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Measuring risk is mandatory in every form of responsible asset management; be it mitigating
losses or maximizing performance, the level of risk dictates the magnitude of the effect of
the strategy the asset manager has chosen to execute. Many common risk measures rely on
simple statistics computed from historic data. In this thesis, we present a more dynamic
risk measure explicitly aimed at the commodity futures market.
The basis of our risk measure is built on a stochastic model of the commodity spot price,

namely the Schwartz two-factor model. The model is essentially determined by a system
of stochastic differential equations, where the spot price and the convenience yield of the
commodity are modelled separately. The spot price is modelled as a Geometric Brownian
Motion with a correction factor (the convenience yield) applied to the drift of the process,
whereas the convenience yield is modelled as an Ornstein-Uhlenbeck process. Within this
framework, we show that the price of a commodity futures contract has a closed form
solution. The pricing of futures contracts works as a coupling between the unobservable
spot price and the observable futures contract price, rendering model fitting and filtering
techniques applicable to our theoretic model.
The parameter fitting of the system parameters of our model is done by utilizing the

prediction error decomposition algorithm. The core of the algorithm is actually obtained
from a by-product of a filtering algorithm called Kalman filter; the Kalman filter enables
the extraction of the likelihood of a single parameter set. By subjecting the likelihood
extraction process to numerical optimization, the optimal parameter set is acquired, given
that the process converges.
Once we have attained the optimal parameter sets for all of the commodity futures

included in the portfolio, we are ready to perform the risk measurement procedure. The
first phase of the process is to generate multiple future trajectories of the commodity spot
prices and convenience yields. The trajectories are then subjected to the trading algorithm,
generating a distribution of the returns for every commodity. Finally, the distributions are
aggregated, resulting in a returns distribution on a portfolio level for a given target time
frame. We show that the properties of this distribution can be used as an indicator for
possible anomalies in the returns within the given time frame.
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Chapter 1

Introduction

For every financial investment strategy, regardless of the traded financial instruments or
the choice of strategy, it is imperative to be able to assess the the level of risk involved
in the strategy. A standard procedure for evaluating the level of risk is to analyse the
historic volatility of the returns of the trading strategy; the higher the volatility of the
returns, the more exposed the investment portfolio is for extreme losses from the strategy.

An example measure is the value at risk. Given the distribution of the returns, the
value at risk (at a level α) is defined as the negative α-quantile of the distribution [1],
denoted VaRα(·). More explicitly, assume a trading strategy over n trading days for
which Λ ∈ Rn×1 contains the allotted capital for each trading day. Furthermore, assume
that R ∈ Rn×1 contains the returns for each trading day, and that the distribution of the
returns of the trading strategy follow a normal distribution. The standard deviation σ of
the distribution is then simply acquired from

σ =
√

ΛCov (R) ΛT ,

and
VaRα(R) = σΦ−1 (α) . (1.1)

In this thesis, we aim our focus on an investment portfolio consisting of 26 different
commodity futures1. The risk measure described above performs well as a rule of thumb
for the portfolio in question, but fails to predict relatively frequently actualized outliers.
A few typical observations are tabulated in table 1.1.

1See table 5.4 for details on the content of the portfolio.
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Date VaR5%(R) for 5 day return 5 day return

01-Jun-1999 -0.78% -2.35%
17-Mar-1998 -0.58% -1.98%
13-Nov-2001 -0.59% -2.27%
11-Mar-2003 -0.76% -2.28%
14-Oct-2008 -0.47% -1.57%
27-Jan-2015 -0.76% -2.74%

Table 1.1: A comparison of a 5% value at risk measure and the actualized returns. The
estimated value at risk implies that the actualized 5 day returns are beyond the (practical)
support of the distribution, indicating that our choice of distribution for the returns is
incorrect.

The inaccurateness of the procedure is, in fact, something to be expected; the return
distributions appear to be leptokurtic rather than Gaussian [6].

We propose a different conduct for risk measurement. In essence, our risk measure
relies in simulating the dynamics of the commodity futures market rather than simply
calculating statistics from historic data. The procedure can be roughly deconstructed
into three phases.

I) Model the spot-price dynamics for each commodity and fit the model to historic
data.

II) Simulate multiple futures trajectories.

III) Run the trading algorithm and construct the distribution of the returns for the
simulated trajectories.

We show that we are able to accurately model the commodity spot price dynamics
with a so called Schwartz two factor model through numeric optimization. Furthermore,
we show that our procedure can potentially predict the actualization of outlier returns
of the trading strategy by analysing the distributions of the simulated returns.
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Chapter 2

Preliminaries

This is an introductory chapter containing a collection of useful and fundamental results
from stochastic calculus, as well as a short review on terminology and principles of futures
and futures trading.

In sections 2.1, 2.2 and 2.3 we present central theorems and results of stochastic
calculus, with which we will establish the fundamental basis of this thesis. The primary
aim of this section is to make this thesis, and other related publications, comprehensible
for readers unacquainted with financial mathematics and pricing of derivatives. The
results in this chapter are generally considered as intrinsic tools in stochastic calculus
and financial mathematics, and are therefore seldom presented in scientific literature
within the respective fields. We will, however, assume that the reader has some prior
basic knowledge of stochastic calculus and measure theory. A reader unfamiliar with
either one of these concepts is directed to [40] or [25].

We will begin with the definition and properties of Brownian motion.

2.1 Brownian motion

In 1827, botanist Robert Brown experimented with pollen particles in a fluid suspension,
and noticed highly irregular movement of the pollen particles. The observations were
reported in [5], which is the ultimate origin of the modern concept of Brownian motion.
Later, in the beginning of the twentieth century, the first mathematical formulations
of the reported irregular movements were built. Albert Einstein proposed in [12] that
irregular movement of the pollen particles is caused by bombardment of miniscule liquid
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molecules, and derived a mathematical formulation for the irregular motion. It wasn’t
until 1920, almost a hundred years after the first observations of the phenomenon, that
a mathematically complete and rigorous model for Brownian motion was built. This was
done by Norbert Wiener. Brownian motion has since been used in several applications,
including modelling increments in stock prices.

Definition 2.1. Let (Ω,F , {Ft}t≥0,P) be a filtered probability space, where the the fil-
tration {Ft}t≥0 is a natural filtration, namely Ft = σ (Ws | 0 ≤ s ≤ t), of a stochastic
process {Wt}t≥0. The process {Wt}t≥0 is a Brownian motion (or a Wiener process) if it
meets the following conditions (where ω ∈ Ω).

I) The increments are independent of the past, or more precisely, σ (Wt(ω)−Ws(ω)) �

{Fu}0≤u≤s

II) The incrementsWt(ω)−Ws(ω) are normally distributed with EP(Wt(ω)−Ws(ω)) = 0

and VarP(Wt(ω)−Ws(ω)) = t− s, that is, Wt(ω)−Ws(ω) ∼ N(0, t− s)

III) The sample paths (or trajectories) t 7→ Wt(ω) are continuous.

If W0 ≡ 0 additionally, then {Wt}t≥0 is a standard Brownian motion.

Notational remark 2.2. We will henceforth omit the explicit use of the state of nature
(ω), and the domain subscripts of the processes. This is purely for notational convenience.
These properties should, however, not be neglected, and are constantly (although implic-
itly) present in our reasoning.

Note that condition II implies that Wt ∼ N(0, t) for a standard Brownian motion.
Condition I corresponds to the observed effects of the collisions between a particle

and fluid molecules in that the collisions are seemingly independent from each other.
The normality of the increments (condition II) is a consequence of the central limit

theorem. The total disposition of the particle between sequential observations is the
sum of multiple collisions between the particle and the fluid molecules. The central limit
theorem then states that the limit of such a sum is approximately normal. The mean is
assumed to be zero as the particle has no preferred direction, and the variance is assumed
to be proportional to the length of the time that the movement has been observed.

Note that we implicitly assume that a process such as Brownian motion exists, and
indeed, it is not trivial such processes do exist. The process of proving the existence is,
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however, a very meticulous one, and beyond the scope of this thesis; therefore we will
simply state the existence as a fact. Readers bothered by this ambiguity are directed to
[31].

We will next show that Brownian motion possesses two properties that are helpful
when sample paths of Brownian motion are simulated, namely space homogeneous prop-
erty and the (weak) Markov property.

Definition 2.3. Let (Ω,F ,P) be a probability space and let {Xt}t≥0 be a stochastic pro-
cess. The process is space homogeneous if

P (Xt ≤ x0|X0 = 0) = P (Xt ≤ x0 + x|X0 = x) (2.4)

for every t ≥ 0.

The definition above implies that a stochastic process is space homogeneous if the
transition probabilities of two distinct states depends only on the difference of the process
at these states.

Theorem 2.5. A Brownian motion is space homogenous.

Proof. Let Wt be a Brownian motion. Now, since

(Wt −W0|W0 = x) ∼ N(0, t), for every x ∈ R,

we see that

P (Wt ≤ x0|W0 = 0) = P (Wt − 0 ≤ x0|W0 = 0) = P (Wt −W0 ≤ x0|W0 = 0)

= P (Wt −W0 ≤ x0|W0 = x) = P (Wt − x ≤ x0|W0 = x)

= P (Wt ≤ x0 + x|W0 = x)

Definition 2.6. Let (Ω,F ,P) be a probability space and let {Xt}t≥0 be a stochastic pro-
cess. If

P (Xt+x ≤ y | Ft) = P (Xt+x ≤ y | Xt) (2.7)

for any t, x ≥ 0, then Xt is a Markov process.
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Alternatively, we say that Xt possesses the Markov property.

Theorem 2.8. Brownian motion is a Markov process.

Proof. LetWt be a Brownian motion. We will show that the moment generating functions
of Wt+x | Ft and Wt+x | Wt equal for all t, x ≥ 0, which is equivalent with the statement
in 2.6[25]. Recall that the moment generating function of a random variable X is defined
as MX(t) = E

(
etX
)
. Now

MWt+x|Ft(z) = EP
(
ezWt+x|Ft

)
= ez(Wt−Wt)EP

(
ezWt+x|Ft

)
= ezWtEP

(
ez(Wt+x−Wt)|Ft

) (I)
= ezWtEP

(
ez(Wt+x−Wt)

)
= ezWtEP

(
ez(Wt+x−Wt)|Wt

)
= EP

(
ezWt+x|Wt

)
= MWt+x|Wt(z)

for all t, x ≥ 0.

Combining properties (2.5) and (2.8) it is now easy to simulate sample paths of
Brownian motions. Consider a time interval [0, T ] as the domain in which the sample
paths are simulated and define a partition

Pn = {ti ∈ [0, T ] | i ∈ {0, . . . , n}, t0 = 0 < t1 < . . . tn−1 < tn = T}

in which the state of the Brownian motion is evaluated. Now, clearly

WT −W0 =
(
WT −Wtn−1

)
+
(
Wtn−1 −Wtn−1

)
+ . . .+ (Wt1 −W0)

= ∆WT + ∆Wtn−i + . . .+ ∆Wt1 ,

∆xi = xi − xi−1

∆Wti ∼ N(0,∆ti).

Without any loss of generality, we will assume that ∆ti ≡ ∆t for all ti ∈ Pn. Assume
a normally distributed random variable Z∆t such that Z∆t ∼ N(0,∆t). Sample paths
can now be generated from the sum of increments of Brownian motion with the following
difference equation

Wti =

{
Wti−1

+ Z∆t, i ∈ {1, . . . n}
W0, i = 0.
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3 different Brownian motion sample paths.

Figure 2.1: Sample paths for standard Brownian motion with ∆t = 1/260 within the
time domain [0, 5]

Figure 2.2 illustrates the, perhaps intuitive, effect of the increase in variance of a
Brownian motion Wt relative to the initial deterministic boundary condition W0; the
longer we observe a Brownian motion, the more likely it has strayed further away from
the initial state.
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Figure 2.2: Probability densities (fWt(x)) for standard Brownian motion Wt where t ∈[
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2
, 2
]
. Note that fWt(x) = Φ′(x/

√
t) as Wt ∼ N(0, t) for all t ∈ R+.

Recall the definition of a martingale.

Definition 2.9. Let (Ω,F , {Ft}t≥0,P) be a filtered probability space, where the the filtra-
tion {Ft}t≥0 is a natural filtration of a stochastic process {Xt}t≥0. If

EP (|Xt|) <∞, for every t ≥ 0

EP (Xt+s|Ft) = Xt, for every t, s ≥ 0,

(2.10)

(2.11)

then {Xt}t≥0 is a martingale.

Theorem 2.12. Brownian motion Wt is a martingale.

Proof. As Wt is normally distributed, we know that Wt is integrable for all t ≥ 0. There-
fore it is sufficient to prove the martingale property of Wt, which is achieved with simple
calculations and utilizing the properties of the (conditional) expectation.

EP (Wt+s|Ft) = EP (Wt + (Wt+s −Wt)|Ft) = EP (Wt|Ft) + EP (Wt+s −Wt|Ft)
= Wt + EP (Wt+s −Wt) = Wt,
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where the last identitt follows from the adaptedness ofWt, which implies that EP(Wt|Ft) =

Wt, and the independence condition I of Brownian motions for EP (Wt+s −Wt|Ft).

A highly significant property of Brownian motion is that the sample paths t 7→ Wt

are nowhere differentiable. This can be seen by constructing the difference quotient

DWt :=
Wt+∆t −Wt

∆t
=

1

∆t
(Wt+∆t −Wt) ∼ N

(
0,

1

∆t

)
,

as Wt+∆t −Wt ∼ N (0,∆t). By taking the usual limit ∆t → 0, and by allowing some
informal notation, we see that [

lim
∆t→0

DWt

]
∼ N(0,∞).

The expression above is, of course, not well-defined, but serves well as an illustration of
the fact that by taking the limit of the quotient, we never end up with a construction
with bounded variation.

More precisely, let M > 0 be arbitrary and Z ∼ N(0, 1). Now

P (|DWt|> M) = P
(∣∣∣∣ Z√

∆t

∣∣∣∣ > M

)
= P

(
|Z| >

√
∆tM

)
−→
∆t→0

P (|Z| > 0)

= 1,

which again implies unbounded rate of change and the fact that Wt is not differentiable
for any t ∈ R+.

This has given rise to an alternative form of differential calculus for Brownian motion,
namely Itô calculus, which will be briefly covered in section 2.2.

2.2 Itô calculus

As already mentioned, Brownian motion is incorporated in many real-world applications,
especially within the field of mathematical modelling. The typical role of Brownian
motion in these models is to introduce a probabilistic property to the system, or in
other words, transforming a deterministic model into a probabilistic one. For example,
in most stock market modelling frameworks, if one were to remove Brownian motion
from the model, the model would be with deterministic boundary conditions completely
deterministic.
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These models are usually formulated based on assumptions on the transitional prop-
erties of the modelled phenomena. For example, stochastic models of financial derivatives
are, almost exclusively, based on assumptions on the price movement on the underlying
assets. Hence, it would certainly seem tempting to characterize the assumptions through
differentials. This is, as demonstrated in the previous chapter, problematic as Brownian
motion is nowhere differentiable. Perhaps a bit surprisingly, the troublesome property of
Brownian motion has not, however, been a cause great enough to abandon these mod-
els. Instead of reformulating the models, new forms of differential calculus have been
developed to tackle the non-differentiability of Brownian motion. The most used and
renowned theory was developed by Kiyoshi Itô, a Japanese mathematician, in the 1950’s,
and is nowadays known as Itô calculus.

2.2.1 The Itô integral

The Itô integral is constructed as a transition from a discrete setting through limits of
simple functions, similar to for example the Riemann integral. We will begin by defining
the discrete stochastic integral, for which we will need the definition of simple functions.

Definition 2.13. Let P n
[a,b] be a partition of the interval [a, b] such that

P n
[a,b] = {ti ∈ [a, b] | i = {0, . . . , n}, t0 = a < t1 < . . . < tn−1 < tn = b} . (2.14)

A function f : [a, b]→ R is called simple if

f =
n−1∑
k=0

g(tk)1[tk,tk+1[ (2.15)

where tk ∈ P n
[a,b] for all k ∈ {0, . . . , n}, and for some g : [a, b]→ R.

A central, and perhaps elementary, result in measure theory is that every measurable
function can be approximated with simple functions. A less known, and stronger, result,
stating that a given general probabilistic function can be approximated by random simple
functions, holds.

Theorem 2.16. Let (Ω,F ,P) be a probability space and f : [a, b] × Ω → R and fn :

[a, b]× Ω→ R such that

fn =
n−1∑
k=0

f(tk, ω)1[tk,tk+1)

11



where tk ∈ P n
[a,b] for all k ∈ {0, . . . , n} and ω ∈ Ω. Then

lim
n→∞

fn = f

holds.

Proof. See for example [25].

0 0.5 1 1.5 2

0

t

f
(t
)

an
d
f n
(t
)

f
f (n)

Figure 2.3: An example of the simple function approximation of a deterministic function
f over the time domain [0, 2] with ∆t = 0.2 and n = 10

Next we will define the discrete Itô integral. The discrete Itô integral can be seen as a
stochastic resemblance of the Riemann sums, both in the sense of the similar expression
and the fact that they both establish the foundation of the respective integrals.

Definition 2.17. Let (Ω,F , {Ft}t≥0,P) be a filtered probability space and f(t) ≡ f(t, ω)

such that f : [0, T ]×Ω→ R is adapted to the filtration Ft. Assume additionally that Wt is
a standard Brownian motion. Then the discrete Itô integral IPn

[0,T ]
(f), over the partition

P n
[0,T ], is defined as

IPn
[0,T ]

(f) =
n−1∑
k=0

f(tk)∆Wtk+1
. (2.18)
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Above we defined the discrete Itô integral for probabilistic functions, but the definition
is well defined also for deterministic functions. In fact, if f should be deterministic, then
IPn

[0,T ]
(f) is normally distributed, as Wtk+1

− Wtk ∼ N(0,∆tk+1) and non-overlapping
increments are independent. Since

EP

[
IPn

[0,T ]
(f)
]

�=
n−1∑
k=0

f(tk)EP
[
∆Wtk+1

]
= 0

VarP

[
IPn

[0,T ]
(f)
]

�=
n−1∑
k=0

f(tk)
2VarP

[
∆Wtk+1

]
=

n−1∑
k=0

f(tk)
2∆tk+1,

(2.19)

then

InP[0,T ]
(f) ∼ N

(
0,

n−1∑
k=0

f(tk)
2∆tk+1

)
.

This is not the case when f is probabilistic as we shall later see.
Next we will give the definition of the Itô integral. The assumptions, and the rationale,

of the definition will be discussed afterwards.

Definition 2.20. Assume a setting similar in the definition 2.17. Furthermore, if∫ T

0

EP
[
f(t, ω)2

]
dt <∞, (2.21)

then the Itô integral
∫ T

0
f(t, ω)dWt is defined as∫ T

0

f(t, ω)dWt = lim
n→∞

IPn
[0,T ]

(fn), (2.22)

where fn is a simple approximation of f in the sense that

lim
n→∞

∫ T

0

EP
[
(f(t, ω)− fn(t, ω))2] = 0. (2.23)

The important question that requires an answer is whether the conditions (2.21) and
(2.23) guarantee the existence of the limit in (2.22). We shall consider the convergence
in the mean square sense, which is equivalent with the usual sense of convergence [39],
where the condition of convergence is

lim
n→∞

∥∥∥IPn
[0,T ]

(fn)− IPn
[0,T ]

(f2n)
∥∥∥ = 0.

13



We immediately notice that

∥∥∥IPn
[0,T ]

(fn)− IPn
[0,T ]

(f2n)
∥∥∥ =

∥∥∥∥∥
n−1∑
k=0

fn(tk, ω)∆Wtk+1
−

n−1∑
k=0

f2n(tk, ω)∆Wtk+1

∥∥∥∥∥
=

∥∥∥∥∥
n−1∑
k=0

(fn − f2n) (tk, ω)∆Wtk+1

∥∥∥∥∥ =
∥∥∥IPn

[0,T ]
(fn − f2n)

∥∥∥
Let us take a closer look at the squared L2 norm of the discrete Itô integral. By recalling
the tower property of the expectation, we see that∥∥∥IPn

[0,T ]
(fn)

∥∥∥2

2

= EP

[
IPn

[0,T ]
(fn)2

]
= EP

(n−1∑
k=0

fn(tk, ω)∆Wtk+1

)2


=
n−1∑
k=0

EP

[
fn(tk, ω)2∆W 2

tk+1

]
+ 2

n−1∑
k<m

EP
[
fn(tk, ω)fn(tm, ω)∆Wtk+1

∆Wtm+1

]
=

n−1∑
k=0

EP

[
fn(tk, ω)2∆W 2

tk+1

]
+ 2

n−1∑
k<m

EP
[
EP
[
fn(tk, ω)fn(tm, ω)∆Wtk+1

∆Wtm+1| Fm
]]

�=
n−1∑
k=0

EP

[
fn(tk, ω)2∆W 2

tk+1

]

+ 2
n−1∑
k<m

EP

fn(tk, ω)fn(tm, ω)∆Wtk+1
EP
[
∆Wtm+1| Fm

]︸ ︷︷ ︸
=0


=

n−1∑
k=0

EP

[
EP

[
fn(tk, ω)2∆W 2

tk+1
| Fk

]]

�=
n−1∑
k=0

EP

[
fn(tk, ω)2EP

[
∆W 2

tk+1
| Fk

]]
=

n−1∑
k=0

EP
[
fn(tk, ω)2

]
∆tk+1,
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that is, ∥∥∥IPn
[0,T ]

(fn)
∥∥∥2

2
=

n−1∑
k=0

EP
[
fn(tk, ω)2

]
∆tk+1. (2.24)

Now, consider the following definition of a squared norm on fn

‖fn‖2 =

∫ T

0

EP
(
f 2
n

)
dt. (2.25)

The fact that (2.25) actually defines a norm is not trivial. This can, however, be quite
easily verified[39]. The norm in (2.25) can be interpreted as an average of the L2 norm.
By expanding the definition, we see that

‖fn‖2 =

∫ T

0

EP
(
f 2
n

)
dt =

∫ T

0

n−1∑
k=0

EP
[
fn(tk, ω)21[tk,tk+1[

]︸ ︷︷ ︸
=0, when t/∈[tk,tk+1[

dt

=
n−1∑
k=0

∫ tk+1

tk

EP
[
fn(tk, ω)2

]
dt =

n−1∑
k=0

EP
[
fn(tk, ω)2

]
∆tk+1

(2.26)

By combining (2.24) and (2.26), we acquire an important result, namely∥∥∥IPn
[0,T ]

(fn)
∥∥∥

2
= ‖fn‖ . (2.27)

In fact, this is all we need to conclude that the assumptions in 2.20 guarantee the existence
of the limit; by utilizing (2.27), we claim that

lim
n→∞

∥∥∥IPn
[0,T ]

(fn − f2n)
∥∥∥

2
= lim

n→∞
‖fn − f2n‖ = 0

holds, since theorem 2.16 guarantees that there exists a simple function fn that approx-
imates f . Of course, since it should approximate f in the sense of the norm ‖·‖ defined
in (2.25), we require that ‖f‖ exists. However,

‖f‖2 =

∫ T

0

EP
[
f(t, ω)2

]
dt <∞

is assumed in (2.21), which implies that

‖f‖ <∞

and thus the norm exists.
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Remark 2.28. If a function f satisfies the conditions stated in the definition 2.20 of the
Itô integral, we say that f is Itô integrable.

The expression in (2.24) is actually important in an additional sense, as it practically
proves another important result, namely the Itô isometry.

Theorem 2.29. If f is Itô integrable, then

EP

[(∫ T

0

f(t, ω)dWt

)2
]

= EP

[∫ T

0

f(t, ω)2dt

]
. (2.30)

Proof. The theorem is proved with the help of simple functions.
From (2.24) we know that

EP

[
IPn

[0,T ]
(fn)2

]
=

n−1∑
k=0

EP
[
fn(tk, ω)2

]
∆tk+1 =

n−1∑
k=0

EP
[
fn(tk, ω)2∆tk+1

]
By taking the limit of n → ∞ (that is, shrinking the partition), we arrive at the result
stated in the theorem.

With the Itô isometry, we are able to prove a significant property of the Itô integrals
where the integrand is deterministic. This is of great use in the upcoming chapters when
securities are evaluated.

Theorem 2.31. Let f be a Itô integrable function. If f is also deterministic, then∫ T

0

f(t)dWt ∼ N

(
0,

∫ T

0

f(t)2dt

)
(2.32)

Proof. We will again prove the claim through simple functions.
From (2.19) we know that

EP

[
IPn

[0,T ]
(fn)

]
=

n−1∑
k=0

f(tk) EP
[
∆Wtk+1

]︸ ︷︷ ︸
=0 for all tk∈Pn[0,T ]

for all n∈N

−→
n→∞

0, (2.33)

and thus

EP

[∫ T

0

f(t)dWt

]
= 0. (2.34)
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For the variance, we can use the Itô isometry.

VarP

[∫ T

0

f(t)dWt

]
= EP

[(∫ T

0

f(t)dWt

)2
]
−

EP

[∫ T

0

f(t)dWt

]
︸ ︷︷ ︸

=0


2

= EP

[(∫ T

0

f(t)dWt

)2
]

=

∫ T

0

EP
[
f(t)2

]
dt =

∫ T

0

f(t)2dt.

(2.35)

As IPn
[0,T ]

(fn) can be seen as a sequence of normally distributed random variables,
one would be inclined to take the limit and simply claim the normality of the limit as a
triviality. The claim holds, but is in no way trivial. The claim can be proven e.g. through
characteristic functions of moment-generating functions [39].

Thus we conclude that ∫ T

0

f(t)dWt ∼ N

(
0,

∫ T

0

f(t)2dt

)

Notational remark 2.36. Due to the fact that models are usually formulated through
transitional properties, a simplifying notation, similar to the one in ordinary differential
calculus, has been accepted as a standard within fields that frequently deal with stochastic
calculus. Namely, a expression

F (T ) =

∫ T

0

f(t)dWt

is usually written as
dF (T ) = f(T )dWT ,

by informally differentiating the integral. We will adapt to this notation in this thesis.

2.2.2 Itôs lemma and stochastic differential equations

The calculations on most of the results in the previous section have relied solely on
the definition of the Itô integral. In order to actually apply the theory of stochastic
integration, one might hope for more sophisticated tools to work with, as having simple

17



functions as a starting point might get quite tedious in the long run, especially in more
complex settings. In this section we will present a very powerful tool for evaluating
Itô integrals, namely, Itô’s lemma. We will first present a special case of Itô’s lemma
with proofs, and then present the general case. We will also present some examples and
applications of the presented results.

Theorem 2.37. (Itô’s lemma, special case)
Let f be Itô integrable. Furthermore, if f ∈ C2 (R), then, for any t ∈ [0, T ],

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt, (2.38)

or more explicitly,

f(Wt) = f(0) +

∫ t

0

f ′(Ws)dWs +
1

2

∫ t

0

f ′′(Ws)ds, (2.39)

Proof. We will begin by formulating a useful expression for f(Wt).
n−1∑
k=0

f(Wtk+1
)− f(Wtk) = f(Wt)− f(0)

⇔ f(Wt) = f(0) +
n−1∑
k=0

f(Wtk+1
)− f(Wtk)

(2.40)

where tk ∈ P n
[0,t] and t ∈ [0, T ].

The trick in the proof of the lemma is to use the Taylor’s expansion to the above
expression (note that we assume that f ∈ C2 (R)). Utilizing Taylor’s expansion on
(2.40), we assert that

f(Wtk+1
) = f(Wtk) + f ′(Wtk)∆Wtk+1

+
1

2
f ′′(Wtk)

(
∆Wtk+1

)2

⇔ f(Wtk+1
)− f(Wtk) = f ′(Wtk)∆Wtk+1

+
1

2
f ′′(Wtk)

(
∆Wtk+1

)2
(2.41)

Inserting (2.41) into (2.40), we see that

f(Wt) = f(0)

+
n−1∑
k=0

f ′(Wtk)∆Wtk+1
(2.42)

+
1

2

n−1∑
k=0

f ′′(Wtk)
(
∆Wtk+1

)2
. (2.43)
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Straight from the definition, we acquire

lim
n→∞

n−1∑
k=0

f ′(Wtk)
(
∆Wtk+1

)
=

∫ t

0

f ′(Ws)dWs (2.44)

The second sum (2.43) requires a bit more work. First off, consider the Riemann-
approach in determining the second integral in (2.39).

lim
n→∞

n−1∑
k=0

f ′′(Wtk)∆tk+1 =

∫ t

0

f ′′(Ws)ds (2.45)

Define
δn = max

{
∆tk | tk ∈ P n

[0,t]

}
, (2.46)

from which δn −→
n→∞

0 follows.
We will again consider the limit in the square mean sense, and show, that the Riemann

sums converge to the same limit as (2.43). Now, by first recognizing that1

EP

[(
∆Wtk+1

)2 −∆tk+1

]
= EP

[(
∆Wtk+1

)2
]
−∆tk+1 = ∆tk+1 −∆tk+1 = 0

EP

[
2
(
Wtk+1

)2
∆tk+1

]
= 2∆tk+1EP

[(
Wtk+1

)2
]

= 2 (∆tk+1)2

EP

[(
∆Wtk+1

)4
]

= 3 (∆tk+1)2
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we see that

EP

(n−1∑
k=0

f ′′(Wtk)
(
∆Wtk+1

)2 −
n−1∑
k=0

f ′′(Wtk)∆tk+1

)2


= EP

(n−1∑
k=0

f ′′(Wtk)
((

∆Wtk+1

)2 −∆tk+1

))2


= EP

[
n−1∑
k=0

f ′′(Wtk)
2
((

∆Wtk+1

)2 −∆tk+1

)2
]

+

2EP

[∑
k<m

f ′′(Wtk)f
′′(Wtm)

((
∆Wtk+1

)2 −∆tk+1

)((
∆Wtm+1

)2 −∆tm+1

)]

�= EP

[
n−1∑
k=0

f ′′(Wtk)
2
((

∆Wtk+1

)2 −∆tk+1

)2
]

+

2
∑
k<m

f ′′(Wtk)f
′′(Wtm)

((
∆Wtk+1

)2 −∆tk+1

)
EP

[(
∆Wtm+1

)2 −∆tm+1| Ftm+1

]

�=
n−1∑
k=0

f ′′(Wtk)
2EP

[((
∆Wtk+1

)2 −∆tk+1

)2 ∣∣∣ Ftk]

=
n−1∑
k=0

f ′′(Wtk)
2
(
EP

[(
∆Wtk+1

)4
∣∣∣ Ftk]− EP

[
2
(
Wtk+1

)2
∆tk+1

∣∣∣ Ftk]+ (∆tk+1)2
)

= 2
n−1∑
k=0

f ′′(Wtk)
2 (∆tk+1)2 ≤ 2δn

n−1∑
k=0

f ′′(Wtk)
2∆tk+1 −→

n→∞
0

and thus (in L2)

lim
n→∞

n−1∑
k=0

f ′′(Wtk)
(
∆Wtk+1

)2
= lim

n→∞

n−1∑
k=0

f ′′(Wtk)∆tk+1 =

∫ t

0

f ′′(Ws)ds. (2.47)

Inserting (2.44) into (2.42) and (2.47) into (2.43) yields the claim in the theorem.
1The equality in the last equation stems from the formula of central moments of normally distributed

random variables. More precisely, if X ∼ N(µ, σ2), then

EP

[
(X − µ)k

]
= σk (k − 1) ! !

for all k ∈ {m ∈ N | mod (m, 2) = 0}[41].
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Next we will show an example application of the above theorem. The example is quite
a classic one, and is showcased in many stochastic calculus textbooks.

Example 2.48. The objective is to evaluate the following integral∫ T

0

WtdWt, (2.49)

where Wt is, as usual, a standard Brownian motion.
Based on ordinary calculus, we guess that the solution is of quadratic form. We begin

by applying the theorem 2.37 on the function f(x) = x2 (for which f ∈ C∞(R)), and we
assert that

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt = 2WtdWt +

(
1

2
· 2
)
dt = 2WtdWt + dt,

or equivalently, by noting that f(W0) = f(0) = 0,

W 2
T = 2

∫ T

0

WtdWt +

∫ T

0

dt = 2

∫ T

0

WtdWt + T

⇔
∫ T

0

WtdWt =
1

2

(
W 2
T + T

) (2.50)

This example will also be of good use later in this thesis.

Prior to introducing the general form of Itô’s lemma, familiarity with the concept
of stochastic differential equations is imperative. Stochastic differential equations are a
concrete way to formalize the transitional properties of a stochastic process. This is the
fundamental starting point also in our attempt to model the commodity futures price
dynamics.

Definition 2.51. A stochastic differential equation, that describes the dynamics of a
stochastic process Xt, is of the form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2.52)

where

µ : R+ × R→ R
σ : R+ × R→ R
Wt is a standard Brownian motion.
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The expression (2.52) is not well-defined as is, but again a shorthand notation of (over
a predefined time period [0, T ])

XT = X0 +

∫ T

0

µ(t,Xt)dt+

∫ T

0

σ(t,Xt)dWt (2.53)

where the first integral is an ordinary Riemann integral and the second integral is a
stochastic Itô integral.

The function µ is usually referred as the drift coefficient. The drift coefficient can be
interpreted as a long-term mean of the change in the stochastic process.

The σ function is called the diffusion coefficient of the process. It can be interpreted
as a term that calibrates the "randomness" of the process; the bigger ‖σ(t,Xt)‖, the
more the process is likely to fluctuate over time. Especially, note that if σ(t,Xt) ≡ 0, the
process becomes deterministic and fully defined by an ordinary differential equation.

Theorem 2.54. (Itô’s lemma)
Assume a stochastic process Xt such that its’ dynamics are described by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt.

Furthermore, assume that f is a function of the form f : [0, T ] × R → R. If f ∈
C1,2 ([0, T ]× R), then

df =

(
ft + µfXt +

1

2
σ2fXtXt

)
dt+ σfXtdWt (2.55)

where fx := ∂f
∂x
, and df is the usual shorthand notation similar to (2.38).

Proof. The proof relies on the same methodology as the proof of the special case of Itô’s
lemma and can be found in e.g. [27]

Example 2.56. (The special case of Itô’s lemma)
Note that we acquire the special case of Itô’s lemma with the following procedure.

Let Xt be a stochastic process such that

dXt = dWt,

that is, a process where µ(t,Xt) ≡ 0 and σ(t,Xt) ≡ 1. Now, by applying Itô’s lemma on
any function that satisfies the conditions in 2.54 we see that

df = fXtdWt+
1

2
fXtXtdt,
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or
df(Wt) = f ′(Wt)dWt +

1

2
f ′′(Wt)dt.

2.3 Variations

Another important tool and concept distinctively used in stochastic calculus is quadratic
variation and covariation. Quadratic variation and covariation are especially useful when
evaluating stochastic integrals and handling correlated processes. In this section we will
present results of quadratic variation and covariation regarding Brownian motions and
Itô integrals.

Definition 2.57. The covariation of processes Xt and Yt over [0, T ] is

〈X, Y 〉t = lim
n→∞

n−1∑
k=0

∆Xtk+1
∆Ytk+1

(2.58)

The quadratic variation of a process Xt is the covariation of Xt with itself,

〈X,X〉t = lim
n→∞

n−1∑
k=0

(
∆Xtk+1

)2
. (2.59)

In both cases tk ∈ P n
[0,T ] for all k.

By simply expanding the expressions below, we see that the following identities hold.

〈X, Y 〉 = 〈Y,X〉 (symmetry)
〈aX + bY, Z〉 = a 〈X,Z〉+ b 〈Y, Z〉 (bilinearity)

In a general setting, nothing guarantees the existence of (2.58) nor (2.58). However,
in the case of Brownian motions, we see that variations always exist.

Theorem 2.60. Let Wt be a Brownian motion. Then

〈W,W 〉t = t (2.61)

Proof. Define

Sn = EP

[
n−1∑
k=0

(
∆Wtk+1

)2

]
. (2.62)
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Begin by noticing that

EP (Sn) =
n−1∑
k=0

EP

[(
∆Wtk+1

)2
]

=
n−1∑
k=0

∆tk+1 = t (2.63)

Thus
EP
[
(Sn − t)2] = VarP (Sn) . (2.64)

The equation (2.64) shows that proving the proposition is equivalent (in the L2 sense)
to showing that the variance of Sn vanishes as n tends towards infinity.

Let Z ∼ N(0, 1). Now

EP
(
Z4
)

= 3

EP
(
Z2
)

= VarP (Z) = 1,

from which we conclude that

VarP
(
Z2
)

= EP
(
Z4
)
− EP

(
Z2
)2

= 3− 1 = 2,

and
VarP

[
(∆Wtk)

2] = VarP

[(√
∆tkZ

)2
]

= (∆tk)
2 VarP

(
Z2
)

= 2 (∆tk)
2 .

Combining all above implies

VarP (Sn) =
n−1∑
k=0

VarP

[(√
∆tkZ

)2
]

= 2
n−1∑
k=0

(∆tk+1)2

≤ 2δn

n−1∑
k=0

∆tk+1 −→
n→∞

0.

where δn is defined as in (2.46), which concludes our proof.

Recall the definition of correlation.

Definition 2.65. The correlation rho between two random variables X and Y is

ρ = CorrP(X, Y ) =
CovP(X, Y )√

VarP(X)VarP(Y )
=

EP [(X − EP(X)) (Y − EP(Y ))]√
VarP(X)VarP(Y )

. (2.66)

If ρ = 0, we say that X and Y are uncorrelated, otherwise we say that X and Y are
correlated.
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In the case of standard Brownian motions, sayWt andW ∗
t , the definition of correlation

translates to
CorrP (Wt,W

∗
t ) =

EP (WtW
∗
t )

t
(2.67)

Theorem 2.68. Assume thatWt andW ∗
t are correlated Brownian motions with CorrP (Wt,W

∗
t ) =

ρ. Then
〈Wt,W

∗
t 〉 = ρt (2.69)

Proof. We will begin by defining

Xt = C (Wt +W ∗
t )

C =
1√

2(1 + ρ)
.

As linear combinations of normally distributed random variables are also normally dis-
tributed, it follows that Xt is normal. With similar argumentation we see that, over some
partition P n

[0,T ]

∆Xtk = C
[
∆
(
Wtk +W ∗

tk

)]
= C

[
Wtk +W ∗

tk
−
(
Wtk−1

+W ∗
tk−1

)]
=

= C
(
∆Wtk + ∆W ∗

tk

)
is also normally distributed and, as a linear combination, also preserves the property of
independence to past states {Xts}s≤k−1. Additionally,

EP (∆Xtk) = C
[
EP (∆Wtk) + EP

(
∆W ∗

tk

)]
= 0, (2.70)

and so, by first noting that EP
(
∆Wtk∆W

∗
tk

)
= ρ∆tk according to the definition of the

correlation, we argue that

VarP (∆Xtk) = EP
[
(∆Xtk)

2]
= C2

(
EP
[
(∆Wtk)

2]+ EP

[(
∆W ∗

tk

)2
]

+ 2EP
[
∆Wtk∆W

∗
tk

])
= C2 (∆tk + ∆tk + 2ρ∆tk) =

1

2(1 + ρ)
2(1 + ρ)∆tk

= ∆tk.

(2.71)

And now, by combining (2.70) and (2.71), we have proven that ∆Xtk ∼ N (0,∆tk).
Furthermore, by taking all the above listed properties of Xt into account, we can deduce
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that Xt is, in fact, a Brownian motion. Hence, by utilizing the results from theorem 2.60,
we finally conclude that

〈X,X〉t = C2 〈W +W ∗,W +W ∗〉t
= C2 (〈W,W 〉t + 〈W ∗,W ∗〉t + 2 〈W,W ∗〉t) = 2C2 (t+ 〈W,W ∗〉t) = t

⇔ t+ 〈W,W ∗〉t = t(1 + ρ)

⇔ 〈W,W ∗〉t = ρt

Theorem 2.72. Let Wt be a Brownian motion. Then, the following identities hold.

〈t, t〉t = 0

〈W, t〉t = 0

(2.73)

(2.74)

Proof. We will begin with (2.73), which follows directly from the definition.

n−1∑
k0

(∆tk)
2 ≤ δn

n−1∑
k0

∆tk −→
n→∞

0, (2.75)

where δn is defined as in (2.46).
The convergence of the second expression (2.74) will yet again be regarded in the L2

sense. By utilizing the results from the previous section, namely the expression (2.24),
we see that

EP

(n−1∑
k=0

∆tk+1∆Wtk+1

)2
 =

n−1∑
k=0

EP
[
(∆tk+1)2]∆tk+1 =

n−1∑
k=0

(∆tk+1)3

≤ δn

n−1∑
k=0

(∆tk+1)2 −→
n→∞

0.

(2.76)

The results in (2.75) and (2.76) complete the proof.

The theorems 2.60, 2.68 and 2.72 together form a so called ’box rule’ for the covaria-
tion calculus for Brownian motions. The box rule illustrates the results from the above
theorem (see table 2.1).

26



〈·, ·〉t t W W ∗

t 0 0 0
W 0 t ρt

W ∗ 0 ρt t

Table 2.1: The box rule.

The concept of variations might seem a bit separate from the other parts of stochastic
calculus covered so far. We will therefore conclude this section with two important the-
orems, that bind together the variation of Brownian motion with stochastic Itô integrals
and their properties. The first one can be considered analogous to the integration by
parts - formula in ordinary calculus.

Theorem 2.77. Assume that Wt and W ∗
t are standard Brownian motions. Then, in the

differential form,
d (WtW

∗
t ) = WtdW

∗
t +W ∗

t dWt + d 〈W,W ∗〉t , (2.78)

or, in the explicit form

WTW
∗
T =

∫ T

0

WtdW
∗
t +

∫ T

0

W ∗
t dWt + 〈W,W ∗〉T (2.79)

Proof. The expression in the claim is easily achievable by simply expanding the sum in
the definition of 〈W,W ∗〉T , namely

n−1∑
k=0

∆Wtk+1
∆Wtk+1

=
n−1∑
k=0

Wtk+1
W ∗
tk+1

+WtkW
∗
tk
−Wtk+1

W ∗
tk
−WtkW

∗
tk+1

=
n−1∑
k=0

Wtk+1
W ∗
tk+1
−WtkW

∗
tk

+
n−1∑
k=0

2WtkW
∗
tk
−Wtk+1

W ∗
tk
−WtkW

∗
tk+1

= WTW
∗
T −

n−1∑
k=0

Wtk∆W
∗
tk+1
−

n−1∑
k=0

W ∗
tk

∆Wtk+1

−→
n→∞

WTW
∗
T −

∫ T

0

WtdW
∗
t −

∫ T

0

W ∗
t dWt,
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that is,

〈W,W ∗〉T = WTW
∗
T −

∫ T

0

WtdW
∗
t −

∫ T

0

W ∗
t dWt

⇔ WTW
∗
T =

∫ T

0

WtdW
∗
t +

∫ T

0

W ∗
t dWt + 〈W,W ∗〉T

The term d 〈W,W ∗〉t in the differential form of the integration by parts formula can
be alternatively interpreted as ρdt, where ρ = CorrP(Wt,W

∗
t ). This does, indeed agree

with both the definition of covariation, and the explicit form of the integration by parts
formula, as can be seen from ∫ T

0

ρdt = 〈W,W ∗〉T .

Notational remark 2.80. The differential notation d 〈W,W ∗〉t is often written as a
multiplication of the increments of Brownian motion, namely

d 〈W,W ∗〉t = dWtdW
∗
t = ρdt.

This will be the preferred notation also in this thesis.

Finally, we will present a formula that can be seen as a more general version of the
Itô isometry.

Theorem 2.81. Let Wt and W ∗
t be Brownian motions and f and g adapted functions.

If f and g are further Itô integrable, then

EP

[(∫ T

0

f(t, ω)dWt

)(∫ T

0

g(t, ω)dW ∗
t

)]
= EP

(∫ T

0

f(t, ω)g(t, ω)dWtdW
∗
t

)
(2.82)

Proof. The proof of this theorem requires advanced stochastic calculus methodology and
results, for example the Kunita-Watanabe inequality, and is beyond the scope of this
thesis. Interested readers are directed to [31].
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Note that we acquire the Itô isometry as a limiting case of the above result.

EP

[(∫ T

0

f(t, ω)dWt

)2
]

= EP

[(∫ T

0

f(t, ω)dWt

)(∫ T

0

f(t, ω)dWt

)]
=

= EP

[∫ T

0

f(t, ω)2 (dWt)
2

]
(2.61)

= EP

[∫ T

0

f(t, ω)2dt

]
=

∫ T

0

EP
[
f(t, ω)2

]
dt

2.4 A brief introduction into futures

In this section we give a very brief introduction of futures, futures trading and term
structure. We give a review of the basic principles of the aforementioned topics, as well
as describe in more detail our problem setting in this thesis.

Definition 2.83. (Futures contracts)
A futures contract is an agreement between two parties (a buyer and a seller) to

exchange an asset at a future time for a specific price.

The definition 2.83 is, of course, an atomic and crudely simplified definition of the
futures contracts, as the trading of futures contracts contains many details and rules.

Futures contracts are traded in many international exchanges, such as the Chicago
Board of Trade, Tokyo Financial Exhange and NASDAQ OMX Commodities Europe
in Oslo. This means that the two parties entering the futures contract never make the
agreement directly between each other, but rather through brokers of the exchange.

Within this market framework, there are obvious payment default risks; as the time to
maturity (the time to the delivery date) of the contract grow’s longer, perhaps spanning
over a couple of years, the more uncertain it is that the parties of the agreement are
able to provide sufficient financial resources in order to fulfil the contract. In order to
counter these risks, a procedure of daily settlements on margin accounts on the price of
the futures contract is being followed. In practice, both parties of the contract deposit
a fixed amount on their margin accounts (usually a substantially lower amount than the
actual contract price) into which price fluctuations of the underlying asset are aggregated
on a daily basis.
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To give an example, assume that an investor takes a long position (that is, enter’s a
futures contract in the role of a buyer) on a NYMEX crude oil futures contract on 1000
U.S. barrels, and is obliged to deposit $5000 on a margin account. The price of a barrel
of crude oil is $50, and the futures contract is valued at $50000. Further, assume that
the price of a barrel of crude oil drop’s $2 in one day. This leads to a withdrawal of
$2 · 1000 = $2000 from the investor’s margin account.

The example illustrates the huge leverage of futures contracts; without remarkable
initial wealth, one is able to enter contracts of substantial value, making futures contracts
a compelling investment option for investors that are able to withstand high risk. This fact
leads actually to perhaps the most important observation of the futures market: futures
contracts are mostly used as instruments to speculate on the price of the underlying asset.
It is rare for actors on the market to actually hold the contract until the delivery; the
vast majority of the actors on the futures market will close out their position prior to
the delivery. In essence, producers and consumers of the underlying commodity transfer
the risk of price fluctuations to speculators, who are willing to undertake this risk in the
hope of a large positive return [15].

Commodity futures

Commodity futures are futures contracts where the underlying asset is an investment
commodity, such as precious metals, or consumption commodities, such as crops, cattle
and coffee. As the investment portfolio in our focus contains mostly of consumption
commodities, we will be concentrating on these in this chapter.

Commodity futures differ from other futures on financial assets, such as stocks and
indices, in a very significant aspect. Namely, the underlying assets in commodity futures
are concrete objects that require some physical production and storage. Therefore merely
holding on to a commodity asset is likely to generate expenses, for example storage costs,
to the owner of the asset. On the other hand, the owner of the physical asset is able to
take advantage of sudden peaks in the demand of the asset, for example, in the event of
a natural disaster; an extreme period of drought that effects the quality and quantity of
different crops is likely to increase the demand of the effected crops quite suddenly. The
aggregated effect of these properties for the owner of the asset is called convenience yield.
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Definition 2.84. (Convenience yield)
The flow of services accruing to the holder of the commodity asset but not to the owner

of a futures contract is called convenience yield [36].

The convenience yield plays a significant role in the pricing of commodity futures.
The pricing of futures contracts of investment assets (that do not generate any income

for the holder of the asset) is quite straightforward; in the absence of arbitrage opportu-
nities, it is easy to show [20] that the futures price F of a futures contract with time to
maturity T is

F = SerT ,

where S is the spot price of the commodity and r is the risk-free interest rate. For
commodities, and a constant convenience yield c, it can be shown that

F = Se(r−c)T . (2.85)

From (2.85) we see that the notion of ’negative interest’ is well defined for commodity
futures; if r < c, then the futures curve will be (as a function of time) decreasing. As
previously mentioned, the convenience yield reflects the market’s expectations concerning
the future availability of the commodity.

The greater the possibility that shortages will occur, the higher the convenience yield.
In this situation consumers of the underlying asset are willing to pay a premium today
in order to secure the availability of the commodity. Hence, the futures curve will be
declining. In this situation, we say that the futures contracts are in backwardation.

On the other hand, if users of the commodity have high inventories, there is very
little chance of shortages in the near future and the convenience yield tends to be low. In
this situation, the availability of the commodity is trivial, which will push the spot price
lower, and we will observe an increasing futures curve. In this situation, we say that the
futures contracts are in contango. If inventories are low, shortages are more likely and the
convenience yield is usually higher, and the futures contracts will be in backwardation
[20].

These different situations are illustrated in figure 2.4.
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Figure 2.4: An illustration of different kinds of commodity futures curves.

Many commodity futures trading strategies utilize the coupling of the convenience
yield and the term structure. For example, in [15] quite a few of the presented strategies
fundamentally rely on going long on futures that are in contango and short on futures
that are in backwardation. This is however not a riskless feat, and it is not uncommon
for strategies to allocate capital to be invested according to some measure of risk. This is
our aim in this thesis; to develop a measure of risk that could accurately predict possible
anomalies in the returns of the trading strategy. A strategy that also outperforms the
naïve risk measurement strategy described in the introduction, that is, we expect our
risk measure to predict anomalies in the returns where outliers were observed.
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Chapter 3

Model description

In this chapter we will describe and derive central formulae related to the model used
in the simulations of the spot price and convenience yield of commodities. The model
we have used is commonly referred to as the Schwartz two-factor model. The model is
used, as such or as a basis, in several publications, including [36, 9, 3, 32], and has been
originally derived in [16].

Recall that one has to make a clear distinction between pricing contingent claims
on commodities and other common contingent claims, for example on currencies, by
including the convenience yield to the model. As many factors influence the rate of
convenience yield, for example seasonalities and sudden, unexpected changes in the local
market, it is rarely sufficient to assume a constant convenience yield. Therefore also the
convenience yield is modelled as a stochastic process in our model.

3.1 Analytic model

Both the spot price of the commodity and the convenience yield are assumed to be
stochastic in our model. They are described with the following stochastic differential
equations.

dSt = (µ− δt)Stdt+ σSStdW
S
t

dδt = κ (α− δt) dt+ σδdW
δ
t

dW S
t dW

δ
t = ρdt

(3.1)

(3.2)

(3.3)
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with
S0 ≡ S

δ0 ≡ δ

St denotes the spot price of the commodity at time t, and it is modelled as a geometric
Brownian motion with a stochastic correction term (the convenience yield) applied to the
drift factor (µ).

The convenience yield associated to the commodity at time t is denoted by δt,and
is modelled as an Ornstein-Uhlenbeck process [7]. The mean reverting properties of the
Ornstein-Uhlenbeck process is the central motivation behind the choice of the process.

Note that (3.3) implies that the increments of the standard Brownian motions in the
stochastic differential equations are correlated. The motivation behind the correlation
between the increments can be motivated through changes of inventory; when inventories
of the commodity decrease, the spot price should increase since the commodity is scarce
and the convenience yield should also increase since futures prices will not increase as
much as the spot price, and vice versa when inventories increase [36].

The biggest challenge is obviously to derive an explicit closed form solution to the
spot price of the commodity. This will be done in the following subsection 3.1.1.

3.1.1 Derivation and properties of the futures price

We will begin with the derivation of the solution of the separate processes of the spot
price and the convenience yield.

Lemma 3.4. Assume that a stochastic process {St}t∈R+ follows a stochastic differential
equation of the form (3.1) where δt is also assumed to be stochastic. Then the solution to
(3.1) is

St = S exp

[(
µ− σ2

S

2

)
t−
∫ t

0

δsds+ σSW
S
t

]
. (3.5)

Proof. Let X = log(St). Now, by applying Itô’s lemma (on the function f = log), we see

34



that

dXt =

(
(µ− δt)St

St
− σ2

SS
2
t

2S2
t

)
dt+

σSSt
St

dW S
t

=

(
µ− δt −

σ2
S

2

)
dt+ σSdW

S
t

⇔ d (logSt) =

(
µ− δt −

σ2
S

2

)
dt+ σSdW

S
t ,

or, in the explicit form

logSt = logS +

(
µ− σ2

S

2

)
t−
∫ t

0

δsds+ σS

∫ t

0

dW S
s

⇔ St = S exp

[(
µ− σ2

S

2

)
t−
∫ t

0

δsds+ σSW
S
t

]
.

Next, we will derive the explicit solution to an Ornstein-Uhlenbeck process.

Lemma 3.6. Assume that {δt}t∈R+ is a stochastic process that follows a stochastic dif-
ferential equation of the form (3.2), or equivalently, is an Ornstein-Uhlenbeck process.
Then the solution to (3.2) is

δt = α + e−κt (δ − α) + σδ

∫ t

0

eκ(s−t)dW δ
s . (3.7)

Proof. Let Yt = δt − α. Now, clearly

dδt = dYt = −κYtdt+ σδdW
δ
t

We will do another change of variables. Let Zt = eκtYt. Now, by applying the product
rule [25] and Itô’s lemma on f(t, x) = xeκt, we see that

dZt = κeκtYtdt+ eκtdYt

= κeκtYtdt+ eκt
(
−κYtdt+ σδdW

δ
t

)
= κeκtYtdt− κeκtYtdt+ eκtσδdW

δ
t

= eκtσδdW
δ
t
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The above is equivalent with

Zt = Z0 + σδ

∫ t

0

eκsdW δ
s

⇔ Yt = e−κtY0 + e−κtσδ

∫ t

0

eκsdW δ
s

= e−κtY0 + σδ

∫ t

0

eκ(s−t)dW δ
s

And finally, as δt = Yt + α, we obtain the solution to the Ornstein-Uhlenbeck process,
namely

δt = α + e−κt (δ − α) + σδ

∫ t

0

eκ(s−t)dW δ
s .

Our derivation of the fair price of the commodity is relying on results from the equiva-
lent martingale measure theory. Hence we are required to perform a transformation of our
model in order to take the risk premium into account. Luckily, this is a quite straightfor-
ward task as the transformation is almost a direct consequence of the Girsanov’s theorem
[7].

Lemma 3.8. Let r denote the risk free interest rate, and λ denote the the market price
of convenience yield risk. Both are assumed to be constant.

The transformation of the model from the real-world probability measure P to the
risk-neutral measure Q can be executed using the following relations.

W S∗

t = W S
t +

µ− r
σS

t

W δ∗

t = W δ
t + λt,

(3.9)

or equivalently

dW S∗

t = dW S
t +

µ− r
σS

dt

dW δ∗

t = dW δ
t + λdt.

(3.10)
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Proof. Note that as the convenience yield can not be hedged [16], this will have to be
taken into account in the risk-free transformation.

The fact that W S∗
t ans W δ∗

t are standard Brownian motions is a direct consequence
of the Girsanov’s theorem[7]. Our risk-neutral model complies to the one in [2], and for
a detailed deduction, the reader is directed to [16].

Under the previously defined risk-neutral measure, the system of processes is trans-
formed to

dSt = (r − δt)Stdt+ σSStdW
S∗

t

dδt = (κ (α− δt)− σδλ) dt+ σδW
δ∗

t ,
(3.11)

as can be seen by expanding the increments of the Brownian motions under the risk-
neutral measure, namely

dSt = (r − δt)Stdt+ σSStdW
S∗

t = (r − δt)Stdt+ σSSt

(
dW S

t +
µ− r
σS

dt

)
= (r − δ + µ− r)Stdt+ σSStdW

S
t

= (µ− δt)Stdt+ σSStdW
S
t .

and

dδt = (κ (α− δt)− σδλ) dt+ σδW
δ∗

t = (κ (α− δt)− σδλ) dt+ σδ
(
dW δ

t + λdt
)

= κ (α− δt) dt+ σδdW
δ
t .

We will now proceed to the main purpose of this chapter, the derivation of the solution
to the spot price. As already mentioned in the introduction of this chapter, a version of
the following theorem has been previously derived in [16].

Theorem 3.12. In the economy outlined within this chapter, the current value V0(ST )

of a claim on a delivery of the commodity at a future time T is

V0 (ST ) = S exp

[
−δ
(
1− e−κT

)
κ

+ C(T )

]
, (3.13)
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where

C(T ) =
[σδ
κ

(σδ
2κ

+ λ+ σSρ
)
− α

]
T

+
1− e−κT

κ

[
α +

σδ
κ

(
σSρ− λ−

σδ
κ

)]
+
σ2
δ

(
1− e−2κT

)
4κ3

.

(3.14)

Proof. Results from the equivalent martingale theory [7] implies that the current value
of a future contingent claim is equal to the expectation (under the risk-neutral measure)
of the discounted value of the underlying asset at the maturity of the contract. In our
case, the results from the equivalent martingale measure theory translates to

V0 (ST ) = EQ
(
e−rTST

)
(3.15)

Lemma 3.4 allows us to rewrite the expression inside the expectation to

e−rTST = S exp

[(
µ− σ2

S

2
− r
)
T −

∫ T

0

δsds+ σSW
S
T

]
. (3.16)

We will need evaluate the integral
∫ t

0
δsds in the exponent. Utilizing lemma 3.6 and

inserting (3.7) to (3.16) we assert that∫ T

0

δsds = αT + (δ − α)

∫ t

0

e−κsds+ σδ

∫ T

0

∫ s

0

eκ(u−s)dW δ
uds (3.17)

We will next evaluate the the double integral in (3.17). By applying Fubini’s theorem
we can change the order of integration and evaluate the Riemann integral, yielding∫ T

0

∫ s

0

eκ(u−s)dW δ
uds =

∫ T

0

eκu
∫ T

u

e−κsdsdW δ
u = −

∫ T

0

eκu

κ

(
e−κT − e−κu

)
dW δ

u

= −1

κ

∫ T

0

e−κ(T−u) − 1dW δ
u =

W δ
T

κ
− 1

κ

∫ T

0

e−κ(T−u)dW δ
u

(3.18)

By inserting (3.18) into (3.17) we obtain∫ T

0

δsds = αT +
δ − α
κ

(
e−κT − 1

)
+
σδW

δ
T

κ
− σδ

κ

∫ T

0

e−κ(T−u)dW δ
u .

38



Inserting the evaluated integral into (3.16), we assert that

e−rTST = S exp

[(
µ− σ2

S

2
− r − α

)
T − δ − α

κ

(
e−κT − 1

)
− σδW

δ
T

κ
+
σδ
κ

∫ T

0

e−κ(T−u)dW δ
u + σSW

S
T

]
In order the evaluate the expectation taken under the risk-neutral measure, we are

required to perform a change of measure regarding the standard Brownian motions. We
can deduce from (3.10) that

dW δ∗

t = dW δ
t + λdt

⇔
∫ T

0

e−κ(T−u)dW δ
u =

∫ T

0

e−κ(T−u)dW δ∗

u − λe−κT
∫ T

0

eκudu

⇔
∫ T

0

e−κ(T−u)dW δ
u =

∫ T

0

e−κ(T−u)dW δ∗ − λ
(
1− e−κT

)
.

The above combined with (3.9) and some rearranging leads to

e−rTST = S exp

[(
σδλ

κ
− σ2

S

2
− α

)
T +

(
α− δ − σδλ

κ

)
1− e−κT

κ

−σδW
δ∗
T

κ
+
σδ
κ

∫ T

0

e−κ(T−u)dW δ∗

u + σSW
S∗

T

]
=: SeXT

Here we denote the exponent as XT for readability. Let us take a closer look at the
exponent. Taking the expectation (under the risk-neutral measure) of the expression
inside the exponent, yields

EQ (XT ) =

(
σδλ

κ
− σ2

S

2
− α

)
T +

(
α− δ − σδλ

κ

)
1− e−κT

κ

− σδ
κ

EQ
(
W δ∗

T

)︸ ︷︷ ︸
=0

+
σδ
κ

EQ

(∫ T

0

e−κ(T−u)dW δ∗

u

)
︸ ︷︷ ︸

=0

+σS EQ
(
W S∗

T

)︸ ︷︷ ︸
=0

=

(
σδλ

κ
− σ2

S

2
− α

)
T +

(
α− δ − σδλ

κ

)
1− e−κT

κ
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With similar argumentation we see that

VarQ (XT ) = EQ
(
X2
T

)
− EQ (XT )2

= EQ

[(
σδW

δ∗
T

κ

)2

+

(
σδe
−κT

κ

∫ T

0

eκudW δ∗

u

)2

+
(
σSW

S∗

T

)2

− σ2
δW

δ∗e−κT

κ

∫ T

0

eκudW δ∗

u −
σδσSW

δ∗
T W

S∗
T

κ

+
σδσSe

−κTW S∗
T

κ

∫ T

0

eκudW δ∗

u

]
.

Utilizing the results of the Itô isometry (see theorems 2.29 and 2.81) we can separately
evaluate the terms in the expression inside the expectation above. By recalling that(
dW δ∗

t

)2
= dW δ∗

t dW
δ∗
t = dt, we see that

EQ

[(
σδW

δ∗
T

κ

)2
]

=
σ2
δ

κ
EQ

(
W δ∗

2

T

)
=
σ2
δ

κ
T, (3.19)

EQ

[(
σδe
−κT

κ

∫ T

0

eκudW δ∗

u

)2
]

=
σ2
δe
−2κT

κ2
EQ

[(∫ T

0

eκudW δ∗

u

)2
]

=
σ2
δe
−2κT

κ2

∫ T

0

e2κudu

=
σ2
δ

(
1− e−2κT

)
2κ3

,

(3.20)

EQ

[(
σSW

S∗

T

)2
]

= σ2
SEQ

[(
W S∗

T

)2
]

= σ2
ST (3.21)

EQ

[
σ2
δW

δ∗
T e
−κT

κ2

∫ T

0

eκudW δ∗

u

]
=
σ2
δe
−κT

κ2
EQ

[∫ T

0

eκu
(
dW δ∗

u

)2
]

=
σ2
δe
−κT

κ2

∫ T

0

eκudu

=
σ2
δ

(
1− e−κT

)
κ3

,

(3.22)
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EQ

[
σδσSW

δ∗
T W

S∗
T

κ

]
=
σδσS
κ

EQ
(
W δ∗

T W
S∗

T

)
=
σδσS
κ

∫ T

0

ρdt

=
σδσSρ

κ
T,

(3.23)

EQ

[
σδσSe

−κTW S∗
T

κ

∫ T

0

eκudW δ∗

T

]
=
σδσSe

−κT

κ
ρ

∫ T

0

ekudu

=
σδσSρ

(
1− e−κT

)
κ2

(3.24)

Now, by combining equations (3.19) to (3.24) and rearranging the terms, we can
conclude that

VarQ (XT ) =

(
σ2
δ

κ2
+ σ2

S −
2σδσSρ

κ

)
T

+
2
(
1− e−κT

)
κ2

(
σδσSρ−

σ2
δ

κ

)
+
σ2
δ

(
1− e−2κT

)
2κ3

(3.25)

As a linear combination of normally distributed random variables, XT is also nor-
mally distributed, and we can hence utilize the properties of the normal distribution
and evaluate (3.15). More explicitly, the property that states that if Z ∼ N(ξ, ν), then
eZ ∼ ln (N(ξ, ν)). We finally conclude that

V0 (ST ) =EQ
(
SeXT

)
= S exp

(
EQ(XT ) +

1

2
VarQ(XT )

)
=S exp

{[
σδ
κ

(
σδ

2κ
+ λ+ σSρ

)
− α

]
T

+
1− e−κT

κ

[
α− δ +

σδ
κ

(
σSρ− λ−

σδ
κ

)]
+
σ2
δ

(
1− e−2κT

)
4κ3

}

=S exp

[
−δ
(
1− e−κT

)
κ

+ C(T )

]
,

(3.26)

where

C(T ) =
[σδ
κ

(σδ
2κ

+ λ+ σSρ
)
− α

]
T +

1− e−κT
κ

[
α− δ +

σδ
κ

(
σSρ− λ−

σδ
κ

)]
+
σ2
δ

(
1− e−2κT

)
4κ3
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Let F ≡ F (S, δ, T ) denote the futures price (with the commodity being the underlying
asset). By invoking the assumption of the absence of arbitrage opportunities, the relation
between the futures (with maturity T ) price and the value of a claim on a delivery of the
commodity at a future time T becomes

V0 (F (S, δ, T )− ST ) = 0⇔ F (S, δ, T ) = erTV0(ST ).

We have now obtained a closed form solution for the futures price.

F (S, δ, T ) = S exp

[
−δ
(
1− e−κT

)
κ

+ A(T )

]
(3.27)

where

A(T ) =
[
r − α +

σδ
κ

(σδ
2κ

+ λ+ σSρ
)]
T +

σ2
δ

(
1− e−2κT

)
4κ3

+
1− e−κT

κ

[
α− δ +

σδ
κ

(
σSρ− λ−

σδ
κ

)] (3.28)

Recall that κ denotes the mean-reversion speed of the convenience yield process. Thus,
a great increase in the value of κ can be interpreted as an equivalent decrease on the
stochastic properties of the convenience yield. More precisely, the convenience yield δt
approaches the long-term mean α as κ increases. If the derived futures price is subjected
to this phenomenon, we see that

lim
κ→∞

F (S, δ, t) = lim
κ→∞

S exp

[
−δ
(
1− e−κT

)
κ

+ A(T )

]
= Se(r−α)T , (3.29)

as

δ
(
1− e−κT

)
κ

−−−→
κ→∞

0

A(T ) −−−→
κ→∞

(r − α)T.

Equation (3.29) corresponds to the standard pricing formula of commodity futures where
the convenience yield is assumed to be constant[20]. Hence, we acquire the futures price of
commodity futures, where the convenience yield is assumed to be constant, as a limiting
case of our model.

We can further verify the correctness of our results with the Feynman-Kac theorem.
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Theorem 3.30. (Feynman-Kac)
Assume that Xt ∈ Rn×1 is an n dimensional stochastic process defined by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

where

Xt =
[
X1
t , . . . , X

n
t

]T
µ(t,Xt) = [µ1(t,Xt), . . . , µn(t,Xt)]

T

σ(t,Xt) =

 σ1,1(t,Xt) · · · σ1,m(t,Xt)
... . . . ...

σn,1(t,Xt) · · · σn,m(t,Xt)


Wt =

[
W 1
t , . . . ,W

m
t

]T
and W k

t are Brownian motions for all k ∈ {1, . . . ,m}. Define an operator

A =
n∑
k=1

∂µk
∂Xk

t

(t,Xt) +
1

2

n∑
k=1

n∑
j=1

∂2
(
σσT

)
k,j

∂Xk
t ∂X

j
t

(t,Xt) . (3.31)

The theorem then states that the solution to the boundary condition problem

∂V

∂t
(t,Xt) +AV (t,Xt)− rV (t,Xt) = 0

V (T,XT ) = F (XT )
(3.32)

is of the form
V (t,Xt) = EQ

[
er(T−t)F (XT )

]
. (3.33)

Proof. The proof is omitted, see [35].

We will begin by transforming our model to a setting similar to the one in the
Feynman-Kac theorem.

The risk-free processes in our model can be written in a vectorized form as(
dSt
dδt

)
= µ̂dt+ σ̂

(
dZ1

t

dZ2
t

)
, (3.34)

where
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µ̂ =

(
(r − δt)St

κ(α− δt)− λσδ

)

σ̂ =

(
σSSt 0

σδρ σδ
√

1− ρ2

)
Z1
t , Z

2
t are standard Brownian motions

Corr(Z1
t , Z

2
t ) =

(
1 0

0 1

)
.

(3.35)

The transformation on the two uncorrelated standard Brownian motions generate corre-
lated ones with the desired correlation ρ, and is actually a special case of the Cholesky
decomposition [25]. The claim can also be easily verified by straightforward calculations
on the correlations on the transformations.

With elementary linear algebra we see that

σ̂σ̂T =

(
σ2
SS

2
t σSσδρSt

σSσδρSt σ2
δ

)
.

The generator operator for the partial differential equation now becomes

A =(r − δt)St
∂

∂St
+ (κ(α− δt)− λσδ)

∂

∂δt

+
1

2

(
σ2
SS

2
t

∂2

∂S2
t

+ σ2
δ

∂2

∂δ2
t

)
+ σSσδρSt

∂

∂St∂δt
.

Let Υ ≡ Υ(St, δt, t) denote the solution to Vt(ST ) = EQ
(
e−r(T−t)ST

)
, that is, the

solution to the value on a future claim of the commodity at time t. The Feynamn-Kac
theorem now gives us the following condition to the solution to Vt(ST ).

Υt +AΥ− rΥ = 0

⇔ Υt + (r − δt)StΥSt + (κ(α− δt)− λσδ) Υδt+

1

2

(
σ2
SS

2
t ΥStSt + σ2

δΥδtδt

)
+ σSσδρStΥStδt − rΥ = 0

(3.36)

In accordance to theorem 3.12, we propose that

Υ = Vt(ST ) = St exp

[
−δt

(
1− e−κ(T−t))

κ
+ C(T − t)

]
(3.37)
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Where C(·) is defined as in (3.14). Note that this is just a natural extenstion of (3.26),
that specifies the value of a future claim on the commodity at time t instead of the value
at current time (equivalent to t = 0). The only correctional action we need to take is to
shift the time to maturity in relation to the difference of the current time and time t.

We will denote φ = e−κ(T−t) for notational convenience. Simple calculus and partial
derivation implies that

ΥSt =
Υ

S
(3.38)

ΥStSt = 0 (3.39)

Υδt = −1− φ
κ

Υ (3.40)

Υδtδt =

(
1− φ
κ

)2

Υ (3.41)

ΥStδt = −1− φ
κSt

Υ (3.42)

Υt = Υ

(
δφ− σ2

δ

2κ2
− σδλ

κ
− σδσSρ

κ
+ α− αφ− σδσSρ

κ
φ+

σδλ

κ
φ

+
σ2
δ

κ2
− σ2

δ

2κ2
φ

)
=: ΥC (3.43)

By plugging equations (3.38) to (3.43) into (3.36), the previously constructed partial
differential equation now becomes

Υt +AΥ− rΥ

=ΥC + rΥ− δΥ− αΥ + δΥ + αφΥ− δφΥ +
σδλ

κ
Υ− σδλ

κ
φΥ

+
σ2
δ

κ2
Υ− σ2

δ

κ2
φΥ +

σ2
δ

2κ2
φ2Υ +

σδσSρ

κ
Υ− σδσSρ

κ
φΥ− rΥ

=ΥC + Υ

(
−δφ+

σ2
δ

2κ2
+
σδλ

κ
+
σδσSρ

κ
− α + αφ+

σδσSρ

κ
φ− σδλ

κ
φ− σ2

δ

κ2
+

σ2
δ

2κ2
φ

)
︸ ︷︷ ︸

=−C

=0,

which is what we were set to show.
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3.2 Discretized Model

We have now established a complete model of the spot price dynamics of commodities
with closed form solution for the futures price with the respective commodities as the un-
derlying assets. The model is, however, constructed within the continuous time domain.
This is inconvenient as an essential part of this thesis is to simulate both spot price and
convenience yield trajectories for given commodities, which naturally is performed in the
discrete time domain. Hence, we need to perform a discretization on our model. This is
not as trivial as one might think, and different methods, or schemes, have been developed
and analysed over time.

In this section we will present the chosen scheme for our model, namely, the Milstein
scheme. The Milstein scheme utilizes Itô’s lemma to obtain enhanced accuracy. The
scheme is frequently used, and has been subject to comparative convergence analysis with
other schemes (e.g. [17], [26]). For example in [21], the Milstein scheme outperformed the
Euler scheme, which is another common (and less complex) discretization scheme. We
will first provide an elementary derivation of the Milstein scheme for a general process
(without any convergence analysis), after which we will construct a discrete version of
our model which is applicable for simulation purposes.

3.2.1 The Milstein scheme

In this section we will derive the discretization for a process of the form

dXt = µ(Xt)dt+ σ(Xt)dWt (3.44)

where, as usual, Wt is a standard Brownian motion. The usual setting for the discretiza-
tion is that we want to simulate a process within a time-interval, say t ∈ [a, b]. The
time interval is then meshed into a partition of desired number of time-steps, say n steps.
We end up with a set of time-steps in which the process is to be evaluated, namely
{ti ∈ [a, b] | i ∈ {0, . . . , n}, a = t0 < t1 < . . . < tn−1 < tn = b}.

Let us now consider the case of two consecutive time-steps ti and ti+1. The process
takes now the form (within [ti, ti+1])

Xti+1
= Xti +

∫ ti+1

ti

µ(Xs)ds+

∫ ti+1

ti

σ(Xs)dWs. (3.45)
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The next step is to expand the drift-, and diffusion-coefficients using Itô’s lemma (note
that we are implicitly assuming that the coefficients are smooth enough and fulfil the
conditions of Itô’s lemma). Itô’s lemma yields

dµ(Xt) =

(
µ(Xt)µ

′(Xt) +
1

2
σ(Xt)

2µ′′(Xt)

)
dt+ σ(Xt)µ

′(Xt)dWt

dσ(Xt) =

(
µ(Xt)σ

′(Xt) +
1

2
σ(Xt)

2σ′′(Xt)

)
dt+ σ(Xt)σ

′(Xt)dWt,

or equivalently

µ(Xt) = µ(X) +

∫ t

0

µ(Xs)µ
′(Xs) +

1

2
σ(Xs)

2µ′′(Xs)ds+

∫ t

0

σ(Xs)µ
′(Xs)dWs

σ(Xt) = σ(X) +

∫ t

0

µ(Xs)σ
′(Xs) +

1

2
σ(Xs)

2σ′′(Xs)ds+

∫ t

0

σ(Xs)σ
′(Xs)dWs.

(3.46)

By inserting the expanded form (3.46) of the coefficients, equation (3.45) can be expressed
as

Xti+1
= Xti +

∫ ti+1

ti

µ(Xti) +

(∫ s

ti

µ(Xv)µ
′(Xv) +

1

2
σ(Xv)

2µ′′(Xv)dv

+

∫ s

ti

σ(Xv)µ
′(Xv)dWv

)
ds

+

∫ ti+1

ti

σ(Xti) +

(∫ s

ti

µ(Xv)σ
′(Xv) +

1

2
σ(Xv)

2σ′′(Xv)dv

+

∫ s

ti

σ(Xv)σ
′(Xv)dWv

)
dWs

(3.47)

The only term with order less or equal one is dWvdWs, which can be seen by slightly
extending the notation of the quadratic variations. One can argument that

dsdv = O ((dt)2)

dWvds = O
(

(dt)
3
2

)
.

The proofs of this argument is omitted, see for example [18].
Hence, when we desire to obtain a method that converges of order 1, the other terms

are negligible, and we obtain

Xti+1
≈ Xti +

∫ ti+1

ti

µ(Xs)ds+

∫ ti+1

ti

σ(Xs)dWs

+

∫ ti+1

ti

∫ s

ti

σ(Xv)σ
′(Xv)dWvdWs

(3.48)
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The integrals in (3.48) can be further approximated with the familiar left-point rule,
which states that

∫ b
a
f(x)dx ≈ f(a)

∫ b
a
dx = f(a)(b− a). The previously mentioned Euler

scheme actually relies almost entirely on the left-point rule[17].
This yields

Xti+1
≈ Xti + µ (Xti) ∆ti + σ (Xti) ∆Wti + σ(Xti)σ

′(Xti)

∫ ti+1

ti

∫ s

ti

dWvdWs, (3.49)

where
∆xi = xi+1 − xi

Let us have a closer look at the last double integral in (3.49). We immediately notice
that∫ ti+1

ti

∫ s

ti

dWvdWs =

∫ ti+1

ti

Ws −WtidWs =

∫ ti+1

ti

WsdWs −WtiWti+1
+W 2

ti
(3.50)

By applying Itô’s lemma to the function f(Ws) = W 2
s we see that

dW 2
s = 2WsdWs +

(
1

2
· 2
)
ds = 2WsdWs + ds,

or equivalently

W 2
ti+1

= W 2
ti

+

∫ ti+1

ti

2WsdWs + ∆ti

⇔
∫ ti+1

ti

WsdWs =
1

2

(
W 2
ti+1
−W 2

ti
−∆ti

)
. (3.51)

Now, by plugging expression (3.51) into the double integral, we assert that∫ ti+1

ti

∫ s

ti

dWvdWs =
1

2

(
W 2
ti+1
− 2WtiWti+1

+W 2
ti
−∆ti

)
=

1

2

(
(∆Wti)

2 −∆ti
)
.

Finally, by inserting the newly acquired value of the double integral into equation (3.49),
we conclude with the final form of the approximation

Xti+1
≈ Xti + µ (Xti) ∆ti + σ (Xti) ∆Wti +

1

2
σ(Xti)σ

′(Xti)
(
(∆Wti)

2 −∆ti
)

=: M(i),
(3.52)
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which is known as the Milstein scheme. Now simulations of the process Xt within a time
domain t ∈ [a, b] can be performed by computing iterations of the following difference
equation.

Xti = M(i− 1), i ∈ {1, . . . , n}
Xti = Xa ≡ X, i = 0.

(3.53)

3.2.2 The Milstein scheme applied to the analytic model

As our model is built on a multidimensional system of stochastic processes, we are again
required to transform our model according to the Cholesky decomposition. Hence, our
starting point will be (

dSt
dδt

)
= µ̂dt+ σ̂

(
dZ1

t

dZ2
t

)
,

where

µ̂ =

(
(µ− δt)St
κ(α− δt)

)

σ̂ =

(
σSSt 0

σδρ σδ
√

1− ρ2

)
Z1
t , Z

2
t are standard Brownian motions

Corr(Z1
t , Z

2
t ) =

(
1 0

0 1

)
.

Note that we will only be deriving the discretization schemes to our model under the P
measure. This is simply because the model under the risk-neutral measure is useful only
for pricing purposes, and as we have already derived the pricing formula for commodity
futures, we have no further interest in inspecting the price dynamics under the Qmeasure.
If one should desire to perform a discretization under the Q measure, one could simply
redefine µ̃S, µ̃δ, σ̃S, σ̃δ to correspond with the system under the Q measure (3.11).

We will denote
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µ̃S(St) = µ− δt
σ̃S(St) = σSSt

µ̃δ(δt) = κ(α− δt)
σ̃δ(δt) = σδ,

which allows us to express our system of process in the same form as the generalized
process in the previous chapter (3.44), resulting in

dSt = µ̃S(St)dt+ σ̃S(St)dZ
1
t

dδt = µ̃δ(δt)dt+ σ̃δ(δt)
(
ρdZ1

t +
√

1− ρ2dZ2
t

)
.

(3.54)

LetMS(·) andMδ(·) denote the Milstein discretization schemes for the two processes. The
explicit form of the discretizations is now obtained by simply inserting the alternatively
expressed forms (3.54) of the two processes into (3.52), yielding1

MS(i) = Sti + (µ− δti)∆ti + σSSti∆Z
1
ti

+
1

2
σ2
SSti

((
∆Z1

ti

)2 − 1
)

Mδ(i) = δti + κ(α− δti)∆ti + σδ

(
ρ∆Z1

ti
+
√

1− ρ2∆Z2
ti

)
,

(3.55)

(3.56)

which leads to the difference equation system (within a time domain [a, b])

Sti = MS(i− 1), i ∈ {1, . . . , n}
δti = Mδ(i− 1), i ∈ {1, . . . , n}
S0 ≡ S

δ0 ≡ δ

, (3.57)

where {ti}i∈{0,...,n} is a partition of the domain [a, b], or more precisely

{ti ∈ [a, b] | i ∈ {0, . . . , n}, a = t0 < t1 < . . . < tn−1 < tn = b} .
Figures 3.1 and 3.2, that graph simulations of our model with different parametersets,

illustrate the discretization process. Using the notation from previous chapter, both sim-
ulations were run with n = 780 and ∆ti ≡ ∆t = 1/260, which resembles path evolutions
over 3 years in business days.

1Note, that σ̃′
δ(δt) = 0.
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Figure 3.1: The parameters used for the simulation are listed in table 3.1.

S δ µ σS κ α σδ ρ λ

50 -0.1 0 0.3 2 -0.1 0.3 0.3 -0.1

Table 3.1: Parameters for simulation (figure 3.1)
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Convenience yield evolution. Number of simulated trajectories = 10

Figure 3.2: The parameters used for the simulation are listed in table 3.2. Notice the
mean reverting property of the convenience yield, which becomes exaggeratedly clear
when the values of δ and α are far apart.

S δ µ σS κ α σδ ρ λ

100 0.7 0 0.3 3 0 0.15 0.6 -0.5

Table 3.2: Parameters for simulation (figure 3.2)

A point that the figures above prove, is that not all the parameters in our pricing
model have an intuitive translation to real world phenomena. Indeed, the long term
mean α, the spot drift µ and the diffusion (or volatility) parameters have an intuitive
influence on the model, and can be roughly estimated from historic data with little effort.
For example, it is usually feasible to assume that the long term mean parameter α should
not divert too much from the sample mean (within a reasonable time frame) of the
convenience yield. The diffusion parameters σS and σδ should also roughly correspond
to the historic volatility of the futures price and convenience yield, respectively.

52



However, the influence of κ, ρ and especially λ, on the model can be quite surprising,
and even counter-intuitive. The mean-reversion coefficient κ, for example, can seem
artificial and misleading for commodities with extreme seasonal fluctuations (for example
crops). The process of estimating the parameters of the model will be covered in the next
chapter.
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Chapter 4

Parameter estimation

At this point we have been able to establish a stochastic model on the dynamics of
commodity spot prices in chapter 3, and also derived the pricing formula of commodity
futures within our framework in section 3.1.1. We are, however, only halfway in achieving
our goal in being able to accurately simulate the price dynamics based on historic data.
Indeed, as seen in section 3.2.2, we possess the required tools for the simulation process
itself, given the parameter-values in our model. We have not yet addressed the issue of
acquiring the system parameters from historic data. This issue will be addressed in this
chapter.

We will begin by presenting the state space form; a specific representation of a time
series model. Many sophisticated smoothing, filtering and prediction algorithms are ap-
plicable for models in the state space form, which makes the state space form a compelling
option of presenting different models. The Schwartz two-factor model, as presented up
until now, is not in a state space form. Fortunately, we are able to make a transformation
from the previously presented form of our framework to a state space form.

We will proceed by presenting a multi-purpose recursive algorithm that can be used
for smoothing, filtering, prediction and parameter fitting, namely, the Kalman filter. The
Kalman filter may by applied to models in the state space form, given that the model
complies with some distributional conditions. We will derive the Kalman filter algorithm,
and further show that our model complies with all the requirements prior to the filtering.

We will finally describe the system parameter fitting algorithm for our model. The
core of the fitting procedure relies on numerically maximizing the log-likelihood of the
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parameter-set utilizing the Kalman filter. The optimizing will be, perhaps not so surpris-
ingly given the size of our parameter-set, computationally very expensive and unstable,
to which we will also introduce some counteractive measures.

4.1 State space form

We will begin by presenting the state space representation, after which we will interpret
and break down the different aspects of the form.

A model is in a state space form if it can be expressed as

Yt = ZtXt + dt + εt (4.1)

Xt = TtXt−1 + ct + τt, (4.2)

where

Yt ∈ Rn×1

Zt ∈ Rn×m

dt ∈ Rn×1

Xt ∈ Rm×1

Tt ∈ Rm×m

ct ∈ Rm×1

εt ∼ N(0,Ht), where Ht ∈ Rn×n, and CorrP (Ht,Ht−1) = 0

τt ∼ N(0,Qt), where Qt ∈ Rn×n, and CorrP (Qt,Qt−1) = 0

t ∈ {1, . . . , T}

(4.3)

The representation of the vector Yt in the equation (4.1) is called the measurement
equation. The elements of Yt are observations of the modelled phenomena. We are
essentially assuming, that these observations are generated from a linear combination of
the vector Xt. The observations are also assumed to be noisy, noise originating from the
εt vector. That is, we assume that the observations contain some error, for example due
to inaccuracies in the measurement equipment.

Equation (4.2) is called the transition equation. From the expression of the equation
one can observe thatXt is defined as a linear combination if it’s previous state, associated
again with noise. Furthermore, one can also observe the implicit assumption that Xt
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possesses the Markov property. The interpretation of the role of Xt is that it contains
the model information of the underlying, generally unobservable, model entities. It is the
driving force in the model, and in common the target of primary interest.

Notice that we are also enforcing some structure on the noise associated with both
the measurement and the transition equation. The properties of εt and τt in (4.3) imply
that the errors are indifferent of the errors from the previous state. The non-correlation
combined with the distributional assumption, i.e. that the errors follow a multivariate
normal distribution, actually implies that both the model and measurement errors stem
from Gaussian white noise[11]. Note that even though the measurement and transition
noise share the same properties, they are conceptually very different. The measurement
errors are can be intuitively justified, but errors in the model data might seem a bit
outlandish; why introduce a faulty model? When dealing with stochastic models the
errors do, in fact, not derive from model inconsistency, but from the very fundamental
aspect of the problem setting. When we are accepting a stochastic model we are implicitly
accepting some sort of uncertainty in the model, and the role of the transition error vector
(or rather, the covariance matrix Qt) is just to characterize the uncertainty in the model.

The model components Zt, dt, Tt, ct, Ht and Qt are called system matrices and
are assumed to be deterministic. We do not assume, however, that all the elements in
the system matrices are necessarily known. If the system matrices are time-independent,
then the model is called time-invariant [19]. As we will see in section 4.3.1, the Schwartz
two-factor model in the state space form will be time-invariant with system matrices
containing unknown model parameters originating from the futures pricing formula.

4.2 Kalman filter

As already pointed out in the introduction of this chapter, the benefit of formulating a
state space representation of a model is that a wide array of different optimization rou-
tines are applicable for the model. Perhaps the most frequently applied is the Kalman
filter. The Kalman filter is a recursive routine for computing the minimum mean square
estimator of the state Xt vector at time t, which uses both previous and current infor-
mation of the state and observations [19]. Different variations of the Kalman filter have
been applied over multiple research fields from engineering to mathematical finance1.

1See for example [24, 28, 10, 33, 37].
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The Kalman filter is a multi-purpose algorithm in the sense that it not only generates
an optimal estimator of the state vector, but also provides means to produce comparative
data of the likelihood of the model in question. This enables the implementation of
different parameter fitting routines subjected to numerical optimization. This specific
usage is in some cases referred to as the prediction error decomposition algorithm, and is
a central component in our parameter fitting routine.

In this section we will give an explicit form of the recursion equations of the Kalman
filter and the prediction decomposition algorithm, and also outline the derivation of both
respectively. We will first present a few contributive results and definitions.

Recall the definition of mean square error.

Definition 4.4. (Mean square error) Let X ∈ Rn×1 be a multivariate random variable
X̂ ∈ Rn×1 an estimator of X. The mean square error of the estimator is then defined as

MSEP

(
X̂
)

= EP

[(
X̂ −X

)(
X̂ −X

)T]
. (4.5)

The minimum mean square error estimator (usually referred as the MMSE estimator)
is then simply defined as

MMSEP (X) = arg min
X̂

(
MSEP

(
X̂
))

. (4.6)

Theorem 4.7. Assume a setting similar in definition 4.4. Furthermore, assume a set of
measurements Y ∈ Rm×1. The MMSE estimator, given the observations, is

MMSEP (X) ≡ MMSEP (X;Y ) = EP (X|Y ) (4.8)

Proof. See [23].

The foundation of the Kalman filter is actually the MMSE estimator; the recursive
process determines the MMSE estimator of the state vector given the observations, and
updates the estimator accordingly when new observations become available. However,
we need to make an additional assumption in addition to the assumption of a model
in a state space representation. Namely, the state vector is assumed to be normally
distributed, enabling the use of the properties of the normal distribution.
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Theorem 4.9. (The Kalman filter)
Assume the notation in section 4.1.
Let X̂t|t−1 denote the MMSE estimator of Xt of observations Y0, . . . ,Yt−1 =: Y0:t−1,

that is, X̂t|t−1 = EP (Xt|Y0:t−1). Similarily, denote Pt|t−1 = CovP (Xt|Y0:t−1), that is, the
error covariation matrix.

Furthermore, assume that Xt is normally distributed. Then, the following identities
hold.

X̂t|t−1 = TtX̂t−1|t−1 + ct

Pt|t−1 = TtPt−1|t−1T
T
t +Qt

(4.10)

X̂t|t = X̂t|t−1 + Pt|t−1 +ZT
t F

−1
t

(
Yt −ZtX̂t|t−1 − dt

)
Pt|t = Pt|t−1

(
I −ZT

t F
−1
t ZtPt|t−1

)
where Ft = ZtPt|t−1Z

T
t +Ht.

(4.11)

Equations (4.10) are known as the prediction equations, and (4.11) as the updating
equations. We will now present an outline of the proof of the Kalman filter. For a
complete proof, the presented framework is easily extendable through induction.

Consider the case of t = 1. From the definition of the model, we see that

X1 = T1X0 + c1 + τ1,

and therefore

X̂1|0 = EP (X1|Y0) = T1EP (X0|Y0) + c1 + EP (τ1|Y0)︸ ︷︷ ︸

�= 0

= T1X̂0 + c1,

(4.12)

and

P1|0 = CovP (X1|Y0) = T1CovP (X0|Y0)T T
1 + CovP (ε0|Y0)

�= T1P0T
T
1 +Q1

(4.13)

Recall that the disturbances in no way dependent of the measurements or model values
respectively.

Equations (4.12) and (4.13) prove the prediction equations in the case of t = 1. For
the updating equations we will need the following lemma.
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Lemma 4.14. Assume that random variables X and Y follow a joint normal distribution,
that is, (

Y

X

)
∼ N

[(
µY

µX

)
,

(
ΣY ΣY X

ΣXY ΣX

)]
. (4.15)

Then

EP (X|Y ) = µX + ΣXY Σ−1
Y (Y − µY )

CovP (X|Y ) = ΣX − ΣXY Σ−1
Y ΣY X

(4.16)

Proof. Begin by defining Z = X − ΣXY Σ−1
Y Y . From the definition of covariance, we see

that

CovP (Z, Y ) = CovP (X, Y )− ΣXY Σ−1
Y CovP (Y, Y )

= ΣXY − ΣXY Σ−1
Y ΣY = ΣXY − ΣXY

= 0,

and by the properties of joint normal distributions, we see that Z � Y . Hence,

EP (X|Y ) = EP (Z|Y ) + ΣXY Σ−1
Y Y �= µX − ΣXY Σ−1

Y µY + ΣXY Σ−1
Y Y

= µx + ΣXY Σ−1
Y (Y − µY ) .

The proof is completed by evaluating

CovP (X|Y ) = CovP
(
Z + ΣXY Σ−1

Y Y, Z + ΣXY Σ−1
Y Y |Y

)
= CovP (Z|Y ) + CovP

(
ΣXY Σ−1

Y Y |Y
)

+ CovP
(
ΣXY Σ−1

Y Y, Z|Y
)

+ CovP
(
Z,ΣXY Σ−1

Y Y |Y
)

�= CovP (Z)

= ΣX + ΣXY Σ−1
Y ΣY Σ−1

Y ΣY X − 2ΣXY Σ−1
Y ΣY X

= ΣX − ΣXY Σ−1
Y ΣY X .

As direct consequence of the normality assumption ofX0, and due to the conservation
of normality for linear combinations of normally distributed random variables, we simply
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argue that X1 and Y1 follow a joint normal distribution. By evaluating the covariations
in (4.17) and (4.18)

CovP (X1,Y1) = CovP (X1,Z1X1) = P1|0Z
T
1 , (4.17)

CovP (Y1,Y1) = CovP (Z1X1 + ε1,Z1X1 + ε1)

= CovP (Z1X1,Z1X1) + CovP (Z1X1, ε1)

+ CovP (ε1,Z1X1) + CovP (ε1, ε1)

�= Z1P1|0Z
T
1 +H1 =: F1,

(4.18)

we assert that the explicit form of the joint distribution of X1 and Y1 is(
X1

Y1

)
∼ N

[(
X̂1|0

Z1X̂1|0 + d1

)
,

(
P1|0 P1|0ZT

1

Z1P1|0 F1

)]
. (4.19)

Now, applying lemma 4.14 yields

X̂1|1 = EP (X1|Y1) = X̂1|0 + P1|0Z
T
1 F

−1
1

(
Y1 −Z1X̂1|0 − d1

)
P1|1 = CovP (X1|Y1) = P1|0

(
I −ZT

1 F
−1
1 Z1P1|0

)
,

which concludes the proof in the case of t = 1.
The following step, which we will be omitting, is to prove the complete statement by

induction. As this is almost solely a technical feat, we are omitting the next step. The
technical details can be found for instance in[33].

The filtering scheme is of course valuable to us; it enables us to perform qualitative
measurements of our estimations. As explained in [citation needed] in the case of testing
our estimation scheme with synthetic data, the relative error measurements of the filtered
state vector versus the synthetic truth gives us an additional mean to verify the quality
of our estimation scheme. However, our primary interest in the Kalman filter lies in
what might be considered as a by-product of the actual filtering routine. Namely, the
Gaussian property of the state vector enables us to compute the likelihood of the model.
This is an extremely important feature to us, as this gives us a numeric measure of
the quality of our model, which is also comparable to the likelihood of other models with
different parameter sets from the parameter space. When this is subjected to a numerical
optimization scheme, we are able to obtain an optimal parameter set in the sense of the
likelihood function. This is, of course, wishful thinking to some extent; for example, the
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convergence of the optimization procedure is in no way guaranteed, but still provides a
feasible starting point.

Theorem 4.20. (The likelihood obtained from the Kalman filter)
The log-likelihood of the model is

−1

2

[
nT log(2π) +

T∑
k=0

det (Fk) +
T∑
k=0

V T
k F

−1
k Vk

]
(4.21)

where
Vt = Yt −ZtX̂t−1|t−1 + dt.

Proof. See [19].

In our implementation the likelihood will, in fact, be computed iteratively. More on
the actual implementation and the use of the calculated likelihood follows in section 4.3.

4.3 The parameter estimation scheme applied to the
commodity spot price model

In this section we will present the actual implementation of our parameter estimation
scheme. We will begin by deriving the state space form of our analytic commodity spot
price model, which enables us to utilize the prediction error decomposition algorithm.
Next, we will present some customized procedures, or tweaks, if you may for the prediction
decomposition algorithm in order to improve the convergence of the process. Finally we
will present the full implementation with each step of the procedure, including e.g. the
chosen parameter sets and the choice of the optimization routine.

4.3.1 The state space form of the commodity spot price model

A prerequisite of applying the Kalman filter is to show the joint Gaussian property of the
state entities, that is, the spot price and the convenience yield. As it turns out, in order to
achieve the Gaussian property we will be modelling the log-spot price of the commodity.
This will not pose any significant problems, as the transformation is achieved from a
simple application of Itô’s lemmma. The methodology overall will be quite similar to the
one used to derive the futures pricing formula in section 3.1.1.
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Recall the commodity spot price model defined in chapter 3.

dSt = (µ− δt)Stdt+ σSStdW
S
t

dδt = κ (α− δt) dt+ σδdW
δ
t

S0 ≡ S

δ0 ≡ δ

We will begin by transforming the stochastic differential equation of the spot price
to the corresponding one of the log-spot price. For this we will use Itô’s lemma on the
function f = log. Simple calculus implies that

fSt (St) =
1

St

fStSt (St) = − 1

S2
t

.

By inserting the above to the formula in Itô’s lemma, we see that

d logSt =

[
(µ− δt)St

1

St
− 1

2
σ2
SS

2
t

1

S2
t

]
dt+ σSSt

1

St
dW S

t

=

(
µ− δt −

1

2
σ2
S

)
dt+ σSdW

S
t

(4.22)

Theorem 4.23. (The joint distribution of the log-spot price and the convenience yield)(
logSt
δt

)
∼ N

[(
µS(t)

µδ(t)

)
,

(
ΣS(t) ΣSδ(t)

ΣδS(t) Σδ(t)

)]
, (4.24)

where

µS(t) = log S +

(
µ− 1

2
σ2
S − α

)
t+

δ − α
κ

(
1− e−κt

)
µδ(t) = α + e−κt (δt − α)

ΣS(t) =
σ2
δ

κ

[
1

2κ

(
1− e−2κt

)
− 2

κ

(
1− e−κt

)
+ t

]
+ 2

σSσδρ

κ

(
1− e−κt

κ
− t
)

+ σ2
St

Σδ(t) =
σ2
δ

2κ

(
1− e−2κt

)
ΣδS(t) = ΣSδ(t) =

σδ
κ

[(
σSρ−

σδ
κ

) (
1− e−κt

)
+ σδ

1− e−2κt

2κ

]
.

(4.25)
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Proof. We begin again by transforming the model to a system with uncorrelated Brownian
motions (see for example section 3.2.2).

d logSt =

(
µ− δt −

1

2
σ2
S

)
dt+ σS

(√
1− ρ2dZ1

t + ρdZ2
t

)
dδt = κ (α− δt) dt+ σδdZ

2
t

As a direct consequence of lemma 3.6 we acquire the solution of the convenience yield.

δt = α + e−κt (δ − α) + σδ

∫ t

0

eκ(s−t)dZ2
s (4.26)

The expectation of the Itô integral and the Itô isometry implies that

µδ(t) = EP (δt) = α + e−κt (δ − α) , (4.27)

and that

Σδ(t) = EP
(
δ2
t

)
− µδ(t)2

= µδ(t)
2 + µδ(t)σδ EP

(∫ t

0

ek(s−t)dZ2
s

)
︸ ︷︷ ︸

=0

+σδEP

[(
σδ

∫ t

0

ek(s−t)dZ2
s

)2
]

− µδ(t)2

= EP

[(
σδ

∫ t

0

ek(s−t)dZ2
s

)2
]

= σ2
δ

∫ t

0

e2k(s−t)ds

=
σ2
δ

2κ

(
1− e−2κt

)

(4.28)

By expanding the differential equation of the log-spot price to the explicit form, and by
inserting the previously evaluated (see equation (3.18)) value of

∫ t
0
δsds into the equation,

we assert that

logSt = logS +

(
µ− α− 1

2
σ2
S

)
t+

δ − α
κ

(
1− e−κt

)
+ σS

√
1− ρ2Z1

t +

∫ t

0

σsρ−
σδ
κ

(
1− e−κ(t−s)) dZ2

s .

(4.29)

Evaluating the rest of the parameters of the joint distribution is now a straightforward
task. By recalling the properties of the expectation of the Itô integral, we simply argue
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that

µS(t) = EP (logSt) = log S +

(
µ− α− 1

2
σ2
S

)
t+

δ − α
κ

(
1− e−κ(t−s)) . (4.30)

By yet again recalling the Itô isometry, we also assert that

ΣS(t) = EP
(
log2 St

)
− µS(t)2

= µS(t)2 + µS(t)EP

(
σS
√

1− ρ2Z1
t +

∫ t

0

σsρ−
σδ
κ

(
1− e−κ(t−s)) dZ2

s

)
+ EP

[(
σS
√

1− ρ2Z1
t +

∫ t

0

σsρ−
σδ
κ

(
1− e−κ(t−s)) dZ2

s

)2
]
− µS(t)2

= EP

[(
σ2
S

√
1− ρ2Z1

t

)2
]

+ EP

[(∫ t

0

σsρ−
σδ
κ

(
1− e−κ(t−s)) dZ2

s

)2
]

+ EP

[(∫ t

0

σ2
S

√
1− ρ2Z1

s

)(∫ t

0

σsρ−
σδ
κ

(
1− e−κ(t−s)) dZ2

s

)]
︸ ︷︷ ︸

=0 (recall that the Brownian motions are uncorrelated)

= σ2
S

(
1− ρ2

)
t+

∫ t

0

[
σSρ−

σδ
κ

(
1− e−κ(t−s))]2

ds

= σ2
S

(
1− ρ2

)
t+ σ2

Sρ
2t− 2

σSσδρ

κ
t+

σSσδρ

κ

∫ t

0

e−κ(t−s)ds

+
σ2
δ

κ2

(
t− 2

∫ t

0

e−κ(t−s)ds+

∫ t

0

e−2κ(t−s)ds

)
=
σ2
δ

κ

[
1

2κ

(
1− e−2κt

)
− 2

κ

(
1− e−κt

)
+ t

]
+ 2

σSσδρ

κ

(
1− e−κt

κ
− t
)

+ σ2
St.

(4.31)

A property that remains unproven is the expression of the covariance of the log-spot price
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and the convenience yield. From the definition of the covariance we get

ΣSδ(t) = ΣδS(t) = EP [(logSt − µS(t)) (δt − µδ(t))]

= EP

[(
σS
√

1− ρ2Z1
t +

∫ t

0

σsρ−
σδ
κ

(
1− e−κ(t−s)) dZ2

s

)(
σδ

∫ t

0

ek(s−t)dZ2
s

)]
= σδEP

[∫ t

0

(
e−k(t−s)) (σsρ− σδ

κ

(
1− e−κ(t−s))) (dZ2

t

)2
]

= σδ

(
σSρ

∫ t

0

e−κ(t−s)ds− σδ
κ

∫ t

0

e−κ(t−s)ds+
σδ
κ

∫ t

0

e−2κ(t−s)ds

)
=
σδ
κ

[(
σSρ−

σδ
κ

) (
1− e−κt

)
+ σδ

1− e−2κt

2κ

]
.

(4.32)

Combining equations (4.27), (4.28), (4.30), (4.31) and (4.32) prove the parameters
of the joint distribution. By concluding that, as a linear combination of normally dis-
tributed random variables is normally distributed, and that the Itô integrals are normally
distributed, the joint distribution is Gaussian completes the proof.

All prerequisites to forming the state space representation of our commodity spot
price model and applying the Kalman filter on the transformed model are now complete,
and we will now construct the state space form of our model. As we have already worked
on the stochastic model in this chapter, we will begin with the transition equation. Note
that throughout the rest of this thesis we will be working with evenly distributed time
partitions. More precisely, if we are working on a time domain [0, T ] with time-steps
{tk ∈ [0, T ] | k ∈ {0, . . . , n}}, the size of the time-steps will be equal, that is,

∆tk ≡ ∆t

for all k ∈ {0, . . . , n}.
Technically, this is not a complete resemblance of the reality, as we have incomplete-

ness in the data due to holidays and weekends etc. These gaps are, however, negligible,
as we pre-process the data and either remove these gaps or fill them with constant values
from the previous time-step.

The transition equation

As pointed out on multiple previous occasions, we assume that the increments log-spot
price logSt is directly dependant of both the convenience and the previous state of the
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log-spot price (see for example equation (4.29)). Increments of the convenience yield, on
the other hand, depend only on the previous value of the convenience yield. Hence, these
properties need to be extracted from the system in order to form the transition equation.
In order to complete the definition of the system, we see that the transition equation,
excluding the impact of the Brownian motion increments for now, needs to be of the form

Xtk =

(
logStk
δtk

)

dtk =

( (
µ− α− 1

2
σ2
S

)
∆t− α

κ

(
1− e−k∆t

)
α
(
1− e−κ∆t

) )

Ttk =

(
1 1

κ

(
1− eκ∆t

)
0 e−κ∆t

)
,

(4.33)

which can be verified by expanding the expression of the transition equation (with the
above values) and comparing the results against equations (4.29) and (4.26). Note that
we are following the naming convention established in section 4.1.

The expressions in (4.33) account for the deterministic part of the model. The prob-
abilistic properties, that stem from the Brownian motion increments, is yet to be incor-
porated into the state space version of our model. The representation framework does
not allow an explicit inclusion of these properties. However, as discussed in section 4.1,
we can still implicitly incorporate the effect of the Brownian motions by applying the
properties of the joint distribution to the error covariance matrix Qt. Recall that the
’errors’ in the transition equation are not to be interpreted as something akin to mea-
surement errors, but rather as a descriptive factor of the probabilistic properties in the
model. Hence it is natural to define the covariance matrices of the error components and
the joint distribution as equal, namely

Qt =

(
ΣS(t) ΣSδ(t)

ΣδS(t) Σδ(t)

)
. (4.34)

Equations (4.33) and (4.34) completely defines the transition equation of our commodity
spot price model.

66



The measurement equation

Recall the pricing formula commodity futures defined in (3.27), namely

F (S, δ, T ) = S exp

[
−δ
(
1− e−κT

)
κ

+ A(T )

]
.

The log-price of the futures is then

logF (S, δ, T ) = log S − δ
(
1− e−κT

)
κ

+ A(T ). (4.35)

For futures on the commodity with maturities {Tk}k∈{1,...,n}, the above equation, in matrix
form, translates to logF (S, δ, T1)

...
logF (S, δ, Tn)

 =

 1 −1−e−κT1
κ

...
...

1 −1−e−κTn
κ

( logS

δ

)
+

 A(T1)
...

A(Tn)

 .

Let F̂t(Tk) denote an observed futures price at time t with Tk as the length to maturity.
By applying the same logic as in the matrix transformation for the futures price formula
for multiple contracts, we see that

Yt =

 log F̂t(T1)
...

log F̂t(Tn)



Zt =

 1 −1−e−κT1
κ

...
...

1 −1−e−κTn
κ



ct =

 A(T1)
...

A(Tn)

 .

(4.36)

While the above derivation of the system matrices is, given the pricing formula, quite
effortless, determining the properties of the observation errors is far from trivial. We do
not have any measuring equipment per se which could be tested for e.g. typical error
ranges, and therefore evaluating the total noise as an accumulation of for example market
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uncertainty or noise traders[8] is very difficult and way beyond the scope of this thesis.
We will therefore make a simple assumption of observation errors, namely that

Ht =


h1 0 0 · · · 0

0 h2 0 · · · 0

0 0
. . . ...

...
... . . . 0

0 0 · · · 0 hn

 . (4.37)

In other words, we are assuming that the measurement noise of different contracts are
independent of each other.

In practice we have actually found that, given the lack of proper tools to measure
market noise, it is actually better to use an even simpler form of the error covariations,
namely

Ht = htIn (4.38)

where ht ∈ R+ and In is the identity matrix of size n. This actually allows us to
incorporate the error calibration in the optimization procedure. This mimics the trial
and error approach of just testing different combinations of error variances based on prior
assumptions.

The equations (4.36), (4.37) and (4.38) completely define the measurement equation,
which concludes our definition of the commodity spot price model in the state space form.

4.3.2 On the estimation of distinct parameter subsets

As mentioned in the introduction to this chapter we will be ultimately using a numerical
optimization routine to maximize the log-likelihood obtained from the prediction error
decomposition algorithm. The optimization routines require, in addition to the objective
function, also a starting point for the algorithm (an initial guess, if you may). This
starting point plays an essential part in cases where the mapping of the objective function
contains multiple local minima and maxima, as it is more likely for the optimization
routine to find local extreme values closer to the initial guess opposed to other, perhaps
global, extreme values further away from the initial guess. This is especially important
where the parameter space is of higher dimension, which is the case in our study. We will
therefore pre-process the data in order to find suitable starting points for the optimization
algorithm. The pre-processing routines are presented in this section.
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We will begin with the convenience yield. As shown in section 4.3.1, Ornstein-
Uhlenbeck processes follow a normal distribution. This opens up opportunities for like-
lihood optimization of the Ornstein-Uhlenbeck processes, equivalent to the methodology
we are using to estimate the parameters for our commodity spot price model. The like-
lihood maximization has previously been subject to research, for example in [14] the
max-likelihood is implicitly derived as an optimization of a one-dimensional objective
function. However, as we are already forced to utilize a great amount of computing
power, this does not seem as an effective solution. Therefore we will be using an explicit
solution to the max-likelihood of the discretized Ornstein-Uhlenbeck process derived in
[38].

Theorem 4.39. Let Xt be an Ornstein-Uhlenbeck process of the form

dXt = κ (α−Xt) dt+ σdWt.

Applying the gaussian property of Xt yields a discretized Ornstein-Uhlenbeck of the form

Xtk+1
= α + e−κ∆t (α−Xtk) + σ

√
1− e−2κ∆t

2κ
Z,

where Z ∼ N(0, 1) and the time partition is equivalent with the one in the state space
commodity spot price model. The max-likelihood parameters for the discretized model are
then

α =
SySxx − SxSxy

n (Sxx − Sxy)− S2
x (SxSy)

κ = − 1

∆t
log

[
Sxy + α (nα− Sx − Sy)
Sxx − α (nα− 2Sx)

]

σ =

√
2κ
[
Syy − 2φSxy + φ2Sxx − 2α (1− φ) (Sy − φSx) + nα2 (1− φ)2]

n (1− φ2)

(4.40)
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where

φ = e−κ∆t

Sx =
n−1∑
k=0

Xtk

Sxx =
n−1∑
k=0

X2
tk

Sy =
n−1∑
k=0

Xtk+1

Syy =
n−1∑
k=0

X2
tk+1

Sxy =
n−1∑
k=0

Xtk+1
Xtk .

(4.41)

Even though the convenience yield in our model can be considered more like an
extension of the usual Ornstein-Uhlenbeck, as the increments in the Brownian motion
are partially driven by the commodity spot price process through the correlation, we
observed that the results from the above theorem produce valid baseline estimates for
the parameters in the convenience yield process.

As for the parameters in the spot price process, we will be using maximum likelihood
estimates of geometric Brownian motion. This approach is perhaps even more contro-
versial, as not only is the increments of the Brownian motion partially driven by the
increments of the convenience yield due to the correlation, but the drift of the process
is also corrected with the convenience yield. However, similar to the estimates on the
convenience yield parameters, this is not a major concern as we only need some guidelines
for the optimization routine. We will be using the maximum likelihood estimates derived
in [4].

Theorem 4.42. Let Xt be a geometric Brownian motion of the form

dXt = µXtdt+ σXtdWt.
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The maximum likelihood estimators of the parameters of Xt are then

σ̂ =
std(L)√

∆t

µ̂ =
E (L)

∆t
+

1

2
σ̂2

(4.43)

where

L =
(
logFtk+1

− logFtk
)
k∈{1,...,n} ∈ R

1×n−1

is a vector of the log-returns of the observed commodity futures prices and E(·) denotes
the sample mean.

4.3.3 A naïve dimension reduction

As previously mentioned, a multidimensional optimization procedure requires a great
computational effort in order to achieve acceptable convergence conditions. In the previ-
ous section we presented counteractive measures for the convergence issue by calculating
optimal starting points for the optimization routine. Beyond these measures, we have
implemented something that could be called naïve dimension reduction; we will divide
the estimation into estimating different parameter subsets and then combine the results.
A possible parameter set structure is presented in the listing (4.1) below.

Listing 4.1: A set structure with two parameter sets

1 {
2 "parameter -sets": {
3 "set -1": [
4 {µ, σS, ρ, λ},
5 {κ, α, σδ}
6 ],
7 "set -2": [
8 {µ, σS, κ, α, σδ, ρ, λ}
9 ]

10 }
11 }
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The first parameter is separated into two subsets, where the parameters of the convenience
yield process are isolated from the rest of the sets. In the optimization procedure, we
would initially keep the convenience yield parameters constant (on par with the initial
guess) and only after the first optimization run is complete would the convenience yield
parameters be subject to the optimization routine.

The second parameter set corresponds to the usual setting, where parameters are
optimized simultaneously.

4.3.4 The complete estimation scheme

Finally, we will summarize the contents in this chapter and present our complete estima-
tion scheme through pseudo-code. The code might be somewhat MATLAB influential, as
all analysis conducted in this thesis is based on MATLAB implementations, but should
be readable without any prior knowledge of MATLAB syntax.

The full scheme is presented in algorithm 1, and the the prediction error decomposition
routine is presented in algorithm 2.

Algorithm 1 Preseting the commodity spot price model parameter estimation scheme.
F - futures contract data, CY - convenience yield calculated for futures.
1: procedure estimate_params(F,CY )
2: spot_appr ← get_contracts_with_shortest_ttm(F )
3: {µ, σS, κ, α, σδ, ρ, λ} ← create_init_guess(spot_appr, CY )
4: param_sets← create_param_sets()
5: optim_candidates← {}
6: for each set in param_sets do
7: current_params← {µ, σS, κ, α, σδ, ρ, λ}
8: for each subset in set do
9: current_params← ped_estimate(current_params, subset, F, CY )
10: end for
11: optim_candidates.append(current_params)
12: end for
13: return get_optimal_param_set(optim_candidates, spot_appr, CY )
14: end procedure

The algorithm above returns the optimal parameter set from the different candidates
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that were estimated. The optimality of a parameter set is determined by two conditions

I) The relative error between the filtered state variables and the futures price and
convenience yield of the futures with the shortest time to maturity.

• Note that (in the absence of arbitrage opportunities) the futures price converges
towards the commodity spot price as the time to maturity tends to zero. This
property is therefore useful as a qualitative measure of our estimation.

II) The difference in the mean standard deviation of the futures price and convenience
yield of the futures with the shortest time to maturity and simulated trajectories.

The optimization of the objective function in algorithm 2 is calculated utilizing the
Nelder-Mead algorithm[30], which is implemented in MATLAB as fminsearch.

Algorithm 2 The prediction error decomposition routine for parameter estimation.
1: procedure ped_estimate(current_params, subset, F, CY )
2: constant_params← current_params.complement(subset)
3: function Objective_fun(objective_params)
4: all_params← objective_params.union(constant_params)
5: {Yt,dt,Zt,Ht, ct,Tt,Qt} ← state_space(F,CY, all_params)
6: initial_state← [log(F (1, 1)), CY (1, 1)]

7: loglike← kalman_filter(initial_state,Yt,dt,Zt,Ht, ct,Tt,Qt)
8: return −loglike
9: end function
10: return optimize(@objective_fun, current_params)
11: end procedure
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Chapter 5

Results

In this chapter we will be presenting the main results of this thesis.
We will begin by presenting estimation results acquired from running the estimation

routine on synthetic data. Working with synthetic data is important in many aspects,
including debugging, model verification and calibration. Calibrating a model with actual
data is seldom conducive, as working with actual data is often very challenging even
with an optimized procedure. With synthetic data one is able to work in a controlled
environment where the number of free variables can be reduced. Also, it is generally
effortless to create synthetic (noisy) data that resembles the actual target data.

In section 5.2 we will present estimation results on Brent oil futures contract data.
This specific case is used to demonstrate the effectiveness of the procedure on actual
data, and is a typical case study of the portfolio sample basket consisting of 26 different
commodity futures.

Finally, in section 5.1 we will present results of the distributions of the returns of the
simulated futures trajectories.

5.1 Synthetic data - a proof of concept

In this section we will present a typical case study with synthetic data. The data consists
of spot price data, convenience yield data and futures contract data of four futures with
different time to maturity. The data was generated for a three year period in business
days, a total of 3 · 260 datapoints for each dataset. The spot price and convenience yield
data were simulated utilizing the Milstein discretization of our stochastic model of the
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spot price dynamics, in similar fashion to the simulations presented in figures 3.1 and 3.2.
The futures contract prices were generated with the futures pricing formula (see (3.27))
added with Gaussian noise with variance relative to the magnitude of the price data. The
relation of the contracts in the terms of the maturity lengths are presented in figure 5.1.

The timeline of the simulated data is somewhat arbitrary, a fixed year for the simu-
lations was decided for only illustrative purposes.
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Figure 5.1: The time to maturities over the four different simulated futures contracts.
Note that the sawtooth-like shape of the maturities resembles the reality quite well, as
there is only a limited amounts of contracts on the market at a time.

Figure 5.2 illustrates the simulated data. Note that the dashed and colored lines
present the term structure of the simulated futures. The price data for the contracts is
simulated for all timesteps, we have only limited the amount of displayed term structure
curves to a weekly basis for illustrative purposes. Note how the noise in the term structure
is clearly visible; if no error was applied one would expect to see smooth exponential curves
instead of the various irregularities visible in the term structure in the spot price graph.
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Figure 5.2: The simulated data. The dashed lines in the spot price plot resemble the term
structure at the time-step in question (recall the definition of the futures curves given
in section 2.4). That is, each dashed is composed of the four contract prices (shifted on
the time-axis according to the time to maturity) and a linear interpolation between these
data points.

The estimation procedure was run with a relative tolerance threshold at 10−7 and
with a maximum 5000 iterations for the optimization algorithm. The trace of the opti-
mization algorithm is visualized in figures 5.4 and 5.3. Figure 5.3 shows the evolution of
the objective function subject to the optimization routine, while figure 5.4 presents the
movement of the optimization routine in the parameter space. The trace shows that even
with an effectively small relative tolerance threshold, the convergence is quite towards
the threshold limit is quite fast. However, approximately 250 iterations close to the final
parameter value indicates that further decreasing the threshold limit is not necessary.
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Figure 5.3: Trace of the objective function subject to the optimization routine of the
simulated data.
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Figure 5.4: Trace of the optimization routine of the simulated data in the parameter
space.

It is noteworthy how the initial guess provided to the optimization routine is astonish-
ingly close to the parameter estimation result. This indicates that our actions in section
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4.3.2 towards a more stable estimation routine are having a significant impact.
The parameter set acquired from the fitting routine is compared to the actual param-

eter set in table 5.1. Even though the relative error might seem a bit high, especially for
ρ and λ, note that the overall size of the absolute error in the parameters is very small.

µ σS κ α σδ ρ λ

parameters 0.03 0.2 5 0 0.35 0.1 -0.1
estim. parameters 0.0226 0.191 5.03 -0.012 0.392 0.014 -0.164

absolute error 0.007 0.009 0.030 0.012 0.042 0.086 0.064
relative error 24.7% 4.5% 0.6% - 12.0% 86.3% 64.2%

Table 5.1: Comparison of the actual parameters and the results.

The filtered spot price and convenience yield in figure 5.5 fit very accurately with the
generated data. Recall that in the case of synthetic data the comparison between the
filtered price dynamics and the observed dynamics is especially useful as the observed
dynamics is the actual truth, which is not the case with real data.
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Figure 5.5: A comparison with the filtered state and the actual price dynamics.
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Figure 5.6: Simulated spot price and convenience yield trajectories.

Figure 5.6 illustrates simulated trajectories of both the spot price and the convenience
yield after the final observation. The simulations seem to preserve the properties of the
observed entities in all the aspects of the model quite well. This observation is supported
by the tabulated mean standard deviations in table 5.3.

∆t spot simulated spot CY simulated CY

5 2.43 2.31 0.0203 0.0221
20 4.39 4.44 0.0409 0.0407
60 7.75 7.57 0.0588 0.0630
130 9.68 11.52 0.0824 0.0822
260 13.83 16.53 0.0898 0.0977

Table 5.2: Mean standard deviations. The mean is calculated as a moving average where
the window size is denoted by ∆t days.
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The mean standard deviation of the simulated entities was taken over 100 sample
trajectories that were simulated over a two year period.

The minor divergence of ∆t ∈ {130, 260} in the table above can be explained by the
lack of data; synthetic data was generated for only 3 years, so a moving average with a
window size of over 130 days does not provide any particularly useful information. On
the other hand, simulations for over a couple of months or so can not even be expected to
be very accurate. As pointed out in the model description chapter, one should remember
that the assumption of constant system parameters is a simplification, and that it would
be more realistic to model the parameters as time dependant.

5.2 Estimation of Brent oil commodity spot price

In this section we will be presenting results on actual data. We will showcase in detail
the estimation procedure of Brent crude oil, a typical case study that should give a good
insight on the portfolio consisting of 26 different commodities.

The starting point was a raw contract price matrix, from which 4 contracts were
extracted with time to maturities illustrated in figure 5.7.
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Figure 5.7: The time to maturities of four extracted Brent crude oil contracts.
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The term structure is illustrated in figure 5.8.
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Figure 5.8: The term structure of Brent crude oil.

It is important to note that, in contrast to the case study of synthetic data, the spot
price displayed the figure above is only an approximate of the actual spot price. Anything
else would be absurd, as the whole problem setting is based on the fact that commodity
spot prices are unobservable. As already pointed out in chapter 4, we will be using the
futures contracts with the shortest time to maturity as a proxy for spot price. This is a
feasible approximation as, in the absence of arbitrage opportunities, it is clear that the
futures price should converge to the spot price at maturity.
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Figure 5.9: The convenience yield calculated for Brent oil futures with shortest time to
maturity.
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Figure 5.10: Trace of the objective function subject to the optimization routine for Brent
crude oil.

82



200 400 600

0.1

0.15

0.2

0.25

Iterations

µ = 0.25

200 400 600

0.2

0.25

0.3

Iterations

σS = 0.24

200 400 600

1

1.5

2

2.5

Iterations

κ = 1.1

200 400 600

4 · 10−2

4.5 · 10−2

5 · 10−2

5.5 · 10−2

6 · 10−2

6.5 · 10−2

Iterations

α = 0.051

200 400 600

−5 · 10−2

0

5 · 10−2

0.1

0.15

Iterations

σδ = 0.1

200 400 600

0

0.2

0.4

0.6

Iterations

ρ = 0.74

200 400 600

1 · 10−15

1.5 · 10−15

2 · 10−15

Iterations

λ = 2.3e-15

Figure 5.11: The trace of the optimization routine for estimating the parameters for
Brent crude oil.

The optimization procedure was run with a similar setup as in the case of synthetic
data. Perhaps a bit surprisingly, the procedure convergence significantly faster than in
the synthetic study. No absolute reasons for this behaviour could be pinpointed.
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Figure 5.12: A comparison with the filtered state and Brent oil futures with shortest time
to maturity.

Figure 5.12 illustrates almost a one to one relation of the proxy spot price and the
filtered spot state. On the other hand the filtered convenience yield state seems to
diverge quite much from the convenience yield of the proxy spot price. This is in fact
quite typical for the optimization routine; the process tends to overfit the spot price at
the cost of the convenience yield process. However, the convenience yield process poses
similar properties as the proxy convenience yield, the relative error is within the tolerable
error range, and it is important to remember comparing the filtered state to the proxy
spot dynamics does not convey the absolute truth.

This point can portrayed by comparing the estimated term structure with the observed
one.
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Figure 5.13: A comparison with the estimated and observed term structure.

The estimated term structure is modelled using the filtered state vectors to construct
the spot price and convenience yield. The parameters obtained from the optimization
procedure are then utilized in the futures pricing formula to construct the term structure.
The above graph shows that the estimated term structure possesses very similar properties
to the observed term structure with proxy spot price and convenience yield.
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Figure 5.14: Simulated Brent oil spot price and convenience yield trajectories.

Finally, we conducted comparative analysis on the deviations of the simulated trajec-
tories and the historic data. The simulated spot price tail trajectories seem to have higher
deviations compared to the historic data. The high peak at the end of the historic data
is the culprit in this case, as it impacts strongly on estimation procedure, and especially
on the spot volatility.

∆t spot simulated spot CY simulated CY

5 0.74 1.27 0.0092 0.0058
20 1.40 2.43 0.0175 0.0109
60 2.80 4.12 0.0279 0.0176
130 4.14 6.26 0.0372 0.0254
260 6.08 9.56 0.0498 0.0330

Table 5.3: Mean standard deviations. The mean is calculated as a moving average where
the window size is denoted by ∆t days.
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5.3 Distribution results of the returns on the carry
trading strategy

The main goal in this thesis is to quantify basis risk by simulating the spot price dynam-
ics for the commodities in a trading portfolio with a fixed commodity basket. In other
words, we will be generating tail trajectories for the different commodities and then ap-
ply the trading strategy to the generated spot price and convenience yield trajectories.
This process is repeated for distinct dates within a predefined time domain. The pa-
rameter estimation procedure will also be repeated for each time-step, which will mimic
the time-dependent nature of the parameters of the stochastic model. This procedure is
summarized by algorithm 3.

Algorithm 3 The procedure conducted in the distributional analysis. This process
generates the return data, which needs to be post-processed in order to acquire significant
data from the ditributions.
1: procedure generate_dists(timesteps, F, CY )
2: dists← {}
3: for t in timesteps do
4: {µ, σS, κ, α, σδ, ρ, λ} ← estimate_params(F,CY )
5: trajs← generate_trajs(µ, σS, κ, α, σδ, ρ, λ, F (t), CY (t))
6: for i in numel(trajs) do
7: dists(t, i)← carry_returns(trajs(i))
8: end for
9: end for
10: return dists

11: end procedure

The commodity basket consists of the commodities listed in table 5.4.
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Abbreviation Real name

KPO Palm oil
CT Cotton
C Corn
W Wheat
KC Coffee
BO Soybean oil
LC Live cattle
CC Cocoa
HO Heating oil
NG Natural gas
RB Unleaded gasoline
RS Canola
SM Soybean meal

LCO Brent oil
CL Light crude oil
S Soybeans

MCU Copper
SB Sugar

MAL Aluminium
MZN Zinc
MSN Tin
MPB Lead
MNI Nickel
LGO Crude oil
LH Lean hogs

Table 5.4: Listing commodity names with abbreviations.

88



The parameter estimations were run from 2014-7-28 to 2015-7-28 with ∆t = 10. The
figures below illustrate the parameter value evolution within the time domain.
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With the acquired parameter sets, we ran the process described in algorithm 3 on
a daily basis for each commodity. The simulated trajectories were all generated for
a two month period (∆t = 20). Ten thousand trajectories were generated for each
timestep. These results were then aggregated, according to the portfolio allocations
for each commodity, to the portfolio level in order to be able to conduct distributional
analysis on a portfolio level.

The figure 5.15 illustrates the (excess) kurtosis and skewness of the returns distribu-
tions on the portfolio level. An observed outlier is also marked in the figure.
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Figure 5.15: The kurtosis and skewness of the returns distribution on the portfolio level.

The statistics for the returns distributions are quite noisy; a moving monthly average
of the distributions smoothens the noise to an acceptable level.
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Figure 5.16: A moving average of the kurtosis and skewness of the returns distribution
on the portfolio level. The length of the time window is one month.
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Chapter 6

Discussion

In this chapter we will contemplate on the validity, optimality and, in general, the pros and
cons of our approach, and asses the overall quality of the results presented in the previous
chapter. We will also attempt to make suggestions for future work by referencing to recent
development within the field which could possibly be incorporated to our procedure of
quantifying basis risk.

The fundamental basis of the whole distributional analysis procedure is built on the
parameter estimation scheme; without being able to accurately estimate the system pa-
rameters of the stochastic model of the commodity spot price dynamics, any attempts
to simulate the term structure would be futile. Therefore we feel that the parameter
estimation scheme deserves a section of it’s own, and the parameter estimation scheme
will be analysed in section 6.1.

The analysis of the distributional analysis procedure and of the results acquired in
the previous chapter is conducted in section 6.2.

6.1 Parameter estimation

The results of applying the parameter estimation scheme on generated synthetic data
speaks for itself. The well behaved pattern of the optimization trace combined with a good
accuracy in the estimation results indicate that the estimation procedure might actually
be quite robust considering the relatively high parameter set dimension. These results
are of course, as pointed out in the previous chapter, only valid as a proof of concept; we
should be expecting an even higher level of irregularities in the term structures of actual
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futures data, which can potentially lead to serious convergence issues in the estimation
routine. The process of running an estimation procedure on synthetic data generated by
the same model used in the estimation procedure is sometimes, and especially within the
field of inverse problems referred to as inverse crime[29]. This is considered a kind of a
false positive; the quality of the results is positively influenced by the underlying model
used in the data generation phase.

The results in the case of Brent crude oil however further promote the robustness of
the estimation scheme. The procedure converges to a reasonable dataset that performs
well against the historic data. Especially the simulated tail trajectories express simi-
lar properties to the historic data both in the intuitive visual sense and numerically by
comparing the moving average of the standard deviations of the trajectories. The charac-
teristics of the estimation scheme are actually clearly visible in this case. The aggressive
peak of the futures price at the end of the historic dataset has a significant impact in
the procedure, as it tends to favor more recent characteristics of the data over the ones
present earlier in the dataset. This explains the slight divergence of the average standard
deviations; the peak in the futures price positively influences the volatility.

Even though we are very satisfied with the robustness and accuracy of the results of
the parameter estimation scheme in the case of Brent crude oil, especially as it is a typical
representative of the commodities in the commodity basket of the investment portfolio,
we do recognize some shortcomings in the procedure. We noticed that the historic dataset
needs to of a remarkable size. In the case of Brent crude oil, we have roughly a decades
worth of historic data, which is not always the case. We observed that a dataset with
less than a couple years of historic data (with approximately four different contracts) the
estimation procedure would show monumental difficulties in converging to a reasonable
parameter set. Thus we encountered issues when attempting to perform more thorough
distributional analysis as we lacked the sufficient datasets.

We also observed that cases where the evolution of the convenience yield of the com-
modity was seasonal (typical for e.g. crops) were cumbersome. The problem is that
the model can not recognize seasonality, but rather interprets this periodic behaviour as
an increase in the volatility of the convenience yield, resulting in obscure results in the
estimation procedure. Therefore pre-processing measures in the case of seasonal data
are imperative. This is an known issue of the model, and has influenced the develop-
ment of alternative models that take the seasonality into account, for example [34], that
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uses deterministic trigonometric functions to describe the seasonality. The trade-off is
an increase in the dimension of the parameter space, which is not a trivial issue, as the
problems described in the paragraph above indicate.

Also, our choice of the optimization algorithm (Nelder-Mead) is a simplex-based op-
timization routine. An alternative for future work would be to implement the param-
eter estimation using some other, perhaps more sophisticated optimization algorithm,
for example [22], which does not rely on gradient computations. The optimization is
implemented in MATLAB as direct [13].

Even though we recognize that the estimation scheme has it’s flaws, we feel that it
is nevertheless the most valuable asset in this thesis; especially the robustness of the
procedure makes the current form of the estimation procedure a compelling choice for
the baseline for further development.

6.2 Distribution analysis

The results from the distribution analysis are somewhat noisy, but still signal a positive
response; the skewness and the (excess) kurtosis of the return distribution, around the
time of the observed outlier in the actual trading situation, indicate that the return dis-
tribution would possess properties of a left fat tailed distribution in this time window.
The significance of this phenomenon is underlined by the fact that these properties are
very distinct in this particular timeframe. The skewness, in particular, exhibits a rela-
tively strong negative trend that is exclusive to this time domain. In an actual trading
situation, this information could function as a trigger for proactive measures against the
more probable losses in the trading strategy.

We do, however, realize that these results are inconclusive and that the process itself
is, in it’s current form, not easily adapted as a tool for real life continuous analysis. The
above results should be reproduced on a larger scale with more extensive data in order
to verify the significance of the critical statistics of the distribution. As described in
the previous section, due to convergence issues with limited data, this is not a possibility
within the scope of this thesis and is left for future work. It could be useful to also extract
additional statistics from the distributions, such as standard deviations, and analyse the
significance of these as a measure of risk.

In the production of the distributions, 10000 to 15000 trajectories were generated
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for each commodity. The analysis procedure will face performance issues when this
path generating process is repeated for each timestep. The large number of trajectories
might be considered an overkill, but in order to get consistent results, we observed that
a significant number of trajectories is required. Large inconsistencies were present for
distributions generated from less than 1000 trajectories. Hence, determining the sufficient
amount of generated trajectories would be a worthwhile feat left for future work.
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