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Abstract

The transcription factor SOX2, associated with amongst others OCT3/4, is essential for maintenance of pluripotency and self-
renewal of embryonic stem cells. SOX2 is highly expressed in embryonal carcinoma (EC), the stem cell component of
malignant nonseminomatous germ cell tumors, referred to as germ cell cancer (GCC). In fact, OCT3/4 together with SOX2 is
an informative diagnostic tool for EC in a clinical setting. Several studies support the hypothesis that SOX2 is a relevant
oncogenic factor in various cancers and recently, SOX2 has been suggested as a putative therapeutic target for early stage
EC. We demonstrate the presence of genomic amplification of SOX2 in an EC cell line, NCCIT, using array comparative
genome hybridization and fluorescence in situ hybridization. Down-regulation of SOX2 by targeted siRNA provokes NCCIT
cells towards apoptosis, while inhibition of OCT3/4 expression induced differentiation, with retained SOX2 levels. Mice
pluripotent xenografts from NCCIT (N-NCCIT and N2-NCCIT) show a consistent SOX2 expression, in spite of loss of the
expression of OCT3/4, and differentiation, with retained presence of genomic amplification. No SOX2 amplification has been
identified in primary pure and mixed EC in vivo patient samples so far. The data presented in this study are based on a single
EC cell line with a SOX2 amplification, with NT2 as control EC cell line, showing no profound induction of apoptosis upon
SOX2 downregulation. The findings are of relevance to identify mechanisms involved in the pathogenesis of EC tumors, and
support the model of SOX2-oncogene dependency of EC, which however, does not exclude induction of differentiation.
This finding is likely related to the presence of wild type p53 in GCC, resulting in expression of downstream target genes,
amongst others miR-34a, miR-145 and SOX2, associated to the unique sensitivity of GCC to DNA damaging agents.
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Introduction

SOX2 (sex-determining region Y-box2) is a 317 amino-acid

transcription factor containing an HMG domain located at 3q26,

being a critical transcription factor of normal embryonic stem (ES)

cell development and maintenance, as well as neural stem cells

[1,2]. During early embryogenesis, Sox2 is required for epiblast

maintenance, and formation of multipotent cell lineages in early

mouse development depends on Sox2 function [3]. Moreover,

Sox2 is one of the four transcription factors successfully used to

induce pluripotent stem cell (iPS) from mouse and human

fibroblast cells [4,5]. In particular, in these cells SOX2 physically

interacts with OCT3/4 and NANOG forming an interconnection

machinery that binds to promoters of numerous but defined stem

cell genes to induce their expression as well as repress expression of

genes related to differentiation [1].

This seems essential since generating iPS cells from primary

human fibroblast has become possible with the single use of

OCT3/4 and SOX2 [5]. Relative hyper- or hypo-expression

of these pluripotency factors may result in aberrant self-renewal of

ES cells and can possibly even promote oncogenesis [6]. Recent

studies have shown that SOX2 over-expression leads to aberrant

stem cell self-renewal signaling in breast cancer cells [7,8].

Moreover, several studies have shown over-expression of SOX2

in various cancers including glioblastoma [9], non-small cell lung

cancer [10,11], prostate cancer [12] and hepatocellular carcino-

mas [13] supporting SOX2 as a relevant oncogene in these

malignancies. Specifically, SOX2 is reported as a lineage-survival

oncogene in squamous cell carcinoma of the lung [14–16] and its

over-expression is associated with tumor progression and poor

clinical outcome in breast cancer [7,17]. These reports suggest that

SOX2 could activate important gene cascades involved in

initiation and progression of tumors and maintenance of a poorly

differentiated state [18].

Besides in these epithelial cancers, SOX2 has also been proven

to be of diagnostic value in the context of human germ cell cancers

(GCC) [19]. Testicular GCC originate from either a primordial

germ cell (PGC) or gonocyte during early development [20–22].

Histologically and clinically, GCC are classified into seminoma

(SE) and non-seminoma (NS). They both originate from the same

precursor known as carcinoma in situ (CIS), also referred to as

intratubular germ cell neoplasia unclassified (IGCNU) [20–22,23].

NS can contain both embryonal and extra-embryonal lineages,

including embryonal carcinoma (EC), somatic differentiation

(teratoma) and extra-embryonal differentiation (choriocarcinoma

(CH) and yolk sac tumor (YS)). EC is the malignant ES cell
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counterpart, in principle able to differentiate into virtually all tissue

lineages [24–26]. EC cells show a gene expression profile similar to

that of ES cells, including high expression of the core pluripotency

transcription factors OCT3/4 and SOX2. These transcription

factors act in concert to control stem cell self-renewal and

pluripotency [27,28]. OCT3/4 is expressed in CIS, SE and EC. In

contrast, SOX2 is expressed in EC but not the precursor lesions

and SE and normal germ cells. In addition, SOX2 can be

heterogeneously expressed in differentiated nonseminomatous

components. Currently, the expression of OCT3/4 and SOX2

are used for the diagnosis of EC while combination of the presence

of OCT3/4 and SOX17 is used for the diagnosis of SE [19].

Additionally, a single study [29] using an EC cell line NEC8 model

reported SOX2-siRNA induced apoptotic cell death in vitro and

growth suppression in vivo. In view of the similarity between EC

and human ES cells, disruption of the orchestrated activity of these

transcription factors could possibly induce lethal effects in EC cells

[29].

There are various cell lines representing EC tumors i.e. NTera2

(NT2) [30], NCCIT [31], and 2102Ep [32] in which OCT3/4

and SOX2 are highly expressed [33]. As a result of array

comparative genomic hybridization (CGH) on multiple EC cell

lines, NCCIT cell line, originating from a mediastinal GCC,

showed amplification at the long arm of chromosome 3, band q23

including the SOX2 gene locus [34]. In addition, it is shown that

NCCIT has no functional p53, while NT2 and 2102ep cell lines

contain wild type p53, expressed in a relative low and normal

level, respectively [35]. p53 is a transcription factor that plays a key

role in cellular defense mechanisms against neoplastic transfor-

mation, found to be mutated in a large number of human cancers,

for which GCC is an exception [36].

Moreover, it is shown that p53 plays an active role in promoting

differentiation of human ES cells and opposing self-renewal by

regulation of specific target genes and microRNAs (miRs). miRs

are small, non-coding RNAs of 21–23 nucleotides in length that

regulate gene expression, generally at a post-transcriptional level

[37]. Specific miRs regulate self-renewal and pluripotency in

human cells [38].

In this study we explored whether oncogene dependency of the

pluripotency gene SOX2 in EC exist, which might explain the

biological and clinical difference(s) between different histological

subtypes of GCC. Previously we have shown that reduction of

OCT3/4 and SOX2 in NT2 cause induction of differentiation

[33]. Here, we investigate the effect of reduction of OCT3/4 and

SOX2 by means of targeted siRNA in NCCIT cells. In addition,

in order to decipher whether specific amplification of pluripotency

genes associates with the undifferentiated state of EC, we

investigate whether primary GCC including pure EC and mixed

NS including EC components, have amplification of OCT3/4 and

SOX2 using Fluorescence In Situ hybridization (FISH).

Materials and Methods

Cell culture and manipulation
Both NT2 and NCCIT cell lines were received as gifts

[31,39,40]. NT2 and NCCIT cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) (Life technologies Europe BV,

Bleiswijk, Netherlands) containing 10% fetal bovine serum

supplemented with penicillin and streptomycin (10,000 U/ml) at

37uC under 5% CO2. NT2 cells were passaged at 90% confluence

while NCCIT were passaged at 80% confluence. Briefly, cells were

seeded at the density of in 75 ml flasks. Seeding ratio for NT2 cells

and NCCIT cells were 1:3 and 1:5 respectively. Incubated cells

were harvested with trypsin-EDTA, washed with PBS, centrifuged

and resuspended in DMEM medium. Approximately 8000 cells

were used to make cytospins. 100 ml of counted cells (diluted in

medium) were put on glass slides. In order to put cells on glass

slides, Cytospin chambers were used. The slides were set into

cytospin machine for 10 min and 500 rpm. Then chambers were

removed and glass slides were air dried for at least 2 hours and

were stored at 220uC.

siRNA transfection for SOX2 and OCT3/4
NCCIT cells were transfected with siRNA based SOX2

(s13294; Ambion/Invitrogen, Breda, the Netherlands), siRNA

against OCT3/4 (Qiagen,Manchester, UK) [41] and Silencer

Negative Control siRNA (4611, Life technologies Europe BV,

Bleiswijk, Netherlands) using Lipofectamine 2000 (Life technolo-

gies Europe BV, Bleiswijk, Netherlands) in 24 well-plates (Greiner

bio-one/Germany) according to the manufacturers’ protocol. The

transfection ratio (siRNA:Lipofectamine) was 1:2.

Protein Isolation and Western blotting analysis
Isolation of protein and Western blotting analysis were

essentially performed as previously described [42]. The antibodies

are described in Immunohistochemistry (see below). The dilution

of antibodies used for western blot was 1:1000 for both OCT3/4

and SOX2 antibodies. In addition, mouse monoclonal beta-actin

(clone AC-15; Sigma Aldrich, St Louis, MO, USA) was used. The

blocking solution used was milk (1%). Binding of the primary

antibodies was visualized by using IRDYe donkey anti-mouse or

donkey anti-goat secondary antibodies and the blots were scanned

on the Odyssey infrared imaging system (from LI COR

Biosciences, NE, USA).

Immunohistochemistry (IHC)
Staining was performed on cell lines as well as FFPE tissues.

Unfixed cells were incubated for 1 hour at room temperature with

the primary antibodies. Formalin-fixed paraffin-embedded (FFPE)

tissues (4 mm thick sections) were pretreated by antigen retrieval

(Tris (0.001m/EGTA (0.01 m) PH 9.0) [43] after deparaffiniza-

tion and blocking of the endogenous peroxidase with H202 (3%)

(Merck-KG9A; 108597, Darmstadt, Germany). Endogeneous

biotine is blocked by Avidin-Biotin blocking kit (Vector, SP-

2001, Burlingame, CA 94010, USA). Incubated overnight at 4uC.

Antibodies used were SOX2 (1:250, AF2018; R&D System, USA),

OCT3/4 (sc-5279; 1:350; sc-Santa Cruz Biotechnology, Santa

Cruz, CA, USA), Ki67 (1:50, A047; Dako, CA, USA) and Caspase

3 (1:500, 9579; Cell Signaling).

Visualization was performed by using horseradish peroxidase

avidin-biotin complex (Vectastain, Vector SP-2001, Burlingame,

CA 94010, USA) and DAB/H202 as substrate. For negative

controls, primary antibody was omitted, resulting in complete

absence of signals.

Percentage of knock-down
Cells were harvested by trypsinization and analyzed for knock-

down of the proteins under investigation using IHC on cytospins

(see below). Percentage of positive cells for each gene was

calculated by counting five different regions on the cytospin in

which each region contained 100 cells, therefore, the total number

of counted cells were 500 cells. The cells were defined as positive

when the color brown was above the background color and cells

with color blue above the background level were counted as

negative for antibody used. This method has been tested and

published in [33].

SOX2 and EC
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Cell viability test
Cell death induced by siRNA transfection was evaluated by

trypan blue exclusion. Briefly, NCCIT cells were harvested after

48 h, 54 h and 60 h after siRNA transfections. Cells were washed

with PBS and resuspended in 100 ml PBS. After mixing with

100 ml 0.8% trypan blue cells were calculated as the number of

blue cells/total number of cells.

Flow cytometry
Propidium Iodide. In order to measure the percentage of

live and dead cells, Propidium Iodide (PI) assay was used. Briefly,

cell pellets were resuspended in 500 ml of PBS. Cells were fixed by

adding 5 ml of 70% cold ethanol. Then the cell suspension was

centrifuged at 400 g for 5 min and the supernatant was removed.

Cell pellet was washed with PBS and resuspended in 1 ml of PI

staining solution (50 mg/ml) according to the standard protocol.

Cells were incubated for at least 30 min at room temperature in

the dark to be analyzed by flow cytometry using FACSAria III

machine using 488-nm laser line for excitation.

AnnexinV. Percentage of apoptotic cells was measured using

BD Pharmingen FITC AnnexinV apoptosis detection kit I

(556547; Erembodegem, Belgium) according to the manufactur-

ers’ protocol. Hoechst 33258 (H3569), (Molecular probe/Invitro-

gen, Leiden, the Netherlands) was used at the concentration of

1 mg/ml. Briefly, harvested cells (1610 ‘5) were washed with PBS,

centrifuged and resuspended in Annexin buffer provided with the

kit. The final concentration used for Annexin was 0.5 mg/ml. Cells

were analyzed by FACSAria III machine.

In Situ hybridization
Fluorescent in situ hybridization (FISH) was performed with

probe mapped to chromosome 3 band 26.33 (RP11-43F17) for

SOX2 detection. In addition, an OCT3/4 specific probe was used

(RP11-1058J10). In addition to this specific region, a probe

mapped to centromeric region of chromosome 12 was assessed as

control [44]. Briefly, FFPE tissue section of 4 mm thickness were

deparaffinized, pretreated in a 0.01 M Sodium citrate solution

under high pressure in pressure cooker, subsequently with pepsin

(4.000 U) at 37uC followed by washing and dehydration. Probes

were labeled by nick-translation, according to standard proce-

dures, either with dioxigenin-11-dUTP (Roche, Manheim,

Germany) or biotin-16-dUTP (Roche, Manheim, Germany), and

applied in 10-15 ml hybridization mixture on the tissue slides. The

probes were denatured together with the target by placing the slide

for 10 min on the 80uC oven. After hybridization overnight at

37uC, the slides were washed stringently and the hybrids were

detected by FITC-conjugated sheep-anti-digoxigenin (Roche,

Manheim, Germany) and CYE3-conjugated avidine (Jackson

Immuno research laboratories, Cambridgeshure, UK) Results

were studied with a fluorescent microscope LSM700 Zeiss. Cells

were pretreated in 220uC methanol/acetone for 20 min and the

rest of the procedure for FISH on NCCIT cells was the same as

above mentioned with omitting of the high pressure treatment.

Xenografts generation
The NMRI/Nu-Nu strain of immune-compromised female

mice (Mus musculus), aged 6–8 weeks (Charles River Laboratories,

Wilmington, Massachusetts, USA) was used in this study. The

animals were housed in the individually ventilated cages with

sterile bedding, water, rodent chew feed and air. Experiments

were carried out in accordance with the ARRIVE guidelines [45]

and the animal research protocol was approved by the Institu-

tional Animal Ethical Committee (DEC), Erasmus University

Medical Center, Rotterdam, the Netherlands.

Six mice were used. The mice were anesthetized by the

exposure to 2% isoflurane (Pharmachemie BV, Haarlem, The

Netherlands) and placed ventral side up on a pre-warmed injecting

pad. Approximately 10–12 million cells from each cell line

suspended in 200 ml fresh culture medium with 20% serum were

implanted under the skin with a 1-cc syringe and 24-gauge needle.

Two week after implantation, xenograft tumor growth was

checked by palpation and the size of xenografts was measured

using a vernier calliper [xeno-tumor size (mm2) = length x width]

twice a week and the mice were followed for a total period of

maximal 12 months until they were sacrificed. For ethical reasons,

primary xenograft tumors reaching the size of 225 mm2 were

taken from study and sacrificed. The primary tumors were

preserved by direct freezing in liquid nitrogen as well as by fixation

in 10% formalin solution (Sigma-Aldrich, St. Louis, Missouri,

USA) for subsequent histological analyses.

Cultivation of NCCIT sub-lines, N-NCCIT and N2-NCCIT
N-NCCIT and N2-NCCIT were re-cultured similarly as

described for the original NCCIT cell line.

Results

OCT3/4 and SOX2 in Embryonal Carcinoma (EC) cell lines
SOX2 amplification confirmed in NCCIT cells. Our

previous genome wide copy number investigation of multiple

EC cell lines showed a specific amplification at the long arm of

chromosome 3, band q23, including the SOX2 gene locus only in

the NCCIT cell line [34]. The borders were defined as

177.604.206 bp (detected by RP11-71G7 probe) until

184.060.761 bp (detected by RP11-553E4 probe), encompassing

a region of about 6.4 Mb. Various genes are mapped to this

genomic fragment including SOX2 (Figure S1A & B). To

investigate the pattern of expression of all genes within the

amplified region in a series in primary GCC, including multiple

pure EC, high throughput Affymetrix expression data analysis was

performed, and compared to SE. The results showed a significant

difference between the expression of SOX2 in EC and SE, being

high versus low in expression respectively, which is in line with

previous findings [19]. In total, 13 genes were analyzed in this

region in which three genes, including SOX2, showed a significant

difference between EC and SE (Figure 1A). Although there are

other candidate genes within the amplified region, due to critical

role of SOX2 in early development in close connection with

OCT3/4 and its diagnostic value in the diagnosis of GCC, SOX2

was selected for further investigations. To verify the presence of

SOX2 amplification in NCCIT, DNA FISH was performed using

a verified probe for SOX2 gene (labeled with biotin). A

centromere 12 (C12) specific probe (labeled with digoxigenin)

was used in a double FISH experiment as control for copy number

changes. The frequency of the signals obtained for SOX2 and C12

confirmed the amplification of SOX2, suggested to be at a single

chromosome (Figure 1B).

Silencing OCT3/4 and SOX2 in NT2. To investigate the

effect of reduced levels of OCT3/4 and SOX2 in the NT2 cell

line, representative for pluripotent EC, without amplification of

SOX2, siRNA-based OCT3/4 and SOX2 inhibition was

performed. Based on the results obtained, specific siRNAs were

chosen for further experiments (boxed in Figure S2). Because of

the time effects, cells obtained 72 h after transfection were chosen

for subsequent analysis. Both OCT3/4 and SOX2 RNA- knock-

down in the NT2 cell line under these conditions have previously

SOX2 and EC
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resulted in defined induction of differentiation as described before

[33]. In the mentioned study, as a result of OCT3/4 downreg-

ulation, expression of pluripotency genes such as OCT3/4, SOX2,

NANOG and LIN28 were down regulated and expression of some

differentiation genes such as OTX1, PAX-6 (ectoderm), HAND1,

BRACHYURY, MYOD1 (mesoderm), AFP, GATA4 (endoderm)

and BMPR2 (germ cell) were upregulated.

Additionally, using the selected siRNAs, the microarray data on

NT2 cells with OCT3/4 and SOX2 knockdown compared to the

negative control NT2, showed 90% downregulation for OCT3/4

and 67% SOX2 knock-down on the RNA level 72 hours after the

incubations. For microarray analysis Sentrix human6 BeadchipV3

was used. According to the array data, the number of intensity for

OCT3/4 in the negative control NT2 was 8524 which decreased

to 865 in the OCT3/4 knockdown NT2. SOX2 intensity in the

negative control NT2 was 1460 which in SOX2 knock-down cells

decreased to 479.

Silencing OCT3/4 and SOX2 in NCCIT. To investigate

the effect of reduced levels of OCT3/4 and SOX2 in the NCCIT

cell line, as done in the NT2 cell line, the selected siRNAs for

OCT3/4 and SOX2 (see above) were transfected, and the cells

were investigated at three different time points (48, 48+6 h and

48+12 h). Use of each siRNA specifically led to a down-regulation

of OCT3/4 and SOX2 protein expression in NCCIT. The

percentage of positive cells for these proteins was measured in

negative control cells and cells transfected with siRNAs, by

immunohistochemistry, shown to be an informative method for

analysis [33] Additional data are shown in Figure S3. The results

indicate that the expression level of OCT3/4 and SOX2 protein

expression were reduced significantly in time (Figure 2A).

OCT3/4-down-regulation in NCCIT results in loss of

pluripotency. To investigate the effect of OCT3/4 down-

regulation on the identity of the NCCIT cells, expression level of a

selected panel of genes representative for pluripotency and

differentiation (for all embryonic germ layers: mesoderm, endo-

derm and ectoderm) was measured using q-RT-PCR, as reported

before [33]. As in the NT2 cells, OCT3/4 down-regulation

resulted in differentiation, demonstrated by loss of the pluripo-

tency factors (OCT3/4, NANOG and LIN28) and up-regulation of

some differentiation genes, including OTX1 (ectoderm), brachyury

and HAND1 (mesoderm), and LAMB1 (endoderm) (Figure 2B).

The details on qRT-PCR panel has been described in [46]. No

morphological changes were been observed in the cells under

investigation.

SOX2-siRNA caused major apoptosis in NCCIT. As

reported for OCT3/4, reduction of SOX2 expression in NT2

resulted in induction of differentiation [33]. In contrast, in the

NCCIT cell line SOX2 reduction did not result in differentiation,

but instead, it caused a progressive loss of cells in time (48, 48+6,

48+12 and 72 hours after transfection). Cell death was obvious

after 54 hours and prominent at 60 hours. Because at the last time

point, almost no viable cells were present, no further analysis could

be done including expression profiling. Using Trypan blue

staining, the presence of live cells was measured at each time

point (Figure 2C). The results demonstrate at the latest time point

after transfection a progressive and significant effect of SOX2 and

OCT3/4 reduction on the amount of living cells in time,

indicating only 20% living cells in the SOX2 reduced cells and

50% living cells in the OCT3/4 reduced cells. To investigate the

effect of SOX2 and OCT3/4 down-regulation on proliferation,

immunohistochemical staining was performed for Ki67 on

cytospin slides at the latest time point (60 h). The results

(Figure 2D) demonstrate that OCT3/4, inducing loss of pluripo-

tency (see above), also resulted in a decrease in proliferation status

compared to the negative siRNA control and untreated cells for

about 50%. The effect of SOX2 reduction was even more severe,

resulting in about 10% positive cells (p,0.01). Subsequently, we

investigated whether loss of cells was also the result of increased

apoptosis, for which various approaches were used. These include

immunohistochemistry for the apoptosis marker Caspase 3

Figure 1. Gene expression within the amplified region. A) Expression histogram indicating the relative expression of genes mapped within the
amplified region in a series of SE and EC. The stars indicate genes significantly differentially expressed between SE and EC (according to Mann
Whitney U test). Most of the genes are represented by multiple specific probes; B) DNA-FISH result for SOX2 in NCCIT cells. A centromere 12 (C12)
specific probe is used as control. Red dye (Cye3) shows SOX2 probe. For C12 probe green dye (FITC) is used. The blue background color is DAPi.
Multiple red spots for SOX2 are detectable in each cell containing two green spots for C12, indicating SOX2 amplification. Magnification used was
630x. DNA-FISH was performed on cut tissue section with a thickness of 4 micron. This results in possible heterogeneity of the probe sizes detected.
This issue was not a limitation as the purpose of this experiment was to determine the copy numbers and the size or intensity of the region. The FISH
(BAC) probes were ordered at BACPAC Resources Center (BPRC) online:bacpac.chori.org. They were verified and confirmed at the department of
genetics.
doi:10.1371/journal.pone.0083585.g001
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Figure 2. OCT3/4 and SOX2 knockdown in NCCIT. A) Percentage of positive cells for OCT3/4 and SOX2 in cells with reduced OCT3/4 and SOX2
levels compared to cells transfected with control siRNA in the NCCIT cells in three different time-points post transfection based on
immunohistochemistry; The controls are set to 100 in all cases. B) Relative expression pattern of 32 genes representing targets for pluripotency
and differentiation (ectoderm, mesoderm and endoderm). The expression levels are normalized based on the housekeeping gene HPRT; C)
Percentage of living NCCIT cells with reduced level of OCT3/4 and SOX2 compared to cells transfected with control siRNA at each time point based on

SOX2 and EC
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(Figure 2E). Positive staining was found predominantly and

significantly in the cells with SOX2 inhibition, especially at the

60 hours time point (p = 0.04). In contrast, inhibition for OCT3/4

resulted in less than 4% apoptotic cells. This pattern was

confirmed by FACS analysis using Propidium Iodide (PI) exclusion

test and Annexin V staining (Figure 2F, G). These data

demonstrate that the major decrease in the amount of living

NCCIT cells due to reduced SOX2 expression is explained by

induction of apoptosis, as determined by independent methods.
N-NCCIT and N2-NCCIT xenografts show a consistent

positive expression for SOX2. It is known that NCCIT has

the capacity to differentiate [31,47], in line with the results

obtained from the OCT3/4 inhibition experiments (see above).

SOX2 is found to be an absolute marker for EC in combination

with OCT3/4, although it can also be found more heteroge-

neously in differentiated components, especially teratoma [19]. In

the context of the induction of apoptosis by means of SOX2

suppression in NCCIT, it is interesting to investigate whether

NCCIT cells grown as a xenograft in vivo remains SOX2 positive

throughout, in spite of possible differentiation. To answer this

question, multiple mice xenografts were generated from the

parental NCCIT cell line (referred to N- and N2-NCCIT). The

established tumors were characterized, and a sub-line was

subsequently cultured continuously in vitro. The N-NCCIT sub-

line was tested for OCT3/4 and showed positive staining (Figure

S4). The in vivo tumors were tested for SOX2 and OCT3/4. The

overall pattern (representative examples shown in Figure 3)

indicated that in spite of morphological induction of differentia-

tion, supported by loss of OCT3/4 by immunohistochemistry, this

was not accompanied by loss of the expression of SOX2. In other

words, SOX2 remained positive in all components of the tumors.

Detection of amplification for SOX2 and OCT3/4 in EC
Because SOX2 is amplified in the EC cell line NCCIT, with a

functional effect on survival, it is of interest to check whether

primary GCC, have SOX2 amplification. Particularly, the so-called

nullipotent EC might be of interest to be investigated, although

this component might also be present in mixed nonseminomas,

i.e., tumors with a histologically mixed composition. A series of 12

pure EC and 34 mixed GCCs including an EC component were

studied using the double FISH method (see above). No amplifi-

cation for SOX2 or OCT3/4 (i.e. more than 6 copies) was found in

the cases investigated (shown in Figure S5).

Discussion

Pluripotent stem cells have been isolated from a variety of

human and mouse sources as models to investigate processes

involved in early embryonal development [48,49]. Two of the

well-studied cell types are ES cells derived from the inner cell mass

of blastocyst-stage embryos and EC cells, the nonseminomatous

stem cells of GCC [49,50]. By definition, pluripotent stem cells

have extensive self-renewal capacity and the ability to differentiate

into wide variety of cell types [48,49,51]. In fact EC cells derived

from the progenitor of the germ line are a malignant equivalent of

ES cells [52], thus they provide a good model to study early

embryonal development as well as tumorigenesis [49].

OCT3/4 and SOX2 are transcription factors essential to the

pluripotent and self-renewing phenotypes of ES cells. These

master ES cell pluripotency factors are highly expressed in EC

[19,53]. Representative cell lines of EC which are capable of

differentiation (NT2, NCCIT, 2102Ep) have been generated and

extensively used for studies [30,31,47,50]. Based on our molecular

data derived from array CGH data, the NCCIT cell line, derived

from an extra-gonadal GCC, shows a restricted amplification of

Trypan blue measurement; D) Percentage of positive NCCIT cells for Ki67 in untreated cells, cells transfected with control siRNA and cells with
reduced levels of OCT3/4 and SOX2 at 48+12 h post transfection; E) Percentage of positive cells for Caspase 3 in untreated NCCIT cells, Cells
transfected with control siRNA show a reduced level of OCT3/4 and SOX2 at all three time points after the transfection; F) FACS analysis with
Propidium Iodide staining in cells transfected with control siRNA, cells transfected with SOX2 and OCT3/4 siRNA at 60 h post transfection. NCCIT cells
transfected with control siRNA show the presence of 78% living cells, while cells transfected with SOX2 siRNA show 51% living cells, NCCIT cells with
OCT3/4kd show 62% live cells. G) Annexin V assay results in cells with siRNA control and cells with reduced SOX2 and OCT3/4 at 60 h after
transfection. In the control, percentages of living-annexin negative cells are 89.6%, while dead-annexin positive cells are 12.2%. In SOX2kd cells, the
amount of living-annexin negative cells is 57.5% while the amount of dead-annexin positive cells is 17.2%. In cells transfected with OCT3/4 siRNA,
living-annexin negative cells are 68.3% while dead-annexin positive cells are 12.8%. The differences between the percentages of live and dead cells in
all experiments are due to using independent and various methods in order to prove apoptosis and different sensitivity of the materials and methods
used. As it is demonstrated, OCT3/4 knock-down also induces apoptosis, however, this effect is not as dramatic as SOX2 knock-down. The FACS
analysis were performed in triplicate.
doi:10.1371/journal.pone.0083585.g002

Figure 3. Immunohistochemistry for SOX2 and OCT3/4 on
nude mice xenografts of NCCIT. Images A, B and C belong to N-
NCCIT; D, E and F belong to N2-NCCIT. A & D) H & E staining
demonstrates the histological composition, showing regions with
differentiation (indicated with a circle); B & E) Staining for OCT3/4
showing the presence of heterogeneity, showing undifferentiated
(positive) and differentiated (negative) cells; C & F) Staining for SOX2
shows that the malignant cells are consistently positive, in spite of the
presence or absence of OCT3/4.
doi:10.1371/journal.pone.0083585.g003
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the 3q23 region. This region contains SOX2, amongst many other

genes. Here we demonstrate that indeed SOX2 maps within the

minimal region of overlap of the amplification. This triggered a

more detailed analysis of the role of SOX2 in this cell line

compared to an EC cell line without such a genomic amplification.

In fact, SOX2 amplification and its pathogenic role association

with oncogenesis have been reported in human lung squamous cell

carcinoma [54]. In addition, targeting SOX2 in breast cancer cell

lines have shown that siRNA-mediated knock-down of SOX2

resulted in cell cycle arrest by down-regulation of Cyclin D1 and

this arrest in cell cycle was accompanied by an inhibition of tumor

cell proliferation in xenograft models [18]. Most recently, it has

been reported that inhibition of SOX2 might be of therapeutic

potential for EC [29]. In that particular study, SOX2 down-

regulation in the EC cell line NEC8, when established in vivo,

induced tumor growth suppression in case of a limited tumor size.

In contrast, down-regulation showed no effect on progression in

case of a tumor of larger size. This is likely related to loss of SOX2

expression to some extent and differentiation. This study indicates

that suppression of the SOX2 expression might be useful to block

cell proliferation in early stage EC. Interestingly, as a result of our

array CGH study on multiple EC cell lines, NCCIT cell line

showed amplification of the long arm of chromosome 3, band q23

including the SOX2 gene locus [34].

Unlike the majority of GCC cell lines which are derived from

testicular cancers, NCCIT is derived from an extragonadal

mediastinal GCC. In 1988, NCCIT was established as an in vitro

cell line, composed of developmentally pluripotent cells capable of

somatic and extra-embryonic differentiation. Nude mouse-xeno-

grafts of NCCIT contained foci of EC, yolk sac tumor, immature

somatic tissues, and trophoblastic giant cells indicating that this

cell line is indeed developmentally pluripotent [47]. In 1993,

retinoic-induced differentiation of NCCIT into all three embry-

onic germ layers and extra-embryonic cell lineages was reported,

and in fact, it was suggested that the parental NCCIT cells show

characteristics intermediate between SE and EC [31]. We

investigated the effect of OCT3/4 and SOX2 down-regulation

in NCCIT. The results demonstrate that inhibition of OCT3/4

resulted in loss of pluripotency and only partial apoptosis, while

inhibition of SOX2 led to extensive cell death. This suggests that

survival of NCCIT is dependent on the presence of SOX2

expression, referred to as oncogene-dependence [55]. This was

supported by various methods and read out systems. As a control,

inhibition of OCT3/4 and SOX2 was done similarly in the NT2

cell line, which showed induction of differentiation under the

experimental conditions applied [33]. The next step in our study

was to investigate the potential of the NCCIT cells to undergo

differentiation in vivo. Therefore multiple xenografts were gener-

ated. Interestingly, in spite of induction of partial differentiation,

supported by loss of OCT3/4, all tumor cells remained positive for

SOX2. This is in line with the hypothesis that differentiation is

possible, as found in the in vitro experiments, even in spite of SOX2

amplification. The lineages formed are selected by continuous

expression of SOX2 [56]. In this context the potential use of

inhibition of SOX2 in a clinical setting, should be considered

carefully because down-regulation of SOX2 might result in the

induction of differentiation, leading to potentially highly metastatic

clones.

The absence of SOX2 amplification in a series of in vivo pure EC

and EC containing mixed nonseminomas, suggest that SOX2

oncogene dependence, at least due to gene amplification, is not a

frequent mechanism in GCC, which questions indeed the

approach of targeted therapy in a clinical setting. In this context

it might be of interest to check whether the NEC8 cell line

contains SOX2 amplification [29]. In addition,as the number of

EC tumors investigated for SOX2 amplification (50 samples) is not

a large number, there is a possibility that SOX2 amplification is

present in a limited number of cases.

The presence of SOX2 amplification in the NCCIT cell line

might be explained by involvement of other mechanisms, like

absence of a functional p53 status. The importance of the

connection between pluripotency genes, ES pluripotency stem cell

miRs and wildtype/mutant p53 in the pathogenesis of GCC has

been previously described [57]. It has been shown that p53

activates expression of miR-34a and miR-145, which in turn

repress key stem cell factors such as OCT3/4 and SOX2 to

prevent self-renewal and promote differentiation [58] (Figure 4).

miR-145 regulates such activities by activation of WNT signaling

pathway via intracellular localization of b-catenin [59]. Indeed,

earlier miR profiling experiments demonstrate that miR-34a is not

present in NCCIT, and miR-145 shows a low level of expression

[60]. This might be due to the mutated p53 status, resulting in loss

of inhibition of SOX2 expression. Additionaly, in this context it

was shown that miR-371-3 which is thought to mimic the role of

mutant p53 in GCC is expressed at low levels in NCCIT with

mutant p53 and in NT2 with low expression level of wild type p53

[35].

Interestingly, NT2 and TCam2 (another GCC cell line with

seminomatous characteristics) show similar corelation patterns

between p53 status and expression levels of miR-34a and miR-

145. NT2 has a low level of wild type p53 as well as miR-34a and

miR-145, with a high level of SOX2. In contrast, the TCam2 cells

have a relatively normal level of wild type p53, and a high level of

miR-34a and miR-145. Indeed, as expected no SOX2 is

expressed, in line with the seminoma type of cells, linked to

expression of SOX17 instead of SOX2. This justifies the absence

of WNT signaling in TCam2, since SOX17 is known to suppress

this particular pathway [61,62]. This connection between p53, its

downsteam targets regulating the expression of pluripotency

factors such as SOX2 is of interest since most GCC patients have

low levels of wild type p53, and p53 mutations are rarely observed

[63]. We have shown that wild type p53 status is related to the

Figure 4. Schematic representation of the hypothetical indirect
regulation of SOX2 by p53 status. Wild type p53 results in
induction of expression of miR-145 and miR-34a. Subsequently, miR-34a
and mir-145 down-regulates pluripotency genes, including SOX2, the
latter via Wnt signaling.
doi:10.1371/journal.pone.0083585.g004
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response of GCC to DNA damaging agents, including cisplatin

[63]. This can elegantly explain why GCC show such an

exceptional sensitivity to DNA damaging agents [64].

Most recently it has been shown that site-specific phosphory-

lation of OCT3/4 regulated by AKT, promotes stemness of EC

cells (i.e., NCCIT) compared to ES cells [65]. Presence of this site-

specific phosphorylation promotes release of the OCT3/4 protein

from the AKT1 promoter, resulting in induced expression, which

will lead to suppression of apoptosis, and simultaneously, enhances

capacity of OCT3/4 to form a complex with NANOG and

SOX2, promoting pluripotency. This additional effect promotes

tumorigenic capacity of EC compared to ES, which might be of

interest for further investigation.

In conclusion, these data shed novel light on the role of ES cell

pluripotency factors in NCCIT (as an EC cell line) which can

reflect the role of these factors, particularly SOX2 and its

dependence in relation to differentiation, in the etiology of EC

and regulation of stem cell differentiation.

Supporting Information

Figure S1 Genomic region of amplification. A) UCSC

genome browser (version hg19) representation of the genomic

region of amplification at the long arm of chromosome 3, band

q23.33, in NCCIT cells. The borders are 177.604.260 bp and

184.060.761 bp (encompassing a region of about 6.4 Mb). The

genes mapped to this region are shown including SOX2 locus; B)

Array CGH result, the region of amplification in chromosome 3q

is indicated in red circle, the borders are defined between the

probes RP11-71G7 and RP11-553E4, respectively. The y axis

indicates the unique position number based on probe distribution

and the X axis shows a log ratio compare to normal sample.

(TIF)

Figure S2 Western blot analysis of down-regulation of
OCT3/4 and SOX2 in NT2 cells at various time points
(24, 48, 72, 96 and 120 hours). A) NT2 cells are transfected

with two independent OCT3/4 siRNAs (‘‘Matin’’ and ‘‘Hay’’),

two independent b-actin siRNAs and negative control siRNA.

OCT3/4 ‘‘Hay’’ is selected for further experiments. B) NT2 cells

are transfected with three independent SOX2 siRNAs (13294,

13295 and 13296), one b-actin siRNA and negative control

siRNA. SOX2-13294 siRNA is selected for further experiments.

The selected siRNAs are boxed in red within the Figure. These

conditions showed the most profound down-regulation of

expression at the protein level (over 90%) (In 72 h incubation,

SOX2- siRNA 13295 and 13296 have been switched).

(TIF)

Figure S3 Silencing OCT3/4 and SOX2 in NCCIT.
Examples of immunohistochemistry on cytospin slides.
A) SOX2 staining in negative control NCCIT. B) OCT3/4

staining in negative control NCCIT. C) SOX2 staining in

SOX2kd NCCIT cells. D) OCT3/4 staining in OCT3/4kd

NCCIT cells.

(TIF)

Figure S4 OCT/4 staining for cultivated N-NCCIT cells.
Brown colored cells show 95% positive staining for OCT3/4 in

cultivated N-NCCIT cells (sub-line of NCCIT cells). Magnifica-

tion used was 100x.

(TIF)

Figure S5 Examples of FISH for SOX2 on EC tumors.
Red dye (Cye3) shows SOX2 probe. For C12 probe green dye

(FITC) is used. Not more than two copies of SOX2 probe in each

nuclease are detected in these tumors.

(TIF)
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