Accepted Manuscript

Effectiveness of aquatic exercise for musculoskeletal conditions: A meta-analysis

Anna Lucia Barker, PhD Jason Talevski, B.Health Sci (Public Health) Renata Teresa Morello, MPH Caroline Anne Brand, MPH Ann Elizabeth Rahmann, PhD Donna Michelle Urquhart, PhD

PII: S0003-9993(14)00288-3

DOI: 10.1016/j.apmr.2014.04.005

Reference: YAPMR 55808

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

- Received Date: 8 January 2014
- Revised Date: 18 March 2014

Accepted Date: 9 April 2014

Please cite this article as: Barker AL, Talevski J, Morello RT, Brand CA, Rahmann AE, Urquhart DM, Effectiveness of aquatic exercise for musculoskeletal conditions: A meta-analysis, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2014), doi: 10.1016/j.apmr.2014.04.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effectiveness of aquatic exercise for musculoskeletal conditions: A meta-analysis

Anna Lucia Barker¹, PhD, Jason Talevski¹, B.Health Sci (Public Health), Renata Teresa Morello¹, MPH, Caroline Anne Brand^{1, 3}, MPH, Ann Elizabeth Rahmann^{4, 5}, PhD, Donna Michelle Urquhart², PhD

¹Health Services Research Unit, Centre for Research Excellence in Patient Safety, Division of Health Services and Global Health Research, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia

²Musculoskeletal Unit, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia ³Melbourne EpiCentre, University of Melbourne, Melbourne, Victoria, Australia

⁴Division of Physiotherapy, School of Health and Rehabilitation Sciences, University of Queensland, St Lucia, Queensland, Australia

⁵Brighton Health Campus, Metro North Hospital and Health Service, Brisbane, Queensland, Australia

Corresponding author: Dr Anna Barker

Address: Monash University, Department of Epidemiology and Preventive Medicine, The Alfred Centre, 99 Commercial Road, Melbourne VIC 3004, AUSTRALIA

Phone (BH): +61 3 9903 0946 **Phone (AH):** +61 408 033 287

Emial: <u>anna.barker@monash.edu</u>

The authors report grants from Arthritis and Osteoporosis Victoria during the conduct of the study.

This manuscript has not been submitted or is not simultaneously being submitted elsewhere, and no portion of the data has been or will be published in proceedings or transactions of meetings or symposium volumes.

No commercial party having a direct interest in the results of the research supporting this article has or will confer a benefit on the authors or on any organization with which the authors are associated.

No financial support or other benefits from commercial sources for the work reported on in the manuscript have been received which could create a potential conflict of interest or the appearance of a conflict of interest with regard to the work.

Reprint requests to Dr Anna Barker, Monash University, Department of Epidemiology and Preventive Medicine, The Alfred Centre, 99 Commercial Road, Melbourne VIC 3004, AUSTRALIA, e-mail: <u>anna.barker@monash.edu</u>

1 ABSTRACT

- 2
- 3

4 Objective: To investigate the effectiveness of aquatic exercise in the management of
5 musculoskeletal conditions.

Data Sources: A systematic review was conducted using Ovid MEDLINE, CINAHL,
EMBASE, and The Cochrane Central Register of Controlled Trials from earliest record to
May 2013.

9 Study Selection: Randomized controlled trials (RCTs) and quasi-randomized controlled 10 trials evaluating aquatic exercise for adults with musculoskeletal conditions compared to no 11 exercise or land-based exercise. Outcomes of interest were pain, physical function and quality 12 of life. The electronic search identified 1199 potential studies. Of these, 1136 studies were 13 excluded based on title and abstract. A further 36 studies were excluded after full text review 14 and the remaining 26 studies were included in this review.

Data Extraction: Two reviewers independently extracted demographic data and intervention
characteristics from included trials. Outcome data including mean scores and SDs were also
extracted.

Data Synthesis: The Physiotherapy Evidence Database (PEDro) scale identified 20 studies
with high methodological quality (PEDro score ≥6). Compared to no exercise, aquatic
exercise achieved moderate improvements in pain (SMD -0.37, 95% CI -0.56 to -0.18),
physical function (SMD 0.32, 95% CI 0.13 to 0.51) and quality of life (SMD 0.39, 95% CI
0.06 to 0.73). No significant differences were observed between the effects of aquatic and
land-based exercise on pain (SMD -0.11, 95% CI -0.27 to 0.04), physical function (SMD 0.03, 95% CI -0.19 to 0.12) or quality of life (SMD -0.10, 95% CI -0.29 to 0.09).

Conclusion: The evidence suggests that aquatic exercise has moderate beneficial effects on pain, physical function and quality of life in adults with musculoskeletal conditions. These benefits appear comparable across conditions and with those achieved with land-based exercise. Further research is needed to understand the characteristics of aquatic exercise programs that provide the most benefit.

30 Key Words: Aquatic exercise; Arthritis; Land-based exercise; Musculoskeletal;
31 Osteoarthritis; Randomized controlled trial.

Chillip Marine

32 ABBREVIATIONS

33

34

- 35 RCT Randomized controlled trial
- 36 WHO World Health Organization
- 37 PEDro Physiotherapy Evidence Database
- 38 SMD Standardized mean difference
- 39 CI Confidence interval

40 Musculoskeletal conditions are widespread and are among the world's leading causes of chronic pain, disability and reduced health-related quality of life(1). A recent report on global 41 burden of disease highlighted that musculoskeletal conditions account for 7% of total 42 43 disability adjusted life years, with low back pain accounting for nearly half, and osteoarthritis accounting for almost 10% of this burden(2). Musculoskeletal conditions are also the most 44 common causes for utilizing healthcare resources(3). This burden, reflected by endorsement 45 of the Bone and Joint Decade 2000–2010 by the United Nations and WHO, is predicted to 46 rise due to the ageing population(4). As such, identifying and promoting effective 47 48 management strategies for these conditions has been flagged as a public health priority (5). 49 There is a growing body of evidence that suggests aquatic exercise can decrease the disease 50 burden of musculoskeletal conditions(6-9). The benefits of aquatic exercise arise from the 51 physiological effects of immersion and the hydrodynamic principles of exercise in the aquatic 52 environment(10). Buoyancy decreases compressive weight-bearing stresses on joints and 53 54 allows functional exercise with lessened gravitational load, improving both strength and range of movement(11). Additionally, immersion in thermo neutral water (34 degrees Celsius) 55 decreases sympathetic nervous system activity, which in combination with the compressive 56 effects of hydrostatic pressure, can reduce swelling and the perception of pain in people with 57 musculoskeletal conditions(10). The aquatic environment can allow higher-intensity 58

59 exercises to be undertaken, with lower cardiovascular stress than is possible on land(12).

60

Despite the increasing number of RCTs being undertaken, the most recent Cochrane systematic review published in 2007, limited to osteoarthritis studies, concluded that there remains a lack of high-quality studies in this area(13). The meta-analysis included data from six RCTs and identified that aquatic exercise had a small-to-moderate short term effect on

65 pain, function and quality of life compared to no intervention(13). A more recent metaanalysis published in 2011 focused only on function, mobility and pooled health outcomes in 66 people with osteoarthritis or rheumatoid arthritis(8). This review included 10 RCTs and 67 concluded that aquatic exercise had comparable effects to land-based exercise. This review 68 again highlighted the variability in methodological quality of included studies, hindering the 69 identification of true differences between the two modes of exercise. Reviews completed on 70 the effects of aquatic exercise for people with fibromyalgia(6, 14) and low-back pain(7) have 71 also reported positive impacts with aquatic exercise but were cautious in their conclusions 72 73 due to variable study quality.

74

Whilst there is evidence that aquatic exercise is an effective strategy in the management of a number of musculoskeletal conditions, the relative benefits across conditions has not been reported as previous reviews have only focused on individual conditions. Therefore, the aim of this review was to:

Systematically examine the effect of aquatic exercise on pain, physical function and
 quality of life in people with musculoskeletal conditions when compared to both no
 exercise and land-based exercise; and

82 2. Investigate the relative effectiveness of aquatic exercise for individual

83 musculoskeletal conditions including osteoarthritis, rheumatoid arthritis, fibromyalgia,

84 low back pain and osteoporosis.

85 METHODS

87

88 Literature search

A systematic search of literature was conducted up until May 2013. Ovid MEDLINE,

90 CINAHL, EMBASE and The Cochrane Central Register of Controlled Trials (April 2013)

91 were searched to identify published research. A sensitive search strategy was developed using

92 medical subject heading (MESH) search terms and keywords (Appendix 1), and was

93 translated for each database as appropriate. The references of included studies were also

94 reviewed for further relevant literature.

95

96 Eligibility criteria

97 Study selection. Two reviewers (ALB and JT) independently screened and excluded studies 98 based on title and abstracts. For articles not excluded by this process, full text was obtained 99 and assessed independently by both reviewers against the inclusion and exclusion criteria. If a 100 decision could not be reached between the two reviewers a third reviewer (RTM) was called 101 upon for the final decision.

102

103 Types of studies and participants. Studies were included if they were conducted as a RCT or 104 quasi-randomized controlled trial. Participants had to be diagnosed with at least one 105 musculoskeletal condition using accepted arthritis and musculoskeletal diagnostic criteria. 106 Studies with participants less than 18 years of age or who had recently had surgery (e.g. 107 arthoplasty or spinal surgery) were excluded.

108

Interventions. Studies must have included one group that participated in aquatic exercise and a comparison group that participated in no exercise (including non-active activities such as education) or land-based exercise. Aquatic exercise interventions were defined as any type of endurance, flexibility, strength, resistance or aerobic exercise conducted in a pool. Other hydrotherapy methods such as turbulent spa therapy and balneotherapy (immersion in mineralized water) were excluded because these approaches do not usually include an active exercise component.

116

Outcomes. Outcomes of interest were pain, physical function and quality of life. To be 117 included in this review, studies must have reported outcome measures known to be 118 responsive for measuring change in pain, physical function or quality of life in people with 119 musculoskeletal conditions. When two outcome measures were available for the same 120 outcome only one was included in the meta-analysis. Generic (non-disease or condition 121 specific) outcome measures were prioritized for inclusion in the meta-analysis followed by 122 disease specific measures based on priority lists defined by prior Cochrane systematic 123 reviews(13). Outcome measures were also required to be scored on a 0-100 scale or could be 124 converted to this. The list of outcome measures which met the inclusion criteria are listed in 125 Table 1 in descending order of priority. 126

127

128 Methodological quality assessment

All included studies were assessed for methodological quality independently by two
reviewers (JT and ALB) using the PEDro scale(15). This scale rates 11 aspects of
methodological quality of RCTs as being either absent or present (Appendix 2). As the first
item (eligibility criteria) is not scored, the total score ranges from 0 to 10. Studies that obtain
a score of <6 points are considered as low quality, while those with a score ≥6 points are

considered high quality(16). A third reviewer (RTM) was called if consensus could not bereached.

136

137 Data extraction

Two reviewers (ALB and JT) independently extracted data for the included studies.
Demographic data (age, sex, and musculoskeletal condition) and intervention characteristics
(exercise components, duration, and frequency) were extracted from included trials. Outcome
data including mean scores, SDs, and sample sizes were also extracted for two time points—
baseline (pre-intervention) and first follow-up (post-intervention) assessment. When
necessary, the SD was approximated by dividing the inter-quartile range by 1.35, and
medians were used as best estimates of means.

145

146 Statistical Analysis

A meta-analysis was conducted using pooled data and described as standardized mean 147 difference (SMD) and 95% CIs. This method is useful for comparing data collected using 148 different scales (17). Heterogeneity between trials was assessed using the I^2 statistic(18). 149 Statistical heterogeneity was considered substantial if I^2 was greater than 50% 150 (heterogeneous), and in this event a random effects model was applied; otherwise a fixed-151 effects model was used (17). Outcome data was excluded from the meta-analysis if there 152 were significant differences in baseline scores of the outcome of interest to ensure SMD in 153 post-intervention scores were not confounded. A SMD of less than 0.2 was considered a 154 small effect, between 0.2 and 0.8 a moderate effect and greater than 0.8 a large effect(19). 155 Scale directions were aligned by adding negative values where required. A separate meta-156 analysis was run for each outcome and comparator options. For each meta-analysis, a 157 secondary analysis was conducted that excluded studies of low methodological quality 158

- 159 (PEDro score < 6) so that estimates of effect could be established that avoided distortion
- 160 probable from inclusion of findings from low quality studies. All meta-analyses were
- 161 performed using Review Manager (RevMan5.2) software.

162 **RESULTS**

163

164

165 Search yield

The electronic search identified 1199 potential studies for screening of eligibility after duplicate studies were removed. Of these, 1136 studies were excluded based on title and abstract. The full text was obtained for the remaining 63 studies. Based on the reviewer's decisions, 36 studies were excluded after full text review as they did not meet inclusion criteria (Appendix 3) and 26 studies were included in the review(20-45) (Figure 1).

171

172 Description of included studies

The 26 included studies consisted of 24 randomised controlled studies (21, 22, 24-45) and 173 two quasi-randomised controlled trials(20, 23) in osteoarthritis, rheumatoid arthritis, 174 fibromyalgia, low back pain and osteoporosis populations. The majority of studies (16; 175 62%)(21, 22, 26-29, 32-34, 36-39, 43-45) were conducted in people with osteoarthritis. 176 Eighteen studies(20-22, 26, 27, 29, 31-36, 38-41, 43, 44) compared aquatic exercise to no 177 exercise; 15(20, 23-28, 30, 33, 34, 38, 39, 42, 44, 45) to some form of land-based exercise 178 and seven studies(20, 26, 27, 33, 34, 39, 44) included both no exercise and land-based 179 exercise comparisons. Participants were typically older with 16 studies(20-22, 26-29, 31-34, 180 181 36, 38, 39, 43, 44) including participants with a mean age of over 60 years (Table 2).

182

183 Methodological quality

184 Methodological quality was independently assessed by two reviewers (JT and ALB). A third 185 reviewer (RTM) was required to assess the methodological quality for five studies, as the first 186 two reviewers could not reach a consensus. The median score for methodological quality

using the PEDro scale was 6 out of 10 (range 4-8) indicating studies were of high quality.
Twenty studies(20, 22, 23, 25-30, 32-37, 41-45) were assessed as being high quality (PEDro
score ≥6) (Table 2). Common methodological limitations identified across studies included
omission of reporting if analysis was performed on an intention to treat basis and whether
allocation was concealed.
Aquatic exercise program characteristics
Aquatic exercise programs varied substantially across the included studies in terms of total

intervention duration (3-52 weeks), frequency (1-7 times per week) and class duration (30-60
minutes) (Table 2). Variability was also observed for the types of exercises included in
programs; however it was common for programs to include warm-up, strength, stretching,
range of motion, aerobic and cool-down exercises.

199

200 Effects of interventions

The majority of studies reported on pain (25; 96%) and physical function outcomes (24; 92%) (Table 2). For physical function and quality of life outcomes, positive scores indicated improved health, whereas for pain outcomes, negative scores indicated improved health (i.e. a reduction in pain). All studies reported SD values therefore no approximations of these values were required.

206

207 **Pain**

208 Fifteen studies(21, 22, 26, 27, 29-33, 36, 38, 40, 41, 43, 44) were included in the meta-

- analysis of pain outcomes for aquatic compared to no exercise. There was significant
- heterogeneity detected for studies (I^2 =53%). When a random-effects analysis was applied,
- compared to no exercise, aquatic exercise achieved a moderate reduction in pain (SMD -0.37,

95% CI -0.56 to -0.18). Effects were comparable across osteoarthritis, rheumatoid arthritis,
fibromyalgia and low back pain populations (test for sub-group differences p=0.07) (Figure
2a). When the meta-analysis was repeated excluding low methodological quality studies (21,
31, 38, 40) there was no appreciable difference in the effect on pain (SMD -0.33, 95% CI 0.53 to -0.13).

217

Ten studies(23-25, 27, 28, 30, 33, 37, 44, 45) were included in the meta-analysis of pain 218 outcomes for aquatic compared to land-based exercise. There was no significant 219 heterogeneity detected for studies ($I^2=50\%$). When a fixed-effects analysis was applied, 220 compared to land-based exercise, aquatic exercise achieved a small non-significant reduction 221 in pain (SMD -0.11, 95% CI -0.27 to 0.04). Effects on pain were comparable across 222 osteoarthritis, rheumatoid arthritis, fibromyalgia and low-back pain populations (test for sub-223 group differences (p=0.08) (Figure 2b). When the meta-analysis was repeated excluding low 224 methodological quality studies(24), no appreciable difference was found (SMD -0.08, 95% 225 CI -0.27 to 0.09). 226

227

228 Physical function

Fourteen studies(20, 22, 26, 27, 29, 30, 32, 35, 36, 38, 40, 41, 43, 44) were included in the 229 meta-analysis of physical function outcomes for aquatic compared to no exercise. Significant 230 heterogeneity was detected for these studies ($I^2=53\%$). When a random-effects analysis was 231 applied, compared to non-active controls, aquatic exercise achieved a moderate improvement 232 in physical function (SMD 0.32, 95% CI 0.13 to 0.51) and effects were comparable across 233 osteoarthritis, rheumatoid arthritis and fibromyalgia populations. There was some evidence of 234 a difference of effects across the included condition types with the one study conducted in 235 people with osteoporosis favoring the non-active control (test for sub-group differences 236

P=0.02). No studies were included that reported on physical function outcomes in low back
pain population (Figure 3a). When the meta-analysis was repeated excluding low
methodological quality studies(38, 40) there was no appreciable difference in the effect on
physical function (SMD 0.28, 95% CI 0.09 to 0.42).

241

Ten studies(20, 23, 25, 27, 28, 30, 34, 39, 42, 44) were included in the meta-analysis of 242 physical function outcomes for aquatic compared to land-based exercise. There was no 243 significant heterogeneity detected for studies ($I^2=38\%$). Applying a fixed-effects analysis. 244 when compared to land-based exercise, aquatic exercise achieved comparable effects on 245 physical function (SMD -0.03, 95% CI -0.19 to 0.12) and this effect was consistent across all 246 populations (test for sub-group differences P=0.10) (Figure 3b). When the meta-analysis was 247 repeated excluding low methodological quality studies(39) there was no appreciable 248 difference in the effect on physical function (SMD -0.04, 95% CI -0.20 to 0.12). 249

250

251 Quality of life

Eleven studies(20, 21, 26, 27, 29, 30, 33, 34, 36, 38, 44) were included in the meta-analysis 252 of quality of life outcomes for aquatic compared to no exercise. Significant heterogeneity was 253 detected for studies ($I^2=78\%$). When a random-effects analysis was applied, aquatic exercise 254 achieved moderate improvements in quality of life compared to non-active controls (SMD 255 0.39, 95% CI 0.06 to 0.73). There was some evidence of a difference of effects across the 256 included condition types (test for sub-group differences P=0.02). Whilst a moderate 257 improvement in quality of life was observed in studies conducted in osteoarthritis populations, 258 small non-significant effects were observed in the osteoporosis or rheumatoid arthritis 259 populations in favor of the non-active control group (Figure 4a). However, this finding was 260

261	limited to only one study in each population. When the meta-analysis was repeated excluding
262	low methodological quality studies (21, 38) there was no appreciable difference in the effect.
263	
264	Seven studies(20, 25, 26, 30, 33, 34, 44) were included in the meta-analysis of quality of life
265	outcomes for aquatic exercise compared to land-based exercise. No significant heterogeneity
266	was detected for studies ($I^2=12\%$). When a fixed-effects model analysis was applied,
267	compared to land-based exercise, aquatic exercise achieved comparable improvements in
268	quality of life (SMD -0.10, 95% CI -0.29 to 0.09). These effects were consistent across
269	osteoarthritis and osteoporosis populations (test for sub-group differences P=0.47). There
270	were no studies that reported on quality of life outcomes that compared aquatic to land-based
271	exercise in fibromyalgia or low-back pain populations. All studies reporting on quality of life
272	were of high methodological quality (Figure 4b).

s that rep promyalgia or low-back p. methodological quality (Figure 4b).

273 **DISCUSSION**

74

275

This review provides new evidence that aquatic exercise provides moderate benefits to people 276 with musculoskeletal conditions reflected in reduced pain and improved physical function 277 and quality of life. These results are consistent with prior reviews that focused on individual 278 musculoskeletal conditions in isolation. Improvements in pain and physical function were 279 observed to be mostly consistent across different musculoskeletal conditions. Importantly, 280 281 these results persisted when low quality studies were removed from analysis. 282 Compared to land-based exercise, aquatic exercise achieved equivalent improvements in all 283 284 outcomes. This indicates that patients can choose the exercise mode that appeals most to them. This is an important finding as provision of patient choice in treatment interventions is 285 known to improve patient outcomes(46) and participation, which is a critical factor to 286 intervention effectiveness. Even if an intervention is effective, if it is not accepted by the 287 target population it is of little benefit. A review of exercise participation among people with 288 osteoarthritis(47) found that poor participation is the most compelling explanation for the 289 declining impact of the benefits of exercise over time. Several of the studies in this review 290 observed higher participation levels in aquatic exercise compared to land-based exercise 291 292 groups (26, 34, 37). Future studies should aim to explore patient preferences for aquatic exercise compared to land-based exercise and the relative long-terms effects of aquatic 293 exercise. 294

295

296 Musculoskeletal conditions are not mutually exclusive(3). The pathophysiology of each 297 disorder differs between each condition(3). Despite this difference, musculoskeletal

298 conditions share a range of associated symptoms including pain, fatigue, and difficulties with activities of daily living(3). Prior reviews have sought to establish the effectiveness of aquatic 299 exercise with an individual focus on one musculoskeletal condition(7, 8, 13, 14), failing to 300 find the potential differential effects of aquatic exercise across multiple musculoskeletal 301 conditions. This is the first meta-analysis conducted across different musculoskeletal 302 conditions. Our results have provided precise pooled estimates of treatment effects of aquatic 303 exercise across multiple musculoskeletal conditions, including osteoarthritis; rheumatoid 304 arthritis; fibromyalgia; low back pain; and osteoporosis. Meta-analysis results showed 305 benefits were mostly consistent across condition types. Improvements in pain were consistent 306 across the different musculoskeletal conditions; however the reduction in pain for rheumatoid 307 and low back pain populations was non-significant. This may be an artifact of only one study 308 being included for each of these populations and so meta-analysis of effects for these 309 condition sub-groups could not be performed. Improvement in physical function was 310 consistent across osteoarthritis, rheumatoid arthritis and fibromyalgia populations in studies 311 that compared aquatic exercise to no exercise. However, when compared to land-based 312 exercise, this effect was lost in the osteoarthritis and fibromyalgia populations. No 313 improvements were observed for physical function in the osteoporosis population when 314 compared to either no exercise or land-based exercise. It is important to note that there were a 315 limited number of studies in low-back pain, rheumatoid arthritis, osteoporosis and 316 fibromyalgia populations and so the differential effects noted across conditions must be 317 interpreted with caution. Further studies and analysis are required to more accurately 318 determine differential effects across different musculoskeletal conditions. 319

320

Data on quality of life was rarely reported in studies despite being an important outcome for
people with musculoskeletal conditions. People participating in warm water exercise often

report an enhanced sense of well-being. Impacts on quality of life were investigated in osteoarthritis, rheumatoid arthritis and osteoporosis populations, and positive effects in the aquatic exercise group were reported for only osteoarthritis studies. The effect of aquatic exercise on quality of life for other musculoskeletal conditions (fibromyalgia and low back pain) remains uncertain and needs further investigation. Quality of life outcomes should be included in future studies investigating the effect of aquatic exercise for people with musculoskeletal conditions.

330

There was considerable variability between the aquatic exercise programs used in each study. Disappointingly, many studies supplied limited details on the types of exercise, dose and intensity included in the aquatic exercise intervention. This made comparisons between studies and identification of characteristics of the most beneficial programs difficult. Based on this review, further research is required to investigate the characteristics of aquatic exercise programs that provide the most beneficial results.

337

338 Study Limitations

Only RCTs published in English were included, therefore potentially relevant high quality 339 studies with different designs or in other languages may have been excluded. In addition, 340 searches were limited to published studies only. As there is a tendency for editors to publish 341 studies with positive findings, this review may be subject to publication bias. We found a 342 high heterogeneity and wide CIs of most effect sizes, and variability in study quality and 343 exercise interventions (frequency and types of exercise) that may have contributed random 344 error to outcomes. Of note, the aim of this literature review was to explore the benefits of 345 aquatic exercise in several different musculoskeletal clinical groups in the peer review 346 literature. As such, this review was undertaken with a broad exploratory focus and pooled 347

- studies of different musculoskeletal conditions with different pathophysiology. However we
- 349 avoided this issue by also looking at different sub-group effects. This potential limitation
- as needs to be acknowledged when considering the review findings.

351 CONCLUSIONS

352

353

Overall, the studies included in this review were of high quality and demonstrate that aquatic exercise can have positive effects on pain, physical function and quality of life for adults with musculoskeletal conditions. However, there is further need for large scale trials of sufficient duration and an adequate follow-up period to validate the long-term effects of aquatic exercise. In addition, future trials need to examine different modes, frequency, intensity and participation in aquatic exercise programs so the characteristics of programs that achieve

360 maximum benefits are well understood.

361 **REFERENCES**

362

363

Escorpizo R, Cieza A, Beaton D, Boonen A. Content comparison of worker
 productivity questionnaires in arthritis and musculoskeletal conditions using the International
 Classification of Functioning, Disability, and Health framework. J Occup Rehabil.
 2009;19(4):382-97.

368 2. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived
369 with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a
370 systematic analysis for the Global Burden of Disease Study 2010. Lancet.
371 2012;380(9859):2163-96.

372 3. Walker JG, Littlejohn GO. Measuring quality of life in rheumatic conditions. Clin
373 Rheumatol. 2007;26(5):671-3.

4. MacKay C, Canizares M, Davis AM, Badley EM. Health care utilization for
musculoskeletal disorders. Arthritis care & research. 2010;62(2):161-9.

376 5. Brooks PM. The burden of musculoskeletal disease--a global perspective. Clin
377 Rheumatol. 2006;25(6):778-81.

378 6. McVeigh JG, McGaughey H, Hall M, Kane P. The effectiveness of hydrotherapy in
379 the management of fibromyalgia syndrome: a systematic review. Rheumatol Int.
380 2008;29(2):119-30.

381 7. Waller B, Lambeck J, Daly D. Therapeutic aquatic exercise in the treatment of low
382 back pain: a systematic review. Clin Rehabil. 2009;23(1):3-14.

8. Batterham SI, Heywood S, Keating JL. Systematic review and meta-analysis
comparing land and aquatic exercise for people with hip or knee arthritis on function,
mobility and other health outcomes. BMC Musculoskelet Disord. 2011;12:123.

9. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. 2008;16(2):137-62.
10. Becker BE. Aquatic therapy: scientific foundations and clinical rehabilitation

applications. PM & R : the journal of injury, function, and rehabilitation. 2009;1(9):859-72.

11. Poyhonen T, Sipila S, Keskinen KL, Hautala A, Savolainen J, Malkia E. Effects of
aquatic resistance training on neuromuscular performance in healthy women. Med Sci Sports
Exerc. 2002;34(12):2103-9.

Hall J, Grant J, Blake D, Taylor G, Garbutt G. Cardiorespiratory responses to aquatic
treadmill walking in patients with rheumatoid arthritis. Physiother Res Int. 2004;9(2):59-73.

Bartels EM, Lund H, Hagen KB, Dagfinrud H, Christensen R, Danneskiold-Samsoe B.
Aquatic exercise for the treatment of knee and hip osteoarthritis. The Cochrane database of
systematic reviews. 2007(4):CD005523.

Langhorst J, Musial F, Klose P, Hauser W. Efficacy of hydrotherapy in fibromyalgia
syndrome--a meta-analysis of randomized controlled clinical trials. Rheumatology (Oxford).
2009;48(9):1155-9.

402 15. de Morton NA. The PEDro scale is a valid measure of the methodological quality of
403 clinical trials: a demographic study. The Australian journal of physiotherapy.
404 2009:55(2):129-33.

Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the
PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713-21.

Higgins JPT, Green S, Cochrane Collaboration. Cochrane handbook for systematic
reviews of interventions. Chichester, England ; Hoboken, NJ: Wiley-Blackwell; 2008.

18. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-

410 analyses. BMJ. 2003;327(7414):557-60.

386

387

388

389

411 19. Cohen J. Statistical Power Analysis in the Behavioral Sciences 2nd ed. Hillsdale, NJ:
412 Erlbaum; 1988.

413 20. Arnold CM, Busch AJ, Schachter CL, Harrison EL, Olszynski WP. A Randomized
414 Clinical Trial of Aquatic versus Land Exercise to Improve Balance, Function, and Quality of
415 Life in Older Women with Osteoporosis. Physiother Can. 2008;60(4):296-306.

416 21. Belza B, Topolski T, Kinne S, Patrick DL, Ramsey SD. Does adherence make a
417 difference? Results from a community-based aquatic exercise program. Nurs Res.
418 2002;51(5):285-91.

22. Cochrane T, Davey RC, Matthes Edwards SM. Randomised controlled trial of the
cost-effectiveness of water-based therapy for lower limb osteoarthritis. Health Technol
Assess. 2005;9(31):iii-iv, ix-xi, 1-114.

422 23. Dundar U, Solak O, Yigit I, Evcik D, Kavuncu V. Clinical effectiveness of aquatic
423 exercise to treat chronic low back pain: a randomized controlled trial. Spine (Phila Pa 1976).
424 2009;34(14):1436-40.

425 24. Evcik D, Yigit I, Pusak H, Kavuncu V. Effectiveness of aquatic therapy in the
426 treatment of fibromyalgia syndrome: a randomized controlled open study. Rheumatol Int.
427 2008;28(9):885-90.

Eversden L, Maggs F, Nightingale P, Jobanputra P. A pragmatic randomised
controlled trial of hydrotherapy and land exercises on overall well being and quality of life in
rheumatoid arthritis. BMC Musculoskelet Disord. 2007;8:23.

431 26. Foley A, Halbert J, Hewitt T, Crotty M. Does hydrotherapy improve strength and
432 physical function in patients with osteoarthritis - a randomised controlled trial comparing a
433 gym based and a hydrotherapy based strengthening programme. Annals of the Rheumatic
434 Diseases. 2003;62(12):1162-7.

435 27. Fransen M, Nairn L, Winstanley J, Lam P, Edmonds J. Physical activity for
436 osteoarthritis management: a randomized controlled clinical trial evaluating hydrotherapy or
437 Tai Chi classes. Arthritis and rheumatism. 2007;57(3):407-14.

438 28. Gill SD, McBurney H, Schulz DL. Land-based versus pool-based exercise for people
439 awaiting joint replacement surgery of the hip or knee: results of a randomized controlled trial.
440 Archives of physical medicine and rehabilitation. 2009;90(3):388-94.

441 29. Hale LA, Waters D, Herbison P. A randomized controlled trial to investigate the
442 effects of water-based exercise to improve falls risk and physical function in older adults with
443 lower-extremity osteoarthritis. Archives of physical medicine and rehabilitation.
444 2012;93(1):27-34.

445 30. Hall J, Skevington SM, Maddison PJ, Chapman K. A randomized and controlled trial
446 of hydrotherapy in rheumatoid arthritis. Arthritis Care Res. 1996;9(3):206-15.

Han G, Cho M, Nam G, Moon T, Kim J, Kim S, et al. The Effects on Muscle Strength
and Visual Analog Scale Pain of Aquatic Therapy for individuals with Low Back Pain.
Journal of Physical Therapy Science. 2011;23(1):57-60.

450 32. Hinman RS, Heywood SE, Day AR. Aquatic physical therapy for hip and knee
451 osteoarthritis: results of a single-blind randomized controlled trial. Phys Ther. 2007;87(1):32452 43.

453 33. Lim JY, Tchai E, Jang SN. Effectiveness of aquatic exercise for obese patients with
454 knee osteoarthritis: a randomized controlled trial. PM & R : the journal of injury, function,
455 and rehabilitation. 2010;2(8):723-31; quiz 93.

456 34. Lund H, Weile U, Christensen R, Rostock B, Downey A, Bartels EM, et al. A
457 randomized controlled trial of aquatic and land-based exercise in patients with knee
458 osteoarthritis. J Rehabil Med. 2008;40(2):137-44.

459 35. Munguia-Izquierdo D, Legaz-Arrese A. Assessment of the effects of aquatic therapy
460 on global symptomatology in patients with fibromyalgia syndrome: a randomized controlled
461 trial. Archives of physical medicine and rehabilitation. 2008;89(12):2250-7.

462 36. Patrick DL, Ramsey SD, Spencer AC, Kinne S, Belza B, Topolski TD. Economic
463 evaluation of aquatic exercise for persons with osteoarthritis. Med Care. 2001;39(5):413-24.

37. Silva LE, Valim V, Pessanha AP, Oliveira LM, Myamoto S, Jones A, et al.
Hydrotherapy versus conventional land-based exercise for the management of patients with
osteoarthritis of the knee: a randomized clinical trial. Phys Ther. 2008;88(1):12-21.

38. Stener-Victorin E, Kruse-Smidje C, Jung K. Comparison between electro-acupuncture
and hydrotherapy, both in combination with patient education and patient education alone, on
the symptomatic treatment of osteoarthritis of the hip. Clinical Journal of Pain.
2004;20(3):179-85.

39. Suomi R, Collier D. Effects of arthritis exercise programs on functional fitness and
perceived activities of daily living measures in older adults with arthritis. Archives of
physical medicine and rehabilitation. 2003;84(11):1589-94.

474 40. Tomas-Carus P, Hakkinen A, Gusi N, Leal A, Hakkinen K, Ortega-Alonso A. Aquatic
475 training and detraining on fitness and quality of life in fibromyalgia. Med Sci Sports Exerc.
476 2007;39(7):1044-50.

41. Tomas-Carus P, Gusi N, Hakkinen A, Hakkinen K, Leal A, Ortega-Alonso A. Eight
months of physical training in warm water improves physical and mental health in women
with fibromyalgia: a randomized controlled trial. J Rehabil Med. 2008;40(4):248-52.

480 42. Vitorino DF, Carvalho LB, Prado GF. Hydrotherapy and conventional physiotherapy
481 improve total sleep time and quality of life of fibromyalgia patients: randomized clinical trial.
482 Sleep Med. 2006;7(3):293-6.

483	43. Wang TJ, Belza B, Elaine Thompson F, Whitney JD, Bennett K. Effects of	aquatic
484	exercise on flexibility, strength and aerobic fitness in adults with osteoarthritis of the	e hip or
485	knee. J Adv Nurs. 2007:57(2):141-52.	

486 44. Wang TJ, Lee SC, Liang SY, Tung HH, Wu SF, Lin YP. Comparing the efficacy of
487 aquatic exercises and land-based exercises for patients with knee osteoarthritis. Journal of
488 clinical nursing. 2011;20(17-18):2609-22.

- 489 45. Wyatt FB, Milam S, Manske RC, Deere R. The effects of aquatic and traditional
 490 exercise programs on persons with knee osteoarthritis. J Strength Cond Res. 2001;15(3):337491 40.
- 492 46. Guadagnoli E, Ward P. Patient participation in decision-making. Soc Sci Med.
 493 1998;47(3):329-39.
- 494 47. Marks R, Allegrante JP. Chronic osteoarthritis and adherence to exercise: a review of
 495 the literature. J Aging Phys Act. 2005;13(4):434-60.

496

497 FIGURE LEGENDS

498

499

- 500 **Figure 1:** Flow chart of study exclusion process.
- 501 **Figure 2:** Meta-analysis of pain outcomes
- 502 (a) Aquatic exercise vs. No exercise
- 503 (b) Aquatic exercise vs. Land-based exercise
- 504 **Figure 3:** Meta-analysis of physical function outcomes
- 505 (a) Aquatic exercise vs. No exercise
- 506 (b) Aquatic exercise vs. Land-based exercise
- 507 **Figure 4:** Meta-analysis of quality of life outcomes
- 508 (a) Aquatic exercise vs. No exercise
- 509 (b) Aquatic exercise vs. Land-based exercise

Appendix 1: Search Strategy

In MEDLINE the following subject specific search strategy was applied:

- #1: hydrotherapy
- #2: aquatic therapy
- #3: aquatic exercise
- #4: arthritis
- #5: arthritis, rheumatoid
- #6: osteoarthritis
- #7: fibromyalgia
- #8: low back pain
- #9: osteoporosis
- #10: musculoskeletal diseases
- #11: 1 or 2 or 3
- #12: 4 or 5 or 6 or 7 or 8 or 9 or 10
- #13: 11 and 12

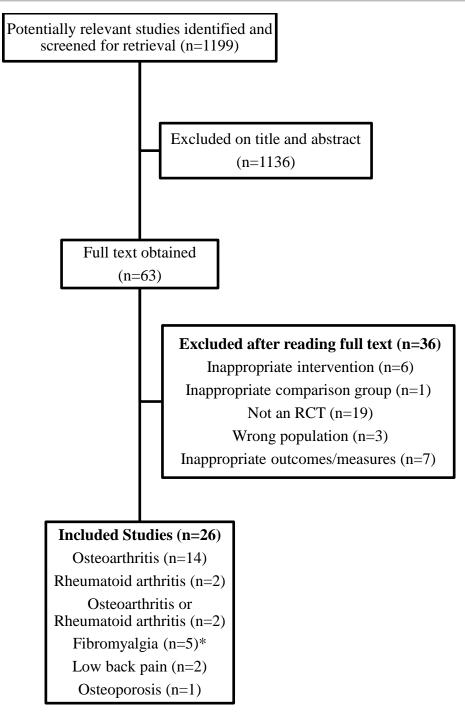
Appendix 2: PEDro scale items

- 1. Eligibility criteria
- 2. Random allocation
- 3. Concealed allocation
- 4. Baseline comparability
- 5. Blind subjects
- 6. Blind therapists
- 7. Blind assessors
- 8. Adequate follow-up
- 9. Intention-to-treat analysis
- 10. Between-group comparisons
- 11. Point estimates and variability

Appendix 3: List of excluded studies after reading full text

Study	Reason for exclusion
Ahern et al. (1995)	Not an RCT
Altan et al. (2004)	Comparison group inappropriate
Arnold et al. (2010)	Outcomes/outcome measures inappropriate
Ashina et al. (2010)	Outcomes/outcome measures inappropriate
Baena-Beato et al. (2013)	Not an RCT
Batterham et al. (2011)	Not an RCT
Bartels et al. (2009)	Not an RCT
Brosseau et al. (2002)	Not an RCT
Brosseau et al. (2010)	Not an RCT
Cadmus et al. (2010)	Outcomes/outcome measures inappropriate
Cuesta-Vargas et al. (2011)	Intervention was inappropriate
Cuesta-Vargas et al. (2011)	Intervention was inappropriate
Dagfinrud et al. (2009)	Not an RCT
Escalante et al. (2010)	Not an RCT
French et al. (2013)	Intervention was inappropriate
Giaquinto et al. (2010)	Wrong population (recovering after TKA)
Green et al. (1993)	Outcome measures inappropriate
Guillemin et al. (1994)	Intervention was inappropriate
Gusi et al. (2006)	Outcomes/outcome measures inappropriate
Gusi et al. (2008)	Outcomes/outcome measures inappropriate
Harmer et al. (2009)	Wrong population (recovering after total knee replacement)
Kelley et al. (2008)	Not an RCT

Langhorst et al. (2009)	Not an RCT
Lin et al. (2004)	Not an RCT
Mannerkorpi et al. (2002)	Not an RCT
Matsumoto et al. (2011)	Intervention was inappropriate
Mcllveen et al. (1998)	Outcomes/outcome measures inappropriate
McVeigh et al. (2008)	Not an RCT
Mobily et al. (2001)	Not an RCT
Perraton et al. (2009)	Not an RCT
Sjogren et al. (1997)	Not an RCT
Tilden et al. (2010)	Not an RCT
Van Tubergen et al. (2001)	Intervention was inappropriate
Verhagen et al. (2008)	Not an RCT
Waller et al. (2009)	Not an RCT
Yurtkuran et al. (2006)	Intervention was inappropriate


200. al. (2006)

Tak	ble 1: Outcome measures eligible to be included in the meta-analysis
Pain	VAS-Pain, HAQ-Pain, SF-36-Pain, SF-12-Pain, EQ-5D-Pain, BPI, Functional
	Capacity Evaluation-Pain, WOMAC-Pain, AIMS-2-Pain, KOOS-Pain, FIQ-
	Pain
Physical	HAQ-Function, DRI, SF-36-Function, SF-12-Physical function, EQ-5D-
Function	Mobility, Functional Capacity Evaluation-ADLs, FAP, SPF Scale, AAP,
	WOMAC-Function, AIMS-2-Physical Activity, KOOS-ADLs , ASEQ-
	Function, OP functional disability questionnaire-Functional abilities domain,
	FIQ-Function
Quality of	EQ-5D, SF-36 and SF-12-Physical health), AQoL, PQOL, QWB (Quality of
life (QoL)	Well-Being Scale), GSI (Global Self-Rating Index), AIMS-2-Affect, Arthritis
	QoL scale-Total score, KOOS-QoL

VAS=Visual Analogue Scale; HAQ= Health Assessment Questionnaire; SF-36=36-Item Short Form Health Survey; SF-12= 12-Item Short Form Health Survey; EQ-5D=European Quality of Life-5 Dimensions scale; BPI=Brief Pain Inventory; WOMAC=Western Ontario and McMaster Universities Osteoarthritis Index; AIMS-2=Arthritis Impact Measurement Scale 2; KOOS=Knee Injury and Osteoarthritis Outcome Score; FIQ=Fibromyalgia Impact Questionnaire; DRI=Disability Rating Index; ADLs=Activities of Daily Living FAP=Functional Ambulation Performance; SPF=Summary Physical Function; AAP=Adelaide Activities' Profile; ASEQ= Arthritis Self-Efficacy Questionnaire; PQOL= Perceived Quality Of Life Scale; QWB=Quality of Well-Being Scale); GSI=Global Self-Rating Index

				Tab	le 2: Ch	aracto	eristics	of inclu	ided stu	ıdies					
	Diagnosis	Comp	arator		ber of sub andomise		Age	e, Mean	(SD)	Outcomes assessed			Duration of intervention	Sessions/ week	PEDro score
		LB	С	AE	LB	С	AE	AE LB C Pain PF QoL (weeks)	(0-10)						
Arnold et al. (2008)	OP	✓	✓	21	20	20	68.6 (5.4)	69.1 (6.3)	67.7 (6.3)	×	~	\checkmark	20	50 min x 3	6
Belza et al. (2002)	OA		\checkmark	125		20	65.98 (5.94)		66.09 (6.16)		~	\checkmark	20	60 min x 1-7	5
Cochrane et al. (2005)	OA lower limbs		~	153		52	69.86 (6.82)		69.63 (6.26)	JV .	\checkmark	\checkmark	52	60 min x 2	7
Dundar et al. (2009)	LBP	\checkmark		32	33	4	35.3 (7.8)	34.8 (8.3)		\checkmark	\checkmark	\checkmark	4	60 min x 5	6
Evcik et al. (2008)	FM	\checkmark		31	30	5	43.8 (7.7)	42.8 (7.6)		\checkmark	\checkmark	×	5	60 min x 3	5
Eversden et al. (2007)	RA	~		57	58	6	55.2 (13.3)	56.1 (11.9)		~	\checkmark	\checkmark	6	30 min x 1	7
Foley et al. (2003)	OA hip/ knee	~	\checkmark	35	35	6	73.0 (8.2)	69.8 (9.2)	69.8 (9.0)	~	\checkmark	\checkmark	6	30 min x 3	7
Fransen et al. (2007)	OA hip/ knee	\checkmark	\checkmark	55	56	12	70.0 (6.3)	70.8 (6.3)	69.6 (6.1)	\checkmark	\checkmark	\checkmark	12	60 min x 2	8
Gill et al. (2009)	OA and RA	\checkmark		42	44	6	71.6 (8.9)	69.2 (10.5)		~	\checkmark	×	6	60 min x 2	6
Hale et al. (2012)	OA		~	23		12	73.6 (1.5)	. ,	75.7 (1.1)	\checkmark	\checkmark	×	12	60 min x 2	8
Hall et al. (1996)	RA	\checkmark		35	34	4	55.8 (12.5)	59.5 (11.0)		\checkmark	×	\checkmark	4	30 min x 2	6
Han et al. (2011)	LBP		\checkmark	9		10	61.2 (3.3)	. ,	60.8 (5.0)	~	×	×	10	50 min x 5	5
Hinman et al. (2007)	OA hip/ knee		~	36		20	63.3 (9.5)		61.5 (7.8)	\checkmark	\checkmark	\checkmark	20	45-60 min x 2	8
Lim et al. (2010)	Obesity/ OA knee	\checkmark	~	26	25	8	65.7 (8.9)	63.3 (5.3)	63.3 (5.3)	\checkmark	~	\checkmark	8	40 min x 3	7
Lund et al. (2008)	OA knee	\checkmark	~	27	25	8	65 (12.6)	68 (9.5)	70 (9.9)	\checkmark	~	\checkmark	8	50 min x 2	6
Munguia-Izquierdo et al. (2008)	FM		✓	35		16	50 (7)	(2.00)	46 (8)	\checkmark	\checkmark	×	16	60 min x 3	8
Patrick et al. (2001)	OA hip/		\checkmark	125		20	65.7		66.1	\checkmark	\checkmark	\checkmark	20	45-60	6

	knee													min x 2-7	
Silva et al. (2008)	OA knee	\checkmark		32	32	18	59	59		\checkmark	\checkmark	×	18	50 min x	7
							(7.60)	(6.08)						3	
Stener-Victorin et al.	OA hip		\checkmark	15		5	70.3		65.5	\checkmark	1	\checkmark	5	30 min x	4
(2004)														2	
Suomi and Collier	OA and	\checkmark	\checkmark	11	11	8	68.0	64.2	68.3	✓	√ ∕	×	8	45 min x	4
(2003)	RA						(6.8)	(3.3)	(6.2)					2	
Tomas-Carus et al.	FM		\checkmark	18		12	51		51 (9)	\checkmark	\checkmark	\checkmark	12	60 min x	5
(2007)							(10)							3	
Tomas-Carus et al.	FM		\checkmark	17		32	50.7		50.9	\checkmark	\checkmark	×	32	60 min x	7
(2009)							(10.6)		(6.7)					3	
Vitorino et al. (2006)	FM	\checkmark		25	25	3	48.9	46.6		\checkmark	\checkmark	\checkmark	3	60 min x	7
							(9.2)	(8.4)						3	
Wang et al. (2007)	OA hip/		\checkmark	21		12	69.3		62.7	\checkmark	\checkmark	×	12	60 min x	6
_	knee						(13.3)		(10.7)					3	
Wang et al. (2011)	OA knee	\checkmark	\checkmark	28	28	12	66.7	68.3	67.9	\checkmark	\checkmark	\checkmark	12	60 min x	7
							(5.6)	(6.4)	(5.9)					3	
Wyatt et al. (2001)	OA knee	\checkmark		23	23	6	- 4	-	. ,	\checkmark	\checkmark	×	6	NR x 3	6
LB=Land based exercise	e, C=Non-activ	e control	, AE=A	quatic ex	ercise, PF	-Physic	cal function	on, QoL=	Quality o	of life, SE	D=Standa	rd deviati	on, OA=Oste	eoarthritis,	
RA=Rheumatoid arthriti	s, FM=Fibrom	yalgia, L	BP=Lov	v back pa	in, OP=C) steopoi	osis, - = l	Not repor	ted in the	publicat	ion, NR=	Not Repo	orted		

*One study consisted of 2 publications reporting on different outcome measures and was recorded as one study in this review.

Figure 2: Meta-analysis of pain outcomes

		(•	i) Ay	็นสม		cic	ise vs.	. No exercise	
Study or Subarous	Aqua Mean	tic exercis SD		No ex Iean	ercise			Std. Mean Difference	Std. Mean Difference
Study or Subgroup 1.1.1 Osteoarthritis	Mean	SD		lean	50	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Belza 2002	46.67	28.67	36 4	8.67	20.67	117	9.2%	-0.09 [-0.46, 0.29]	-+
Cochrane 2005	-46.64				20.49	158	12.1%	-0.27 [-0.50, -0.05]	
Foley 2003	50	20	34	50	15	32	7.4%	0.00 [-0.48, 0.48]	
Fransen 2007	27.3	18.7	55	40	16.2	41	8.5%	-0.71 [-1.13, -0.30]	
Hale 2012	39	19.6		35.5	9.6	15	5.0%	0.21 [-0.46, 0.88]	
Hinnman 2006	40	20	36	50	20	35	7.5%	-0.49 [-0.97, -0.02]	
Lim 2010	32.7	16.7		45.5	18.8	20	5.7%	-0.71 [-1.32, -0.10]	
Patrick 2001	46.1 7.5			8.73 1 41.5	20.63	117 7	11.3%	-0.12 [-0.39, 0.15]	
Stener-Victorin 2004 Wang 2007	43.5	5.5 18.6		41.5 54.9	27.4	18	2.0% 5.3%	-1.75 [-2.95, -0.54] -0.51 [-1.16, 0.14]	
Wang 2007 Wang 2011	-72	18	26	-68	18	26	6.5%	-0.22 [-0.76, 0.33]	
Subtotal (95% CI)	-12	10	510	-00	10	586	80.6%	-0.31 [-0.50, -0.13]	◆
Heterogeneity: Tau ² = Test for overall effect:				P = 0.04	4); I² = 4	17%			
restion overall ellect.	2 = 3.20 ((F = 0.001)							
1.1.2 Rheumatoid Art									
Hall 1996	48	27	35	48	19	35	7.6%	0.00 [-0.47, 0.47]	<u>+</u>
Subtotal (95% CI)			35			35	7.6%	0.00 [-0.47, 0.47]	
Heterogeneity: Not ap Test for overall effect:		(P = 1.00)							
1.1.3 Fibromyalgia									
Tomas-Carus 2007	-44	23	17	-28	20	17	4.8%	-0.72 [-1.42, -0.03]	
Tomas-Carus 2007	-51.7			27.1	20.9	15	3.9%	-1.37 [-2.18, -0.57]	_
Subtotal (95% CI)	01.7		32		20.0	32	8.7%	-1.02 [-1.65, -0.38]	◆
Heterogeneity: Tau ² =	0.06; Chi	i² = 1.42. di		0.23):	l ² = 299				-
Test for overall effect:				71					
1.1.4 Low Back Pain									
Han 2011	31.2	23.2	9	58.9	44.2	10	3.1%	-0.74 [-1.68, 0.20]	
Subtotal (95% CI)	51.2	20.2	9	50.5	77. ∠	10	3.1%	-0.74 [-1.68, 0.20]	
Heterogeneity: Not ap	plicable							,	
Test for overall effect:		(P = 0.12)							
T () (0.51) (0.1)			500						•
Total (95% CI)			586			663	100.0%	-0.37 [-0.56, -0.18]	◆
Heterogeneity: Tau ² =				^o = 0.00	09); I ² =	53%			
Test for overall effect:	Z = 3.89 ((P < 0.0001	D .						-2 -1 0 1 2 Aquatic exercise No exercise
	Z = 3.89 (ferences:	(P < 0.0001 Chi ² = 7.19	l) 9. df = 3 (P = 0.0	7), ²=	58.3%			Aquatic exercise No exercise
Test for overall effect:	Z = 3.89 (ferences:	(P < 0.0001 Chi ² = 7.19	l) 9. df = 3 (P = 0.0	7), ²=	58.3%		nd-based exer	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff	Z = 3.89 (ferences:	(P < 0.0001 Chi ² = 7.19 (b) Aq exercise	1) 9. df = 3 ([uatio Land-	P = 0.0 C	⁽⁷⁾ . I ² = ercis exercis	58.3% S C V i	s. Lan	td. Mean Difference	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff	Z = 3.89 (ferences: Aquatic ((P < 0.0001 Chi ² = 7.19 (b) Aq exercise	1) 9. df = 3 ([uatio Land-	P = 0.0 C	⁽⁷⁾ . I ² = ercis exercis	58.3% S C V i	s. Lar		Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007	Z = 3.89 (ferences: Aquatic e <u>Mean</u> 27.3 1	(P < 0.0001 Chi ² = 7.19 (b) Aq exercise <u>SD Tota</u> 18.7 55))), df = 3 ([Uatio Land- I Mear 5 30.3	P = 0.0 C EX based n 7 1:	7), ² = ercis exercis SD 1 8.9	58.3% SE V se Fotal 56	s. Lan si <u>Weight</u> 17.0%	td. Mean Difference IV, Fixed, 95% Cl -0.18 (-0.55, 0.19)	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010	Z = 3.89 (ferences: Aquatic of Mean 27.3 1 32.7 1	(P < 0.0001) Chi ² = 7.19 (b) Aq exercise <u>SD Tota</u> 8.7 56 6.7 24	1) 3. df = 3 (Land <u>Mean</u> 5 30.1 34.6	P = 0.0 C EX (based n 7 1:	7). I ^z = ercis exercis SD 1 8.9 13	58.3% SE V se Fotal 56 22	s. Lan St Weight	td. Mean Difference IV, Fixed, 95% Cl -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008	Z = 3.89 (ferences: Aquatic e <u>Mean</u> 27.3 1 32.7 1 26.7 2	(P < 0.0001) Chi ² = 7.19 (b) Aq exercise <u>SD Tota</u> 18.7 56 16.7 24 23.1 32)) 3. df = 3 (Land- 1 Mean 5 30.7 4 34.6 37.3	P = 0.0 C EX(based n 7 1: 6 3 2	7), I ² = ercis <u>exercis</u> <u>SD</u> 1 8.9 13 7.5	58.3% Se V Fotal 56 22 32	s. Lan st <u>Weight</u> 17.0% 7.0% 9.6%	td. Mean Difference IV, Fixed, 95% Cl -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011	Z = 3.89 (ferences: Aquatic e <u>Mean</u> 27.3 1 32.7 1 26.7 2 -72	(P < 0.0001) Chi ² = 7.19 (b) Agenericse <u>SD</u> Tota 18.7 56 16.7 24 23.1 32 18 26	l)), df = 3 (Land- 1 Mear 30.1 34.6 37.1 37	P = 0.0 C EX (based n 7 11 6 3 2 6	7), ² = ercis sp 1 8.9 13 7.5 15	58.3% Se V Fotal 56 22 32 26	s. Lan st <u>Weight</u> 17.0% 7.0% 9.6% 7.9%	td. Mean Difference IV, Fixed, 95% Cl -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001	Z = 3.89 (ferences: Aquatic e <u>Mean</u> 27.3 1 32.7 1 26.7 2	(P < 0.0001 Chi ² = 7.19 (b) Aq exercise <u>SD Tota</u> 18.7 55 16.7 24 23.1 32 18 26 16 21	1) J , df = 3 (Land- Land- Mean 5 30.1 5 30.2 6 30.2 6 30.2 7 30.2 7 31 8 -70 3 4	P = 0.0 C EX (based n 7 11 6 3 2 6	7), I ² = ercis <u>exercis</u> <u>SD</u> 1 8.9 13 7.5	58.3% Se V Fotal 56 22 32 26 21	s. Lan st <u>Weight</u> 17.0% 7.0% 9.6% 7.9% 5.9%	td. Mean Difference IV, Fixed, 95% Cl -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI)	Z = 3.89 (ferences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24	(P < 0.0001 Chi ^a = 7.19 (b) Aq exercise <u>SD Tota</u> 18.7 55 16.7 24 23.1 32 18 26 16 21 15	1) 3, df= 3 (Land- 1 Mean 5 30.1 5 30.1 5 30.2 5 30.3 6 -7(3)	P = 0.0 C EX (based n 7 11 6 3 2 6	7), ² = ercis sp 1 8.9 13 7.5 15	58.3% Se V Fotal 56 22 32 26	s. Lan st <u>Weight</u> 17.0% 7.0% 9.6% 7.9%	td. Mean Difference IV, Fixed, 95% Cl -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001	Z = 3.89 (ferences: Aquatic & Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4	(P < 0.0001) Chi ^a = 7.19 (b) Aq exercise <u>SD Tota</u> 18.7 55 16.7 24 23.1 32 18 26 16 21 158 (P = 0.12);	1) 3, df= 3 (Land- 1 Mean 5 30.1 5 30.1 5 30.2 5 30.3 6 30.3 6 30.3 6 30.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	P = 0.0 C EX (based n 7 11 6 3 2 6	7), ² = ercis sp 1 8.9 13 7.5 15	58.3% Se V Fotal 56 22 32 26 21	s. Lan st <u>Weight</u> 17.0% 7.0% 9.6% 7.9% 5.9%	td. Mean Difference IV, Fixed, 95% Cl -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff Study or Subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyati 2001 Subtotal (95% CI) Heterogeneity: Chi [#] = 7	Z = 3.89 (ferences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P	(P < 0.0001) Chi ^a = 7.19 (b) Aq exercise <u>SD Tota</u> 18.7 55 16.7 24 23.1 32 18 26 16 21 158 (P = 0.12);	1) 3, df= 3 (Land- 1 Mean 5 30.1 5 30.1 5 30.2 5 30.3 6 30.3 6 30.3 6 30.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	P = 0.0 C EX (based n 7 11 6 3 2 6	7), ² = ercis sp 1 8.9 13 7.5 15	58.3% Se V Fotal 56 22 32 26 21	s. Lan st <u>Weight</u> 17.0% 7.0% 9.6% 7.9% 5.9%	td. Mean Difference IV, Fixed, 95% Cl -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Silva 2008 Wang 2011 Wyat 2001 Subtotal (95% CI) Heterogeneity: Chi [#] = 7 Test for overall effect: Z 2.1.2 Rheumatoid Arth Eversden 2007	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 28.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ \textbf{(b) Aq}\\ \textbf{xercise}\\ \textbf{SD Tota}\\ \textbf{scalar}\\ scal$	b) b) df = 3 (puation Land- Land- Mean 5 30.1 5 30.10	P = 0.0 based 7 1: 3 2: 3 3: 5 21.	7), ² = ercis sp 1 8.9 13 7.5 15 16 85	58.3% Se V Fotal 56 22 32 26 21	s. Lan si <u>Weight</u> 17.0% 7.0% 9.6% 7.9% 5.9% 47.5%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi [#] = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1986	Z = 3.89 (erences: 4 quatic 4 Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis	(P < 0.0001 Chi ² = 7.19 (b) A q exercise <u>SD</u> Tota 8.7 56 6.7 24 (3.1 32 18 26 16 21 158 (P = 0.12); = 0.04) 2.22 43 27 36)) a), df = 3 (Land- Land- Mean 5 30.1 5 30.1 5 30.2 6 -7(3(3) 1 ² = 45% 3 27.5 5 3(P = 0.0 based 7 1: 3 2: 3 3: 5 21.	7), ² = ercis sp 1 8.9 13 7.5 15 16	58.3% Se V fotal 56 22 32 26 21 157 42 34	s. Lan si <u>Weight</u> 17.0% 9.6% 7.9% 5.9% 47.5%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydatt 2001 Subtotal (95% Cl) Heterogeneity: Chi ^T = 7 Test for overall effect: Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% Cl)	Z = 3.89 (ferences: Aquatic c Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48	(P < 0.0001 Chi ² = 7.19 (b) A g exercise <u>SD Tota</u> 8.7 55 6.7 24 3.1 32 18 26 16 21 158 (P = 0.12); = 0.04) 2.22 43 27 35 78)))), df = 3 ([uationalistics] Land- Mean 5 30.3 5 30.3 6 -7(3 37.5 6 -7(3 37.5 8 -7.5 8 -7.5	P = 0.0 C EX based 7 11 3 2' 3 5 21.	7), ² = ercis sp 1 8.9 13 7.5 15 16 85	58.3% Se V Fotal 56 22 32 26 21 157	s. Lan si <u>Weight</u> 17.0% 7.0% 9.6% 7.9% 5.9% 47.5%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ^P = 7 Test for overall effect: Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ^P = 2	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1	$\begin{array}{c} (P < 0.0001\\ Chi^{2} = 7.19\\ \textbf{(b) Aq}\\ \textbf{exercise}\\ \textbf{SD Tota}\\ \textbf{sxercise}\\ \textbf{SD Tota}\\ \textbf{sxercise}\\ \textbf{sxercise}\\$)))), df = 3 ([uationalistics] Land- Mean 5 30.3 5 30.3 6 -7(3 37.5 6 -7(3 37.5 8 -7.5 8 -7.5	P = 0.0 C EX based 7 11 3 2' 3 5 21.	7), ² = ercis sp 1 8.9 13 7.5 15 16 85	58.3% Se V fotal 56 22 32 26 21 157 42 34	s. Lan si <u>Weight</u> 17.0% 9.6% 7.9% 5.9% 47.5%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydatt 2001 Subtotal (95% Cl) Heterogeneity: Chi ² = 7 Test for overall effect: Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% Cl) Heterogeneity: Chi ² = 2 Test for overall effect: Z	Z = 3.89 (erences: Aquatic c Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ \textbf{(b) Aq}\\ \textbf{exercise}\\ \textbf{SD Tota}\\ \textbf{s.7} 56\\ 6.7 24\\ 3.1 32\\ 18 26\\ 16 21\\ 158\\ (P = 0.12);\\ = 0.04)\\ 2.22 43\\ 27 36\\ 27 36\\ (P = 0.11);\\ = 0.39)\\ \end{array}$)))), df = 3 (Land - Land - Mean 5 30.7 5 37.3 6 -7(36 7 = 45% 8 27.5 8 27.	P = 0.0 C EX based 7 11 3 2' 3 5 21.	7), ² = ercis sp 1 8.9 13 7.5 15 16 85	58.3% Se V fotal 56 22 32 26 21 157 42 34	s. Lan si <u>Weight</u> 17.0% 9.6% 7.9% 5.9% 47.5%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect Z 2.1.3 Osteoarthritis an	Z = 3.89 (erences: Aquatic c Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) A g \\ exercise \\ \underline{SD} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1) 3) df = 3 (Land- Land- Mean 5 30.7 5 30.7 5 34.6 2 37.5 6 -77 5 -7	P = 0.0 C CX: 	7), F = ercis <u>SD 1</u> 8.9 13 7.5 15 16 85 18	58.3% Se V se Total 56 22 26 21 157 42 34 76	s. Lan Si Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ^m = 7 Test for overall effect Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ^m = 2 Test for overall effect Z 2.1.3 Osteoarthritis an Gill 2009	Z = 3.89 (erences: Aquatic c Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P		() () () () () () () () () ()	P = 0.0 C CX: 	7), ² = ercis sp 1 8.9 13 7.5 15 16 85	58.3% Fotal 56 22 26 21 157 42 34 76 34	s. Lan St Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydat 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI)	Z = 3.89 (ferences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) A g \\ exercise \\ \underline{SD} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	() () () () () () () () () ()	P = 0.0 C CX: 	7), F = ercis <u>SD 1</u> 8.9 13 7.5 15 16 85 18	58.3% Se V se Total 56 22 26 21 157 42 34 76	s. Lan Si Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect Z 2.1.3 Osteoarthritis an	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) A q\\ exercise\\ \underline{SD} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	() () () () () () () () () ()	P = 0.0 C CX: 	7), F = ercis <u>SD 1</u> 8.9 13 7.5 15 16 85 18	58.3% Fotal 56 22 26 21 157 42 34 76 34	s. Lan St Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wyag 2011 Wyag 2011 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) A q\\ exercise\\ \underline{SD} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	() () () () () () () () () ()	P = 0.0 C CX: 	7), F = ercis <u>SD 1</u> 8.9 13 7.5 15 16 85 18	58.3% Fotal 56 22 26 21 157 42 34 76 34	s. Lan St Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydatt 2001 Subtotal (95% Cl) Heterogeneity: Chi [#] = 7 Test for overall effect: Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% Cl) Heterogeneity: Chi [#] = 2 Test for overall effect: Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% Cl) Heterogeneity: Not app	Z = 3.89 (ferences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 5.5, 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.08 (P	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) Aq\\ exercise\\ sp Tota\\ sp $	= 61%	P = 0.0 C CX(based n 7 1: 3 2' 3 3 5 21. 5 21.	7), F = ercis <u>SD 1</u> 8.9 13 7.5 15 16 85 18	58.3% Fotal 56 22 26 21 157 42 34 76 34	s. Lan St Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect Z 2.1.4 Fibromyalgia Evcik 2007	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) Aq\\ exercise\\ sp Tota\\ sp $)))), df = 3 (Land - Land - Mean 3 30.1 3 34.6 3 37.3 6 -77 6 -77 3 (3 37.3 6 -77 8 -77 9 -77.5 9	P = 0.0 C CX(based n 7 1: 3 2' 3 3 5 21. 5 21.	7), I ² = ercis <u>SD</u> 1 8.9 13 7.5 15 16 85 18 8.5 8.5	58.3% Fotal 56 22 26 21 157 42 34 76 34 34	s. Lan s Weight 17.0% 7.0% 9.6% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% Cl) Heterogeneity: Chi [#] = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% Cl) Heterogeneity: Chi [#] = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% Cl) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia	Z = 3.89 (ferences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.08 (P 42	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) A g \\ exercise \\ SD Tota \\ \hline SC \\ (P = 0.12); \\ = 0.04) \\ \hline c.22 43; \\ (P = 0.12); \\ = 0.04) \\ \hline c.22 43; \\ (P = 0.12); \\ = 0.04) \\ \hline c.22 43; \\ (P = 0.12); \\ = 0.04) \\ \hline c.22 43; \\ (P = 0.12); \\ = 0.04) \\ \hline c.22 43; \\ (P = 0.12); \\ = 0.04) \\ \hline c.22 43; \\ = 0.23 \\ \hline c.22 43; \\ = 0.28 \\$)))), df = 3 (Land - Land - Mean 3 30.1 3 34.6 3 37.3 6 -77 6 -77 3 (3 37.3 6 -77 8 -77 9 -77.5 9	P = 0.0 C CX(based n 7 1: 3 2' 3 3 5 21. 5 21.	7), I ² = ercis <u>SD</u> 1 8.9 13 7.5 15 16 85 18 8.5 8.5	58.3% Se V: 56 22 26 21 157 42 34 76 34 34 30	s. Lan sr Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 10.1% 9.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ^P = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ^P = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI)	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.08 (P 42 licable	$\begin{array}{llllllllllllllllllllllllllllllllllll$)))), df = 3 (Land - Land - Mean 3 30.1 3 34.6 3 37.3 6 -77 6 -77 3 (3 37.3 6 -77 8 -77 9 -77.5 9	P = 0.0 C CX(based n 7 1: 3 2' 3 3 5 21. 5 21.	7), I ² = ercis <u>SD</u> 1 8.9 13 7.5 15 16 85 18 8.5 8.5	58.3% Se V: 56 22 26 21 157 42 34 76 34 34 30	s. Lan sr Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 10.1% 9.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.08 (P 42 licable	$\begin{array}{llllllllllllllllllllllllllllllllllll$)))), df = 3 (Land - Land - Mean 3 30.1 3 34.6 3 37.3 6 -77 6 -77 3 (3 37.3 6 -77 8 -77 9 -77.5 9	P = 0.0 C CX(based n 7 1: 3 2' 3 3 5 21. 5 21.	7), I ² = ercis <u>SD</u> 1 8.9 13 7.5 15 16 85 18 8.5 8.5	58.3% Se V: 56 22 26 21 157 42 34 76 34 34 30	s. Lan sr Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 10.1% 9.1%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydat 2001 Subtotal (95% CI) Heterogeneity: Chi [#] = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi [#] = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.5 Low Back Pain Dundar 2009	Z = 3.89 (ferences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.08 (P 42 licable = 1.94 (P	$\begin{array}{llllllllllllllllllllllllllllllllllll$	= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	P = 0.0 C CX based 7 1: 3 2: 5 21. 5 21. 6 1: 1	7), I ² = ercis <u>SD</u> 1 8.9 13 7.5 15 16 85 18 8.5 8.5	58.3% Se V ise Total 56 22 26 21 157 42 34 76 34 30 30 30 33	s. Lan st Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 9.1% 9.1% 9.1% 10.0%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.69 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.18 [-0.66, 0.31]	Aquatic exercise No exercise
Test for overall effect: Test for subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydatt 2001 Subtotal (95% CI) Heterogeneity: Chi ^T = 7 Test for overall effect: Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ^T = 2 Test for overall effect: Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z 2.1.5 Low Back Pain Dundar 2009 Subtotal (95% CI)	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 50.5 1 licable = 1.08 (P 42 licable = 1.94 (P 16.8 1	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) Aq\\ exercise\\ \underline{SD} \ Tota\\ \underline{SD} \ Tota\ \underline{SD} \ Tota\\ \underline{SD} \ Tota\ \underline{SD} \ Tota\ \underline{SD} \ Tota\ \underline{SD} \ Tota\ \underline{SD} \ \underline{SD} $	= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	P = 0.0 C CX based 7 1: 3 2: 5 21. 5 21. 6 1: 1	7), I ^P = ercis SD 1 8.9 13 7.5 15 16 8.5 18 8.5	58.3% Se V rotal 56 22 32 26 21 157 42 34 76 34 34 30 30	s. Lan sr Weight 17.0% 7.0% 9.6% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 9.1% 9.1%	 d. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.23 [-0.46, -0.01] -0.09 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] 	Aquatic exercise No exercise
Test for overall effect. Test for subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.5 Low Back Pain Dundar 2009 Subtotal (95% CI) Heterogeneity: Not app	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 28.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.94 (P 16.8 1 licable		= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	P = 0.0 C CX based 7 1: 3 2: 5 21. 5 21. 6 1: 1	7), I ^P = ercis SD 1 8.9 13 7.5 15 16 8.5 18 8.5	58.3% Se V ise Total 56 22 26 21 157 42 34 76 34 30 30 33 33	s. Lan st Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 9.1% 9.1% 9.1% 10.0%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.69 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.18 [-0.66, 0.31]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.5 Low Back Pain Dundar 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 28.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.94 (P 16.8 1 licable	$\begin{array}{l} (P < 0.0001\\ Chi^{2} = 7.19\\ (b) A q\\ exercise\\ \underline{SD} Tota\\ \underline{SD} Tota\\ 8.7 56\\ 6.7 24\\ 3.1 32\\ 18 26\\ 16 21\\ 158\\ (P = 0.12);\\ = 0.04)\\ \hline 2.22 433\\ 27 36\\ 27 36\\ 27 36\\ (P = 0.12);\\ = 0.04)\\ \hline 2.22 433\\ (P = 0.12);\\ = 0.04)\\ \hline 2.22 433\\ (P = 0.12);\\ = 0.04)\\ \hline 2.22 433\\ (P = 0.12);\\ = 0.04)\\ \hline 3.2 \\ = 0.28)\\ \hline 1.2 32\\ = 0.48)\\ \hline \end{array}$	()), df = 3 (Land. Land. Mean 3 30.7 3 37.7 3 37.3 3 77.3 3 77.5 3	P = 0.0 C CX based 7 1: 3 2: 5 21. 5 21. 6 1: 1	7), I ^P = ercis SD 1 8.9 13 7.5 15 16 8.5 18 8.5	58.3% Se V ise Total 56 22 26 21 157 42 34 34 30 30 33 33 33	s. Lan sr Weight 17.0% 7.0% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 9.1% 9.1% 9.1% 10.0% 10.0%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.69 [-0.52, 0.34] 0.43 [-0.05, 0.91] 0.43 [-0.05, 0.91] 0.14 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.18 [-0.66, 0.31]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup diff 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wyatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.5 Low Back Pain Dundar 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.5 Low Back Pain Dundar 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.5 Low Back Pain Dundar 2009	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 5.3, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.08 (P 42 licable = 1.94 (P 16.8 1 licable = 0.71 (P		1) a, df = 3 (puational formula Land- Mean 5 30.1 3 34.6 2 37.2 3 -77 5 -77 5 -77 5 -77 8 - 27.6 7 - 61% 15 15 15 15 15 15 15 15 15 15	P = 0.0 c ex (based 7 11 3 2 5 21. 5 21. 6 11 1	7), I ^P = ercis SD 1 8.9 13 7.5 15 16 8.5 18 8.5	58.3% Se V ise Total 56 22 26 21 157 42 34 34 30 30 33 33 33	s. Lan st Weight 17.0% 7.0% 9.6% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 9.1% 9.1% 9.1% 10.0%	td. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.86 [-1.49, -0.23] -0.86 [-1.49, -0.23] -0.23 [-0.46, -0.01] -0.23 [-0.46, -0.01] -0.23 [-0.46, -0.01] -0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.18 [-0.66, 0.31]	Aquatic exercise No exercise
Test for overall effect. Test for subgroup 2.1.1 Osteoarthritis Fransen 2007 Lim 2010 Silva 2008 Wang 2011 Wydatt 2001 Subtotal (95% CI) Heterogeneity: Chi ² = 7 Test for overall effect. Z 2.1.2 Rheumatoid Arth Eversden 2007 Hall 1996 Subtotal (95% CI) Heterogeneity: Chi ² = 2 Test for overall effect. Z 2.1.3 Osteoarthritis an Gill 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.4 Fibromyalgia Evcik 2007 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z 2.1.5 Low Back Pain Dundar 2009 Subtotal (95% CI) Heterogeneity: Not app Test for overall effect. Z	Z = 3.89 (erences: Aquatic of Mean 27.3 1 32.7 1 26.7 2 -72 24 .31, df = 4 = 2.04 (P ritis 25.5 22 48 .53, df = 1 = 0.86 (P d Rheuma 50.5 1 licable = 1.94 (P 16.8 1 licable = 0.71 (P 8.08, df =		1) a, df = 3 (puational formula Land- Mean 5 30.1 3 34.6 2 37.2 3 -77 5 -77 5 -77 5 -77 8 - 27.6 7 - 61% 15 15 15 15 15 15 15 15 15 15	P = 0.0 c ex (based 7 11 3 2 5 21. 5 21. 6 11 1	7), I ^P = ercis SD 1 8.9 13 7.5 15 16 8.5 18 8.5	58.3% Se V ise Total 56 22 26 21 157 42 34 34 30 30 33 33 33	s. Lan sr Weight 17.0% 7.0% 7.9% 5.9% 47.5% 13.1% 10.4% 23.4% 10.1% 10.1% 9.1% 9.1% 9.1% 10.0% 10.0%	 d. Mean Difference IV, Fixed, 95% CI -0.18 [-0.55, 0.19] -0.12 [-0.70, 0.46] -0.41 [-0.91, 0.08] 0.24 [-0.31, 0.78] -0.86 [-1.49, -0.22] -0.23 [-0.46, -0.01] -0.69 [-0.52, 0.34] -0.43 [-0.05, 0.91] 0.44 [-0.18, 0.46] 0.27 [-0.22, 0.75] 0.27 [-0.22, 0.75] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.51 [-1.02, 0.00] -0.18 [-0.66, 0.31] -0.18 [-0.66, 0.31] 	Aquatic exercise No exercise

Total=number of participants in the study group

Figure 3: Meta-analysis of physical function outcomes

	Δαμα	tic exerc	ise	No	exercis	P		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD		Mean			Weight		IV, Random, 95% Cl
1.2.1 Osteoarthritis							2	, ,	
Cochrane 2005	49.97	24.05	151	49.03	22.48	159	12.8%	0.04 [-0.18, 0.26]	+
Foley 2003	-48.5	25	34	-54.4	19.12	32	7.7%	0.26 [-0.22, 0.75]	
Fransen 2007	-34.8		55	-49.9	19	41	8.8%	0.69 [0.27, 1.10]	
Hale 2012	-35.29			-36.62		15	5.3%	0.11 [-0.56, 0.78]	_ _
Hinnman 2006		18.39		-38.59		35	8.0%	0.17 [-0.30, 0.63]	_ _
Patrick 2001		18.33		-37.57		121	11.9%	0.31 [0.05, 0.58]	
Stener-Victorin 2004	-23.5	7.03	9	-45	11.5	7	1.8%	2.21 [0.88, 3.53]	
Wang 2007	-20.0	13.3	20	-33.3	16.67	18	5.6%	0.22 [-0.42, 0.85]	
Wang 2007 Wang 2011	-30	15.5	20	-33.3	10.07	26	6.7%	0.40 [-0.14, 0.95]	
Subtotal (95% CI)	/6	16	452	69	18	454	68.5%	0.32 [0.10, 0.54]	
	0.05.01.7					404	00.370	0.52 [0.10, 0.54]	•
Heterogeneity: Tau ² =			= 8 (P =	0.03);1	*= 53%				· · · · · · · · · · · · · · · · · · ·
Test for overall effect:	Z = 2.86 (P =	0.004)							
1.2.2 Rheumatoid Art	hritis								
Hall 1996	-22.5	21	35	-27	19	35	7.9%	0.22 [-0.25, 0.69]	- -
Subtotal (95% CI)	22.0	- '	35	- '		35	7.9%	0.22 [-0.25, 0.69]	•
Heterogeneity: Not ap	nlicable							0122 [0120, 0100]	-
Test for overall effect:		0.35)							
1.2.3 Fibromyalgia									
Munguia-Izquierdo 20		16.6	29	-32.4	17.2	24	6.7%	0.43 [-0.12, 0.97]	+
Tomas-Carus 2007	55	30	17	37	17	17	5.0%	0.72 [0.02, 1.42]	
Tomas-Carus 2009	54.1	19.8	17	36.6	17.8	16	4.8%	0.91 [0.18, 1.63]	
Subtotal (95% CI)			63			57	16.5%	0.63 [0.27, 1.00]	•
Heterogeneity: Tau ² =			2 (P = 1	0.56); I²∶	= 0%				
Test for overall effect:	Z = 3.37 (P =	0.0008)							
1.2.4 Osteoporosis									
Arnold 2008	88.46	9.04	31	91.25	5.67	27	7.1%	-0.36 [-0.88, 0.16]	
Subtotal (95% CI)	00.40	3.04	31	31.23	3.07	27	7.1%	-0.36 [-0.88, 0.16]	-
Heterogeneity: Not ap	nlicoblo					2.			•
Test for overall effect:		0.18)							
Total (95% CI)			581			573	100.0%	0.32 [0.13, 0.51]	◆
Heterogeneity: Tau ² =	0.06; Chi ² = 3	27.43, df	= 13 (P	= 0.01);	I ² = 539	%		-	
Test for overall effect:	Z = 3.33 (P =	0.0009)							
Test for subgroup diff	erences: Chi	² = 9.45,	df = 3 (F	= 0.02)	, l² = 68.	.3%			No exercise Aquatic exercise
							__		
	(b) Aq	uati	c exe	ercis	e vs	. Lan	d-based exerc	eise
	Aquatic exe	rcise	Land	-based	exercis	е	St	d. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean S					otal V	Veight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
2.2.1 Osteoarthritis									
Fransen 2007	-34.8 23.	7 55	-36	6 2	D.9	56	18.0%	0.08 [-0.29, 0.45]	
Lund 2008	62.7 2.	3 26	64.	1 :	2.2	20	7.0%	-0.61 [-1.21, -0.01]	
Wang 2011	76 1	6 26	8	2	14	26	8.3%	-0.39 [-0.94, 0.16]	
Subtotal (95% CI)		107				102	33.3%	-0.18 [-0.46, 0.09]	◆
Heterogeneity: Chi² = 4	.44, df = 2 (P	= 0.11); I	= 55%						
Test for overall effect: Z									

2.2.2 Rheumatoid Ar	rthritis								
Eversden 2007	-50	19.3	43	-48	26.3	42		-0.09 [-0.51, 0.34]	
Hall 1996 Subtotal (95% CI)	-22.5	21	35 78	-24	19	34 76	11.2% 25.0%	0.07 [-0.40, 0.55] -0.01 [-0.33, 0.30]	
Heterogeneity: Chi ² =	= 0.24. df =	= 1 (P = 0	.62); I ² :	= 0%					T
Test for overall effect									
2.2.3 Osteoarthritis	and Rheu	matoid A	rthritis	;					
Gill 2009		15.29	32	-42.94	18.68	34	10.6%	-0.26 [-0.75, 0.22]	
Suomi 2003 Subtotal (95% CI)	-40.95	12.84	10 42	-41.9	7.84	10 44	3.2% 13.8%	0.09 [-0.79, 0.96] - 0.18 [-0.61, 0.24]	
Heterogeneity: Chi² =	= 0.47, df =	= 1 (P = 0	.50); l²:	= 0%					-
Test for overall effect	t: Z = 0.84	(P = 0.40))						
2.2.4 Fibromyalgia									
Vitorino 2006 Subtotal (95% CI)	75.6	14.2	24 24	67.7	23.5	23 23	7.5% 7.5%	0.40 [-0.18, 0.98] 0.40 [-0.18, 0.98]	
Heterogeneity: Not a Test for overall effect		(P = 0.17))						
2.2.5 Low Back Pair	1								
Dundar 2009 Subtotal (95% CI)	26.87	5.2	32 32	24.17	5.2	33 33	10.2% 10.2%	0.51 [0.02, 1.01] 0.51 [0.02, 1.01]	
Heterogeneity: Not a Test for overall effect		(P = 0.04))						
2.2.6 Osteoporosis									
Arnold 2008 Subtotal (95% CI)	88.46	9.04	31 <mark>31</mark>	90.67	7.6	33 33		-0.26 [-0.75, 0.23] -0.26 [-0.75, 0.23]	
Heterogeneity: Not a Test for overall effect		(P = 0.30))						
Total (95% CI)			314			311	100.0%	-0.03 [-0.19, 0.12]	•
Heterogeneity: Chi ² =	= 14.46, df	= 9 (P = 1		² = 38%					
Test for overall effect									-2 -1 0 1 2 Land-based exercise Aquatic exercise
Fest for subgroup dif	fferences:	Chi ² = 9.3	32, df=	5 (P = 0.	10), I ² = 46	6.3%			Land babed exercise inquale exercise

Test for overall effect: Z = 0.42 (P = 0.67) Test for subgroup differences: Chi² = 9.32, df = 5 (P = 0.10), I² = 46.3% Total=number of participants in the study group

Figure 4: Meta-analysis of quality of life outcomes

			(8	a) Aa	uatic	exer	cise vs	s. No exercise	
	Δαμα	itic exer			exercis			Std. Mean Difference	e Std. Mean Difference
Study or Subgroup	Mean			Mean			Weight		
1.3.1 Osteoarthritis								,	
Belza 2002	-13.9	7.5	36	-54.5	33	121	10.4%	1.38 [0.98, 1.7)	8] ——
Foley 2003	37.1	12.7	35	28.8	11	35	9.7%	0.69 [0.21, 1.1]	7] ——
Fransen 2007	35.7	9.8	55	33.1	10.6	41	10.4%	0.25 [-0.15, 0.60	6] +
Hale 2012	84.8		20	81.1	15.1	15	8.2%	• •	
Lim 2010	38.8		24	36.9		20	8.8%	• •	1]
Lund 2008	43		26	43.1	2.3	24	9.1%	• •	-
Patrick 2001	71		36	66.9		121	10.6%	• •	
Stener-Victorin 2004	-3.7		9	-30		7	4.4%	• •	-
Wang 2011 Subtotal (95% CI)	73	12	26 267	67	13	26 410	9.2% 80.7%	• •	
Heterogeneity: Tau ² = Test for overall effect: .			36, df = 8	3 (P < 0	.0001); F				• •
1.3.2 Rheumatoid art	hritis								
Hall 1996	-33	16	35	-29	13	35	9.8%	-0.27 [-0.74, 0.20	0]
Subtotal (95% CI)			35			35	9.8%	-0.27 [-0.74, 0.20	0] 🔶
Heterogeneity: Not ap Test for overall effect: :	•	(P = 0.2	6)						
1.3.3 Osteoporosis									
Arnold 2008 Subtotal (95% CI)	89.29	11.71	31 31	90	10.43	27 27	9.5% 9.5%		
Heterogeneity: Not ap	nlicable		51			21	9.3%	-0.00 [-0.30, 0.40	5]
Test for overall effect:	•	(P = 0.8	1)						
Total (95% CI)			333			472	100.0%	0.39 [0.06, 0.73	3] 🔶
Heterogeneity: Tau ² =	0.24; Ch	ni² = 45.5	51, df = 1	10 (P < I	0.00001); l ² = 78	8%		-+++++++
Test for overall effect: .	Z = 2.32	(P = 0.0)	2)						No exercise Aquatic exercise
Test for subgroup diffe	erences:	Chi ² = {	3.02, df=	= 2 (P =	0.02), I ^z	= 75.09	%		
		(b) Ac	matio	r exer	cise v	vs. La	nd-based exerc	ise
	Aquatic	exercis		-	sed exer			Std. Mean Difference	Std. Mean Difference
	Mean	SD 1	otal I	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
2.3.1 Osteoarthritis									
Foley 2003	37.1	12.7	35	31.4	12.7	35	16.0%	0.44 [-0.03, 0.92]	
Lim 2010	38.8	7.7	24	40.4	7.9	22	10.7%	-0.20 [-0.78, 0.38]	
Lund 2008 Wang 2011	43 73	2.4 12	26 26	43.8 74	2.5 11	20 26	10.4% 12.2%	-0.32 [-0.91, 0.27] -0.09 [-0.63, 0.46]	
Subtotal (95% CI)	73	12	111	(4		103	49.3%		
Heterogeneity: Chi² = 5 Test for overall effect: Z				11%					
2.3.2 Rheumatoid Arth									
Eversden 2007	73 2	22.22	43	77	22.22	42	19.8%	-0.18 [-0.60, 0.25]	_ = +
Hall 1996	-33	16	35	-28	13	34	15.9%	-0.34 [-0.81, 0.14]	
Subtotal (95% CI) Heterogeneity: Chi² = 0 Test for overall effect: Z)%		76	35.7%	-0.25 [-0.57, 0.07]	•
2.3.3 Osteoporosis Arnold 2008 Subtotal (95% CI)	89.29 1	11.71	31 9 31	90.29	8.57	33 33	15.0% 15.0%	-0.10 [-0.59, 0.39] - 0.10 [-0.59, 0.39]	
Heterogeneity: Not app	licable								
Test for overall effect: Z		P = 0.70)							
Test for overall effect: Z		P = 0.70)					400.00	0.401.000.000	
Test for overall effect: Z Total (95% CI)	Z = 0.39 (F		220	201		212	100.0%	-0.10 [-0.29, 0.09]	▲
Test for overall effect: Z Total (95% CI) Heterogeneity: Chi ² = 6	Z = 0.39 (F 6.81, df =	6 (P = 0.1	<mark>220</mark> 34); I ^z = 1	12%		212	100.0%	- / -	-2 -1 0 1 2
Test for overall effect: Z Total (95% CI)	Z = 0.39 (f 6.81, df = Z = 1.02 (f	6 (P = 0.3 P = 0.31)	220 34); I ² = 1		17), ² = ∩		100.0%	- / -	-2 -1 0 1 2 Land-based exercise Aquatic exercise

Total=number of participants in the study group