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INTRODUCTION 1 
 2 
Triathlon is a multi-discipline sport that comprises swimming, cycling and running 3 

consecutively, with a transition between each of these activities. The cycle to run transition is 4 

of particular importance in triathlon because running performance is highly correlated with 5 

overall triathlon finishing position [Frohlich et al., 2008]. Accordingly, running-specific 6 

kinematics and muscle activation patterns which are unaffected by previous cycling activity 7 

are likely to improve transition run and triathlon performance [Chapman et al., 2008]. 8 

From a biomechanical perspective, the cycle to run transition is challenging because 9 

triathletes must successfully negotiate a change in the dominant type of loading, the type of 10 

muscle contraction, and a change in lower limb range of motion (ROM); cycling is a non-11 

weight bearing activity, principally requires concentric muscle contractions and relatively 12 

smaller ROM, whereas running is load-bearing, requires the leg muscles to perform 13 

substantial eccentric work, and requires larger ROM [Heiden and Burnett, 2003]. From a 14 

research perspective, studies have investigated the effects of cycling on the kinematics of 15 

transition running in order to precisely identify the affected features [Chapman et al., 2008; 16 

Gottschall and Palmer, 2000; Vercruyssen et al., 2002]. Several studies have investigated the 17 

effects of cycling on the running stride with varied results. Some have reported shorter 18 

running strides after cycling [Gottschall and Palmer, 2000; Hausswirth and Lehenaff, 2001], 19 

while others have seen no changes [Hue et al., 1998]. However, given the inherent 20 

differences in ROM involved in cycling and running, it is perhaps surprising that few studies 21 

have investigated the effect of cycling on lower-limb ROM in a transition run. The effect of 22 

cycling on muscle activation during a subsequent transition run has also been disputed 23 

[Bonacci et al., 2011; Chapman et al., 2008]. One study reported that after just 20 minutes of 24 

cycling some triathletes exhibited altered tibialis anterior (TA) muscle activation in a 25 
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transition run [Chapman et al., 2008], though this effect was observed in only 5 out of 14 26 

triathletes, and reasons to differentiate responders from non-responders are not known. 27 

One potential reason why studies have failed to observe consistent results concerns the 28 

duration of the cycling protocol. Previous studies have generally employed cycling protocols 29 

of 1hour or less [Chapman et al., 2008; Gottschall and Palmer, 2000] which is consistent with 30 

Olympic distance triathlons which include 40km of cycling. However, longer distance 31 

triathlons are increasingly popular with cycling distances of 90 to 180km, resulting in a 32 

cycling time of 3 to 7 hours. In addition, experienced recreational triathletes are adapted to 33 

cycling because they cycle for approximately 5.8 hours per week or 48% of the total training 34 

time  [Andersen et al., 2013], which would likely comprise acute bouts which are longer than 35 

1 hour. We posit that an acute bout of prolonged cycling will stimulate measurable 36 

neuromuscular and kinematic responses in a subsequent transition run in experienced 37 

triathletes. However, no studies have investigated the effect of prolonged cycling on muscle 38 

activation and kinematics in a transition run. 39 

Activities that stimulate a fatigue response tend to lead to pronounced changes in movement 40 

and increased movement variability [Barbieri et al., 2013]. Measures of movement variability 41 

are considered to provide a general assessment of the integrity of the motor system. 42 

Movement variability has been evaluated in running and walking using stride time variability 43 

(STV), where increased variability is associated with problems in locomotor control 44 

[Hausdorff, 2009; Jordan and Newell, 2008; Padulo et al., 2012]. Indeed, the perception of 45 

impaired locomotor control in the lower limbs in the first kilometre of the transition run is 46 

one reported effect of the cycle to run transition [Heiden and Burnett, 2003]. However, no 47 

previous studies have established the effect of prolonged cycling on STV in a transition run. 48 
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The aim of this study was to investigate the effect of 3 hours of cycling on STV, stride length, 49 

lower limb ROM, and TA muscle activation in a post-cycle transition run in triathletes. We 50 

hypothesised that triathletes who completed a 3 hour cycling protocol would show 51 

significantly greater STV and TA muscle activation, and would employ shorter strides with 52 

reduced lower limb ROM at the beginning of a post-cycle transition run compared to a 53 

control run.  54 

 55 
METHODS 56 
 57 
Participants 58 

Participants were eight trained triathletes with a minimum of four years triathlon experience, 59 

currently training at least three days per week, free of injury, and accustomed to treadmill 60 

running. Participants mean (± SD) age (yrs.), height (cm) and weight (kg) were 41.9 (± 6.0), 61 

177 (± 8.5), 76.2 (± 4.5) respectively. Although a mean age of 41.9 years is higher than the 62 

typical age of participants in other sport science research, there are two features of Ironman 63 

triathlon which indicate that our sample is representative of the majority of recreational 64 

trained triathletes competing in Ironman triathlon.  Firstly, an analysis of Ironman 65 

participation revealed that the 40-44 age category provides the greatest individual 66 

contribution to male Ironman finishers [Stiefel et al., 2013]. Secondly, peak Ironman triathlon 67 

performance occurs at 33-34 years which is up to 10 years later compared to the average age 68 

of peak performance in other sports such as sprinting [Rust et al., 2012; Schulz and Curnow, 69 

1988]. The study was approved by the university ethics committee. All participants gave 70 

written informed consent and were fully informed of the purposes and procedures for this 71 

study. 72 

 73 
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Procedures 74 

Participants visited the laboratory on three occasions each separated by at least 72 hours. 75 

Visits 1 and 2 consisted of randomly assigned maximal aerobic tests for running and cycling 76 

on a treadmill (h/p Cosmos Mercury, Sports & Medical GMBH, Nussdorf-Traunstein, 77 

Germany) and cycle ergometer (Lode Excalibur, Groningen, Netherlands). During visit 3 a 78 

run-cycle-run test designed to encourage fatigue in participants and simulate the constraints 79 

of a long distance triathlon was performed. After a warm-up, the protocol consisted of a 30 80 

minute pre-cycle run at 70% of maximal aerobic speed (Vpeak), 3 hours of cycling at 55% of 81 

maximal aerobic power (Wpeak), and a 10 minute post-cycle run at 70% Vpeak. 82 

Maximal incremental cycle test 83 

All participants completed an incremental cycle test to volitional exhaustion to determine 84 

VO2 peak during cycling and power output at VO2 peak (Wpeak). Prior to starting, height and 85 

body mass were recorded. Participants started cycling at 95W for 3 minutes followed by 86 

incremental steps of 35W every 3 min until volitional exhaustion. Wpeak was determined by 87 

the formula: Wpeak = Wout + [(t/180)·35], where Wout is the power output (Watts) during 88 

the last completed stage, and t is the time (s) in the final stage [Wallis et al., 2005]. Expired 89 

gases were collected using the Douglas bag method for the last minute at each workload 90 

[Connick and Li, 2014]. The Douglas bag yielding the highest VO2 data was deemed as 91 

having the VO2 peak values. Wpeak was used to calculate the 55%Wpeak workload, which 92 

was later employed in the run-cycle-run test. 93 

 94 

Maximal incremental run test 95 
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All participants completed an incremental run test to volitional exhaustion to determine VO2 96 

peak during running and velocity at VO2 peak (Vpeak). Prior to starting, height and body 97 

mass were recorded. Participants completed a 10-minute warm up at self-selected pace prior 98 

to the test to ensure they were accustomed to the treadmill (h/p/cosmos, Sports & Medical 99 

GMBH, Germany). Participants started at a running velocity of 10km/h for 3 minutes. This 100 

was followed by incremental steps of 1 km/h every 3 minutes until volitional exhaustion. 101 

Vpeak was determined by the formula Vpeak = Vout + (t/180), where Vout is the running 102 

velocity during the last completed stage, and t is the time (s) in the final stage. Expired gases 103 

were collected using the Douglas bag method for the last minute at each workload. The 104 

Douglas bag yielding the highest VO2 data was deemed as having the VO2 peak values. 105 

Vpeak was used to calculate the 70% Vpeak workload, which was later employed in the run-106 

cycle-run test.  107 

 108 

Run-Cycle-Run Test 109 

Three-dimensional data were captured using a calibrated Vicon MX motion analysis system 110 

(Oxford Metrics Ltd., Oxford, England) with 13 cameras operating at a sampling rate of 111 

250Hz, and collected as previously described [Schache et al., 2000]. Retro-reflective markers 112 

were attached with double-sided adhesive tape by the same tester to limit inter-tester 113 

variability over the greater trochanter, the lateral femoral condyle, the lateral malleolus, the 114 

base of the calcaneus, the head of the fifth metatarsal, and the hallux of the right lower limb 115 

and foot, and bilaterally on both ASIS and PSIS. Four additional reflective markers were 116 

placed superior to the heel counter of the right running shoe, tibial tuberosity and halfway 117 

along the lateral and frontal aspects of the thigh. The foot was defined as the vector from the 118 

head of the fifth metatarsal to the heel. The shank was defined as the vector from the lateral 119 
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malleolus and the lateral epicondyle, and the thigh was defined as the vector from the lateral 120 

epicondyle to the greater trochanter. The pelvis was defined as the vector from the mid-ASIS 121 

to the mid PSIS. Joint angles were defined as shown in Figure 1. Stride length was the 122 

distance travelled from right foot contact to ipsilateral foot contact. Foot contacts were 123 

calculated based on a previous algorithm [O'Connor et al., 2007] which used heel and toe 124 

markers to identify features of the velocity of the foot which correspond to heel strike and toe 125 

off. The algorithm produced reliable stride pattern data (ICC (95% CI) = 0.93 (0.76-0.98) 126 

[Connick and Li, 2014]. 127 

 128 

Single differential electrodes (DE-2.3, Delsys Inc., Boston, MA) were placed on the skin 129 

longitudinally over the belly of TA of the right leg, parallel with the muscle fibres [Ferris et 130 

al., 2001] to record muscle activation patterns. Electrodes were polycarbonate and rectangular 131 

in shape (41mm x 20mm x 5mm) and the contact sensors were 10mm x 1mm in size with 132 

10mm  spacing  and  constructed  of  99.9%  Ag.  Input  impedance  was  >1015Ω  //0.2pF  and  133 

Common Mode Rejection Ratio -92 dB. The skin at the site of each electrode site was 134 

shaved, abraded and cleaned. Muscle activity data capture was synchronised with the 135 

kinematic data and recorded using a Delsys Myomonitor III EMG system (Delsys Inc., 136 

Boston, MA) at a sampling rate of 1000Hz. 137 

To ensure participants were accustomed to the treadmill, participants ran for 8 minutes at 138 

70% of Vpeak. After the warm-up, participants completed a pre-cycle run of 22 minutes at 139 

70% Vpeak. Muscle activation and 3D-kinematics data were recorded for 30 seconds 140 

between 1-1.5 minutes (PRE-1) before participants drank an initial 600ml bolus of water. 141 

After 13 minutes of running, muscle activation and 3D-kinematics data were recorded again 142 

for 30 seconds (PRE-2). After the control run, participants rapidly changed into their cycling 143 
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shoes and pedalled for 3 hours at 55% Wpeak using a self-selected cadence throughout. 144 

Finally, participants rapidly changed back into running shoes and completed the post-cycle 145 

run at 70% of Vpeak for 10 minutes. Muscle activation and kinematics were recorded for 30 146 

seconds between 1-1.5 minutes (POST-1) and 9-9.5 minutes (POST-2). Water was provided 147 

ad libitum during the protocol. 148 

 149 

Post-processing 150 

Muscle activity data were band-pass filtered with cut-off frequencies of 20Hz and 450Hz, 151 

full-wave rectified, and further low-pass filtered using a fourth-order Butterworth low-pass 152 

filter with a 10Hz cut off frequency to create a linear envelope [Ferris et al., 2001]. The data 153 

were divided into gait cycles using foot contacts to determine a mean linear envelope. In 154 

order to measure TA muscle activation, the mean amplitude value (MAV) was calculated for 155 

each trial by integrating the linear envelope over the gait cycle [Bressel et al., 2001]. The 156 

MAVs for PRE-2, POST-1 and POST-2 were normalised to the first data collection (PRE-1 157 

MAV). 158 

Kinematic data were low-pass filtered using a fourth-order Butterworth filter with a cut off 159 

frequency of 12Hz [Lamb et al., 2011; Nigg et al., 2012]. Ensemble-average joint angles 160 

were obtained by dividing data into individual gait cycles (0-100%) using foot contacts. STV 161 

was calculated as the coefficient of variation (CV) of stride time at each time point.  162 

 163 

Statistical Analyses 164 

Normal distribution of data was confirmed using the Shapiro-Wilk test. Repeated measures 165 

ANOVA were employed to test for effects on TA muscle activation, STV, stride length, and 166 
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ankle, knee and hip ROM. Post-hoc t-tests, with appropriate Dunn-Sidak corrections, were 167 

employed to determine significant differences between time points [Gallagher et al., 2011; 168 

Sokal and Rohlf, 2000]. Effect sizes were measured using Cohen’s  d  which standardises the 169 

difference between the means by the common within-population standard deviation[Cohen, 170 

1992]. Effect sizes were interpreted as follows: 0.80 was a large effect size, 0.50 was a 171 

medium effect size, and 0.20 was a small effect size[Cohen, 1988]. Statistical analyses were 172 

performed using SPSS V.20 (IBM Corporation, Somers, NY) with significance alpha levels 173 

set to p=0.05. 174 

 175 

Results 176 
 177 
Results of the maximal incremental run and cycle tests are presented in Table 1. ANOVA 178 

results showed a significant time effect on stride variability [F(3,21)=3.604, p=.03, 
2
 = .34], 179 

stride length [F(3,21)=3.127, p=.047, 
2
 = .31], ankle ROM [F(3,21)=4.019, p=.021, 

2
 = 180 

.37] and hip ROM [F(3,21)=3.633, p=.03, 
2
 = .34].  181 

There were no significant differences between PRE-1 and PRE-2 for any variable. STV 182 

significantly increased from 0.89% (±0.33) to 1.29% (±0.41) (d = 0.95), a change of 45%, 183 

between PRE-2 and POST-1 (Figure 2A) (p<0.05). Stride length significantly decreased from 184 

2.22m (±0.25) to 2.18m (±0.26) (d = 0.15) between PRE-2 and POST-1 (p<0.05), a change of 185 

1.8% (Figure 3A). By the end of the transition run (POST-2), STV had decreased (d = 0.90) 186 

and stride length increased (d = 0.09) compared to POST-1 toward pre-cycling levels but 187 

these changes were not significant. Ankle (d = 0.40) (Figure 3B) and hip ROM (d = 0.41) 188 

(Figure 3D) significantly increased from POST-1 to POST-2 (p<0.05). 189 
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The effect of prolonged cycling on knee ROM [F(3,21)=1.287, p=.305, 
2
 = .16] (Figure 3C) 190 

and TA muscle activation [F(3,18)=3.728, p=.079, 
2
 = .39] (Figure 2B) was not significant. 191 

 192 
Discussion 193 
 194 

The aim of this study was to establish the effect of 3 hours of cycling on STV, stride length, 195 

lower limb ROM and TA muscle activation in a post-cycle transition run. The main results 196 

were that, compared to a control run, the triathletes exhibited significantly greater STV and 197 

ran with shorter strides at the beginning of the transition run. However, we detected no 198 

significant effect of cycling on lower limb ROM and TA activation at the beginning of the 199 

transition run. After 10 minutes of transition running triathletes exhibited significantly 200 

increased ankle and hip ROM compared to the beginning of the transition run indicating the 201 

immediate effect of cycling was transient. Generally, these results agree with previous studies 202 

which have shown that short duration cycling alters movement patterns but has little effect on 203 

muscle recruitment in transition running [Bonacci et al., 2010]. 204 

The cycle to run transition is often characterised by a perception of impaired locomotor 205 

control in the lower limbs [Heiden and Burnett, 2003], and previous gait studies have 206 

associated poor locomotor control with high stride-to-stride variability [Hausdorff, 2009]. 207 

The pre-cycle STV values in the current study were consistent with STV from previous 208 

studies in healthy runners [Belli et al., 1995; Nakayama et al., 2010]. However, our results 209 

showed that an acute three hour bout of cycling was associated with a 45% increase in STV 210 

from the pre-cycle run to the transition run. According  to  Cohen’s  d  this was a large effect 211 

size and the highest effect size observed in the current study representing an increase in the 212 

mean of almost one standard deviation. Increased STV is associated with muscle fatigue, 213 

which is mediated by a disruption to neuromuscular control, and is a factor associated with 214 
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increased risk of injury [Barbieri et al., 2013; Heiderscheit et al., 2011; Helbostad et al., 215 

2007]. Therefore, perhaps the most important practical implication of this study is that STV 216 

can potentially be used as a non-invasive measure to evaluate the impact of cycling training 217 

interventions on the integrity of the locomotor control system in a transition run, and further 218 

studies are warranted to investigate the validity of this specific application of STV. 219 

Our data cannot identify causality between transition running STV and cycling. However, 220 

previous studies have suggested that in a transition run the neuromuscular system is unable to 221 

quickly adapt to the change in neural firing rate from cycling, and instead the firing pattern 222 

established during the cycling stage is maintained [Gottschall and Palmer, 2000]. This type of 223 

inappropriate and involuntary maintenance of a prior activity is called perseveration and, in 224 

the context of cyclical activities, offers a coherent explanation for the increased STV found in 225 

this study [Gottschall and Palmer, 2000]. Compared to experienced distance runners, non-226 

runners exhibit significantly greater STV indicating that specialised distance running 227 

stabilises the stride (i.e. minimises STV) as a by-product of task-related optimisation 228 

[Nakayama et al., 2010]. Consequently, stride time variability is likely to be a trainable 229 

feature of transition running and in support of this hypothesis studies suggest that, compared 230 

with their novice counterparts, elite triathletes are more resistant to loss of coordination and 231 

physiological changes at the beginning of the transition run [Millet et al., 2000; Millet and 232 

Vleck, 2000].  233 

The finding that our sample of triathletes took shorter strides at the beginning of the transition 234 

run concurs with previous research [Gottschall and Palmer, 2000; Hausswirth and 235 

Brisswalter, 2008].  In addition to studies which have indicated that runners select a stride 236 

pattern which is close to the most economical [Cavanagh and Williams, 1982], more recent 237 

research suggests that runners are capable of adjusting the stride pattern toward more 238 

favourable outcomes [Connick and Li, 2014; Hunter and Smith, 2007]. For example, 239 
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relatively small adjustments toward shorter running strides (<2.9%) are associated with 240 

improved running economy in healthy runners [Connick and Li, 2014], and fatigued runners 241 

adjust their stride pattern in order to maintain an economical stride [Hunter and Smith, 2007]. 242 

Therefore the small effect on stride length observed in the current study (1.8%) indicates that 243 

the stride was most likely adjusted in order to maintain a stride pattern which was close to the 244 

most economical at the beginning of the transition run. 245 

We investigated the effect of cycling on TA activation because TA is an important muscle in 246 

running - TA acts to dorsiflex the foot, helps to regulate force at the leg, and controls ankle 247 

joint position [Chapman et al., 2008]. However, while significant findings were observed in 248 

stride time variability and stride length, an effect of 3 hours of cycling on TA activation was 249 

absent which is consistent with the results of previous studies which investigated the effect of 250 

short duration (15 to 20 minutes) cycling on TA activation [Bonacci et al., 2010; Chapman et 251 

al., 2008]. Although a significant effect was not observed, there was greater variation in TA 252 

activation at the beginning of the transition run compared to the pre-cycling run (Figure 2B), 253 

and this provides support to the theory that some triathletes exhibited a greater TA 254 

neuromuscular response in a transition run compared with others [Chapman et al., 2008]. 255 

Although the use of a treadmill in gait and running research is commonplace, there are some 256 

methodological limitations that should be considered when interpreting data derived from 257 

running on a treadmill. Firstly there should be a degree of caution when generalising 258 

treadmill data to overground running [Bonacci et al., 2011]. However, there are studies 259 

suggesting that treadmill running can be generalised to overground running providing the 260 

treadmill is well maintained [Riley et al., 2008]. Secondly, the protocol required a controlling 261 

running velocity pre and post-cycling because kinematics and muscle recruitment change 262 

with running speed [Bonacci et al., 2011]. Consequently, caution should be exercised when 263 

generalising the results to race situations where triathletes adopt a variety of speeds 264 
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[Hausswirth et al., 2010]. Further investigations are needed to establish if stride time 265 

variability increases in overground transition running which simulate race conditions. 266 

In conclusion, the main result of the current study showed that after 3 hours of cycling, 267 

triathletes exhibited greater stride time variability and shorter strides at the beginning of a 268 

post cycle transition run. These results indicate that locomotor control and kinematics of a 269 

transition run are affected by prolonged cycling, and stride time variability might offer a non-270 

invasive method of assessing the immediate impact of prolonged cycling on the locomotor 271 

control of running. Future studies are warranted to evaluate the validity of using stride time 272 

variability for this purpose, and to establish if altered stride time variability and stride length 273 

affect performance in overground transition running. 274 
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Table 1. Results of the maximal incremental running and cycling tests. Participants ran at 70% Vpeak 372 

and cycled at 55% Wpeak during the run-cycle-run protocol. 373 

Activity Variable Mean (± SD) 
Running VO2 peak (ml/kg/min) 58.0 (3.6) 
 Vpeak (km/h) 16.1 (1.5) 
 70% Vpeak (km/h) 11.2 (1.0) 
Cycling VO2 peak (ml/kg/min) 56.2 (8.4) 
 Wpeak (Watts) 332.1 (45.2) 
 55% Wpeak (Watts) 182.8 (24.8) 
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Figure 1. Joint angle definitions. θH is hip angle, θK is knee angle, θA is ankle angle. 376 

 377 

Figure 2. Mean (+1 S.D.) stride time variability (A) and TA muscle activation (B) at each 378 

time point. PRE-1 and PRE-2 are the first and second time points from the control run. 379 

POST-1 and POST-2 are the first and second time points from the transition run. TA muscle 380 

activation data were normalised to PRE-1. * indicates a significant difference compared to 381 

PRE-2. 382 

 383 

Figure 3. Mean (+1 S.D.) stride length (A), Ankle ROM (B), Knee ROM (C), Hip ROM (D) 384 

at each time point. PRE-1 and PRE-2 are the first and second time points from the control 385 

run. POST-1 and POST-2 are the first and second time points from the transition run. * 386 

indicates a significant difference compared to PRE-2. # indicates a significant difference 387 

compared to POST-1. 388 
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Abstract 

Previous studies have employed relatively short cycling protocols to investigate the effect of 

cycling on muscle activation and kinematics in running. The aim of this study was to 

investigate the effect of three hours of cycling on stride time variability (STV), stride length, 

tibialis anterior (TA) activation, and lower limb range of motion (ROM) in a transition run. 

Eight triathletes completed a run-cycle-run protocol. Data were collected from a pre-cycle 

run and a transition run after three hours of cycling. STV, stride length and ROM were 

assessed using three-dimensional motion analysis, and TA activation was recorded using 

surface electromyography. Results showed that compared with the pre-cycle run triathletes 

exhibited increased STV (Cohen’s  d=0.95) and shorter strides (d=0.15) in the transition run 

(p<0.05). TA activation and ROM did not change. After ten minutes of transition running, 

ankle and hip ROM significantly increased (d=0.40 and 0.41 respectively) compared to the 

beginning of the transition run (p<0.05) but no other changes were observed. The results 

suggest that locomotor control and kinematics in a transition run are affected by prolonged 

cycling and stride time variability is potentially a novel method of evaluating the immediate 

effect of prolonged cycling on the locomotor control of running. 
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