Accepted Manuscript

A feature extracting and meshing approach for sheet-like structures in rocks

Yan Liu, H.L. Xing

PII: S0045-7825(14)00106-6
DOI: http://dx.doi.org/10.1016/j.cma.2014.03.020
Reference: CMA 10211

Received Date: 14 October 2013
Revised Date: 21 January 2014
Accepted Date: 28 March 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A feature extracting and meshing approach for sheet-like structures in rocks

Yan Liu, H. L. Xing

Centre of Geosciences Computing, School of Earth Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia

Abstract

Meshing rock samples with sheet-like structures based their CT scanned volumetric images, is a crucial component for both visualization and numerical simulation. In rocks, fractures and veins commonly exist in the form of sheet-like objects (e.g. thin layers and distinct flat shapes), which are much smaller than the rock mass dimensions. The representations of such objects require high-resolution 3D images with a huge dataset, which are difficult and even impossible to visualize or analyse by numerical methods. Therefore, we develop a microscopic image based meshing approach to extract major sheet-like structures and then preserve their major geometric features at the macroscale. This is achieved by the following four major steps: (1) extracting major objects through extending, separation and recovering operations based on the CT scanned data/microscopic images; (2) simplifying and constructing a simplified centroidal Voronoi diagram on the extracted structures; (3) generating triangular meshes to represent the structure; (4) generating volume tetrahedron meshes constrained with the above surface mesh as the internal surfaces. Moreover, a shape similarity approach is proposed to measure and evaluate how similar the generated mesh models to the original rock samples. It is applied as criteria for further mesh generation to better describe the rock features with fewer elements. Finally, a practical CT scanned rock is taken as an application example to demonstrate the usefulness and capability of the proposed approach.

Keywords: 3D image; rock; feature extraction; unstructured mesh generation; fractures; veins; sheet-like structure

1. Introduction

An increasingly used source of information describing rock samples is obtained in the form of 3D images scanned from realistic entities by using the advanced imaging technology such as the computed tomography (CT) and the magnetic resonance imaging (MRI). Sheet-like structures (e.g. fractures and veins) widely distributed in rocks are important sources of material heterogeneity and thus should be particularly addressed for better evaluating the geomechanical and flow behaviours. Due to easy generation of regular mesh, most numerical simulations for volumetric rock images are based on finite difference method [1] and/or lattice Boltzmann method [2]. While finite element method has more advantages over the finite different method for the complicated structure analysis especially for those with faults/fractures and sheet-like structures [3, 4]. However, the related unstructured mesh generation remains a quite challenging topic.

Image-based sheet-like structure meshing relies on high quality digital image. Rocks are usually made up of many constituents, ambiguities may happen if there is no prior knowledge about the constructive minerals. Besides, partial volume effect is another reason for generating poor quality digital images. Digital imaging such geomaterials is difficult in itself but gets achievable [5-7]. Segmentation algorithms [8], together with the CT imaging
techniques, are critical for labelling different rock objects and describing fracture structures. Such algorithms may be sensitive to the local image noise and could not produce reasonable results for the sheet-like structures due to the thin features if without high enough resolution [9]. Therefore, high-resolution volumetric images are utilized to capture such geometric features, but such high resolution images lead to a huge dataset, which may be out of current computer capability to analyse and even visualize [10, 11]. Thus there is an emerging need for generating analysis-suitable meshes for the segmented rock images involving sheet-like structures, which is also the research focus of this paper.

The mesh generation for 3D images has been studied in many communities [12, 13] (e.g. visualization, medical imaging and FEM-based simulation) and is an active subject of a number of on-going studies [5, 14-18]. For meshing 3D images, the simplest way is to directly convert voxels into brick elements [14]. However, the drawbacks of this method are evident, besides of the huge dataset generated, the jagged boundaries lead to poor results and even errors in simulations [19]. Marching cubes method [20] and its extensions [15, 21, 22] are developed to capture interface surfaces and further smooth them for multi-material volumetric dataset. These algorithms suffer from topological defects, ambiguous structures, and an exponential growth in the element numbers with respect to its grid resolution. Alternate image meshing approaches [16, 17] based on a Delaunay refinement method are recently studied to identify material interfaces and preserve the geometric features. As the sheet-like objects cause opposite boundaries to be close to each other, there is no guarantee for the topological correctness of the mesh generated by Delaunay triangulation. Therefore, such approaches are not acceptable for the problems addressed here. Zhang et al. [5, 23] innovatively proposed an octree-based approach to generate meshes from images. They also designed a surface smoothing strategy [24] to improve the boundary element quality. The advantage of their approach is the ability of creating quality hexahedral elements from images. However, automatic hexahedral mesh generation for complex structures is still difficult and unachievable. In general, the mesh generation for sheet-like structures in rocks is still challenging and current image meshing methodologies in computational medicine and biology are not necessarily for meshing fractures and veins.

Based on the surface meshes generated by marching cubes methods [15, 20], mesh coarsening approaches can further reduce the element number. The existing coarsening algorithms could be roughly classified into three groups: decimation, scattering and remeshing. The decimation approach [25, 26] reduces the number of elements through a series of elementary simplifications such as collapsing edge and merging face. These operations are efficient but they could produce a number of thin or flat elements leading to poor mesh quality. The Vertex scattering technique [27, 28] is to firstly scatter vertices on the surface and then smooth these vertices until a given precision is achieved. Comparing with the decimation method, it could generate high quality mesh but is quite time-consuming due to the large number of background element required. The remeshing approach [29-32] could coarsen meshes with a desired element gradation through a parameterized space, which requires the background surface mesh could be well partitioned. Although these coarsening approaches could decrease element numbers of the surface mesh, they are not suitable for the problems addressed here.

A better representation for a sheet-like structure is surface mesh to represent such a thin object. Therefore, it is necessary to develop a rock image based meshing approach to extract sheet-like structures (major fractures and veins) in rocks and describe them with approximated surface meshes, which ensure capture their major geometric features by using a
limited number of high quality elements.

2. Implementation for feature extracting and image meshing

The advanced imaging technologies such as CT and MRI all produce 3D images for describing rocks with complicated structures in more details. The 3D micro-CT scanned rock image used here is formed from a stack of 2D images in Figure 1. The unit of 3D image is voxel analogous to pixel in 2D, which has a position as well as a scalar value representing its material/colour. There scalar values subdivide the volume into regions representing different components of the scanned rock such as fractures, veins and matrix. The fractures and veins are known as sheet-like objects, one of their dimensions is much smaller than the other two.

![Figure 1: The micro-CT scanned digital image of a rock block with the resolution of 1012×1024×931. The matrix is in grey and sheet-like structures are in back.](image)

2.1 Simplified Centroidal Voronoi Diagram (SCVD) construction for sheet-like structures

Given an open set $\Omega \subseteq \mathbb{R}^N$, and n different generators $\{z_i\}_{i=1}^n$. Let $\text{dis}(\cdot)$ denote the distance function on \mathbb{R}^N, the Voronoi diagram (whose dual is well-known as Delaunay triangulation) is defined as $\{\mathcal{W}_i\}_{i=1}^n$:

$$\mathcal{W}_i = \{x \in \Omega | \text{dis}(x,z_i) \leq \text{dis}(x,z_j) \text{ for all } j \neq i\}$$

(1)

Centroidal Voronoi diagram is firstly proposed by Du et al. [33] where the generator z_i is also the mass centroid of its Voronoi cell:

$$z_i = \frac{\int_{\mathcal{W}_i} \rho(x) \, dx}{\int_{\mathcal{W}_i} \rho(x) \, dx}$$

(2)

Where $\rho(x)$ is a density function of \mathcal{W}_i.

In this section, a simplified centroidal Voronoi diagram is proposed based on volumetric dataset. In 3D rock images, sheet-like objects are represented by a set of voxels sharing the same volume and density, so in the proposed SCVD construction $\rho(x) = 1$ for Formula 2. As the objects have a small thickness and are somehow equivalent to a plain, we construct Voronoi diagram by propagating Voronoi cells from their generators in the manner of Breadth
First Search (BFS). \(\text{dis}(\cdot) \) indicates surface distance on sheet-like objects and Formula 1 is automatically satisfied in the process of BFS. Pseudo-code in Algorithm 1 describes the simplified Voronoi diagram construction where 6-voxel connectivity is employed. Take a patch in Figure 2 for example, Figure 2 (a)-(c) are three stages from the generators to the final Voronoi cells.

Algorithm 1: Simplified Voronoi diagram construction

Treat voxels linked with \(z_i \) as the initial Voronoi cell \(V_1 \)

\[
\text{WHILE there is a voxel not belonging to } \{V_i\}_{i=1}^n \\
\quad \text{FOR EACH } V_i \text{ in } \{V_i\}_{i=1}^n \\
\quad \quad \text{Progress } V_i \text{ by one voxel in the manner of BFS} \\
\text{END}
\]

END

SCVD is an approximate implementation of centroidal Voronoi diagram, which bases on the theory proposed by Du et al. [33]. Firstly, \(n \) Voronoi generators \(\{z_i\}_{i=1}^n \) are randomly selected from the voxels on sheet-like objects in rock images. Then locations of these generators are iteratively optimized by Formula 2 until the energy error [33] is achieved. The generator number \(n \) is calculated by the following formula.

\[
\begin{align*}
 n &= \left\lceil \frac{C_{\text{vol}}}{V_{\text{rel}}} \right\rceil \\
 V_{\text{rel}} &= t \cdot (1 + 2 \cdot r \cdot (r - 1)) \\
\end{align*}
\]

Where \(C_{\text{vol}} \) is the total volume of the structure, \(t \) is the average thickness and \(r \) is the customized radius of a Voronoi cell. As \(C_{\text{vol}} \) and \(t \) are known, \(r \) is the only variable to define the generators as well as the SCVD.

![Figure 2: Simplified Voronoi diagram construction: (a) a patch and its generators; (b) the growing Voronoi cells; (c) the final Voronoi diagram.](image)

2.2 Feature extraction

In practice, sheet-like objects have different sizes and shapes thus they affect the rock mechanical behaviour in different ways. Feature extraction is necessary for the reduction of the structure complexity, which keeps major objects and removes small entities. The small entity removal is governed by a customized volume criterion \(M \), which identifies disconnected objects smaller than \(M \) and removes them. Such a criterion will cause two problems in feature extraction: (1) major objects represented by a set of small entities will not be recognized and (2) small entities intersecting with major objects will not be removed. In this paper, an object represented by a number of small disconnected objects is named as potential object and a structure consisting of intersecting objects is called crossing structure. The workflow for the feature extraction is demonstrated in Figure 3, where potential object detection and geometric feature recovery are achieved by extending operation, crossing
structure separation is implemented by separation operation and dilation/erosion algorithms are involved in the above operations. The following of this section will focus on introducing separation and extending operations. As dilation/erosion algorithms [34] are general in image processing, they are not further discussed in this paper.

Figure 3: Workflow for feature extraction.

2.2.1 Separation operation

Before separation, dilation/erosion algorithm is involved to refine the sheet-like objects by a thickness t. Then we specify a Voronoi cell radius r and use Formula 3 to calculate Voronoi generator number. In practice, the choice of t and r depends on the sheet-like object morphology and the rock image resolution. In the next step, we construct a SCVD on the crossing structures and generate corresponding triangles. The separation operation is achieved based on these triangles.

Algorithm 2: Separation operation

D_{ang} is a customized dihedral angle threshold

A generator z is flat only if no dihedral angle between its linked triangles smaller than D_{ang}

For each z in $\{z_i\}_{i=1}^{m}$

If z is marked continue

If z is not flat continue

Mark z and put it into a set CZ

Increase CZ by its adjacent generators which are not marked but flat and mark the generators once they are pushed into CZ

Export CZ as a single piece

END

Specifically, we show the details of the separation operation on a pair of crossing patches in Figure 4. Firstly, crossing patches are extracted from a 3D rock image as shown in Figure 4 (a). Then a SCVD is constructed in Figure 4 (b) by Algorithm 1 with $r=5$. The number of generators in this diagram is 147 and corresponding triangles in Figure 4 (c) are generated. In
the last step, we choose $D_{arg}=150^\circ$ and make the current structure apart by Algorithm 2. In fact, the separation operation removes voxels on the intersection. As shown in Figure 4 (d), the operation creates a hole on one patch which is labelled as A and breaks the other patch into two disconnected objects B and C.

Figure 4: Separation operation: (a) two patches intersecting with each other; (b) the SCVD; (c) the generated triangles; (d) three disconnected objects.

2.2.2 Extending operation

For a patch, its tangent and normal directions are required for the extending operation in the processes of potential major object detection and geometric feature recovery. Nevertheless, such sheet-like objects in 3D images consist of a set of voxels that have no tangent or normal information. We apply triangles generated from the SCVD to extend the patches roughly along their tangent direction.

To extend a patch, the SCVD and its corresponding triangular mesh are previously constructed. In Figure 5, Z is a generator and \overline{n} is the normalized average normal of triangles linked Z. V is a voxel near Z and \overline{ZV} is the vector from Z to V. The criterion of whether V could be extended is

\[
\left\{ \begin{array}{l}
|\overline{ZV} \cdot \overline{n}| \leq 2 \\
\sqrt{|\overline{ZV}|^2 - (\overline{ZV} \cdot \overline{n})^2} \leq R
\end{array} \right.
\]

(4)

Where $2t$ is the thickness of the patch and R is the customized radius for the extending operation. Z, t and R define a flat cylinder as shown in Figure 5 and voxels acceptable for extension are within this cylinder. For the extending operation in geometric feature recovery, there is an additional criterion which is the potential voxel must belong to corresponding objects of the original digital image.
Figure 5: Voxel predication for extending operation: V is a voxel to be predicated; Z is a generator and \vec{n} is its normal; \vec{v} is the vector from Z to V; the thickness is $2t$; R is a customized radius.

Applications of extending operation for potential object detection and geometric feature recovery are demonstrated in Figure 6 and Figure 7 respectively. Figure 6 (a) is a set of disconnected objects that are separated with each other. We use the parameters $t=1.5$ and $R=7$ to perform the extending operation in this application. From Figure 6 (a) to (c), the objects roughly extended along their tangent directions and finally merged into one. Figure 7 (a) is the separated object A in Figure 4 (d) where the gap highlighted is produced by the separation operation. The gap is shrunk in Figure 7 (b) by the proposed extending operation using parameters $t=1.5$ and $R=7$. Figure 7 (c) is the result of this operation where the gap disappears and the geometric shape is recovered.

Figure 6: Potential object detecting: (a) is several disconnected objects in the rock image; from (a) to (c) these objects are merged into a whole piece through the extending operation.
Figure 7: Geometric feature recovery: (a) is the disconnected object in Figure 4 (d); from (a) to (c) the geometric feature is recovered by the extending operation.

2.3 Mesh generation and shape similarity measurement

2.3.1 Surface and volume mesh generation

The surface mesh generation for the sheet-like structures is based on the SCVD. The generating route is similar to the Delaunay triangulation but ambiguities caused by the fuzzy cell boundaries in SCVD need to be further refined. In Figure 8, A, B, C and D represent IDs of Voronoi cells and the dots represent voxels within a cubic. For a regular case, in Figure 8 (a), there are only three IDs in the cubic and a triangle is constructed by connecting the corresponding generators. For an ambiguous case, in Figure 8 (b), more than three IDs exist in the cubic and the constructed triangles will cause a topological defect.

Figure 8: Triangular element construction: (a) a regular case and (b) an ambiguous case.

An amending strategy is proposed here to remove such ambiguity in triangular element construction. As shown in Figure 9 (a), the SCVD has four generators A, B, C and D and the ambiguity is highlighted in a black circle. The amending strategy is processed during the SCVD construction. Specifically, two generators are connected whenever their corresponding Voronoi cells meet each other in the propagation. In Figure 9 (b)-(e), B-D, C-D, A-C and A-B are connected serially and a polygon $ABCD$ is constructed simultaneously. Based on the polygon, triangles ACD and ABD in Figure 9 (f) are created.
Figure 9: Amending strategy for triangular element construction: (a) the SCVD with ambiguity; (b)-(f) the proposed amending process.

We serve the generated triangular meshes serve constraints then apply a constrained Delaunay tetrahedralization to generate the corresponding volume mesh. The whole mesh generation procedure is demonstrated in Figure 10 (a)-(c) with the following steps: (1) constructing SCVD; (2) constructing triangular mesh for the object; (3) generating volume mesh through Delaunay tetrahedralization with vein surface constraints.
2.3.2 Shape similarity measurement

Shape similarity measurement is crucial for evaluating how the generated mesh model is close to the input 3D image. For a surface mesh, each element has a thickness value, which is gained from the input image. Specifically, each voxel belonging to sheet-like structure has a thickness value, obtained by the smallest thickness in its three directions. The thickness of a triangular element is the average thickness of voxels intersecting with it. Letting the triangle be the mid plane and its thickness be the height, a prism is constructed for the element. We convert each element of the surface mesh to a volumetric representation by labelling voxels within its prism. Then a volumetric description of the surface mesh is generated. Compared with the input image, voxels of the mesh volumetric representation could be grouped into two sets: \(C_{\text{mesh}}^{\text{in}} \) coincident with the input image and \(C_{\text{mesh}}^{\text{diff}} \), different from the input image. Taking into account both \(C_{\text{mesh}}^{\text{in}} \) and \(C_{\text{mesh}}^{\text{diff}} \), a similarity measurement is defined as:

\[
\text{Similarity} = \frac{|C_{\text{mesh}}^{\text{in}}|}{|C_{\text{mesh}}^{\text{in}}| + |C_{\text{mesh}}^{\text{diff}}|}
\]

Where \(C_{\text{image}}^{\text{in}} \) is the set of sheet-like objects in the input image and operator \(|\cdot|\) calculates the number of voxels. The range of the similarity is \([1.0, -\infty]\) and a larger value denotes better matching with the original data.

3. Numerical applications

The proposed sheet-like structure extraction and related mesh generation approaches are designed for 3D rock images with complex fractures and veins. Numerical applications based on scanned rock images in practice are presented as below to demonstrate these techniques in detail.

The first example Figure 11 is a part of sheet-like objects extracted from a 3D rock image.
The major structure consists of patches with different sizes and a number of holes/gaps as shown in Figure 11 (a). Firstly, the extending operation is applied to detecting potential major entities and the result is shown in Figure 11 (b). The detected objects including a big flat shape and two small patches (highlighted in black circles) intersect with each other. In the next step, the structure is separated into several pieces and the progression itself generates gaps (in Figure 11 (c)) at the intersection where objects meet. In Figure 11 (d), the smallest piece is removed, which induces a gap highlighted by a black circle on the big object. In the next stage, the gap is filled by the geometric recovery process and the major structure of the objects is clearly identified in Figure 11 (e). Finally, a triangular surface mesh is generated in Figure 11 (f), which approximates the major structures in Figure 11 (a).

Figure 11: Sheet-like object extraction and its surface mesh generation: (a) the input objects; (b) detected major entities; (c) structure separation; (d) minor objects removal; (e) geometric recovery; (f) the surface mesh.

The second example in Figure 12 (a) is a rock image and its resolution is 1012×1024×931. The rock has complex internal structures that are individually shown in Figure 12 (b). The major objects extracted in Figure 12 (c) are utilized to represent the model as they primarily affect the mechanical behaviour of the rock and are focus of the further numerical analysis. Additionally, models built based on the major features improve our understanding of the rock structure and reduce the scale of dataset. Figure 12 (d)-(f) show the ability of the proposed method to control element size and quantity in meshing rock images (where sheet-like objects are in white and rock boundaries are in golden). Table 1 gives an overview of element size, number and similarity between the meshes and its 3D image model in Figure 12 (c). Consequently, the features of the generated mesh is controlled by Voronoi cell radius r in Formula 3, where with the increasing of r the element number is reduced but the similarity is decreased as well.
Figure 12: A 3D rock image meshed with different element sizes: (a) the 3D rock image with a resolution of 1012×1024×931; (b) the internal sheet-like structures; (c) the major objects; (d)-(f) are triangular meshes generated by different Voronoi cell radii where the major sheet-like objects are in white and the outside rock boundaries are in golden.

Table 1: Summary for surface meshes in Figure 12 (d)-(f)

<table>
<thead>
<tr>
<th>Figure 12</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voronoi Cell Radius</td>
<td>11</td>
<td>51</td>
<td>107</td>
</tr>
<tr>
<td>Element Size</td>
<td>14.88</td>
<td>66.49</td>
<td>135.75</td>
</tr>
<tr>
<td>Element Number</td>
<td>40204</td>
<td>1777</td>
<td>368</td>
</tr>
<tr>
<td>Similarity</td>
<td>63.28%</td>
<td>29.46%</td>
<td>11.66%</td>
</tr>
</tbody>
</table>

A chart in Figure 13 is obtained through meshing the rock structures in Figure 12 (c), which further reveal the relationship between Voronoi cell radius r and the corresponding mesh similarity. One important aspect must be mentioned is the thickness of the objects. On one hand, once r is close or less than the thickness the proposed algorithm assembles the structure into small pieces (due to D_{ang} in Algorithm 2) which will be later removed. On the other hand, if r is much larger than the thickness some details of the structure are lost. As the average thickness of the objects in Figure 12 (c) is 5, Voronoi cell radius $r=7$ is the best choice with respect to the highest shape similarity 64.57%, which generates a surface mesh with 69394 elements. Considering the image models in the form of grids, evenly sampling the grids to reduce image resolution could simplify the model and reduce its dataset scale, but the similarity will drop dramatically as shown in Table 2. Additionally, the resolution reduction approach is not as effective as the proposed image meshing algorithm in representing sheet-like structures for visualization. Compared with the mesh model with $r=7$, grid models whose sampling rates are larger than 2 have a lower similarity and a larger grid number. Although the similarity of grid model with sampling rate 2 is comparable with the mesh model similarity, its grid quantity is 9.6×10^8 which is 1.4×10^4 times as much as that in the mesh model.

Figure 13: Relationship between shape similarity and Voronoi cell radius: the highest
similarity is 64.57% when the Voronoi cell radius is 7.

Table 2: Grid model for Figure 12 (c) with different sample rates

<table>
<thead>
<tr>
<th>Sample Rate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>≥5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity</td>
<td>100.0%</td>
<td>65.5%</td>
<td>37.8%</td>
<td>15.4%</td>
<td>≤0.0%</td>
</tr>
<tr>
<td>Grid Quantity</td>
<td>9.6×10⁸</td>
<td>1.2×10⁸</td>
<td>3.6×10⁷</td>
<td>1.5×10⁷</td>
<td>7.7×10⁶</td>
</tr>
</tbody>
</table>

Besides visualization, another important application of the proposed method is numerical simulation, which needs a volume mesh model rather than a surface mesh to describe the rock and its sheet-like structures. Mesh with shape similarity above 60% could be considered as an acceptable approximation of the rock image. According to the chart in Figure 13, we choose surface meshes generated by \(r=15 \) where the similarity is 60.3% and the mesh for the major sheet-like structure is individually shown in Figure 14 (a). In fact, the proposed similarity calculation method is a strict measurement. Figure 14 (b) includes both the surface mesh Figure 14 (a) and the input 3D image Figure 12 (c), where the mesh almost completely approximates the structure from the aspect of visualization. Figure 14 (c) is the surface mesh with its thickness property. Elements with 0 thickness indicate holes or gaps for the input image model. Taking the surface mesh and corresponding rock boundaries as constraints, a tetrahedral mesh Figure 14 (d) is constructed by the own in-house developed mesh generator. The surface mesh is consistent with the volume mesh, shown in the close-up in Figure 14 (d). The volume mesh has 28631 nodes as well as 143901 elements. In general, compared with grid models, the generated volume mesh achieves a better similarity with fewer elements with respect to Table 2.
Figure 14: Mesh generation for a rock image: (a) surface mesh of the main structure; (b) surface mesh with the input image; (c) surface mesh with thickness property and (d) the volume mesh with 28631 nodes and 143901 elements.

In Table 3, four methods [35, 36] are adopted to measure the element quality of the generated volume mesh in Figure 14 (d). Statistics in Table 3 show that the average element qualities of the generated mesh are close to the regular tetrahedron. Consequently, the generated volume mesh model is considered as analysis-suitable for finite element simulation.

<table>
<thead>
<tr>
<th>Quality Measurement</th>
<th>Minimum Quality</th>
<th>Average Quality</th>
<th>Regular tetrahedron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Dihedral Angle</td>
<td>8.18°</td>
<td>49.06°</td>
<td>70.53°</td>
</tr>
<tr>
<td>Gamma Quality</td>
<td>0.14</td>
<td>0.81</td>
<td>1.00</td>
</tr>
<tr>
<td>Edge Aspect</td>
<td>0.20</td>
<td>0.66</td>
<td>1.00</td>
</tr>
</tbody>
</table>
4. Conclusions

In this paper, a new mesh generation approach for 3D rock images with fractures and veins is proposed to generate both surface and volume meshes for rocks involving complicated sheet-like structures. Comparing with grid models, the proposed algorithm can generate meshes with less element number to approximate internal sheet-like structures within rock samples. For the rock sample, the ratio between the tetrahedral mesh element number and the grid number is 1:6704. A shape similarity measurement is also proposed and the optimal Voronoi cell radius used for generating surface mesh for the rock sample is 7 with the corresponding similarity 64.57%. In practice, surface meshes with shape similarity above 60% are considered as close approximations for the sheet-like structures. Our numerical experiments show that this technique is more effective than the direct resolution reduction with regard to both shape similarity and element quantity. Moreover, the generated surface mesh can be utilized as constraints to generate corresponding volume mesh. The element quality of the volume mesh is high concerning a variety of measurements and the element quantity is reasonable for future finite element simulations. In general, the generated mesh models are competitive with grid models and have wide applications in both visualization and finite element simulation.

Acknowledgements

Support is gratefully acknowledged by ARC DP110103024. The authors are grateful to Ms P Liu from Research Institute of Petroleum Exploration & Development, China for providing the micro-CT datasets used in this paper, and to the anonymous reviewers for the advice/comments that allowed this paper to be improved.

References

[10] R. Quey, P.R. Dawson, F. Barbe, Large-scale 3D random polycrystals for the finite element method:
- We generate meshes better describing the rock features with fewer elements
- We generate high quality volume mesh with reasonable element quantity
- The ratio between mesh element number and image grid number is 1:6704
- The optimal Voronoi cell radius for meshing sheet-like structures is 7