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Abstract

Background: The determination of altered expression of genes in specific tumor types and their effect upon cellular
processes may create insight in tumorigenesis and help to design better treatments. The Flatcoated retriever is a dog breed
with an exceptionally high incidence of histiocytic sarcomas. The breed develops two distinct entities of histiocytic
neoplasia, a soft tissue form and a visceral form. Gene expression studies of these tumors have value for comparable human
diseases such as histiocytic/dendritic cell sarcoma for which knowledge is difficult to accrue due to their rare occurrence. In
addition, such studies may help in the search for genetic aberrations underlying the genetic predisposition in this dog
breed.

Methods: Microarray analysis and pathway analyses were performed on fresh-frozen tissues obtained from Flatcoated
retrievers with localized, soft tissue histiocytic sarcomas (STHS) and disseminated, visceral histiocytic sarcomas (VHS) and on
normal canine spleens from various breeds. Expression differences of nine genes were validated with quantitative real-time
PCR (qPCR) analyses.

Results: QPCR analyses identified the significantly altered expression of nine genes; PPBP, SpiC, VCAM1, ENPEP, ITGAD
(down-regulated), and GTSF1, Col3a1, CD90 and LUM (up-regulated) in the comparison of both the soft tissue and the
visceral form with healthy spleen. DAVID pathway analyses revealed 24 pathways that were significantly involved in the
development of HS in general, most of which were involved in the DNA repair and replication process.

Conclusions: This study identified altered expression of nine genes not yet implicated in histiocytic sarcoma manifestations
in the dog nor in comparable human histiocytic/dendritic sarcomas. Exploration of the downside effect of canine inbreeding
strategies for the study of similar sarcomas in humans might also lead to the identification of genes related to these rare
malignancies in the human.
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Introduction

Fundamental research on rare human diseases is not only

hampered by minimal grant supply; lack of sufficient sample

numbers is of equal disadvantage. One way to overcome this last

catch, is to investigate other species in which a similar disease

occurs at a much higher frequency, like in specific dog breeds. In

dogs, a downside of selection for breeding purposes is the

occurrence of a very large number of breed-specific hereditary

diseases (http://omia.angis.org.au/home/). Rare human diseases,

such as histiocytic malignancies, might therefore be common in

specific dog breeds [1].

The Flatcoated retriever (FCR) breed has a strongly increased

risk for histiocytic sarcoma (HS) development. In the UK, it is

likely to account for about 36% of all malignant neoplasms

diagnosed in this breed [2,3].

Canine histiocytic malignant disorders were as such first

described in the late 1970s [4]. Included in the name ‘histiocytic

sarcoma’, which was given to the complex of malignant histiocytic

disorders [5], there is a range of malignant tumors derived from

CD34-committed stem cell precursors that may develop into
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dendritic cells (DC) such as Langerhans cells, interstitial DC and

macrophages [6,7]. In addition to morphological features, most

histiocytic sarcomas can be recognized by positive immunostaining

for the cell surface marker CD18 [6–8]. Canine HS has

resemblance to the rare and often lethal human histiocytic

malignancies, including dendritic cell and histiocytic sarcomas

and disseminated Langerhans cell histiocytosis (LCH) [9–12].

Histiocytic sarcomas in dogs almost inevitably metastasize to

various organs [10] and have a very poor prognosis [2,10,11]. A

median survival of four months has been reported in the FCR [3].

In dogs, there are several clinical manifestations of HS. One

common form is the localized, soft tissue histiocytic sarcoma

(STHS), which manifests itself as a tumor arising in the deeply

seated soft tissues of limbs often in association with joints

[2,3,10,13]. A second common form is manifested in internal

organs and often multifocal and named disseminated, visceral

histiocytic sarcoma (VHS), with neoplastic changes that can be

found in either spleen, liver, lung and/or bone marrow [6].

Past research using Comparative Genomic Hybridization has

already shown various aberrations in HS in the Bernese Mountain

Dog, another breed predisposed to histiocytic malignancies, with

cases showing numerous shared Copy Number Alterations (CNAs)

both gains and losses, throughout the genome. These included

deletions of the tumor suppressor genes CDKN2A/B, RB1 and

PTEN [10]. Furthermore, an associated constitutional haplotype in

a locus near to the highly cited tumor suppressor locus MTAP-

CDKN2A has recently been identified in this breed [1]. Another

study concluded that deregulation of the expression of the

glycation end products (Receptor for Advanced Glycation End-

products; RAGE) and the high mobility group box1 protein

(HMGB1) potentially have a major effect on the progression of

malignant histiocytic disorders [14].

cDNA microarrays have become powerful tools in the study of

gene expression which has enabled improved classification of

various naturally occurring cancers [15,16] and have, once the

canine genome sequence became available [17] already proven

their value in the research of various canine sarcomas [18–20] but

not yet in HS. Thus, we examined shared genetic functional

aberrations of HS by comparing both forms of HS with normal

tissue, for which spleen was chosen.

The study of spontaneously occurring tumors in the dog, a

species which has a genetically stronger relationship to the human

than mice [21,22] can enrich the knowledge of rare human

cancers, and lead to more insight in the pathogenesis of the disease

and facilitate the identification of therapeutic targets valuable for

dog and human [1,11,18,20,21]. The outcome of this study

provides evidence of the existence of common differences in gene

activity between HS and normal spleen.

Materials and Methods

The experimental protocol (ID 2007.III.08.110) was peer-

reviewed by the scientific committee of the Department of Animals

in Science & Society, Utrecht University, The Netherlands, and

approved by the Animal Experiments Committee of the Academic

Biomedical Centre, Utrecht, The Netherlands. The Animal

Experiments Committee based its decision on ’De Wet op de

Dierproeven’ (The Dutch ’Experiments on Animals Act’, 1996)

and on the ’Dierproevenbesluit’ (the Dutch ’animal experiments

decree’, 1996). Both documents are available online at http://

wetten.overheid.nl.

Case Recruitment and Histopathological Evaluation
All tumor samples were confirmed as being spontaneously

occurring histiocytic malignancies and were obtained from family-

owned FCR with informed owner consent. All tumor material

used originated from the Dutch FCR, that had not received

radiotherapeutical or cytostatic treatment. Tumors were obtained

under sterile conditions, either as part of a routine diagnostic or

therapeutic surgical procedure, or immediately following eutha-

nasia. Directly after excision, samples were snap frozen in liquid

nitrogen, or alternatively by primary preservation in RNA-later, in

both instances followed by storage at minus 70uC. Tumor samples

collected adjacent to the site of the frozen or RNA-later preserved

samples were fixed in 10% neutral buffered formalin and routinely

processed for histological examination.

At the time of surgery or necropsy, the evident anatomical

location of all tumors was recorded for each individual and

categorized as either VHS, if a tumor was present in internal

organs (n = 7) or STHS, if the tumor was localized in a limb only

without identifiable metastases (n = 6) [8].

Histological specimens were classified by a board-certified

veterinary pathologist (GCMG) according to the recommenda-

tions and classification scheme defined by Affolter and Moore [6].

In all cases immunohistochemical staining with antibodies against

CD18 protein (the common subset of b2 adhesion integrins,

expressed in histiocytes, dendritic cells (DC), lymphocytes, and

polymorphonuclear leukocytes [23]) were used to confirm the

suspected histiocytic origin [8]. Results of this staining were

divided in two categories: negative or positive. If the differential

diagnosis based upon morphology included the potential origin of

other malignant round cell tumors (malignant lymphoma,

mastocytoma, melanoma, myeloma) appropriate immunostaining

to examine such potential histogentic origin was performed and

had to be negative. All tumor samples selected for the genetic

study contained over 50% tumor cells as assessed in histological

sections of biopsies of adjacent tissue. Patient details are listed in

Table 1.

As control tissue, normal spleen from (healthy) crossbreed dogs

(n = 6) was used as obtained at postmortem immediately following

euthanasia that was not related to neoplastic, endocrine or

metabolic diseases.

As a common reference pool a multitude of canine organs

(testis, liver, spleen, prostate, duodenum, lung, kidney and brain)

were used that had been obtained from healthy crossbreeds (n = 8)

euthanized for non-metabolic, non-tumorous lethal conditions.

The procedures were approved by the local ethics committee, as

required under Dutch legislation (ID 2007.III.08.110).

RNA Isolation
Approximately 30 mg of frozen tumor was transferred to a

container with 600 ml of Buffer RLT and was disrupted/lysed and

homogenized using a dismembrator (Braun Biotech Int., Melsun-

gen, Germany) for 45 s at 2200 rpm. Total RNA was isolated and

treated with DNase using the RNeasy mini kit (Qiagen, The

Netherlands) according to the manufacturer’s protocol. Quantity

and integrity were assessed with the Bioanalyzer Agilent

BioAnalyzer-2100 (Bioanalyzer, Agilent Technologies, Santa

Clara, CA) in combination with an RNA 6000 Pico-LabChip.

The average RNA integrity number 8.5 (range: 7.2–9.8) was found

to be appropriate [24]. RNA concentration was quantified using a

NanoDrop ND-1000 (Isogen Life Science) spectrophotometer.

Gene Expression Study: Canine Histiocytic Sarcomas
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Expression Profiling
RNA was labeled twice and hybridized against the common

reference RNA on dual channel arrays. RNA concentrations were

0.6 mg/ml at a minimum amount of 3 mg per sample.

RNA amplifications and labeling were performed on an

automated system (Caliper Life Sciences NV/SA, Belgium) as

described [25]. Dye swap of Cy3 and Cy5 was performed to

reduce dye bias. Hybridizations were done on a HS4800PRO

system supplemented with QuadChambers (Tecan Benelux

B.V.B.A.) using 500–1000 ng labeled cRNA per channel as

described [26]. Microarrays used were Agilent Canine Gene

Expression Microarrays V1 (Agilent Technologies, Belgium)

representing 42,035 canine 60-mer probes in a 4644 K layout.

Hybridized slides were scanned on an Agilent scanner

(G2565BA) at 100% laser power, 30% photomultiplier tube

voltage. After automated data extraction using Imagene 8.0

(BioDiscovery), printtip Loess normalization was performed [27]

on mean spot-intensities. Dye-bias was corrected based on a

within-set estimate as described [28].

Analyses were performed to detect common differences in gene

expression between the two groups of HS and healthy spleen

tissue. Data were analyzed using ANOVA [29] (R version 2.2.1/

MAANOVA version 0.98–7) (http://www.r-project.org/). In a

fixed effect analysis, sample, array and dye effects were modeled.

P-values were determined by a permutation F2-test, in which

residuals were permutated 5,000 times globally. Genes with

P,0.0002 after either family wise error correction (FWER) or

determination of false discovery rate (FDR) were considered

significantly changed. Genes with log2-fold changes of more than

0.5 or less than 20.5 were then selected to ensure that only robust

changes were considered.

The Gene Ontology (GO) database (http://www.geneontology.

org/) was used to check gene molecular and biological functions of

the remaining genes.

Functional Annotation
In general, pathway analysis in dogs has its restraints because

pathway identification relies heavily on existing functional

annotation, which is still limited for this species. Still, pathway

analysis provides an additional way to analyze expression data

across species. This may shed light on common pathways

important for tumor behavior and on finding new therapeutic

targets. To examine whether certain pathways are over- or under-

represented in the gene list, all genes significantly differentially

expressed between either STHS, VHS and normal spleen, were

introduced into DAVID (http://david.abcc.ncifcrf.gov/).

Quantitative Real Time PCR
Gene selection. Following the outcome of the microarray

expression profiling, ten genes were selected. Selection of ten genes

was based on significantly differently expression, M-fold changes

and potential biological function in relation with tumor develop-

ment.

These genes including their optimum temperature are listed in

Table 2.

RNA Isolation and cDNA Synthesis
Tissues from all but one patient (of which the insufficient tissue

remained for the qPCR experiment) were used in the microarray

experiment (six spleens, six STHS and seven VHS), furthermore

three additional samples (one normal spleen, one STHS and one

VHS that met the inclusion criteria) were added thus creating 3

groups of seven samples for the qPCR experiment. Total RNA

from these samples was isolated. After isolation, total RNA was

treated with DNase using the RNeasy mini kit (Qiagen, The

Netherlands) according to the manufacturer’s protocol.

Reverse transcription (RT) was performed of all 20 samples in a

80 ml reaction using 2000 ng total RNA, 16 ml iScript Reaction

mix and 4 ml iScript Reverse Transcriptase (iScript cDNA

Synthesis kit, Bio Rad, Veenendaal, The Netherlands). This

includes a mixture of oligo-dT random hexamer primers. The

mixture was incubated 5 min. at 25uC, 30 min. at 42uC and

followed by 5 min. at 85uC. Minus RT controls were prepared

from 500 ng of the same RNA under the same conditions, but

without addition of reverse transcriptase.

Reference Genes and Primer Development
Reference genes were selected as non-regulated reference genes

for normalization based on their stable expression in canine tissue

[30,31].

Using Ensembl, through annotated transcripts, PCR primers

were designed using the Perl Primer software (version 2.0.0.7) and

primer3 software (version 0.4.0) according to the parameters

outlined in the Bio-Rad i-cycler manual. The specificity of each

primer pair was confirmed by sequencing its product and also in

qPCR by checking the meltcurve and reaction efficiency.

GeneNorm was used to establish expression stability [32].

Amplicon sequence-reactions were performed using BigDye v3.1

according to the manufacturer’s (Life Technologies, Bleiswijk, The

Netherlands) instructions on an ABI31306L and analyzed in

Lasergene (version 9.1 DNASTAR) and confirmed the specificity

of each amplicon. Using RefFinder, the stability of nine reference

genes were checked. In Figure 1 they are listed according to their

stability. Four of the more stable primers were chosen for further

Table 1. Patient details.

Name Sex Pathology
AO
(yrs) Site(s)

Microarray/
PCR

D1, TJ MN STHS 7.7 shoulder Y/Y

D3, UH FN STHS 8 shoulder Y/Y

D4, BS MN STHS 6.5 elbow Y/Y

D5, BaS M STHS 7.6 knee Y/Y

D6, TV MN STHS 8.1 elbow Y/Y

D7, DV MN STHS 11 shoulder Y/Y

DX, YM MN STHS 9.7 shoulder N/Y

D2, BE M VHS 9.4 liver/spleen/
lnn abd

Y/Y

D8, DW M VHS 9.5 spleen/lnn abd Y/N

D9, JV FN VHS 8.9 lung/lnn mediast Y/Y

D11, BT F VHS 8.5 lung Y/Y

D12, AG M VHS 7.3 lung/spleen/
kidney

Y/Y

D13, TR FN VHS 7.9 lung Y/Y

D14, SG F VHS 4.1 lung/lnn mediast Y/Y

DX, SC MG VHS 10 liver/spleen N/Y

AO: Age of onset, M: male, MN: male neutered, F: female, FN: female neutered,
STHS: soft tissue (localized) histiocytic sarcoma, VHS: visceral (disseminated)
histiocytic sarcoma, lnn abd: abdominal lymphnodes, lnn mediast: mediastinal
lymph nodes Note: For cases with VHS the site sampled for gene expressionis
indicated in bold letters.
doi:10.1371/journal.pone.0071094.t001
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data analysis, namely ribosomal protein S5 (RPS5), signal recognition

particle receptor (SRPR), ribosomal protein L13(RPL13), hypoxanthine

phosphoribosyltransferase (HPRT).

Primers for all nine reference genes, including their optimum

temperature are listed in Table 3.

Quantative PCR
For qPCR, the Bio-Rad detection system (Bio-Rad.) with SYBR

green fluorophore was used. Reactions were performed in a total

volume of 25 ml containing 12.5 ml of 26SYBR green super mixes

(Bio-Rad Laboratories Ltd.), 1 ml of each primer at 400 nM

concentration, 0.8 ml of cDNA and 9.7 ml Rnase and Dnase free

water as previously described [33,34]. Q-PCR reactions for each

primer set were optimized by performing reactions under a

gradient of annealing temperature using three serial 166dilutions

of pooled cDNA from all tissue samples. Cycling conditions were

as follows: Denaturation (95uC for 5 min.), amplification cycle

repeated 45 times (95uC for 10 sec, 30 sec at the primer specific

annealing temperature (Table 2) and 30 sec at 72uC. The last step,

30 sec at 72uC was omitted when the annealing temperature was

higher than 58uC. A melting curve analysis was performed

following every run to ensure a single amplified product for every

reaction. All reactions were performed in duplicate. The reference

standard dilution series was repeated on every plate. Duplicate

negative controls, both a minus RT and a water control, were run

with every experimental plate to assess the specificity and to

identify any potential contamination.

Table 2. QPCR primers for genes of interest based on Microarray and pathway analyses.

Gene name Accession number Primer sequence (5’–3’) Forward/reverse

Annealing

T(6C)
Size
(bp)

PPBP XM_539315 ACTGTCTCTGGCATTCATCC F 59 116

AGGCAGATTCTCTTCCCATT R

GTSF1 XM_534784.3 GCAGAAAGAATCATCCTGATGTC F 57 221

GATCTTTATCCCAGTCTTCATCG R

Spi-C XM_849901.2 AATTACCTGGCTTTCATCAACC F 57 114

CAGCACTGTTTATTACTGTTCTCC R

VCAM1 NM_001003298 CTACAAGTCTACATCTCACCCA F 58 213

TTCCAGAATCTTCCAGCCTC R

ENPEP XM_535696.3 GCTTCCTTCTTTGAGTTCCT F 58 266

TTCCAAGTAAATCTGGCATCCT R

LUM XM_539716.3 CAAGACAGAAGGATTCAAAGCA F 55 132

GATGACAGCCCATAAATCGG R

ITGAD XM_843683.2 TCTTGTATTGAACTGCTCCA F 57 261

GTTGTAGACCTCATACTTCTCC R

Col3A1 XM_845916 ATAGAGGCTTTGATGGACGAA F 65 132

CCTCGCTCACCAGGAGC R

MYH11 XM_857838 GAGAGGACCAGTCCATTCTG F 59 253

GATGAATTTGCCAAATCGTGAG R

Thy1 XM_844606.2 CTGTGCTCAGAGACAAACTG F 58 185

TTAGCCAACTCAGAGAAAGTAGG R

Common genes chosen for qPCR development identified using microarray as being significantly different in both disseminated, Visceral Histiocytic Sarcoma (VHS) and
localized, Soft Tissue Histiocytic Sarcoma (STHS) compared to spleen. PPBP: Pro-platelet basic protein (chemokine (C-X-C motif) ligand 7), GTSF1: Gametocyte specific factor 1,
SPIC: Spi-C transcription factor, VCAM1: Vascular cell adhesion molecule 1, ENPEP: Glutamyl aminopeptidase (aminopeptidase A), LUM: Lumican, ITGAD: Integrin, alpha D,
Col3A1: Collagen, type III, alpha 1, MYH11: Myosin, heavy chain 11, smooth muscle, Thy-1 (CD90): Thy-1 cell surface antigen.
doi:10.1371/journal.pone.0071094.t002

Figure 1. Gene stability by Genorm for all nine reference genes.
Horizontal axis: Least stable genes (left) and most stable genes (right)
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), b-2-Microglobu-
lin (B2MG), Ribosomal protein S5 (RPS5), Ribosomal protein S19 (RPS19),
Hypoxanthine phosphoribosyltransferase (HPRT), Ribosomalprotein L8
(RPL8), B-Glucuronidase (GUSB), Signal recognition particle receptor
(SRPR), and Ribosomal protein L13 (RPL13).
doi:10.1371/journal.pone.0071094.g001

Gene Expression Study: Canine Histiocytic Sarcomas
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Data analysis was performed with IQ5 Real-Time PCR

detection system software (BioRad). Expression levels were

normalized using the average relative amount of the reference

genes. Log-values of normalized relative expression were used to

obtain normal distribution.

A Wilcoxon rank sum test was performed to determine the

significance of differential gene expression. All results were

Bonferroni corrected.

Results and Discussion

Differentiation between STHS and VHS was based on physical

examination and radiographic (thorax)/ultrasound examination

(thorax/abdomen). All dogs with visceral organ involvement were

euthanized followed by immediate autopsy. Histomorphology and

immunohistochemical staining for CD18 confirmed the suspected

histiocytic origin of tumors studied.

The Microarray enabled analysis of the expression of 42,034

features. Since only 21,682 (51% ) were annotated (CanFam 2.0),

it is possible that important genes are missed. When comparing

VHS and spleen, 4,235 features were significantly differentially

expressed. When only looking at 4-foldchanges or larger, 352

features remained. When comparing STHS with spleen, 5,779

features were significantly differentially expressed. In this com-

parison, when only looking at 4-foldchanges or larger, 437 features

remain.

Of the total of altered genes, 3,394 features were significantly

differentially expressed in both forms of HS versus normal spleen,

and 319 features remained when only 4-foldchanges or larger are

taking into account.

Figure 2 visualizes the heatmap of the ten genes that were

chosen for qPCR confirmation.

In order to improve knowledge on the genetic basis of HS and

to best exploit logistic and financial resources, we chose to examine

a selection of the significantly altered genes found in the

microarray experiment for confirmation by qPCR. Selection of

genes was based on the statistical significance of their differential

expression and their potential involvement in tumor development.

Since it is not possible to obtain pure samples of sedentary, non-

tumorous histiocytes for expression profiling, spleen tissue was

chosen as the normal equivalent of HS. HS arises from interstitial

DC, and hence emanate from lymphoid domains when these arise

from lymphoid organs such as the spleen [6], choosing spleen as a

control tissue is a logical choice.

As a result from the qPCR experiment, significantly altered

expression was confirmed for nine of the ten genes analyzed.

PPBP, SpiC, VCAM1, ENPEP and ITGAD were downregulated and

GTSF1, LUM, Thy1 and Col3a1 were upregulated in both STHS

and VHS compared to normal spleen. Table 4 shows the adjusted

p-values and Fold Change.

The use of spleen as the healthy equivalent of HS does raise

some concern as to how observed differences in Spi-C and VCAM1

gene expression between tumors and healthy spleen must be

explained. It is possible that some of these expression differences

are based on differences in tissue-origin rather than on actual

tumor development. Spi-C plays a critical role in the development

of splenic iron homeostasis. It is highly expressed in red pulp

macrophages, but not monocytes, dendritic cells or other tissue

macrophages. Spi-C is therefore highly expressed in spleen [35],

and could thus lead to cause a seemingly relative down-regulation

in HS tissues. Spi-C is also known to regulate VCAM1 expression

[35]. This gene is thought to be involved in angiogenesis and is

induced by cytokines on endothelial cells [36]. Since spleen tissue

contains abundant endothelium, this could cause the relative high

expression of VCAM1 in the spleen. ITGAD (also known as CD11d)

Table 3. Reference genes primers for qPCR.

Gene name Accession number Primer sequence Forward/ Reverse

Annealing

T(6C) Size (bp)

HPRT AY283372 AGCTTGCTGGTGAAAAGGAC F 56 104

TTATAGTCAAGGGCATATCC R

RPS19 XM_533657 CCTTCCTCAAAAAGTCTGGG F 61 95

GTTCTCATCGTAGGGAGCAAG R

RPL8 XM_532360 CCATGAATCCTGTGGAGC F 55 64

GTAGAGGGTTTGCCGATG R

SRPR XM_546411 GCTTCAGGATCTGGACTGC F 61 81

GTTCCCTTGGTAGCACTGG R

RPL13 AJ388525 GCCGGAAGGTTGTAGTCGT F 61 87

GGAGGAAGGCCAGGTAATTC R

GUSB NM_001003191 AGACGCTTCCAAGTACCCC F 62 103

AGGTGTGGTGTAGAGGAGCAC R

GAPDH NM_001003142 TGTCCCCACCCCCAATGTATC F 58 100

CTCCGATGCCTGCTTCACTACCTT R

B2MG XM_535458 TCCTCATCCTCCTCGCT F 61 85

TTCTCTGCTGGGTGTCG R

RPS5 XM_533568 TCACTGGTGAGAACCCCCT F 62.5 141

CCTGATTCACACGGCGTAG R

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), b-2-Microglobulin (B2MG), Ribosomal protein S5 (RPS5), Ribosomal protein S19 (RPS19), Hypoxanthine
phosphoribosyltransferase (HPRT), Ribosomalprotein L8 (RPL8), B-Glucuronidase (GUSB), Signal recognition particle receptor (SRPR), and Ribosomal protein L13 (RPL13).
doi:10.1371/journal.pone.0071094.t003
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is a receptor for VCAM1. In our study, we detected a lowered

expression of CD11d in HS as compared to normal spleen.

Staining by immunohistochemistry for the presence of CD11d

in both STHS and VHS was found negative in a first study by

Moore et al, including16 splenic HS [6] and this absence of the

CD11d protein in HS was seen as one of the phenotypically

characteristics of a myeloid dendritic antigen-presenting cell

lineage, making many HS to be likely myeloid dendritic cell

sarcomas [6]. In contrast, a more recent study in Flatcoated

Retrievers found the majority (12/20) of splenic HS positive for

CD11d [8] and was interpreted by the investigators as marker of a

likely red-pulp macrophagocytic origin of these splenic HS. A

similar rate of CD11d positivity was noticed by another study by

Moore et al examining hemophagocytic HS in spleen in a series of

dogs from 6 breeds [7]. CD11d proteins appear to be strongly

expressed only on mature granulocytes, monocytes, and certain

lymphocytes, but not significantly on myeloid committed precur-

sor cells [37] and hence, the low expression in many HS is no

surprise as is its positivity in hemophagocytic HS. Still, the finding

of positive expression in splenic HS by immunohistochemistry [8]

is at variance with earlier studies [6] and was interpreted as marker

of a likely red-pulp macrophagocytic origin of these splenic HS. In

our study, we detected a lowered expression of CD11d in HS as

compared to normal spleen.

The down-regulation of PPBP as was found in this study, has

also been reported to play a role in the development of myelomas

[38] as well as pancreatic cancers [39], in the latter report the

PPBP (CXCL7) plasma-level was even postulated to be an

interesting biomarker for early detection [39]. The close relation

in the origin of myeloma and histiocytic sarcoma, both stemming

Figure 2. Microarray-based heatmap of the ten genes chosen for qPCR. PPBP: Pro-platelet basic protein (chemokine (C-X-C motif) ligand 7),
GTSF1: Gametocyte specific factor 1, SPIC: Spi-C transcription factor, VCAM1: Vascular cell adhesion molecule 1, ENPEP: Glutamyl aminopeptidase
(aminopeptidase A), LUM: Lumican, ITGAD: Integrin, alpha D, Col3A1: Collagen, type III, alpha 1, MYH11: Myosin, heavy chain 11, smooth muscle, Thy-
1 (CD90): Thy-1 cell surface antigen.
doi:10.1371/journal.pone.0071094.g002

Table 4. Genes identified as potential interesting using gene profiling in both VHS and STHS compared to spleen.

Gene name
qPCR:Adj p-values VHS vs
Spleen

qPCR:Adj p-values STHS vs
Spleen

qPCR:Up/Down regulated
versus spleen

Spleen versus VHS resp STHS;
Fold Change

PPBP 7.661028 7.2361029 DOWN 23606, 210086

GTSF1 2.961024 5.2561025 UP 10006, 10006

Spi-C 2.061023 2.461024 DOWN 2126, 2516

VCAM1 0.011478 1.1 1024 DOWN 2106, 266

ENPEP 8.461024 2.061028 DOWN 23246, 214726

LUM 3.461023 5.4361027 UP 886, 486

ITGAD(CD11d) 8.561023 1.661023 DOWN 246, 22536

Col3a1 7.061023 0.010 UP 236, 186

Thy1 (CD90) 0.024 4.19E-05 UP 36, 66

PPBP: Pro-platelet basic protein (chemokine (C-X-C motif) ligand 7), GTSF1: Gametocyte specific factor 1, SPI-C: Spi-C transcription factor, VCAM1: Vascular cell adhesion
molecule 1, ENPEP: Glutamyl aminopeptidase (aminopeptidase A), LUM: Lumican, ITGAD: Integrin, alpha D, Col3A1: Collagen, type III, alpha 1, Thy-1 (CD90): Thy-1 cell surface
antigen.
doi:10.1371/journal.pone.0071094.t004
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from lineages of hematoproliferative compartments makes this

downregulation of PPBP an intriguing observation worthy of

further pursuit.

Expression and overexpression of LUM has been observed in

various types of cancer cells (colorectal, pancreatic, and breast

cancer, melanoma, neuroendocrine cell tumors) - with contrasting

findings on the relation with type of growth and/or tumor

progression or metastasis [40–46] - and in activated synoviocytes

from rheumatoid arthritis [47]. The function of lumican - a

member of the family of small leucine rich proteoglycans - in the

organization of the extracellular matrix composition as well as in

migration and proliferation- in relation to the observed overex-

pression in HS warrants further investigations, including the site of

overexpression (tumor cell or tumor-associated fibroblasts) [48].

In humans, an up regulation of GTSF1 is already known in the

occurrence of mycosis fungoides, which is the most common type

of primary cutaneous T-cell lymphoma, in which GTSF1 was

proposed as a gene for which expression appears to be restricted to

mycosis fungoides tumor stage and that might even serve as

diagnostic (bio)marker [49].

ENPEP probably plays a role in regulating growth and

differentiation of early B-lineage cells (http://www.wikigenes.

org/e/gene/e/13809.html) and down regulation may thus also be

involved in HS development.

Finally, Col3a1 also has been shown to be overexpressed in other

types of tumors, such as malignant mesothelioma [50], as well as in

human sarcoma xenotransplants [51]. Its overexpression could

have a significant influence upon extracellular matrix composition

[52].

Thy1 (CD90) is an important marker of many types of stem cells

[53], including mesenchymal stem cells [54]. CD90 has already

been identified as a candidate marker for cancer stem cells in

primary high-grade gliomas using tissue microarrays [55,56]. For

human hepatocellular carcinoma, CD90 has even been shown to

provide a clinical prognostic marker [53]. Our observation of

overexpression of CD90 in HS might herald stem cell character-

istics of the type of cancer.

For technical reasons, no qPCR data could be obtained for

Myh11.

As a result of the pathway analyses in DAVID, 24 pathways

were significantly involved in the development of HS (P,0.05).

Most were involved in the DNA repair and replication process.

The biological functions of ten of these pathways, amongst which

the P53 signaling pathway was one of the most relevant, are listed

in Table 5.

Our observations provide evidence of an association between

altered expression of nine genes (PPBP, SpiC, VCAM1, ENPEP,

ITGAD, GTSF1, COL3A1, CD90 and LUM) and development of

HS in the Flatcoated retriever dog, irrespective of the disseminated

or localized form.

Based upon a fundamental and evolutionarily conserved

association between cytogenetic abnormalities and tumor

phenotype in different species [10,57] these genes may be of

major interest in the study of histiocytic malignancies in the

human as well. There exists a great difference in incidence of

histiocytic malignancies between this specific dog breed as

compared to the human. This implies a genetic make-up

predisposing the Flatcoated retriever (and the Bernese Mountain

Dog); which is uncommon in many other dog breeds and

humans alike. For the Bernese Mountain Dog, a first genetic

locus has been identified. Our group takes part in a study

aiming to identify predisposing genes in the Flat Coated

Retriever in the hope, that these findings may provide clues

for the related cancer in the human.

The current study provides the most comprehensive database

of genome alterations in histiocytic malignancies to date,

revealing genes and signaling pathways not previously associated

with this disease. Although mRNA levels do not necessary

reflect differences in protein levels, it is very well conceivable

that the large difference in mRNA levels of specific genes will

result in quantitative differences in protein expression. Lack of

verified and specific antibodies for all nine gene products of

interest let us to restrain this expression profiles to mRNA levels

only. The study of Hedan [10] was able to locate recurrent

genomic imbalances using CGH. As indicated in Table 3 of

their publication [10], 808 genes found to be located in their

regions of interest. This covers about 4% of the total number of

genes. In the Agilent Canine Gene Expression Microarrays V1

that were used in our study, 430 of these 808 genes were

annotated. Three of these annotated genes; EN-

SCAFG00000007012 (SPIC), ENSCAFG00000001046 (DESI1)

and ENSCAFG00000006138 (LUM) were found to be com-

monly involved in our study as well as in Hedans study. In our

study, eventually two of these genes, SPIC and LUM, were

chosen for qPCR confirmation. We were indeed able to identify

the significantly altered expression of these two genes.

Conclusion

This is the first study to compare gene expression in HS (both

STHS and VHS) and normal spleen using both traditional fold

change analysis as well as disease-based pathway analyses using

DAVID.

This study provides evidence for involvement of several genes in

HS, irrespective of the form of manifestation, some of which are

also related with to other cancers. On the basis of quantitative

differences in expression, we consider PPBP, SpiC, VCAM1,

ENPEP, ITGAD (down-regulated), and GTSF1, Col3a1, CD90 and

LUM (up-regulated) to be associated with the HS genotype.

Extrapolation of this data to human samples may help to further

our understanding of the propagation and oncogenesis of

histiocytic cells. Eventually, this will contribute to the development

of effective therapeutic modalities for both species.

Table 5. Ten of the most significant pathways that resulted
from the pathway analyses in DAVID.

Category Term No of genes P-value

KEGG_PATHWAY cfa04142:Lysosome 25 1.62E-05

KEGG_PATHWAY cfa04110:Cell cycle 26 3.44E-05

CHROMOSOME 3 59 4.09E-05

CHROMOSOME 5 102 4.92E-05

CYTOBAND 3 59 5.78E-05

CYTOBAND 5 102 7.71E-05

KEGG_
PATHWAY

cfa03030:DNA
replication

11 4.61E-04

KEGG_
PATHWAY

cfa03050:
Proteasome

12 0.0016

KEGG_
PATHWAY

cfa04115:p53
signaling pathway

13 0.0076

KEGG_
PATHWAY

cfa03430: DNA
mismatch repair

7 0.0076

doi:10.1371/journal.pone.0071094.t005
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