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Abstract 

HPV oncogenes disable a number of tumour suppressor pathways, including p53 and Rb, 

contributing to the transformed phenotype. Loss of these critical host cell functions may also 

provide an opportunity to selectively target the destruction of HPV-transformed cells. We have 

performed an siRNA screen using the kinome (779 genes) library to identify genes that when 

depleted are synthetically lethal with HPV transformation. The primary and validations screens 

have confirmed Aurora A kinase (AURKA) as a potential synthetic lethal target selective for HPV 

transformed cells. AURKA has been further investigated using the selective small molecule 

inhibitor MLN8237. We found that MLN8237 was significantly more potent towards the HPV 

transformed cells. The effect was not a consequence of targeting mitosis as two other mitotic 

inhibitors, PLK1 inhibitor (BI2536) and taxol, demonstrated no selectivity. Analysis of the nuclear 

structure and DNA content showed that Aurora A inhibition promoted a high level of polyploidy in 

non-HPV treated cells whilst this same degree of polyploidy was associate with apoptosis in the 

HPV-transformed cell lines. Whereas Bcl-2 over expression in HeLa cells had no effect on 

sensitivity to MLN8237, Mcl-1 overexpressing HeLa cells were less sensitive to the MLN8237 in 

comparison to the parental cell line, which may suggests the involvement of Noxa or Puma pro-

apoptotic proteins in the induction of the apoptosis in the HPV-transformed cells. The transfection 

of the non-HPV C33A cervical cancer and SCC25 squamous cell carcinoma cell lines with the 

HPV16 oncogenic E7 increased sensitivity to MLN8237 between 3 >10 fold suggesting that the 

sensitivity to MLN8237-dependent killing was a direct consequence of HPV E7 expression. 

Xenograft experiments with cervical cancer cell lines in immunodeficient mice showed MLN8237 

inhibited growth of HPV and non-HPV xenografts during treatment with 30mg/kg MLN8237 once 

a day for 10 consecutive days. However, outgrowth of tumour was noticed from the second day 

post-treatment in the non-HPV tumour group whereas the HPV-induced tumour group did not show 

cancer recurrence for 50 days post-treatment. These findings suggest that MLN8237 represent a 

promising novel therapeutic targeted agent against HPV-transformed cervical cancer. 
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1 Literature Review 

1.1 Human papillomavirus (HPV)  

Papillomaviruses comprise several groups of viruses, which have been detected in different 

mammalian species. Due to the medical significance of human papillomaviruses (HPVs), intensive 

investigations have been conducted on them, and, as a result, more than 100 different types have 

been identified (Bernard, 2005). HPVs are a group of icosahedral capsids containing 72 capsomers 

with double-stranded (ds) DNA genome of about 8,000 base pairs (bp) (Nyitray et al., 2010). Based 

on their DNA sequence homology, HPVs can be divided into five subgroups, namely alpha, beta, 

gamma, mu, and nu, each of which is involved in different life cycle progression and disease 

association (Figure 1.1) (Bernard et al., 2010, Ekstrom et al., 2011).  

Based on the phylogenetic tree which was generated from the detected alpha-HPVs, three subtypes 

of alpha-HPVs were identified (de Villiers et al., 2004a, Schiffman et al., 2005). Firstly, the low-

risk 1 group mainly includes HPVs which cause benign genital warts and oral lesions (Schiffman et 

al., 2005). Second, low-risk 2 HPVs are responsible for benign vaginal cells (Narechania et al., 

2005). Finally, high-risk alpha-HPV, may result in cervical neoplasia and cancer (Castle et al., 

2007).  

The second-largest HPV group is beta-HPV. This may pose  problems for immunocompromised 

individuals or people with inherited defects (Ramoz et al., 2002). In addition, it is thought that beta-

HPV may be involved in the development non-melanoma skin cancer in the general population 

(Harwood et al., 2004).  

Like beta-HPVs, the majority of gamma-HPVs may only cause asymptomatic infections in 

immunodeficient individuals; these can be detected by skin swabs or mucosal rinses (Bottalico et 

al., 2011, Gottschling et al., 2009). The remaining mu and nu-HPVs have only three human 

members which have been identified, all of which result in cutaneous papillomas (de Villiers et al., 

2004b). 
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1.1.1 The structure of HPV 

All papillomaviruses share a similar genomic structure and a non-enveloped icosahedral capsid. The 

viral particles comprise a circular dsDNA molecule of 8,000 bp bound to cellular histone and 

encompassed in a capsid which has 72 pentameric capsomers. The HPV genome is divided into 

three main regions, as follows: the non-coding long control region (LCR) with an average of 1,000 

bp; the protein-coding early region of approximately 4,000 bp; protein-coding late region of about 

3,000 bp. There are six different early proteins which are encoded by the viral genome (E1–E7) and 

two late proteins (L1 and L2) (Figure 1.2).  

 

 

Figure 1.1. Evolutionary associations between different HPV subtypes. From (Doorbar et al., 2012). 
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Figure 1.2. Illustration of the HPV genome. The three circles show the possible open reading frames (ORFs) where 

the sense strand can be translated. From (Frazer, 2004). 

The LCR (also known as the upper regulatory region) regulates the DNA replication via the p97 

core promoter by controlling the transcription of the ORFs (Apt et al., 1996). The LCR is also 

thought to have the highest degree of variation in the viral genome, as well as cis components which 

are responsible for replication and transcription of the papillomavirus DNA. The second region 

responsible for DNA replication and oncogenic transformation is early proteins region 

(McLaughlin-Drubin et al., 2008, McLaughlin-Drubin and Munger, 2009). Of interest, E6 and E7 

are key players in this region, and are particularly essential for the cellular neoplastic transformation 

process. The latter oncogenic early proteins appear to interfere with essential normal cellular 

tumour suppressor proteins, where E6 binds and degrades protein 53 (p53) whilst E7 antagonises 

the function of the retinoblastoma protein (pRb) (Brooks et al., 2002, Gao et al., 2002, Shin et al., 

2010). The third region of the HPV genomic structure is the late region, which has two late proteins, 

namely L1 and L2. L1 is the major element of the icosahedral capsid whereas the L2 protein binds 

with the papillomavirus DNA and package it into the viral capsid (Chen et al., 2000, Holmgren et 

al., 2005).  
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1.1.2 Viral proteins 

As indicated above, HPV is composed of an 8 kb genome which has eight major proteins, six 

located in the ‘early’ region and two in the ‘late’ region. Each of these proteins has distinctive 

features and plays a role or a set of roles during the viral life cycle. Table 1.1 demonstrates the main 

function of each viral protein, whilst sections 1.1.2.1 and 1.1.2.2 focus on E6 and E7, as they play 

vital roles in the transformation status and maintaining tumourigenicity during malignancy. 

Table 1.1. Main functions of proteins expressed by the high-risk HPVs 

Protein Role in the virus lifecycle 
L1 Major capsid protein which assembles in capsomers and capsids. Also, encodes 

neutralising epitope.  

L2 Minor capsid protein. Expedites virion assembly and interacts with cell receptors.  

E1 Essential for viral DNA replication (ATP-dependent DNA helicase). 

E2 Plays a vital role in viral replication and segregation. Binds the viral 
transcriptional promoter as a dimer. Orchestrates cellular gene expression and 
encapsidation.   

E4 Virion assembly and release. Has the ability to induce cell cycle arrest (G2 arrest) 
and remodels the cytokeratin network. 

E5 Plays a major role in cell proliferation and differentiation.  

E6 Prevents apoptosis and differentiation. Also induces DNA synthesis. 

E7 Stimulates cell proliferation and it controls the cell cycle. 

 

1.1.2.1 The HPV E6 oncogene 

The HPV E6 oncoprotein is about 160 amino acids in size, and has the ability to induce and 

maintain cellular transformation, albeit inefficiently. To date, it is known that the main target of the 

E6 oncoprotein is p53, also known as the guardian of the genome (Bai et al., 2006). The high-risk 

HPV E6 oncoprotein binds to p53 and causes its proteasomal degradation with the help of the 26S 

proteasome. Although the level of p53 is very low in normal cells, the deregulated overexpression 

of E7 causes this p53 level to increase due to the suppression of the mediator of DNA damage 2 

(MDM2) – mediated proteasomal degradation of p53 in normal cells (Ainsworth et al., 2008, 

Eichten et al., 2002). The process of p53 degradation occurs through a trimeric complex which 

includes E6, E6-associated protein (E6AP), and p53. E6AP is an E3 ubiquitin ligase which 

ubiquitinates p53 and targets it for degradation by proteasome (Zanier et al., 2005). HPV E6 also 
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has the ability to downregulate p53 activity through CREB-binding protein (CBP) and p300. The 

role of the E6AP in the degradation of p53 is essential; however, it has been reported that 

degradation of p53 could be achieved without the presence of E6AP (Massimi et al., 2008). 

 

High-risk HPV E6 oncoprotein also plays a vital role in preventing apoptosis via a p53-independent 

mechanism that entails the suppression of the Bax gene and the inhibition of Bax protein, a pro-

apoptotic protein required for apoptosis, in human keratinocytes (Liu et al., 2008). The high-risk 

HPV E6 oncoprotein can also hinder apoptosis by binding to the tumour necrosis factor receptor 1 

(TNFR1) and prevent its apoptotic signaling (Filippova et al., 2002).  

 

Unlike the high-risk HPV E6 oncoprotein, the low-risk HPV E6 oncoprotein does not bind E6AP to 

form a trimeric complex (E6/E6AP/p53). It has the ability to bind to the p53 but with a minimal 

effect (Massimi et al., 2008, Zanier et al., 2005). The binding of the low-risk HPV E6 oncoprotein to 

the p53 does not degrade p53 due to the very low affinity of the binding process. However, the 

accumulation of p53 after the DNA damage in cells expressing low-risk HPV E6 oncoprotein causes 

the cells to be arrested in the G1 phase of the cell cycle (Pietsch and Murphy, 2008).  

While high-risk HPV E6 targets p53 and inhibit its normal function, HPV E6 has also been found to 

bind to other cellular target proteins. It has been reported that high-risk HPV E6 targets and degrades 

E6 targeted protein 1. This protein has homology with GTPase-activating proteins, and this suggests 

that HPV E6 might modulate G protein signalling (Gao et al., 1999). In addition, in 2007, Jeong and 

colleagues reported that HPV E6 binds to the cystic fibrosis transmembrane receptor-associated 

ligand and hinders its normal function in a PDZ domain-dependent manner (Jeong et al., 2007). 

 

1.1.2.2 HPV E7 oncogene 

The HPV E7 oncoprotein is approximately 100 amino acids in size. This oncoprotein is known to 

bind to the pRb and inhibit its binding to the E2F transcription factor (Barrow-Laing et al., 2010, 

Zhang et al., 2006). (Barrow-Laing et al., Zhang et al., 2006). Normally, pRb protein is 

phosphorylated by two major complexes, namely cyclin D1/cyclin-dependent kinase 4 (CDK4) and 

cyclin E/CDK2; this process causes pRb to dissociate from E2F, allowing E2F-dependent 
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transcription and normal S-phase progression. HPV E7 binds to the hypophosphorylated pRb and 

hinders its interaction with the E2F. As a result, cells overexpressing the HPV E7 oncogene will 

lose checkpoint control at the G1/S transition, and subsequently undergo uncontrolled cellular 

proliferation (Dyson, 1998, Zhang et al., 2010). It has been also reported that E7 causes degradation 

of pRb through the ubiquitin-proteasome-mediated pathway (Liu et al., 2006). The binding of E7 to 

pRb occurs via the LXCXE motif present in the E7 protein (Bischof et al., 2005). 

 

Although pRb is the preferred target of HPV E7, studies have shown that other cellular target 

proteins may interact with HPV E7. HPV E7 binds to the histone deacetylase through Mi2, which 

results in E2F-dependent transcription and subsequent cell proliferation (Longworth and Laimins, 

2004). In addition, HPV E7 has shown to bind to CDK2/cyclin A and cyclin E and stimulates these 

kinases to phosphorylate pRb and promote transcription of S-phase genes. Reports have revealed 

the binding of HPV E7 to CDK inhibitors p27 and p21 (Shin et al., 2009, Zehbe et al., 1999). This 

binding removes the checkpoint control at G1/S in the cell cycle promoting unregulated cell cycle 

progression. 

 

1.1.3 HPV life cycle 

Dissimilar types of life cycle organization are evident in different HPV groups. Moreover, most of 

the work on HPV has focused on high-risk HPVs. Still, based on these many different studies and 

analyses, a general lifecycle pattern has been worked out: the characterised lifecycles forms can be 

modified and then applied to other HPV groups. 

1.1.3.1 Infection and uncoating 

HPV infections act in a similar way to many other microorganism infections where infectious 

particles require access to the human cells. In HPV, access to the basal layer is required and in some 

HPV types break in the stratified epithelium may be essential (Burd, 2003, Flores et al., 1999). 

Different reports have demonstrated that viral DNA from beta-HPV can be amplified by 

polymerase chain reaction (PCR) from plucked hair follicles (Boxman et al., 2001, Wolf et al., 

2004, Pfister, 2003).  
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Because of the high association between high-risk HPV and cervical cancer, the growth of cervical 

lesion can be expedited via infection of columnar cells (Burd, 2003). The nature of the cell surface 

receptor which is initially required to facilitate viral infection is not clear, although several studies 

have suggested the involvement of heparin sulphate (Giroglou et al., 2001, Richards et al., 2013). 

Upon viral entry, the uncoating occurs via the interruption of the intracapsomeric disulphide bond; 

subsequently, the virions migrate to the nucleus where they inaugurate their genomes as multi-copy 

extrachromosomal plasmids sustained at about 20-100 viral copies per infected basal cells (Doorbar 

et al., 2012, Stubenrauch and Laimins, 1999). 

 

1.1.3.2 Genome maintenance and proliferative phase 

Once virions migrate to the nucleus, E1 and E2 proteins are expressed to maintain the HPV DNA as 

an episome and to enable precise genomic segregation throughout the cell division process (Wilson 

et al., 2002, You et al., 2004). E2 has been found to regulate transcription and to be able to recruits 

viral E1 helicase to the viral origin of replication (Kim and Lambert, 2002, Blakaj et al., 2009). 

Viral helicase is different from cellular helicase, and, therefore, they are disconnected during 

genome maintenance and amplification. Additionally, E2 plays a role in genome partitioning 

through basal cell division (McPhillips et al., 2006, Jang et al., 2009). However, during cell 

division, other E-binding-proteins are thought to be essential in the joining of viral episomes to the 

cellular chromatin (McPhillips et al., 2006, McBride et al., 2006, Dao et al., 2006).  

 

The role of E6 and E7 is still unclear in the infected basal cells, particularly when it comes to 

infections associated with the low-risk HPVs, which do not result in neoplasia (Doorbar et al., 

2012). The E6 and E7 viral protein roles have been intensively investigated intensively due to their 

involvement in driving cell proliferation in the basal and parabasal cell layers. E7 is known to be 

associated with pRb, a negative regulator of the cell cycle (Bischof et al., 2005, Huh et al., 2005, 

Shaikh et al., 2012). In normal cells, pRb associates with E2F and prevents S-phase entry. The 

association of E7 with pRb supersedes E2F and results in the expression of proteins required for 

DNA replication. During natural infection, the ability of E7 to initiate S-phase progression is 

limited to cells with low levels of p21/p27, or to those expressing a high level of E7 protein (Noya 

et al., 2001). In addition, viral E6 protein mediates p53 degradation, which consequently prevents 
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apoptosis in response to unscheduled S-phase entry initiated by E7 (Yugawa and Kiyono, 2009, 

Delury et al., 2013). It also has been reported that E6 is able to associate with other pro-apoptotic 

proteins such as Bax and Bak (Thomas and Banks, 1999, Saha et al., 2012). Targeting different 

therefore, E6 is considered a predisposing factor in initiating HPV-related cancers though an 

accumulating likelihood that errors in host DNA to go unchecked.  

 

It has been also reported that E6 viral protein is capable of stimulating cell proliferation 

independently of E7 through its C-terminal PDZ-ligand domain (Pim et al., 2012). In addition to the 

roles of E6 and E7, other viral proteins, namely E1, E2, E4 and E5 are expressed before the genome 

amplification to confirming maintenance of the viral episome at a low copy number (Middleton et 

al., 2003). 

 

1.1.3.3 Genome amplification 

Where the viral genome is replicated and basal cells are divided, one of the daughter cells migrates 

from the basal layer to enter the differentiation programme and further proceeds further towards 

maturation of the epithelium. The expression of viral proteins E6 and E7 in the upper epithelial 

layers facilitates the re-entry into S-phase, and hence, the copy number of the viral genome 

increases. The amplification of the viral genome is thought to occur at a transcriptional level, where 

the late promoter located within the E7 ORF is upregulated (Bodily and Laimins, 2011, Bedell et 

al., 1991). This upregulation is believed to occur due to the increase levels of E1 and E2. In 

addition, E4 and E5 contribute to the viral genome amplification. E5 stabilises epidermal growth 

factor receptor (EGFR) and enhances EGF signalling and mitogen-activated protein kinase (MAPK) 

activity (Genther et al., 2003, Pim et al., 1992). Moreover, independently of EGFR, it modulates 

extracellular signal-regulated protein kinase (ERK) 1 and 2 in addition to p38 (Crusius et al., 2000).  

 

The MAPKs ERK 1 and 2 are essential modulators of nuclear E1 (Yu et al., 2007). This indirect 

correlation between E5 and E1 increases the accumulation of E1 in the nucleus and consequently, 

enhances viral DNA replication through the induction of DNA damage response (Moody et al., 

2007). E4 is a viral protein that accumulates in cells which support virus synthesis; as a result, it is 

believed that E4 is primarily involved in virus release or transmission (McIntosh et al., 2008, Wang 
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et al., 2004a). However, it is also thought that E4 may contribute indirectly to viral genome 

amplification (Wilson et al., 2005, Wang et al., 2009a). 

 

1.1.3.4 Packaging of viral genome and virus release 

The final stage of the HPV life cycle involves the expression of L1 and L2, which will facilitate 

genome packaging. The expression of these two viral proteins switches the message production 

from E1^E4, E5 to E1^E4, L1 to allow genome packaging (Johansson et al., 2012, Milligan et al., 

2007). It has also been also though that E4 contributes to the release of the virions and viral 

infectivity in the upper epithelial layers (Wang et al., 2004a, McIntosh et al., 2008). The 

contribution of E4 is thought to occur via the disruption of keratin structure, thereby compromising 

the common association of the cornified envelope. 

 

1.2 Cell Cycle 

The cell cycle usually refers to the growth and division of cells, which consists of two essential 

phases. The first is the interphase, which is also subdivided into the G1 phase (growth phase), S 

phase (DNA replication), and G2 phase (preparation of the cell to enter mitosis and divide) (Ford 

and Pardee, 1999, Williams and Stoeber, 2012) (Figure 1.3). The second phase is mitosis (M 

phase), where cell divides; this may also be subdivided into the prophase, prometaphase, 

metaphase, anaphase, telophase, and cytokinesis. In the cell cycle, G0 forms the resting state, where 

the cell is reversibly withdrawn from the cell cycle as a result of high cell density or mitogen 

deprivation (Williams and Stoeber, 2012).  

 

Progression throughout the cell cycle is controlled by the CDK and cyclins (Malumbres and 

Barbacid, 2006). Cyclins D-CDK4, D-CDK6 and E-CDK2 control the advancement of the G1 phase 

whereas cyclins A-CDK2 and B-CDK1 control the progression of the S and G2 phases, respectively 

(Nigg, 2001, Planas-Silva and Weinberg, 1997, De Boer et al., 2008). Furthermore, cyclin B-CDK1 

is responsible for the progression through the mitotic phase. As cells progress from one phase to 

another, they pass through cell-cycle checkpoints to ensure the correct order of events (Hartwell and 

Weinert, 1989). If aberrant or incomplete has been found, these checkpoints then transmit signs to 
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effectors, such A CDK inhibitors (CDKIS), which are able to induce cell-cycle arrest until the 

problem is solved (Musacchio and Salmon, 2007). Disruption of these orchestrated cell-cycle events 

underlies the uncontrolled cell proliferation, which is a major hallmark of the malignant phenotype 

(Beamish et al., 2004, Gabrielli et al., 1999). Thus, it can be noted that tight regulation of the cell-

cycle events is required to ensure the fidelity of cell division. 

 

1.2.1 G1 

Upon the completion of cytokinesis the cell enters the first stage of the cell cycle, which is referred 

to as Gap 1 (G1). At this stage the cell needs to accumulate the energy sources and materials 

required to move through various cell cycle stages. Most cells spend the majority of their time 

during the  cell cycle at this stage with a few exceptions. As mentioned above, cell cycle events are 

orchestrated by numbers of CDKs. In G1, the most important target of the CDKs is the pRb (Kato et 

al., 1993). The cyclin-CDK-complex, most notably cyclin D-CDK, phosphorylates pRb on different 

residues. For instance, the cyclin E-CDK2 complex, for example, phosphorylate E2F-5 (Arroyo and 

Raychaudhuri, 1992). This notably occurs only in the late G1 phase. Phosphorylation of pRb allows 

the release of pRb from the E2F transcription factor and consequently, allows cells to move through 

the next stage of cell cycle, namely S-phase, by recruiting p300/CBP co-activators. Other important 

agents in the G1 phase are the CDK inhibitors (CKIs). The CKI family negative regulators in G1 

include at least three proteins, specifically p21Cip1, p27Kip1, and p57Kip2 (Nakayama and Nakayama, 

1998, Sherr and Roberts, 1999). It has been reported that p27Kip1 is degraded in the late G1 and 

plays a crucial role in controlling cell growth at the transition from G1 to S-phase (Nakayama et al., 

2001).  
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Figure 1.3. Cell cycle phases. Illustration of the cyclins and CDKs associated with the cell cycle phases. Modified 
from (Niehrs and Acebron, 2012). 

 

1.2.2 DNA synthesis (S-phase) 

DNA replication is performed and arranged by group of enzymes and proteins which associate with 

each other to perfectly duplicate the genetic information of the cell. Decades ago, fluorescence 

microscopy with bromodeoxyuridine (BrdU) was used to determine how the DNA synthesis 

commences. It was found that newly synthesised DNA is confined to what are known as 

‘replication foci’ or ‘replication site’ (O'Keefe et al., 1992). Co-localizations of several replication 

factors at these sites show that they assemble at these locations (Hozak et al., 1993). Given the 

length of the genome and the bidirectional replication fork, it was noted that early S-phase requires 

about 5 to 6 replicons (Jackson and Pombo, 1998, Ma et al., 1998). In addition, active replication 

forks for each factory should range from approximately few units in early S-phase to thousands in 

late S-phase. Early in the 21st century, it was found that the large replication factors that had been 

identified at late S-phase do not originate from small factos; instead, they are assembled de novo 
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during S-phase (Leonhardt et al., 2000). When chromatin becomes ready for replication (also 

known as the licensed state), initiator proteins prepare for the formation of the pre-replicative 

complexes (pre-RCs) on the replication origins (Prasanth et al., 2004). These initiators include the 

origin recognition complex (ORC), Cdc6/18, Cdt1, and the mini-chromosome maintenance (MCM) 

proteins (Nishitani and Lygerou, 2004, Nishitani et al., 2001). Activation of licensed origins 

basically depends on CDK and Dbf4-dependent kinase (DDK) (Shimada and Komatsu, 2009, 

Devault et al., 2008). Cdk2-cyclin E has been found to play an essential role in initiating DNA 

replication. Activation by protein kinases is thought to result in modifications to the pre-RCs, which 

subsequently results in the association of Cdc45 to the MCM complex (Walter and Newport, 2000, 

Zou and Stillman, 2000). As a result, the replication origins became unwind, and replicating 

proteins such as RPA, polymerase α and polymerase ε are assembled at the initiation site. Once the 

replication of origins is activated, the MCM and Cdc45 move along with the other replication 

enzymes enlisted at the replication forks to successfully complete DNA replication (Pacek and 

Walter, 2004, Wong et al., 2011). 

 

1.2.3 G2 

 This stage of the cell cycle commences upon the completion of the DNA synthesis phase. It is 

relatively a short cell cycle phase compared to G1 in most cell types, where cells undergo a DNA 

fidelity check for major errors and accumulate energy and materials required for cell division in 

mitosis. The progression from G2 to M is Cdk1 in the complex, and dependent on Cyclin B1 

dependent (Gavet and Pines, 2010, Porter and Donoghue, 2003), but the time timing of this 

complex activation depends on Cyclin A/Cdk2 (De Boer et al., 2008). The Cyclin B1 level 

increases during G2, which subsequently gives the chance for Cdk1-Cyclin B1 complex the chance 

to accumulate. The formed complex is kept inactive by the phosphorylation of Cdk1 T14 and Y15 

by Wee and Myt kinases (Mueller et al., 1995, Parker and Piwnica-Worms, 1992, Borgne and 

Meijer, 1996). The Cyclin B1-Cdk1 complex is then activated by Cdc25 phosphatases, which 

dephosphorylate Cdk1 sequentially at T14 and then Y15. Active Cyclin B1-Cdk1 has been 

identified in centrosomes shortly before they travel away from one another towards the end of G2 

(Jackman et al., 2003). Phosphorylation of the Cyclin B1-Cdk1 complex occurs at the cytoplasmic 

retention sequence on Cyclin B1, which results in nuclear translocation of the complex (Hagting et 
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al., 1999, Li et al., 1997a). Indeed, this relocalisation of the Cyclin B1-Cdk1 complex improves 

chromosome condensation and nuclear envelope breakdown. 

 

1.2.4 Mitosis (M) 

In this phase of the cell cycle, sister chromatids are segregated and the cell is divided to produced 

new daughter cells, each of which inherits a complete copy of the genome of its mother (Figure 

1.4). Establishment of the mitotic phase is dependent on Cyclin B/Cdk, which is also known as M-

phase promoting factor (MPF) (Nigg, 2001). Several mitotic events are orchestrated by extensive 

phosphorylation operated by CycB-Cdk1 or some other kinases (Dephoure et al., 2008, Hegemann 

et al., 2011). In mitosis, Cyclin B/Cdk1 maintains itself by a phosphorylation feedback loop where 

CycB-Cdk1 phosphorylates and activates Cdc25c (CycB-Cdk1 activator), while it phosphorylates 

and inactivates Wee1 (CycB-Cdk1 inactivator) (Novak and Tyson, 1993). Indeed, the activity of 

CycB-Cdk1 and other mitotic kinases is essential for a functional spindle assembly checkpoint 

(SAC). A SAC acts as a safeguard mechanism which delays cyclin degradation and transition to 

anaphase until spindle assembly is achieved. This is primarily accomplished by limiting the 

ubiquitin ligase anaphase promoting complex/cyclosome (APC/C) along with APC/CCdc20 (Chen et 

al., 2008, Musacchio and Salmon, 2007). Unattached kinetochore triggers SAC effector proteins 

such as Mad2 and BubR1, which bind Cdc20 in a mitotic checkpoint complex (MCC), and 

subsequently, restrict APC/C activity (Musacchio and Salmon, 2007, Tipton et al., 2011).  

The idea that Mad2 is an APC/C inhibitor has been confirmed by the ability of Mad2 to inhibit 

APC/CCdc20 (Li et al., 1997b, Fang et al., 1998). In addition, it has been demonstrated that MCC 

encompasses Mad2, BubR1, Bub3, and Cdc20 (Sudakin et al., 2001). Although the C-Mad2-Cdc20 

complex may be enough to warn the cell of unattached kinetochores, it has been demonstrated that 

this alone may not be sufficient by to block the anaphase transition. This observation was 

confirmed, as BubR1/Mad3 is depleted with unattached kinetochore and formation of C-Mad2-

Cdc20; yet SAC function is abolished (Hardwick et al., 2000, Nilsson et al., 2008).  

Hence, BubR1/Mad3 functions downstream of C-Mad2-Cdc20 to block the anaphase onset of 

anaphase. Although SAC activation and delayed transition to anaphase have been thought to be a 
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consequence of unattached kinetochore, some findings suggest that SAC signalling networks can 

function independently of the kinetochore (Meraldi et al., 2004, Malureanu et al., 2009). For 

example, BubR1 was observed to bind to Bub3 throughout the cell cycle. Nevertheless, it was found 

that Bub3 is not essential for BubR1 to bind to the C-Mad2-Cdc20 complex. In fact, it is not 

required, nor does it enhances the capability of BubR1 and Mad2 to restrain APC/CCdc20 in vitro 

(Tang et al., 2001, Fang, 2002, Lara-Gonzalez et al., 2011).  

 

 

Figure 1.4. Mitotic stages and principles of SAC.  During prometaphase, the mitotic checkpoint complex (MCC) is 

formed as a result of unattached kinetochore. The MCC consists of BubR1, Bub3, Mad2, and Cdc20; consequently, it 

inhibits APC/C activity. After the correction of all kinetochores attachment and chromosome alignment in metaphase, 

the MCC formation terminates, which gives the authority to Cdc20 to activate APC/C. This leads to the ubiquitylation 

and degradation of securing and Cyclin B1. Degradation of the securin releases separase, which allows the cleavage of 

the Scc1 kleisin subunit of the cohesion ring structure. This cleavage opens the ring, which in turn allows the sister 

chromatids to move apart during anaphase. Meanwhile, Cyclin B1 is degraded and, subsequently, Cdk1 is inactivated, 

allowing mitotic exit. From Lara-Gonzalez (Lara-Gonzalez et al., 2012). 
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1.2.5 SAC/p53 cross-talking 

Treating normal cells with spindle-damaging agents such as nocodazole or taxol results in transient 

pre-anaphase arrest as a result of SAC activation. This arrest is then followed by aberrant mitotic 

exit without sister chromatid segregation and unsuccessful cytokinesis, a process known as mitotic 

slippage (Elhajouji et al., 1998). However, due to the post-mitotic G1 checkpoint, the resulting 

tetraploid cells will be arrested in G1; they will not further proceed to S phase, and as a result, 

polyploidisation will be prevented (Meek, 2000, Margolis et al., 2003). Like other cells, cells 

lacking p53, p21, or pRb arrest in mitosis as other cells but they do not arrest in G1. Instead, they 

proceed to S phase, which results in endoreduplicated DNA despite the intact SAC (Marxer et al., 

2013, Di Leonardo et al., 1997, Khan and Wahl, 1998). These observations confirmed that p53/pRb 

is required for G1 postmitotic arrest. Hence, activation of p53 prevents cells from involvement in 

polyploidisation. It has been demonstrated that HeLa cells overexpressing dominant negative 

mutant Bub1 or HCT116 cells with a reduced level of Mad2 exit mitosis and endoreduplicate even 

though HCT116 cells have intact p53 (Michel et al., 2001, Taylor and McKeon, 1997).  

 

1.3 The molecular basis of cancer 

As described in many studies over the past decades, cancer disturbs the normal biological cellular 

activities, such as differentiation, growth, apoptosis and tissue integrity. Several genomic alterations 

of the genome underlie the development and formation of cancer. Hanahan and Weinberg (2011) 

described six biological capabilities which are acquired in the course of tumourigenesis and 

associated differentiation of a normal cell to a cancerous cell (Figure 1.5) (Hanahan and Weinberg, 

2011).  

 

1.3.1 Sustaining proliferative signalling 

It is obvious that cancerous cells need to maintain chronic proliferative characteristics. In normal 

cellular activity, balanced growth-promoting signals are maintain throughout cell division to ensure 

cell homeostasis. As cancer cells become more independent, this phenomenon is totally disrupted 

by enabling signal cascades typically with the involvement of receptor tyrosine kinases (RTKs). 
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RTKs initiate signals from intracellular and extracellular as transmit points for signalling pathways 

within the cell. Many tyrosine kinases are found mutated or overexpressed at elevated levels in 

human cancers (Blume-Jensen and Hunter, 2001, Levitzki and Gazit, 1995). For example, 

epidermal growth factor receptor 3 (EGFR3) lacks amino acid 6-273 and increases RTK basal 

activity, which results in cell proliferation in glioblastoma, ovarian cancer, and non-small cell lung 

carcinoma (Nishikawa et al., 1994). In addition, somatic mutations in the EGFR 2 and 3 have been 

linked with bladder neoplastic disorder and cervical cancer. That is, somatic mutations may activate 

downstream pathways. In melanoma, it is becoming clear that reactivation of signalling downstream 

to RAF in the MAPK pathway is a pivotal mechanism of resistance to BRAF inhibition of 

melanoma therapeutics (Flaherty, 2010, Flaherty et al., 2010).  

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Biological hallmarks of cancer.  Illustration of the six biological hallmarks acquired during cancer 

development. From Hanahan and Weinberg (Hanahan and Weinberg, 2011). 

Another method of sustaining proliferative signalling of the cancerous cells is through the 

disruption of negative feedback loop, which enhances the proliferative signalling. For example, 

activation of PI3K/Akt/mTOR signalling by mutation or activation of the upstream signalling 
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pathway has been observed in many cancer types (Vivanco and Sawyers, 2002, Bjornsti and 

Houghton, 2004). This cascade is normally orchestrated by upstream RTKs, particularly insulin and 

insulin-like growth factor I (IGF-I) receptors (IGF-IRs) (Oldham and Hafen, 2003). In cancer cells, 

constitutive activation of the mTOR/Akt pathway will results in the induction of upstream feedback 

inhibition through IGF-I/insulin receptors. This feedback inhibition may evolve biological 

implications (Weinstein, 2002, Mills et al., 2001). First, it may cause hypersensitivity to mTOR 

inhibitors and inhibition of other elements of the activated pathway. Second, mTOR inhibition may 

results in feedback inhibition release, which perhaps activates IGF-I signalling and, as a result, 

decreases the anti-tumour effect of mTOR inhibitors. The interruption of these negative feedback 

loops has been noticed in many cancer types.  

Another feature of some cancerous cells is the ability to bypass the senescence state. Some cells, 

such as human diploid fibroblasts, can undergo 60-80 doubling populations before they produce a 

senescence phenotype; at this point, they stop divisiding but remain metabolically active and are 

able to survive for years (Dimri et al., 1995). This cell cycle arrest state occurs due to the activation 

of p53 and pRb (Artandi and DePinho, 2000, Hara et al., 1991). Therefore, alterations to these 

pathways by, for example, the expression of tumour viruses, for example, will result in bypassing 

the senescence state, giving the cells mastery over their own proliferative state. 

 

1.3.2 Evasion growth suppressors 

Loss or inactivation of tumour suppressor genes is a major advantage which cancerous cells use to 

over control the cellular proliferation machinery. Of these suppressor genes, pRb has been 

identified to be lost or inactivated in >70% of cancer types (Sherr, 2000, Nevins, 2001, Bartek et al., 

1997). In the past few decades, efforts have been made throughout the last decades to understand 

how pRb can actually suppress tumour activity. In late 1980s, it was found that pRb activity is 

sequestered by viral oncoproteins such as SV40 large T antigen, adenovirus E1A, and HPV-E7 

(Whyte et al., 1988, Munger et al., 1989, Dyson et al., 1990). Indeed, this observation revealed how 

viral oncoproteins initiate tumour formation. As a consequence of these findings, more efforts have 

been made to understand what other implications and involvements result from abrogating the pRb 

function.  It is now obvious that many critical partners of the pRb are engaged in transcriptional 
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control (Cobrinik, 2005, Morris and Dyson, 2001). Abrogation of pRb suggests several mechanistic 

issues in human cancers. Firstly, high expression of CDK4 or Cyclin D by amplification or 

mutation has been observed to occur in several cancer types and; as a result, augments pRb 

phosphorylation. In addition, p16ink4a as a CKI can be lost/mutated (Sherr, 2000, Morris and 

Dyson, 2001, Heilmann and Dyson, 2012). This increases the activity of CDK4 and Cyclin D, 

which results in pRb phosphorylation. Furthermore, the association of pRb with E2F abolishes its 

ability to modulate gene transcription (e.g. cervical carcinoma) (Salcedo et al., 2002, Guo et al., 

2011). An additional facet is the mutation of the Rb locus itself, which causes unchecked E2F 

activity (Cobrinik, 2005, Wang et al., 1994). Taken together, these findings represent a model for 

explaining pRb actions in the cell cycle and defining the effect of pRb loss in cancers. 

 

The transforming growth factor-β (TGF-β) signalling pathway is another instrumental tumour 

suppressor cascade which inhibits proliferation and induces apoptosis in different cell types (Mishra 

et al., 2005). The TGF-β achieves tumour suppression in several ways. For example, it inhibits cell 

proliferation by the induction of CKI p21Cip1 and p15Ink4b, and thus halts cell proliferation 

(Gomis et al., 2006, Pardali et al., 2000, Seoane et al., 2004). In addition, in vitro investigation has 

shown that TGF-β increases the expression of death-associated protein kinase (DAPK) in hepatoma 

cell lines (Jang et al., 2002). This increasing level of expression triggers apoptosis.  

 

Tumours are able to escape the TGF-β tumour suppressive mechanism in different ways. For 

example, in gliomas, p15Ink4b is deleted and, as a result, prevent TGF-β-mediated induction of this 

gene in those neoplastic diseases is prevented (Jen et al., 1994). Moreover, overexpression of a 

proliferative driver like c-Myc or an oncogene like Cyclin D1 diminishes the effect of TGF-β on 

CKI or the expression of Ras signalling which inhibits Samds (Massague, 2008). As illustrated 

above, it is obvious that the evasion of tumour suppressor genes/pathways is a main criterion for a 

cancer cell to proliferate beyond the expected cellular lifespan. 
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1.3.3 Resisting cell death 

Cells have a programmed cell death called apoptosis (see section 1.5). Briefly, the apoptotic 

mechanism is facilitated by upstream regulators and downstream effectors. These respond to 

stimuli, causing cells to undergo apoptosis as a result of cellular problems (e.g. DNA damage). 

Cancer cells, in contrast, have different characteristics where they resist or escape apoptosis to 

survive for a longer time. One of their resistance strategies involves the loss of a common tumour 

suppressor gene called TP53 (Muller and Vousden, 2014). TP53 is considered the most commonly 

mutated gene in neoplasia. Another approach that can be taken by tumour cells is by increasing the 

expression of anti-apoptotic proteins such as Bcl-2 or Bcl-x,l or decreasing the expression of the 

pro-apoptotic proteins like Bax, Bim or Puma (Lomonosova and Chinnadurai, 2008).  

 

Tumour cells try to use different approaches to sustain their proliferative state. For example, they 

use an autophagic programme to resist cell death (Mathew and White, 2011). In autophagy, cells 

breakdown cellular organelles like ribosomes and mitochondria (Levine and Kroemer, 2008, 

Mizushima, 2007). As a result of this mechanism, catabolites will be recycled and used as a source 

of energy metabolism. The autophagic programme involves a key step where intracellular vesicles 

called autophagosomes envelop the intracellular organelles. This biological cascade helps the cell to 

generate low-molecular-weight metabolites which in turn provide the cell with sufficient nutrition 

in stressful conditions like cancer. Upon treating cancer patients with radiation or chemotherapy, it 

was observed that four forms of autophagy were demonstrated, namely cytoprotective, cytostatic, 

cytotoxic, and nonprotective autophagy (Gewirtz, 2014). It is difficult to predict which type will be 

induced by a particular therapy. Nevertheless, the way in which autophagic programme maintains 

the survival of the cell has been demonstrated in many human cancer cells, confirming that 

autophagy mediates tumour cell survival.  

 

Forms of cellular death vary based on what signals cells may receive. Necrosis is another form of 

cellular death which has different properties from those of apoptosis (Proskuryakov and Gabai, 

2010). Necrotic cells become enlarged and bloated, and then explode, releasing all of the 

intracellular contents to the surrounding environments (Galluzzi and Kroemer, 2008, Grivennikov 

et al., 2010). Because of this, necrotic cells are capable of recruiting inflammatory cells from the 

immune system to clean up the necrotic debris via their housekeeping function. However, calling 
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immune-inflammatory cells may not always be beneficial, such as in the case human cancers. These 

cells are can increase cancer cell proliferation and invasiveness under neoplastic conditions (Waters 

et al., 2013). Furthermore, because necrotic cells release their contents to the surrounding 

environment, some of the contents (e.g. interleukin [IL1]-1-alpha) can in fact cause neighbouring 

cells to proliferate, thereby sustaining cancer cell division.  

 

1.3.4 Enabling replicative immortality 

A remarkable feature which most cancer cells exhibit as opposed to normal cells is their ability to 

divide indefinitely, a feature that is called immortalisation (Hayflick, 2000). The expected lifespan 

and cell cycle rates limit cell division in normal cells. This trait is primarily controlled by two main 

mechanisms which cease proliferation, namely senescence and cell crisis (Campisi and d'Adda di 

Fagagna, 2007, Greenberg, 2005). In cell culture, when cells divide, they reach a point where they 

die or senesce. If these cells escape this process and continue dividing, they will reach a crisis state, 

where most of the population dies. However, some cells emerge again in the proliferation state and 

start dividing for a longer time, exhibiting the feature of immortalisation, which is basically a 

characteristic that most cell lines possess in virtue.  

 

It is widely considered that telomere maintenance by telomerase contributes to the development of 

the immortalisation (Yang et al., 1999, Bodnar et al., 1998, Morales et al., 1999). Telomeres are 

repetitive DNA sequences at the end of the chromosome protected by a protein called shelterin, 

which prevents a DNA damage response (DDR) from arising (Martinez and Blasco, 2010). The 

enzyme telomerase has been shown to collaborate with oncogenes to help transforming primary 

human cells into cancerous cells (Hahn et al., 1999a). Accordingly, telomerase activation is in fact 

contributes to the transformation to malignancy. This finding has been further confirmed in that 

telomerase is inhibited via telomere shortening where cell death is observed (Hahn et al., 1999b, 

Zhang et al., 1999). Short telomeres and activation of DDR may be evident in cancer. Indeed, 

increased numbers of short telomeres correlate stringly with higher genomic instability (Blasco et 

al., 1997, Hemann et al., 2001).  
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Although telomerase activation is widely accepted to be a hallmark of cancer, however, it may not 

contribute to the initiation of cancer (Hackett and Greider, 2002). There are several mechanisms 

through which telomerase can be activated. Of these, Myc and Wnt as they act as transcriptional 

regulators of telomerase (Wu et al., 1999, Greider, 2012). Additional mechanisms may involve 

alternative splicing or epigenetic modifications (Kyo and Inoue, 2002). Furthermore, it has been 

reported that mutations which increase the transcriptional activity of the telomerase reverse 

transcriptase (TERT) promoter form binding motifs for E-twenty-six (ETS) transcription factors 

was described in melanoma (Huang et al., 2013). These observations sugget an abandonment of the 

role of telomerase. On the other hand, this could also be problematic, because lack of telomerase 

may results in higher chromosomal instability, which in fact make a solid base for cancer initiation 

(Feldser and Greider, 2007). Clearly, overviewing these findings demonstrate how telomerase 

deficiency may contribute to cancer development through chromosomal instability whilst 

telomerase activation may be needed for maintain tumour growth and further tumour progression 

(Ding et al., 2012). 

 

1.3.5 Inducing angiogenesis 

Angiogenesis is a normal mechanism in adult tissue which is transiently switched on. In contrast, 

tumour angiogenesis is different, as the cancer establishes neovascularisation to respond to nutrient 

and oxygen demands and to remove metabolic waste and carbon dioxide (Brown et al., 1999, 

Bergers and Benjamin, 2003). Without these pivotal energy resources, tumour vascularisation 

increases by up to 1-2mm.  

 

Angiogenesis is affected by different factors which induce or restrict it. Of these, vascular 

endothelial growth factor (VEGF) is a key player in inducing angiogenesis via its direct effect on 

endothelial cells (Pepper et al., 1992). This observation has been confirmed through in vitro 

experiments, where VEGF was found to induce a capillary-like tubule structure via microvascular 

endothelial cells grown on collagen gel. Using murine embryos, it was demonstrated that the 

deletion of a single VEGF allele during embryonic vasculogenesis resulted in abnormal blood 

vessels growth and was ultimately fatal (Carmeliet et al., 1996). Tumours were quiescent between 

proliferation and apoptosis, and were then converted to the angiogenic phenotype, a conversion 
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process known as the ‘angiogenic switch’ (Bergers and Benjamin, 2003). VEGF acts as a mediator 

for tumour growth to establish new blood vessels from neighbouring capillaries to fuel-up energy 

resources. As the tumour growth progresses, the mass becomes hypoxic as a result of the distance 

from the supporting capillaries. Indeed, this observation has been confirmed in glioblastoma, as 

VEGF messenger RNA (mRNA) was expressed at higher levels in the hypoxic area of the tumour 

(Shweiki et al., 1992).  

 

Activation of oncogenes such HER2, Kras, Hras, and Bcl-2 has been linked to increasing VEGF 

expression (Rak et al., 2000). In head and neck cancer, a high expression of VEGF was correlated 

with the expression of HER2 and EGFR (P et al., 2002). In addition to the aforementioned functions 

of VEGF, it has central role in protecting the neovasculature of the tumour by inducing the 

antiapoptotic Bcl-2 and survivin (Harmey and Bouchier-Hayes, 2002, Tran et al., 1999). Moreover, 

due to its effect on the secretion and activation of enzymes engaged in the degradation of the 

extracellular matrix, VEGF has the ability to establish further blood vessels (Unemori et al., 1992). 

All these findings illustrate the importance of VEGF in angiogenesis and its role VEGF in 

supporting cancer further cancer growth.  

 

There is accumulating evidence that bone marrow-derived cells (BMDCs) contribute to tumour 

angiogenesis and growth (Jain and Duda, 2003, Wu et al., 2007). Neutrophils (Nozawa et al., 2006), 

macrophages (Ribatti et al., 2007) and monocytes (Conejo-Garcia et al., 2005), have been found to 

contribute to the growth of new blood vessels, and as a result, facilitate tumour growth and 

expansion (Bertolini et al., 2006, Kerbel, 2008). Kaplan and colleagues reported that the 

hemopoeitic progenitor cells, VEGF receptor (VEGFR) 1+ cells, which are haematopoietic 

progenitor cells, could actually contribute to the spread of metastases (Kaplan et al., 2005). In fact, 

these cells reach the metastatic site before cancerous cells, where they form a pre-metastatic 

gathering spot for BMDCs.  

 

VEGFR1+ has been found to modify the microenvironment at the metastatic site, preparing it for 

the tumour cells by upregulating several cytokines and integrins. Moreover, Gao et al. (2008) 

demonstrated that endothelial progenitor cells (EPCs) actually contribute to the angiogenesis in the 
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micro-metastatic phase and angionesis may then accelerate and move towards the possibly lethaly 

macro-static stage (Gao et al., 2008). This observation was further confirmed when short-hairpin 

RNA (shRNA) against Id1 blocked the EPCs’ function, and subsequently, inhibited angiogenesis in 

the micro-metastatic state. BMDCs represent a growing area of interest in cancer biology, and 

extensive efforts are being made to understand how they contribute to cancer growth. 

 

1.3.6 Activating invasion and metastasis 

Although tumour metastasis is primary the cause of cancer-related death in 90% of advanced 

(metastasized) cancer cases, the process through which invasion and metastasis occur is not totally 

understood (Mehlen and Puisieux, 2006). There are several types of cancer metastasis is common 

(e.g. melanoma) (Bhatia et al., 2009) whilst in others, it is very rare (e.g. basaloid squamous 

carcinoma) (Boyd et al., 2011). Moreover, how the size of the tumour may contributes to tumour 

invasion and metastasis is still unclear (Mehlen and Puisieux, 2006). Reports have indicated that 

small tumours form micro-metastases. Cells from micro-metastases can remain viable in the body 

for years where they can proliferate again after doses of chemotherapy and radiotherapy. In mouse 

models, it was observed that up to 1x106 cells leave the primary mouse tumour and engage in the 

metastatic cascade (Weinberg, 2006).  

 

About 90% of all human cancers originate from epithelial tissues, and are therefore considered 

carcinomas. An epithelium is considered a line of defence against exogenous toxins and infectious 

agents. Epithelial cells are characterised by their close anchorage in the tissue, which prevent 

motility. Adhesion between cell to cell from a similar type of cells is controlled by calcium 

transmembrane protein such as cadherins (Christofori, 2003). Abrogation of normal cadherin 

functions, E-cadherin in particular, has been observed in invasive cancer cells (Herzig et al., 2007). 

E-cadherin has been linked to adopt mesenchymal phenotype in epithelia, a transition process 

known as epithelial mesenchymal transition (EMT) (Voulgari and Pintzas, 2009). In addition, B-

catenin is another important player which supports the EMT (Gordon and Nusse, 2006). This occurs 

because a large amount of B-catenin is associated with E-cadherin and they become free once E-

cadherin is down-regulated. Thus, they can be found free in the cytosol and might move to the 

nucleus. At the nuclear level, B-catenin binds to Tcf/LEF, where it promotes EMT.  
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As indicated above, EMT is crucial for the invasiveness of cancer.  Twist an EMT transcription-

inducing factor has known functions which are implicated in cell motility throughout early 

embryogenesis (Yang et al., 2004, Yang et al., 2006). In vertebrates, Twist is mainly expressed in 

the neural crest (Soo et al., 2002). The metastatic behaviour and invasiveness of 4T1 mammary 

carcinoma cells were observed to be decreased when Twist is suppressed (Yang et al., 2004). 

Furthermore, it was demonstrated that a major reason beyond this finding was Twist induced 

downregulation of E-cadherin. Another remarkable function of Twist is the ability to hinders Myc-

induced apoptosis. In addition, high Twist expression has been found in melanoma and 

neuroblastoma (Yang et al., 2006). Unsurprisingly, both melanoma and neuroblastoma cells 

originate from the neural crest, where Twist is active.  

 

Different of transcription affect the EMT, including cytokines and stromal cells. Moreover, cells of 

the innate system are also pivotal in the context of metastasis (Qian and Pollard, 2010). 

Macrophages, for example, produce TNF-alpha in large amounts, and have been observed to 

generate EGF in case of breast cancer. Colony stimulating factor-1 (CSF-1) is able to enlist tumour-

associated macrophages (TAMs) when expressed by cancer cells, which results in the production of 

EGF (Wyckoff et al., 2004). Therefore, these cells reciprocally activate one another.  Activation of 

the EGF-signalling pathway results in the release of CSF-1, which stimulates motility and 

metastasis. Research on breast cancer models has indicated that the absence of CSF-1 and thus 

TAMs, does not actually halt the proliferation of primary tumours (Lin et al., 2001). Instead, lack of 

CSF-1 and TAMs prevent metastasis. Research efforts are still required to elucidate the molecular 

mechanism by which invasion and metastasis occur as well as what factors influence them, and how 

they could be suppressed. As indicated above,, more cancer-related deaths occur due to metastasis 

than a result of the primary tumours. 

 

1.4 Programmed cell death (apoptosis) 

Apoptosis is a crucial process which can be triggered by different cellular autonomous and non-

autonomous mechanisms, and its evasion may leads to carcinogenesis, tumour progression, or 

resistance to treatment (Fulda, 2010, Lowe et al., 2004). Apoptosis is characterised by classical 
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biological and morphological features such as cellular contraction, DNA fragmentation and 

membrane blebbing (Hengartner, 2000). The underlying mechanisms triggering apoptosis are not 

entirely understood. However, damage to the DNA or some other essential key regulators is usually 

considered a key initial event followed by different cell stress responses (Rich et al., 2000). Several 

stress-inducible players are engaged in transmitting apoptotic signals, including c-Jun N-terminal 

kinase (JNK), MAPK, ERK or nuclear factor kappa B (NF-kB) (Davis, 2000, Karin et al., 2002). 

Furthermore, there are two types of signalling pathways which initiate apoptosis, namely intrinsic 

and extrinsic pathways (Ashkenazi, 2002, Green and Kroemer, 2004). 

 

In the extrinsic pathway, the cellular death receptors are members of the TNFR gene superfamily, 

which encompasses more than 20 proteins with wide range of biological roles (Walczak and 

Krammer, 2000). Members of this family share a cysteine-rich extracellular domain of 80 amino 

acids called the ‘death domain’, which plays a pivotal role in transmitting death signals from the 

extracellular surface to the intracellular pathways (Elmore, 2007). On the other hand, the intrinsic 

pathway involves a mitochondrial pathway, primarily through activation of cysteine-aspartic 

proteases (caspases), which are key apoptotic proteins (Green and Kroemer, 2004). The regulatory 

mechanisms of these mitochondrial events arise through the Bcl-2 family of proteins (Elmore, 

2007). Once the external mitochondrial membrane is disrupted, different proteins are commonly 

found within the inner and outer mitochondrial membranes, including cytochrome c, 

Smac/DIABLO, Omi/HtrA2, AIF and endonuclease G (Saelens et al., 2004). The Bcl-2 family 

functions to control mitochondrial permeability via pro-apoptotic or anti-apoptotic genes; members 

of this family have conserved regions termed Bcl-2 homology (BH) domains. The anti-apoptotic 

genes hold up to four similar regions of sequence homology (BH1 – BH4) including Bcl-2, Bcl-xl, 

Bcl-w, Mcl-1 and A1 (van Delft and Huang, 2006). In contrast, pro-apoptotic genes are divided into 

two groups based on their distinct functions and features. The BH3-only protein includes Bim, 

Puma, Bid, Bad, Bik, Noxa, Bmf, and Hrk whilst Bax and Bak contain different BH domains (BH1, 

2, and 3) (Figure 1.6). 
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Figure 1.6. Apoptosis mechanism regulated by the Bcl-2 family. The anti-apoptotic proteins inhibit Bax and Bak 

activity. Upregulation of the BH3-only protein interrupts this association and results in the release of Bax and Bak. This 

causes the mitochondrial outer membrane permeabilisation (MOMP) to release cytochrome c and subsequent induction 

of apoptosis. The anti-apoptotic proteins also inhibit Puma, Bid, and Bim. The BH-3 sensitisers can interrupt this 

interaction, which allow the release of Bax and Bakt thereby inducing apoptosis. From Liu and Wang (Liu and Wang, 

2012). 

 

1.4.1 Anoikis signaling 

Anoikis is a form of apoptosis which is activated when normal cells try to divide in the absence of a 

matrix and can be induced either by intrinsic or extrinsic pathways (Guadamillas et al., 2011). 

Failure to enter the anoikis pathway is a feature of cellular transformation. A key requirement for 

the HPV lifecycle is that cells continue to synthesise DNA and cell divide (McLaughlin-Drubin and 
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Munger, 2009). Therefore, avoiding anoikis might be an essential strategy in HPV replication. A 

major protein was found to be implicated in this mechanism is p600 (DeMasi et al., 2005, Huh et 

al., 2005). HPV E7 binding can deplete p600; consequently, it inhibits anoikis and block detached 

cells from undergoing apoptosis. This process will contribute positively to viral transformation. 

 

1.5 Cervical cancer 

Cervical cancer is considered one of the most common neoplastic disorders that affecting females. 

Worldwide, approximately 470,000 new cases are encountered annually, with about 80% of these 

cases reported from developing countries (Monteiro et al., 2006, Pettersson et al., 2010). Most 

cervical cancer cases belong to one of two histological lineages, based on whether they emerge in 

the squamous or glandular cervical epithelium. About 80% of the cases are squamous cell 

carcinomas (SCCs) whereas the remaining 20% are glandular malignancies (adenocarcinomas) 

(Badaracco et al., 2010, Duenas-Gonzalez et al., 2010, Monteiro et al., 2006, Pettersson et al., 

2010). HPV remains the main cause of cervical cancer accounting for about 99.7% of cases; most of 

these case are caused by the high-risk HPV types 16 and 18 (Beaudenon and Huibregtse, 2008). 

 

1.5.1 Risk factors 

There are several risk factors which contribute to an increased risk of cervical cancer along with the 

HPV infection. These risk factors may include the following: 

• Multiple sexual partners (Monteiro et al., 2006); 

• Smoking (Ann L. Coker, 2008, Shehnaz K. Hussain, 2009); 

• Parity (Misra et al., 2009); 

• Sexually transmitted infections (Monteiro et al., 2006); 

• Diet (Garcia-Closas et al., 2005, Shannon et al., 2002, Tomita et al., 2010); and 

• Oral contraceptive (Laura G Currin, 2009). 
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1.5.2 Signs and symptoms 

Cervical neoplasia is commonly asymptomatic in the early stage of cancer (Matsumoto et al., 2010, 

Kai et al., 2009). However, the most common clinical presentation would be abnormal vaginal 

bleeding, postcoital bleeding and intermenstrual or postmenopausal bleeding. If the bleeding is 

heavy, anaemia can be found in the lab report. Offensive vaginal discharge may also be observed. 

Throughout the progress of the disease a lower back pain might be experienced (Bullard Dunn, 

2010). Moreover, if the cancer has reached the bladder, haematuria might be found (Spahn et al., 

2005). Similarly, if the disease has spread into the rectum it can lead to rectal bleeding and 

tenesmus (Chan et al., 2009). 

1.5.3 Types of cervical neoplasia 

There are three common subtypes of cervical neoplasia, namely SCC, pre-invasive SCC and 

microinvasive SCC. The SCCs are the most common. About 60% of low-grade cervical 

intraepithelial neoplasia (CIN) cases regress, and the risk of developing invasive carcinoma from 

low-grade CIN is approximately 1% (Mitchell et al., 1994). Moreover, about one-third of CIN III 

cases will progress and develop into cervical cancer in 10-20 years if the disease is not treated. 

Similarly, an average of one-third of CIN I cases will regress depending on the age, immunity and 

smoking habits of the patient, as well as the causative HPV types (Kietpeerakool and Srisomboon, 

2009, Mitchell et al., 1994). Microinvasive squamous carcinoma describes the progress of the 

cancer past the basement membrane of the epithelium and invasion into the tissue beyond. Once this 

invasion is detectable microscopically in the cervical stroma, it is called superficial or 

microinvasive (Goncalves et al., 2009). Furthermore, this invasion stage presents the first stage in 

the International Federation of Gynaecology and Obstetrics (FIGO) staging system for cervical 

cancer (Pecorelli et al., 2009, Pecorelli and Odicino, 2003). 

1.5.4 Diagnosis of cervical neoplasia 

The most common routine diagnostic method for cervical carcinomas is the Pap smear test, 

collected from the cervical transformation zone located between the original cervical 

squamocolumnar, SCI, and the new SCI, followed by colposcopic examination (Figure 1.7) (Glick 

et al., 2012, Insinga et al., 2004). The Pap smear is a screening test used to determine preinvasive 

lesions for early treatment. The procedure involves scraping cells from the squamoucolumnar 
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junction of the cervical tissue. There is a strong correlation between the initiation of the Pap smear 

screening programme and a reduction in the cervical cancer mortality rate (De Vincenzo et al., 

2009, Sait, 2011). Moreover, lack or provision of this type of screening programme is still a major 

issue in the developing countries that makes cervical neoplasia has a high incidence in these 

countries.  

Both the American College of Obstetricians and Gynaecologists (ACOG) and the American Cancer 

Society (ACS) have suggested that the screening should be performed every two to three years if 

negative results have been returned for three consecutive Pap smear tests (Sawaya et al., 2001, 

Sawaya et al., 2003). In addition to the Pap smear test, colposcopy is another diagnostic tool which 

is used usually for two purposes - determining the best site for biopsy and ruling out any invasive 

diseases (Chase et al., 2009). 

1.5.5 Management of cervical neoplasia 

The management of cervical cancer is stage driven. In early stages of cervical malignancy surgical 

procedures can be performed with a survival rate of 85% up to 5 years (Rojas-Espaillat and Rose, 

2005). In contrast, patients with advanced cervical neoplastic disorders may require multiple 

therapeutic approaches for good survival rates to be obtained. There are several surgical procedures 

which can be used to treat cervical cancer based on the stage and progress of the disease. These may 

include basic surgical approaches such as ablation, destruction or excisional methods, or advanced 

surgical methods such as radical hysterectomy (Allam et al., 2005, Nam et al., 2002, Penna et al., 

2005). 

Advanced cases of cervical cancer often require a combination of different therapeutic approaches 

such as radiation therapy and chemotherapy after the surgical procedure (Lyng et al., 2000, Strauss 

et al., 2008). However, there are some factors that negatively affect the use of these therapeutic 

approaches. In radiation therapy, for example, hypoxia and rapid tumour growth are challenging 

obstacles when it comes to achieving a satisfactory rate of successful treatment. Furthermore, the 

use of chemotherapy as a treatment for pateints with recurrent or metastatic cancer is merely 

palliative (Benedet et al., 2003, Robati et al., 2008). At present, the most common chemotheraputic 

agent that is used to treat cervical cancer is cisplatin (Kaern et al., 1996). The response rate with 
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cisplatin is about 20 to 30%, with an overall survival time of 7 months. A better survival rate has 

been observed when cisplatin is combined with topotecan (camptothecin derivative), with an overall 

survival rate for the patient group of about 15.4 months (Monk et al., 2005). As described above, 

cervical cancer has a poor prognosis at later stages of the disease, and the current treatment options 

have limitations. Therefore, the use of genetic approaches may help in developing better treatment 

options, particularly in term of selective type of treatments with fewer side effects. 

 

Figure 1.7. Pap smear specimen collection. The pecimen is collected from the transformation zone located between 
the original cervical squamocolumnar junction and the new formed one. From Merck & Co. (Co., 2008). 

 

1.5.6 Vaccination 

As indicated above, the primary cause of cervical neoplasia is HPV. High-risk HPV types 16, 18 

and 45 cause approximately 75% of cervical carcinomas whilst the other 25% are associated with 

high-risk HPV types 31, 33, 35, 39, 51, 52, 56 58, 59, 66 and 68 (Smith et al., 2007, Capri et al., 

2011, Giuliano et al., 2008). Cervical cancer can be avoided using two preventive measures, as 

follows: (i) regular Pap test screenings and (ii) by vaccination against HPVs. There are currently 

two vaccines available, namely Gardasil (by Merck, Sharpe & Dohme) and Cervarix (by 

GlaxoSmithKline) (Draper et al., 2013, Wang and Roden, 2013). Both vaccines encompass virus-

like particles (VLPs) of the recombinant L1 capsid protein; Gardasil protects against HPV 6, 11, 16 

and 18, while Cervarix antagonises HPV 16 and 18. Gardasil also contains aluminium 

hydroxyphosphate sulphate whilst Cervarix includes aluminium hydroxide with monophosphoryl 

lipid A (ASO4) (Schwarz et al., 2010, Haupt and Sings, 2011).  
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The composition of both vaccines is believed to result in 60-100 times the antibody titres of those 

produced by natural infection. The vaccine is given intramuscularly into the deltoid muscle at 

different time points. Cervarix is administered at 0, 1 and 6 months, whereas Gardasil is given at 0, 

2 and 6 months. The age at which the vaccines can be given has been standardised at 9 years old 

upwards in the UK and Europe, whereas in the US the vaccine cannot be given to females older 

than 26 years old. The Gardasil vaccine has also been approved for boys (15 to 26 years old) in 

Europe and the US.  

 

Whilst it has been reported that the Cervarix vaccine can produce a high antibody titre up to 9.5 

years post vaccination (Petaja et al., 2011, Romanowski et al., 2009, Naud et al., Sep. 17-22-2011), 

it has been found that Gardasil can produce similar antibody trend but for shorter period (up to 5 

years) post vaccination (Haupt and Sings, 2011, Petaja et al., 2011). The latter provided a high 

efficacy of 96% in preventing persistent infection with HPV 6, 11, 16 and 18 in addition to a similar 

efficacy reported in preventing genital warts formation (Garland et al., 2007, Bonati and Garattini, 

2009). Gardasil has also been found to exhibit 100% protection efficacy against vulvar and vaginal 

neoplasia. Furthermore, Gardasil has been found to be effective in HPVs which are not included 

within the vaccine but have closer genetic types, such as HPV 45 (60% efficacy), 31 and 52 (32-36 

efficacy) (La Torre et al., 2007). The highest antibody titres in both vaccines were found in the age 

group of 10 to 14 years in females injected with the vaccine (Schwarz et al., 2012). In the case of 

Cervarix, vaccine efficacy for cervical intra-epithelial neoplasia II (CIN II) was 98.1% for HPV 

types 16 and 18 combined (Paavonen et al., 2009).  

As first generation vaccines, both Cervarix and Gardasil have demonstrated promising results. 

However, the need for developing better second-generation vaccines is pivotal. To date, the second-

generation vaccine is still under clinical trial and has tremendous advantages over the previous 

generation. The newly developed vaccine is a nonavalent (9-valent) vaccine which antagonises the 

previous four HPV genotypes (6, 11, 16 and 18) in addition to five new genotypes (31, 33, 45, 52 

and 58). It is believed to decrease the risk of cervical cancer by an additional 15-30%. As indicated 

above, the data on the vaccine provide a good starting point for preventing cervical cancer. 

However, it will be a long time before total protection can be seen. Therefore, the need to develop 
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therapy for cervical carcinomas is paramount, particularly when it comes to covering those who 

may become infected with other HPVs not included in the vaccine, and subsequently, acquire 

cervical cancer, or women not been immunised and have already developed this neoplastic disease.  

1.6 Ribonucleic acid interference (RNAi) 

The discovery of RNAi, a highly selective and specific natural process which knocks down the 

expression of targeted genes, presents a potentially valuable tool for personalised cancer therapy 

(Singh et al., 2011, Wang et al., 2011b). Target-specific RNAi has the potential to knock down 

abnormal, overexpressed molecular targets which are required for the survival of patients’ tumours. 

Like any other new therapeutic agents, there are several problems involved in using RNAi agents, 

and these need to be addressed in order to transfer RNAi technology from the laboratory to the 

bedside. These issues may include comparison between different RNAi agents (such as siRNA and 

shRNA), possible off-target effects and effective delivery (Tanaka et al., 2010, Sioud, 2010). 

Although the primary use of siRNA and shRNA is to deplete target genes, they have distinct 

features and delivery modes and should be used based on the goal of the project. For example, 

shRNA is delivered to the nucleus via retroviral (Araki and Konieczny, 2012), adenoviral (El-

Armouche et al., 2007), and more recently lentiviral viral vectors (Hung et al., 2010). It has a long 

lifespan that may span years; therefore, it is highly favourable for chronic diseases.  

On the other hand, siRNA which will be used in this project, has a short lifespan, usually degrading 

within 72-96 hours. They are short double-stranded nucleotides usually 21 – 27 bp in length with a 

two nucleotide 3’ overhang (Figure 1.8) (Singh et al., 2011, Wang et al., 2011b, He et al., 2009). 

These are produced from longer dsRNA via the cellular endoRNase Dicer III (Doi et al., 2003). The 

guide or the antisense strand binds to a large protein complex called the RNA induced silencing 

complex (RISC), which will then target and cleave the mRNA. The argonaute 2 protein is the major 

component of RISC, as it is responsible for mRNA degradation, as well as formation of the single-

stranded RNA (ssRNA). 

Given their precise and effective RNAi triggering activity, there are many studies that support the 

use of siRNA as a potential biodrug (Izquierdo, 2005, Ozpolat et al., 2014). SiRNA that it interferes 

with translation and not DNA transcription; therefore, it has no effect on the chromosomal DNA. 
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This advantage significantly reduces concerns about possible gene alterations which might result 

from DNA-based therapies. 

1.6.1 Use of siRNA in cancer therapies 

The use of siRNA as a therapeutic agent has paved the way in developing treatments for diseases 

such as cancer. SiRNA is of inherently effective because it uses the endogenous RNAi pathway, 

resulting in precise targeting of disease-associated genes, and is appropriate for any gene with a 

complementary sequence (Leung and Whittaker, 2005). Because cancer is basically a genetic 

disease, many crucial genes associated with different cancer types have been discovered, their 

mutations have been determined and the pathways through which they act have been characterised. 

Despite this knowledge, we have not been able to develop many truly effective cancer-specific 

therapies. This is where siRNAs come in. In fact, a number of siRNA-focused-libraries have been 

designed and are commercially available to target sets of genes with common features. These 

include the kinome library, which target kinases, or larger libraries such as for the whole genome 

(Adhim et al., 2013, Dutta et al., 2010).  

Efforts have also been made to design specific siRNA to target dominant oncogenes, or viral 

oncogenes involved in carcinogenesis. For example, siRNA has been used in vitro and in vivo using 

a pancreatic carcinoma model (Huang et al., 2011). The design of specific RNAi was able to 

knockdown STAT-3, and consequently, inhibit the expression of VEGF and matrix 

metalloproteinase (MMP)-2 resulting in tumour inhibition. SiRNA was also evaluated in prostate 

cancer metastasised to bone and local lymph nodes (Minakuchi et al., 2004). SiRNA was 

formulated with atelocollagen to target EZH2 or p110-alpha in a xenograft model which was also 

injected with reporter luciferase and monitored using bioluminescence imaging. Injection of siRNA 

was performed intravenously and 28 days post-treatment in a study on; here, the treated group 

showed no increase in luminescence, whereas the control group demonstrated significant metastasis 

to the thorax, jaws and legs (Minakuchi et al., 2004). Although siRNA-mediated gene silencing for 

cancer therapies has been investigated in cell culture systems and mouse models and have shown 

promising results, such therapies have not yet been extended to clinical use (Gavrilov and Saltzman, 

2012, Wang et al., 2009b). The main challenge which remains is the optimisation of delivery. 
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Developing an optimum delivery system should minimise the off-target effect and nonspecific 

immune response that is caused by the administration of the siRNAs. 

 

Figure 1.8. The siRNA pathway mechanism. The dicer produces ds-siRNA from dsRNA and the RISC upload it for 
target-specific mRNA degradation with the help of Ago2. From Rutz and Scheffold (Rutz and Scheffold, 
2004). 

1.6.2 Efforts to knockdown E6 and E7 HPV oncogenes using siRNA 

There are several studies that have focused on depleting the oncogenic activity of E6 and E7 to 

restore functional pRb and p53, respectively. Wu and colleagues described novel findings using 

specific siRNAs to target E6 and E7 of HPV in vitro and in vivo (Wu et al., 2011b). The study 

illustrated the use of hydration-of-freeze-dried-matrix (HFDM) to formulate stable and efficient 

siRNA delivery to silence E6 and E7. The in vitro data revealed significant knockdown of both 
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oncogenes; this was confirmed by low mRNA using quantitative PCR (qPCR). Additionally, TC-1 

tumour cells were inoculated into mice and formulated E6/E7 siRNA was administered on days 1, 4 

and 7 after cell inoculation. SiRNA-treated mice had significantly prolonged survival, with a 

median of 31 days, in comparison to the control group, at 21 days. Putral et. al. also investigated the 

use of siRNA targeting E6 to target both E6 and E7 simultaneously (Putral et al., 2005). The 

depletion of these phenomenal HPV oncogenes resulted in remarkable reduction in cellular viability 

and induction of the senescence phenotype. Furthermore, the effect of silencing E6 and E7 by these 

siRNAs enhanced the chemotherapeutic effect of cisplatin, a chemotherapeutic which is used for 

advanced cervical cancer treatment, in HeLa cells.  

In another report, Jonson and colleagues, they have investigated the role of siRNAs to silence E6 

and E7 oncogenes in cervical cancer (Jonson et al., 2008). They designed specific siRNAs targeting 

E6/E7 to restore normal p53 and pRb functions. SiRNAs were directly injected into the tumour site 

every three days for 35 days, along with non-targeting control siRNA or saline. The therapeutic 

siRNA targeting E6/E7 significantly inhibited the tumour growth in the mouse model of cervical 

cancer. The aforementioned studies described the use of siRNA as a powerful tool to silence the 

E6/E7 oncogenes and provide evidence of their treatment capabilities. 

1.7 Synthetic lethality screening 

Our understanding of some of the molecular mechanisms of cancer progression has paved the way 

for researchers to provide better treatment options. As discussed above, the major problem in almost 

all cancer patients, particularly those with advanced metastases, remains the relative lack of 

available treatment options and the fact that the success rate of these options is often very low. 

Therefore, alternatives need to be developed. The siRNA synthetic lethality screening concept has 

been used as a tool to discover novel target genes, which can be then exploited to develop targeted 

anti-cancer agents. Knocking down oncogenes will result in shrinking of the tumour, and eventually 

provide a successful cure for cancer patients. This concept has been proven experimentally in HPV 

(Jonson et al., 2008). In addition, incorporation of viral oncogenes such as HPV E6 and E7 will 

make use of other normal genes, which are non-oncogenic by themselves, but the survival of the 

HPV E6 and E7-expressing cells will depends on these genes. Hence, the knockdown of these genes 
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will be lethal for the cells expressing HPV E6 and E7. These genes, which are essential for the 

survival of HPV E6 and E7-expressing cells are known to be lethal genes (Scholl et al., 2009a). 

Two genes are called synthetically lethal if gene abrogation of either alone is not lethal, but 

abrogation of both leads to death or significant decrease in an organism’s fitness (Nijman and 

Friend, 2013, Nijman, 2011). Synthetic lethal interactions may occur through different means; for 

instance, multiple-partial defects may present together in a single linear pathway, or defects in 

parallel pathways may lead to the synthesis of a common gene product (Canaani, 2009). A third 

model of synthetic lethality can constitute independent parallel survival pathways, each serving as a 

salvage pathway in the absence of the other (Figure 1.9). The underlying principle of synthetic 

lethality provides novel insights into selective anticancer design by utilising the presence of 

synthetic lethal partners of mutant/defective, cancer-related genes. Accordingly, given a mutated 

gene in a cancer cell, a knockdown using siRNA to silence the activity of one of its synthetic lethal 

partners would cause a lethal condition in cancer cells (Brough et al., 2011). Meanwhile, little or 

only minor damage in healthy cells would be expected, consistent with the synthetic lethality of the 

genes, and thus constituting a selective anti-cancer therapy. 

There are many examples of a synthetic lethality approach being used successfully to identify novel 

target genes (Luo et al., 2009, Tarailo et al., 2007, Ashworth, 2008). For example, Barbie and 

colleagues sought to identify synthetic lethal genes that associate with KRAS-driven cancers using 

high-throughput siRNA screens (Barbie et al., 2009). They found about 45 genes from the first 

initial screen targeting different kinases. Upon validating these 45 genes, they found that the non-

canonical IkB TBK1 was selectively required in cells that contain mutant KRAS. In these cells, 

TBK1 activates the NF-κB anti-apoptotic signalling pathway, which involve c-Rel and Bcl-xl that 

are important for survival. Their observations highlighted the synthetic lethality interactions 

between KRAS and TBK1, and revealed that the TBK1 and NF-κB signalling pathway are essential 

in KRAS mutant tumours. These results suggest that the TBK1 gene can be a potential therapeutic 

target. 

In another study, a synthetic lethality RNAi screen was performed to target 1,011 human genes, 

including kinases and phosphatases, to identify synthetic lethal interactions in cancer cells 

harbouring mutant KRAS (Scholl et al., 2009b). The researchers found that the cells are dependent 
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on mutant KRAS exhibit sensitivity to the suppression of the serine/threonine kinase STK33 

irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. They also 

reported that STK33 promotes cancer cell viability by regulating the suppression of mitochondrial 

apoptosis mediated through selective S6K1-induced inactivation of the agonist BAD selectively in 

mutant KRAS-dependent cells. Thus, STK33 was identified as a potential target for the treatment of 

mutant KRAS-driven cancers (Scholl et al., 2009b). 

Synthetic lethality screens have also been used to identify genes which affect drug sensitivity. In 

2009, Azorsa and colleagues performed a high-throughput RNAi screens targeting 572 known 

kinases to identify genes which would sensitise pancreatic cancer cells to gemcitabine when 

silenced (Azorsa et al., 2009). Initially, they found several kinases which when lost potentiated the 

growth-inhibitory effects of gemcitabine in pancreatic cancer cells. However, upon validating these 

targets, the checkpoint kinase 1 (CHKI) was shown to exhibit the greatest potentiation among other 

genes. The researchers examined the dose response of gemcitabine treatment in the presence of 

CHKI siRNA, and found a three to ten-fold decrease in EC50 for CHKI siRNA-treated cells versus 

control siRNA-treated cells. Their observations positively contributed to the use of synthetic 

lethality screens using RNAi to identify sensitising targets to chemotherapeutic agents. Taken 

together, these studies demonstrate the potential of RNAi screens when it comes to discovering 

functional dependencies created by oncogenic mutations. Such dependencies may enable 

therapeutic intervention in cancers involving genetic alterations which cannot be corrected through 

drug therapy; this is the basis of this thesis. 
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Figure 1.9. Illustration of the synthetic lethality concept. If either gene is mutated the cell remains viable but 
simultaneous mutation of both genes results in cell death. From Chan and Giaccia (Chan and Giaccia, 
2011). 

1.8 Hypothesis 

Cervical cancer, when driven by the expression of the HPV E6 and E7 oncogenes, may become 

dependent on expression of other cellular genes for full transformation. These genes form a part of a 

network required for survival of cervical cancer cells. The loss of these secondary genes in cervical 

cancer cells will result in their death while normal (or non-HPV) cells are not affected. 

1.9 Aims 

To identify genes that when silenced are only lethal with the HPV-transformed cervical cancer cells 

but not with the non-HPV cervical cancer cells. To achieve this general aim, several objectives need 

to be completed including: 

● Establishing a high-throughput siRNA screening protocols that are applicable to be used in 

the primary and secondary siRNA screens; 

● Performing an siRNA high-throughput screen using the kinome library that consists of 779 

gene to identify novel target genes in cervical cancer; 

● Confirming these target hits using different form of siRNA to eliminate any off-target 

effects that was found through the primary screen; 
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● Investigate the most enriched hit(s). 

● Demonstrate the ability to inhibit these hits in vitro and in vivo to show cervical cancer 

treatment potentials. 

1.10 Significance 

Like many other cancers, cervical cancer has poor prognosis in advanced stages where patients’ 

survival rate is significantly low (7 – 15.4 months). The side effects and the dramatic limitations of 

the current therapeutic agents have led to the notion of developing targeted therapy for cervical 

neoplasia pursuing better treatment options. Synthetic lethal siRNA screens provide a powerful tool 

that is able to identify novel target genes in different cancer models. In this project, the finding of 

synthetic lethal genes that when depleted become only lethal to the HPV E6/E7 expressing cells 

will be a novel finding and may provide potential for cervical cancer treatment. Additionally, there 

are many small molecule inhibitors that have been developed for different kinases within the 

kinome library. Some of these small molecule inhibitors have been approved for clinical trials. The 

identification of a target with a clinically proven small molecule inhibitor would provide a chance 

to translate the findings of this project to the clinical settings in a relatively short timeframe. 



Chapter 2 – Mater ia ls  and  methods 

40 

2 Materials and methods 

2.1 Materials 

2.1.1 Western blotting solutions 

Table 2.1. Commonly used Western blotting solutions  

Solution Composition 
PBS (pH 7.4) 137mM NaCl, 2.7mM KCl, 4.3mMNa2HPO4, 1.47mMKH2PO4 

TBS (pH 7.4) 50mM Tris. 150mM NaCl 

Running Buffer 25mM Tris, 192mM glycine, 0.1% SDS 

Transfer Buffer 25mM Tris, 192mM Glycine, 0.1% SDS, 20% methanol 

Stripping Buffer 100mM β-mercaptoethanol, 2% SDS, 62.5mM Tris (pH6.7) 

Sample Buffer (5X) 62.5mM Tris, 30% glycerol, 2% SDS, 0.04% bromophenol blue, 1% β-
mercaptoethanol 

Ponceau Stain 1% Ponceau Stain, 1% glacial acetic acid 

Blocking solution 5% skim powder milk in 1x PBS containing 0.05% Tween 20 (PBST) or TBS 
containing 0.1% Tween 20 (TBST) 

 

2.1.2 Tissue culturing solutions and reagents 

Table 2.2. Commonly used tissue culturing solutions and reagents  

Solution/Reagent Composition/Supplier 
10X PBS NaCl 80g, KCl2g, Na2H PO4 14.4g, KH2PO4 2.4g per 2 L (used as 1x PBS) 

Trypsin/Versene/PBS 0.025% Trypsin, 1% Versene, 1x PBS 

DMEM Gibco Invitrogen 

DMEM/F12 Gibco Invitrogen 

L-Glutamine Invitrogen 

Sodium Pyruvate Invitrogen 
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2.1.3 Inhibitors 

Table 2.3. Inhibitors used throughout the project  

Inhibitor (Supplier) Target 
MLN8237 (Millennium) Aurora A (30 µM – 30 nM) 

ZM447439 (Enzo Life Sciences) Aurora B (30 µM – 30 nM) 

BI-2536 (Selleckchem) Polo-like kinase 1 (100 nM – 100 pM) 

Paclitaxel (Sigma) Microtubule depolymerisation ( 30 nM –30 pM) 

Etoposide (Sigma) Topoisomerase II poison, arrests cells at G2 phase ( 50 µM – 50 nM) 

2.1.4 Antibodies 

Table 2.4. Commonly used antibodies and their corresponding species and dilutions  

Antibody (Supplier) Species Dilution 
BIM (Cell Signalling, Cat # 2819) Mouse 1:500 

Mcl-1 (Cell Signalling, Cat # 4752) Rabbit 1:500 

Bcl-2 (Cell Signalling, Cat # 2876) Rabbit 1:500 

PARP (Cell Signalling, Cat # 9542) Rabbit 1:1000 

Bcl-xl (Cell Signalling, Cat # 2762) Rabbit 1:500 

p53 (Cell Signalling, Cat # 9282) Rabbit 1:1000 

BAD (Cell Signalling, Cat # 9292) Rabbit 1:500 

Aurora A (BD Biosciences, Cat # 610939) Mouse 1:500 

Aurora B (BD Biosciences, Cat # 611082) Mouse 1:250 

Noxa (Abcam, Cat # ab13654) Mouse 1:250 

α-Tubulin (Sigma-Aldrich, Cat # T9026) Mouse WB 1:5000, IF 1:500 

γH2AX (Cell Signalling, Cat # 2577) Rabbit IF 1:500 

Anti-Mouse Alex Fluor 488 conjugate (Invitrogen, Cat # A-11001) Goat IF 1:250 

Anti-Mouse Alex Fluor 488 conjugate (Invitrogen, Cat # A-21235) Goat IF 1:250 
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2.1.5 siRNA high-throughput synthetic lethal screen reagents/consumables 

Table 2.5. Reagents and consumables used in the screening processes 

Reagent/Consumables (Supplier) Application 
siGENOME (SMARTpools of 4 siRNA duplexes) (Dharmacon) Cat # G-
003505-E2-05 

Kinome screening library 

siGENOME Non-Targeting siRNA #3 (Dharmacon) Cat # D-001210-03-50 Negative control siRNA used in the 
primary screen 

ON-TARGETplus Non-Targeting individual siRNA (Dharmacon): 
#1, Cat # D-001810-01-50 
#2, Cat # D-001810-02-50 
#3, Cat # D-001810-03-50 
#4, Cat # D-001810-01-50 

Negative control siRNA used in the 
validation screen 

ON-TARGETplus Non-Targeting Pool siRNA (Dharmacon) Cat # D-
001810-10-50 

Negative control siRNA used in the 
validation screen 

ToxiLight bioassay kit (Adenylate kinase assay) (Lonza, Cat # LT07-217) Cytotoxicity assay 

Lipofectamin 2000 Transfection Reagent (Invitrogen, Cat # 11668019) Transfection reagent 

DharmaFECT 1 (Thermo Scientific, Cat # T-2001-03) Transfection reagent 

DharmaFECT 2 (Thermo Scientific, Cat # T-2002-03) Transfection reagent 

DharmaFECT 3 (Thermo Scientific, Cat # T-2003-03) Transfection reagent 

DharmaFECT 4 (Thermo Scientific, Cat # T-2004-03) Transfection reagent 

5x siRNA buffer (Thermo Scientific, Cat # B-002000-UB-100) Resuspension buffer 

384-well black clear flat bottom plates (Corning, Cat # 3712) Cell culturing plates 

384-well white walled plates (Corning, Cat # 35761)  Luminescence assays 

Clear 96-well V-bottom plates (Corning, Cat # 3894) Transfection master mix reservoir 

Nucleotide incorporation assay (EdU) 16mM CuSO4, 275mM Ascorbic Acid, 
22μM Cy5 Azide, and 1M Tris HCl 
(pH 8.5) 

2.2 Methods 

2.2.1 Cell culture 

All cervical cancer cell lines were originally obtained from the American Type Culture Collection 

(ATCC) except for the C33A-HPV16-E7. Cervical cancer cell lines (HeLa, CaSki, ME-180, SiHa, 

C33A, HT3, and C33A-HPV16-E7) were maintained in complete Dulbecco’s Modified Eagle 

Medium (DMEM) (GIBCO, Invitrogen, Mulgrave, Victoria, Australia) supplemented with 10% 

serum supreme (Biowhittaker, Lonza, Mt Waverley, Victoria, Australia), 1mM sodium pyruvate 
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(GIBCO) and 2mM L-glutamine (GIBCO) at 37oC and 5% CO2. Squamous cell carcinoma cell 

lines were kindly given by Associate Professor Nicholas Saunders (The University of Queensland 

Diamantina Institute, Brisbane, Australia) and were cultured in DMEM/F12 (1:1) (GIBCO) 

containing 10% serum supreme (Lonza) at 37oC and 5% CO2. 

2.2.1.1 Cell propagation and subculturing 

Cells in T-75 tissue culture flasks were washed with 5mL 1x PBS and then 1mL 0.25% trypsin-

EDTA was added to the flask and incubated at 37oC and 5% CO2 for 3-5 minutes for subsequent 

cell detachment from the flask. Trypsin was then inactivated by 5mL of complete DMEM culture 

medium. Cells are usually split using 1mL cell suspension and 9mL complete medium (1 in 10). 

2.2.1.2 Long-term storage of cells 

Cells were first detached from the tissue culture flasks by washing the cells with 5mL 1x PBS and 

then trypsinize the cells with 1mL of 0.25% trypsin-EDTA. Trypsin was then inactivated by 5mL of 

complete DMEM culture medium using normal trypsinization procedures within the previous 

materials and methods section. Cells are then transferred to 10mL tubes and centrifuged at 400x g 

for 5 minutes. Cell pellet was gently resuspended with the cell-freezing solution (10% DMSO and 

90% complete DMEM culture medium) and then each mL was transferred into freezing cryovials 

(Greiner Bio-one, USA). Cryovials are kept in the cell-freezing container at -80oC overnight before 

transferring into the liquid nitrogen tank. 

2.2.2 Optimization of siRNA screening conditions 

2.2.2.1 Cell seeding density 

All cell lines tested underwent this stage for optimizing proper seeding density in 384-well plates. 

Cells were seeded at maximum seeding density (approximately 3,000 cells/well) then a dilution 

series was performed. Cells were then incubated at 37oC and 5% CO2 for 72 h prior to harvesting. 

Cells were subject to EdU labelling as described in section 2.2.7 of this chapter. A comparison 

between S-phase% generated by the EdU labelling and cell number was then performed. Cell 

density was considered optimum at the highest point where DNA replication occurred (Appendix 

2). 
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2.2.2.2 Optimizing transfection reagents and concentration 

Transfection was optimized for all tested cell lines throughout the primary and secondary siRNA 

screening processes using four DharmaFECT transfection reagents, DharmaFECT 1 – 4, (Thermo 

Scientific) in addition to Lipofectamine 2000 (Invitrogen) with four different lipid concentrations 

(0.2%, 0.1%, 0.05%, and 0.025%) to ensure the highest possible transfection efficiency in all tested 

cell lines. At this experiment, siRNA against the Polo-like kinase 1 (PLK1) and non-sense 

scrambled siRNA were used as positive and negative controls, respectively. The following protocol 

was optimized to facilitate one 384-well plate. Therefore, if more plates to be incorporated, 

calculations should be performed. 

2.2.2.2.1 Lipid preparation 

In a 96-well plate, 30μL of Opti-MEM only was dispensed in all wells of rows B to D. Following, 

300μL of Opti-MEM only was dispensed into six 1.5mL microfuge tubes to enable lipid/ Opti-

MEM mix. In these six tubes, 7.5μL from each lipid (DharmaFECT 1 to 4 and Lipofectmaine 2000, 

in addition to a no lipid tube) was transferred and mixed with the Opti-Mem and left at room 

temperature for at least 5 min. A 60μL of the lipid/Opti-MEM mix was transferred to each well of 

row A of the plate. A 30μL from row A was then transferred down for dilution series (30μL from 

row A to B, B to C, and C to D). Excess was left in row D of the plates. 

2.2.2.2.2 siRNA preparation 

PLK1 and non-targeting siRNAs were diluted from the stock [1μM] to 412nM in Opti-MEM as a 

working concentration. Also, 1x siRNA buffer/ Opti-MEM (4:6) was prepared for mock 

transfection. In a new 96-well plate, 20μL of the PLK1 siRNA was dispensed into the wells of 

columns 2-6 of rows A-D of the plate. Also, 20μL of the non-targeting scrambled siRNA was 

dispensed into the wells in columns 8-12 of rows A-D of the plate. The same volume was 

transferred into wells of columns 1 and 7 for mock transfection. 

2.2.2.2.3 siRNA/lipid preparation 

In a new 384-well plate, 6μL from the lipid/ Opti-MEM mix was mixed with 7μL from the siRNA/ 

Opti-MEM mix using the liquid handling robotic platform SciClone ALH3000 (Caliper Life 
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Sciences). The plate was then left for 20-30 min at room temperature for siRNA/lipid complexes to 

equilibrate. 

2.2.2.2.4 Reverse transfection 

In the siRNA/lipid 384-well plate, 25μl of the cell suspension with appropriate seeding density was 

dispensed using the WellMate bulk dispenser (Thermo Fisher Scientific) into each well containing 

the siRNA/lipid complexes making final lipid concentrations of 0.2%, 0.1%, 0.05%, and 0.025%; 

and siRNA final concentration as 50nM. Plate was then incubated at 37oC and 5% CO2 for 72 h 

prior to harvesting with the assays described in sections 2.2.5, 2.2.6, 2.2.7, and 2.2.8 of this chapter. 

2.2.3 siRNA primary screening 

The same procedures that were mentioned in sections 2.2.2.2.1 through 2.2.2.2.4 were followed. 

However, because only a single transfection reagent, DharmaFECT 3, was used at this stage in 

addition to one lipid concentration, 0.05%; thus, all volumes were adapted based on these two 

conditions. The Dharmacon Human siGENOME® SMARTpool® siRNA Library for Protein 

Kinases (targeting 779 genes) was stored at a concentration of 1μM. This library has 4 siRNA 

duplexes targeting the same gene in different sites of the mRNA. The library was used at 50nM 

final concentration in 384-well plates at a final volume of 38μl that includes 13μl of siRNA/lipid 

mix as described in sections 2.2.2.2.1 through 2.2.2.2.4. The Polo-like kinase 1 (PLK1) and 

scrambled non-targeting siRNA were included as positive and negative controls, respectively. All 

cells were incubated at 37oC with 5% CO2 for 72 hours prior to harvesting with the assays described 

in sections 2.2.5, 2.2.6, 2.2.7, and 2.2.8 of this chapter. 

2.2.4 siRNA validation screening 

Dharmacon ON-TARGETplus SMARTpool siRNAs were used for the validation screen. The 

library was resuspended in 1x siRNA buffer to 1μM stock concentration and was used at a final 

concentration of 40nM. 

2.2.5 Resazurin cell viability assay 

Resazurin (or Alamar Blue) is a dye based on a mitochondrial respiration measurement assay. 

Briefly, resazurin itself has a weak fluorescence signalling until it is reduced to a pink colour, 
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resorufin, by viable cells. All resazurin experiments were performed on Corning 384-well black 

clear flat bottom plates. Cells were seeded and then incubated overnight at 37oC with 5% CO2. 

Upon incubation, siRNA (as explained in the transfection sections) or the small molecules were 

introduced and incubated in the same incubation condition for 72 h. Following, resazurin dye was 

introduced at a final concentration of 44 µM made in complete DMEM culture medium then 

incubated at 37oC with 5% CO2 for 75-90 minutes. All plates were subject to fluorescence signal 

detection with an excitation of 554nm and an emission of 590nm using FLUOstar microplate reader 

(BMG LabTech). Cells’ viability was normalised to media only control. 

2.2.6 Adenylate kinase cytotoxicity assay 

Cytotoxicity was determined using Toxilight bioassay kit (Lonza) according to the manufacturer 

protocol. The kit quantitatively measures the luminescence signal of adenylate kinase that is 

released from damaged cells to the surrounding media. The reaction engages the addition of ADP as 

a substrate for adenylate kinase. In the presence of adenylate kinase, the ADP is converted into ATP 

for assay bioluminescence. This method exploits an enzyme luciferase that catalyses the formation 

of light from ATP and luciferin., The procedures involved recovering 8µl of cell media after 72 h 

siRNA transfection from the transfection plates and transferred it into 384-well Corning white 

plates. Following, 8µL of the adenylate kinase reagent was added and incubated for 20 min at room 

temperature in the dark. The luminescence signal was then detected using the FLUOstar microplate 

reader (BMG LabTech) where the gain was adjusted on 4059 with single lens emission filter, 1 

multichromatics, and double orbital shaking with 4mm at 150rpm. 

2.2.7 Nucleotide incorporation assay (5-ethynyl-2’-deoxyuridine or EdU Assay) 

Following 72 h siRNA transfection and the recovery of 8µL for the adenylate assay, and the 

addition of resazurin dye mixed with the EdU that give final concentrations of 44nM and 10nM in 

the 384-well plates, respectively; plates were washed with 1x PBS. Cells were then fixed with 3.7% 

(v/v) formaldehyde in 1x PBS, washed with 1x PBS, permeabilized with 0.5% (v/v) Triton X-100, 

washed with 1x PBS, and then blocked with 3% (w/v) BSA in PBS with 0.1% (v/v) Tween-20 

(PBST-BSA). Plates were then washed with 1x PBS before the click reaction took place. Click 

reaction had four main components: CuSO4 16mM, Cy5 azide 22µM, 400mM TRIS HCl pH 8.5, 

and freshly made ascorbate acid 275mM. Tris HCl and ascorbate solutions were in bulk reservoir 
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whereas CuSO4 and the Cy5 azide were dispensed into clear 96-well V-bottom plates. The 96-well 

V-bottom plate of Cy5 was also used as mixing stations for all components before they are 

introduced into the 384-well plates. Following preparation, all reagents were then mixed with 

samples at final concentration of 100mM Tris HCl pH 8.5, 4mM CuSO4, 2µM Cy5 Azide, and 

50mM sodium ascorbate. Reaction was left at room temperature for 15-20 minutes in a dark place. 

Following the click reaction, plates were washed with 1x PBS and samples were stained with 

400nM 4’,6-diamidino-2-phenylindole (DAPI) in 3% BSA for one hour at room temperature and 

EdU-labelled DNA percentage was generated using the Cellomics ArrayScan VTI analyser 

(Thermo Fischer Scientific). 

2.2.8 Quantitative cell imaging 

The original processed plates that were used to generate the EdU-labelled DNA percentage were at 

the same time used to generate cell numbers throughout the primary and secondary screens using 

the Cellomics ArrayScan VTI automated inverted epifluorescent microscope (Thermo Fisher 

Scientific). Image acquisition and analysis were performed using the manufacturer provided 

software, Cellomics ArrayScan VTI Compartmental Analysis V.3.0. A detailed imaging protocol 

can bee seen at Appendix 1. 

2.2.9 Flow cytometry 

All tested cells were exposed to final concentrations of 5µM Aurora A kinase small molecule 

inhibitor MLN8237 (Millennium Inc.), 5µM ZM447439 (Enzo Life Science), or DMSO (vehicle) 

for 24, 48, or 72 hours. Cell were permeabilized by incubation with 70% ethanol at -20oC and 

resuspended in 50 µg/mL propidium iodide and 20 units/mL RNase-A (Roche Diagnostics). DNA 

content was measured by flow cytometry using BDFACS-Canto II (BD Biosciences, San Jose, CA) 

and data analysed with FlowJo software (FlowJo Co.). 

2.2.10 Time-lapse microscopy 

Cells were seeded at 2.5x105 in 6-well tissue culture plate and incubated at 37oC with 5% CO2 until 

they reached at least 50% confluency. All cells were then either treated with a final concentration of 

5µM MLN8237 or equal volume of DMSO (vehicle). After treatment a time-lapse microscopy 

experiment was performed using a Zeiss Axiovert 200M Cell Observe microscope equipped with an 
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incubation chamber at 37°C and 5% CO2. Images were captured at 20 minutes intervals using Zeiss 

AxioCam. Images were analysed using ImageJ V1.46r (National Institutes of Health, USA) with a 

minimum of 150 cells per condition per cell line analysed. Time of cellular mitotic entry, an event 

characterised by a bright cell wall and round-up-like morphology of the cell with intact membrane, 

was tracked by the previously mentioned mitosis characterstics. Cellular exit from mitosis was 

observed and assessed for successful cellular division, failure of cytokinesis, or cell death. 

2.2.11 Immunoblotting 

Cells were seeded at 7.5x105 in 10 cm dishes and treated either with DMSO only (vehicle) or a final 

concentration of 5 µM MLN8237 and incubated at 37°C with 5% CO2 for 24, 48, and 72 hours. 

Cells were harvested and collected at each time-point and pellets were stored at -80oC until 

processing. Total cell pellets were lysed in NETN lysing buffer with 1 mM phenylmethylsulfony 

fluoride (PMSF), Protease inhibitor cocktail (5 µg.mL aprotinin, pepstatin A, and leupeptin mix; 

Sigma Aldrich), 0.1% SDS, 100 mM NaCl, , 0.3 mM Na3VO4, 10 mM NaF, and 25 mM B-

glycerphosphate. The Bio-Rad Protein Assay solution was added to the lysis supernatant for 

equalisation, and; a standard curve was generated using bovine serum albumin (BSA). Equalised 

protein concentration lysates were boiled for 5 minutes with 20% sample buffer before samples 

were resolved using SDS-PAGE gel electrophoresis with 10%, 12.5%, or 15% SDS-polyacrylamide 

gels. Transfer to either Hybond-C Extra nitrocellulose or polyvinylidene difluoride (PVDF) 

membranes was achieved by using a Trans-Blot semi-dry transfer cell apparatus (Bio-Rad). The 

protein of interest was detected after adding the suitable primary antibody, which was incubated 

overnight at 4oC followed by the appropriate horseradish peroxidase conjugated secondary 

antibodies for 1 hour at room temperature. Protein band visualization was performed using Western 

Lightening Plus ECL chemiluminescent reagents (Perkin Elmer) with the ChemiDoc gel system and 

software (Vilber Lourmat). 

2.2.12 Cell doubling-time 

Cells were seeded in at 3.5x105 10cm dishes and incubated for 48, 96 and 120 hours at 37oC with 

5% CO2. Cells were trypsinized, collected, and counted in each time-point. Cell doubling time was 

obtained using an online cell doubling time calculator (Roth V. 2006 http://www.doubling-

time.com/compute.php). 
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2.2.13 Xenograft mice models 

Nude-strain immunodificient mice 6-weeks old females were purchased from UQBR. All animal 

studies were conducted based on the approved University of Queensland Animal Ethics number 

UQDI/427/12/CCQ. The 36 mice had been assigned into three groups: (i) CaSki; (ii) HeLa, and; 

(iii) C33A. For each group of 12 mice, 6 mice were used for the treatment with MLN8237 and 6 for 

the vehicle control only. One million of cells from each cell type (CaSki, HeLa, and C33A) 

inoculated subcutaneously in the right flank. When tumour size reached approximately 20-25mm3, 

which was measured using manual caliper, 100µL oral treatment of 30 mg/kg of the MLN8237 

Aurora A small molecule inhibitor by Millennium was administered daily for 10 consecutive days. 

Mice were then followed up daily by scoring any tumour regrowth or until culled. 

2.2.14 Screening Statistical Methods 

Different approaches of statistics can be used in high-throughput siRNA screenings. In the present 

thesis, a Z-score was used for data interpretation (Birmingham et al., 2009). The Z-score is the 

distance from the mean based on standard deviation. Z-score is usually used to normalize data in 

siRNA screens where it counts the total population, which will provide strength of a single sample 

in the total data context. This assumes that variations in screenings are between plates not within the 

plate. All data from the primary and secondary screens were collected and initially analysed in 

Microsoft Excel 2008 (v. 12.2.9). The screening was performed in triplicates in both the primary 

and secondary stages. That is, the standard deviation was calculated for each sample followed by 

the Z-score for data normalization. The Z-score for each replicate was calculated separately and 

then a mean Z-score of three replicates was calculated for final interpretation. The Z-score was 

calculated based on the formula: 

𝑍 =
𝑋 − 𝜇
𝑆𝐷

 

where X is the raw value, µ is the population mean, and SD is the standard deviation of the 

population. Figure 2.1 shows an example of how the Z score was calculated. 
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2.2.15 Immunofluorescence staining 

Cells were cultured on 10cm plates containing poly-L-lysine coated glass coverslips in the absence 

(DMSO only) or presence of 5 µM MLN8237 for 24, and 48 h. Coverslips were recovered and 

fixed with -20 oC absolute methanol and stored at -20 oC until processing. Coverslips were washed 

with 1x PBS and rehydrated in blocking buffer (3% BSA and 0.1% powder skim milk) for 1 hour at 

room temperature. Cells were then incubated with the primary antibodies diluted in the blocking 

buffer for 24 hours at 4oC.  Coverslips were washed six times with 1x PBS and cells were then 

incubated with corresponding secondary fluorescence antibodies and DAPI DNA stain for 30 

minutes at room temperature in a dark atmosphere. Upon incubation, all coverslips were washed six 

times with 1x PBS and air-dried before they were mounted on glass slides using prolong gold 

(Invitrogen). 

 

 

Figure 2.1. Example of how the Z-score was calculated in the siRNA screening stages of this project. The above 
diagram illustrates an example of how the Z score was calculated from the raw data. Yellow colour 
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indicates raw data of a single sample (well); Green colour shows the whole population from where the 
standard deviation and the mean of the total population were calculated; Orange colour indicates the 
calculated Z score for one replicate; and Blue colour shows the mean Z score from all three replicates, 
which in fact was used for data interpretation. 
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3 siRNA screening of the kinome identified potential therapeutic 
target genes in cervical cancer 

3.1 Introduction 

Although many anticancer agents have been developed over the past decades, the mission to 

achieve a selective anticancer agents has not been accomplished yet (Brzezniak et al., 2013, 

Takahashi et al., 2012, Verstovsek, 2013, Zeng et al., 2008). The unspecific targeting that occurs 

using current anticancer agents has led to the notion of trying to develop better treatment options. 

To achieve this ultimate goal, different techniques have demonstrated the ability to identify novel 

target genes that when depleted affect only cancer cells but not normal cells (Kollareddy et al., 

2012). In genetics, synthetic lethality is defined as a combination of mutations in two or more genes 

leading to cellular death (Dai et al., 2013, Dong et al., 2010, Porcelli et al., 2012). The concept of 

synthetic lethality screening via RNAi became a method of choice for many researchers for the 

purpose of identifying novel target genes that are selective for cancer cells. I utilized this concept in 

the present project to identify novel target genes in cervical cancer. 

A strong relationship between high-risk human papillomavirus (HPV) and genital cancers has been 

well-established over the past decades (Peralta-Zaragoza et al., 2012). Cervical cancer is the 

second-leading cause of cancer-related death among women worldwide. Approximately 470,000 

cases are diagnosed annually, and the mortality rate is about 280,000. The most common high-risk 

HPV types involved in this neoplastic disorder are HPV types 16 and 18. Upon the integration of 

the viral DNA with the host DNA, several genetic interactions occur. E6 and E7 primarily disrupt 

p53 and the retinoblastoma protein (pRb), respectively. This oncogenic interaction results in 

interrupted cell cycles, independent cellular growth, immune response escape, and the accumulation 

of further mutations, all contributing to cancer formation (Wang et al., 2013, Sima et al., 2008, Gu 

et al., 2011). In the present study, I used a cervical cancer model to apply the concept of a synthetic 

lethality screen using small interfering RNA (siRNA) to identify novel target genes that, when 

silenced, kill E6/E7-expressing cells but not normal or non-HPV cells. 

Developing robust, high-throughput screens requires optimal conditions to ensure maximum 

transfection efficiency with the lowest possible cytotoxicity (Nebane et al., 2013, Henderson and 

Azorsa, 2013, Kahle et al., 2010). Key considerations during optimization are: cell seeding density, 
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lipid type and concentration, siRNA concentration, cell line selection, the selection of positive and 

negative siRNA controls, and developing proper cell-biological assays to monitor the screens. In 

this project, the Dharmacon Human siGENOME® SMARTpool® siRNA Libraries for Protein 

Kinases (targeting 779 genes of the kinome library) was selected for the primary screen. The library 

consists of a pool of four siRNAs targeting each gene at different sites. Combinations of three cell 

lines were chosen for the optimization and the primary screen, including CaSki (cervical cancer 

HPV16 cell line), C33A (cervical cancer non-HPV cell line), and HaCaT (non-cervical cancer, non-

HPV, spontaneously immortalized keratinocyte cell line). This combination allows for confidence 

in comparing cervical cancer HPV-transformed cell lines against cervical cancer non-HPV cell line. 

The availability of the HaCaT cell line added an extra value for results validity as it demonstrates 

the closest available cell culture system to normal keratinocyte. Additionally, another two HPV-

transformed cell lines were added to the validation screen, HeLa (cervical cancer HPV18) and SiHa 

(cervical cancer HPV16). At the validation screening stage, a different form of siRNA from 

Dharmacon was used that called ON-TARGETplus SMARTpool siRNA. The latter has a 2’O-

methyl chemical modification. The sense strand is modified to preclude uptake by the RNA-induced 

silencing complex and favours only antisense loading. The 2’-O-methyl modified siRNA has a 

better silencing capability and low off-target activity (Jackson et al., 2006). 

This chapter illustrates the importance of performing optimization experiments prior to any large-

scale siRNA screening. It also demonstrates the novel candidates of the primary screen, which were 

participating in the killing of the HPV-transformed cells but not others. The chapter also shows the 

findings of the validation screening, which was carried out to validate the target hits that were found 

in the primary screen. The validated target genes were then taken for further validation experiments 

throughout this project. 

3.2 Results 

3.2.1 Screening Optimization 

As indicated in the introduction, three cell lines—HaCaT, CaSki, and C33A—were selected for the 

optimization processes and the primary screening. This combination of HPV and non-HPV cell 

lines gives the potential to compare the findings of the loss-of-function siRNA screen. 



Chapter 3 – siRNA screening of the kinome identified potential therapeutic target genes in cervical cancer 

54 

Firstly, cells were seeded in maximum cell numbers in 384-well plates, and a dilution series was 

performed to obtain a proper seeding density, with approximately 85% confluency, in 72 h. The 

optimum seeding density for each cell line was selected based on the highest number of cells in S-

phase as determined by the EdU (5-ethynyl-2’-deoxyuridine) assay, which is incorporated during 

DNA synthesis in a quick-click chemistry reaction (Appendix 2). Table 3.1 lists the required 

seeding density for each cell line used throughout the primary and the secondary screens. 

Table 3.1. List of all cell lines and their corresponding seeding densities used throughout the primary and secondary 
siRNA screens 

Cell line Seeding density (cells/well in a 384-well 
plate format) 

Doubling time + SD 

CaSki 2100 28 + 1.8 

HaCaT 550 20 + 6.1 

C33A 2600 26.1 +1.6 

HeLa 500 21 +1.7 

SiHa 1000 22 + 0.24 

 
Next, five different transfection reagents (DharmaFECT 1–4 and Lipofectamine 2000) were 

examined with four different lipid concentrations (0.2%, 0.1%, 0.05%, and 0.025%) to obtain the 

maximum possible transfection efficiency with minimal cytotoxicity. In this experiment, positive 

and negative control siRNAs were included for transfection efficiency measurements, including 

polo-like kinase 1 (PLK1), a serine/threonine kinase and a key mitotic regulator that induces 

apoptosis and inhibits cell growth in the majority of cancer cells upon depletion. Also, a non-

targeting siRNA was included as a negative control. Four cell-based biological assays were used for 

results interpretation, including cell metabolic activity, cytotoxicity, S-phase %, and cell number as 

outlined below. 

Lipids and siRNAs were mixed and dispensed into 384-well plates, and cells were seeded for 

reverse transfection. All cells were transfected with a final concentration of 50nM PLK1 of either or 

non-targeting siRNA. Cells were then incubated at 37°C for 72 h prior to harvesting. Cell metabolic 

activity was evaluated by adding resazurin dye at a concentration of 44µM. Resazurin is a weak dye 

that reduces to a highly fluorescent pink, resorufin, as a result of irreversible chemical reduction 

based on mitochondrial respiration (Gonzalez and Tarloff, 2001, O'Brien et al., 2000). Regardless 

of the cell line, high lipid concentrations—0.2% and 0.1%—showed cytotoxicity, whereas 
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transfection efficiency was lost at the 0.025% concentration (Appendix 3). Among all lipid 

concentrations and transfection agents, DharmaFECT 3 transfection agent showed a strong 

reduction in cell viability that was observed at a 0.05% lipid concentration in cells transfected with 

PLK1 siRNA when compared to the non-targeting siRNA transfected cell lines (Figure 3.1). 

 

Figure 3.1. Summary of cell metabolic activity measured in HaCaT, CaSki and C33A cell lines using 
DharmaFECT 3 at 0.05% lipid concentration. Cells were seeded and reverse transfected with 50nM 
siRNA against PLK1, and non-targeting siRNA was included as a negative control. At 72 h transfection, 
cells were labelled with 44µM resazurin dye. Cells were incubated for 75 min at 37°C. Cell metabolic 
activity was then measured flourimetrically by the FLUOStar plate reader. Each point is the mean and 
standard error mean (SEM) of quadruplicate determinations. The knockdown of the PLK1 by the siRNA 
resulted in remarkable reduction of the cell viability in all the three cell lines compared to the control 
siRNA. The non-targeting siRNA also showed reduction in the metabolic activity of the tested cell lines 
suggesting a level of toxicity compared to the untreated cells. 

In addition, cytotoxicity was measured using a commercially available adenylate kinase kit, which 

was used according to the manufacturer’s protocol (ToxiLight® Non-destructive Cytotoxicity 

BioAssay Kit, Lonza, Australia). From the primary 384-well plate, 8µL were recovered to another 

plate for the cytotoxicity assay. An adenylate kinase substrate was added to the cells and incubated 

for 20 min at room temperature. The luminescence signals of the adenylate kinase activity were 

then measured using the FLUOStar plate reader. The results of the DharmaFECT 3 testing at a 

0.05% lipid concentration showed high adenylate kinase activity level indicated by the 

luminescence signals only in C33A cells when PLK1 was depleted (Figure 3.2). Although both 
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CaSki and HaCaT cell lines showed remarkable increase in the adnylate kinase activity level, cells 

transfected with siNT control showed elevated luminescence signals that may suggest strong 

cytotoxicity. This cytotoxicity might be confirmed when cells transfected with siNT are compared 

with the untreated cells, as they both show relatively similar luminescence activity. This 

cytotoxicity resulted in a marginal significant difference between cells transfected with siPLK1 and 

those transfected with siNT (P = 0.1). Other lipid concentration and transfection reagent data are 

shown in Appendix 3. 

 

Figure 3.2. Summary of adenylate kinase activity measured in HaCaT, CaSki, and C33A cell lines using 
DharmaFECT 3 at a 0.05% lipid concentration. Cells were seeded and reverse transfected with 50nM 
siRNA against PLK1, and non-targeting scrambled siRNA was included as a negative control. At 72 h 
transfection, 8µL of the media were recovered for the cytotoxicity assay using a commercially available 
kit. An equal volume of the adenylate kinase substrate was added to the cells, plates were incubated for 20 
min, and the luminescence signals were then measured by the FLUOStar plate reader. Each point is the 
mean and standard error mean (SEM) of quadruplicate determinations. The luminescence signals showed 
high activity of adenylate kinase when PLK1 was depleted in CaSki and C33A cells. This trend was less in 
HaCat compared to the siNT control. The siNT also showed marginally high adenylate kinase activity 
considering the PLK1 and untreated data. Significant difference was calculated using One-Way ANOVA 
test by Prism V6.0. 
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To count cell number, cells in primary plates were fixed and stained with 400nM DAPI in 3% BSA 

and then subjected to cell number assessment using the Cellomics analyser. The knockdown of 

PLK1 using DharmaFECT 3 at 0.05% in all cell lines resulted in at least six to eight-fold reduction 

in cell numbers (Figure 3.3). 

 

Figure 3.3. Summary of HaCaT, CaSki, and C33A cell line cell count measurements using DharmaFECT 3 at 
0.05% lipid concentration. Cells were seeded and reverse transfected with 50nM siRNA against PLK1, 
and non-targeting scrambled siRNA was included as a negative control. At 72 h, cells were fixed and 
stained with 400nM DAPI stain in 3% BSA. Cells were counted using the Cellomics analyser. Each point 
is the mean and standard error mean (SEM) of quadruplicate determinations. The knockdown of the PLK1 
by siRNA demonstrated obvious reduction in all cell lines. This was confirmed by the siNT control and the 
untreated cells. P value was calculated, (p = 0.03), using a two-tailed paired t test by Prism V6.0. 

 

It was noted that the depletion of PLK1 left all cell lines with more metabolically active cells 

(Figure 3.1) compared to cell numbers (Figure 3.3). In this project, the metabolic activity assay is 

performed at first instant and then these plates underwent various washing stages before the 

Cellmoics ArrayScan VTI generates cell numbers. This may suggests technical variability due to 

washing steps, which may resulted in more cells to detach from the plates. Overall, DharmaFECT 3 

at a 0.05% lipid concentration demonstrated the maximum possible transfection efficiency when 
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compared with the other lipid reagents (Appendix 3 shows examples of other transfection reagents 

and lipid concentrations data using different biological assays). This observation was determined 

via cell viability, cytotoxicity, and cell number assays. Optimizing conditions, such as seeding 

density, lipid type and concentration, and validating biological assays, are essential factors for 

successful high-throughput screens. This part of the project was essential to establishing a robust 

screening platform before the primary and secondary screens could take place. 

3.2.2 Primary Screening 

The main aim of this project was to identify target genes that, when silenced, kill only E6/E7-

expressing cells but have no (or minor) effect on non-HPV/normal cells. These targets might be 

potential therapeutic targets for cervical cancer. A high-throughput siRNA screen was carried out 

using a combination of an HPV-transformed cervical cancer cell line (CaSki) and a non-HPV 

cervical cancer cell line (C33A), in addition to a non-HPV, non-cervical cancer cell line (HaCaT). 

The screening was performed in the Arrayed RetroViral Expression Cloning (ARVEC) Facility at 

the University of Queensland Diamantina Institute using Dharmacon Human siGENOME® 

SMARTpool® siRNA Libraries for Protein Kinases (targeting 779 genes of the kinome library). 

Transfection complexes were prepared and dispensed into 384-well plates. Cells were then added 

for reverse transfection. All plates were incubated at 37°C for 72 h prior to harvesting. The kinome 

library was screened at a final concentration of 50nM; the screening was performed in triplicate. 

3.2.2.1 Cell Viability 

To assess cell viability, resazurin dye was added to cells at a final concentration of 44µM and plates 

were incubated for 75 min at 37°C. Fluorescence signals were determined using a FLUOStar plate 

reader. The Z-score of each cell line was calculated and then all genes were sorted according to the 

minimum CaSki viability Z-value, as shown in (Figure 3.4A). Because I was interested in genes 

that only affect the viability of the HPV-transformed cell line, CaSki. Thus, gene is considered a 

potential target if the CaSki Z-score was -2 or lower and the C33A/HaCaT Z-score is -0.5 or higher. 

Firstly, the results revealed that PLK1, wee-like protein kinase 1 (WEE1), and coatomer protein 

complex subunit beta 2 (COPB2) were on the top of the gene list that affects the viability of all cell 

types, although there were differential responses among cell lines (Figure 3.4B). Unsurprisingly, 

PLK1 and WEE1 kinases play critical roles in cell cycles, and their depletion induces G2/M arrest 
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(de Oliveira et al., 2012, Magnussen et al., 2012). There was only four genes came under the 

category of affecting CaSki by -2 (or less) Z-score with -0.5 (or higher) on C33A and HaCaT 

viability—GSG2 (Haspin), PRKCN, PIK3CA, and KSR2. Of these genes, the germ cell associated 

2 (GSG2/Haspin) has been newly reported to be a crucial regulator of in cell cycle (Higgins, 2010). 

In addition, Aurora A kinase (AURKA) depletion caused a strong reduction in the viability of 

CaSki and HaCaT with Z-scores being -2.9 and -2.5, respectively. Surprisingly, the C33A metabolic 

activity was not affected by the knockdown of AURKA where Z-score of the viability level 

remained as high as 1.5.. The results also revealed another group of genes that affect HaCaT and 

C33A viability but had a lesser effect on CaSki cells. Within this group, the depletion of the cell 

division cycle 2-like protein kinase 2 (CDC2L2) affected HaCaT and C33A viability, and resulted 

in lower Z-scores, 0.1 and 0.06, respectively; when compared with the CaSki Z-score of 0.4. On the 

other hand, the depletion of the same family member, CDC2L1, resulted in a Z-score of 0.05 and 

0.08 in HaCat and CaSki cells, respectively. The aforementioned gene had a very low impact on 

C33A viability by showing a Z-score of 1.2. 

With all the data taken together and based on the selection criteria, this cell-based assay has 

revealed that the depletion of GSG2 (Haspin), PRKCN, and PIK3CA caused a serious effect on 

CaSki viability (Z-score < -2), but the effect was less on HaCaT or C33A viability (Z-score > -0.5). 

Another important finding using this assay was the effect of AURKA depletion on CaSki and 

HaCaT metabolic activity compared to C33A. The latter is a classic example of a potential target 

gene that when silenced affect only HPV-transformed but not non-HPV cervical cancer cells. 

However, HaCaT was added as a negative control but, unfortunately, the depletion of AURKA in 

HaCaT demonstrated low metabolic activity as seen in CaSki. CaSki is an HPV-transformed 

cervical cancer cells, whereas C33A is non-HPV cervical cancer cell line. HaCaT is a spontaneous 

immortalized keratinocytes that is non-HPV.. 
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Figure 3.4. Cell viability of the primary screening of the human kinome library.  A The Dharmacon Human 
siGENOME® SMARTpool® siRNA Library for Protein Kinases (targeting 779 genes) was screened at a 
final concentration of 50nM. A pool of four siRNAs targeted each gene. Transfection complexes were 
prepared and dispensed into 384-well plates for reverse transfection. After 72 h, resazurin dye was added 
into each well at a 44µM final concentration, and plates were incubated for 75 min at 37°C before being 
read by the FLOUStar plate reader for fluorescence detection. Each data point represents a mean Z-score of 
three replicates. B Zoom-in image of figure 3.4A to show the top 55 hits based on the cell viability assay 
sorted based on minimal CaSki Z-scores. 
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3.2.2.2 Cytotoxicity 

Another cell-based assay that can help in finding target genes is the cytotoxicity assay. This assay is 

based on the leakage of the cytoplasmic adenylate kinase enzyme into the surrounding media once 

the cell membrane is disrupted. After 72 h post-transfection, 8µL of the media from each well of the 

primary plates was recovered to another 384-well plate for this purpose. The adenylate kinase 

substrate was then added to each well, and plates were incubated for 20 min at room temperature 

before the luminescence signals were detected using the FLUOStar plate reader. 

The Z-score was calculated for each cell line, and genes were sorted according to the highest CaSki 

Z-score, as shown in (Figure 3.5A). The Z-scores that were set for selecting potential genes that 

affect CaSki cell integrity based on adenylate kinase activity were >1 Z-score for CaSki with <0.5 

Z-score for C33A. The screening results demonstrated that the depletion of Aurora kinases A, B, 

and C affected CaSki cell integrity, causing high adenylate kinase activity in the cell media (Figure 

3.5B). However, this strong effect was not seen in C33A. Furthermore, two other target genes, 

endoplasmic reticulum to nucleus signalling 1 (ERN1; also called ERI1) and heme regulated 

initiation factor 2 alpha kinase (HRI; also known as EIF2AK1), had the same effect as the Aurora 

kinases. The knockdown of these two kinases was highly cytotoxic to CaSki, with a lesser effect on 

C33A. On the other hand, the results revealed that STK39, CDKN1C, TLK1, CHUK, WEE1, and 

COPB2 had high luminescence signals on both cervical cancer cell lines, suggesting that the 

depletion of these genes was vital in CaSki and C33A cells. Although the HaCaT cell line was not 

included in this assay, the data revealed that the Aurora kinases are important when compared with 

the cell viability assay. 
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Figure 3.5. Adenylate kinase activity of the primary screening of the human kinome library. A The adenylate 
kinase substrate was added into each well and plates were incubated for 20 min at room temperature. Plates 
were then read by the FLUOStart plate reader for luminescence signal detection. Each data point represents 
a mean Z-score of three replicates. B Zoom-in image of figure 3.5A to show the top 55 hits based on 
cytotoxicity, sorted based on maximum CaSki Z-values. 
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3.2.2.3 Cell Number 

Cell numbers for all cell lines were generated using the ArrayScan VTI analyser (Cellomics). All 

genes were sorted according to the minimum Z-score of CaSki that represents the lowest cell 

number of CaSki cells, as shown in (Figure 3.6A). The selection criteria for potential target genes 

were similar to the cell viability were CaSki Z-scores -2 (or less) with C33A/HaCaT Z-score of -0.5 

(or higher). Unsurprisingly, the results demonstrated that PLK1 and WEE1 are at the top of the hits 

list, affecting all three cell lines and showing results consistent with the cell viability results (Figure 

3.6B). Furthermore, the depletion of the Aurora A kinase caused a remarkable reduction in CaSki 

cell counts in comparison to C33A and HaCaT. Interestingly, the knockdown of GSG2 (Haspin) 

revealed an interesting result, as it resulted in the severe reduction of the CaSki cell count, whereas 

HaCaT and C33A were far less affected. Only two other genes came under the selection criteria; 

these include MAPK12 and PRKCN. Although this project focuses on the identification of genes 

that, when silenced, affect only HPV-transformed cells, the results revealed that the depletion of 

Aurora B kinases resulted in a similar reduction pattern for both cervical cancer cell lines, CaSki 

and C33A, but not for HaCaT. The latter finding may add a new area of interest in terms of finding 

genes that affect cervical cancer cells regardless of their HPV dependency. 

The target genes that were found using the cell count measurement show high consistency when 

compared with the cell viability and cytotoxicity biological assays. Both WEE1 and PLK1 affected 

all cell lines, whereas GSG2 and Aurora A kinases showed a better outcome in affecting the HPV-

transformed cell line, CaSki, with less effect on C33A and HaCaT. 
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Figure 3.6. Cell numbers of the primary screening of the human kinome library. A Cells were fixed and stained 
with 400nM DAPI stain in 3% BSA and a cell count was performed by the ArrayScan VTI analyser 
(Cellomics). Each data point represents a mean Z-score of three replicates. B Zoom-in image of figure 
3.6A to show the top 55 hits based on cell number, sorted based on the minimal CaSki Z-score. 
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3.2.2.3.1 S-Phase Determination 

To determine the S-phase% of DNA replication, cells were labelled with 10µM EdU for 90 min 

before harvesting. In the present experiment, all genes were listed according to the minimum DNA 

replication of CaSki cells, represented by the minimum Z-score. The selection criteria used for 

potential target genes were similar to the previous criteria used in cell viability and cell number 

(Figure 3.7A). The results revealed that the knockdown of CDC2 caused all cell lines to have 

minimum DNA replication (Figure 3.7B). This finding was consistent with the cell number data, 

where the knockdown of the CDC2 gene was found to affect the cell numbers of all cell lines, 

regardless of their HPV dependency (Figure 3.7B). Additionally, based on the selection criteria of 

CaSki Z-score -2 (or less) whilst C33A/HaCaT should have -0.5 (or higher) Z-score, the data 

revealed that the depletion of CALM3 and CDKL1 were the top hits affecting CaSki DNA 

replication, with a lesser effect on HaCaT and C33A replication. Furthermore, some genes affect 

only cervical cancer cells’ DNA replication, with minimal effect on the HaCaT cells, such as 

ANGPT4. However, sorting the genes based on the minimum DNA replication of CaSki cells did 

not show any overlapping genes, apart from the CDC2, with the previous assays. This is because 

cells were sorted based on blocking CaSki cells from entering S-phase regardless of what the other 

two cell lines show. 
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Figure 3.7. S-phase% determination of the primary screening of the human kinome library. A All cells were 
labelled with 10µM EdU. Cells were then subjected to click-reaction conditions and stained with 400nM 
DAPI in 3% BSA. Positive nuclei were detected using the ArrayScan VTI analyser (Cellomics). Each data 
point represents a mean Z-score of three replicates. B Zoom-in image of figure 3.7A to show the top 55 hits 
based on S-phase determination, sorted based on the minimal CaSki Z-score. 
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3.2.2.4 Hit Selection 

Each biological assay that was used throughout the screening process has a main aim of use. For 

example, cells that die within the first 24 h because of a depletion of a particular gene may reflect a 

low bioluminescence signal of the adenylate kinase activity by 72 h as the signals weaken. 

Therefore, an additional parameter such as cell viability and/or cell number may be used to help 

interpret the results. Also, some cells might be metabolically active, viable, but their DNA stops 

replicating because of the silencing of a gene that affect DNA replication. Thus, the use of multi-

biological parameters helps interpreting the results and, consequently, helps in selecting the best 

target genes. According to the cell biological assays that were conducted to monitor this screening, 

genes were divided into several categories, including genes that affect CaSki only (cervical cancer 

HPV-transformed cells), genes that affect cervical cancer cells only (CaSki and C33A cells), and 

genes that affect all cells (HaCaT, CaSki, and C33A). Because this project was designed to focus on 

the killing of HPV-transformed cells, the selection of hits was based on targets that, when depleted, 

caused major reduction in the cell viability and cell numbers of CaSki, but not for HaCaT or C33A. 

Both cytotoxicity and nucleotide incorporation assays were used as additional measures for more 

confidence in the selected hits. Based on these criteria, only 54 genes were selected for the 

validation screen later in this project (Table 3.2). Details of each candidate can be seen in Appendix 

4. 

Table 3.2. Selected hits for the validation screen 

AURKB MAPK12 RAGE CKS1B SSTK 

AURKA PKIA FLJ10074 RSPH10B IRAK3 

PIK3R3 PIK3CA CSNK1D DCK EGFR 

DUSP10 TGFBR1 HUNK NEK8 DGKE 

BCL2 PRPSAP2 MAP3K2 MAP3K7 SYK 

MARK3 PTPRJ BMPR2 MAPK10 MINK 

GSG2 MYLK2 PRKCN GRK4 MAP2K6 

CNKSR1 TEX14 MERTK RPS6KA3 CASK 

STK16 NEK7 STK22C ACVRL1 CAMK1D 

PRKAR2B MAGI-3 PDIK1L KSR2 AURKC 

EPHA2 ADRB2 DAPK1 ANGPT4 ------------- 

 



Chapter 3 – siRNA screening of the kinome identified potential therapeutic target genes in cervical cancer 

68 

3.2.3 siRNA Secondary Screening 

To validate genuine kinases and exclude any targets that were implicated by off-target siRNA 

effects, a secondary siRNA screening was performed using a new set of siRNA, the ON-

TARGETplus SMARTpool siRNA (Dharmacon). This is a pool of four siRNAs per gene and 

differs from the previous Dharmacon Human siGENOME® SMARTpool® siRNA library, which 

was used in the primary screen, as it has been chemically modified by adding a 2’-O-methyl group 

to the sense strand. Also, the pool of four siRNA used at the primary screen were targeting different 

seeding regions than the regions that are targeted using the ON-TARGETplus SMARTpool siRNA. 

The main reason beyond using these ON-TARGETplus SMARTpool siRNA primarily was to 

reduce off-target effects. The library was screened at a final concentration of 40nM. 

At this time, more cell lines were incorporated into the validation screen to increase confidence in 

the selected target genes and reduce cell line bias. The two cervical cancer HPV-transformed cell 

lines, HeLa (HPV18) and SiHa (HPV16), were added to the previous cell lines panel. As before, 

each cell line underwent optimization experiments, including seeding density, optimal transfection 

reagent and lipid concentration experiments were carried out for the newly incorporated cell lines. 

The same cell-based biological assays were used for the 54 targets throughout the validation screen. 

The same statistical method was used to standardize the results through the Z-score (Chapter 2, 

2.2.14 Screening Statistical Methods). In addition, the main hit validation criterion was based on 

targets that repeated the same patterns/effects seen in the primary screen. In other words, if the 

gene showed the same pattern that was noticed in the primary screen, it was considered a validated 

gene. 

3.2.3.1 Cell Viability 

To assess cell viability, cells were subject to the resazurin assay. The Z-scores were calculated and 

all genes were ranked based on the minimal viability of the CaSki HPV16-transformed cell line. 

Based on the selection criterion, only seven of 54 target hits demonstrated the same patterns noticed 

in the primary screen (Figure 3.8). Of these, the depletion of the testis-specific serine kinase 3 

TSSK3 (STK22C) had a lethal effect on all cervical cancer cell lines but not on HaCaT. 

Surprisingly, the knockdown of GSG2 (Haspin) showed a strong reduction in the viability of HeLa 
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HPV-transformed cell line (Z-score -2.6). The impact of depleting Haspin did not demonstrate the 

same effect on the other HPV-transformed cell lines, CaSki and SiHa. The depletion of Haspin, 

however, had only a minor effect on C33A and HaCaT. Because the main aim of this project was to 

find novel target genes that, when silenced, kill only E6/E7-expressing cells but not others; the only 

target that met this criterion partially was Haspin. Additionally, it is highly essential to select final 

target genes based on all the biological assays used throughout the screening process rather on a 

single parameter. 

 

Figure 3.8. Validated target hits using Dharmacon ON-TARGETplus SMARTpool siRNA based on the viability 
assay. All cells were reverse transfected with the chemically modified siRNA at a final concentration of 
40nM. The resazurin dye was added into each well of the 384-well plates at 44uM for fluorescence 
detection. All genes were sorted based on the lowest Z-score value of the HPV-transformed cell line, CaSki 
(HPV16). Out of the 54 genes tested, these hits repeated the effect that was seen in the primary screen. 
Each data point represents a mean Z-score of three replicates. 

 

3.2.3.2 Cytotoxicity 

According to the selection criterion of the validated targets, of the 54 screened genes, only 18 

kinases repeated the same pattern that was noticed throughout the primary siRNA screen (Figure 

3.9). Among all the validated genes, the depletion of both Aurora kinases A and B demonstrated a 

high level of adenylate kinase activity on the CaSki cells when compared with the other HPV-

transformed cell lines. Although HaCaT is not an HPV-positive cell line, it showed higher 

luminescence signals than the other non-HPV cell line, C33A, and the HPV-transformed cell line, 
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SiHa. Notably, the knockdown of GSG2 (Haspin) and the deoxycytidine kinase (DCK) were found 

to affect the cell integrity of CaSki and HeLa, leading to high level of adenylate kinase leakage. 

This effect was less in SiHa, C33A, and HaCaT. Another interesting target that demonstrated high 

cytotoxicity to HPV-transformed cell lines but not the others was serine/threonine kinase 16 

(STK16). The knockdown of STK16 showed relatively higher luminescence signals in CaSki, 

HeLa, and SiHa when compared with C33A and HaCaT. Furthermore, mitogen-activated protein 

kinase 12 (MAPK12) and the ribosomal protein S6 kinase (RSP6KA3) showed high adenylate 

kinase activity on the cervical cancer, HPV-transformed cell lines and HaCaT, but not on the other 

cervical cancer, non-HPV cell line, C33A. Although the cytotoxicity assay revealed interesting 

targets that are worth further investigation, target selection based on different biological parameters 

was necessary to ensure consistency and the main focus of the project remains on those targets that, 

when depleted, affect the cell integrity of HPV-positive cell lines but not others, such as AURKB, 

AURKA, GSG2, DCK, and STK16. 

 

Figure 3.9. Validated target hits based on adenylate kinase activity. Cells were reverse transfected with a pool of 
four ON-TARGETplus SMARTpool siRNAs at a final concentration of 40nM. Upon transfection, the 
adenylate kinase substrate was added into each well and luminescence signals were detected. The 
represented 18 candidate genes were sorted based on the highest Z-score value of the CaSki (HPV16) cell 
line. Each data point represents a mean Z-score of three replicates. 
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3.2.3.3 Cell Numbers 

Cell numbers can reflect the viable cells within the plates. Of the 54 genes, only 14 genes repeated 

the patterns that were noticed during the primary screen. Upon calculating the Z-score, all genes 

were ranked based on the lowest CaSki Z-score, which reflects the lowest cell number counted in 

the wells (Figure 3.10). Aurora B kinase (AURKB) was on the top of the candidate hits. The 

depletion of the latter had a severe impact on the viability of all cervical cancer cell lines, regardless 

of their HPV background. However, this effect was not seen in HaCaT, non-HPV, and non-cervical 

cancer cell lines. Furthermore, the silencing of the Aurora A kinase (AURKA) also demonstrated 

remarkable reduction in cell numbers in both CaSki and HeLa, Z-scores of -9.3 and -7.2, 

respectively. This effect was not seen in SiHa (Z-score -0.2). Both non-HPV cell lines had higher Z-

values compared to SiHa but far less compared to CaSki and HeLa HPV-transformed cell lines. 

Moreover, the depletion of the phosphoinositide-3-kinase regulatory subunit (gamma) (PIK3R3) 

and myosin light chain kinase 2 (MYLK2) showed low cell numbers in all HPV-transformed cell 

lines but not in C33A and HaCaT. In addition, both GSG2 (Haspin) and STK16 had a similar effect 

on CaSki and HeLa, demonstrating low Z-scores when compared to other cell lines. The data 

obtained from the cell count are relatively consistent with the cytotoxicity results, suggesting 

confidence in the validated target hits. Aurora kinases A and B, together with GSG2, STK16, and 

PIK3R3, are promising validated candidate genes based on the cell number data. 

 

Figure 3.10. siRNA-validated target hits based on cell count. Following siRNA transfection, cells were fixed and 
stained with 400nM DAPI in 3% BSA and counted using the ArrayScan VTI analyser (Cellomics). Z-
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scores were calculated and genes ranked based on the lowest Z-values of the CaSki cells. Each data point 
represents a mean Z-score of three replicates. 

 

3.2.3.4 Final hit selection 

The main aim of this project was to find novel target genes that when depleted become only lethal 

to cervical cancer HPV-transformed cells but not others. Furthermore, to ensure results consistency 

and to increase confidence in selecting real target hits, four different assays were used based on two 

different forms of pool siRNAs (siGENOME SMARTpool and the ON-TARGETplus SMARTpool 

siRNA), although the EdU assay used during the secondary siRNA screen did not show targets with 

similar patterns to those selected from the primary siRNA screening; this is primarily because of the 

purpose of the present work sought to look for genes that when deplete affect cell viability (cell 

killing) rather than DNA. To exclude off-target effects and to validate hits, a secondary screen was 

conducted and more HPV-transformed cell lines were incorporated, HeLa and SiHa. Based on the 

criterion of genes when silenced affect only HPV-transformed cells with minor effect on non-HPV 

cells, only 6 genes were validated to have this effect. These genes are AURKB, AURKA, GSG2, 

STK16, CNKSR1, and PIK3R3. Figure 3.11 summarizes the effect of these genes on a panel of 

cervical cancer HPV-transformed and non-HPV cell lines as well as HaCaT cell line. 
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Figure 3.11. Summary of selected target hits based on three cell biological assays : including A cell number; B 
cytotoxicity; and C cell viability. 

Kinases
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3.2.4 Confirming AURKA and AURKB knockdown by the ON-TARGETplus SMARTpool 
siRNA 

Both AURKA and AURKB are mitotic regulators that showed interesting selectivity to the majority 

of the HPV-transformed cervical cancer cell lines and both targets have commercially available 

small molecule inhibitors. Therefore, the ON-TARGETplus SMARTpool siRNA against AURKA 

and AURKB were used to confirm the knockdown by Western blotting. Both siRNA were used at a 

final concentration of 20nM. The data demonstrates that the silencing of AURKA and AURKB by 

the ON-TARGETplus SMARTpool siRNA was able to reduce the protein levels when compared to 

the non-targeting siRNA in all the tested cell lines (Figure 3.12 – densitometry data are shown in 

Appending 5). These data also support the previously shown data of AURKA and AURKB using 

different biological assays throughout the primary and the secondary screens, as these targets are 

real target hits. 

 

Figure 3.12. AURKA and AURKB ON-TARGETplus SMARTpool siRNA successfully decreased protein level. 
Cells were seeded and reverse transfected with either Aurora A kinase (AURKA) or Aurora B kinase 
(AURKB) ON-TARGETplus SMARTpool (siOTP) at a final concentration of 20nM and pellet was 
collected 24 h after transfection was performed. Non-targeting siRNA (siNT) was used as a control. 
Western blot imaging was acquired using Fusion ChemiDoc gel documentation system. 

 

3.3 Discussion 

The objective of this project was to use a synthetic lethality approach using a high-throughput 

siRNA screen to identify novel genes which when depleted are lethal only in HPV-transformed 

cervical cancer cells, with no (or minor) effect on other cells. This concept has been successfully 

applied in various other cancers. Luo et al. found a pathway involving PLK1 that is synthetically 
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lethal to Ras mutant cells (Luo et al., 2009). The inhibition of this pathway results in accumulation 

of cells in prometaphase resulting in the death of Ras mutant cells. In another study, a synthetic 

lethal siRNA screen identified target genes that potentiate the growth inhibitory outcome of 

gemcitabine in pancreatic cancers when silenced (Azorsa et al., 2009). The study found that the 

depletion of checkpoint kinase 1 (Chk1) is a putative therapeutic target for sensitizing pancreatic 

carcinoma cells to gemcitabine. 

Although synthetic lethal screens have shown promising results, effective implementation of high-

throughput siRNA screens necessitates optimized conditions that permit maximum transfection 

efficiency and low cytotoxicity. Therefore, for any high throughput siRNA screen, assay 

development must precede the actual screenings. Accordingly, all the cell lines used throughout the 

primary and validation siRNA screens were tested against several transfection conditions including 

seeding densities, transfection agents, and lipid concentrations. 

A key measurement that precedes any high-throughput siRNA screen is the selection of a proper 

transfection agent with a suitable concentration that is neither highly diluted nor cytotoxic. 

Transfection reagents that induce a cytotoxic effect can adversely affect reproducibility and may 

vary gene expression after transfection (LaPan et al., 2008). Additionally, proper negative controls, 

particularly the Dharmacon non-targeting siRNA, were optimized. According to earlier reports, the 

Dharmacon non-targeting siRNA is more toxic to cells compared to another set of non-targeting 

siRNA such as Ambion (Thaker et al., 2010). This is a classic example that shows the importance of 

testing several positive and negative siRNA controls in addition to other optimization conditions. 

The availability of commercial siRNA libraries, such as the kinome and druggable genome, has 

made focused library siRNA screens possible. In the present study, I performed a primary high 

throughput siRNA screen using the kinome library consisting of 779 genes from Dharmacon. This 

siGENOME library has a pool of four siRNAs each targeting the same gene within the well at 

different sites on the mRNA. I included three cell lines CaSki (cervical cancer HPV16 cell line), 

C33A (cervical cancer non-HPV cell line), and HaCaT (non-cervical cancer, non-HPV, 

spontaneously immortalized keratinocyte cell line). The screening revealed that two kinases, PLK1 

and Wee1, severely affected all cell lines regardless of their HPV transformation status. The 

knockdown of both PLK1 and Wee1 resulted in very few cells going through S-phase as shown by 
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the nucleotide incorporation assay data. PLK1 is an essential cell cycle gene that has a low 

expression profile during G1 and S phases (Strebhardt and Ullrich, 2006). It begins to rise during G2 

and peaks at the M phase of the cell cycle. It plays a significant role in ensuring the fidelity of the 

checkpoint controls. PLK1 is becoming a gene of interest in many cancer investigations as its 

depletion results in apoptosis. Wee1 is a protein kinase that regulates G2 checkpoint in response to 

DNA damage. Wee1 phosphorylates and inactivates cyclin-dependent kinase 2-bound cyclin E, and 

consequently, controls the regulation of DNA replication through S-phase. Silencing Wee1 

sensitizes many cancer cells, such as ovarian, colon, osteosarcoma, and lung, to DNA damage by 

irradiation (Wang et al., 2001, Wang et al., 2004b, PosthumaDeBoer et al., 2011). Therefore, it is 

not surprising that depleting PLK1 or Wee1 using siRNA would eventually result in low viability 

and lower cell number as well as blocking cells’ entry into S-phase. 

Although the viability assay and cell number revealed overlapping results of PLK1 and Wee1, the 

cytotoxicity assay was inconsistent with these data. For example, Wee1, but not PLK1, was within 

the top 50 hits based on the cytotoxicity assay. Such variations in this biological assay may occur as 

each assay has different principles, and targets different cellular events. The cytotoxicity assay is 

based on detecting the cytoplasmic adenylate kinase activity, which is a marker for loss of cell 

integrity (or cell death), whereas the resazurin cell viability assay is based on determining cellular 

metabolic capability (Cho et al., 2008, O'Brien et al., 2000). The siRNA that targeted PLK1 may 

have depleted the gene resulting in complete cell death within the first 24 h of transfection that was 

reflected by low cell count. The adenylate kinase, therefore, does exist in the culture media but may 

not be suitable to emit strong luminescence signal upon the completion of the experimental 

timeframe as it probably loses its enzymatic activity. This may explain the consistency of viability, 

cell number and the nucleotide incorporation assays of cells transfected with PLK1 siRNA in 

compare to the cytotoxicity assay result. 

This project focuses on the identification of novel target genes that are lethal only to HPV-

transformed cervical cancer cells. Among all the biological assays used throughout the primary 

screen, 54 genes were selected for further validation (Table 3.2). Among these 54 genes, there were 

some targets that severely affected CaSki, but not C33A including AURKA, AURKB, AURKC, 

GSG2, CNKSR1 and PRKCN. However, some of these genes were not validated by a secondary 
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screen to exclude siRNA off-target effects. The siGENOME SMARTpool siRNA, which was used 

in the primary screen, differs from the ON-TARGETplus SMARTpool smart pool siRNA 

(Dharmacon) that was used in the secondary screen, as the latter is a chemically modified siRNA 

(Jackson et al., 2006, Dua et al., 2011). Although another form of siRNA was used in the validation 

screen, the Aurora kinases A and B in addition to GSG2 (Haspin) were in the top hits that affected 

majority of HPV-transformed cervical cancer cells but not the non-HPV cells. 

Haspin was a target hit that came through primary and validation screens. The depletion of Haspin 

affected at least two cervical cancer HPV-transformed cells (CaSki and HeLa), but the impact was 

less on the C33A. Haspin is a kinase that is involved in mitosis where it phosphorylates histone H3 

at threonine-3 (hH3-Thr-3) and plays a crucial role in chromosome behaviour throughout cell 

division (Dai and Higgins, 2005, Dai et al., 2005, Tanaka et al., 1999). However, hH3-Thr-3 plays 

an imperative role in activating Aurora B. Both hH3-Thr-3 and Aurora B localize on the inner 

centromere. Wang et al. found that the hH3-Thr-3 places the chromosomal passenger complex 

(CPC) that encompasses Aurora B at the centromere to regulate selected targets of AURKB during 

mitosis (Wang et al., 2010). In another report, Wang and colleagues provided evidence of AURKB 

activity that triggers a positive feedback loop consisting of CPC-Haspin-hH3-Thr-3 to promote the 

generation of hH3-Thr-3 on chromatin (Wang et al., 2011a). These reports of AURKB-Haspin 

cross-talking and the implication of AURKB in different neoplastic disorders may pave the way for 

researchers to further investigate the role of Haspin in cancer models (Hegyi and Mehes, 2012, 

Gully et al., 2010, Yeung et al., 2008, Takeshita et al., 2013). 

Aurora A and B are additional target hits that were validated throughout the secondary validation 

screen. Aurora kinases represent a family of three members (AURKA, AURKB, and AURKC) that 

belong to serine/threonine kinases, and these are highly required for cell cycle control (Katayama 

and Sen, 2010). Although they share large homology similarities, each member of the family has a 

distinct function. Aurora A primarily participates in centrosome function, cell mitotic entry, and 

spindle assembly. Aurora B, on the other hand, is involved in chromatin modifications, microtubule 

kinetochore attachment, spindle checkpoint, and cytokinesis (Bernard et al., 1998, Tang et al., 2006, 

Gautschi et al., 2008, Gautschi et al., 2006, Smith et al., 2005). I observed that in the primary 

screen, the depletion of AURKA strikingly resulted in low viability of CaSki cells, high adenylate 
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kinase activity, and few cells undergoing DNA replication. This effect was not seen in C33A cells 

when AURKA was depleted. These results were also reproducible when the validation screen was 

performed on a larger cervical cancer cell line panel. The depletion of the AURKA affected the 

growth of CaSki and HeLa with minor impact on SiHa cells. The major differences between the two 

types of cervical cancer cell lines tested in this project are: (i) the presence of the E6/E7 HPV 

oncogenes in the HPV-transformed cell lines and; (ii) the status of p53 as the HPV-induced cervical 

cancer cell lines have wild-type p53 whereas the non-HPV have mutant p53. In 2010, Shin et al. 

showed that the transfection of a wild type C33A cell line with HPV-E6 significantly increased the 

radiosensitivity of the cells when compared to vector-only transfected C33A (Shin et al., 2010). 

These findings support the idea that AURKA depletion may have triggered apoptotic pathway in the 

CaSki and HeLa HPV-transformed cells, but not the cervical cancer non-HPV C33A cells. 

Additionally, the HPV-transformed cervical cancer cell lines have a major different among them as 

each cell type has different HPV DNA copy numbers, which may have contributed to the degree of 

sensitivity towards the depletion of AURKA.  

I have also validated Aurora B, another aurora kinase family member, in the screen. Knocking 

down AURKB in the primary screen resulted in low viability and high adenylate kinase activity of 

the CaSki cells, suggesting cells death. This effect was further validated in HeLa cell line with less 

effect on SiHa cells. However, the C33A and HaCaT cells were not as remarkably affected by the 

depletion of AURKB as the HeLa or CaSki HPV-transformed cervical cancer cell lines. It has been 

reported that AURKB has an interactive and/or regulatory relationship with p53 (Ikezoe et al., 

2010, Wu et al., 2011a). This cross talking between AURKB and p53 occurs at the centromere. 

Because the HPV-transformed cervical cancer cell lines differ from the non-HPV as the latter has a 

mutated p53 (Crook et al., 1991), this might be a reason that the depletion of AURKB has affected 

CaSki and HeLa more than C33A and HaCaT. Furthermore, as indicated in the previous section, the 

viral DNA copy number may have been a reason to why SiHa as an HPV-transformed cervical 

cancer cell line did not show similar patterns compared to HeLa and CaSki.  

The results of this chapter have clearly demonstrated that siRNA high throughput synthetic lethal 

screen is a powerful tool to identify novel target genes in cancer models. Also, it shows the 

importance of optimizing proper screening conditions in a miniaturize screen prior to the actual 
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screening. Three mitotic regulators, AURKA, AURKB, and Haspin, have demonstrated strong 

lethality effect on HPV-transformed cervical cancer cell lines but not the non-HPVs. Due to the 

availability of commercialized small molecule inhibitors for Aurora A and B kinases and their 

known implications in different cancer types, Aurora B and Aurora A are the investigative subjects 

of Chapter 4 and Chapter 5 of this thesis, respectively. 
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4 Aurora B small molecule inhibitor, ZM447439, is not selective for 
HPV-transformed cell lines 

4.1 Introduction 

The primary and the secondary screens that were performed in this project validated top hits 

including GSG2 (Haspin), AURKB and AURKA. These hits were highly lethal in HPV-

transformed cervical cancer cells but not the non-HPV panel. Obviously, all three target hits are 

mitotic regulators. Haspin, for example, phosphorylates histone H3 at threonine 3 (hH3Thr3). 

Haspin plays crucial role in chromosome alignment during mitosis. It was reported that the 

knockdown of Haspin by RNAi resulted in failure of metaphase chromosome alignment and 

activation of the spindle assembly checkpoint (Higgins, 2010). As Haspin phosphorylates histone 

H3 at threonine-3, it also provides a docking site for the Aurora B kinase (AURKB) complex at the 

centromere. Although Haspin has not previously been reported to be associated with cancer, 

Haspin-AURKB cross talk may help understand the role of Haspin in cancer and as a potential anti-

cancer target. 

The Aurora kinase family comprises closely related threonine/serine kinases that play fundamental 

roles in the cell cycle (Carmena et al., 2009). As indicated in the previous chapter, these proteins are 

involved in the different stages of cell division, including centrosome duplication, spindle 

formation, chromosome alignment, mitotic checkpoint activation, and cytokinesis. AURKB is a 

member of the Aurora kinase family (Hegyi and Mehes, 2012, Katayama and Sen, 2010). Aurora B 

is located on chromosome 17p13.1, a region that is not normally amplified in human malignancies 

(Hegyi et al., 2012). Despite this, the mRNA and protein levels of Aurora B are increased in some 

neoplastic disorders such as colorectal cancer (Alferez et al., 2012). Aurora B is a key cell cycle 

component where its expression peaks at the G2-M transition and is maximal during mitosis. Aurora 

B first localizes to the chromosome during prophase and then to the centromere during prophase 

and metaphase. It is activated by the inner centromeric protein (INCENP) and shows maximum 

activity during metaphase and telophase. The important substrates of Aurora B include the mitotic 

checkpoint proteins BubR1 and Mad2, INCENP, survivin, borealin, and histone H3 (Gabrielli et al., 

2011, Uehara et al., 2013). Aurora B phosphorylates histone H3 at Ser10 and is implicated in 

chromosome condensation and mitotic entry. 
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During the primary and secondary siRNA screening in this project, Aurora B was found to be a 

potential target that was more effective in HPV-transformed cervical cancer cells than in non-HPV 

cervical cancer cells. Based on this finding, this potential target gene was further investigated using 

the commercially available Aurora B inhibitor (ZM 447439), which is the focus of this chapter. The 

chapter also discusses whether these mitotic targets found throughout the screening processes were 

HPV-related hits. 

4.2 Results 

4.2.1 Inhibiting AURKA, AURKB, and Haspin is specific to HPV-induced cell lines 

Throughout the primary and secondary siRNA screening, the mitotic regulators Aurora A, Aurora 

B, and GSG2 (Haspin) were found to be potential targets that were more lethal to HPV-transformed 

cells. All these three genes are essential in mitosis. This observation raised the question whether 

interrupting mitosis may produce a similar phenotype. To test whether there was an HPV-selectivity 

of targeting these genes or it is only a consequence of targeting mitosis, two small-molecule 

inhibitors were introduced, the Polo-like kinase 1 (PLK1) mitotic small-molecule inhibitor (BI-

2536) (Haupenthal et al., 2012), and paclitaxel (taxol). Both drugs were examined in a panel of 

HPV-transformed and non-HPV cancer cell lines using dose-response experiments. All cell lines 

were subject to the viability assay using resazurin dye. The results showed that, regardless of the 

HPV status of the cells, all cervical cancer cell lines in addition to HaCaT, non-cervical cancer, 

non-HPV cell line, were highly sensitive to both drugs (Figure 4.1 A and B), with IC50 in 

nanomolar range for each drug. This experiment demonstrates that HPV selective loss of viability 

with depletion of the newly discovered mitotic targets AURKA, AURKB, and GSG2 (Haspin) 

using siRNA, in cervical cancer (as indicated in Chapter 1) is not a generic targeting of mitosis 

effect but likely to reflect specific dependence of HPV-transformed cells on these targets. In other 

words, interrupting mitosis with the BI-2536 and taxol did not generate the same effect seen when 

AURKA, AURKB, or Haspin were depleted with siRNA. 

 

 



Chapter 4 – Aurora B small molecule inhibitor, ZM447439, is not selective for HPV-transformed cell lines 

82 

 

 

 

 

 

 



Chapter 4 – Aurora B small molecule inhibitor, ZM447439, is not selective for HPV-transformed cell lines 

83 

C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 – Aurora B small molecule inhibitor, ZM447439, is not selective for HPV-transformed cell lines 

84 

D 

 

 

 

 

 

Figure 4.1. PLK1 small molecule inhibitor (BI-2536) and paclitaxel did not show selectivity towards either HPV 
or non-HPV cervical cancer cell lines. A Summary of the IC50 values generated from a dose-response 
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experiment showing the effect of the paclitaxel (taxol) on a panel of HPV and non-HPV cervical cancer 
cell lines. B IC50 values for the same cell panel treated with the PLK1 inhibitor (BI-2536). In both 
experiments, cells were subject to a viability assay using the resazurin dye 44 µM after 72 h of drug 
treatment (dose range 100-30-10-3-1 nM, 300 and 100 pM). Each point is the mean and standard error 
mean (SEM) of quadruplicate determinations. IC50 was calculated using GraphPad Prism V.6.0. In both A 
and B the small molecules affected all cell lines in nanomolar range regardless of their HPV transformation 
status. Dose-response curves of both experiments in all cell lines are shown in C (taxol) and D (BI-2536). 

4.2.2 Aurora B small-molecule inhibitor (ZM 447439) selectivity 

As indicated in the previous chapter, AURKB was a potential target that worth further 

investigations. In that regard, I took advantage of the commercially available small molecule 

inhibitor for AURKB (ZM447439) and investigated its effect on all HPV-transformed and non-

HPV cervical cancer cell lines, and HaCaT cells. The calculated IC50 values demonstrated slight 

difference between HPV-transformed and non-HPV cervical cancer cell lines, including HaCaT. 

These data suggest that the Aurora B small molecule inhibitor ZM 447439 had no significant 

differential response that would make it a potential target in cervical cancer HPV-transformed or 

cervical cancer non-HPV cell lines using ZM447439. 
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Figure 4.2. Aurora B small-molecule inhibitor ZM 447439 showed no selectivity towards HPV-transformed 
cervical cancer cells. A) Summary of the IC50 values for ZM 447439 in a panel of HPV-transformed and 
non-HPV cervical cancer cell lines, in addition to HaCaT, in a dose-response experiment. Cells were 
subject to viability assays using resazurin dye at final concentration of 44µM after 72 h of treatment with 
the inhibitor (dose range 30-10-3-1 µM – 300, 100 and 30 nM). Each point is the mean and standard error 
mean (SEM) of quadruplicate determinations. IC50 was calculated using GraphPad Prism V.6.0. All cell 
lines showed differential response to the treatment but did not demonstrate any selectivity based on HPV-
transformation status. B) Dose-response curves of all cell lines treated with the ZM447439. 

 

4.2.3 Suppression of Aurora B activity by ZM 447439 induces accumulation of 4N and >4N 
DNA contents 

As previously shown that ZM 447439 did not show HPV selectivity, here I investigated the effect 

of this inhibition on both HPV-transformed cell lines and non-HPVs. All cells were subject to DNA 

content analysis using flow cytometry. Cells were treated with 5 µM ZM 447439 for 24, 48, and 72 

h in addition to DMSO (vehicle) only treated cells. With 24 h of treatment, it was found that ZM 

447439 resulted in accumulation of cells in G2/M, induction of greater than 4N populations, and an 

obvious reduction in 2N population size regardless of HPV status (Figure 4.3). This effect was 

noticed in all cell lines including cervical cancer and non-cervical cancer, HaCaT, cells. After 48 h 

of treatment, the CaSki, and HaCaT cells reached their maximal >4N population, which indicates 

failure of cytokinesis. However, the remaining cell lines, HeLa, ME180, SiHa, C33A, and HT3, 

reached their maximal >4N population at 72 h of treatment. Additionally, treatment of cells with 

ZM 447439 resulted in a high apoptotic population in a time-dependent manner in all the tested cell 

lines, indicated by the increased sub-diploid population (<2N). These data suggest that the 

selectivity of the Aurora B small-molecule inhibitor ZM 447439 is not based on the HPV status of 

the cell line. 
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Figure 4.3. ZM447439 induced aneuploidy and high apoptotic profiles on time-dependent manner in all tested 
cell lines regardless of their HPV-transformation status. A) DNA content was analyzed using 
fluorescence-activated cell sorting (FACS). All cells were treated with 5 µM ZM 447439 and collected at 
24, 48, and 72 h. DMSO control only cells were collected after 24 hours and plotted as zero time on the 
graph. Each cell line had a negative control that was treated with the vehicle only (DMSO). The 
experiment was performed in three biological replicates and the error bars represent the SEM of three 
biological replicates. Data were processed using FlowJo V.2.0. B) Examples of the FACS histograms are 
shown from each tested cell line. 

4.3 Discussion 

Understanding the mechanism of cell division and faithful transmission of genetic materials from 

parental cells to daughter cells is a challenging area in cell biology. Cell division is a tightly 

regulated process where actively dividing cells pass through the cell cycle that comprises four 

defined stages including G1, S, G2, and M. At the end of the M (mitotic phase), cells undergo 

cytokinesis where they divide into two daughter cells. In the primary and secondary high-throughout 

screening carried out in this study, the siRNA depletion of three mitotic regulators, AURKA, 

AURKB, and Haspin, was found to be lethal for at least two HPV-transformed cell lines (HeLa and 

CaSki) with less effect on SiHa. The effect of depleting AURKB had severe impact on HaCaT 

viability but not as much on C33A (non-HPV cervical cancer cell line). The identification of the 

three mitotic regulators (AURKA, AURKB, and Haspin) may suggest that disrupting mitosis by 

targeting other mitotic regulators/events may result in the same HPV selectivity at least in CaSki and 

HeLa cell lines. The treatment of all HPV-transformed cervical cancer cell lines and the non-HPV 

cell lines with the Polo-like kinase 1 (PLK1) small molecule inhibitor (BI-2536) induced apoptosis 

in all the cells regardless of their HPV-transformation status. Harris and colleagues reported that the 

depletion of PLK1 by siRNA in medulloblastoma cell lines caused mitotic arrest (defect in mitosis 

followed by failure of cytokinesis), and induction of the apoptotic machinery (Harris et al., 2012). 

These findings were consistent with the report of Reagan-Shaw, where he showed that the depletion 

of PLK1 by siRNA caused the similar apoptotic outcome in prostate cancer cells (Reagan-Shaw and 

Ahmad, 2005). Earlier studies have shown that the knockdown of PLK1 by siRNA interrupts mitotic 

cell cycle progression through cell division cycle 25C (Cdc25C) and Cdc2/cyclin B1 positive 

feedback loop (Bu et al., 2008, Reagan-Shaw and Ahmad, 2005, Roshak et al., 2000). Additionally, 

several studies have demonstrated similar effect of PLK1 small molecule inhibitors such as 

MLN0905 and NMS-P937 (Valsasina et al., 2012, Shi et al., 2012). The use of these small molecule 
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inhibitors with different cancer cell lines resulted in significant increase in cells with 4N DNA 

content, which indicates considerable G2/M block. This prolonged mitotic arrest was next followed 

by cell apoptosis. The data on the small molecule inhibitors and siRNA in the above studies was 

consistent with the findings of the present study where all cervical cancer cell lines, HPV-

transformed and non-HPV, demonstrated high sensitivity to the PLK1 small molecule inhibitor 

indicating loss of viability at low (nanomolar) range. 

As discussed earlier, the PLK1 small-molecule inhibitor was not found to be selective for HPV-

transformed or non-HPV cervical cancer cell lines. To confirm this unselective response, another 

antimitotic agent, paclitaxel (taxol) was tested on the same panel. Taxol enhances tubulin 

polymerization and stabilizes microtubules and, subsequently, affect the normal breakdown of 

microtubules during cell division (Vyas and Kadow, 1995, Wan et al., 2004). This stabilization of 

the microtubule polymers enables chromosomes to achieve a metaphase spindle configuration, 

which consequently block the progression of mitosis and trigger apoptosis. In their study, Jordan et. 

al. showed that using taxol in low concentrations (10nM) in HeLa cells induces almost 90% mitosis 

block at the metaphase/anaphase transition eventually leading to apoptosis (Jordan et al., 1996). Our 

data on the use of taxol in the cervical cancer HPV-transformed and non-HPV cell lines was in 

agreement with the previous findings. Taken together, our data suggests that the use of two anti-

mitotic small molecule inhibitors, PLK1- BI-2536 and taxol, showed no selectivity against cervical 

cancer HPV-transformed cell lines. Thus, confirming that the lethality in HeLa and CaSki cells as 

HPV-transformed cervical cancer cell lines that was produced when AURKA, AURKB, or Haspin 

were depleted using siRNA (as shown in Chapter 1) was in fact related to the HPV-transformation 

status of the cell, not a consequence of targeting mitosis or a mitotic event. 

Aurora B kinase over-expression has been implicated in different malignancies; therefore, it is not 

surprising that several studies were carried out to unleash the importance of targeting AURKB as a 

potential therapy (Buczkowicz et al., 2013, Portella et al., 2011, Esposito et al., 2009). It has been 

described in the previous chapter that the depletion of AURKB by siRNA results in a lethal effect 

on the majority of HPV-transformed cervical cancer cell lines with minor effect on the C33A. 

Previous studies have shown that targeting AURKB prevents chromosomal alignment, and 

alteration of the spindle checkpoint function, followed by failure of cytokinesis and eventual loss of 
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cell viability (Ditchfield et al., 2003, Girdler F et al., 2006). The inhibition of AURKB activity was 

not only confirmed by RNAi study but also by using small-molecule inhibitors such as ZM447439 

and AZD1152. Previous studies have demonstrated that the use of AZD1152 inhibitor induced 

polyploidy in acute myeloid leukaemia (AML) cell lines that indicate anti-proliferative activity of 

the drug, which in most cases led to apoptosis (Oke et al., 2009, Yang et al., 2007). Additionally, 

the drug was tested on Burkitt’s, Hodgkin’s lymphomas and multiple myeloma cell lines (Mori et 

al., 2011, Evans et al., 2008). It was noted that inhibition of AURKB activity resulted in 

accumulation of > 4N DNA content and induction of caspase-dependent apoptosis. 

Another AURKB small-molecule inhibitor that has been widely used to inhibit AURKB activity is 

ZM447439. Previous reports have shown that ZM447439 inhibitor blocked cells in G2/M transition, 

which leads to apoptosis by activating caspase 3 and 7 (Georgieva et al., 2010, Gadea and 

Ruderman, 2005). Zhang et al. (2011) further demonstrated that ZM447439 induced G2/M cell 

cycle arrest and apoptosis in SiHa cervical cancer cell line (a HPV16-transformed cell line) (Zhang 

and Zhang, 2011). This report was focused on the synergistic effect between ZM447439 and 

cisplatin, a clinical approved chemotherapeutic agent. Therefore, the study included only SiHa as an 

HPV-transformed cervical cancer cell line and not non-HPV cell lines. These findings are consistent 

with the findings of the present study where the use of ZM447439 in cervical cancer cell lines 

induced significant G2/M arrest within the first 24 hours of the treatment. This was followed by the 

induction of > 4N DNA content confirming the failure of cytokinesis and subsequent increase in the 

sub-diploid population. Interestingly, the small molecule inhibitor induced apoptosis in all the 

cervical cancer cell lines regardless of their HPV-transformation status and did not show any HPV 

selectivity. In contrast, the silencing of AURKB by siRNA (as indicated in Chapter 1) was lethally 

selective for at least CaSki and HeLa HPV-transformed cervical cancer cell lines. 

The mode of action of siRNA and kinase small molecule inhibitors is completely different where 

the latter only inhibits the activity of the protein whilst the former degrades the messenger RNA 

(mRNA) and prevents protein translation. As siRNA prevents protein translation, it is then expected 

that protein-to-protein interactions will be completely lost. On the other hand, the majority of the 

small-molecule inhibitors target the kinase an ATP active site, and because there have been more 

than 500 kinases discovered in the human genome where each one has a ATP active site, there is 



Chapter 4 – Aurora B small molecule inhibitor, ZM447439, is not selective for HPV-transformed cell lines 

93 

higher probability of cross-reactivity (Manning et al., 2002). For instance, using binding assays, 

VX-680 (Tozasertib), Aurora kinase inhibitor, was also found to bind to T3151 mutant of BCR-

ALB1 (Carter et al., 2005, Harrington et al., 2004). Further characterization and co-crystallography 

of the T3151 mutant have supported this data (Young et al., 2006). Thus, despite the availability of 

large number of small molecule inhibitors, limited data are available on the selectivity of regularly 

used compounds.  

In 2010, Harvard Medical School developed a new online library called Library of Integrated 

Network-based Cellular Signature (LINCS) that can be used to investigate the specificity of some 

small molecule inhibitors based on the binding assays for small-molecule kinase interactions 

(https://lincs.hms.harvard.edu) (Manning et al., 2002, Fabian et al., 2005). After using the online 

database to investigate the specificity of the ZM447439, it was found that the compound has several 

off-target effects. Additionally, AURKB make a part of the passenger chromosomal complex (CPC) 

together with surviving, borealin, and inner centromere protein (INCENP). The depletion of 

AURKB activity by siRNA tends to delocalise and destabilise other CPC members. This effect 

prevents the correct function of CPC at the centromere. In contrast, inhibiting AURKB activity by 

small molecules leaves the CPC intact and correctly localize. Taken together, these investigations 

might explain the non-selectivity of ZM447439 to the HPV-transformed cell lines when compared 

with the siRNA results.  

The first result of this chapter confirms that the discovery of three mitotic regulators (AURKA, 

AURKB, and Haspin) as top siRNA screening hits, as shown in the previous chapter, was not a 

consequence of targeting mitosis. Indeed, the effect that was generated when these targets were 

depleted was actually selective to HPV-transformation status of the cells. This was demonstrated 

when mitosis was disrupted with two small molecule inhibitors, PLK1 and taxol, and showed no 

selectivity toward HPV-induced cervical cancer cell lines. Furthermore, the current chapter 

demonstrates that AURKB small molecule inhibitor, ZM447439, caused induction of > 4N DNA 

content indicating failure of cytokinesis followed by initiation of apoptosis. More importantly, the 

inhibitor did not show consistency with the siRNA results as the former did not show selectivity for 

the HPV-positive cell lines. In fact, all cell lines had the same effect regardless of their HPV-

transformation status. 
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5 Aurora A small molecule inhibitor, MLN8237, is selective for 
HPV-transformed cervical cancer cells 

5.1 Introduction 

Aurora A kinase is a key mitotic regulator, which functions in centrosome assembly duplication and 

separation, microtubule to kinetochore attachment, spindle checkpoint and cytokinesis (Dar et al., 

2010, Karthigeyan et al., 2010). It also plays a vital role in maintaining proper genomic integrity. 

Overexpression and gene amplification of Aurora A kinase has been reported in different cancer 

types and is associated with increased proliferation rates (Kops et al., 2005, Anand et al., 2003). The 

critical roles of Aurora A kinase in mitotic progression and its potential oncogenic activity has 

prompted the development of small molecule inhibitors as targeted anticancer therapeutic agents. 

Several Aurora kinases small molecule inhibitors have been developed. MLN8237 is an orally 

bioavailable compound that specifically targets Aurora A kinase. It exhibited high efficacy against 

many solid and hematological malignancies in preclinical models, and is currently in advanced 

clinical trials (Qi et al., 2013, Mosse et al., 2012, Matulonis et al., 2012, Dees et al., 2012, Gorgun 

et al., 2010). 

The high-throughput synthetic lethal siRNA screens undertaken in this project identified Aurora A 

kinase as a validated hit that when depleted reduced the viability of HPV-transformed, but not the 

non-HPV cervical cancer cells. This observation was further validated to be specifically HPV-

related in chapter 4 of this thesis where two mitotic small molecule inhibitors, taxol and BI-2536 

PLK1 inhibitor, were tested and showed apoptotic phenotype regardless of cellular HPV-

transformation. This evidence, in addition to the published reports that link Aurora A kinase to 

malignancies, suggested that Aurora A kinase was a likely target. In this chapter, the effect of 

inhibiting Aurora A kinase using the small molecule inhibitor MLN8237 in panels of HPV-

transformed, non-HPV cervical cancer and non-cervical cancer cell lines was assessed. It shows that 

the sensitivity to MLN8237 is specifically HPV-related. Finally, the chapter demonstrates the 

efficacy of this compound in vivo, providing evidence of its therapeutic potential for the treatment 

of HPV-induced cervical cancer. 
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5.2 Results 

5.2.1 MLN8237 showed selectivity for HPV-transformed cervical cancer cell lines 

To determine the selectivity of MLN8237 for HPV-transformed cervical cancer cell lines, our panel 

of cervical cancer cells was subject to a resazurin-based viability dose-response experiment. The 

results showed that at least three HPV-transformed cells, HeLa, CaSki, and ME180, were highly 

sensitive to the inhibitor and indicated loss of viability with an IC50 of less than 1µM, although 

SiHa did not demonstrate a similar trend (Figure 5.1A). The non-HPV cervical cancer cell lines 

revealed differential responses. The C33A had the highest IC50 (14.3µM) compared to the 

remaining panel either HPV or non-HPV. Furthermore, the HT3 showed a low IC50 (2.1 µM) 

compared to the C33A but higher than HeLa, CaSki, and ME180 HPV-induced cell lines. 

Additionally, HaCaT as a non-HPV non-cervical cancer cell line showed a low IC50 value of 

0.05µM. The difference in sensitivity was not a consequence of differences in the proliferative rate 

of the cells, as the doubling-time of each cell line was similar (Figure 5.1B). Taken together, this 

data suggest HPV cell line selectivity that worth further investigation 
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Figure 5.1. C33A non-HPV cervical cancer cell lines showed least sensitivity to MLN8237. A) Summary of the 
IC50 values generated from a dose-response experiment showing the effect of the MLN8237 on a panel of 
HPV and non-HPV cervical cancer cell lines. Cells were subject to a viability assay using the resazurin dye 
at 44 µM after 72 h of drug treatment (dose range 30 µM to 30 nM). Each point is the mean and standard 
error mean (SEM) of quadruplicate determinations. IC50 values were calculated using GraphPad Prism 
V.6.0. C33A non-HPV cervical cancer cell line had the highest IC50 value compared to the remaining 
tested panel. All HPV-transformed cervical cancer cell lines together with HaCaT (non-HPV) had IC50 
values within nanomolars except for SiHa. The HT3 (non-HPV cervical cancer) had higher IC50 compared 
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to the majority of the HPV-transformed cell lines. B) Doubling time experiment of the same tested panel. 
Cells were seeded for two days and then cell count was measured daily for 3 consecutive days. All cell 
lines had approximately similar patterns of duplication.  

 

5.2.2 Non-HPV squamous cell carcinoma (SCC) showed resistance to MLN8237 

The relative small number of non-HPV cervical cancers did not provide a good assessment of the 

selectivity of MLN8237 for HPV-induced cervical cancer. To extend the panel of non-HPV cancer 

cell lines, a panel of SCC cell lines was subjected to a MLN8237 dose-response experiment using 

the resazurin viability assay. SCC is a keratinocyte derived tumour type, the same target cell for 

HPV in cervical cancer, and thus provides a good comparison. The results demonstrated that Colo, 

FaDu and Detroit cell lines had IC50 in the range from 2 to 8 µM (Figure 5.2), while it was not 

possible to determine an IC50 for KJD and SCC25 cell lines, which were above the highest dose 

used in the experiment (30 µM). This data support the idea that non-HPV cell lines are less 

sensitive to the AURKA small molecule inhibitor, MLN8237, which may suggest HPV-

transformation selectivity.  

 

Figure 5.2. The non-HPV squamous cell carcinoma cell lines are less sensitive to MLN8237. Summary of the IC50 
values generated from a dose-response experiment showing the effect of the MLN8237 on squamous cell 
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carcinoma (SSC) cell lines. Cells were subject to a viability assay using the resazurin dye at 44 µM after 72 
h of drug treatment (dose range 30 µM to 30 nM). Each point is the mean and standard error mean (SEM) 
of quadruplicate determinations. IC50 was calculated using GraphPad Prism V.6.0. ( KJD and SCC25 cell 
lines did not reach IC50 within the tested dose range). 

 

5.2.3 Treatment with MLN8237 induced apoptosis and polyploidy in cervical cancer cell lines 

To investigate the effect of inhibiting AURKA with MLN8237 on cell cycle progression in the 

HPV-transformed and non-HPV cervical cancer cell lines, all cells were subjected to FACS analysis 

for DNA content. Cells were treated with 5 µM MLN8237 for 24, 48, and 72 h in addition to 

DMSO only control (vehicle). Treatment of cell lines for 24 h with the inhibitor resulted in 

accumulation of cells in the 4N DNA population, induction of greater than 4N populations, a 

reduction in 2N population and decreased number of cells replicating DNA in all HPV-transformed 

cell lines and the HT3 non-HPV cell line (Figure 5.3). This effect was less obvious in the C33A and 

HaCaT cell lines. The latter two cell lines, however, induced higher >4N DNA content and S-phase 

population in comparison to the other cell lines. Treatment of cell lines with MLN8237 increased 

sub-diploid population (<2N) in a time-dependent manner in all cell lines. However, this trend was 

less in the C33A non-HPV cell line (Figure 5.3A and C). After 72 h of treatment, all HPV-

transformed showed high sub-diploid population, HeLa 70%, Caski and ME180 75%, which 

indicates cell death (representative is shown in Figure 5.3B). The exception was SiHa where the 

sub-diploid population was 36%. By contrast, all the non-HPV cervical cancer cell lines, C33A and 

HT3, demonstrated low sub-diploid populations in comparison to the HPV-induced cell lines, 14%, 

and 31%, respectively. Indeed, high polyploidy population was noticed in the non-HPV cervical 

cancer cell lines after 72 h of treatment. Surprisingly, HaCaT as a non-HPV non-cervical cancer cell 

line demonstrated high apoptotic profile by 72 h indicated by a large population of <2N DNA. This 

is in fact is consistent with the IC50 data where HaCaT showed high sensitivity to the compound. 

However, as the project aims to focus on non-HPV cervical cancer cell lines, these results provide 

evidence that treating HPV-transformed cervical cancer cells with MLN8237 induced cell death 

indicated by high sub-diploid population while non-HPV remains less sensitive to the compound. 
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Figure 5.3. MLN8237 induced high apoptotic profile in HPV-transformed cervical cancer cell lines A) DNA 
content was analysed using fluorescence-activated cell sorting (FACS). All cells were treated with 5 µM 
MLN8237 and collected at 24, 48, and 72 h. Each cell line had a negative control that was treated with the 
vehicle only (DMSO), which was collected in 24 h and plotted as zero on the graph. The error bars 

B 

HeLa (HPV18) 

C33A (non-HPV) 
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represent a SEM of three biological replicates. B) Representative histograms of the HeLa and C33A to 
show induction of polyploidy in C33A and high apoptotic profile indicated by the increased subdiploid 
population in the HeLa cells. All data were processed using FlowJo V.2.0. 

 

5.2.4 MLN8237 induced polyploidy of all tested cell lines tested using immunofluorescence 
staining 

To confirm that the induction of 4N and >4N DNA contents was a consequence of failure of 

cytokinesis and that MLN8237 mediated DNA damage response, all cell lines where subject to 

immunofluorescence staining with the DAPI nuclear staining, α-tubulin staining of the 

cytoskeleton, and γ-H2AX as a DNA damage and/or replication stress marker. Percentage of bi-

nucleated or multinucleated cells after 24, and 48 h MLN8237 treatment is indicated (Figure 5.4A 

and B). The increased proportion of multinuclear cells varied between cell lines. However, the data 

showed no trend for either the HPV-transformed or the non-HPV cervical cancer cell lines. Indeed, 

all cells demonstrated marked failure of cytokinesis with increased multiple and fractured nuclei as 

shown by DAPI staining, a phenotype that is usually associated with aberrant mitosis. Also, all cells 

demonstrated DNA damage or recovery inhibition from replication stress as indicated by induction 

of γ-H2AX staining upon 48 h of treatment (representative cell lines are shown in Figure 5B). 

Collectively, this data strongly indicated that the accumulation of cells with 4N and >4N DNA 

contents was a consequence of failure of cytokinesis.  
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Figure 5.4. MLN8237 disrupt normal mitosis. A) Quantitation of bi-nucleated and multinucleated cells in DMSO 
control, 24, and 48 h of MLN8237 treatment. The error bars represent a mean of three biological replicates. 
B) Immunofluorescence staining of HeLa (cervical cancer HPV18 cell line) and (C33A cervical cancer 
non-HPV cell line) using an a-tubulin antibody (red), 4’,6-diamidino-2-phenylindole (blue), and γ-H2AX 
antibody (green). Dimethyl sulfoxide (DMSO) was used as a control.  
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5.2.5 Time-lapse microscopy showed longer mitotic delay in HPV-transformed cell lines 

Aurora A is a key mitotic regulator. To investigate whether HPV status affected the duration in 

mitosis upon inhibiting AURKA activity by MLN8237, all cell lines were subjected to a time-lapse 

microscopy for 72 h. Using transmitted light imaging it, the rounded mitosis morphology was 

readily discerned (Figure 5.5A). The results revealed that the normal mitosis duration of all cell 

lines tested was in the range of 30 to 80 minutes whereas HPV-transformed cell lines showed 

approximately 4 to 5 fold increase during first mitosis (Figure 5.4B). This prolonged mitosis was 

followed by failure of cytokinesis, clearly depicted by the daughter cells rejoining into a single 

cytoplasm (Figure 5.4A, frame 1420), and eventual loss of viability (frame 2880) featured by round 

shrinking cells and blebbing membrane as indicated in the time-lapse series. In contrast, non-HPV 

cervical cancer cell lines, C33A and HT3, showed remarkable lower mitotic delay when compared 

to the HPV-transformed cell lines with several cell cycles, indicating failure of cytokinesis. Also, 

the data revealed that remarkable proportion of the HPV-transformed cells underwent two mitoses 

before they die in the second mitosis (68% of HeLa and 52% of CaSki) (Figure 5.4C & D). This 

mitotic delay is likely to be due to the activation of the mitotic spindle assembly checkpoint, a 

reported consequence of inhibition of AURKA (Chan et al., 2012). 
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Figure 5.5. Time-lapse microscopy confirms high mitotic delay of HPV-transformed cells treated with MLN8237 
followed by second mitosis and subsequent apoptosis. Cells were seeded in 6-well plates and then 
treated with 5 µM MLN8237 or DMSO as a vehicle control for 72 h. A Representation of time in mitosis 
for HeLa and C33A in comparison to the control only cells. B) Representation of time in mitosis for each 
cell type, images were captured every 20 minutes interval time and at least 150 cells were counted in each 
condition and standard deviation was then calculated. C and D HeLa and CaSki, respectively, showing 50 
cell-by-cell count that representing the time each cell needed to complete first mitosis and then enter the 
cell cycle and undergo second mitosis that was followed by apoptosis. Time-lapse series indicating that 
majority of HPV-induced cell line (HeLa-HPV18) goes at least through two cell cycles before they produce 
apoptotic phenotype whilst non-HPV (C33A) remains viable. The results were visualized and analyzed by 
ImageJ V1.46r. 

5.2.6 Sensitivity to MLN8237 is a direct consequence of expression of HPV E7 

To test whether one of the HPV encoded oncogenes was driving the sensitivity of the HPV-

transformed cervical cancer cell lines to MLN8237, the C33A non-HPV cervical cancer and SCC25 

non-HPV squamous cell carcinoma cell lines were transfected with HPV16 E7 oncogene. These 

were then assessed for their sensitivity to MLN8237. The data showed >50% reduction of IC50 in 

C33A-HPV16-E7 and >30 fold reduction of the IC50 in SCC25-HPV16-E7 cell line to 500 nM 

(Figure 5.6). This experiment may suggest that the expression of HPV E7 might be responsible for 

the increased sensitivity of the HPV-transformed cell lines.  

 

Figure 5.6. Transfection of non-HPV cell lines with HPV16 E7 increased sensitivity to MLN8237. Cells were 
transfected with the HPV16 E7 oncogene. The IC50 was then calculated based on a dose-response 
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experiment (dose range 30 µM to 30 µM) using the resazurin viability assay at 44 µM. Each point is the 
mean and standard error mean (SEM) of quadruplicate determinations. IC50 was calculated using GraphPad 
Prism V.6.0. (SCC25 did not reach IC50 within the tested dose range) 

 

5.2.7 Over-expression of Mcl-1 reduced sensitivity to MLN8237 

The time-lapse imaging revealed that the HPV-transformed cervical cancer cells were dying with a 

morphology that was typical of apoptotic cell death. To investigate contribution of apoptosis, 

particularly the intrinsic apoptotic mechanism to MLN8237 induced cell death, HeLa cell over-

expressing either Bcl-2 or Mcl-1 anti-apoptotic proteins were examined for their sensitivity to 

MLN8237. The sensitivity of these cell lines to taxol or etoposide was used as a control. The results 

demonstrated significant higher IC50 of the Mcl-1-HeLa, 4.7 µM, in comparison to the parental 

HeLa (P = 0.03) and Bcl-2 overexpressing HeLa, which has relatively similar IC50 value of 0.1 and 

0. 3 µM, respectively (Figure 5.7A and C). The over expression of Mcl-1 also effectively protected 

HeLa cells from taxol (Figure 5.7B). However, Bcl-2 over-expression effectively protected HeLa 

cells from etoposide-induced apoptosis, demonstrated that the lack of effect on MLN8237-induced 

death was not due to failure of Bcl-2 function (Figure 5.7D). 
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Figure 5.7. Mcl-1 over expression reduced the sensitivity to MLN8237. A) Summary of IC50 of wild-type (WT) 
HeLa and HeLa over-expressing Mcl-1 generated by a dose-response experiment using MLN8237 at 30 
µM to 30 nM dose range. B Taxol was also included as a control at dose range of 100 nM to 100 pM on 
WT-HeLa and HeLa overexpressiong Mcl-1. C Summary of IC50 of WT-HeLa and HeLa overexpressing 
Bcl-2 generated by a dose response experiment using MLN8237 at similar doses used in (A). D) Etoposide 
was included as a control at dose range of 50 µM to 50 nM on WT-HeLa and HeLa overexpressing Bcl-2. 
Each point is the mean and standard error mean (SEM) of quadruplicate determinations. IC50 and P value 
were calculated using GraphPad Prism V.6.0. (Mcl-1-HeLa treated with taxol did not reach IC50 within 
the tested dose range). 

5.2.8 Assessing the mechanism of MLN8237-inudced apoptosis in HPV and non-HPV 
cervical cancer cell lines 

The ability of Mcl-1 over-expression to block MLN8237-dependent loss of viability indicated that 

the drug treatment was inducing an apoptotic death. As to determine the precise pathway, a panel of 

apoptotic components was examined by immunoblotting of the HPV-transformed or non-HPV 

cervical cancer cell lines after 24, 48, and 72 h MLN8237 treatment. The poly ADP ribose 

polymerase (PARP) showed cleaved PARP in all cell lines tested and was increasing a time-

dependent manner (Figure 5.8). The levels of the anti-apoptotic Mcl-1, Bcl-2, and Bcl-xl proteins 
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varied in each cell line, but MLN8237 treatment had little effect on the levels of any of these in any 

cell line. For the pro-apoptotic Bim, protein levels varied for each cell line but there was little effect 

of MLN8237 treatment. Only low levels of Bad and Noxa were detected, and although there was 

some increase in Bad levels observed with MLN8237 treatment this was cell line dependent and not 

selective for HPV expression. As expected, p53 was only readily detectible in the non-HPV cell 

lines and was not restored in the HPV-induced cervical cancer cell lines upon MLN8237 treatment. 

These data, as indicated by the PARP cleavage may demonstrates that apoptosis has been occurring 

in HPV-transformed cell lines independent of p53. However, the mechanism of apoptosis is unclear, 

but is sensitive to Mcl-1.  

 

Figure 5.8. Analysis of cell lysate from cervical cancer HPV and non-HPV cell lines. Cells were seeded and pellet 
was collected after treatment of MLN8237 upon 24, 48, 72 h. Western blotting was then performed using 
PARP, the pro-apoptotic Bim, Bad and Noxa , and the anti-apoptotic Mcl-1, Bcl-2, and Bcl-xl. The p53 
was only detectible in the non-HPV group confirming the apoptosis was occurring independent of p53. α-
tubulin was used as a loading control. Experiment was performed in three biological replicates and 
Western blot imaging was acquired using Fusion ChemiDoc gel documentation system. 
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5.2.9 MLN8237 inhibits tumour growth in mouse xenograft model 

To assess the ability of MLN8237 to inhibit tumour growth in vivo, nude mice were injected 

subcutaneously with either HeLa (HPV16), CaSki (HPV18), or C33A (non-HPV) cervical cancer 

cell lines in the flank tissue to induce growth of tumour. When the tumour size reached 

approximately 20-25 mm3, MLN8237 regimen at 30 mg/kg was initiated for 10 consecutive days. 

The results demonstrated no notable differences between the control and the treated groups within 

the first five days of the initiation of treatment (Figure 5.9). However, after five days, the tumour 

growth started increasing in the control group but declining in the treated groups regardless of the 

HPV-transformation status. At the end of the 10 days treatment period, both C33A and CaSki cell 

lines completely inhibited the tumour growth. This effect was noticed two days post-treatment in 

the HeLa group. Approximately four to five days post-treatment, tumour become palpable in the 

C33A (non-HPV) treated group, and all C33A treated group nude mice showed approximately 500 

mm3 tumours by about 30 days post-treatment. Interestingly, both HPV-transformed cell lines, 

HeLa and CaSki, completed 50 days post-treatment with no detectible tumour growth in any of the 

MLN8237-treated animals. Excision of the original site of inoculation after the animals were 

sacrificed failed to reveal any residual tumour. 
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Figure 5.9. MLN8237 arrest tumour growth in vivo in a mouse xenograft model. 36 Mice were injected with 2.5 
million of either CaSki (HPV16), HeLa (HPV18), or C33A (non-HPV) cervical cancer cells in the flank 
tissue. In each group, 6 mice were treated with the 30 mg/kg MLN8237 for 10 consecutive days and then 
followed up daily until culled; and 6 mice as control were only treated with tetracycline B in parallel with 
the treated group and were culled when the tumour size reach 500-600 mm3. A CaSki; B HeLa; C) C33A. 
In both A and B, tumour growth was completely inhibited and no tumour growth was observed until 60 
days. In the C33A tumour out growth was observed after treatment was stopped and mice were culled as 
indicated ( red is treated;  blue is control) 
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5.3 Discussion 

The siRNA synthetic lethal screen performed as part of the thesis research identified and validated 

several potential target genes, including Aurora A kinase (AURKA), that selectively reduced the 

viability of majority of the HPV-transformed cells. Depletion of AURKA by siRNA showed strong 

lethality to at least two HPV-transformed cervical cancer cells (HeLa and CaSki). This effect was 

less observed in the C33A non-HPV cervical cancer and the HaCaT non-cervical cancer cells. 

These results confirmed AURKA as a valid target worthy of further investigation. 

As a key mitotic regulator, AURKA localizes mainly to the centrosome and regulates centrosome 

maturation, entry into mitosis, development and function of the bipolar spindle, and cytokinesis. In 

G2 phase, AURKA associates with a crucial mitotic regulator, Polo-like kinase 1 (PLK1), which 

promotes its recruitment to the centrosome. This recruitment activates the Cyclin-dependent kinase 

(CDK)-activating phosphatase CDC25B and consequently the cell enters mitosis (Seki et al., 2008, 

Dutertre et al., 2004). Over-expression of AURKA is associated with the induction of aneuploidy 

and genomic instability that can contribute to tumourigenicity (Marumoto et al., 2005). 

With the goal of further investigating the effect of specifically targeting AURKA in HPV-

transformed cervical cancer cells, I evaluated the impact of the AURKA small molecule inhibitor, 

MLN8237, in vitro and in vivo. MLN8237 (alisertib) is an orally administered compound with 

preclinical activity against different neoplastic disorders and is currently undergoing Phase II 

clinical trials (Matulonis et al., 2012, Manfredi et al., 2011, Dees et al., 2012). Within 24 h of 

MLN8237 treatment, it increased the proportion of cells with >4N DNA content in all cell lines 

tested regardless of their HPV transformation status. The immunofluorescence staining and time 

lapse imaging revealed that the HPV-transformed cervical cancer cell lines had failed cytokinesis 

and underwent apoptosis beginning from 48 after they enter a second mitosis cycle upon drug 

addition. This was also supported by the FACS data that indicated large sub-diploid population of at 

least three cervical cancer HPV-transformed cell lines (HeLa, CaSki, and ME180). The exception 

was the SiHa (HPV16) line that has the lowest viral copy number amongst all the HPV-induced 

cervical cancer cell lines, which may contribute to their reduced sensitivity to the inhibitor 

(Poddighe et al., 1996). By contrast, the non-HPV cervical cancer cell lines, C33A and HT3, 

indicated increased proportion for cells with multinuclear phenotypes and the increased population 
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with >4N DNA content, representing polyploidy after 72 h of treatment. Surprisingly, HaCaT as a 

non-HPV non-cervical cancer cell line demonstrated high sensitivity to the compound. This 

sensitivity was confirmed with high apoptotic profile in the FACS data. The immunoblotting data of 

HaCaT indicated that BIM was increasing on a time-dependent manner. Although the reason of the 

sensitivity of HaCaT was not addressed, BIM may have contributed to induction of apoptosis.  

Inhibition of AURKA leads to abnormal spindle formation (Dar et al., 2010). Cells undergo 

abnormal cell division upon the delay in mitotic entry and anaphase onset and, hence, cells develop 

polyploidy. Inhibition of AURKA may lead to chromosome mis-segregation and subsequently to 

apoptosis depending on how long cells spend in mitosis repairing damage (Hae-ock Lee et al., 

2010). This is in agreement with the time-lapse microscopy results shown in this chapter. 

Specifically, all HPV-transformed cervical cancer cells were delayed in mitosis at least twice as 

long as the non-HPV cells. This mitotic delay was followed by delayed induction of apoptosis in the 

HPV-transformed cells upon the second mitotic cycle. Disruption of mitosis with antimitotic agents 

could be either death in mitosis, or adaptation followed by mitotic exit (mitotic slippage). Cell that 

survives the 4N DNA content may potentially continues DNA replication, arrest in G1, or die via 

apoptosis (Rieder and Maiato, 2004). It has been reported that HeLa cells that has a deficient 

spindle assembly checkpoint escape mitotic arrest and enter another cell cycle with another DNA 

synthesis round when treated with taxol (Chin and Herbst, 2006). Also, BubR1-depleted HeLa cells 

underwent apoptosis within 48 h when treated with taxol whilst Mad2-depleted HeLa cells 

remained viable during that time and represented increased level of 4N DNA content. Also, control 

HeLa cells treated with monastrol, a mitotic kinesin Eg5 inhibitor, arrested cells in mitosis for about 

229 +19 minutes whilst Mad-2 depleted HeLa cells remained arrested for only 22 +7 minutes. In 

another report, Tao et al., indicated that the apoptotic event which was followed by treating cells 

with the mitotic kinesin Eg5 inhibitor needs mitotic slippage into G1 phase during activated spindle 

checkpoint (Tao et al., 2005). The latter study demonstrated that activation of BubR1 and 

inactivation of survivin were required to initiate apoptosis after mitotic slippage. As indicated in the 

results section of this chapter, the time-lapse data showed a significantly longer mitotic arrest in the 

HPV-transformed cells compared with the non-HPV cells. Because the mechanism underlying this 

time difference was not addressed in this thesis, it can be speculated that several factors would have 

affected the duration of mitotic arrest. First, AURKA plays a crucial role in spindle assembly; 
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therefore, AURKA disruption could lead to defects in centrosome maturation and separation, 

deficient mitotic spindle formation, and failing chromosomal alignment (Nigg, 2001, Carmena and 

Earnshaw, 2003). Although it has been reported that these spindle assembly defects are associated 

with induction of spindle assembly checkpoint mitotic delay, some cells lacking functional AURKA 

are able to divide in the presence of these assembly defects (Hoar et al., 2007, Marumoto et al., 

2003). This proposes that the function of the spindle assembly checkpoint is conceded upon 

AURKA inhibition. Secondly, the spindle checkpoint status of the tested cell lines was not 

investigated before and after drug treatment, which is an essential part that possibly could reveal the 

reason beyond this mitotic arrest delay, although mitotic arrest may evolves competent spindle 

checkpoint. Lastly, because function of the spindle checkpoint associates with several functioning 

proteins such as BubR1, Bub1, Bub3, Mad1, and Mad2 (Sudakin et al., 2001, Wu et al., 2000, Fang, 

2002), neither of these proteins was checked in the present study, which may play a pivotal role in 

the mitotic arrest, mitotic slippage, and initiation of apoptosis upon mitotic slippage. 

A major difference in the outcome that was noticed after treating the HPV-transformed and the non-

HPV cell lines with MLN8237 was apoptosis. Although this apoptotic effect was confirmed by 

PARP immunoblotting, its mechanism remains unclear. In addition, the overexpression of the anti-

apoptotic myeloid cell leukemia 1 (Mcl-1) in HeLa cells decreased the sensitivity of the cell to the 

MLN8237. This is in agreement of what has been previously reported that overexpression of Mcl-1 

protects cells from apoptosis (Ploner et al., 2008, Zhang et al., 2011). The high sensitivity of the 

parental HeLa and the Bcl-2 overexpressing HeLa to the inhibitor may suggest the involvement of 

Noxa, Puma, or p73 in the induction of apoptosis of the HPV-transformed cervical cancer cell lines 

(Willis and Adams, 2005, Liu et al., 2010, Ploner et al., 2008). Moreover, transfection of the non-

HPV cell lines, C33A and SCC25, with an HPV16-E7 oncogene increased their sensitivity to 

MLN8237 by >two fold. This may suggests that E7 is most likely increasing the sensitivity to 

apoptosis. E7 inhibits the function of the retinoblastoma protein (pRb), an essential negative 

regulator of cell cycle progression. The activity of pRb is largely associated with the members of 

the E2F family of transcription factors, which regulate both cell proliferation and apoptosis (Phillips 

and Vousden, 2001). E2F/Rbp complex has been reported to control transcription of several genes 

such as p14ARF, p73, Apaf1, Caspases, Chk2, and BH3-only pro-apoptotic proteins (Hallstrom et al., 

2008). E2F1 expression is associated with apoptosis, and loss of E2F1 or E2F3 suppresses 
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apoptosis in Rb-deficient mice embryos (Ziebold et al., 2001). E2F1 binds to the promoters of the 

Bcl-2 homology 3 (BH-3) only protein family members, PUMA, Noxa, Bim, and Hrk/DP5 

(Hershko and Ginsberg, 2004), and inhibition of PUMA or Noxa expression dramatically reduces 

E2F1-induced apoptosis. Noxa and Puma are both pro-apoptotic proteins. Although there are 

several E2F target genes, the Mcl-1 data in the present work provide possible evidence of 

involvement of Mcl-1/Noxa or Puma in the apoptotic phenotype. There is therefore a link between 

HPV-E7 oncogene, pRb, E2F1, Noxa/Puma, and Mcl-1. Also, the knockdown of Noxa by a specific 

siRNA results in remarkable reduction in apoptosis in HeLa cells when compared to the control cell 

line (Mei et al., 2007). E7 may sensitize cells to apoptosis induction through Noxa or Puma by 

sequestering Mcl-1 function in the HPV-transformed cell lines. This is in agreement with my results 

showing that HeLa (HPV18) cell line overexpressing Mcl-1 became less sensitive to MLN8237. 

Taken together, these findings and published reports support the notion that E7 may has been a 

major cause of sensitizing cells to induction of apoptosis in the HPV-transformed cells and altered 

sensitivity in the E7 transfected non-HPV cell lines probably via Noxa or Puma/Mcl-1 mechanism. 

However, because E7 works in parallel with E6; therefore, a definite conclusion cannot be obtained 

without testing E6 in C33A and SCC25 cell lines.  

Although there is a possible link between HPV-E7 and induction of apoptosis through Noxa or 

Puma, the connection between inhibiting AURKA and this HPV-transformed apoptotic selectivity 

remains obscure. A possible connection is that the loss of pRb function by HPV-E7 is associated 

with over-expression of p73 in cervical cancer and pre-malignant lesions (Brooks et al., 2002). E7-

dependent activation of the p73 promoter disappeared in E7 mutants, which leads to functional pRb. 

This E7-dependent transactivation of p73 occurs via E2F1. P73 arises from an alternative splicing 

of the TAp73 primary transcript, a pro-apoptotic protein (Ozaki and Nakagawara, 2005). Over-

expression of p73 is associated with the induction of apoptosis in some cancer cell lines (Jost et al., 

1997). The use of MLN8054 results in p73-dependent apoptosis in H1299 and TE7 cancer cell lines 

(Dar et al., 2008). It is also known that E2 ubiquitin ligase (UBE2N), which binds Aurora A, is 

engaged in the activation of the nuclear-factor-κB (NF-κB) pathway (Ewart-Toland et al., 2003, 

(Deng et al., 2000). The binding of AURKA to UBE2N mediates the phosphorylation of IκBα and 

consequently activates the NF-κB pathway (Briassouli et al., 2007). The induction of Noxa or 

Puma, and the activation of p73 require the activation of the NF-κB pathway (Martin et al., 2009). 
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All these previously described reports may suggest a model of how the inhibition of AURKA is 

selectively contributing to the HPV-transformed cellular apoptosis possibly by activating the NF-κB 

pathway and induction of p73, Noxa, or Puma. 

AURKA small molecule inhibitor MLN8237 has been widely used in different pre-clinical 

xenograft models. Görgün et al. indicated that treating myeloma xenograft model with 7.5mg/kg, 

15mg/kg, and 30mg/kg for 21 consecutive days resulted in significant reduction of tumour size in 

comparison to the control group (Gorgun et al., 2010). However, this tumour growth inhibition was 

followed by tumour regrowth when treatment was ceased. Also, the study reported significant 

increase in the survival rate, particularly in the group treated with the 30mg/kg. It is important to 

mention that in the same report there was only one animal did not show tumour recurrence until 

after 58 days of treatment. The latter animal was within the group treated with 30mg/kg, which is a 

similar dose to what has been used in this thesis. Zhou and colleagues observed significant 

reduction in tumour size using a bladder cancer xenograft model when treated with 30mg/kg 

MLN8237 for 5 times/week for four weeks (Zhou et al., 2013). However, the report did not indicate 

whether tumour recurrence was observed. The aforementioned studies demonstrated significant 

capacity of MLN8237 when used as a single agent. Nevertheless, Mahadevan et. al. demonstrated 

that MLN8237 was only able to induce modest antitumour activity when used at 10mg/kg and 

30mg/kg in a mantle cell lymphoma zenograft model in comparison to the control group 

(Mahadevan et al., 2012). This is in agreement of what Qi and colleagues reported when used 

similar xenograft model (Qi et al., 2011). The present study also provides evidence that the 

AURKA small molecule inhibitor, MLN8237, was able to inhibit tumour growth in vivo. Although 

all C33A engrafted mice had tumour outgrowth once the treatment ceased, CaSki (HPV16) and 

HeLa (HPV18) xenograft models did not show tumour recurrence. 

In conclusion, this chapter illustrates novel results using MLN8237 in a cervical cancer model. The 

inhibition of AURKA using MLN8237 induces polyploidy in the non-HPV cervical cancer cell 

lines, whereas the same degree of polyploidy was associated with apoptosis in the HPV-transformed 

cell lines. This finding was further confirmed in non-HPV SCC cell lines. Also, the transfection of 

the non-HPV C33A cervical cancer and the SCC25 squamous cell carcinoma cell lines with the 

oncogenic HPV-E7 dramatically increased the sensitivity of these cells to MLN8237, indicating a 
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role of E7 in this sensitivity. Furthermore, over-expression of Mcl-1, but not Bcl-2, in HeLa cells 

resulted in decreased sensitivity to MLN8237, suggesting that elevated Mcl-1 is likely to be a 

marker of reduced sensitivity to MLN8237 in HPV cervical cancers, and that the apoptosis induced 

by MLN8237 treatment is via a BH3-only protein that is inhibited by Mcl-1 but not Bcl-2. The only 

BH-3 only protein fitting this profile is Noxa. However, I have found little evidence for increased 

Noxa expression with MLN8237 treatment or reduction in Mcl-1 levels, suggesting the mechanism 

is possibly more complex. Finally, the inhibitor was tested in xenograft models using CaSki, HeLa, 

and C33A cells. Both CaSki and HeLa HPV-transformed xenograft models responded well to the 

treatment. Tumour growth was inhibited, and no tumour recurred even at 50 days post-treatment. 

However, in the non-HPV cervical cancer xenograft model using C33A cells, tumour inhibition was 

observed only during treatment, and tumour outgrowth occurred after the treatment ceased. These 

novel results suggest that MLN8237 is a promising therapeutic agent for cervical cancer caused by 

HPV types 16 and 18. Additionally, they pave the path for the investigation of the mechanistic 

cascades behind this apoptosis and polyploidy. 
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6 General discussion, conclusion, and future directions 

6.1 General Discussion 

Although many chemotherapeutic agents have shown promising effects in clinical settings, their 

adverse effects continue to be substantial and in many cases dose limiting, which can compromise 

the efficacy of the treatment. The development of safe and effective treatments in cancer remains a 

challenge, and the ability to identify selective targets that only kill cancer cells is a goal that has 

been only partially achieved in a few cancers. Most of the anti-cancer agents that are currently in 

use have been developed on the basis of their ability to kill rapidly dividing cells in vitro. Hence, 

these agents are also capable of killing rapidly dividing normal cells, such as the bone marrow and 

haemopoietic precursors. Although much is known about the molecular alterations that occur in 

cancers, it is difficult to directly translate these into a therapeutic context. In addition, the 

restoration of loss-of-function changes in tumour genes that occurs in patients is difficult to achieve. 

Because of these and many others reasons, the identification and development of selective 

anticancer agents, which do not directly target the genetic driver mutations may offer new 

opportunities for therapeutic intervention in cancers. 

High-throughput synthetic lethal screening has been portrayed as a powerful tool to identify novel 

target genes. This concept has been utilized in the current thesis to identify novel target genes in 

cervical neoplasia, which when silenced kill only HPV-transformed cells and not others. The thesis 

describes the development of high-throughout siRNA screening from method optimization through 

assay development to the actual screenings and, finally, the validation of target hits. Additionally, it 

explains the selectivity of the Aurora B small molecule inhibitor (ZM447439) against HPV-induced 

and non-HPV cervical cancer cell lines. Finally, it demonstrates the significance of Aurora A kinase 

as a potential therapeutic target gene in HPV-transformed cervical neoplastic disorders, tested both 

in vitro and in vivo. 

Although two different pools of siRNA were used throughout the primary and secondary screens of 

this project, six hits were confirmed to be synthetically lethal when depleted with the majority of 

HPV-transformed cells but not the non-HPV cervical cancer cell lines, although HaCaT as a non-

HPV non-cervical cancer cell did not demonstrate similar results. Of these, three candidates, 
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namely, AURKB, AURKA, and GSG2 (Haspin), were highly interesting since they are all mitotic 

regulators. Mitosis has been of interest to many researchers and pharmaceutical companies aiming 

to develop anticancer agents due to its exceptionally successful effect in clinic settings (Pasquier et 

al., 2006, Zhou et al., 2003, Mollinedo and Gajate, 2003). These three mitotic regulators were 

identified in a specific response to the HPV-transformation status of the cell. This was confirmed 

when two mitotic inhibitors, BI-2536 and paclitaxel, were used but neither one demonstrates 

selectivity to either HPV or non-HPV cell lines. BI-2536 is a selective PLK1 inhibitor, whereas 

paclitaxel is a microtubule inhibitor that causes mitotic arrest (Wissing et al., 2013, Frost et al., 

2012, Gu et al., 2013).  

Among the three hits, AURKA and AURKB belong to the Aurora family, which have pivotal, yet 

distinct, roles in mitosis (Warner et al., 2003, Carmena and Earnshaw, 2003). Due to their important 

roles in mitosis, their implication in cancers, and the availability of commercial small-molecule 

inhibitors for both AURKA and AURKB, both genes have been the investigative subjects in this 

thesis. 

In the present work, AURKB small-molecule inhibitor ZM447439 was used to investigate the 

selectivity of the compound to HPV-transformed and non-HPV cervical cancer cell lines (Chapter 

4). However, the data revealed no selectivity for the HPV-transformed over the non-HPV cervical 

cancer cell lines with the inhibitor in terms of viability. This was also confirmed by investigating 

the DNA content and nuclear structure by FACS, where all cells induced G2/M arrest by 24 h of 

treatment and increasing polyploidy population in association with apoptosis in all cell lines tested 

after 48 and 72 h of treatment, regardless of the HPV transformation status of the cell lines. This 

finding is in agreement with previous reports where ZM447439-treated cells induced G2/M arrest 

followed by 4N and 8N DNA content (Ditchfield et al., 2003). This impairment of AURKB activity 

possibly leads to cellular apoptosis through the activation of Caspase 3 and PARP cleavage. 

Because the knockdown of the AURKB using specific siRNA could exert a lethal effect only on the 

majority of HPV-transformed cervical cancer tested cells but not others, it is believed that the non-

specificity of ZM447439 may have played a role in this phenotypic outcome (Portella et al., 2011, 

Hauf et al., 2003). Indeed, there is a major difference between depleting AURKB by a specific 

siRNA and using small molecule inhibitor as the former degrade the mRNA whereas the latter only 
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inhibit its protein activity. This major difference would lead to several phenotypic outcomes. 

Firstly, degrading AURKB mRNA results in a high percentage, approximately 80-85%, removal of 

the protein, which consequently leads to very low possibility of interaction with other proteins 

AURKB is a major part of the chromosomal passenger complex (CPC) that plays a fundamental 

role during mitosis (Vader and Lens, 2008, Ruchaud et al., 2007). The knockdown of AURKB has 

been reported to affect the dynamics of Survivin, another CPC subunit and an essential mediator of 

centromere and midbody docking of AURKB during mitosis (Delacour-Larose et al., 2004). The 

loss of AURKB/Survivin interactions results in dysfunctional CPC that, consequently, leads to 

improper mitotic events. Moreover, AURKB is engaged in the function of the spindle checkpoint 

(Vader et al., 2007). Thus, preventing protein translation by specific AURKB siRNA may also 

results in spindle checkpoint disruption. Spindle checkpoint has several enzymatic and non-

enzymatic proteins where they assembled at kinetochore in an orchestrated order upon entry into 

mitosis (Morrow et al., 2005). The depletion of AURKB by specific siRNA was shown to reduce 

Mps1, a spindle checkpoint kinase, binding to kinetochore (Saurin et al., 2011). Subsequent to this 

binding reduction, the level of Mad2, a non-enzymatic protein of the spindle checkpoint, was 

significantly declined. As described, all these essential protein-to-protein interactions may have 

decreased or even lost as upon degrading AURKB mRNA and, consequently, preventing protein 

translation. 

Despite the effect of depleting AURKB using a specific siRNA, the use of small molecule inhibitor 

ZM447439 was not able to induce similar selectivity as described in Chapter 4 of this thesis. 

AUKRB forms a part of the chromosomal passenger complex, CPC. It was noted that AURKB-

mediated RNAi silencing resulted in relocalization and destabilization of other members of the 

CPC, such as borealin and survivin (Weiss et al., 2007). However, ZM447439 inhibited AURKB 

activity but left CPC members intact and consequently resulted in different phenotype. CPC is a key 

player in orchestrating chromosome segregation and control of cytokinesis. Also, as mentioned 

before, AURKB plays important roles in mitosis. Therefore, it is expected that when a crucial 

member of CPC such as AURKB is depleted, subsequent unregulated cell cycle events occur. These 

may include, chromosomal defects, kinetochore-microtubule attachment abnormalities, lagging 

chromosomes in anaphase, and failure of cytokinesis (Vagnarelli and Earnshaw, 2004, Tanaka, 

2005). Additionally, some small molecule inhibitors exhibit unspecific inhibition and affect other 
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proteins (Arkin and Wells, 2004). ZM447439 was reported to have inhibitory effect on AURKA 

(Gadea and Ruderman, 2005). AURKA is another key player in mitosis and disrupting its activity 

may result in several mitotic events. Therefore, the effect that can be generated by using the 

ZM447439 might not be specific to AURKB functionality in comparison to siRNA. Instead, it 

could be a dual effect of inhibiting both AURKA and AURKB. Furthermore, when AURKB was 

tested using the online database of Library of Integrated Network-based Cellular Signature 

(LINCS), it was found that ZM447439 inhibits some other proteins (https://lincs.hms.harvard.edu). 

Because the main aim of this thesis was to identify a target gene that when silenced/inhibited affect 

only HPV-transformed cervical cancer cells but not others, and ZM447439 failed to achieve this 

aim. Therefore, further investigations of the target were not performed. Instead, investigations on 

the other Aurora family member, AURKA, were carried out. 

In the present project, AURKA siRNA and the small molecule inhibitor MLN8237 showed 

selectivity to HPV-induced cervical cancer cell lines whilst non-HPV cell lines showed less 

sensitivity (discussed in Chapters 3 and 5). Further investigations using MLN8237 show apoptotic 

phenotype in the HPV-transformed cell lines, which was confirmed by DNA contents and time-

lapse data. Additionally, the treatment of non-HPV cell lines transfected with HPV E7 oncogene 

sensitized the cells to the inhibitor, and, consequently, resulted in lower IC50. The previous data was 

further supported by in vivo demonstration where the treatment of HPV-transformed and non-HPV 

cervical cancer xenograft models for 10 consecutive days with 30mg/kg of MLN8237 resulted in 

tumour inhibition. Interestingly, no tumour recurrence was observed for 50 days post-treatment in 

the HPV-induced groups whereas the non-HPV group showed tumour recurrence 4-5 days post-

treatment. AURKA is a key mitotic player where it orchestrates different mitotic events, including 

centrosome maturation, entrance to mitosis, bipolar spindle assembly, chromosomal alignment, and 

cytokinesis (Marumoto et al., 2005). Therefore, disrupting an essential element as AURKA would 

result in many cellular events, possibly including apoptosis. Although there was no clear connection 

between AURKA and HPV, the ability of Mcl-1 over expression to protect against the MLN8237-

driven cell death points to a possible link. Mcl-1 is a pro-survival gene that belongs to the Bcl-2 

family (Kozopas et al., 1993). Mei and colleagues found that Mcl-1 colocalizes with Puma, a pro-

apoptotic Bcl-2 protein, in the mitochondria and blocks the release of Puma-mediated cytochrome c 

release and subsequent activation of caspase 9 (Mei et al., 2005). The report also noted that Mcl-1 
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stability increases upon binding with Puma. It is known that HPV E7 oncogene degrades the pRb, 

which leads to the release of E2F1. Also, the loss of pRb function by oncogenic E7 increases E2F 

activity and the expression of p73, which has been reported to result in apoptosis in some cancer 

cell lines (Jost et al., 1997). In their report, Melino and co-workers found that p73-induced 

apoptosis is triggered by Puma (Melino et al., 2004). Also, Puma was required to translocate Bax, a 

pro-apoptotic Bcl-2 protein, to the mitochondria during p73-induced apoptosis. Based on these 

reports, it can be hypothesized that p73 may play a role in the selective apoptotic phenotype to the 

HPV-transformed cervical cancer cell lines. This p73-induced apoptosis may occur through Puma 

possibly by releasing E2F1 when pRb is degraded by the oncogenic E7. Although the previous 

possible model of induction of apoptosis does not provide a direct link between HPV and AURKA, 

it was reported that p73-induced apoptosis requires the activation of the NF-kB pathway (Martin et 

al., 2009). This activation can only occur via mediation by UBE2N, which in fact binds to AURKA 

(Ewart-Toland et al., 2003). This could be a possible mechanism that links AURKA with the 

selective phenotypic outcome of HPV-transformed cervical cancer cell lines. 

Although AURKA and AURKB were investigated in this thesis, GSG2/Haspin was also a mitotic 

regulator that showed selective lethality to HPV-transformed cervical cancer cell line, CaSki, when 

depleted by siRNA (discussed in Chapter 3). Haspin is a relatively novel gene that contributes to 

proper chromosome alignment and satisfaction of spindle assembly checkpoint (Dai et al., 2006). It 

has been also reported that silencing of Haspin using RNAi increased mitotic index, delayed exit 

from mitosis, and weakened the spindle checkpoint response to taxol (Higgins, 2010, Wang et al., 

2010, Niedzialkowska et al., 2012). Haspin phosphorylates histone H3 at threonine-3 (H3T3ph), 

which provides a docking site for AURKB at the centromere (Wang et al., 2012). Inhibition of 

Haspin caused decreased H3T3ph phosphorylation and subsequent loss of centromeric AURKB. 

This obviously shows the strong relationship between AURKB and Haspin as key players during 

mitosis, which should be investigated in the future. 

6.2 Conclusions and future directions 

The work presented in this thesis has illustrated a robust siRNA high-throughput screening protocol 

that enabled the identification of novel target genes that when silenced kill only HPV-transformed 

cervical cancer cells but not others. Six novel genes were identified and confirmed by the screen, 
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and only two of them, Aurora A and Aurora B, were selected for further investigations. The study 

also shows that the ZM447439 AURKB inhibitor was not selective towards HPV-induced cell lines. 

Instead, all tested cell lines were affected with the inhibitor, irrespective of their HPV-

transformation status. MLN8237, a selective AURKA inhibitor that is currently under phases I and 

II clinical trial, demonstrated significant lethal selectivity in HPV-transformed cervical cancer cell 

lines in vitro; this finding was also confirmed in vivo by using three different cervical cancer cell 

lines, namely, HeLa (HPV18), CaSki (HPV16), and C33A (non-HPV). 

Several issues can be addressed on the basis of the findings of this study. In particular, the 

mechanistic pathway beyond the link between Aurora A kinase and HPV-induced cell lines 

selectivity is an interesting aspect of this study that needs further investigation. Indeed, further 

investigation is necessary to determine if the NF-kB/AURKA signalling pathway activation is 

required to maintain induction of apoptosis in the HPV-transformed cervical cancer cell lines. An 

NF-kB deficient model can be used to determine whether this AURKA/NF-kB signalling cascade is 

required to maintain sufficient AURKA inhibitor-induced apoptosis. Also, as it was proposed in this 

thesis the pro-apoptotic Puma may play a role in inducing apoptosis in the HPV-transformed 

cervical cancer cell lines, the knockdown of Puma by specific siRNA followed by treatment of 

these cells with the MLN8237 inhibitor will reveal the role of Puma in this mechanism. Another 

interesting area of investigation is the determination of the spindle checkpoint status in all cell lines 

tested either before or after treatment. This will provide evidence in how the mitotic slippage occur 

and, also, pave the pathway to understand the reason beyond the prolonged mitotic arrest that 

occurs in the HPV-induced cell lines which was not noticed in the non-HPV panel. Additionally, 

depletion of different spindle checkpoint proteins such as Mad2 or BubR1 by specific siRNA 

followed by treatment with the MLN8237 would also help understanding the mechanism beyond 

the mitotic arrest that was determined using the time-lapse data in Chapter 5. As discussed in the 

previous chapter, these spindle checkpoint elements are essential in functional spindle checkpoint 

and their status in the tested cell lines should be investigated. Meanwhile, based on the findings of 

this project, initiation of clinical trial to treat cases with cervical cancer can be possibly performed. 

On the other hand, another line of future work is the investigation of a selective Aurora B small-

molecule inhibitor that is currently under clinical trial, such as AZD1152 (Portella et al., 2011) with 
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HPV-transformed and non-HPV cervical cancer cell lines to check for AURKB small-molecule 

inhibitor selectivity towards HPV-positive cell lines, which can be conducted by a dose-response 

experiment. This is would possibly be interesting as the siRNA screening data showed lethal 

selectivity towards the majority of HPV-induced cell lines. In addition, little is known about Haspin 

and, in fact, the relation between Haspin and cervical cancer was never built. However, a small 

molecule inhibitor developed by Chroma Therapeutics called (CHR-6494) was used in a panel of 

cell lines including HeLa and showed promising results by decreasing the viability of HeLa and 

some other cancer cell lines (Huertas et al., 2012). Therefore, Haspin is an interesting area that 

worth investigation using small molecule inhibitors and siRNA. 
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Appendix 1 Customized high-content imaging protocols for the 
tested cell lines. 
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Appendix 1. Detailed high-content imaging protocol for tested cell lines. Cells were labelled with 10nM EdU and were 
subject to the Click reaction. Following, all cells were fixed and stained with 400nM DAPI in 3% BSA. Positive nuclei for 
EdU together with cell numbers were detected by the ArrayScan VTI analyser using the above-mentioned detailed protocol. 
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Appendix 2 Example of how cell seeding density was determined 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2. Examples of how cell seeding densities were determined in 384-well plates for different cells lines. 

Optimal seeding density was determined when cells reached the highest DNA replication percentage within the 

indicated vertical lines. A CaSki cell line was seeded at a maximum cell sseding density and a dilution series was 

performed. Cells were then incubated at 37oC with 5% CO2 for 72 h prior to harvesting. Cells were then labelled with 

10nM EdU. Following, cells were subjected to click-reaction conditions and stained with 400nM DAPI in 3% BSA. 

Positive nuclei for EdU together with cell numbers were detected using the ArrayScan VTI analyser (Cellomics). 

Similar procedures were followed for B C33A. and C) HaCaT. 
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Appendix 3 Example of other transfection reagents and concentrations 

 

 

 

Appendix 3. Examples of how DharmaFECT 3 was determined as the best transfection reagents. Five 

transfection reagents (DharmaFECT 1 – 4) and Lipofectamine 2000 (L2K) were evaluated at four different lipid 
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concentrations (0.2%, 0.1%, 0.05%, and 0.025%). This is only a representative example from CaSki cell line. Cells 

were reversed transfected with siRNA against Polo-like kinae 1 (siPLK1) or non-targeting siRNA (siNT) at a final 

concentration of 50nM. Cells were then incubated at 37oC with 5% CO2 for 72 h prior to harvesting.  After incubation, 

cells were assayed for: A metabolic activity (cell viability) by adding the resazurin dye was into each well at a 44µM 

final concentration, and plates were incubated for 75 min at 37°C with 5% CO2 before being read by the FLOUStar 

plate reader for fluorescence detection; B cells were fixed and stained with 400nM DAPI stain in 3% BSA and a cell 

count was performed by the ArrayScan VTI analyser (Cellomics); C 8µl was recovered from the original 

transfection 384-well plates to new white 384-well plates, similar volume of the adenylate kinase substrate was added 

into each well and plates were incubated for 20 min at room temperature. Plates were then read by the FLUOStar plate 

reader for luminescence signal detection. Each data point in A, B, and C represents a mean of four replicates. 
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Appendix 4 siRNA primary screen candidates detail 

Acc. 

Number 

Gene 

Symbol 

Gene 

ID 

Z-score cell no. Z-score viability Z-score AK Z-score EdU% 

CaSki C33A HaCaT CaSki C33A HaCaT CaSki C33A CaSki C33A HaCaT 

NM_0042

17 
AURKB 9212 -2.19 -2.32 -0.55 0.65 0.36 0.52 2.03 -0.64 -1.19 0.41 0.77 

NM_0036

00 
AURKA 6790 -3.94 -2.18 -2.71 0.75 0.76 0.22 7.28 1.31 2.10 -0.84 -3.08 

NM_0036

29 
PIK3R3 8503 -2.54 -2.10 -1.06 0.47 0.35 0.33 1.98 -0.81 0.22 1.50 1.16 

NM_0072

07 
DUSP10 11221 0.44 -0.44 -0.25 0.13 0.50 0.48 0.19 1.13 0.02 -0.76 1.47 

NM_0043

27 
BCR 613 -1.23 0.00 -1.54 0.25 0.25 0.17 1.90 0.87 0.69 -0.44 -0.93 

NM_0023

76 
MARK3 4140 -1.83 -0.06 -1.73 0.13 0.23 0.40 1.34 -1.07 1.00 -0.59 0.21 

NM_0319

65 
GSG2 83903 -2.86 0.13 0.08 0.16 0.05 0.47 4.76 -0.21 2.34 -0.28 1.09 

NM_0063

14 
CNKSR1 10256 -1.91 -0.38 -2.36 0.28 0.67 0.20 1.65 2.22 -2.05 -1.61 1.94 

NM_0036

91 
STK16 8576 -0.83 -0.20 0.34 0.12 0.59 0.17 2.00 0.88 0.38 -0.82 -0.26 

NM_0027

36 
PRKAR2B 5577 -2.09 -1.86 -0.99 0.42 0.39 0.42 3.50 2.60 -0.01 -1.33 -0.42 

NM_0044

31 
EPHA2 1969 0.40 0.85 1.37 0.13 0.85 0.66 -0.13 -0.69 0.88 0.91 -0.02 

NM_0029

69 
MAPK12 6300 -2.78 0.50 -0.38 0.95 0.53 0.66 5.22 0.31 1.23 0.79 0.71 

NM_0068

23 
PKIA 5569 0.02 -0.75 1.77 0.17 0.65 0.18 -0.37 0.09 0.55 1.26 -0.49 

NM_0062

18 
PIK3CA 5290 -0.97 -0.70 0.64 0.55 0.42 0.29 -0.16 -1.61 0.04 -0.09 0.17 

NM_0046

12 
TGFBR1 7046 -1.73 0.44 0.28 0.31 0.44 0.32 3.25 0.40 1.76 1.10 -0.09 

NM_0027

67 
PRPSAP2 5636 -1.02 -0.67 0.21 0.41 0.26 0.48 2.24 -0.30 -1.20 0.28 0.49 
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NM_0028

43 
PTPRJ 5795 -0.57 0.29 -0.50 0.41 0.35 1.00 0.00 -0.52 -1.67 1.01 0.82 

NM_0331

18 
MYLK2 85366 -2.59 -0.17 -2.27 0.45 0.81 0.27 1.64 1.08 -1.76 -2.03 1.44 

NM_0312

72 
TEX14 56155 -2.33 -1.41 -0.37 0.49 0.70 0.81 4.00 1.86 2.08 0.63 -0.75 

NM_1334

94 
NEK7 

14060

9 
0.49 0.81 -0.11 0.03 0.90 1.49 -0.10 -0.49 -0.64 0.77 -0.14 

NM_0209

65 
MAGI-3 

26042

5 
-1.55 -0.20 -0.86 0.28 0.09 0.06 1.39 -1.67 0.08 -0.12 0.28 

NM_0000

24 
ADRB2 154 -2.09 -0.12 -1.91 0.40 0.80 0.09 3.13 -0.92 1.18 -1.88 0.55 

NM_0142

26 
RAGE 5891 -0.08 0.36 -2.33 0.10 0.69 0.31 0.10 0.24 -0.22 -0.47 2.87 

NM_0179

88 
FLJ10074 55681 0.65 1.85 2.09 0.42 0.36 0.56 -0.27 -0.25 1.01 0.16 -1.21 

NM_0145

86 
HUNK 30811 -2.36 -0.92 -0.83 0.21 0.24 0.36 4.43 -0.84 2.10 0.18 0.87 

NM_0066

09 
MAP3K2 10746 0.19 0.18 -0.15 0.33 0.34 1.39 0.27 1.14 -0.80 -1.60 0.67 

NM_0012

04 
BMPR2 659 -0.90 -0.71 1.25 0.09 0.32 0.15 0.89 -0.10 1.38 -0.83 -0.52 

NM_0058

13 
PRKCN 23683 -2.69 0.00 0.55 0.11 0.42 0.36 3.69 0.06 0.76 0.04 -0.62 

NM_0063

43 
MERTK 10461 -2.10 0.66 -1.83 0.68 0.19 0.29 3.60 1.19 0.80 1.36 1.36 

NM_0528

41 
STK22C 81629 -1.21 -0.62 -0.84 0.11 0.52 0.27 -0.08 -0.95 -2.85 -1.25 -0.61 

NM_1528

35 
PDIK1L 

14942

0 
0.62 1.19 1.93 0.27 0.08 0.51 -0.49 -1.00 -0.52 -0.96 -0.72 

NM_0049

38 
DAPK1 1612 0.27 -2.64 -0.15 0.46 0.39 0.27 0.38 3.22 0.12 -0.93 0.47 

NM_0018

26 
CKS1B 1163 0.16 0.72 1.56 0.54 0.34 0.17 -0.32 -0.77 0.18 0.73 0.00 

NM_0007

88 
DCK 1633 -2.71 0.10 -2.51 0.79 0.17 0.05 2.60 -0.20 1.90 -0.80 1.72 

NM_1781

70 
NEK8 

28408

6 
-1.13 -0.35 -0.83 0.21 0.56 0.25 -0.21 -0.53 -1.54 -0.42 0.30 
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NM_0031

88 
MAP3K7 6885 -1.37 -0.13 0.04 0.22 0.79 0.41 2.86 1.53 -0.34 -1.10 0.16 

NM_0027

53 
MAPK10 5602 0.61 0.09 1.66 0.28 0.63 0.30 -0.22 -0.83 -0.23 -0.20 -1.79 

NM_0053

07 
GRK4 2868 -1.90 -0.26 -0.70 0.47 0.55 0.42 1.90 -0.93 -0.90 0.10 0.60 

NM_0045

86 
RPS6KA3 6197 -1.44 -0.88 0.15 0.46 0.53 0.39 3.01 2.00 1.34 -0.28 0.07 

NM_0000

20 
ACVRL1 94 -0.70 0.93 -1.01 0.54 1.28 0.60 2.41 -0.18 2.29 1.50 -1.19 

NM_1735

98 
KSR2 

28345

5 
-2.65 0.06 -0.98 0.51 0.64 0.21 1.86 -0.53 2.24 -0.42 0.98 

NM_0159

85 
ANGPT4 51378 0.01 0.33 -0.43 0.23 0.15 0.32 -0.80 -0.62 -1.92 -1.70 0.81 

NM_0320

37 
SSTK 83983 -1.31 0.69 0.24 0.22 0.58 0.18 1.26 -0.73 -0.09 -0.20 -0.28 

NM_0071

99 
IRAK3 11213 -0.89 0.59 -0.73 0.12 0.52 0.69 3.46 1.28 0.86 -0.41 1.73 

NM_0052

28 
EGFR 1956 0.47 0.61 0.86 0.50 0.97 0.58 -0.58 -0.94 0.33 0.59 -0.80 

NM_0036

47 
DGKE 8526 -1.40 -0.06 -0.41 0.23 0.22 0.44 2.16 0.81 -1.14 -0.95 -0.10 

NM_0031

77 
SYK 6850 -0.53 -1.09 -0.50 0.36 0.08 0.72 1.01 0.24 -2.12 -1.38 0.14 

NM_0157

16 
MINK 50488 -1.77 0.55 -0.62 0.35 0.16 0.08 1.03 -1.40 1.93 -0.81 -0.65 

NM_0027

58 
MAP2K6 5608 -2.14 -1.33 0.16 0.31 0.84 0.79 1.87 -1.38 0.89 1.01 -0.29 

NM_0036

88 
CASK 8573 -1.65 -1.40 1.01 0.21 0.15 0.33 0.01 -1.19 -0.73 1.10 -1.00 

NM_0203

97 
CAMK1D 57118 0.62 0.30 1.88 0.25 1.00 0.49 -0.85 0.51 0.07 0.70 -1.84 

NM_0031

60 
AURKC 6795 -2.48 -0.41 -0.72 0.16 1.23 0.50 4.86 -0.24 0.89 0.54 -0.46 
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Gene symbol Catalogue number 

AURKB M-003326-02 

AURKA M-003545-09 

PIK3R3 M-019546-00 

DUSP10 M-003965-01 

BCR M-003875-04 

MARK3 M-003517-03 

GSG2 M-005327-00 

CNKSR1 M-012217-00 

STK16 M-004054-00 

PRKAR2B M-007673-00 

EPHA2 M-003116-01 

MAPK12 M-003590-00 

PKIA M-012321-00 

PIK3CA M-003018-01 

TGFBR1 M-003929-01 

PRPSAP2 M-006795-01 

PTPRJ M-008476-01 

MYLK2 M-005352-02 

TEX14 M-005386-01 

NEK7 M-003795-02 

MAGI-3 M-009453-01 

ADRB2 M-005426-01 

RAGE M-004838-01 

FLJ10074 M-005318-00 

CSNK1D M-003478-00 
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HUNK M-004214-01 

MAP3K2 M-003582-01 

BMPR2 M-005309-02 

PRKCN M-005029-01 

MERTK M-003155-01 

STK22C M-004050-01 

PDIK1L M-005011-02 

DAPK1 M-004417-02 

CKS1B M-004586-01 

DCK M-006710-00 

NEK8 M-004866-00 

MAP3K7 M-003790-05 

MAPK10 M-004324-00 

GRK4 M-004625-00 

RPS6KA3 M-003026-01 

ACVRL1 M-005302-02 

KSR2 M-005322-01 

ANGPT4 M-007803-00 

SSTK M-005034-00 

IRAK3 M-004762-00 

EGFR M-003114-01 

DGKE M-011493-00 

SYK M-003176-03 

MINK M-004861-02 

MAP2K6 M-003967-00 

CASK M-005311-01 

CAMK1D M-004946-00 
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AURKC M-019573-01 

Appendix 4. Primary siRNA screen hit details. As presented in this thesis, the primary siRNA screen revealed 54 

target genes that were further validated in a secondary screen. This appendix provide detailed information about their Z-

scores, Gene ID, catalogue number from Dharmacon (Vendor ID), gene symbols, and accession numbers. 
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Appendix 5 Relative AURKA and AURKB protein levels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 5. Relative AURK and AURKB protein levels. Cells were seeded and transfected with either AURKA or 
AURKB ON-TARGETplus SMARTpool siRNA for 72 h. Non-targeting siRNA was used as a negative 
control. Pellet cells were subject to immunoblotting as shown in Figure 3.12 in Chapter 3. Both Figure A and 
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B show quantification of AURKA and AURKB protein levels, respectively; normalized to α-tubulin loading 
control. 
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Appendix 6 Dose-response for cervical cancer HPV and non-HPV cell 
lines treated with MLN8237.  
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Appendix 6. Dose-response curves for HPV and non-HPV cervical cancer cells treated with MLN8237. Cells were 
seeded and incubated overnight at 37oC with 5% CO2. Upon incubation, AURKA small molecule inhibitor 
(MLN8237) was introduced at a range of 30-10-3-1µM – 300, 100 and 30nM and incubated at the same 
incubation conditions for 72 h. Cells were subject to the viability assay based on resazurin dye that was used at 
a final concentration of 44µM. Fluorescence signal was detected using FLUOStart microplate reader. As 
indicated in these curves, HeLa, ME180, and HaCaT were affected with low concentration of the compound 
whereas SiHa and HT3 were less affected. C33A (cervical cancer non-HPV) showed less sensitivity to the 
MLN8237 compared to the remaining tested cell lines. All curves and IC50 values were generated using 
GraphPad Prism V6.0. 
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Appendix 7 Dose-response for cervical cancer squamous cell 
carcinoma (SCC) cell lines treated with MLN8237. 
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Appendix 7. Dose-response curves for SCC cells treated with MLN8237. Same experimental protocol as indicated 
in Appendix 5 was followed for this experiment. The curves demonstrated that both SCC-25 and KJD cell 
lines had very low sensitivity to the small molecule compared to the Colo, FaDu, and Detroit. All curves and 
IC50 values were generated using GraphPad Prism V6.0. 
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Appendix 8 Dose-response for C33A and SCC-25 HPV16E7-
transfected cell lines treated with MLN8237. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 8. Dose-response curves for C33A and SCC25 HPV16E7-transfected cell lines treated with MLN8237. 

Cells were seeded and incubated overnight at 37oC with 5% CO2. Upon incubation, AURKA small molecule 
inhibitor (MLN8237) was introduced at a range of 30µM to 30nM and incubated at the same incubation 
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conditions for 72 h. Cells were subject to the viability assay based on resazurin dye that was used at a final 
concentration of 44µM. Fluorescence signal was detected using FLUOStart microplate reader. Both cell lines 
showed higher sensitivity to the MLN8237 when compared with the curves in Appendix 5 and 6 of the 
parental cell lines. The SCC25 in particular showed dramatic reduction in the IC50 value from very low 
sensitive (in the parental cell line) to high sensitivity (in the HPV16E7 transfected cells). The case was similar 
with the C33A where low IC50 was observed in this curve compared to the one generated from the parental 
cell line. All curves and IC50 values were generated using GraphPad Prism V6.0. 

 
 
 
 
 
 
 
 

 


