issues of binary search and midperpen-
dicular synthesis in feature space. Consider the same data
set D = L UU, we project the data into an appropriate
feature space by a nonlinear mapping ¢(X).

3.2.1. Binary Search in Feature Space

In 3.1, we use an Opposite Pair {xX;,X_} to obtain
instances close to the separating hyperplane with binary
search. We can also do this in feature space. Given an
Opposite Pair {X4,X_}, i.e. {$(X4),¢(x_)} in feature
space, the unlabelled instance nearest to their midpoint in
feature space can be obtained by solving:
2
min
xeu

)

2

6(x) — 3 [6(x4) + 60 )]

which can be reformulated by introducing kernel functions

g{rlézx} (k(x,X) — k(X,X4) — k(X,X_)).

3.2.2. Midperpendicular Synthesis in Feature Space

Suppose we already have an Opposite Pair {Xy,X_},
and in feature space they become {¢(Xy),¢(x_)}. Simi-
larly we should generate a random vector, here we ran-
domly select an instance X, in the dataset, then used
Gram-Schmit to orthogonalize it and set its magnitude to
A. After we obtain the synthesis, we then search its near-
est neighbour in the unlabelled pool as the actual query.
The instance in unlabelled pool closet to the synthesized
query can be obtained by solving:

néilx} (k(x,X) +mik(X,X,) + mok(X, X4) + msk(X,X_)),
X

where

my = —2/\/\/k(XT,Xr) —a?/B,
me =—14 2Aa/\/52k(xr7xr) —a?f,
my = —1— 2Aa/\/ﬂ2k(xr,xr) 2.

with o = k(X,,X4) — k(X,,X2), and 8 = k(X4,X4) +
k(x_,Xx_) — 2k(Xy,X_).

3.3. Representative and Compact Pool

To also take into account the representativeness of our
queries, we exploit clustering techniques on the whole data
set as a pre-processing, and collect the unlabelled instances
nearest to the local centers to construct a representative
and compact unlabeled data pool.

We first use a clustering technique (e.g., k-means) to
process the original data set. In this process, D is parti-
tioned into K clusters {Dy, Do, ..., Dk }, where D;ND; = ()
for any i # j and D = WX D;. Each cluster consists of
a group of data points that are similar to each other. For
cluster D;(1 < i < K), the centroid (cluster mean vector

)Ci is
1
“~p| 2%

X €D,
Then, the data point X, in U nearest to ¢; can be found
by nearest neighbor search strategies. We therefore obtain
a set U, containing nearest neighbors of centroids.

U = {argg{neigﬂxciﬂg,i— 1,...,K}



With clustering techniques, a set of clusters {Dy, ...
and their best representation U, can be obtained to rep-
resent the general distribution of D. If the label of X, is
given, it will provide important information for the labels
of data points in D;. We therefore generate queries from
U, in our approach. Note that U] = K and U. C U.
The size of the compact pool U, is smaller than that of
the original unlabelled data set, the proposed approach
is computationally efficient and practical for large scale
problems.

For the pool construction in feature space, we first
project the data set D into an appropriate feature space
by a nonlinear mapping ¢(X). Similarly, kernel cluster-
ing technique can be used to partition D into clusters
{D},Dj,...,Di}. So, we now construct the compact and
representative unlabeled data pool by finding the nearest
neighbour to the centroid of each cluster. Concretely, for
each cluster ’D;(l < i < K), the centroid in feature space
can be represented by C; = IT:’l/-I > ¢(X;), where |D;| is

' x;€D;]

the number of instances in cluster D;. Then the nearest
neighbour can be obtained by

. /
min [|¢(x) — i3,

which is equivalent to

. 2
min (k(x,x) — o] Z, k(x,X;)).
X; €D,

Then a compact and representative unlabeled data pool
can be constructed:

U. = {argmin (k(X’X)_ﬂij Z k(x,xj)),z' =1,...,.K

Xeu ,
XjE'Di

4. Experiments

In this section, we demonstrate the performance of the
proposed method on an artificial data set, UCI data sets
[36] and MNIST database of handwritten digits [37].

We compared our methods with random sampling, and
uncertainty-based sampling method and LLR-based active
learning [4]. i) Random sampling: The algorithm ran-
domly selects an instance in each round of iteration.This is
actually a passive learning method. ii) Uncertainty-based
sampling: The algorithm selects the most uncertain in-
stance as next query. For Nearest Neighbour learner, the
uncertainty of each unlabeled point is measured by the
vote entropy of its five nearest neighbours. For the SVM
learner, we used libsvm [38] to get a posterior probability
for each instance. The most uncertain instance is the one
with a posterior probability closest to 0.5. iii) LLR-based
active learning in [4] selects the most representative in-
stance at each iteration based on locally linear reconstruc-
tion. We evaluated the performances of different competi-
tors by the curves of classification accuracy against the
size of labeled set.

7DK}

For each data set, we randomly partitioned it into the
initial labeled data set £, the test set 7 and the unlabeled
data pool U, which accounted for 5%, 25% and 70% of
the total size Niorq; respectively. This partition process
was repeated 200 times to reduce randomness. All the
results shown in this section are the average values over
200 repetitions. In addition, as described in Section 3.3,
we clustered the whole data set into | Nypiar/10]| groups
using (kernel) k-means. Instances closest to centroids in
U was selected to construct the compact pool U, for query
generation. A PC with AMD Athlon 7550 CPU (2.50GHz)
and 2GB RAM with 64-bit Win7 and Matlab 2013a was
used as the experimental platform.

4.1. Artificial Data Set

The artificial data set consists of two classes of data
that are linearly separable in R'%Y. We first got a hyper
plane in the space by randomly generating its normal vec-
tor w € R'%, Then we randomly sampled in the space,
and collected 250 data points with wTx > 0 and 250 data
points with wTx < 0. To validate the effectiveness of
our synthesis strategy, we compared our algorithm without
pre-clustering with the baselines. The results are shown in
Fig. 3. It can be seen that our synthesis-based query strat-
egy outperforms the baselines significantly, which demon-
strates the effectiveness of our synthesis query even with-
out pre-clustering.

0 10 20 30 40 50 60 70 8 90 100
Number of terations

Figure 3: Results on artificial data set by Nearest Neighbour learner
without pre-clustering.

4.2. UCI Data Sets

We investigate the performance of the competitors on
6 UCI data sets, which are described briefly in Table 1.

Table 1: Description of data sets

#cls  Fattr  #inst  |L]  |U] |T|
bupa 2 6 345 35 224 86
diabetes 2 8 768 77499 192
heart 2 13 270 27 175 68
ionosphere 2 34 351 35 228 88
spambase 2 57 4601 460 2991 1150
wdbc 2 31 569 57 370 142




We first consider the comparison using Nearest Neigh-
bour learner. Since Nearest Neighbour learner has shown
good applicability to nonlinear problems, we do not use
nonlinear mapping, i.e., these querying proceeds in the
original space. As we can see from the plots in Fig. 4,
our methods outperforms all the others in terms of aver-
age accuracy. To explore the efficiency of our strategy, we
also listed the average CPU time costs of each round of
iteration of different methods in Table 2. The time cost of
our framework included that for pre-processing (clustering
and kernel matrix computation for SVM), which was av-
eraged into every iteration. Note this cost can be reduced
when the number of iteration is increased. So we listed the
cost in smaller fonts. It is clear that the time costs of our
methods are similar to those of random sampling, which
are much smaller than those of uncertainty sampling and
[4].

Table 2: Time of querying using Nearest Neighbour learner (x10~%

s)

Ours Zhang  Uncertainty Random
bupa 5+1 3904 96 1
diabetes T+5 106893 231 2
heart 4+2 1999 78 1
ionosphere 6+3 5125 111 2
spambase 124177 1072720 8236 3
wdbc 7+6 45540 194 2

In order to show the ability to be compatible with ker-
nel learners and get higher accuracies, we evaluate the
performance of our framework combined with SVM. For
every competitor, all of the data were mapped into a high-
dimension space using RBF kernel. Fig. 5 shows the
curves of the average classification accuracies of each com-
petitor using SVM learner. As we can see from the plots,
our methods are superior to method in [4] and random
sampling and have slightly worse performance than un-
certainty sampling. As we have developed kernel version,
our framework can be combined with more powerful kernel
SVM learner, the accuracies of every competitor are higher
than that obtained using Nearest Neighbour learner. The
average CPU time costs of each round of iteration of differ-
ent methods are shown in Table 3. It is clear that the time
costs of our methods are similar to those of random sam-
pling, which are much smaller than those of uncertainty
sampling and [4].

4.3. Handwritten Digit Recognition

Lang and Baum’s query learning failed in a handwrit-
ten digit recognition task because the human oracle could
not understand the image synthesized by the algorithm
[14]. To address this problem, our algorithms query the
real instance closest to the synthesized one. In order to

Table 3: Time of querying using SVM learner (x10~% s)

Ours Zhang  Uncertainty Random
bupa 9+3 3904 103 2
diabetes 12+10 106893 340 2
heart 444 1999 30 2
ionosphere 6+5 5125 57 2
spambase 1744382 1072720 5173 39
wdbc 4+9 45540 7 2

demonstrate the competence of our algorithms in vision-
based recognition tasks, we conducted handwritten digit

recognition experiments on MNIST database. MNIST database

is a popular handwritten digit data set containing 60000
images in the training set and 10000 images in the test set
(images with size of 28 x 28). Some instances are shown
in Fig.6.

fJ a (3} g a9 o o o % =4

/ / / / / / / / \ /

3 3 3 3 3 2 3 (N 3 3
4 H 5 4 ¢ « 4 + 4 4
£ g 5 5 £ 5 E3 S g 5
b e A & A b & ¢ 6 ¢
7 7 7 a 7 7 7 7 7 7
* £ v 7 4 5 I3 g g 3
7 9 9 g 7 ¢ g a 2 q

Figure 6: Examples of MNIST data.

We tested our framework with Nearest Neighbour learner
on’3 vs’5, 7 vs 'Y, In these two groups of experiments,
we randomly chose 500 examples from each class to create
the experimental data set. PCA was employed to reduce
the dimension from 784 to 122. The partition of the data
set was exactly the same as described above.

An illustration of a single iteration of our approach is
given in Fig.7(a). Data points are plotted in the subspace
specified by the first two principal components. Some Op-
posite Pairs and their synthesized queries according to our
approach are shown in Fig.7(b). Similar to the work by
Lang and Baum, the synthesized instances are tricky to
understand. However, instead of using the synthesized in-
stances directly, we query their nearest neighbors, which
are normal instances and easily recognizable.

The comparison of accuracy is shown in Fig. 8. Time
consumption is shown in Table 4. In the classification of
’3” versus ’5’ and 7’ versus '9’, the accuracy of our method
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Plots of mean accuracy with respect to the number of iterations on UCI data sets using Nearest Neighbour learner.
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Figure 5: Plots of mean accuracy with respect to the number of iterations on UCI data sets using SVM learner.
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Figure 7: Illustration of experiments on MNIST data. (a) Illustration of a single iteration in the proposed method. The hollow points indicate
unlabeled data points and the solid points indicate local center points. The digit images without frame indicate the labeled data points. The
digit image with dotted frame indicates the synthesized query using binary search. The digit image with solid frame indicates the nearest
neighbor of the synthesized query among local center points. (b) Examples of queries by the proposed method. The first two columns are
Opposite Pairs found in the experimental process. Their midpoints (the synthesized queries) are shown in the third column. The unlabelled
instances nearest to the synthesized queries are shown in the last column.

outperforms the uncertainty sampling, while the time cost
is much smaller. Method in [4] yields best accuracy, but
the time consumption is tremendous. Experimental re-
sults show that our algorithms are not only practical but
also competitive compared to the existed pool-based un-
certainty sampling methods, which have been widely used
in practice.
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Figure 8: Plots of mean accuracy with respect to the number of
iterations on MNIST data sets.

Table 4: Time consumption on MNIST database (x1074 s)

Ours Zhang Uncertainty Random
3vshH T+25 168680 1494 2
7Tvs9 6+22 145649 1393 2

5. Conclusion

We proposed a novel framework of active learning that
combines query synthesis and pool-based sampling. The

basic idea is to synthesize an instance on the classifica-
tion boundary according to the current labelled data in
an efficient way, and then select the real instance nearest
to the synthesized query from a compact representative
unlabeled data pool as the query point. The proposed
approaches not only enjoy the efficiency of query synthe-
sis but also make the queries reasonable and meaningful
for human oracles to label. Furthermore, we extended this
novel technique into feature space, to better cope with non-
linearly separable data and be compatible with more pow-
erful kernel learners such as SVM. Experimental results
on several real-world data sets indicate that the proposed
method outperforms the random sampling in terms of ac-
curacy significantly and has distinct speed advantage and
similar performance compared to pool-based uncertainty
sampling methods.
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