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Abstract

We have developed an enhanced form of reduced representation bisulfite sequencing with extended genomic coverage,
which resulted in greater capture of DNA methylation information of regions lying outside of traditional CpG islands.
Applying this method to primary human bone marrow specimens from patients with Acute Myelogeneous Leukemia (AML),
we demonstrated that genetically distinct AML subtypes display diametrically opposed DNA methylation patterns. As
compared to normal controls, we observed widespread hypermethylation in IDH mutant AMLs, preferentially targeting
promoter regions and CpG islands neighboring the transcription start sites of genes. In contrast, AMLs harboring
translocations affecting the MLL gene displayed extensive loss of methylation of an almost mutually exclusive set of CpGs,
which instead affected introns and distal intergenic CpG islands and shores. When analyzed in conjunction with gene
expression profiles, it became apparent that these specific patterns of DNA methylation result in differing roles in gene
expression regulation. However, despite this subtype-specific DNA methylation patterning, a much smaller set of CpG sites
are consistently affected in both AML subtypes. Most CpG sites in this common core of aberrantly methylated CpGs were
hypermethylated in both AML subtypes. Therefore, aberrant DNA methylation patterns in AML do not occur in a
stereotypical manner but rather are highly specific and associated with specific driving genetic lesions.
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Introduction

Acute myeloid leukemia (AML) is considered to be a genetically

heterogeneous group of diseases, featuring functionally distinct

somatic mutations and chromosomal translocations [1]. Many of

these mutations involve aberrant transcriptional and epigenetic

regulators, such as translocations involving chromosome 11q23,

which fuse the N-terminal portion of the Mixed Lineage Leukemia

protein (MLL) to various fusion partners. MLL fusion proteins

feature aberrant chromatin modifying functions and drive

leukemogenesis through aberrant transcriptional activation of

target genes such as HOXA9 [2–4]. More recently, AML

associated heterozygous somatic mutations of isocitrate dehydro-

genase 1 or 2 (IDH1 or 2) were shown to result in a gain of

function enzyme that uses alpha-ketoglutarate (aKG) as a

substrate to generate the oncometabolite 2-hydroxyglutarate

(2HG) [5]. Accumulation of 2HG inhibits the function of aKG-

dependent enzymes including the TET family of dioxygenases [6–
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8]. TET proteins contribute to DNA demethylation by hydrox-

ylating 5-methylcytosine (5mC) [9]. 2HG-induced suppression of

TET proteins leads to accumulation of DNA methylation with

effects on epigenetic gene regulation [10].

DNA methylation profiling of AMLs indicate that disruption of

promoter cytosine methylation patterning is a universal feature of

the disease. Promoter methylation signatures identify AML as

composed of sixteen epigenetically defined subtypes [11]. One of

these epigenetically defined AML subtypes feature 11q23 trans-

locations and another features IDH1/2 somatic mutations.

Indeed, abnormal promoter methylation has been noted in several

other cancers. Recent more comprehensive DNA methylation

sequencing studies indicate that cancers display perturbed cytosine

methylation compared to normal tissues either on the basis of

changes in CpG island methylation or alternatively at CpG shores,

and have offered partially different visions of how DNA

methylation is perturbed in tumor cells, in part influenced by

technical differences in methods used to capture this information

[12–14]. However, direct and quantitative genome scale studies of

cytosine methylation perturbation in the context of tumors with

specific genetic backgrounds have not been published for any

cancer. Hence it is not known whether epigenetic patterning in

cancer has a stereotypical pattern with a subtext of certain

promoter specific aberrancies, or whether epigenetic patterning is

mechanism and tumor subtype specific. One practical way to

approach this question is through reduced representation bisulfite

sequencing (RRBS), an efficient method for quantitative, base-pair

resolution of cytosine methylation across the genome [15,16].

However, this procedure has been shown to mainly represent CpG

islands at the expense of other genomic regions [17,18]. In order

to address the question of whether DNA methylation patterning is

stereotyped or mechanism specific in tumors, we established an

enhanced RRBS procedure (ERRBS) that provides biochemical

and bioinformatic methodological improvements that generate

more extensive and balanced coverage of CpGs. ERRBS analysis

of normal hematopoietic stem cells in comparison with MLL

rearranged (MLLr) or IDH1/2 mutant (IDH-mut) AMLs reveals

that DNA methylation patterning is established in a profoundly

distinct and mechanism specific manner in AMLs.

Results

Expansion of RRBS for enhanced coverage of genomic
CpG methylation

We sought to examine quantitative, base-pair resolution DNA

methylation patterns in clinical specimens with limited cell

numbers, with adequate coverage of CpGs both within and

outside of CpG islands. To accomplish this, we developed a

modified version of the RRBS protocol, which retains its

quantitative base-pair resolution while improving the coverage of

regions outside CpG islands. We first validated the performance of

the original RRBS assay using genomic DNA extracted from the

HCT116 colon cancer cell line. We observed that RRBS yielded

robust and reproducible results over a wide range of starting

material ranging from 5 ng to 1000 ng (Figure S1A) without any

significant sequencing strand bias (Figure S1B).

We next modified RRBS into a format that would be practical

to perform in limited clinical specimens. First, we eliminated an

intermediate clean-up procedure between the two rounds of

bisulfite treatment in order to minimize sample loss during library

preparation. Instead of two rounds of bisulfite conversion as

previously described [16,19] we used just one 16-hour round using

the EZ DNA Methylation Kit (Zymo Research, CA) with slight

modifications to the manufacturer’s suggested protocol (see

methods section). This approach routinely achieves a conversion

rate greater than 99.8% in both human and murine samples

(Table S1). Conversion rates .99% with RRBS have been

observed but not consistently achieved and rarely surpass 99.5%,

even with repeated rounds of bisulfite conversion [16].

While RRBS has been shown to reliably detect gain of

methylation, its ability to accurately detect genome-wide loss of

methylation has not been extensively probed. Yet this is essential

for clinical samples, since aberrant hypomethylation can be a

dominant feature of tumor cells [7,11,12,20]. Furthermore, DNA

methyltransferase (DNMT) inhibitor drugs currently used in the

clinic are capable of inducing extensive hypomethylation [21]. In

order to examine the dynamic range of the RRBS, we compared

and contrasted the methylomes of HCT116 cells and the related

cell line HCT116-DKO clone 2 (DKO2) which lacks DNMT1

and DNMT3b [22]. DNA methylation in HCT116 showed the

expected bimodal distribution, with the vast majority of CpG sites

in the 0–10% and 90–100% methylation range (Figure S1B). In

contrast, the DKO2 cell line had a unimodal peak containing

.83% of the reads with levels of methylation of 0–10%. Only

5.5% of DKO reads displayed .50% methylation. (Figure S1C).

Even under these extreme hypomethylated conditions the

modified bisulfite treatment protocol continued to perform

robustly (conversion rate = 99.9%). We further validated the

accuracy of the ERRBS assay with MassArray Epityping at 45

individual CpG sites, showing an extremely high degree of

correlation (r = 0.97) (Figure S1D).

An increasing body of evidence demonstrates that biologically

relevant changes in DNA methylation in cancer occur beyond

CpG islands [12,13,23]. Because RRBS only interrogates CpGs

within short MspI delimited fragments between 40 to 220 bp, it is

inherently biased towards representing CpG islands, which

typically contain more densely clustered MspI sites [17,18]. In

order to enhance the capture of regions beyond CpG islands, MspI

fragments ranging from 70–320 bp were selected instead. This

enhanced RRBS (ERRBS) method yielded a 75% increase in

coverage of CpG sites with a 54% increase in coverage of CpG

shores (defined as 2000 bp flanks on upstream and downstream of

CpG islands). We also observed a 58% increase in the number of

introns captured vs. RRBS, a 54% increase in the number of

exons and an 11.9% increase in the number of promoter regions

(Figure 1A and 1B).

While the original RRBS alignment strategy used an MspI

fragmented genome as a reference, whole-genome alignment

strategies can also be applied to these data [18]. In a direct

comparison of both strategies, we observed that a whole-genome

Author Summary

Acute myeloid leukemias (AML) are a group of malignan-
cies that originate in the bone marrow. While many
different genetic lesions have been linked to the different
forms of this disease, it is also clear that these genetic
lesions are not always sufficient to cause AML. DNA
methylation plays a role in gene expression regulation, and
abnormal distribution of DNA methylation has been
observed in many cancers, including AML. Here we
demonstrate that changes in DNA methylation in AML
are not uniform across all AML subtypes, but rather they
display unique patterns, which are closely linked to the
underlying genetic lesions of each of the different forms of
AML. Furthermore, these unique patterns of DNA methyl-
ation have different impacts on gene expression regula-
tion in each AML subtype.

Subtype-Specific DNA Methylation in AML
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alignment approach using the Bowtie aligner via the Bismark

software [24] more than doubled the number of aligned reads

which resulted in an increased recovery of the number of CpGs

(mean increase 200,154+/2135,012) (Figure 1C). Eliminating the

use of an MspI site as the absolute alignment requirement at the

beginning of reads, as well as the use of a longer (32 bp) seed

length, further improved accuracy by excluding those reads that

had the potential for more than one unique match or mismatch

(Figure 1D). Theoretically, no reads should map to regions of the

genome that are not flanked by an MspI restriction sites, yet we

found that on average 29% of the aligned reads mapped to non-

MspI fragments. These fragments, which would be discarded

when using in silico digested genomes for alignment, were likely

produced due to either restriction enzyme non-specific activity, the

presence of partially degraded DNA at the onset of the protocol, or

variations in the patient genome compared to the reference

genome. Collectively these approaches enhanced not only

genomic coverage, but also alignment efficiency and accuracy.

Tumor subtype–specific DNA methylation patterns
extend beyond promoter regions

We previously reported that IDH-mut and MLLr AMLs

distribute to different DNA methylation clusters and have distinct

promoter DNA methylation signatures compared to normal

CD34+ bone marrow controls (NBM) [10,11]. We performed

ERRBS in two IDH-mut AML samples, two MLLr cases

harboring t(9;11)(q22,q23) translocations, and two NBM samples.

ERRBS covered an average of 2,082,426 CpGs per sample. In

addition to the expected high correlation between the NBMs

(r = 0.96) there was a remarkable degree of correlation between

the two IDH patients (r = 0.93) and the two MLLr patients

(r = 0.92) (Figure S2), which far exceeded the correlation between

MLLr and IDH-mut patients (r = 0.85–0.88), suggesting a strong

link between genetic background and its effects on cytosine

methylation. Unsupervised analyses using hierarchical clustering

(1-Pearson correlation distance + Ward clustering method) and

principal component analysis revealed that, even with this greatly

enhanced representation of the genome, ERRBS methylation

profiles from IDH-mut and MLLr naturally segregate from each

other just as strongly as from NBM (Figure 2A and Figure S3A). In

order to determine whether this natural segregation was driven

solely by promoter differences in methylation, as captured in our

previous studies, or whether biologically relevant differences were

conserved in all genomic regions, we repeated the clustering

analysis using only CpG sites within defined genomic regions. We

found that using either (1) all non-promoter CpGs, (2) non-

Figure 1. ERRBS improves genomic coverage and alignment accuracy. (A) Average CpG number coverage for ERRBS (red) and RRBS (green)
methods (n = 3, samples NBM_#2, AML and MLLr_#1). (B) Average percent coverage of different genomic regions by ERRBS (red) and RRBS (green)
(n = 3, samples NBM_#2, AML and MLLr_#1) (C) Average percentage of uniquely aligned reads using a whole genome reference strategy (black) or
an MspI in silico digested genome reference (gray) (n = 4, samples NBM_#2, AML_Rep#2, MLLr_#1 and MLLr_#2) (D) Example of a misalignment
due to the use of a reduced representation bisulfite converted reference genome. The read aligns to a unique genomic location using the MspI
alignment algorithm (forward strand, chr1: 876391–876441), however the same fragment does not align uniquely when using a whole genome
alignment algorithm, rather it also aligns to the reverse strand of chr 2: 130,704,784–130,704,833.
doi:10.1371/journal.pgen.1002781.g001

Subtype-Specific DNA Methylation in AML
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Figure 2. Diametrically opposed DNA methylation patterns in MLLr and IDH-mut AMLs. (A) Unsupervised analysis of DNA methylation by
ERRBS using hierarchical clustering (distance = 1-Pearson correlation, Ward’s agglomeration method) segregates the samples into their three
biological groups using all CpGs. (B) This segregation is maintained when unsupervised analysis is performed on non-promoter CpGs. (C)
Chromosome ideogram representing differential methylation in IDH-mut AMLs vs. NBM (left) and MLLr AMLs vs NBM (right). Only CpGs with q-
value,0.01 and methylation difference of at least 25% are shown. Magenta points represent hypermethylation and green ones represent
hypomethylation relative to NBM. (D) Stacking barplots showing percentage of hyper and hypomethylated DMCs out of all covered CpGs for each
chromosome in IDH-mut AMLs (left) and MLLr AMLs (right). Green represents proportion of hypomethylated DMCs and magenta represents
hypermethylated ones.
doi:10.1371/journal.pgen.1002781.g002

Subtype-Specific DNA Methylation in AML
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promoter intron CpGs, or (3) CpG sites at CpG islands and shores

regardless of genomic location, the clustering results still retained

the natural segregation into the biological groups (Figure 2B and

Figure S3B–S3E). Notably, when the clustering was performed on

CpG island-associated CpG sites (Figure S3D), IDH-mut AMLs

segregated further apart from NBMs and MLLr AMLs, indicating

that these sites are likely to be more heavily involved in the

aberrant DNA methylation profiles of these AMLs. These findings

demonstrate the existence of robust AML subtype-specific DNA

methylation patterns, which extend beyond promoters to include

other genomic regions.

Diametrically opposed aberrant DNA methylation in IDH-
mut and MLLr AML subtypes

In order to identify the nature of the differences between IDH-

mut and MLLr AMLs , the cytosine methylation profiles of these

tumors were compared to normal CD34+ bone marrow cells from

healthy donors (NBM), using logistic regression (FDR at

alpha = 0.01). In addition to statistical significance, we required

a minimum cutoff of 25% methylation difference. This analysis

revealed striking differences in the way that these two forms of

AML differed from normal hematopoietic stem and progenitor

cells. Specifically, we observed that IDH-mut AMLs display

profound hypermethylation distributed across all chromosomes. In

marked contrast, comparison of the cytosine methylation profiles

of MLLr AMLs to NBM samples identified a predominance of

aberrantly hypomethylated CpG site (Figure 2C and 2D). More

specifically, we identified 62,367 differentially methylated cytosines

(DMC) between IDH-mut AMLs and NBM, 89.6% of which were

aberrantly hypermethylated in the leukemias and only 10.4%

hypomethylated. Among the 85,216 DMCs identified in MLLr

AMLs we observed a vastly different and opposing distribution

(Chi-square test, p-value,0.0001), with only 28.5% of DMCs

displaying hypermethylation and 71.5% being hypomethylated.

The above results remained valid even when we used a more

stringent cutoff of 40% methylation difference or a more relaxed

cutoff of 10% (Figure S4A and S4B). These results demonstrate

that the directionality of DNA methylation changes acquired

during malignant transformation of myeloid hematopoietic cells is

not uniform across all AML subtypes and that DNA methylation

changes are indeed diametrically opposed in these two AML

subtypes.

Mutually exclusive targeting of aberrant CpG
methylation sites in IDH versus MLL mutant AMLs

Previous studies in AML were restricted to promoter micro-

arrays [11,25] or locus specific assays [25] that do not provide

wide-spread and unbiased base pair resolution. Thus, it is not yet

fully understood how aberrant DNA methylation is distributed in

AML beyond these limited regions. Moreover, it is not clear

whether results from studies carried out on certain solid tumor

specimens [12,13] are generally applicable to cancer, nor whether

genetic background of tumors, and more specifically AML, can

have an influence on what regions are perturbed. The base pair

resolution and extended genomic coverage of ERRBS make it well

suited to address these questions. To compare methylation status

across all samples, we first identified a total of 574,178 CpGs

adequately represented by ERRBS (.106 coverage; on average

536 coverage per base) in all specimens. Of these, 94,245 CpGs

were differentially methylated (methylation difference .25%) in

either one or both subtypes. Notably, 87.3% (n = 82,312) of these

DMCs were non-overlapping and thus unique to either IDH-mut

or MLLr leukemias (Figure 3). More specifically, 51,586 DMCs

were identified in IDH-mut AMLs, of which the majority of CpGs,

or 76.8%, were unique and non-overlapping with MLLr. In the

case of MLLr AMLs, there were 54,592 DMCs, 78% of which

were unique and non-overlapping with IDH-mut cases. Even

more strikingly, 93% of the IDH-mut specific DMCs were

hypermethylated vs. NBM, whereas 80.8% of MLLr specific

DMCs were aberrantly hypomethylated. Comparable results were

observed even when either a more stringent 40% or a less stringent

10% cutoff was used for calling DMCs (Figure S4). Pathway

enrichment analysis of the DMCs observed in each subtype was

performed using GREAT [26]. Only pathways with an FDR q-

value,0.05 in both the hypergeometric and binomial tests were

included. This analysis revealed that IDH-mut DMCs were

enriched in several pathways, including cadherin, Notch and

TGFb signaling (Table S3A). MLLr DMCs on the other hand

featured enrichment of two pathways, one involving integrin

signaling while the other included transcriptional activators

EP300, CREBBP, FOS, JUN as well as several genes involved in

regulation of apoptosis such as BAX, CASP3, CASP6 and TP73

(Table S3B). Hence the DNA methylation defect of these two

AML subtypes is not only perturbed in opposite directions but is

also based on the differential methylation of an almost completely

distinct set of CpGs, which affect distinct pathways.

Since our alignment strategy spanned the entire genome and

used exact matches, we were able to determine whether DMCs

were preferentially associated with certain repetitive sequences in

the genome. Overall, we found that only 15% of CpG sites

covered by ERRBS in all samples overlapped with repeat regions.

However, we found that hypomethylated DMCs were enriched for

repeat elements, with 24% overlap in MLLr (Odds-Ratio: 1.8, p-

value 2.2e-16) and 26% in IDH-mut (Odds-Ratio: 2.0, p-value

2.2e-16), and most of those DMCs were found at Alu elements

(8% in IDH-mut and 10% in MLLr). Hypermethylated DMCs, on

the other hand were depleted for repeat elements, with only 7 and

8% of hypermethylated DMCs overlapping with repeats in IDH-

mut and MLLr, respectively (Odds-Ratio for both 0.4, p-value

2.2e-16). These were, mostly low complexity and simple repeats

(Figure S5).

Next we examined the common differentially methylated CpG

sites in IDH-mut and MLLr AML (n = 11,933). Of these, 76.6%

(n = 9148) were coordinately differentially methylated in the same

direction in both AML subtypes, and the majority of these DMCs

were aberrantly hypermethylated vs. NBMs (79%, n = 7223).

These concordantly hypermethylated DMCs were more frequent-

ly associated with polycomb repressive marks than concordantly

hypomethylated DMCs (66.2% vs. 46.2%, p-value,2.2e-16,

Fisher’s exact test). Concordantly hypermethylated CpGs were

associated with genes involved in Cadherin, Wnt and Notch

signaling pathways, many of which have been previously reported

as frequently methylated in a variety of neoplasms, such as APC2

[27,28], SFRP2 [29], CDH13 [30,31], CDH15 [32] and

PCDH10 [33,34] (see Table S4). However, concordantly hypo-

methylated CpGs were not associated with any pathway but were

instead significantly associated with repeat elements: 27.7% of

concordantly hypomethylated CpGs overlapped with repeats, but

only 7.4% of concordantly hypermethylated CpGs overlapped

with a repeat (Fisher’s exact test p-value,2.2e-16). This degree of

overlap is similar to what we observed in the more global analysis

of repeat elements mentioned above, indicating that concordantly

hypomethylated DMCs are not enriched for repeat elements

compared to subtype-specific DMCs. Hence, although the

majority of DMCs in these two AML subtypes affect different

CpGs in opposite directions there remains a core set of commonly

affected CpGs, which are mostly concordantly hypermethylated

Subtype-Specific DNA Methylation in AML

PLoS Genetics | www.plosgenetics.org 5 June 2012 | Volume 8 | Issue 6 | e1002781



Figure 3. Aberrant methylation targets a minimally overlapping set of CpGs in IDH-mut and MLLr AMLs. (A) Venn diagram representing
differentially methylated CpGs identified for IDH-mut and MLLr AMLs from amongst the 574,178 CpGs adequately represented (.106 coverage)
across all six samples. Most DMCs are unique to either AML subtype, with minimal amount of events occurring at common sites across IDH-mut and

Subtype-Specific DNA Methylation in AML
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regardless of genetic background. These results are consistent with

an observation based on HELP assays indicating the frequent

hypermethylation of a core set of 45 genes in AML [11]. Despite

the differences in coverage between ERRBS and the microarray

platform used in our previous studies, we found that 15/18 genes

covered by both assays again presented with aberrant CpG

hypermethylation in both AML subtypes in this current study

(Table S5). Altogether, the data suggest two layers of epigenetic

programming in AML, the first represented by perturbations

specific to tumor subtype, and the second encompassing defects

representative of the leukemic phenotype in general.

Differential deregulation of CpG shores versus CpG
islands according to genetic background

Different types of analyses and platforms used in previous

studies have tended to favor either aberrant methylation of CpG

islands [14,35] or CpG shores [12,13] as the dominant defect in

tumors. However it is not clear whether these observed differences

are dependent on tumor type and/or methodology utilized in the

different studies. The use of the ERRBS platform allowed us to

explore differential methylation of both of these regions simulta-

neously. In order to understand which genomic regions present the

highest variation in leukemias compared to NBM cells, we

calculated differential methylation levels for individual CpG sites

annotated to both CpG islands and shores. Our data revealed that

CpG shores represented the regions with the highest variability in

methylation in the MLLr AMLs (Wilcoxon rank sum test p-value

3.190e-11) (Figure 4B). In contrast, IDH-mut AMLs had higher

variability in DNA methylation at CpG islands than CpG shores

(Wilcoxon rank sum test P- value,2.2e-16).

We also observed significant differences in the absolute numbers

of DMCs distributed to CpG islands and shores between the two

subtypes (Chi-square test, p-value,0.0001). Specifically, we found

that DMCs more frequently mapped to CpG islands in the IDH-

mut AMLs cases (50% in IDH-mut vs. 29% in MLLr). In contrast,

50% of DMCs in the MLLr AMLs were found neither at CpG

islands nor CpG shores but were instead annotated to regions even

beyond CpG shores (Figure 4C). These findings indicate that

distribution of DNA methylation changes during malignant

transformation do not follow a uniform rule across all tumor

types and genetic backgrounds, but rather that specific changes

within and beyond genes are observed with distinct malignancy

driving mechanisms.

Distinct regional distribution of aberrant DNA
methylation in IDH versus MLL AMLs

When considering the relation of DMCs to RefSeq annotated

genes we observed that approximately 40% of all DMCs in both

AML subtypes were found within gene bodies. However, more

detailed analysis identified markedly dissimilar regional distribution

of DMCs between the IDH-mut and MLLr AMLs. First, MLLr

AMLs displayed significantly more abundant DMCs at introns than

IDH-mut AMLs (31 vs. 25%) and intergenic regions (39 vs. 35%). In

contrast, promoter-associated DMCs were twice as frequent in

IDH-mut AMLs (27 vs. 16%) (Figure 5A) (Chi-square test, p-

value,2.2e-16). A similar trend exists if we look at the percentages

of introns, exons and promoters overlapping with a DMC in MLLr

and IDH-mut. In IDH-mut, promoters more frequently overlap

with DMCs whereas in MLLr, introns more frequently overlap with

DMCs. This result demonstrates preferential localization of DMCs

in different samples, where variability of methylation shifts its focus

to different genomic features (Figure 5B). Moreover, the median

upstream distance from the transcription start site (TSS) to observed

DMCs was significantly greater in MLLr AMLs than in IDH-mut

AMLs (11,013 bp vs. 5,737 bp, Wilcoxon rank sum test p-

value,2.2e-16, Figure 5C). These analyses reveal yet another layer

of difference between the two AML subtypes, with IDH-mut AMLs

mainly affecting DNA methylation of CpG island promoter regions

surrounding the TSS whereas MLLr AMLs mainly disrupt

upstream and downstream regions, mostly independent of CpG

islands. When considering promoters according to CpG frequency

(as defined by Weber et al according to CpG ratio, GC content and

length of CpG-rich region [36]), we found that more of the high

CpG promoters (HCPs) overlap with DMCs in both IDH-mut and

MLLr compared to low CpG promoters (LCPs) (17.1% vs 7.9% in

IDH-mut: p-value,2.2e-16 and, 11.1% vs 4.9% in MLLr: p-

value = 9.4e-12). However, it was intermediate CpG promoters

(ICPs) that were the most enriched with DMCs in both leukemia

subtypes: 73% of ICPs in IDH-mut and 71% of ICPs in MLLr with

covered CpGs overlapped with DMCs.

We then examined these regional differences in cytosine

methylation relative to known regulatory elements. We compared

the DMC sites from both IDH-mut and MLLr AMLs to available

ENCODE data sets [37] for CTCF binding and H3K4me1 and

H3K4me3 data to define enhancer sites (defined as sites positive for

H3K4me1 and devoid of H3K4me3) [38]. We found that CTCF

binding sites and enhancers were more frequently found in the

vicinity of MLLr DMCs (+/2500 bp) than of IDH-mut DMCs

(Fisher’s exact test p-value: ,0.001 for both CTCF and enhancer

sites). Enhancers and CTCF binding sites were more frequently

hypomethylated in MLLr AMLs (Fisher’s exact test p-val-

ue,0.001), while in IDH-mut AMLs these sites were more

frequently hypermethylated (Fisher’s exact test p-value,0.001)

(Table 1). Whereas the mechanism through which IDH mutations

affect particular genes is unknown, MLL fusion proteins are known

to directly upregulate specific target genes, such as HOXA9, which

are essential for the transformation process [2]. To investigate this,

we surveyed the genomic localization of MLL fusions, MEIS1 or

HOXA9 by ChIP-seq and examined whether aberrant DNA

methylation was associated with binding of these factors. We found

that MLL bound more frequently at promoters, and that only 6.5%

of the 833 MLL peaks covered by the ERRBS assay occurred within

500 bp of MLLr DMCs. While only 49 out of 614 of the HOXA9/

MEIS1 peaks [39] were covered by the ERRBS assay, 24.4% of

them were associated with DMCs in MLLr AMLs, the majority of

which were hypomethylated (22.4% vs 2%, Fisher’s exact test p-

value,0.004), suggesting that aberrant hypomethylation in MLLr

AMLs is more closely linked to the HOXA9 and its co-factor

MEIS1 than to the MLL fusion protein itself.

Context-dependent association of DNA methylation with
gene expression in AMLs

In order to determine the potential functional significance of the

distinct DNA methylation patterning observed in IDH-mut and

MLLr. (B) Horizontal barplot comparing the methylation status of CpG sites at DMCs in IDH-mut AML (top) and MLLr AML (bottom). Magenta depicts
.25% hypermethylation relative to NBM, green represents .25% hypomethylation and gray represents no differential methylation. Most DMCs are
non-overlapping between the two subtypes of AML and display opposite changes in methylation. However, amongst the smaller set of DMCs that do
overlap between the two AML subtypes, the vast majority (76.6%) are concordantly changed, with a clear predominance for aberrrant
hypermethylation of those sites (79%).
doi:10.1371/journal.pgen.1002781.g003
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MLLr AMLs we examined gene expression microarray profiles

from the same AML cases [10,40]. We assigned CpG sites into 3

types of regions: CpG islands overlapping a TSS, intergenic CpG

islands upstream of the TSS (up to 25 kb) and intragenic CpG

islands downstream of the TSS (up to +5 kb). Both in normal

CD34+ samples and leukemia specimens, hypomethylation within

CpG islands overlapping TSSs was associated with highly

expressed genes, while hypermethylation was observed for low

expression genes (top and bottom 15th percentile of expressed

transcripts, Wilcoxon rank sum test p-value,0.005) (Figure 6 and

Figure S6). However, the relationship between CpG shore

methylation status and gene expression levels was different in all

three sample types. Hypermethylation of CpG shores was

associated with low levels of gene expression only in MLLr AMLs,

both at CpG shores overlapping the TSS as well as at downstream

intragenic and upstream intergenic CpG shores. In marked

contrast, CpG shore methylation levels in IDH-mut AMLs

behaved in the opposite way, so that lower levels of methylation

were in fact associated with lower levels of expression (Wilcoxon

rank sum test p-value,0.005), while in normal CD34+ cases gene

expression levels did not appear to depend on CpG shore

methylation status at all.

Furthermore, when examining DMCs and their correlation

with differential gene expression between the different AMLs and

the normal bone marrow specimens, we found that only DMCs at

the core promoter regions were significantly inversely correlated

with differential gene expression in IDH-mut AMLs (p-val-

ue = 0.0047). However, for MLLr AMLs, we observed that while

core promoter DMCs were also significantly associated with

differential expression (p-value = 3.1e-16), this association was also

Figure 4. CpG islands and CpG shores show subtype-specific changes in the two types of AML. (A) Schematic representation of a CpG
island (light green), flanked upstream and downstream by 2 kb CpG shores (dark green) and the region that extends beyond CpG shores (black). (B)
Boxplots illustrating the magnitude of the methylation difference relative to NBM at DMCs that are annotated to CpG islands and CpG shores in either
IDH-mut (Left) or MLLr (right) AMLs. (C) Pie charts illustrating the relative proportion of DMCs annotated to CpG islands (light green), CpG shores
(dark green) and regions beyond CpG shores (black) in IDH-mut (left) and MLLr (right) AMLs.
doi:10.1371/journal.pgen.1002781.g004
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Figure 5. DMCs affect distinct genomic regions in IDH-mut and MLLr AMLs. (A) Top: cartoon representation of the different genomic
regions analyzed. Bottom: Pie charts illustrating the proportions of DMCs annotated to promoter regions (blue), exons (magenta), introns (orange)
and intergenic regions (black) in IDH-mut (left) and MLLr (right) AMLs. (B) Barplots representing the percentage of promoters, introns and exons
overlapping with a DMC in IDH-mut (left) and MLLr (right) AMLs. Significantly higher proportion of promoter regions were overlapping with a DMC in
IDH-mut over introns and exons, while introns were the most frequently affected regions in MLLr AMLs. (C) Histogram representing the log10
distance of DMCs to the nearest Transcription Start Site (TSS) in IDH-mut (red) and MLLr (blue) AMLs.
doi:10.1371/journal.pgen.1002781.g005
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significant at upstream DMCs (up to 10 kb), both for DMCs

located at CpG islands (p-value = 3.2e-11) and CpG shores (p-

value = 1.3e-23). Finally, downstream intronic DMCs overlapping

with CpG islands also showed a significant correlation with

expression in MLLr AMLs (p-value = 0.046). Collectively, these

findings suggest that subtype specific DNA methylation distribu-

tion in AMLs regulates gene expression in a subtype-defined

manner. More precisely our data indicate a significant role for

long-range epigenetic regulation in MLLr AML through distal

intergenic and intronic CpG islands, whereas IDH-mut AMLs

display a predominance of promoter-centric epigenetic regulatory

effects.

Discussion

The study of gene promoters and CpG islands under the

assumption that variation in the 5-methylcytosine status at these

locations would have functional importance has been the focus of

most cancer-related DNA methylation studies. Building upon the

previously described RRBS method, the ERRBS assay described

here made it possible to measure DNA methylation in primary

AML samples beyond promoter regions, extending even into distal

intergenic regions. This significantly enhanced genomic coverage

allowed us to demonstrate that heterogeneity in epigenomic

profiles in AML is not only a factor of different genes being

affected, but rather encompasses a far more complex scenario,

which includes the aberrant DNA methylation of distinct regions

of the genome as well as differential mechanisms of regulation of

gene expression according to genetic background. Given the

specificity and reproducibility of these aberrant DNA methylation

patterns, it is likely that their establishment in malignant cells is

directly linked to genetic driver lesions. Our previous studies using

HELP promoter microarrays are consistent with these results in

that they revealed a hypermethylated promoter signature in IDH-

mut AMLs, and a hypomethylated signature in MLLr. However

those studies did not have the resolution or depth to reveal the true

genomic nature, complexity and qualitative differences that we are

now able to report regarding the nature of cytosine methylation

distribution in these AML patients.

Specifically, in the case of MLLr leukemias, aberrant DNA

methylation consists mostly of aberrant hypomethylation of

upstream and intronic CpGs including CpG islands and shores,

but extending to and heavily involving even more distal regions.

Hypomethylation of regulatory elements is consistent with the

actions of MLL fusion proteins as transcriptional activators.

However, in these tumors the distal localization of hypomethyla-

tion was more closely associated with the presence of HOXA9 and

MEIS1 binding sites and enhancer regions than with MLL

binding sites, suggesting that aberrant DNA hypomethylation in

these tumors may be more closely related to effects of downstream

targets of MLL than to the fusion protein itself. However, it should

be noted that a subset of MLL peaks (6.5%) did indeed overlap

with DMCs in the MLLr AMLs. Since our ChIP-seq antibody

recognized both the wild-type and the rearranged copy of MLL.

Given that MLL fusions have been shown to bind to a subset of

wt-MLL target genes [41], it still remains possible that the subset

of overlapping peaks may be preferentially bound by the MLL

fusion. Further studies with antibodies capable of distinguishing

between the two forms of MLL will be required to properly

address the role of MLL fusions in helping establish the aberrant

methylation profile seen in these leukemias. The functional

relevance of hypomethylation in MLLs is supported by the

enrichment for highly transcribed genes at loci where this distal

methylation pattern is observed. IDH mutant AMLs on the other
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hand, display a diametrically opposed pattern of aberrant

methylation of CpGs, which results in the prefential hypermethy-

lation of CpG islands surrounding TSSs, involving an almost

entirely mutually exclusive set of CpGs but also resulting in the

downregulation of genes with increased methylation. While it is

clear that the generation of the 2-HG metabolite by the mutant

forms of IDH1 and IDH2 results in inhibition of the hydroxylation

reaction by TET proteins [6], it is as yet unclear why this

inhibition results in a promoter-specific hypermethylation pattern,

and inhibition of other epigenetic modifiers such as Jumonji C

domain histone demethylases by 2-HG [42] may also play a role in

determining the aberrant epigenetic profiles of these AMLs.

Figure 6. DNA methylation and gene expression relationships display subtype-specific differences. CpG islands and shores across the
genome were categorized into those located upstream from a transcription start site (TSS), overlapping a TSS or located downstream from a TSS.
Boxplots are plotted that illustrate the maximum DNA methylation levels at CpGs within these CpG islands and CpG shores for the top 15th
percentile expressed genes (right) and the bottom 15th percentile expressed genes (left). Each row shows a representative sample for each type:
Normal bone marrow (top); IDH-mut AML (middle) and MLLr AML (bottom). In all sample types CpG islands overlapping a TSS displayed lower
methylation levels in highly expressed genes and higher methylation levels in genes that were expressed at low levels. In MLLr AMLs this relationship
between expression and methylation levels further extended into CpG shores, and was also observed at CpG islands and shores upstream and
downstream from the TSS. IDH-mut AMLs, and to a lesser degree NBM samples, displayed higher methylation levels at CpG shores of genes with high
expression levels, while low methylation levels were observed at these shores for genes expressed at low levels.
doi:10.1371/journal.pgen.1002781.g006
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Moreover, it is possible that hydroxymethylation of DNA by TET

proteins may depend on other DNA binding partners that direct

them to specific genomic sites.

Even though the two AML subtypes were dramatically different,

they still shared a core hypermethylated signature including genes

previously shown to be almost universally hypermethylated in

AMLs [11]. Similar to what had been previously demonstrated in

colon cancer murine models [43,44], Broske and colleagues

demonstrated that DNA methylation is required to fully transform

hematopoietic stem and progenitors, even with a potent oncogene

such as MLL-AF9 [45]. Taken together, these observations point

towards the existence of a core of hypermethylation lesions that

are a necessary event during malignant transformation, and that

likely cooperate with the underlying genetic events in the different

AML subtypes.

Most importantly, abnormal DNA methylation patterning does

not occur in a stereotypical manner in cancer, but instead adopts

distinct and specific distributions dependent at least in part on

genetic background, even when comparing cases of the same

tumor type with different driver mutations. Our analysis

comparing gene expression and DNA methylation at base-pair

resolution across three different sample types demonstrates that

epigenetic regulation of gene expression in tumors may at least in

part be context dependent, suggesting that cell-type specific factors

may come into play to establish and maintain unique regulatory

mechanisms in these cells. Finally, the large distances between

DMCs and transcription start sites support a potential role for

epigenome regulation at distal regulatory elements, via looping or

other mechanisms, in directly influencing the specificity of the

transcriptional machinery. Taken together our data support the

existence of divergent roles of the epigenome in regulating the

transcriptional profiles of AML and indicate that altered gene

expression is associated with the differential methylation of distinct

and non-overlapping CpGs and regions in tumors with different

genetic backgrounds. Moreover, in the case of MLLr AMLs, these

abnormal regulatory mechanisms extend far beyond the classically

described cancer-associated promoter CpG island hypermethyla-

tion, and indicate that distal intergenic DNA methylation

abnormalities may also have functional consequences in certain

tumors. These findings are consistent with those described by

other groups which have seen an association between differentially

methylated regions at CpG shores in solid tumors and changes in

gene expression [13]. Indeed, these significant regional and CpG

specific differences would be unlikely to be captured with any

other method except whole genome bisulfite sequencing or

methods like ERRBS with unbiased and adequate base-pair

resolution detection of CpG methylation. Of note, the gene

expression microarrays used in the current study only capture

known coding transcripts. Yet the expanded coverage of ERRBS

can also provide information on putative regulatory elements of

non-coding RNAs as well as information on regulation of

alternative promoters. It will be important for future studies

perhaps using RNA-seq, to analyze the relationship between

aberrant DNA methylation and the expression levels of non-

coding RNAs or, the correlation between DNA methylation status

at alternative promoters and the expression levels of transcript

variants, a regulatory role previously described for DNA

methylation [46]. High resolution comparative studies of genet-

ically characterized primary human tumors using methods that

adequately represent the genome at base pair resolution (such as

RNA-Seq) may thus yield a wealth of new information on

mechanisms driving tumor transcriptional and epigenetic pro-

gramming and the true scope and nature of aberrant DNA

methylation patterning in cancer. Studies integrating more

comprehensive transcriptome data with transcription factor

binding and histone modification patterns in concert with assays

designed to explore chromosomal structure will yield further

insight into such mechanisms.

Methods

Cell lines
The human colorectal carcinoma cell line HCT116 was a kind

gift from Dr. John Mariadason. The cell line was maintained in

DMEM supplemented with 10% fetal bovine serum (FBS),

100 units/ml of penicillin and 100 mg/ml of streptomycin

(Invitrogen) at 37uC and 5% CO2. The HCT116 DNMT1(2/

2) DNMT3b(2/2) double knockout clone number 2 (DKO) cell

line was a kind gift from Dr. Steve Baylin. The cell line was grown

in McCoys’5A medium with 10% FBS, 0.2 mg/ml Neomy-

cin(G418), and 0.1 mg/ml Hygromycin B. Genomic DNA was

extracted from the cell lines using standard phenol:chloroform

extraction followed by ethanol precipitation.

Primary samples
AML samples were obtained from previously reported, de-

identified patient samples, from individuals enrolled in the Eastern

Cooperative Oncology Group’s (ECOG) E1900 clinical trial [47]

and from patients seen at Erasmus University MC, The Nether-

lands. Two IDH1/2 mutant AML samples (IDH1 and IDH2), two

mixed lineage leukemia gene rearranged AML samples harboring

t(9;11) (MLL1 and MLL2) and one additional AML sample (AML)

were available for processing. Two normal CD34+ bone marrow

control samples were purchased from AllCells, LLC (Emeryville,

CA, USA). Institutional review board approval was obtained at

Weill Cornell Medical Center and this study was performed in

accordance with the Helsinki protocols. DNA was isolated from

each primary sample using the Qiagen Puregene kit per

manufacturer’s recommendation.

Reduced representation bisulfite sequencing (RRBS)
RRBS was performed as follows: i) 5, 50 or 1000 ng of high

quality genomic DNA were digested with 200 U of MspI (New

England Biolabs, NEB) which cuts DNA regardless of cytosine

methylation status at CCGG sequence in a 100 ml reaction for up

to 16 hours at 37uC. DNA was isolated using standard phenol

chloroform extraction and ethanol precipitation and resuspended

into 30 ml of 10 mM TrIs pH 8.0.ii) End repair of digested DNA

was performed in a 100 ml reaction using 15 U of T4 DNA

polymerase (NEB M0203L), 5 U of Klenow DNA polymerase

(NEB M0210L), 50 U of T4 Polynucleotide Kinase (NEB

M0201L), 4 ml of premixed nucleotide triphosphates each at

10 mM (NEB N0447L) using T4 DNA ligase buffer with 10 mM

dATP (NEB B0202S). The reaction was incubated at 20uC for

30 minutes and products were isolated using QIAquick PCR

purification columns per manufacturer’s recommended protocol

(Qiagen) into 32 ml of EB buffer. iii) Adenylation was performed in

a 50 ml reaction using 15 U Klenow fragment (39 to 59 exo minus,

NEB M0212L), 10 ml of dATP at 1 mM concentration using

Klenow buffer (NEB). The reaction was incubated at 37uC for

30 minutes and products were isolated using MinElute PCR

purification columns per manufacturer’s recommended protocol

(Qiagen) into 10 ml EB buffer. iv) Adenylated DNA fragments

were ligated with pre-annealed 5-methylcytosine-containing Illu-

mina adapters in a 20 or 50 ml reaction for 5 ng or 50 ng or higher

starting materials respectively using 2000 U T4 DNA ligase (NEB

M0202T) and 1.2 mM final concentration of methylated adapters

at 16uC for a minimum of 16 hours. Products were isolated using

Subtype-Specific DNA Methylation in AML
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MinElute columns per manufacturer’s recommended protocol

(Qiagen) into 10 ml EB buffer. v) Library fragments of 150–175

and 175–225 bp were gel isolated from a 1.5% agarose gel (using

low range ultra agarose from Biorad) using the Qiaquick Gel

Extraction kit per manufacturer’s recommended protocol (Qiagen)

into 40 ml EB buffer. vi) bisulfite treatment was performed using

the EZ DNA Methylation Kit (Zymo Research) per manufactur-

er’s recommended protocol with the following modifications: 1)

incubation after the addition of CT conversion reagent was

conducted in a thermocycler (Mastercycler ep gradient, Eppen-

dorf) with the following conditions: 30 seconds at 95uC followed

by 15 minutes at 50uC for 55 cycles and, 2) products were eluted

into 40 ml nuclease free water. vii) PCR amplification for each

library was performed in a 200 ml reaction containing 2 ml

FastStart Hifidelity DNA Polymerase (Roche), 0.5 mM each of

Illumina PCR primers PE1.0 and 2.0, 0.25 mM each nucleotide

triphosphate using buffer 2 per manufacturer’s recommendation

and divided into four 50 ml reactions. The thermocycler conditions

were: 5 minutes at 94uC, 18 cycles of 20 seconds at 94uC,

30 seconds at 65uC, 1 minutes at 72, followed by 3 minutes at

72uC. PCR products were isolated using AMPure XP beads per

manufacturer’s recommended protocol (Agencort) into 50 ml of

EB buffer. viii) All amplified libraries underwent quality control

steps including using Qubit 1.0 fluorometer and a Quant-iT

dsDNA HS Assay Kit for quantitation (Invitrogen) and bioana-

lyzer visualization (Agilent 2100 Bioanalyzer).

Extended Reduced Representation Bisulfite Sequencing

(ERRBS) was performed as described above for RRBS, except

that in step number v, library fragment lengths of 150–250 bp and

250–400 bp were gel isolated.

Data deposition statement. All data have been deposited

for public access in the GEO database. The Accession number is

GSE37454.

Sequencing
The amplified libraries were sequenced on an Illumina Genome

Analyzer II or HiSeq2000 per manufacturer’s recommended

protocol for 50 bp single end read runs. Image capture, analysis

and base calling was performed using Illumina’s CASAVA 1.7.

Quantitative DNA methylation sequencing by
MassARRAY EpiTYPER

Validation of select CpG methylation in HCT116 cell line was

implemented by MALDI-TOF mass spectrometry using EpiTY-

PER by MassARRAY (Sequenom, San Diego, CA) as previously

described [48]. Primers were designed to cover CpGs in various

chromosomal locations with various methylation levels and

sequencing coverage. Primers and amplicon sequences are listed

in Table S2.

Computational approaches
Bisulfite treated read alignment and methylation

calls. Reads were filtered from the adapter sequences using

FAR software (Dodt, M, Ahmed R, Dieterich C. FAR – flexible

adapter remover. FAR project website (2011) (http://sourceforge.

net/projects/theflexibleadap/). Adapter sequence contamination

usually occurs towards 39ends of some reads. The adapter

matching part of the read was removed if it aligned with the

adapter sequence at least 6 base-pairs and had at most 0.2

mismatch error rate. Reads were aligned to whole genome using

the bismark alignment software [24] with a maximum of 2

mismatches in a directional manner and only uniquely aligning

reads were retained. In order to call methylation score for a base

position, we required that read bases aligning to that position have

at least 20 phred quality score and the base position should have at

least 106 coverage. Only CpG dinucleotides that satisfy these

coverage and quality criteria were retained for subsequent

analysis. Percentage of bisulfite converted Cs (representing

unmethylated Cs) and non-converted Cs (representing methylated

Cs) were recorded for each C position in a CpG context.

Comparison of whole-genome alignment pipeline to MspI

fragment pipeline. In silico MspI fragment library was

constructed by cutting the reference genome to fragments from

MspI sites. Bisulfite converted reads are aligned to in silico bisulfite

converted MspI fragments using ELAND aligner. Similar to the

whole genome alignment pipeline, in order to call methylation

percentage score for a base position, we required that read bases

aligning to that position have at least 20 phred quality score and

the base position should have at least 106 coverage. We aligned

reads from 4 samples to MspI fragments and whole genome and

compared their alignment rate and number of covered CpGs.

CpG dinucleotide annotation. CpG islands, refseq genes

and repeat sequences were downloaded from the UCSC genome

browser [49]. CpG shores were defined as 2000 bp flanking

regions on upstream and downstream of a given CpG island [13].

If a 2000 bp shore overlapped with another island, then the shore

was clipped so that its last base falls before the start of the

overlapping CpG island. Similarly, if shores were overlapping they

were merged into a single shore. In addition, the genome was

partitioned to intergenic, intron, exon and promoter regions.

Promoter regions were defined as the 2 kb window centered on

the transcription start sites (TSS) of refseq genes. We classified

CpG dinucleotides as promoter, intronic, exonic or intergenic

based on their overlap with these predefined regions. In addition,

we classified CpG dinucleotides as CpG island or shore

overlapping.

Methylation comparison and differential methyla-

tion. Percent methylation values for CpG dinucleotides are

calculated by dividing number of methylated Cs by total coverage

on that base. We clustered samples and calculated methylation

correlations by comparing percent methylation scores of CpG

dinucleotides that are covered across all samples (IDH-mut, MLLr

and NBM samples).

Hierarchical clustering of the six samples was performed using

the hclust function in R-2.14.0 (http://www.r-project.org/) where

we used 1-Pearson correlation distance and Ward’s agglomeration

method.

Methylation values for genomic regions (intergenic, intron, exon

and promoters, CpG islands and island shores) between different

samples were compared by taking the mean methylation

percentage of CpG dinucleotides overlapping those regions. In

order to calculate the correlation between different samples and

generate the appropriate scatter plots we required that in any

given region at least 3 CpG dinucleotides were covered by reads in

both samples.

The test for differential methylation was performed at the single

base level. The test is performed only on CpG dinucleotides

covered in all the test and control samples in each case. In order to

improve the number of covered CpG dinucleotides across samples,

we merged the read coverage on forward and reverse strand of a

given CpG dinucleotide before doing the test. For the test, the

number of methylated and unmethylated Cs aligning to each base

were counted and compared across samples. To determine

significant differential methylation between two sets of samples,

we applied logistic regression and the likelihood ratio test.

Observed p-values were adjusted with the SLIM method [50]

We also calculated the percent methylation difference between the
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sets of test and control samples. We calculated the percent

methylation values per sample set by adding up the methylated C

counts for samples in the same set and dividing them by total read

coverage of two samples on that base. Consequently, we

subtracted these set specific percent methylation values from each

other to get percent methylation difference between the sample

sets.

Pathway enrichment analysis
Pathway enrichment analysis was performed using the GREAT

software [51], which associates genomic regions with nearby genes

and calculates enrichment statistics using annotations of those

genes. In order to associate genomic regions to genes, each gene is

assigned to a regulatory domain, which consists of a basal

promoter and extension around that promoter to cover distal

elements. Following that, the genomic regions falling on those

regulatory domains are associated with the genes. Following

parameters are used for definition of regulatory domain: 5000 bp

upstream, 1000 bp downstream of TSS as basal regulatory

domain and this is extended up to 100 kb maximum. GREAT

calculates two enrichment statistics using the binomial test and the

hypergeometric test. Only the pathways significant by both tests

are shown (FDR q-value,0.05).

Gene expression relationship with methylation
Gene expression for IDH mutants and normal bone marrow

cells are downloaded from the Gene Expression Omnibus (GEO)

(accession: GSE24505). Normal bone marrow samples are not

matched to the samples on this array however we averaged 5

normal bone marrow samples on the array to interpolate the

expression profiles of our normal bone marrow samples. The

sample matched gene expression profiles for cells with MLL

translocation are downloaded from GEO (accession: GSE6891).

Expression percentiles of each transcript are also calculated using

R function ‘‘ecdf’’. The transcripts for each sample are divided

into two categories high expressed (the top 15%) and low

expressed (the bottom 15%).

CpG islands are mapped to annotated transcripts for probes as

follows. First, we mapped CpG islands to 10 kb window around

the TSS of the annotated transcript, and CpG islands in this

window are classified as TSS overlapping, upstream and

downstream CpG islands depending on whether or not they

overlap with TSS and relative location if they are not overlapping

with TSS. Following that, we compared maximum methylation

per island and maximum methylation per shore for high and low

expressed genes on each sample. We used Wilcoxon’s Rank sum

test to compare maximum methylation distributions on each shore

and CpG island for high and low expressed genes. For this

comparison we only considered CpG islands and shores that have

at least three genomic CpGs covered by bisulfite reads.

When correlating DMCs with the differential expression, we

first calculated fold-change of MLLr vs. NBM and IDH-mut vs.

NBM samples. Expression data for NBM samples (although not

sample matched) were available for both IDH-mut and MLLr

fold-change calculations within the respective microarray types

and downloaded from GEO (accession numbers GSE24505 and

GSE6891 respectively). We calculated fold-change between the

average expression values of the groups. Following that we

measured correlation between percent methylation difference at

DMCs and fold-change of the nearest gene (obtained by extracting

the nearest TSS) using ‘‘correlation.test’’ in R. We performed

separate correlation analyses for DMCs at the core promoter

(2300 bp,+300 bp around TSS), upstream from the TSS (up to

10 kb), within CpG islands (up to 5 kb from TSS), within CpG

island shores (up to 5 kb from TSS), within intronic regions, at

intronic CpGs, and at CpGs within intronic CpG islands and

shores.

Chromatin immunoprecipiation–sequencing of MLL and
HOXA9

MLL ChIP-seq experiments were performed in the MLL-AF4

cell line RS4;11 (ATCC#CRL-1873) using antibodies to MLL1

(Bethyl Laboratories A300-086A). ChIP-seq libraries were pre-

pared from 10 ng of immunoprecipitated material using Illumina’s

ChIP-seq kit as per manufacturer’s instructions, and then

sequenced on a Genome Analyzer IIx sequencer. Alignment

against the human genome, peak calling and downstream analysis

was performed using ChIP-seeqer [52]. HoxA9 and Meis1 ChIP-

seq peaks from murine cells from Huang et al [39] were annotated

to the human genome using the LiftOver function from the UCSC

browser [49].

ChIP–seq peak overlap with DMCs
The ENCODE CTCF, H3K27me3, H3K4me1 and H3K4me3

peak locations are downloaded using UCSC table browser [53].

ChIP-seq experiments and peak finding were carried out by The

Broad Institute for 9 different cell lines only 8 of which had

H3K4me1 and H3K27me3 marks available for download [54].

Polycomb repressive marks were identified as those with

K3K27me3 by Ernst et al using a hidden-markov model based

approach [54]. For enhancer markers, we picked H3K4me1 sites

that do not overlap with H3K4me3 in a given a given cell line as

previously shown [38]. We merged all such H3K4me1 sites from 8

cell lines, so that if H3K4me1 sites overlap in different cell lines

they will not be counted twice. The same merging procedure is

applied for CTCF binding sites and H3K27me3 from 8 cell lines.

Following that, we extended the peak locations for CTCF,

enhancer markers, MLL, Meis1 and HoxA9 by 500 bp on each

side of the peak location. We overlapped resulting regions with

DMCs in IDH-mut and MLLr. We also overlapped those regions

with CpGs covered by reads to see how many of those binding

sites are covered by ERRBS. We applied Fisher’s exact test to

compare proportions of DMCs.

Supporting Information

Figure S1 ERRBS is highly reproducible and sensitive. (A)

Correlation between CpG dinucleotides, CpG islands and

promoter methylation levels using pearson correlation between

technical replicas of ERRBS using 5, 50 or 1000 ng genomic DNA

from the HCT116 cell line. (B) Distribution histograms of CpG

coverage and CpG methylation levels along forward and reverse

strands in HCT116 ERRBS results. (C) Distribution histogram of

CpG methylation levels along forward and reverse strands in

DKO ERRBS results. Similar results were obtained from reverse

strand (data not shown) and CpG coverage distributions over both

strands were similar to coverage seen with HCT116 sequencing

(data not shown). (D) Technical validation of ERRBS performance

in HCT116 at select CpGs by MassARRAY. Dot plot shows

correlation between DNA methylation as measured by ERRBS (x-

axis) and percent methylation as measured by MassARRAY

EpiTyper (y-axis). (Correlation coefficient: 0.97).

(TIF)

Figure S2 Biological replica reproducibility. (A) Correlation plot

of CpG dinucleotide methylation levels between two biological

replica of ERRBS data using normal bone marrow controls

(NBM_#1 and NBM_#2_Rep#2). (B) Correlation plot of CpG
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dinucleotide methylation levels between two biological replica of

ERRBS data using IDH mutant AML samples (IDH-mut_#1 and

IDH-mut_#2). (C) Correlation plot of CpG dinucleotide meth-

ylation levels between two biological replicas of ERRBS data using

MLL translocated AML samples (MLLr_#1_Rep#2 and

MLLr_#2).

(TIF)

Figure S3 DNA methylation patterns naturally segregate AML

and NBM samples. Unsupervised analysis using either principal

component analysis or hierarchical clustering (1-Pearson correla-

tion distance + Ward’s agglomerative algorithm) of DNA

methylation by ERRBS at (A) all CpGs, (B) non-promoter CpGs,

(C) non-promoter intron CpGs, (D) CpGs within CpG islands and

(E) CpGs within CpG shores, segregates the samples into their

three biological groups.

(TIF)

Figure S4 Differential methylation in MLLr and IDH-mut

AMLs are preserved at 40% and 10% cutoffs. Chromosome

ideogram representing differential methylation in IDH-mut AMLs

vs. NBM (A) and MLLr AMLs vs. NBM (B), using changes greater

than 10%. Light and dark magenta points represent hypermethy-

lation changes relative to NBM of 10–40% and greater than 40%

respectively. Light and dark green points represent hypomethyla-

tion changes relative to NBM of 10–40% and greater than 40%

respectively.

(TIF)

Figure S5 Percentage of DMCs overlapping with repeats. Bar

plots showing percentage of hyper- (magenta) and hypo-methyl-

ated (green) DMCs on repeat regions. Overall, 24–26% of hypo-

methylated DMCs and ,7% of hyper-methylated DMCs overlap

with repeats. 10.7% of hypo-methylated DMCs of MLLr overlap

with Alu repeats and 8.6% of hypo-methylated DMCs of IDH-

mut overlap with Alu repeats.

(TIF)

Figure S6 DNA methylation and gene expression relationships

display subtype-specific differences. CpG islands and shores across

the genome were categorized into those located upstream from a

transcription start site (TSS), overlapping a TSS or located

downstream from a TSS. Boxplots are plotted that illustrate the

maximum DNA methylation levels at these CpG islands and CpG

shores for the high expressed genes (top 15th percentile expressed

genes) and the low expressed genes (the bottom 15th percentile

expressed genes). Each row is for a different sample: Normal bone

marrow (top); IDH-mut AML (middle) and MLLr AML (bottom).

The boxplots are color-coded depending on the expression status

of associated genes. Significantly different distributions are marked

with a star.

(TIF)

Table S1 Summary of RRBS and ERRBS experiments. All

sequencing was performed using either the Illumina Genome

analyzer II or HiSeq2000 (50 base pair, single reads). We routinely

acquired .40 million reads per sample, with alignment rates

ranging from 55–70%. Shown are the number of CpGs covered,

bisulfite conversion efficiency and mean CpG coverage rates for

each sample.

(DOCX)

Table S2 Methylation sequencing by MassARRAY EpiTYPER.

MassARRAY was performed on bisulfite-converted DNA from

HCT116 using the following primers targeting the listed

amplicons.

(XLSX)

Table S3 Pathway analysis of DMCs in AML subtypes. Pathway

enrichment analysis was performed using GREAT. Enriched

terms in PANTHER Pathways are shown with their hyper-

geometric test and binomial test q-values. (A) Pathway analysis for

uniquely hyper-methylated DMCs in IDH-mut AML samples. (B)

Pathway analysis for uniquely hypo-methylated DMCs in MLL-r

AML samples. (See separate excel spreadsheet for full list of genes

in each pathway).

(XLSX)

Table S4 Pathway analysis of concordantly hypermethylated

DMCs in AML subtypes. Pathway enrichment analysis was

performed using GREAT. Enriched terms in PANTHER

Pathways are shown with their hyper-geometric test and binomial

test q-values. Results from pathway analysis for concordantly

hypermethylated DMCs in IDH-mut and MLL-r AML samples

are listed.

(DOCX)

Table S5 Genes with recurrent aberrant DNA methylation by

HELP that were validated by ERRBS. Listed are the fifteen (out of

a total of eighteen) genes covered by both assays that were

hypermethylated in the current study.

(DOCX)
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