CASE REPORT

Hypertrophic Scars After Therapy with CO$_2$ Laser for Treatment of Multiple Cutaneous Neurofibromas

J. U. Ostertag, MD,* C. C. W. Theunissen, MD,*† and H. A. M. Neumann, MD, PhD*

*Department of Dermatology, University Hospital Maastricht, Maastricht, The Netherlands, and †Erasmus University, Rotterdam, The Netherlands

BACKGROUND. CO$_2$ laser surgery is a treatment modality for cutaneous neurofibromas.

OBJECTIVE. Hypertrophic and atrophic scars can result from treatment with CO$_2$ laser surgery. We present a case of cutaneous neurofibromatosis that developed hypertrophic scars postoperatively.

METHODS. Continuous wave CO$_2$ laser surgery therapy was applied to the patient.

RESULTS. Hypertrophic scars developed 2 months after therapy.

CONCLUSION. With a preliminary test treatment the patient is able to see the expected result.

VON RECKLINGHAUSEN neurofibromatosis, also known as neurofibromatosis 1 (McK 162200), is a disease with skin tumors derived from peripheral nerves. Von Recklinghausen neurofibromatosis is an inherited neuroectodermal abnormality characterized by the presence of multiple neurofibromas, six or more café au lait macules (larger than 15 mm postpuberty), axillary freckles, hypertrophic and cystic bone lesions, and Lisch nodules in the iris. The mode of inheritance is autosomal dominant on gene 17q11.2. This gene is responsible for the production of the tumor suppressor neurofibromin. With a prevalence of 1 in 2500 births, it is one of the most prevalent genetic defects.1

Because of the psychological impact of the disease, treatment to remove the neurofibromas which stigmatize the patient is often requested.2,3 CO$_2$ laser vaporization is a simple procedure that quickly removes the tumor with minimal postoperative discomfort and acceptable cosmetic results.3,4

Case Report

A 54-year-old woman with neurofibromatosis 1 presented with multiple café au lait macules and many fibromas. Some of the other clinical symptoms of Von Recklinghausen neurofibromatosis were also present: axillary freckles and Lisch nodules in the iris. She had no health problems or neurologic abnormalities at that moment. Several excisions of fibromas had already been performed under local anesthesia. This time she was seen in our department for CO$_2$ treatment of newly developed neurofibromas.

The neurofibromas were treated with continuous wave CO$_2$ laser, 20 W on defocused mode for the sessile form and 10 W when excising the pendunculated form. Under general anesthesia about 100 lesions were treated on face, arms, neck, and collar. After the laser therapy, chlorohexidine 1% creme was applied to the skin and instructions were given to avoid sunlight.

The wounds healed by second intention in 3 weeks time. Two months later the face, neck, and collar had recovered well. However, several hypertrophic and atrophic scars persisted on the arm, mostly on the hand (Figure 1).

A 3 mm biopsy was performed on the left hand. Histopathology showed an epidermis of normal thickness. In the dermis, scar tissue formation was visible, characterized by parallel lying fibroblasts and collagen. In the depth, a remainder of the neurofibroma was still present.

The patient was treated with 13-cis-retinoid 80 mg/day. After 4 months of therapy an improvement of the scars occurred. There was almost no erythema left and the scars where flattened. Smooth depigmented scars remained.

Discussion

The classic pattern of anatomic distribution of neurofibromas is predominance on the trunk, as well as head and neck involvement, with decreasing incidence of lesions as one proceeds peripherally. The involve-
Suggested causes for scar formation after treatment are localized infection, trauma within 24 hours, overlap of adjacent test pulses, the location, and higher pulse level.6,7,10 In our case the scars were only present on the underarm and hand. Thermal trauma could be an explanation.11 Another explanation could be the characteristics of the neurofibroma itself. Neurofibromas are complex mixtures of Schwann cells, fibroblasts, perineural cells, vascular endothelium, and mast cells.12 Interactions of these cells during trauma and wound healing might produce scars. In our patient the anatomic site, in combination with the wound depth, was probably the cause of hypertrophic scarring, as she had no problems on the face, neck, and collar after the same treatment. Extremities take significantly longer to heal as compared to the face and there is a greater risk of hypertrophic scar formation.13

Isotretinoin, a synthetic isomer of tretinoin (vitamin A acid), has an anti inflammatory and antineoplastic activity. Tretinoin can induce hypertrophic scar formation. Nonetheless, it seems to work in many cases, an apparent contradiction. In the literature there are indications that retinoids can produce a reduction of fibroblast proliferation and collagen synthesis. Also, topical vitamin A has been shown to be effective in the treatment of hypertrophic scars.10,14 Although there is no evidence, we believe that treatment with 13-cis-retinoid might reduce or inhibit further fibroblast proliferation. Our patient responded to the treatment, but it is doubtful whether the effect is due to the drug or to spontaneous resolution of the hypertrophic scar.

The cosmetic disfigurement is the most important issue in the decision to treat cutaneous symptoms of neurofibromatosis. Treating patients with extensive neurofibromas with CO\textsubscript{2} laser is still the best choice. However, it is strongly advised that a test treatment be performed to judge the effectiveness of the procedure and whether the developed scar is an acceptable trade-off.

\textbf{References}