Positive streamer initiation from raindrops in thundercloud fields

The threshold field for the electric gas discharge in air is ≈26 kV cm⁻¹ atm⁻¹, yet the maximum field measured (from balloons) is ≈3 kV cm⁻¹ atm⁻¹. The question of how lightning is stimulated is therefore one of the outstanding problems in atmospheric electricity. According to the popular idea first suggested by Loeb and developed further by Phelps, lightning can be initiated from streamers developed in the enhanced electric field around hydrometeors. In our paper, we prove by numerical simulations that positive streamers are initiated, specifically, around charged water drops. The simulation model includes the kinetics of free electrons, and positive and negative ions, the electron impact ionization and photon ionization of the neutral atmospheric constituents, and the formation of space charge electric fields. Simulations were conducted at air pressure 0.4 atm, typical at thundercloud altitudes, and at different background electric fields, drop sizes, and charges. We show that the avalanche-to-streamer transition is possible near drops carrying 63–485 pC in thundercloud fields with intensity of 10 kV cm⁻¹ atm⁻¹ and 15 kV cm⁻¹ atm⁻¹ for drops sizes of 1 mm and 0.5 mm, respectively. Thus, the electric field required for the streamer formation is larger than the measured thunderstorm fields. Therefore, the results of simulations suggest that second mechanisms must operate to amplify the local field. Such mechanisms could be electric field space variations via collective effects of many hydrometeors or runaway breakdown. ©2016. American Geophysical Union.

All Rights Reserved.
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.347 SNIP 1.359
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.101 SNIP 1.296
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.054 SNIP 1.26
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.166 SNIP 1.351
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.159 SNIP 1.228
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.232 SNIP 1.376
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.116 SNIP 1.455
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.269 SNIP 1.581
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.66 SNIP 1.524
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.729 SNIP 1.489
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.901 SNIP 1.532

Original language: English

Electronic versions:
PositiveStreamerInitiationFromRaindropsInTheThundercloudFields.pdf. Embargo ended: 10/12/2016

DOIs:
10.1002/2016JD024901
Source: FindIt
Source-ID: 2304536022

Publication: Research - peer-review › Journal article – Annual report year: 2016