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Abstract

Objective: To clarify the metabolic effects of an overnight i.v. infusion of unacylated ghrelin (UAG) in
humans. UAG exerts relevant metabolic actions, likely mediated by a still unknown ghrelin receptor
subtype, including effects on b-cell viability and function, insulin secretion and sensitivity, and glucose
and lipid metabolism.
Design: We studied the effects of a 16-h infusion (from 2100 to 1300 h) of UAG (1.0 mg/kg per h)
or saline in eight normal subjects (age (meanGS.E.M.), 29.6G2.4 years; body mass index (BMI),
22.4G1.7 kg/m2), who were served, at 2100 and 0800 h respectively, with isocaloric balanced dinner
and breakfast. Glucose, insulin, and free fatty acid (FFA) levels were measured every 20 min.
Results: In comparison with saline, UAG induced significant (P!0.05) changes in glucose, insulin, and
FFA profiles. UAG infusion decreased glucose area under the curve (AUC) values by 10% (UAG0–960 min:
79.0G1.7!103 mg/dl per min vs saline0–960 min: 87.5G3.8!103 mg/dl per min) and the AUC
at night by 14% (UAG180–660 min: 28.4G0.5!103 mg/dl per min vs saline180–660 min: 33.2G1.1
!103 mg/dl per min). The overall insulin AUC was not significantly modified by UAG infusion;
however, insulin AUC observed after meals was significantly increased under the exposure to UAG with
respect to saline at either dinner or breakfast. The FFA AUC values were decreased by 52% under
the exposure to UAG in comparison with saline (UAG0–960 min: 0.3G0.02!103 mEq/l per min vs
saline0–960 min: 0.6G0.05!103 mEq/l per min).
Conclusions: Exposure to the i.v. administration of UAG improves glucose metabolism and inhibits
lipolysis in healthy volunteers. Thus, in contrast to the diabetogenic action of AG, UAG displays
hypoglycemic properties.

European Journal of Endocrinology 166 911–916
Introduction

Ghrelin, the first natural hormone with an hydroxyl
group of one of its serine residues acylated by n-octanoic
acid (1, 2, 3), is a 28-amino acid residue peptide
predominantly produced by the stomach but also
expressed in several other sites, particularly in other
enteric tracts and in the endocrine pancreas (4). In its
acylated form, ghrelin displays a potent GH-releasing
activity, mediated by the GH secretagogue receptor
type 1a (GHS-R1a) (4, 5), that is concentrated in central
and peripheral tissues, including the endocrine pancreas
and the adipose tissue (4, 5, 6). Consistently, ghrelin
exerts other endocrine and nonendocrine actions
either at the central or at the peripheral levels. In fact,
ghrelin is now mostly recognized as a major orexigenic
factor involved in several aspects of energy balance
ndocrinology
(7, 8, 9, 10, 11), exerting a stimulatory effect on appetite
and food intake, while decreasing energy expenditure,
and locomotor activity (7, 8, 9, 10, 11).

Acylated ghrelin (AG) also exerts direct metabolic
actions at the peripheral level, being able to influence
the endocrine pancreatic function as well as glucose and
lipid metabolism (12, 13, 14). In particular, knockout
animal models demonstrated a significant clear-cut
improvement in glucose metabolism and insulin
secretion and sensitivity in ghrelin and/or GHS-R1a
null mice, which, moreover, were not phenotypically
anorectic dwarf (15, 16, 17).

On the other hand, although devoid of the
GH-releasing effect, as well as of other neuroendocrine
actions, ghrelin has been shown to exert a variety of
biological actions in its unacylated ghrelin form (UAG)
(18). In particular, several experiments suggest that
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UAG is able to positively modulate glucose and lipid
metabolism (19, 20). In fact, the acute administration of
UAG has been shown to antagonize the effects of AG on
insulin secretion and glucose levels in normal subjects
(19). At the same time, the combined administration of
AG and UAG significantly improved insulin sensitivity,
compared with placebo, for at least 6 h in patients with
adult-onset GH deficiency (20).

Moreover, UAG counteracted the effects of AG on
glucose output from pig hepatocytes in vitro (21) and,
in glucose-stimulated conditions in vivo, exerted a
potent insulin secretagogue action that was completely
blocked by the coadministration of AG (22).

In addition to the effect on glucose homeostasis, it has
also been demonstrated that UAG, as well as its acylated
form, has an inhibitory effect on isoproterenol-induced
lipolysis from rat adipocytes (23).

In all, it is clear that UAG is an active peptide, also
able to bind to receptors other than GHS-R1a receptor
(4, 18). In this context, also considering the meal-
related secretory pattern of circulating total ghrelin
suggested by some authors (24), but not by others (25,
26), the negative association observed between body
mass index (BMI) and ghrelin levels (4, 27), and their
relationship with energy restriction and food intake
(4, 8), insulin and glucose levels have been hypothesized
to modulate peripheral ghrelin secretion that, in turn, is
likely to influence insulin secretion and glucose
metabolism (13, 28). Accordingly, total ghrelin levels
have been shown to be reduced not only during an
euglycemic hyperinsulinemic clamp and after insulin-
induced hypoglycemia (8, 29, 30), but also after either
an oral or i.v. glucose load (8, 29, 31, 32). Moreover, it
has been hypothesized that UAG levels would be more
remarkably reduced in obese patients and that this
would significantly contribute to the reduction of
insulin sensitivity (33).

The aim of this study was to clarify the metabolic
effects of the prolonged i.v. infusion of UAG in humans.
We studied the effects of a 16-h continuous infusion
(from evening to the following early afternoon) of UAG
or saline in normal young subjects, who were served
a standard dinner and breakfast.
Subjects and methods

Eight normal young male volunteers (age (mean
GS.E.M.) 29.6G2.4 years; BMI, 22.4G1.7 kg/m2)
were studied. All subjects gave their written informed
consent to participate in the study, which had
previously been approved by an independent Ethics
Committee.

All subjects underwent the following two testing
sessions in random order at least 45 days apart:
i) isotonic saline i.v. infusion for 16 h; and ii) UAG
(1.0 mg/kg per h) i.v. infusion for 16 h.
www.eje-online.org
The infusion of UAG and placebo was double blind as
it was performed by a third researcher. Subjects were
admitted to the clinical facility 10 h before initiation of
the testing session and were served an isocaloric lunch
at 1300 h. The testing sessions began in the evening at
2100 h, 30 min after the indwelling of two catheters into
two different antecubital veins of the forearm, kept patent
by the slow infusion of isotonic saline. At 2100 and 0900 h
respectively, a standardized balanced isocaloric dinner
(w900 total kcal: 50% carbohydrates, 20% proteins, and
30% lipids) and breakfast (w400 total kcal: 50%
carbohydrates, 10% proteins, and 40% lipids) were served
to the subjects who were instructed to eat everything.

During the testing sessions, subjects were not allowed to
drink alcohol, coffee, tea, or sweetened beverages or eat
anything other than what they were provided with by
the medical staff. All the subjects slept during the light-off
period, although sleep was not instrumentally monitored.
Lights were turned off at 2330 h and on at 0730 h.

Blood samples were collected every 20 min from
2100 to 1300 h during the following day. Glucose,
insulin, and free fatty acid (FFA) levels were assayed at
each time point for both sessions.

Vials containing 100 mg lyophilized human UAG
were purchased from Neosystem and administered
using a bacterial filter system.

Plasma glucose levels (mg/dl; 1 mg/dl, 0.05551 mmol/l)
were measured by the glucose oxidase colorimetric method
(GLUCOFIX; Menarini Diagnostici, Florence, Italy).

Serum insulin levels (mU/ml) were measured in
duplicate by immunoradiometric assay (INSIK-5;
SORIN Biomedica, Saluggia, Italy). The sensitivity of
the insulin assay was 2.5G0.3 mU/ml. The inter- and
intra-assay coefficients of variation (CV) were 6.2–10.8
and 5.5–10.6% respectively.

Serum FFA levels (mEq/l) were measured by enzymatic
colorimetric method (Wako Chemicals GmbH, Neuss,
Germany). The inter- and intra-assay CV were 1.1 and
4.1% respectively. All the samples from an individual
subject were analyzed in a single run of each assay.

The results are expressed as absolute meanGS.E.M.
The areas under the curves (AUC) of all variables were
measured by the trapezoidal integration method for
the whole infusion (960 min), the night time period
(480 min), or the 60 min postprandial period. The
DAUC values corrected for premeal levels were also
calculated (DAUC). The differences observed between
saline and UAG treatments were evaluated using the
nonparametric Wilcoxon test. Statistical significance
was assumed at P!0.05.

All statistical analyses were carried out using the
SPSS 11.0 Software (SPSS, Chicago, IL, USA).
Results

The study subjects did not have any weight change
between the two testing sessions (data not shown).
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Figure 1 Glucose levels (meanGS.E.M.) expressed as absolute
values and overall AUC (AUC0–960 min) in eight young normal
subjects during saline (gray) and UAG (black) i.v. infusion. The
two vertical arrows correspond to the time of dinner and breakfast
respectively. **P!0.01 vs saline.
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Saline treatment

As presented in Figs 1 and 2, during the saline infusion,
glucose and insulin levels showed the expected
increase after both dinner (absolute glucose peak:
110G7.9 mg/dl, P!0.01; glucose DAUC0–60 min:
317.5G145.0 mg/dl per min, P!0.01; abso-
lute insulin peak: 57.8G14.7 mU/ml, P!0.01;
insulin DAUC0–60 min: 232.0G116.2 mU/ml per min,
P!0.01) and breakfast (absolute glucose peak:
115.5G6.8 mg/dl, P!0.05; glucose DAUC720–780 min:
505.0G124.3 mg/dl per min, P!0.05; absolute
insulin peak: 46.3G9.5 mU/ml, P!0.05; insulin
DAUC720–780 min: 1078.4G124.3 mU/ml per min,
P!0.05). In addition, as presented in Fig. 3, FFA levels
decreased significantly (P!0.05) after both dinner
(absolute nadir, 0.6G0.1 mEq/l; DAUC0–60 min, 1.1
G3.9 mEq/l per min) and breakfast (absolute nadir,
0.5G0.1 mEq/l; DAUC720–780 min, K5.3G2.3 mEq/l
per min).
Figure 2 Insulin levels (meanGS.E.M.) expressed as absolute values
and after meals AUC (DAUC0–60 min) in eight young normal subjects
during saline (gray) and UAG (black) i.v. infusion. The two vertical
arrows correspond to the time of dinner and breakfast respectively.
The box in the top panel emphasizes the difference in the insulin
response to dinner. *P!0.05 vs saline; **P!0.01 vs saline.
UAG treatment

With respect to saline, the UAG infusion induced
significant variations of all metabolic variables studied.
As presented in Fig. 1, during the 16-h UAG infusion,
overall absolute glucose AUC values were lower on
average by 10% with respect to saline (saline0–960 min:
87.5G3.8!103 mg/dl per min vs UAG0–960 min:
79.0G1.7!103 mg/dl per min; P!0.01), and this
difference was even more pronounced during the night-
time period (0000–0800 h), when the absolute glucose
AUC value was lower than saline by 14%
(saline180–660 min: 33.2G1.1!103 mg/dl per min vs
UAG180–660 min: 28.4G0.5!103 mg/dl per min;
P!0.01). Interestingly, this glucose-lowering effect
was detected for the overall treatment at night but not
during the 180 min postprandial periods following
www.eje-online.org
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Figure 3 FFA levels (meanGS.E.M.) expressed as absolute values
and overall AUC (AUC0–960 min) in eight young normal subjects
during saline (gray) and UAG (black) i.v. infusion. The two vertical
arrows correspond to the time of dinner and breakfast respectively.
**P!0.01 vs saline.
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dinner (DAUC saline0–180 min: 3.7G1.0!103 mg/dl per
min vs DAUC UAG0–180 min: 3.8G0.3!103 mg/dl per
min; PZNS) or breakfast (DAUC saline720–900 min:
1.5G0.7!103 mg/dl per min vs DAUC UAG720–900 min:
1.5G0.4!103 mg/dl per min; PZNS).

Figure 2 indicates that, although the UAG infusion
did not have significant impact on overall insulin
concentrations during the 16-h period (saline
AUC0–960 min: 27.1G3.6!103 mU/ml per min vs UAG
AUC0–960 min: 26.5G1.8!103 mU/ml per min; PZNS),
there was a clear enhancing effect on insulin secretion
immediately after both dinner (DAUC saline0–60 min:
0.2G0.1!103 mU/ml per min vs DAUC UAG0–60 min:
1.3G1.8!103 mU/ml per min; C472%; P!0.01)
and breakfast (DAUC saline720–780 min: 1.1G0.3
!103 mU/ml per min vs DAUC UAG0–60 min: 1.7
G1.1!103 mU/ml per min; C64%; P!0.05).

As presented in Fig. 3, FFA AUC values decreased
by 52% during the 16-h UAG infusion (UAG0–960 min:
0.3G0.02!103 mEq/l per min vs saline0–960 min:
0.6G0.05!103 mEq/l per min).
www.eje-online.org
Side effects

No side effect was associated with saline infusion as
expected. Similarly, UAG infusion was not associated
with any significant adverse event. At the end of UAG
infusion, without any evidence of cause-related effect,
minimal facial edema was apparent in two subjects but
disappeared within the following 2 h. Blood pressure
and pulse rate were monitored during the awaking
period of saline and UAG infusion and their results were
similar in the two testing sessions.
Discussion

Although AG, the only active transcript of the ghrelin
gene, was considered for long time, some biological
actions of UAG were observed both in vitro and in vivo, in
animal as well as in human models (4, 13, 14, 18, 28).
Our study aimed to evaluate the effect of continuous i.v.
administration of UAG on metabolic variables in healthy
humans. We observed that in young healthy volunteers,
the i.v. infusion of UAG significantly decreased glycemic
profiles, particularly during nighttime. Also, UAG
infusion was associated with an enhancement of the
meal-induced early insulin response as well as with an
impressive reduction in FFA levels. These metabolic
variations occurred in the absence of any modifications
of GH and cortisol levels (data not shown), in line with
previous observations showing no neuroendocrine
effect of UAG after acute administration (12, 18, 19).

The reduction in glucose levels during UAG infusion
in humans fits well with the previous studies indicating
the glucose-lowering effect of the nonacylated form of
ghrelin. In fact, it had been demonstrated in vitro that
UAG reduces glucose output from pig hepatocytes (21);
in this experimental model, UAG was also able to abolish
the stimulatory effect on glucose output induced by AG
and to partially counteract the stimulatory effect
exerted by glucagon (21). Again, although unable to
exert an acute hypoglycemic effect in fasted healthy
volunteers following single i.v. bolus administration,
it was demonstrated that UAG can abolish the hyper-
glycemic effect of AG in humans (19) and that the
combined administration of AG and UAG significantly
improved insulin sensitivity in patients with adult-onset
GH deficiency (20).

The lowering of glucose profiles during exposure to
UAG was associated with a more marked first-phase
insulin response to meals and this might in part explain
the observed favorable effect of UAG on glucose
metabolism. AG can exert inhibitory effects on b-cell
secretion and this has been reported by several groups
from observations in both in vitro and in vivo studies in
animal and human models (13, 14, 28). In particular,
AG seems to be able to decrease insulin secretion and
its response to glucose and arginine in humans as well
as in vitro in perfused pancreas (4, 13, 14). Conversely,



Metabolic actions of unacylated ghrelin 915EUROPEAN JOURNAL OF ENDOCRINOLOGY (2012) 166
it has been shown that UAG, dose dependently, can
stimulate insulin secretion from rat b-cells in vitro either
in basal condition or in response to exposure to glucose
(14), while it is able to counteract the inhibitory effect
of AG on insulin levels in humans (19, 20).

It has to be emphasized that the endocrine pancreas
is a natural source of ghrelin that is synthesized and
secreted by a new pancreatic islet population defined as
‘epsilon’ (3) and that during fetal life the endocrine
pancreas and not the stomach is the most important
contributor of circulating ghrelin levels (14, 34). Within
the endocrine pancreas, ghrelin, either acylated or not,
likely plays a para/autocrine action on the regulation of
insulin secretion (14). In fact, at the level of pancreatic
endocrine islets, the presence of GHS-R1a as well as of
the still uncharacterized ghrelin receptor subtypes has
been demonstrated (14).

Thus, the ghrelin system is well represented in the
endocrine pancreas, suggesting that it plays a relevant
role in the modulation of insulin secretion. However,
ghrelin might also play a role in the regulation of insulin
sensitivity at the peripheral level (4, 8, 13). In this
context, it is noteworthy that the prevalence of ghrelin
in its acylated form is associated with a worsening
in insulin sensitivity in humans (4, 8, 13). In fact, the
ghrelin system has been suggested to be active in muscle
and adipose tissue (4, 5). An example of these ghrelin
effects on the adipose tissue is the remarkable inhibition
of FFA levels that we observed during the infusion with
UAG; this FFA decrease could partly explain the observed
improvement in insulin sensitivity (35, 36). Actually, the
observation of decreased FFA levels in our study does not
necessarily imply an inhibition of lipolysis but could also
suggest an increase in their tissutal uptake or inhibition
of gastrointestinal fatty acid uptake and effects on hepatic
fat metabolism. Nevertheless, our present findings fit well
with the previous report that UAG inhibits isoproterenol-
induced lipolysis (23) and stimulates lipid accumulation
in human visceral adipocytes (37), as well as in murine
preadipocyte cells (38). Interestingly, the inhibitory
action on lipolysis seems to be the only common action
for nonacylated ghrelin and AG (18, 23).

In summary, although a direct measurement of
insulin sensitivity has not been performed, the results
of this study, showing a concomitant reduction in
insulin and glucose responses to meals, might support
the hypothesis that UAG could play a metabolic role that
improves glucose metabolism and insulin secretion and
sensitivity and inhibits lipolysis in humans. All together,
these data are consistent with transgenic animal models
overexpressing UAG (39) as well as with a model of
specific ghrelin-O-acyltransferase (MBOAT4) inhibition
(40). In fact, on one hand, mice overexpressing UAG,
under the control of the rat insulin II promoter in
pancreatic islets, showed reduced blood glucose levels
and increased insulin sensitivity, although in these
models glucose-stimulated insulin secretion was
reduced (39). On the other hand, normal mice treated
with specific GOAT inhibitor, which are lacking AG but
show normal or even enhanced levels of UAG, display
improvement in glucose metabolism and insulin
sensitivity (40).

In conclusion, we demonstrated that an overnight
continuous i.v. administration of UAG improves glucose
metabolism and inhibits lipolysis in healthy volunteers.
This points toward a potential therapeutic role for UAG
and its analogs in clinical conditions characterized
by the presence of insulin resistance and metabolic
derangement.
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