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Objective: In physiological conditions, the liver plays an important role in the regulation of plasma arginine concentrations by
taking up large amounts of arginine from the hepatic circulation. When hepatic failure is present, arginine metabolism may be
disturbed. Therefore, we hypothesized high arginine plasma concentrations in critically ill patients suffering from hepatic failure.
Design: We prospectively collected blood samples from a cross-section of intensive care unit patients.
Setting: Surgical intensive care unit of a Dutch university medical center.
Subjects: A total of 52 critically ill patients with clinical evidence of dysfunction of more than two organs were recruited.
Measurements: Plasma arginine concentrations were determined by HPLC. We identified correlations of arginine
concentrations with organ failure scores and laboratory variables by univariate and multiple regression analyses.
Results: High plasma arginine concentrations were found in critically ill patients developing organ failure. Patients who were in
the highest quartile of plasma arginine concentrations had significantly lower fibrinogen concentrations, higher lactic acid
concentrations, and longer prothrombin time. Stepwise multiple regression analysis showed that concentrations of arginine
were independently associated with the presence of hepatic failure (P¼0.03) and renal failure (P¼0.048). In addition, lactic
acid proved to be an independent determinant of plasma arginine concentration (P¼0.014).
Conclusions: Critically ill patients who suffer from hepatic failure have elevated plasma arginine concentrations. Additional
arginine in the treatment of these patients can be harmful, and therefore should not be used as a standard nutritional regimen
until further evaluation.
European Journal of Clinical Nutrition (2004) 58, 587–593. doi:10.1038/sj.ejcn.1601851
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Introduction
In unstressed animals and humans, arginine might be

classified as a dispensable amino acid, but when the

degradation and/or utilization is increased, such as in wound

healing, trauma, and sepsis, arginine becomes an indispen-

sable amino acid. Therefore, arginine is considered as a

conditionally essential amino acid.

Arginine has multiple biological functions: it enhances

wound healing (Barbul et al, 1990), improves immune

function (Reynolds et al, 1988) and T-cell antitumor

immunity (Barbul et al, 1985), has anticatabolic effects

(Barbul et al, 1984), plays an important role in the urea

cycle by eliminating nonessential nitrogen-containing com-

pounds from the body (Brusilow & Horwich, 1989), and is

the sole precursor of nitric oxide (NO) (Palmer et al, 1988).

NO is an important vasodilator and plasma concentrations

of arginine seem to be rate limiting in NO synthesis (Nakaki

et al, 1990; Creager et al, 1992; Lorente et al, 1999), thereby

playing a major role in the regulation of systemic and

splanchnic circulation in both normal and pathologicalReceived 17 January 2003; revised 23 May 2003; accepted 30 June 2003
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situations. In a study in rats, we observed a reduced blood

flow to the small intestine when plasma concentrations of

arginine were low in the presence of low-grade endotoxemia

(Prins et al, 2000a). Circulating arginine is reduced in a

number of clinical conditions, for example, after thoracoab-

dominal aortic surgery (Nijveldt et al, 2000), after surgery for

esophageal and lung cancer (Naini et al, 1988), after trauma

(Houdijk et al, 1998), during sepsis (Freund et al, 1978), and

in severe burns (Yu et al, 1995). Because of the many

physiological functions of arginine, low levels of this amino

acid may be related to the high morbidity and mortality rates

in these patient groups. In order to study the effect of

arginine on postoperative morbidity and mortality, arginine-

enriched nutrition has been tried in patients undergoing

major elective surgery. A recent meta-analysis proved that

immune-enhancing diets containing arginine reduce the

number of infectious complications and duration of hospital

stay in surgical patients (Heyland et al, 2001). However,

immunonutrition containing arginine in critically ill pa-

tients was not associated with any apparent clinical benefit.

Moreover, it has recently been shown that intensive care unit

(ICU) mortality in septic patients was significantly higher in

patients receiving enteral arginine-enriched nutrition com-

pared to patients receiving parenteral nutrition (Bertolini

et al, 2003). Nevertheless, not much is known about the

underlying mechanism by which arginine-enriched nutri-

tion may possibly be harmful. It has been shown that dietary

arginine supplementation decreases the mRNA expression of

inflammatory cytokines in burned rats (Cui et al, 2000), and

that pharmacological doses of arginine are immunosuppres-

sive by inhibiting lymphocyte proliferation in vitro (Wiebke

et al, 1997). Furthermore, arginine is known to be a

stimulator of growth hormone synthesis, and growth

hormone therapy in critically ill patients results in adverse

outcome (Takala et al, 1999). In patients with renal

insufficiency, arginine supplementation can lead to cardio-

toxic plasma potassium concentrations (Hertz & Richardson,

1972). Another negative effect of arginine can be over-

production of NO in organs that already are challenged by

enormous amounts of NO formed by the enzyme-inducible

NO synthase. High concentrations of NO may further

aggravate tissue damage by inhibiting enzymes of oxidative

substrate utilization and nuclear DNA synthesis, but also by

increased formation of peroxynitrite which has many

deleterious actions on cell function.

The liver plays a crucial role in the metabolism of

arginine. In healthy subjects, large amounts of arginine

are taken up from the portal venous and hepatic

arterial blood supplies, probably to serve as a substrate in

the urea cycle. The liver has therefore been called the major

sink of arginine. The effect of liver injury on arginine

concentrations is not yet fully understood, because both

low (Roth et al, 1994; Houdijk et al, 1997) and high (Prins

et al, 2000b) plasma arginine concentrations after liver

surgery have been reported in human studies and animal

models.

Critically ill patients may suffer from hepatic failure, and

consequently arginine uptake capacity of the liver and

subsequent degradation of arginine by the enzyme arginase

may be reduced. We hypothesized high plasma arginine

concentrations in these patients and, therefore, we deter-

mined arginine concentrations in critically ill patients who

were admitted on the surgical ICU of a Dutch university

medical center.

Patients and methods
Patients

In this prospective cross-sectional study, blood samples were

drawn from 52 consecutive patients who were admitted to

the surgical ICU of a Dutch university hospital. The protocol

was approved by the institutional review boards, and

informed consent was obtained from first-degree family

members.

From April 2001 to December 2001, at weekly intervals,

the senior intensivist of the surgical intensive care unit

judged on the suitability for inclusion. Patients were

included if they met both criteria: (1) clinical evidence of

dysfunction of Z2 organs, irrespective of the cause of organ

dysfunction; (2) calculated total sequential organ failure

assessment score Z6 (SOFA score (Vincent et al, 1996),

Table 1). Organ failure was defined as a SOFA score Z 3 for

any system.

Blood sampling

After inclusion, a heparinized blood sample (0.5 ml) was

drawn from an indwelling arterial line. Laboratory variables

that indicate renal function (creatinine and urea), hepatic

function (prothrombin time (PT), fibrinogen, and lactic

acid), and hepatic enzyme abnormalities (alanine amino-

transferase (ALT), aspartate aminotransferase (AST), alkaline

phosphatase (AP), and bilirubin) were determined. Plasma

arginine concentrations were determined by HPLC as

previously described (Teerlink et al, 2002).

Statistical analysis

Differences between two groups were tested using the

nonparametric Mann–Whitney U-test. Results are presented

as median and interquartile range (IQR). Multiple regression

analysis was performed to determine the interdependent

effects of variables on arginine concentrations. The regres-

sion equation was built step by step, in each step including

the then most significant variable. Relations between

variables were investigated using Pearson’s correlation.

Logarithmic transformation was performed when data were

not normally distributed, as in the case of arginine, ALT, AST,

bilirubin, AP, PT, lactic acid, creatinine, and urea. Po0.05

was considered statistically significant. Statistical analyses

were performed using SPSS (SPSS 10.0 for Windows).
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Results
In total, 52 critically ill patients entered the study. Demo-

graphic data of the study population are given in Table 2.

Median plasma concentrations of arginine, fibrinogen,

lactic acid, and PT in critically ill patients are shown in

Table 3. From the patients who were in the highest quartile

of arginine concentrations (arg(Z109): 109–454 mmol/l), six

patients suffered from hepatic failure and four patients from

renal failure.

Patients who were in the highest quartile of arginine had,

as liver function variables, significantly lower fibrinogen

concentrations (arg(Z109): 2.5 g/l, IQR 1.1–4.4; arg(o109):

4.4 g/l, IQR 3.5–5.7, P¼0.013), higher lactic acid concentra-

tions (arg(Z109): 3.80 mmol/l, IQR: 1.47–7.35; arg(o109):

1.70 mmol/l, IQR 1.20–2.20, P¼0.029), and longer PT

(arg(Z109): 22.10 s, IQR: 19.90–39.09; arg(o109): 18.70 s, IQR:

15.40–25.00, P¼0.03). However, there were no significant

differences for the indicators of hepatic enzyme abnormal-

ities (AST, ALT, bilirubin, and alkaline phosphatase) and

renal function (creatinine and urea).

Multiple regression analysis showed that plasma

concentrations of arginine in all critically ill patients

were independently associated with the presence of

hepatic failure and renal failure (Table 4). Of note is

the negative sign for renal failure, indicating a reduction

of plasma arginine concentrations when renal failure is

present.

Arginine concentration in all patients was positively

correlated with lactic acid (r¼0.338, P¼0.014) and

negatively correlated with fibrinogen (r¼�0.306,

P¼0.027), but not to the other indicators of hepatic

enzyme abnormalities or hepatic and renal function. By

multiple regression analysis, lactic acid proved to be an

independent determinant of plasma arginine concentration

(Table 4).

Discussion
In this study, we clearly demonstrate seriously elevated (up

to 454 mmol/l) plasma concentrations of arginine in critically

ill patients. Plasma arginine concentrations were indepen-

dently associated with the presence of both liver and renal

Table 1 SOFA score

SOFA score 0 1 2 3 4

Respiration
PaO2/FiO2 (mmHg) >400 301–400 201–300 101–200 r100
(kPa) >5.3 4.1–5.3 2.8–4.0 1.4–2.7 r1.3

Coagulation
Platelets (�103/mm3) >150 101–150 51–100 21–50 r20

Liver
Bilirubin (mg/dl) o1.2 1.2–1.9 2.0–5.9 6.0–11.9 Z12.0
(mmol/l) o20 20–32 33–101 102–204 Z204

Cardiovascular
Hypotension No hypotension MAP o70 mmHg Dopamine r5 or dobutamine (any dose)a Dopamine >5 Dopamine >15

Central nervous system
Glasgow coma score 15 13–14 10–12 6–9 o 6

Renal
Creatinine (mg/dl) o1.2 1.2–1.9 2.0–3.4 3.5–4.9 >5.0
(mmol/l) o110 110–170 171–299 300–440 >440
or urine output o500 ml/day o200 ml/day

aAdrenergic agents administered for at least 1 h (doses are in mg/kg/min). MAP=mean arterial pressure.

Table 2 Demographic data of the patient population

Number of patients 52
Gender: male/female 34/18

Age (y): median (range) 58 (16–81)

Type of admission
Complicated course after elective surgery 17 (32.7%)
Polytrauma 10 (19.2%)
Peritonitis, multiple perforations 10 (19.2%)
Decompensated liver cirrhosis 5 (9.6%)
Necrotizing pancreatitis 4 (7.7%)
Other 6 (11.5%)

Organ failures (SOFA score per organ sytem Z3)
Hepatic failure 14 (26.9%)
Renal failure 19 (36.5%)
Hepatic and renal failure 10 (19.2%)
Neurological failure 15 (28.9%)
Respiratory failure 32 (61.5%)
Coagulation failure 10 (19.2%)
Cardiovascular failure 33 (63.5%)

Organ failures (assessed by SOFA score)
0–1 16 (30.8%)
2–3 25 (48.1%)
Z4 11 (21.2%)

ICU death 21 (40.4%)

Data are number of patients. Numbers in parentheses are percentages of

total patient population unless otherwise stated. SOFA=sequential organ

failure assessment; ICU=intensive care unit.
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failure. Furthermore, lactic acid, as an indicator of hepatic

function, was an independent determinant of arginine

concentration.

Critically ill patients may suffer from failure of the liver

and kidney. These organs are important in the metabolism of

arginine. The kidney synthesizes arginine from citrulline and

a nitrogen donor, usually aspartic acid (Borsook & Dubnoff,

1941). In patients with chronic renal failure, it has been

shown that a net citrulline uptake was balanced by an equal

net arginine output, which on the overall was 40% less than

in healthy humans (Tizianello et al, 1980). In our study, we

show that plasma concentrations of arginine are indepen-

dently and negatively associated with the presence of renal

failure in critically ill patients. This finding is in concordance

with the role of the kidney as arginine synthesizing organ as

demonstrated by Prins et al (2002). In that study, it was

demonstrated in a rat model that arginine production was

impaired after ischemia–reperfusion injury of the kidney.

Thus, reduced arginine levels in this patient group could be

explained by a deteriorated synthesizing function of the

kidney. In addition, we proved that high arginine concen-

trations are independently associated with the presence of

hepatic failure. The liver is a crucial organ in the metabolism

of arginine because it contains large amounts of the enzyme

arginase, which converts arginine into ornithine and urea in

the urea cycle (Jackson et al, 1986). In physiological

conditions, large amounts of arginine are taken up from

the hepatic circulation, most likely to serve as substrate for

arginase. However, the effect of liver injury on plasma

arginine concentrations is still not clear. Results of studies on

the level of arginine concentrations after liver surgery are

contradictory. Roth et al (1994) reported very low arginine

concentrations (3.8 mmol/l) after liver transplantation due to

liberation of high amounts of arginase from the implanted

graft. Arginine deficiency also occurred in bile duct-ligated

rats undergoing surgery (Houdijk et al, 1997). The decline of

arginine was caused by high liver arginase activity in plasma.

Administration of cholestyramine, as inhibitor of gut-

derived endotoxemia, in these rats, prevented the arginine

deficiency by reducing arginase activity through the inhibi-

tion of additional endotoxin-mediated hepatocellular da-

mage after surgery. On the other hand, high concentrations

of arginine have also been reported; in a rat model, Kupffer-

cell depletion resulted in a higher arginase release from the

remnant liver after partial hepatectomy, indicating a hepa-

tocellular protective function of Kupffer cells. Despite this

arginase release, increased arginine concentrations were

present (Prins et al, 2000b).

In critically ill patients, we found high arginine concen-

trations and, therefore, dietary enrichment with arginine in

the treatment of these patients needs to be questioned.

It could be argued that the need for additional arginine

seems to be determined by an increased demand during

stressed states. During stress, cationic amino acids as

arginine are released from skeletal muscle, and are trans-

ported into the liver by cationic amino-acid transporters

Table 3 Concentrations of arginine (mmol/l), lactic acid (mmol/l), fibrinogen (g/l), and PT (s)

Arginine Lactic acid Fibrinogen PT

All patients (n=52) 68 1.8 4.1 19.9
(46–109) (1.2–3.0) (2.7–5.4) (15.9–25.1)

No liver or renal failure (n=29) 73 1.6 4.4 19.2
(49–106) (1.1–2.2) (3.6–5.7) (15.4–23.5)

Liver failure, no renal failure (n=4) 285 7.3 1.4 28.3
(72–319) (3.2–7.9) (1.1–4.0) (20.8–38.3)

Renal failure, no liver failure (n=9) 54 1.7 4.6 18.7
(33–89) (1.1–3.5) (2.8–5.8) (16.2–27.0)

Liver and renal failure (n=10) 58 3.2 3.6 20.0
(47–181) (1.6–7.3) (1.6–4.0) (17.6–54.7)

Data are presented as median (IQR). PT=prothrombin time.

Table 4 Multiple regression models for both organ failure (SOFA score
per organ sytem Z3) and biochemical markers of hepatic and renal
function as determinants of plasma arginine concentration

b Standardized b P r 2

Model 1: Organ failures
Hepatic failure 0.307 0.450 0.030 0.103
Renal failure �0.185 �0.294 0.048 0.172

Model 2: Biochemical markers
Lactic acid 0.308 0.338 0.014 0.114

As potential explanatory variables for plasma arginine concentration, organ

failures (hepatic, renal, coagulation, respiratory, cardiovascular, and neurolo-

gical failure) or biochemical markers of hepatic (AST, ALT, bilirubin, alkaline

phosphatase, fibrinogen, PT, and lactic acid) and renal (creatinine and urea)

function were entered in the analysis.
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(CAT) of the system yþ (Closs et al, 2000). Interestingly,

Hattori et al (1999) showed that the expression of CAT-1 and

CAT-2B mRNA was significantly increased in lung, heart, and

kidney by injection of lipopolysaccharide (LPS), whereas in

the liver CAT-2A mRNA was abundantly expressed, indepen-

dently of LPS administration. Therefore, changes in the

expression of CAT mRNA may influence arginine transport,

and the abundant expression of CAT-2 mRNA in the liver

points to a potentially high uptake of arginine in this organ.

Thus, transport mechanisms may determine intracellular

concentrations, and are therefore probably important as

regulators of the arginine–NO pathway. Interestingly, argi-

nine transporters have been held responsible for the

‘arginine-paradox’, the observation that endothelial NO

synthesis can be regulated by varying the extracellular

arginine concentration, despite the fact that the reported

intracellular arginine concentrations (0.1–1.0 mM) greatly

exceed the Km of endothelial nitric oxide synthase (NOS) for

arginine (2.9 mM) (Wu & Morris Jr, 1998). Interstingly, Lee

et al (2003) recently demonstrated in an in vitro model that

arginine concentration upregulates iNOS expression via

translational control of iNOS mRNA.

As the liver plays a crucial role in the metabolism of

arginine, hepatic failure may affect arginine concentration.

To determine liver function in our study population, we

measured multiple hepatic parameters. Patients who were in

the highest quartile of arginine concentrations had lower

fibrinogen concentrations, longer PT, and higher lactic acid

concentrations, indicating impairment of hepatic function.

In addition, high lactic acid concentrations were an

independent determinant of arginine concentrations.

In our opinion, the crucial role of the liver in the

metabolism of arginine is neglected in studies on arginine-

enriched nutrition in critical illness. Moreover, hepatic

failure may be a contraindication for the supplementation

of arginine-enriched nutrition. Additional arginine could be

potentially harmful instead of beneficial in this condition.

How can arginine possibly be harmful? Cationic amino

acids such as arginine cause movement of potassium ions

from (muscle) cells to the extracellular compartment. This

displacement is associated with an immediate increase in

potassium excretion by the kidney (Alberti et al, 1967).

When the excretion of potassium is impaired, as in end-stage

renal disease, detrimental increases in potassium concentra-

tions have been reported (Hertz & Richardson, 1972).

Moreover, hyperkalemia has also been reported in patients

with severe liver failure and only moderate renal insuffi-

ciency (Bushinsky & Gennari, 1978). Other reported disturb-

ing effects of arginine on electrolyte metabolism include

hyponatremia (Alberti et al, 1967) and hypophosphatemia

(Massara et al, 1980). Thrombocytopenia (Mudge, 1980) and

hypotension (Nakaki et al, 1990) due to arginine supple-

mentation have also been described. It has also been

reported that caution should be taken in recommending

arginine-enriched nutrition as a method to reverse clinical

immunosuppression. Pharmacological doses of arginine

have been shown to be immunosuppressive by reversible

inhibition of lymphocyte proliferation in vitro (Wiebke et al,

1997). In burned rats, arginine enrichment decreases

expression of inflammatory cytokines in organs (Cui et al,

2000). Furthermore, arginine is known to be a stimulator of

growth hormone synthesis. The administration of growth

hormone can attenuate the catabolic response during injury,

surgery, and sepsis. Nevertheless, in critically ill patients,

high doses of growth hormone resulted in adverse outcome

(Takala et al, 1999). Another possible negative effect of

arginine can be overstimulation of NO synthesis in organs

that already are challenged by large amounts of NO

produced by the enzyme-inducible NO synthase. NO is able

to react with so-called reactive oxygen species, thereby

forming peroxynitrite that may damage cell membranes,

oxidize lipids, and inhibit enzyme function. Other harmful

effects of overproduction of NO affect the cardiovascular

system and consist of coagulation disorders and systemic

vasodilation with therapeutically refractory hypotension.

Nutritional support with arginine has been shown to

improve outcome in surgical patients (Heyland et al, 2001).

However, Nelson (1998) points out that findings in patients

undergoing surgery cannot be extrapolated to patients who

are critically ill. This statement is supported by a recent

meta-analysis of Heyland et al (2001), who showed that the

treatment effect of immune-modulating diets containing

arginine in surgical patients was significantly different from

the treatment effect in critically ill patients. Moreover, the

authors postulated that this arginine-enriched nutrition may

be harmful. Previous studies support the finding that

immunonutrition with arginine may have adverse effects.

In a randomized trial, Bower et al (1995) compared immune-

enhancing nutrition with standard enteral nutrition. Of 147

patients who received the experimental formula, 23 (15.7%)

died compared to 10 of 132 (7.6%) patients in the control

group. In a subgroup analysis, the mortality in critically ill

patients was 11.7% in the experimental group, whereas

6.9% died in the control group. Furthermore, in a study

by Dent et al (2003), 170 critically ill patients were

randomized to receive either immunonutrition containing

arginine or isonitrogenous control nutrition. In the arginine-

enriched group, there were significantly more deaths than in

the control group (23.0 vs 9.6%, P¼0.03). However, at

baseline, there were more patients with pneumonia in the

experimental group in which most deaths occurred (argi-

nine-enriched group 38.5% vs control group 0%). In a very

recent interim analysis of a multicenter, randomized,

unblinded trial on 39 patients with severe sepsis, the effect

of immune-enhancing (containing arginine) enteral feed was

compared with parenteral feed (Bertolini et al, 2003). The

ICU mortality proved to be significantly higher in the enteral

feeded group (44.4%) than in the parenteral feeded group

(14.3%). These results show that additional arginine

should not be used in septic patients (Heyland & Samis,

2003), whereas it may be beneficial in other groups of ICU

patients.
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Our data show that in different clinical states, arginine is

abundantly available or lacking. Therefore, arginine supple-

mentation is questionable in patients with hepatic failure,

whereas it may be potentially indicated in patients suffering

from renal failure.

In conclusion, we found elevated plasma concentrations

of arginine in critically ill patients. High arginine concentra-

tions proved to be associated with the presence of hepatic

failure, whereas low arginine concentrations proved to be

associated with the presence of renal failure. Arginine

supplementation is presented to be advantageous. However,

these data indicate that arginine-enriched enteral formulas

may not be used as a standard nutritional regimen in each

ICU patient. Possibly, the choice to treat patients with

additional arginine should be tailored to the individual

patient.
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