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Summary. Naturally occurring glycosaminoglycans (GAGs) 
and other, semisynthetic, sulphated polysaccharides are 
thought to play an important role in urolithiasis. Processes 
involved in urinary stone formation are crystallization and 
crystal retention. Oxalate transport and renal tubular cell 
injury are determining factors in these processes. In this 
article experimental results concerning the possible mech- 
anisms of action of GAGs and other sulphated polysac- 
charides are reviewed. GAGs are inhibitors of crystal 
growth and agglomeration and possibly also of nucle- 
ation. They can prevent crystal adherence, correct an ab- 
normal oxalate flux and prevent renal tubular cell dam- 
age. 

Sulphated polysaccharides can be divided in two sub- 
groups, namely, glycosaminoglycans (GAGs) and other 
semi-synthetic sulphated polysaccharides. GAGs are poly- 
anionic polysaccharide chains composed of repeating di- 
saccharides of identical composition and variable lengths. 
Their molecular weight varies between 2 × 103 and 3 x 106 
Da. All have a similar structure with one of the five prin- 
cipal polymers hyaluronate, chondroitin, keratan, derma- 
tan or heparan. All except hyaluronic acid may be cova- 
lently attached to protein as proteoglycans [35]. 

GAGs are widely distributed in the body. Many physi- 
ological functions are attributed to these substances, but 
little is known in detail about their synthesis, distribution 
and metabolism. In adults, approximately 250 mg GAG is 
produced each day, only 10% of which is excreted in the 
urine. Urinary GAGs are enzymatic degradation products 
of proteoglycans that are excreted by glomerular filtration 
[50]. Renal tubular secretion or reabsorption has not been 
demonstrated [37]. Their excretion shows a circadian 
rhythm. Men excrete significantly more GAGs per 24 h 
than women, the levels varying between 10 and 30 gmol/ 
day as based upon measurements of the glucuronic acid 
moiety. Normal urine contains about 2% GAGs. Of the 
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GAG fraction, about 60% is chondroitin sulphate, 18% is 
keratan sulphate, 15% is heparan sulphate, 4% hyaluronic 
acid and 2% is dermatan sulphate [29]. Only is heparin 
does not appear in human urine. Many investigators 
[5, 14, 17, 25, 33, 61, 64, 65] have studied urinary 
GAGs, but it remains unclear whether there are qualita- 
tive and/or quantitative differences in urinary GAGs be- 
tween urolithiasis patients and normal individuals. More- 
over, we lack detailed knowledge about the role of GAGs 
in cell membrane function and its influence on cell sur- 
face properties. 

As early as 50 years ago, Butt [11] used an enzymatic 
induced hypersecretion of GAGs in the prevention of 
urolithiasis. This and the introduction of heparin-like drugs 
and sodium pentosan polysulphate (SPP) induced the in- 
terest of investigators to use these substances in stone pre- 
vention. Norman et al. [51, 52] first reported on the use of 
SPP in the treatment of urolithiasis. In humans, approxi- 
mately 3% of this drug is excreted in the urine after oral 
administration [58]. Animal studies with tritiated SPP 
demonstrated a high concentration of the label in rat urine 
and the urothelium after either i.v. or oral administration 
[53]. After 30 days of oral administration to rats the total 
GAG content in kidney tissue had not significantly 
changed, but a significant increase in the heparin fraction 
was observed. Changes in other GAG fractions observed 
during treatment with an induction of a lithogenic diet 
were prevented with simultaneous SPP administration 
[713. 

In humans after the administration of [125I]-SPR degra- 
dation products were found in urine; these occurred in a 
sulphated and desulphated macromolecular form and in a 
depolymerized form [45]. However, dermatan sulphate is 
well absorbed after oral administration but appears un- 
changed in urine [16]. Other semi-synthetic polysaccha- 
rides used in stone research are G871, G872 (both derived 
from seaweed [7, 13]) and CG-120 [48]. The effect of 
GAGs on calcium oxalate crystallization in urine has re- 
cently been reviewed by Hesse et al. [35] and Cat  et al. 
[12]. In this review we pay extra attention to recently in- 
troduced, new possible mechanisms for GAGs in stone 
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Table 1. The effect of sulphated polysaccharides on crystallization in vitro 

Authors Refer- Year Substances Crystals 
ence 

Effect on crystallization 

Nucl. Growth Aggr. 

Robertson et al. [62] 1973 

Hansen et al. [32] 1976 
Bowyer et al. [9] 1979 

Ryall et al. [66] 1981 

Drach et al. [18] 1982 
Martin et al. [44] 1984 

Norman et al. [52] 1985 

Fellstrtm et al. [19] 1985 

Kok et al. [39] 1988 

Danielson et al. [15] 1989 

Kohri et al. [38] 1989 

Osswald et al. [54] 1989 
McLean et al. [46] 1990 
Grases et al. [30] 1991 

Miyazawa et al. [48] 1991 

Cao et al. [13] 1992 SPP G871 G872 
Boev4 et al. [7] 1993 SPP G871 G872 

CS-A Heparin CaOx SCGM Inh. Inh. 
Heparin HA CS-A, B, C CaP Inh. Inh. 

CS-A CS-C CaOx SCGM Inh. Inh. 

CS Heparin CaOx SCGM Inh. Inh. 

Heparin CaOx2H20 MSMPR Prom. Inh. 

SPP CaOx SCGM Inh. 

SPP CaOx MSMPR Inh. Inh. 
Heparin SPP CaOx SCGM Inh. 

CS Heparin SPP CaOxH20 SCGM Inh. No effect 
SPP CaOx SCGM Inh. 

CS CaOx MSMPR Inh. Prom. 
HA Heparin CaOx MSMPR Prom. Prom. 

CS-A, B, C SPP CaOx MSMPR Inh. Inh. 
CS-A, C Heparin Struvite ISM No effect No effect 

CS SPP UA Turb. Inh. Inh. Inh. 
CG-120 SPP CaOx MSMPR Inh. 

SCGM Inh. Inh. Inh. 

CaOxH20 CCM Inh. Inh. 

CaP CCM Inh. Inh. 

Nucl., Nucleation; Aggr., aggregation; CS, chondroitin sulphate; 
HA, hyaluronic acid; CaP, calcium phosphate; UA, uric acid; 
SCGM, seeded crystal growth model; MSMPR, mixed suspension, 

mixed product removal system; ISM, infection stone model; Turb., 
turbidity measurement; Inh., inhibition; Prom., promotion 

formation/prevention. The mechanisms by which GAGs 
can influence crystallization and stone formation in urine 
are: 

1. Inhibition of crystal nucleation, growth and aggrega- 
tion 

2. Prevention of crystal adherence 
3. Correction of abnormal oxalate transport 
4. Protective effect on renal tissue 

Inhibition of crystal nucleation, 
growth and aggregation 

Crystal nucleation, growth and aggregation depend on su- 
persaturation and on crystallization inhibitors and promot- 
ers. Crystallization inhibitors can be divided into low- and 
high-molecular-weight substances. GAGs and the semi- 
synthetic sulphated polysaccharides belong to the high- 
molecular-weight inhibitors. In contrast to low-molecular- 
weight inhibitors, they can inhibit crystallization in very 
low concentrations. This effect can be explained only by a 
direct interaction of the polysaccharides with the crystals, 
blocking their growth sites and/or changing the crystal 
surface properties. 

Absorption on calcium oxalate crystals was demon- 
strated by Leal and Finlayson [41] with the solution de- 
pletion method, They observed a binding of heparin 
(63%) and chondroitin sulphate (70%). Later they found 
with the same method a Ca 2+- and Mg2+-dependent ad- 

sorption of heparin on sodium acid urate crystals [22]. 
Fellstr6m et al. [20] confirmed these data with binding ex- 
periments with radiolabeled heparin, chondroitin sulphate 
and SPR Under a condition of an excess of sodium urate 
crystals, up to 90% of the offered chondroitin sulphate 
was bound, whereas only 40% of the SPP was bound. 
None of the polysaccharides used showed binding to uric 
acid crystals under similar conditions. In 1989, Fellstr6m 
et al. [21] showed a very high affinity for the same poly- 
saccharides to calcium oxalate crystals. Binding was not 
influenced by the pH of the solution, but a lower binding 
affinity at a higher ionic strength was observed. Angell 
and Resnick [1] applied the Langmuir isotherm absorp- 
tion method to study the surface interaction between cal- 
cium oxalate and GAGs. Components known to be weak 
inhibitors bind with less affinity than strong inhibitors. 
Zeta-potential measurements provided evidence for the 
binding of SPP and two newly developed sulphated poly- 
saccharides, G871 and G872, to calcium oxalate monohy- 
drate [13] and calcium phosphate crystals [7]. The highly 
negatively charged polysaccharides reduce the zeta poten- 
tial of the crystals, the effect being more pronounced with 
G872 than with G871 or SPR 

The effect of sulphated polysaccharides on crystalliza- 
tion has been studied in vitro by many investigators using 
different crystallization models with different crystals, 
different media and different inhibiting substances (Table 
1). The majority of the investigators have found that crys- 
tal growth and aggregation is inhibited to various degrees. 
The results obtained in different model systems are not 



comparable and may or may not be considered represen- 
tative for the processes occurring in the human urinary 
system. We tested all available GAGs and semi-synthetic 
polysaccharides in a constant composition system and a 
seeded crystal system (unpublished data). According to 
our results, the relative inhibitory activity on calcium ox- 
alate crystal growth is: semi-synthetic sulphated polysac- 
charides> heparin > chondroitin sulphate. Several factors 
must be considered that can influence the results obtained, 
including (a) the total polysaccharide mass bound to the 
crystal surface, (b) the molecular weight, (c) the site and 
degree of sulphation of the polysaccharides and (d) the 
existing state of the polymers in solution. 

The effect of the different polysaccharides on crystals 
other than CaOx is less well established. Several investi- 
gators have shown that only low-molecular-weight sub- 
stances such as citrate, magnesium, phosphocitrate, py- 
rophosphate and diphosphonates can inhibit calcium phos- 
phate crystallization. Hansen et al. [32] and Boev6 et al. 
[7] showed inhibition of calcium phosphate crystallization 
by heparin, hyaluronic acid, SPP and G872. We did not 
find a report on the inhibition of uric acid growth or ag- 
gregation. Recently McLean et al. [46] showed no effect 
of sulphated polysaccharides on struvite formation. 

Colloidal monosodium urate was believed to reduce 
the inhibitory activity of urinary GAGs in calcium oxalate 
urolithiasis with hyperuricosuria [63, 67]. Recently, 
Grover et al. [31] concluded that "urate does not exist in 
urine in a colloidal or crystalline form, and that the pro- 
motion of calcium oxalate crystallization by urate is not a 
consequence of its reducing the inhibitory activity of 
GAGs". 

Butt [11] introduced the idea that urinary colloids 
might be active in the prevention of urolithiasis. The 
highly sulphated and therefore highly negatively charged 
polysaccharides are supposed to bind to the urinary crys- 
tals and in that way stabilize the urinary colloidal system. 
According to the protective colloidal theory, crystal ag- 
gregation will be inhibited with an increase of the crystal 
surface charge. The inhibitory activity of different sul- 
phated polysaccharides is related to their surface charge, 
as has been elegantly demonstrated with the zeta-poten- 
tial measurements of Robertson et al. [62] and Cao et al. 
[13]. 

Apart from the GAG-crystal interaction, there is evi- 
dence that urinary polysaccharides can inhibit calcium ox- 
alate crystallization by lowering the urinary supersatura- 
tion. Hesse et al. [34] found with an equilibrium analysis 
that 1 gmol chondroitin sulphate can bind 0.76 ~tmol cal- 
cium. This binding can, dependent on the pH value, be in- 
hibited by urate ions to a maximum of 31%. We do not 
think that this effect will have a significant impact on the 
urinary supersaturation, since the concentration of urinary 
GAGs can exert only little effect, if any, on the urinary 
calcium concentration. 

In an animal experiment using a lithogenic diet with 
sodium glycolate in the rat, Subha and Varalakshmi [70] 
have found that after oral administration of SPR the uri- 
nary oxalate and calcium excretion decreases by 25% and 
20%, respectively. The glycolate-induced hyperoxaluria is 
reduced by 20% after oral administration of SPR They 
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also found a moderate increase in urinary magnesium levels 
after 30 days of SPP administration. However, Michelacci 
et al. [47] did not find a protective effect on experimen- 
tally induced calcium oxalate crystallization in the rat blad- 
der following intraperitoneal administration of chondroitin 
sulphate to rats. 

GAGs can be found in matrix from stone. Heparan sul- 
phate is the main GAG occurring in soluble stone matrix 
[73]. It can be speculated as to whether GAGs in the stone 
matrix are promoters of crystallization of whether they are 
inhibitors adsorbed to the crystal surface. 

Prevention of crystal adherence 

Crystallization alone is insufficient to explain the occur- 
rence of urinary stones. Adherence of crystals to the uro- 
thelium is an additional prerequisite for stone formation, 
as Finlayson et al. [23] have suggested. These authors cal- 
culated that the transition time of urine is too short for free 
crystals to grow into urinary stones. Therefore, it is im- 
portant to study the interaction of crystals with mucosal 
surfaces. In fact, not only urolithiasis but also urinary tract 
infection and bladder cancer may be mediated by the ad- 
herence to the urothelium of, respectively, crystals, bacte- 
ria or carcinogens. 

The normal urothelium is lined with a GAG layer [49]. 
Parsons and co-workers [56, 57] showed in a good exper- 
imental set-up that the GAG layer, produced by transi- 
tional cells lining the rabbit bladder, prevented bacterial 
adherence. When this GAG layer was removed by prota- 
mine sulphate treatment, bacterial adherence increased. 
Exogenous sulphated polysaccharides can reverse the pro- 
tamine-induced changes. Gill et al. [27] demonstrated the 
same effect on calcium oxalate crystal adherence. They 
showed an elevation of the metastable limit for nucleation 
and an absence of nucleation on the reaction container 
surface in a urothelium-lined system. When the urothe- 
lium was injured with a detergent there was a marked in- 
crease in crystal adhesion [26]. Heparin had a pronounced 
effect in restoring the normal crystal adhesion properties 
of the injured urothelium. Chondroitin sulphate-C and 
hyaluronic acid had no protective effect [28]. Smith [69] 
demonstrated that chondroitin sulphate and heparin fully 
restored the anti-adherence properties of the urothelium 
after acid treatment, whereas SPP caused only a partial 
restoration. 

The above-mentioned experimental models in vivo show 
the importance of  an intact epithelial membrane. Sul- 
phated polysaccharides are a very important constituent of 
this membrane. They create a highly organized, imperme- 
able water layer that might be responsible for the preven- 
tion of crystal adherence. 

Recently, more investigators have realized the impor- 
tance of the role that renal tubular cells play in initial 
stone formation. The concept that cellular injury and dys- 
function are underlying causes of urolithiasis has been ac- 
cepted. Mandell et al. [43] studied the crystal-membrane 
interactions with red blood cells in vitro. The membrano- 
lysis induced by weddellite and sodium urate was inhibited 
after the addition of chondroitin sulphate-A, chondroitin 
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sulphate-C and heparin. Later, Riese et al. [60] developed 
a cell culture model of renal papillary collecting tubule 
cells in which they demonstrated cell injury (loss of cell 
membrane polarity induced by ethylene glycol tetraacetic 
acid, EGTA) enhanced calcium oxalate crystal adherence. 
GAGs have not yet been tested in this model. 

More recently, crystal adherence studies have been 
carried out in our laboratory using renal tubular cell lines. 
Verkoelen et al. [72] demonstrated a time- and concen- 
tration-dependent adhesion and/or endocytosis of 14C- 
baleled calcium oxalate monohydrate crystals to mono- 
layers of MDCK and LLC-PK1 cells. It was demonstrated 
that monolayers with a higher degree of differentiation 
were better protected against crystal adherence. Pretreat- 
ment of the crystals with sulphated polysaccharides pre- 
vented crystal adherence, in contrast to pretreatment of 
the monolayer with these compounds. In general, semi- 
synthetic polysaccharides are more effective in preventing 
crystal-cell interactions than are GAGs [72]. These cell 
models will be used to study the interaction between crys- 
tals and renal tubular cells in more detail. Primary cul- 
tures of proximal and distal renal tubular cells are needed 
for more conclusive results. 

Parsons et al. [59] have found an inhibition of sodium 
urate crystal adherence to the bladder surface by SPR 
They have also demonstrated that in the experimental set- 
ting, pretreatment of the crystals is more effective than 
pretreatment of the mucus-deficient bladders. Their re- 
sults have been confirmed by Pantazopoulos et al. [55]. 
One can speculate that the previously well-documented 
interaction between polysaccharides and urinary crystals 
is of more importance in stone prevention than an intact 
GAG coating of the urothelium. The GAG coating pro- 
duced by the cells is a very highly organized layer. The 
GAGs added to the culture medium or the bladder cannot 
easily be incorporated in this layer. 

Recently, Lieske and Toback [42] found evidence that 
calcium oxalate monohydrate, brushite and hydroxyap- 
atite crystals are endocytosed by MDCK and BSC-1 cell 
lines. Heparin is one of the substances inhibiting this 
process. These investigators think that the surface of the 
cell, rather than the crystal, appears to be the locus at 
which heparin and other substances act to inhibit endocy- 
tosis. Crystal endocytosis could be an important patho- 
genic step in urolithiasis. 

Future studies will have to reveal whether increased 
crystal adherence to cells is caused by a defective GAG 
layer on the cell surface or whether the crystals them- 
selves induce cell dysfunction (by endocytosis?), resulting 
in an abnormal surface coating. Is there secretion of 
GAGs by renal tubular cells and, if so, is this of impor- 
tance in stone prevention? 

(inherited) factor involved in idiopathic calcium oxalate 
urolithiasis. 

Baggio et al. [3] reported an increased oxalate flux 
across red-cell (RBC) membranes in calcium nephrolithi- 
asis patients. They speculated that in idiopathic urolithia- 
sis patients there may be a genetic cellular defect or mem- 
brane disorder causing the increase in oxalate transport. 
This could also involve the renal oxalate handling. The 
defect can be corrected by administration of a mixture 
of heparan and dermatan sulphate [4]. These investiga- 
tors demonstrated an increased phosphorylation of anion 
transporters (band 3 protein) in RBC ghosts derived from 
urolithiasis patients that may result in a high level of ox- 
alate transport. This phosphorylation can be reduced by 
treatment with GAGs. 

Protective effect of GAGs on renal tissue 

There is increasing evidence that some form of renal tubu- 
lar disfunction such as abnormal renal handling of various 
ions [68] might be related to tubular damage (as evi- 
denced by enzymuria) [2, 36] and be involved in urolithi- 
asis. Recently, Subha and Varalakshmi [70] found a sig- 
nificantly increased urinary excretion of enzymes (lactate 
dehydrogenase, LDH; alkaline phosphatase; y-glutamyl 
transpeptidase, y-GT, and ~-glucuronidase) in rats treated 
with a stone-inducing diet containing sodium glycolate. 
This finding indicates proximal tubular damage and mem- 
branuria. SPP treatment normalized the excretion of LDH 
and moderately decreased that of alkaline phosphatase, 
y-GT and [3-glucuronidase. 

In animal models, crystal formation can be induced by 
renal tubular injury with gentamycin sulphate or ammo- 
nium chloride with ethylene glycol [8, 40]. A variety of 
ultrastructural changes appear in the proximal tubular 
cells. Also, a dilatation of the proximal renal tubules oc- 
curs and, later, intracellular crystals appear; these have 
been proven to be calcium oxalate monohydrate crystals 
[10]. In this animal model, orally applied exogenous sul- 
phated polysaccharides G872 and SPP can prevent the de- 
scribed tubular cell injury [6]. 

The long-term administration of heparin and dermatan 
sulphate can also prevent morphological renal alteration 
and albuminuria in diabetic rats [24]. Abnormal GAG me- 
tabolism could determine the loss of glomerular basement 
membrane anionic charges. Gambaro et al. [24] demon- 
strated in rats with streptozotocin-induced diabetes that 
daily s.c. injections of heparin and dermatan sulphate in- 
creased the glomerular anionic charge and prevented glo- 
merular basement membrane thickening. The glomerular fil- 
tration rate did not decrease and albuminuria did not occur. 

Correction of abnormal oxalate transport 

Hyperoxaluria is now considered to be the most important 
risk factor in calcium oxalate urolithiasis. Renal leak, in- 
testinal hyperabsorption or high degrees of endogenous 
oxalate production can cause high levels of oxalate excre- 
tion. It is unknown as to whether or not there is a common 

Open questions 

In the past 20 years, much effort has been invested in dis- 
covering the cause of urolithiasis. Several test systems in 
vitro and in vivo have been developed. It is now clear that 
supersaturation is not the only factor that should be taken 
into account. The lack of inhibitory activity might be the 
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most important risk factor in urolithiasis. GAGs are proba- 
bly among the strongest inhibitors of crystallization. We 
think that it is of  great importance that the factors influ- 
encing the role of GAGs in urolithiasis be clarified in de- 
tail: 

1. Is there a difference in urinary GAGs  between stone- 
formers and healthy persons in synthesis, metabolism, 
molecular  structure or conformat ion in ur ine? 
2. Which individual  G A G  is an inhibitor  and which is a 
promoter of crystall ization? 
3. What  is the mechan i sm of crystal adherence and crys- 
tal endocytosis? How are these processes inf luenced by 
sulphated polysaccharides? 
4. Can semi-synthetic  polysaccharides prevent renal tu- 
bular cell damage in stone patients? 
5. Is it possible to prevent stone recurrence by treatment 
with semi-synthetic  sulphated polysaccharides? 
6. Can the funct ion of semi-synthetic  polysaccharides be 
improved by increasing the degree of sulphation or chang- 
ing the molecular  structure? 

To address these and numerous  other questions remaining  
open, ongoing research will have to focus on both the uri- 
nary and the cellular processes involved in stone forma- 
tion. Such research will answer some questions but will 
probably put forward new ones as well. 
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