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Abstract

Background: Previously, we applied basic group theory and related concepts to
scales of measurement of clinical disease states and clinical findings (including
laboratory data). To gain a more concrete comprehension, we here apply the
concept of matrix representation, which was not explicitly exploited in our
previous work.

Methods: Starting with a set of orthonormal vectors, called the basis, an
operator Rj (an N-tuple patient disease state at the j-th session) was expressed
as a set of stratified vectors representing plural operations on individual
components, so as to satisfy the group matrix representation.

Results: The stratified vectors containing individual unit operations were
combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix
representation of a group (ring) as a K-algebra. Using the same-sized matrix of
stratified vectors, we can also express changes in the plural set of [Rj]s. The
method is demonstrated on simple examples.

Conclusions: Despite the incompleteness of our model, the group matrix
representation of stratified vectors offers a formal mathematical approach to
clinical medicine, aligning it with other branches of natural science.

Keywords: Group, Ring, Operation, Stratified vector, Matrix representation,
Clinical medicine

Background
For much of the 20th century, abstract algebras such as groups and related structures,

including rings, group rings, and fields, have been adopted in various fields of natural

science [1–5]. Symmetry treatments of dynamic phenomena have been integral

to simplifying, unifying, and integrating formal representations of the natural

sciences, such as chemistry [6], physics [7–10], molecular biology [11–15], and

anthropology [16].

Unfortunately, clinical medicine has not attained a similar level of sophistication that

would link it to the natural sciences. In 1946, Stevens proposed four classifications of

measurements: “Nominal”, “Ordinal”, “Interval” and “Ratio”. These categories have be-

come widely used in the medical fields and have played important roles in constructing

and interpreting scales [17]. Previously, we applied basic group theory and related
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concepts to measurement scales abstracted from clinical disease states and clinical

findings, including laboratory data, using a vector product approach. We reformulated the

Stevens classification in an abstract algebra-like scheme; namely, we replaced Stevens’ or-

dinal scale with ‘Abelian modulo additive group’ plus ‘zero’, the interval scale with

‘Abelian additive group’ and the ratio scale with ‘field’. Furthermore, various schemes

describing the assessment of patient states were organized into vectors [18, 19]. This

vector-like notation, which adopts a hierarchical-cluster form, enables sophisticated

data-mining and dataset combinations.

Previously, we defined operations using modulo arithmetic and simple arithmetic.

The respective symptoms were assessed by their severity based on a p-grading

(where p denotes a prime number). The modulo-p arithmetic (addition, subtrac-

tion, multiplication and division) was collectively denoted by ‘†’. Theoretical or re-

lated group products were expressed as r(j)ν † r(j→k)ν (mod p) = r(k)ν (mod p),

denoting that r(j)ν (mod p) is the v-th component of Rj (severity of the v-th symp-

tom or laboratory data in p-graded form). Similarly, r(j→k)ν (mod p) is the v-th

component of R(j→k) (an operator that changes the severity of the v-th symptom).

Combining these expressions, we obtain r(k)ν (mod p), denoting the v-th compo-

nent of Rk (a result of changing the v-th symptom). The set r(j)ν comprises Zp = {1,

2,…, p −1}. A change of a global state is expressed as Rj (mod p) † R(j→k) (mod p) = {Rj †

R(j→k)} (mod p) = {Rj † (R(j→0) † R(0→k))} (mod p) = {Rj † Rj
-1 † Rk} (mod p) = {(Rj † Rj

-1) †

Rk} (mod p) = {R0 † R(0→k)} (mod p) = Rk (mod p) (e.g., p = 7), where j, k = 1, 2, 3,…

are positive integers, Rj expresses a patient’s disease state as a combination of the

respective symptom severities, and R(j→k) is an operator that changes the disease

state to Rk by algebraically acting on Rj. This global state change can be described

as a Cartesian vector Zp
×N with components v from 1 to N. For a more detailed

interpretation, we denote ‘arithmetic’ by ‘#’, ‘ordinal addition’ by ‘°’, ‘modulo p

(prime) arithmetic by ‘†’, ‘modulo addition’ by ‘*’, ‘non-modulo/modulo p multiplication’ by

‘×’, and ‘non-modulo/modulo p division’ by ‘/’. Collectively, these symbols express

non-modulo or modulo p arithmetic operations, which were confirmed to satisfy

the postulates of groups, rings or fields [18, 19]. Replacing ‘†’ with ‘#’, which col-

lectively denotes non-modular ordinal arithmetic, we can write ‘Rj # R(j→k) = Rk’,

which satisfies similar conditions. Additionally, we can collectively denote ‘†’ and

‘#’ by ‘◊’. In this notation, a series of disease states R1, R2, R3,…, Rm-1, Rm can be

expressed as a combination of operators

R1◊Rð1→2Þ◊Rð2→3Þ◊…◊Rðm−2→m−1Þ◊Rðm−1→mÞ ¼ Rm:

ð1Þ

The equivalent notation for the v-th component is

r 1ð Þν◊rð1→2Þν◊rð2→3Þν◊…◊rðm−2→m−1Þν◊rðm−1→mÞν ¼ r mð Þν; where v ¼ 1; 2;…;Nð Þ:
ð2Þ

In the following description, we adopt the most general symbol ‘◊’ (meaning ‘†’

and/or ‘#’), which is sufficient to express our ideas.

To simplify the discussion, we also regard non-modulo/modulo-p division as a

multiplication operator; modulo-p division is treated as 1/Rj (mod p) = Rj
−1 (mod p),
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where Rj
−1 satisfies gcd (Rj, Rj

−1) = 1 (mod p) (gcd: greatest common divisor); that

is, r(j)ν × r(j)ν
−1 = 1 (mod p) holds for each component v of Rj. Moreover, a division

by r(j)ν (where r(j)ν is an integer number in modulo division, and a complex number in

non-modulo division) in Rj is considered as a multiplication by 1/r(j)ν; consequently, div-

ision by Rj is a multiplication by 1/Rj. For this reason, it is sufficient that ◊ constitutes

addition or multiplication (non-modulo/modulo) alone.

In our previous report [19], we provided no explicit matrix representations. Group

representations are mappings from an abstract group to matrices based on linear

operators acting on vector spaces. Group operations and direct products of groups

correspond to matrix multiplications and tensor products, respectively [9, 20–22].

Moreover, in our model, operations on individual components of Rj are mixtures of

modulo/non-modulo arithmetic; for example,

Rj ¼ ½r jð Þ1 modulo p1 additionð Þ j r jð Þ2 modulo p2 multiplicationð Þ
j r jð Þ3 non‐modulo additionð Þ j…jr jð Þν non‐modulo divisionð Þ
…j j r jð ÞN non‐modulo arithmeticð Þ� v ¼ 1; 2;…;Nð Þ:

ð3Þ

In this representation, an ordinal matrix treatment is difficult or impossible, because

the plural rules governing the different rows/columns in a square matrix are expressed

as plural modulo-p1/p2 arithmetic or non-modulo arithmetic. This notation seems to

violate the consistency requirement for sums of matrix elements, because different

operations acting on the matrix components yield all combinations of these operations

in the matrix product, such as ‘r(j)ν = a·r(j)1 (modulo p1 addition) + b·r(j)2 (modulo p2
multiplication) + c·r(j)3 (non-modulo addition)… + d·r(j)ν (non-modulo division)… +

e·r(j)N (non-modulo arithmetic) (where a, b, c, d and e are appropriate numbers) (#). If

plural operational rules are mixed in a unique matrix, equation (#) will become non-

sensical. Conventionally, an operational rule for respective elements should be uniquely

expressed (as a unique operational unit); for example, A (mod p1), where A is a matrix.

Hence, we require a method that individually treats each component with no interactions

between respective components. A mixture of r(j)ν and r(j)μ (v ≠ μ) in the same element is

undesirable. In this sense, our construct differs from ordinal matrices covering n-dimen-

sional space. In our methodology, respective symptom/clinical data are independently

treated within individual components. Interactions should be limited to the same compo-

nents at different session numbers j. To satisfy these conditions and explore the formal

ranges of our model, especially, to find a matrix representation of the vector-like notation

(3) with mixed operations [19], we attempt to describe the Rjs in a novel form, while pre-

serving (as far as possible) the conventional group matrix representation. In the following

discussion, the ‘perpendicular’ expression of vectors (matrices) and bases is unique to

the present article. For clarification, the method is demonstrated in a simple example.

Methods
Model assumptions

§1. A composition of stratified vectors that separately expresses plural operations in

individual components

To visualize its behaviors, a group is often described as a linear combination of all

matrix elements. Fundamentally, the matrix representation depends upon the basis
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and operations. The matrix representation provides a tangible view of the specific

characteristics of groups and the action of operators on the basis. Here, we add an

optional definition. Let Rj ∈ M be a complex variable (or complex number) con-

taining N-tuple components of (3) (where N is a natural number). The N-tuple

product Rj is expressed as a stratified vector in set M. In this regard, M is not

merely equal to C×N’ because Rj is constructed from operations such as Zp1 (= {0,

1, 2,…, p1 − 1}) × Zp2 (= {0, 1, 2,…, p2 − 1}) × C3 (complex number) × C4 ×… × CN, in

which each component can have different operations and/or units. Instead, we

write M ≡ {Zp or C ×N, ◊}. To express a matrix of arbitrary Rjs while avoiding the

inconsistency among different components with different operational rules, we re-

write the v-th layer-component of Rj as r(j)ν (= ‹Rj›ν). We refer to this novel form

as a perpendicularly stratified vector Rj (meaning a column vector that is perpen-

dicular to the plane of the paper, not a column vector on the page. However, as

such a vector cannot be portrayed on the page, it is written as a standard column

vector). The components of Rj are perpendicularly arrayed and ordered from bot-

tom to top. For easy visualization, the Rjs are displayed as column vectors with

their components in descending order from top to bottom:

Rj ¼

r jð Þ1 modp1ð Þ
r jð Þ2 modp2ð Þ

r jð Þ3
⋮

r jð Þν
⋮

r jð ÞN

2
666666664

3
777777775

; R j→kð Þ ¼

r j→kð Þ1 modp1ð Þ
r j→kð Þ2 modp2ð Þ

r j→kð Þ3
⋮

r j→kð Þν
⋮

r j→kð ÞN

2
666666664

3
777777775

;

Rj◊R j→kð Þ ¼

r jð Þ1◊r j→kð Þ1 modp1ð Þ
r jð Þ2◊r j→kð Þ2 modp2ð Þ

r jð Þ3◊r j→kð Þ3
⋮

r jð Þν◊r j→kð Þν
⋮

r jð ÞN◊r j→kð ÞN

2
666666664

3
777777775

¼

r kð Þ1 modp1ð Þ
r kð Þ2 modp2ð Þ

r kð Þ3
⋮

r kð Þν
⋮

r kð ÞN

2
666666664

3
777777775

¼ Rl ∈Mð Þ:

ð4Þ

In (4), which is presented for illustrative purposes only, the operations in the v-th

layer (component) are arbitrarily assigned, and the components of the ‘virtual column

vectors’ are placed in descending order, where the v-th component from the bottom

denotes

‹Rj›ν ¼ r jð Þν ν ¼ 1; 2;…Nð Þ: ð5Þ

In this way, all elements Rj (∈M) are interpretable as perpendicularly stratified

vectors. We can also regard Rj as a one-dimensional square matrix [Rj] composed of

N-tuple stratified components r(j)ν (where v = 1,2,…N). Also, each vector e(ν) can be

viewed as a 1 × 1 square matrix [e(ν)] where e(ν) is a unit basis vector composed of

N-tuple perpendicularly stratified components with 1 (mod pν) or 1 (non-mod) in

the v-th coordinate and 0 (mod pν) or 0 (non-mod) in all other coordinates.
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Here, a standard basis for M (= {Zp or C ×N, ◊}) is denoted by a set of N-tuple basis

vectors [e(1), e(2), e(3),…, e(ν),…,e(N)] (= φN) [9, 20–22]. Thus,

e1 ¼

1 mod p1ð Þ
0 mod p2ð Þ
0
⋮
0
⋮
0

2
666666664

3
777777775
; e2 ¼

0 mod p1ð Þ
1 mod p2ð Þ
0
⋮
0
⋮
0

2
666666664

3
777777775
; e3 ¼

0
0
1
⋮
0
⋮
0

2
666666664

3
777777775
;…;

ev ¼

0
0
0
⋮
1 ν−th layerð Þ
⋮
0

2
666666664

3
777777775
;…; eN ¼

0
0
0
⋮
0
⋮
1

2
666666664

3
777777775
:

ð6Þ

Expression (6) is a conventional vector expression of the operational rules (3) acting

on the v-th vector e(ν).

Now, let V be a vector space over the field C of complex numbers and GL(V) be the

group of isomorphisms of V onto itself. By definition, an element a of GL(V) is a linear

mapping of V into V via its inverse a-1. When V has a finite basis (e(ν)) of n elements,

each linear map a: V→V is defined by a square matrix (ast) of order n. The images

a(et) in terms of the basis (es) are given by

aðetÞ ¼
X
s

astes: ð7Þ

Thus, the group GL(V) is the group of invertible square matrices of order n [22].

Suppose that G is a finite group with identity element 1 and composition (j, k) ↦ jk. A

linear representation of G in V is a homomorphism ρ from group G into group GL(V).

ρ : G→GL Vð Þ: ð8Þ

To each element j ∈ G, we associate an element ρ(j) of GL(V) such that

ρ jkð Þ ¼ ρ jð Þ � ρ kð Þ for j; k ∈ G: ð9Þ

Additionally,

ρ 1ð Þ ¼ 1; ρ j−1
� � ¼ ρ jð Þ−1: ð10Þ

When ρ is given, we say that V is a representation of G [22].

Moreover, if V has finite dimensions n, then n denotes the degree of the representa-

tion. Let e(ν) be a basis of V (an orthonormal vector in the v-th layer), and D(Rj) be the

matrix of ρ(Rj) with respect to this basis. In our model, j ≡ Rj, k ≡ Rk, and n = 1. The

correspondences

Rj : M→M and ρ : Rj→D Rj
� � ð11Þ

also apply. Hence, for arbitrary elements Rj, Rk of M, we have
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RjRk
� �

M ¼ Rj RkMð Þ; and consequently D RjRk
� � ¼ D Rj

� �
D Rkð Þ: ð12Þ

Group M can then be expressed as the product of matrices Rj and Rk.

Denoting by Dst(Rj) the coefficients of the matrix D(Rj), (12) becomes [22]

DstðRjRkÞ ¼
X
u

DsuðRjÞ⋅DutðRkÞ: ð13Þ

In our model, the components are discriminated by the stratified form, which is in-

compatible with the interactive rules between elements of a matrix. The above analysis

is performed on a square matrix of order n = 1 in Eqs. (4)-(13).

A vector space of definable multiplication (additive group) is called a K-algebra (ring).

To confirm that the K-vector space is a K-algebra, we denote a linear transformation of

V as V→V, and a set of entire endomorphisms as EndK(V). For n-dimensional V,

EndK(V) can be viewed as an (n × n) K-element matrix MatK(n). Then, for f, g ∈
EndK(V), the product ‘f◦g’ is defined as ‘fg’, and the multiplication is defined for

EndK(V). Therefore, EndK(V) is an n-dimensional K-algebra, and can be viewed as a

matrix ring [22].

We next find the C[M] module that satisfies the following postulates:

1) M is an additive group,

2) Multiplication by R is definable in M; that is, for a, b ∈ R (where R is a set of real

numbers) and Rj ∈ M, we have a bRj
� � ¼ abð ÞRj ∈ M; 1 � Rj ¼ Rj: ð14Þ

3) a þ bð Þ Rj ¼ aRj þ bRj; a Rj þ Rk
� � ¼ aRj þ bRk: ð15Þ

Under these postulates, a pair of arbitrary elements Rj and Rk must be homomorphic.

To maintain incompatibility with the above C[M] module, we reinterpret the ◊
operation as ‘+’ or ‘×’prior to matrix manipulation. That is, the rule of non-

modular/modular addition is simply denoted by ‘+’, and a composite ‘RjRk’ is

treated as a simple multiplication ‘Rj × Rk’. This treatment avoids ambiguity when ◊
is undetermined in the matrix multiplication.

First, we denote the representation matrix of an operator Rj by D(Rj), where Rj

can re-denote a 1-dimensional square matrix [Rj] composed of N-tuple perpendicu-

larly stratified components of r(j)ν (v = 1,2,…N) over basis φN. Then, denoting Rje(ν)
as a basis e(ν) multiplied by Rj, the representation matrix D(Rj) is expressed as

follows:

RjφN ¼ Rje 1ð Þ; Rje 2ð Þ;…;Rje νð Þ;…;Rje Nð Þ� ¼ ½e 1ð Þ; e 2ð Þ;…; e
νð Þ;…; e Nð Þ�D Rj

� � ¼ φND Rj
� �

:
�

ð16Þ

By Eqs. (4) and (6), the left–hand side of Eq. (16) becomes

½Rjeð1Þ;Rjeð2Þ;…;RjeðνÞ;…;RjeðNÞ� ¼ ½eð1Þ; eð2Þ;…; eðνÞ;…; eðNÞ�½Rj�: ð17Þ

Hence,
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D Rj
� � ¼ Rj

� �
:

ð18Þ

The one-dimensional square matrix [Rj] is equivalent to the perpendicularly stratified

vector Rj. In essence, (17) means the combination

Rje νð Þ
� � ¼ e νð Þ

� �
Rj
� �

ð19Þ

in the v-th layer, where ν = 1, 2,…, N. Referring to Eq. (6), we observe that [Rje(ν)] = [1][Rj]

in the v-th layer, and [Rje(ν)] = [0][Rj] in the μ-th layer (μ ≠ ν). In subsequent sec-

tions, we construct the perpendicularly stratified vectors into multi-dimensional

square matrices.

§2. Further application of stratified vectors as elements of a larger square matrix

Here, we incorporate the stratified vectors Rj in set M into a larger matrix. As discussed

in our previous paper, we consider that our approach will assist the treatment of a pa-

tient’s disease state Rj [19]. We also suggest solutions in the absence of a practical

group matrix representation.

The order |M| of a set M might be infinite. If |M| =∞, we can apply an operation τ

that changes the m-tuple combination of arbitrary Rjs from M to the same number of

combination of Rjs (where m is a positive integer not exceeding |M|; m = 1, 2, 3,…|M|).

Let τ be a mapping such that

τ :

Ra

Rb

Rc

⋮
Rd

2
66664

3
77775 ≡Rmð Þ→

Ra
0

Rb
0

Rc
0

⋮
Rd

0

2
66664

3
77775 ≡Rm 0� �

m−row; 1−column; N‐layer matrixð Þ: ð20Þ

Note that τ is a mapping from a m-tuple Rj to another m-tuple Rj, where the Rjs are

freely selected from M, and infinite τ’s are permitted, because at this stage we merely

introduce our perpendicular approach. In practice, τ could be an intervention/treatment

T administered throughout the clinical course of a certain patient.

As a more tangible example, suppose that Eq. (1) represents a series of disease

states of a certain patient over the entire treatment course; namely,

R1(=R(0→1))◊R(1→2)◊R(2→3)◊…◊R(m-2→m-1)◊R(m-1→m) = Rm (where R0 is the initial

state of the patient; for consistency of expression, we use R(0→1) rather than R1 until now).

This sequence could also be written as a series of row vectors

½R 0→1ð Þ◊Rð1→2Þ◊Rð2→3Þ◊…◊Rðm−2→m−1Þ◊Rðm−1→mÞ�;
ð21Þ

where each Rj is a component of a row vector, and the ◊s are optionally included for

their explicit recognition. That is, we can regard (21) as (m × 1) N-tuple perpendicular

vectors
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½Rð0→1Þ;Rð1→2Þ;Rð2→3Þ;…;Rðm−2→m−1Þ;Rðm−1→mÞ�: ð22Þ

Likewise, (20) can be assembled from column vectors obtained by transposing (21),

as displayed in (23). In this regard, provided that τ is a mapping for a treatment T of

the patient, and Rm is the entire course of the untreated patient, the Rm' (20) of the patient

undergoing treatment T becomes

τ :

R 0→1ð Þ
◊

R 1→2ð Þ
◊

R 2→3ð Þ
◊
⋮
◊

R m−2→m−1ð Þ
◊

R m−1→mð Þ

2
66666666666666664

3
77777777777777775

≡Rmð Þ→

R 0→1ð Þ0

◊
R 1→2ð Þ0

◊
R 2→3ð Þ0

◊
⋮
◊

R m−2→m−1ð Þ0

◊
R m−1→mð Þ0

2
66666666666666664

3
77777777777777775

≡Rm 0� �
m−row; 1‐column; N‐layer space matrixð Þ:

ð23Þ

Both of Rm and Rm' can be confirmed as m-tuple products of M (≡ M×m). Addition-

ally, Rm and Rm' are N-tuple perpendicularly stratified vectors, implying that (18) can

be similarly expressed in stratified form.

From (20), there exists a mapping π (∈ GL(Vm), an m-dimensional linear space):

Rm→Rm 0
: ð24Þ

Let g (∈ GL(Vm)) satisfy

gRm ¼ Rm 0
: ð25Þ

g (treatment T on the patient) is an m-dimensional, N-tuple perpendicularly stratified

square matrix N
mDðgÞ
� �

satisfying the relationship:

Rm 0 ¼ ½NmDðgÞ�Rm; ð26Þ

which is expressed as ordinal matrix products. The v-th layer of the matrix N
mDðgÞ
� �

is

denoted by N
mDðgÞ
� �

ν
, by which (26) becomes

Rm0
ν ¼ ½NmDðgÞ�νRm

ν ; ð27Þ

or ‹ Rm' › ν = ‹ N
mDðgÞ
� �

› ν ‹ R
m › ν. Equivalently,

R 0→1ð Þ0

◊
R 1→2ð Þ0

◊
R 2→3ð Þ0

◊
⋮
◊

R m−2→m−1ð Þ0

◊
R m−1→mð Þ0

2
66666666666666664

3
77777777777777775

νð Þ ¼ ½NmD gð Þ� νð Þ

R 0→1ð Þ
◊

R 1→2ð Þ
◊

R 2→3ð Þ
◊
⋮
◊

R m−2→m−1ð Þ
◊

R m−1→mð Þ

2
66666666666666664

3
77777777777777775

νð Þ ð28Þ
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¼

D νð Þ11 D νð Þ12 D νð Þ13 ⋯ D νð Þ1m
D νð Þ21 D νð Þ22 D νð Þ23 ⋯ D νð Þ2m
D νð Þ31 D νð Þ32 D νð Þ33 ⋯ D νð Þ3m

⋮ ⋮ ⋮ ⋱ ⋮
D νð Þm1 D νð Þm2 D νð Þm3 ⋯ D νð Þmm

⋯

2
66664

3
77775

R 0→1ð Þ
◊

R 1→2ð Þ
◊

R 2→3ð Þ
◊
⋮
◊

R m−2→m−1ð Þ
◊

R m−1→mð Þ

2
66666666666666664

3
77777777777777775

νð Þ ð29Þ

The elements in (29) are the individual components in the cross-section of the ν-th

layer; ‹Ra›ν = r(a)ν. Like the elements Rj, D(ν)st denotes an element (∈ M) of N
mDðgÞ
� �

in

the s-th row and t-th column of the v-th layer (v = 1,2,…,N). Note that (23), (28) and

(29) express not only ordinal matrix relationships; that is, linear combinations of re-

spective components in Rm and Rm', but also the clinical course (1) of the patient

through a series of ◊ operations. However, including the ◊s in the row/column vector

is optional, and the row/column vectors (21) and (22) are strictly equivalent. Naturally,

(28) and (29) can be transposed through [m
ND(g)]t, the transposed matrix of N

mDðgÞ
� �

.

R 0→1ð Þ0 ◊ R 1→2ð Þ0 ◊ R 2→3ð Þ0 ◊ … ◊ R m−2→m−1ð Þ0 ◊ R m−1→mð Þ0½ �
¼ R 0→1ð Þ◊R 1→2ð Þ◊R 2→3ð Þ◊…◊R m−2→m−1ð Þ◊R m−1→mð Þ� N

mD gð Þ�t:��
ð30Þ

Expressions (28)–(30) are optional vector descriptions representing the change in the

pre/post-state of a patient undergoing an intervention/treatment T, which preserves the

operational meaning. The notation now takes a double meaning, representing 1) a

series of changes from the previous state R(j-1) to a subsequent state Rj (j = 1, 2,…, m),

where the change at session j occurs by an operation R(j-1→j) to R(j-1), or 2) the post-

state of the intervention/treatment T, resulting from the linear combination of the pre-

state and the subsequently modified states R(j-1→j). We envisage that this notation could

concisely represent the multiple aspects of a patient’s clinical history.

In (28)–(30), the operator ◊ plays a negligible role, and we can omit the ◊s from an

arbitrarily ordered column vector as follows:

Rm ¼

R 0→1ð Þ
◊

R 3→4ð Þ
◊

R 7→2ð Þ
◊
⋮
◊

R a→bð Þ
◊

R c→dð Þ

2
66666666666666664

3
77777777777777775

¼

R 0→1ð Þ

R 3→4ð Þ

R 7→2ð Þ

⋮

R a→bð Þ

R c→dð Þ

2
66666666666666664

3
77777777777777775

: ð31Þ

This alternative representation of (28) and (29) is naturally permissible, and both strati-

fied vectors in (31) can be equivalently treated in ordinal vector and matrix operations.

All of the elements in (29) are N-tuple perpendicularly stratified vectors (∈ set M), thus

confirming the matrix representation of N
mDðgÞ
� � ð≡M�m2

; m2-tuple product of M).
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Similar to (24)–(29), a series of changes such as Rm →
g1

Rm 0
→
g2

Rm}→
g3
…→

g n−1ð Þ
Rm nð Þ;

where g1, g2,…,g(n-2), g(n-1) (∈ GL(Vm)) satisfy:

giR
m ¼ Rm 0

; and Rm 0 ¼ ½NmDðgiÞ�Rm ði ¼ 1; 2;…; n−1Þ ð32Þ

can be written as combinations of

RmðnÞ ¼ ½NmDðgðn−1ÞÞ�…½NmDðg3Þ�½NmDðg2Þ�½NmDðg1Þ�Rm ð33Þ

and

RmðnÞ
ν ¼ ½NmDðgðn−1ÞÞ�ν…½NmDðg3Þ�ν½NmDðg2Þ�ν½NmDðg1Þ�νRm

ν : ð34Þ

The post-interventional state Rm0
0 is related to the pre-interventional state Rm

0 as

follows:

R0
m ' = [m

ND(g(n − 1))]0… [m
ND(g3)]0[m

ND(g2)]0[m
ND(g1)]0R0

m, where ‘ N
mDðgÞ
� �

0 = mI(0) (m ×m

identity matrix)’. We emphasize that Rm
0 should be discriminated from the identity state

R0 (containing all zeros) described in our previous articles [18, 19].

To compose a basis of orthonormal vectors, we express the 1 ×m unit vectors as in

(6), but these should be viewed as column vectors in the plane of this paper, which

represent the v-th cross-section. Because the operational units are defined for each

layer, all of the components obey the same operational rules, different from the case

illustrated in (6).

The basis is denoted by a set of m-tuple column vectors in the v-th layer

½eðνÞ1; eðνÞ2; eðνÞ3;…; eðνÞμ;…; eðνÞm�ð¼ φðνÞmÞ; ð35Þ

where e(ν)μ (m-row, 1-column, N-layer) (μ = 1, 2,…, m) is a basis vector with 1 in the

μ-th coordinate of the v-th layer, and 0 otherwise. Similarly, e(ν)μ (μ = 1, 2,…, m) con-

tains 0 in all but the μ-th coordinate of the v-th layer. (#)

e νð Þ1 ¼

1
0
0
⋮
0
⋮
0

2
666666664

3
777777775

νð Þ; e νð Þ2 ¼

0
1
0
⋮
0
⋮
0

2
666666664

3
777777775

νð Þ; e νð Þ3 ¼

0
0
1
⋮
0
⋮
0

2
666666664

3
777777775

νð Þ;…;

e νð Þμ ¼

0
0
0
⋮
1 μ−th rowð Þ
⋮
0

2
666666664

3
777777775

νð Þ;…; e νð Þm ¼

0
0
0
⋮
0
⋮
1

2
666666664

3
777777775

νð Þ

ð36Þ

(cross-section at the v-th layer).
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(36) comprises the following m ×m identity matrix:

mI νð Þ ¼
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

2
664

3
775 νð Þ non‐modular caseð Þ v ¼ 1; 2;…; Nð Þ: ð37Þ

In this case, the cross-section at the v-th layer is non-modular.

mI νð Þ ¼
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

2
664

3
775 νð Þ mod pνð Þ v ¼ 1; 2;…; Nð Þ: ð38Þ

In (38), the cross-section at the v-th layer is mod pv. In both (37) and (38), the operational

unit is uniquely applied in the v-th layer. Then, (35) and (36) are equivalent and the compo-

sitions of (37) and (38) follow from the definition of operation in the v-th layer.

The matrices (27)–(29) can also be expressed in terms of the basis φ(ν)m. For this

purpose, we define the image of element g (25) on φ(ν)m as gφ(ν)m, and that on e(ν)μ as

ge(ν)μ; that is

gφ νð Þm ¼ ge νð Þ1; ge νð Þ2;…; ge νð Þμ;…; ge νð Þm� ¼ ½e νð Þ1; e νð Þ2;…; e νð Þμ;…; e νð Þm
� �½NmD gð Þ�ν;
where v ¼ 1; 2;…; Nð Þ:

ð39Þ

Note that each φ(ν)m independently acts on an individual layer v (where v = 1, 2,…, N),

and there exists a N-tuple product of φ(ν)m (v = 1, 2,…, N). Therefore, we can ex-

press Φ(N) as follows:

Φ Nð Þ ¼ φ 1ð Þm;φ 2ð Þm;…;φ νð Þm;…;φ Nð Þm
h i

v ¼ 1; 2;…; Nð Þ
¼ ½½e 1ð Þ1; e 1ð Þ2;…; e 1ð Þμ;…; e 1ð Þm�; ½e 2ð Þ1; e 2ð Þ2;…; e 2ð Þμ;…; e 2ð Þm�;…;

½e
νð Þ1; e νð Þ2;…; e

νð Þμ;…; e
νð Þm�;…; ½e Nð Þ1; e Nð Þ2;…; e Nð Þμ;…; e Nð Þm��: μ ¼ 1; 2;…;mð Þ

ð40Þ

Defining an image of element g on Φ(N) as gΦ(N), (39) is more concisely expressed as

gΦ Nð Þ ¼ gφ 1ð Þm; gφ 2ð Þm…; gφ νð Þm;…; gφ Nð Þm
h i

v ¼ 1; 2;…; Nð Þ
¼ φ 1ð Þm; φ 2ð Þm;…; φ νð Þm;…;φ Nð Þm

h i
N
mD gð Þ�:�

ð41Þ

The expanded form of (41) is

¼ ½½ge 1ð Þ1; ge 1ð Þ2…; ge 1ð Þμ;…; ge 1ð Þm�; ½ge 2ð Þ1; ge 2ð Þ2;…; ge 2ð Þμ;…; ge 2ð Þm�;…;

½ge νð Þ1; ge νð Þ2;…; ge νð Þμ;…; ge νð Þm�;…; ½ge Nð Þ1; ge Nð Þ2;…; ge Nð Þμ;…; ge Nð Þm��
N
mD gð Þ�: μ ¼ 1; 2;…; mð Þ�

ð42Þ

Moreover, for g(n-1)…g3g2g1 (∈ GL(Vm), we have

Sawamura et al. Theoretical Biology and Medical Modelling  (2016) 13:5 Page 11 of 22



ðg n‐1ð Þ…g3g2g1Þφ νð Þm ¼
h
ðg n‐1ð Þ…g3g2g1Þe νð Þ1; ðg n‐1ð Þ…g3g2g1Þe νð Þ2;…;

ðg n‐1ð Þ…g3g2g1Þe νð Þμ;…; ðg n‐1ð Þ…g3g2g1Þe νð Þm
i

¼ e νð Þ1; e νð Þ2;…; e νð Þμ;…; e νð Þm
� ��

N
mDðg n‐1ð ÞÞ�ν…

N
mD g3

� ��ν N
mD

m g2ð Þ�ν N
mD g1ð Þ�ν: n ¼ 1; 2;…ð Þ���

ð43Þ

Similarly, (43) can be integrated over all layers (v = 1, 2,…, N) as follows:

g n‐1ð Þ…g3g2g1
� �

Φ Nð Þ ¼
h

g n‐1ð Þ…g3g2g1
� �

φ 1ð Þm; g n‐1ð Þ…g3g2g1
� �

φ 2ð Þm;…; g n‐1ð Þ…g3g2g1
� �

φ νð Þm;…;

g n‐1ð Þ…g3g2g1
� �

φ Nð Þm
i

¼ φ 1ð Þm; φ 2ð Þm;…; φ νð Þm;…; φ Nð Þm
h i

½NmD g n‐1ð Þ
� �

�…½NmD g3
� ��½NmD g2ð Þ� N

mD g1ð Þ�;�
ð44Þ

¼ Φ Nð Þ½NmD g n‐1ð Þ
� �

�…½NmD g3
� �� N

mD g2ð Þ� N
mD g1ð Þ�:��

Alternatively, operating (37) and (38) on the coordinates gives φ(ν)m[m
ND(g)]ν = [m

ND(g)]ν
in the v-th layer. Moreover, when μ ≠ ν, (##) ensures that

φðμÞm½NmDðgÞ�μ ¼ 0 ðan m � m zeromatrixÞ: ð45Þ

Note that (44) is a simple combination of products; that is, (g(n ‐ 1) …

g3g2g1)φ(ν)m = φ(ν)m[m
ND(g)]ν in all layers v = 1, 2,…, N.

Using these definitions, we can represent combinations of arbitrarily selected Rms

(20) or Rm's (23) from M in similar matrix form.

§3. Practical demonstration using simple examples

To facilitate understanding of our approach, we apply (20)–(44) to some simple prac-

tical examples.

Suppose that Rms are arbitrarily selected from (20) and labeled R(0→1), R(1→2), and R(2→3)

(i.e., m = 3, denoting 3 assessment sessions). Consider that Rm's (R(0→ 1)
' , R(1→ 2)

' and

R(2→ 3)
' ) are selected from the same patient, or can be combined for arbitrary categorization

purposes (e.g., Ra, Rb, Rc, Rd,…). For an easy understanding, we presume that Rm and Rm'

are the clinical courses of a certain patient without and with intervention/treat-

ment T, respectively, over the entire admission. We can define a mapping τ such

as (20), (23), (25) and (26). Obviously, the courses Rm and Rm' cannot run simul-

taneously; however, we presume that after a sufficient scientific investigation of the

intervention T, we can determine the most expected interaction among any com-

ponents of the matrices 3
ND (with and without T) for a given patient. Therefore,

we can envisage the following scenario.

If the number of layers is 4 (N = 4), the plural sets of the patients’ disease states, given

Rm without intervention T and Rm' with T, can be determined through the mapping τ (20):

τ : R3≡
R 0→1ð Þ
R 1→2ð Þ
R 2→3ð Þ

2
4

3
5 3� 1 column matrixð Þ →R3

0
≡

R 0→1ð Þ0

R 1→2ð Þ0

R 2→3ð Þ0

2
4

3
5 3� 1 column matrixð Þ: ð46Þ

Then, during the clinical course Rm' of a patient undergoing T, the individual states

at each session are expressed as R(0→ 1)', R(1→ 2)', R(2→ 3)'.
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From (25), for g (∈ GL(Vm)), we have

gR3¼ R3
0
m ¼ 3ð Þ: ð47Þ

According to (25) and (26),

R3
0 ¼ ½N3 DðgÞ�R3; ð48Þ

or in the v-th layer (v = 1,2,…,N),

R30
ν ¼ ½N3 DðgÞ�νR3

ν; ð49Þ

R30
ν ¼

D νð Þ11 D νð Þ12 D νð Þ13
D νð Þ21 D νð Þ22 D νð Þ23
D νð Þ31 D νð Þ32 D νð Þ33

2
4

3
5R3

ν: ð50Þ

For instance, an arbitrary R3 is given by

R 0→1ð Þ ¼
10 mod 11ð Þf g=10
6 mod 7ð Þf g=6
148 mg=dLð Þ
6 1=24hrsð Þ

2
664

3
775; R 1→2ð Þ ¼

−3 mod 11ð Þf g=10
−2 mod 7ð Þf g=6
−22 mg=dLð Þ
1 1=24hrsð Þ

2
664

3
775; R 2→3ð Þ ¼

2 mod 11ð Þf g=10
1 mod 7ð Þf g=6
15 mg=dLð Þ
−3 1=24hrsð Þ

2
664

3
775:

ð51Þ

Note that to meaningfully express the modular score as a ratio, we divide the first

components (first layer) by 10 (=‘p − 1’ at mod p, with p = 11), and interpret the severity

of the first symptom on a 10-point scale {0, 1/10, 2/10,…,10/10} = Z11/10. Similarly, we

divide the second component (second layer) by 6 (=7 − 1), and interpret its severity on

a 6-point scale {0, 1/6, 2/6,…,6/6} = Z7/6.

The representation matrix N
3 DðgÞ
� �

of the patient after sufficient investigation is

given by

½43D gð Þ�1¼
1 3 4
0 2 5
1 4 2

2
4

3
5 mod 11ð Þ; ½43D gð Þ�2¼

1 2 3
0 3 4
1 2 1

2
4

3
5 mod 7ð Þ;

½43D gð Þ�3¼
0:9 0:2 0:3
0:5 1:2 −0:7
0:4 −0:2 0:6

2
4

3
5 mg=dLð Þ; ½43D gð Þ�4¼

1:1 0:2 −0:1
0:3 −0:5 0:7
0:1 0:7 0:3

2
4

3
5 1=24hrsð Þ:

ð52Þ

In detail, supposing that ◊ expresses mod 11 addition in the first layer, we can write,

1=10ð Þ
1 3 4
0 2 5
1 4 2

2
4

3
5

10
◊
−3
◊
2
⇒9ð Þ

2
6666664

3
7777775
mod 11ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 1=10ð Þ

9
◊
4
◊

2 ¼ −9ð Þ
⇒4ð Þ

2
6666664

3
7777775
mod 11ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

ð53Þ

Similarly, for the second layer,
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1=6ð Þ
1 2 3
0 3 4
1 2 1

2
4

3
5

6
◊
−2
◊
1
⇒5ð Þ

2
6666664

3
7777775
mod 7ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 1=6ð Þ

5
◊
−2
◊
3
⇒6ð Þ

2
6666664

3
7777775
mod 7ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð54Þ

For the third layer, we have

0:9 0:2 0:3
0:5 1:2 −0:7
0:4 −0:2 0:6

2
4

3
5

148
◊

−22
◊
15

⇒141ð Þ

2
6666664

3
7777775
mg=dLð Þ ¼

133:3
◊

37:1
◊

72:6
⇒243ð Þ

2
6666664

3
7777775
mg=dLð Þ: ð55Þ

Finally, for the fourth layer, we have

1:1 0:2 −0:1
0:3 −0:5 0:7
0:1 0:7 0:3

2
4

3
5

6
◊
1
◊
−3
⇒4ð Þ

2
6666664

3
7777775
1=24hrsð Þ ¼

7:1
◊

−0:8
◊
0:4
⇒6:7ð Þ

2
6666664

3
7777775
1=24hrsð Þ: ð56Þ

Ordinarily, the non-modular elements in matrices are unit-less numbers; therefore,

the units mg/dL and 1/24 h are meaningless in the above matrix calculations. Here they

are included for analogy with our operation ◊, as in [19]. If ◊ is merely regarded as a

mark, we can define operations that are incompatible with standard matrix operations,

such as non-mod/mod pν multiplication or division (pν: prime).

Equations (48)–(52) uniquely define R3':

R
0→1ð Þ0 ¼

9 mod 11ð Þf g=10
5 mod 7ð Þf g=6

133:3 mg=dLð Þ
7:1 1=24hrsð Þ

2
664

3
775; R

1→2ð Þ0 ¼
4 mod 11ð Þf g=10
−2 mod 7ð Þf g=6
37:1 mg=dLð Þ
−0:8 1=24hrsð Þ

2
664

3
775;

R
2→3ð Þ0 ¼

2 mod 11ð Þf g=10
3 mod 7ð Þf g=6
72:6 mg=dLð Þ
0:4 1=24hrsð Þ

2
664

3
775:

ð57Þ

For R(j-1→j) in (51) or R(j − 1→ j)' in (53) (j = 1, 2, 3), we presume the following scenario;

the first row (layer) in (51) or (53) describes the severity of a patient’s anemia (or

whether the severity increases or decreases) via modulo 11 addition: 0 implies no symp-

toms/clinical findings, 10 denotes maximally severe anemia, and 5 is the medium sever-

ity of anemia. Here, all of the numbers are divided by 10. Similarly, the second row

(layer) expresses the severity of the patient’s depression via modulo 7 addition; hence,

all numbers are divided by 6. The third row (layer) expresses the patient’s fasting blood

sugar (FBS) level (mg/dL) recorded in the morning, and the fourth row (layer) ex-

presses the sleep time per day (1/24 h). The third and fourth layers involve an ordinal

addition. For instance, in the fourth layer, the inverse of an element x (a patient’s sleep

time) is x−1 = 24 − x (1/24 h). As a simple illustration, let R(0→ 1)' be the disease state of
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a certain patient on day 1 of treatment, and R(1→ 2)' and R(2→ 3)' represent the changes

between days 1 and 2 and between days 2 and 3, respectively. In terms of (23), the

optional expression (21) can be calculated as

½R 0→1ð Þ◊Rð1→2Þ◊Rð2→3Þ ¼ R3ð Þ�: ð58Þ

Although the operator ◊ admits non-modulo/modulo arbitrary arithmetic, we here

choose ‘◊ = * (addition)’ for simplicity, and present the calculations as row vectors for

easy visualization. Then, from (51), we have

R 0→1ð Þ◊Rð1→2Þ◊Rð2→3Þ ¼ R 0→1ð ÞþRð1→2ÞþRð2→3Þ

¼ 10 mod 11ð Þf g=101 6 mod 7ð Þf g=62j j 148 mg=dLð Þ3
� �� 6 1=24hrsð Þ4�
þ −3 mod 11ð Þf g=101 −2 mod 7ð Þf g=62j j −22 mg=dLð Þ3

� �� 1 1=24hrsð Þ4�

þ 2 mod 11ð Þf g=101 1 mod 7ð Þf g=62j j 15 mg=dLð Þ3
� ��−3 1=24hrsð Þ4

�

¼ �
10−3þ 2 mod 11ð Þf g=101 6−2þ 1 mod 7ð Þf g=62j j 148−22

þ15 mg=dLð Þ3j 6þ 1−3 1=24hrsð Þ4�

¼ 9 mod 11ð Þf g=101 5 mod 7ð Þf g=62j j 141 mg=dLð Þ3
� �� 4 1=24hrsð Þ4� ¼ R3:

ð59Þ

Here, the indexes indicate the number of layers.

As is seen, optionally, to explicitly define the series of operations (58), we could ex-

press (46) and (48) in terms of ◊, preserving the ordinal meaning of column vectors

(without ◊):

τ : R3≡

R 0→1ð Þ
◊

R 1→2ð Þ
◊

R 2→3ð Þ

2
66664

3
77775→R3

0
≡

R 0→1ð Þ0

◊
R 1→2ð Þ0

◊
R 2→3ð Þ0

2
66664

3
77775; ð60Þ

R 0→1ð Þ0

◊
R 1→2ð Þ0

◊
R 2→3ð Þ0

2
66664

3
77775 ¼ ½N3 DðgÞ�

R 0→1ð Þ
◊

R 1→2ð Þ
◊

R 2→3ð Þ

2
66664

3
77775:

ð61Þ

Additionally, in (61), the following relationship is naturally confirmable if the

rules of ◊ are determined according to the right-hand equation of (28) in the same

order:

R 0→1ð Þ0◊R 1→2ð Þ0◊R 2→3ð Þ0 ¼ R 0→1ð Þ0 þ R 1→2ð Þ0 þ R 2→3ð Þ0

¼ 9þ 4þ 2 mod 11ð Þf g=101½ j f5−2þ 3 mod 7ð Þg=62j
133:3þ 37:1þ 72:6 mg=dLð Þ3j 7:1−0:8þ 0:4 1=24hrsð Þ4�

¼ 4 mod 11ð Þf g=101½ j 6 mod 7ð Þf g=62 243:0 mg=dLð Þ3
�� ��

6:7 1=24hrsð Þ4�
¼ R

0
3:

ð62Þ

If these conditions fail, ◊ might be inconsistently defined on both sides of equation

(28), causing confusion.
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In (50), the conditions (51) and (57) are insufficient to uniquely determine a

matrix such as (52). Conversely, if the solutions (51) and (52) are obtained before-

hand, based on additional conditions provided by specific postulates, various cases

are permitted.

The representation matrices N
3 DðgÞ
� �

in (49) are combinations of the matrices in (52)

from the first to the fourth layers in ascending order from bottom to top:
4
3DðgÞ
� �

1;
4
3DðgÞ
� �

2;
4
3DðgÞ
� �

3;
4
3DðgÞ
� �

4:

Furthermore, as a more complicated demonstration of (33) and (34), we re-denote

the above operation g (intervention T) by g1, and introduce two new operations g2 and

g3, representing a drug A that reduces FBS (mg/dL) and a therapy B that improves

anemia, respectively.

Under the following matrix representations of g2 (drug A), R3' transforms into

R3
00 ¼ ½N3 Dðg2Þ�R3

0
:

ð63Þ

½43D gð Þ�1 ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 mod 11ð Þ; ½43DðgÞ�2 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5 mod 7ð Þ;

½43D gð Þ�3 ¼
0:9 0 0
0 −0:8 0
0 0 −0:3

2
4

3
5 mg=dLð Þ; ½43D gð Þ�4 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5 1=24hrsð Þ:

ð64Þ

For simplicity, we assume that drug A affects only the third component (layer):

0:9 0 0
0 −0:8 0
0 0 −0:3

2
4

3
5

133:3
◊

37:1
◊

72:6
⇒243ð Þ

2
6666664

3
7777775

mg=dLð Þ ¼

120:0
◊

29:7
◊

21:8
⇒171:5ð Þ

2
6666664

3
7777775

mg=dLð Þ:

Thereby, according to (63) and (64),

R3' ' is obtained as follows:

R
0→1ð Þ00 ¼

9 mod 11ð Þf g=10
5 mod 7ð Þf g=6

120:0 mg=dLð Þ
7:1 1=24hrsð Þ

2
664

3
775; R

1→2ð Þ00 ¼
4 mod 11ð Þf g=10
−2 mod 7ð Þf g=6
29:7 mg=dLð Þ
−0:8 1=24hrsð Þ

2
664

3
775;

R
2→3ð Þ00 ¼

2 mod 11ð Þf g=10
3 mod 7ð Þf g=6
21:8 mg=dLð Þ
0:4 1=24hrsð Þ

2
664

3
775:

ð65Þ

Additionally, under the following matrix representations of g3 (therapy B), R3' ' trans-

forms into
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R3
000 ¼ ½N3 Dðg2Þ�R3

00
:

ð66Þ

½43D gð Þ�1 ¼
1 0 0
0 −2 0
0 0 1

2
4

3
5 mod 11ð Þ; ½43D gð Þ�2 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5 mod 7ð Þ;

½43D gð Þ�3 ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 mg=dLð Þ; ½43D gð Þ�4 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5 1=24hrsð Þ:

ð67Þ

Again for simplicity, we assume that therapy B affects only the first component

(layer):

1=10ð Þ
1 0 0
0 −2 0
0 0 1

2
4

3
5 mod 11ð Þ

8<
:

9=
;

9
◊
4
◊

2 ¼ −9ð Þ
⇒4ð Þ

2
6666664

3
7777775

mod 11ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 1=10ð Þ
1 0 0
0 −2 0
0 0 1

2
4

3
5

9
◊
4
◊

2 ¼ −9ð Þ
⇒4ð Þ

2
6666664

3
7777775

mod 11ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 1=10ð Þ

9
◊
−8
◊
2
⇒3ð Þ

2
6666664

3
7777775

mod 11ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 1=10ð Þ

9
◊
3
◊
2
⇒3ð Þ

2
6666664

3
7777775

mod 11ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Using (66) and (67),

R3' ' ' is then calculated as follows:

R
0→1ð Þ000 ¼

9 mod 11ð Þf g=10
5 mod 7ð Þf g=6

120:0 mg=dLð Þ
7:1 1=24hrsð Þ

2
664

3
775; R

1→2ð Þ000 ¼
3 mod 11ð Þf g=10
−2 mod 7ð Þf g=6
29:7 mg=dLð Þ
−0:8 1=24hrsð Þ

2
664

3
775;

R
2→3ð Þ000 ¼

2 mod 11ð Þf g=10
3 mod 7ð Þf g=6
21:8 mg=dLð Þ
0:4 1=24hrsð Þ

2
664

3
775:

ð68Þ

These practical examples confirm the following relationship:

R3
0 0 0 ¼ ½N3 Dðg3Þ�½N3 Dðg2Þ�½N3 Dðg1Þ�R3: ð69Þ
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In general, with reference to (9), (12) and (25), we arbitrarily select two elements ga
and gb (∈ GL(Vm)), which satisfy Rm = Rma and Rm = Rmb, respectively. We also consider

two perpendicular matrices N
3 DðgaÞ
� �

and N
3 DðgbÞ
� �

. Then, for gbga (∈ GL(Vm)), we con-

firm the following relationship:

½NmDðgbgaÞ� ¼ ½NmDðgbÞ�½NmDðgaÞ�: ð70Þ

By (12) and (13), this expression satisfies the multiplication (product) requirement of

a representation matrix. Naturally, all optional symbol ◊s presented in this section

could be omitted, as in (31).

Results
Above, we demonstrated that a group matrix representation of our proposed model

can be constructed from N-tuple perpendicularly stratified vectors. In this construct,

operators that correspond to the operators of patients’ diseased states are embedded in

the individual matrix elements in each layer. Similarly, arbitrarily sized stratified vec-

tors, denoting the number of patient disease states, are combined as column vectors

into a square matrix. Additionally, the changes in the disease states can be expressed as

plural products of the matrices.

Discussion
In the Model Assumptions section, we mentioned that our concept might assist the

treatment of clinical disease states, and described the stratified form of the vectors

(matrices). The advantage of this notation is that vectors containing different oper-

ational unit (rules) are separately applied to individual Rjs or [D(Rj)]s. However, vectors

composed of various operations cannot be treated in our model [19]. By not separating

the individual components, we avoid interactions among respective components with

different operational units (rules). In the conventional definition of vectors, the compo-

nents are equally placed in the same plane, and mixtures of operational rules are con-

sidered to violate the rules of matrix operation. Specifically, the plural operational units

cannot be defined in a unique square matrix because all manipulated rows and columns

include a complicated expression, causing confusion as mentioned above (#). The con-

cept of placing the individual components in a virtual direction enables independent

manipulation of the individual components in a given layer. Through this device, we

can define the matrix treatment and represent groups or rings through vectors com-

posed of asymmetrically defined operational units (the products of non-mod/modulo

arithmetic). We aimed for a group matrix representation in which addition or multipli-

cation could be described by the same operator in each of the stratified layers (e.g.,

modulo-p1 addition). Briefly, the operations performed in respective layers are merely

combined and ordered as vectors oriented vertically to the ordinal plane of the paper.

We conjecture that this approach will enable an abstract treatment or data storing

method, which could be formulated in future investigations. At least, such a formula-

tion could improve the mathematical rigor of clinical medicine.

In our previous report [19], we defined the collective binary operation ◊ as a

(non-modulo/modulo) arithmetic. In binary operations of Rjs (between components

such as r(j)ν◊r(k)ν), the extremes of ◊ are addition and multiplication. In such cases,

◊ might be a redundant operation because all of the manipulations can be
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performed by multiplying two elements, such as g1g2 or RjRk. Practical binary opera-

tions exclude simple addition between two matrices (g1 + g2 or Rj + Rk), and the

symbol ◊ or equivalent is not defined in any conventional algebra textbook. For ex-

ample, from (8), (11) and (12), for a general linear group GL(V) with n dimensions

and GL(V) = {f ∈ EndK(V)|f
-1 ∈ EndK(V)}, we might also have GL(V) = GL(n, K)

= {A∈ MatK(n)| detA ≠ 0}. Whereas multiplication is closed when det(AB) = det(A)-

det(B), addition is not closed when det
1 0
0 1

	 

þ 0 1

1 0

	 
� �
¼ 0; which contradicts

detA ≠ 0 [23].

Thus, preceding a matrix manipulation, the symbol ◊ should be reinterpreted and re-

placed by an explicit operation (+, −, ×, /; non-mod or modular). Multiplications such

as g1g2 should be specifically defined as the effects of medical operations or other clin-

ical interventions, as illustrated in section 3.

In this paper (see Section 1), a composite of two elements of a set M is denoted

Rj◊Rk, where ◊ is a modulo-p or non-modulo arithmetic. The symbol ◊ is included in

the elements Rj (e.g. (4)). Strictly, to preserve the matrix operation postulates, the ◊
operator is applicable only to one-dimensional square matrices and n-dimensional diag-

onal matrices under the condition ‘◊ = ×’. Note that when n = 1, [A][B] = [R(j)ν][R(k)ν]

= [R(j)ν][◊R(k)ν] = [r(j)ν][◊r(k)ν] = r(j)ν◊r(k)ν = r(j)ν × r(k)ν = r(j)νr(k)ν. In such cases, binary op-

erations such as Rj◊Rk are consistent with the product (multiplication) of two matrices.

In other words, the notation r(j)ν◊r(k)ν (where ◊ expresses the addition operator) is best

avoided, and multiplication of two elements should be expressed in the conventional

form r(j)νr(k)ν. In the product of two multidimensional square matrices [A][B] (the or-

dinal multiplication of matrix A and B), the case ‘r(j)ν◊r(k)ν = r(j)ν + (k)ν’ in [A][B]

= [R(j)ν][R(k)ν] = [r(j)ν][◊r(k)ν] is incompatible with the formal matrix definition. There-

fore, in the present model, we might need to discard the ◊ operator or replace all ◊s by
the desired manipulation (+ or ×) before commencing the matrix-treatment. If ◊ is

addition, we simply add the matrices, and if ◊ is multiplication/division, we assume the

ordinal multiplication (products) of matrices; for example, in the case of the multiplica-

tion operator non-modulo/modulo-p division, we perform multiplication by 1/Rj, and

modulo-p division by 1/Rj (mod p) = Rj
−1 (mod p).

One potential advantage of our model is that it orders the set M. Whether |M| is

finite or infinite, the closure law of the modular approach prevents the dataset from

exploding. We believe that under an appropriate investigation, our model might

optimize data storage.

Our previous model [19] is not always amenable to matrix treatment, but suggests a

vector approach for recording patient data of symptoms/clinical examinations. The

operator ◊ confers no benefit in a vector-like representation. However, when expressing

vector products of Rjs in matrix form, we believe that ◊ is a useful binary operator for

recording or storing datasets.

In this article, we proposed a double-meaning optional notation ◊ in (28), (53)–(56).

This representation is not only simple (for example, R1 (=R(0→1))) but the operator

components can be linearly combined between states R(j-1→j) and R(j − 1→ j)' (in general,

j = 1, 2,…, m). Thus, Eqs. (28), (53)–(56) can be interpreted in two ways; 1) as a series

of changes of disease states in the perpendicular stratified vectors and 2) as linear com-

binations of states within the same layers, obtained in different sessions or under
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different conditions (e.g., with/without an intervention T). In fact, almost all bodily

phenomena are nonlinear, but most medical data are interpreted in the linear formal-

ism. If a dataset is acquired under ideal conditions such as within a short time interval,

and the matrix is small (e.g., m = 2 or 3), the elements N
mDðgÞ
� �

in (28) and 29) might

be determinable from statistical analyses. In this case, pre-, mid- and post-treatments

might influence the elements N
mDðgÞ
� �

, and the clinical course could be operationally

expressed through (1), (21), (58), (59) or (62), with or without the ◊ symbols (non-

mod/mod four arithmetic).

Regarding the sizes of the representation matrices, the one-dimensional square

matrix Rj
� � ¼ N

1 DðgÞ
� �� �

is the simplest case that can be manipulated by Abelian

operations such as RjRk = RkRj. Conversely, plural-dimensional square matrices
N
mDðgÞ
� �

(m ≥ 2) correspond to the non-Abelian (non-commutative) procedures in

more complex phenomena [22]. Almost all medical phenomena might obey non-
commutative laws. Moreover, many of these phenomena might be irreversible and
not expressible as one-dimensional square matrices. The plural-dimensional rep-

resentation matrix N
mDðgÞ
� �

(m ≥ 2) can be decomposed as the direct sum of

smaller matrices. Therefore, rigorous investigations of N
mDðgÞ
� �

(m ≥ 2) are desired

when the simpler representation is difficult or impossible in principle. From this
viewpoint, we can regard [Rj] in the one-dimensional square matrix in (17) and
(18) as a mapping τ (with m = 1) in (20) and (23). Therefore, Eqs. (16) and (17)
can be viewed as special cases of (41) or (42) (with m = 1), and (43) or (44) (with
m = 1 and n = 1). Naturally, Eq. (43) could be viewed as a cross-section of (44) in
the ν-th layer. In addition, (39) is a special case of (43) with n = 1, and (6) is a
special case of (40) with m = 1.

In Eq. (29), we consider that operations with mixed rules are difficult to link in the

conventional matrix representation. More generally, given a perpendicularly stratified

vector Rj and appropriately postulated devices, an N-tuple combination among arbi-

trary r(j)νs (where v is the component (layer) of Rj; v = 1, 2,…, N) might be regarded as a

tensor product r(j)1⊗ r(j)2⊗…⊗ r(j)ν⊗… r(j)(N − 1)⊗ r(j)N [9, 20–22]. By expressing the

basis of perpendicularly stratified vectors (matrices) in terms of Φ(N), we offer a gener-

alized treatment of vectors such as (3), which might be applicable to other topics.

Our treatment also allows perpendicular stratified vectors (matrices). We conjecture

that an ordinal treatment of these vectors is possible in respective layers. Therefore, the

eigenvectors can be stratified, and the eigenvalues might be combinations of the highest

N-tuple real numbers.

The limitations of the study should be noted. First, in the matrix representation, the

concept of reducibility/irreducibility, more generally known as decomposability/non-

decomposability, plays an important role. However, in our description, Abelian opera-

tions require only one-dimensional irreducible square matrices (i.e. scalars) [20–22].

Irreversible phenomena must be treated by non-Abelian operations. Crucially, a depart-

ure from the Abelian form implies a complex phenomenon in a medical procedure,

which cannot be expressed as the direct sum of one-dimensional matrices. That is, the

Abelian form is not applicable to complex phenomena.

Regarding the first limitation, there is no assurance that an entire medical procedure

can be decomposed into the linear forms (29), (50) and (52). For instance, if a medical

state is irreversible, it cannot be represented by Abelian operations. Especially, the
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elements of N
mD in larger matrices (e.g., m ≥ 3) may not be determinable when the

underlying phenomena are complex and nonlinear.

Second, the advantage of composite multiplications RjRk seems unclear. Multiplica-

tion (including division) is necessitated by the ratio scale, which contains 0 and permits

all four arithmetic operations [17]. In present research, multiplication (including div-

ision) plays a small role in clinical data analysis, being confined to the ratio between

two data (e.g., relative risk, and the odds ratio of efficacy with/without a certain drug).

However, the ratio scale is considered one of the ideal measures [17], and an arithmetic

capability should be extendible to other fields of natural science such as biology, chemistry

and physics, which often involve a conserved quantity such as energy and momentum.

Therefore, we expect that formalizing the ratio scale would confer great advantages in

future data analysis.

Third is the practical meaning of the expressions (29) (50) and (52). When a medical

state is expressed as a plural-dimensional matrix (29) with simple linear combinations,

the algebraic formalism is not readily linked to those of other natural sciences. Con-

versely, the simple expressions (17) cannot describe complex human phenomena. The

direction in which the proposed formalism should be developed is ambiguous at

present, and also requires investigation in future study.

Similarly, there is no assurance that a series of multiplications among plural repre-

sentation matrices such as (33), (34), (39)−(44) can clearly detect a medical

phenomenon. Moreover, the abstract formulation might not determine the mechan-

ism of interest. From another perspective, if the dataset were acquired at an inappro-

priate time or state, the matrices would contain meaningless elements that would

invalidate the analysis. Therefore, whether sufficient and valuable conditions are met

needs to be determined. Additionally, the abstract formalism should clarify the mech-

anisms of actual medical states. Unfortunately, the present article has not progressed

to this stage.

Finally, numbers or datasets could be duplicated in (20) and (23). Groups and related

concepts preserve the order of a set, regardless of whether the set is finite or infinite. If

the data are naively stored as (20) and (23), the data volume might explode, and the

advantages of the stratified vector (matrix) formulation would be lost. Therefore, we

require a methodology for reducing the data volume, possibly by exploiting the decom-

position or reducibility properties.

Without doubt, our model is preliminary at this stage. Moreover, its practical applicability

remains undeveloped. Although a rigorous mathematical treatment is beyond our expertise,

we hope that this embryonic concept will be developed by professional mathematicians and

physicists into a more descriptive representation of clinical medicine in future.

Conclusions
Despite the brevity and incompleteness of our methodology, we consider that the stratified

vector (matrix) representation of clinical data will lead to a more sophisticated formulation

of clinical medicine in future.
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